1
|
Zammar G, Fong E, Creeper KJ. Clinical parameters of patients with Duffy null phenotype: a single centre, retrospective review. Pathology 2025; 57:484-488. [PMID: 39979175 DOI: 10.1016/j.pathol.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/02/2024] [Accepted: 11/13/2024] [Indexed: 02/22/2025]
Abstract
We characterise the clinical parameters of patients referred for isolated neutropenia who were found to express the Duffy null phenotype and subsequent diagnosis of Duffy null associated neutrophil count (DANC). This is a single-centre, retrospective review of adult patients (18 years and over) who were referred to a tertiary hospital for further investigation of isolated neutropenia between June 2023 and February 2024. Patient demographics, co-morbidities, ethnicity, medications, laboratory results and final diagnosis were obtained from electronic database and chart reviews. Data were collated and analysed using descriptive statistics. A total of 34 patients (35.3% male) were identified, with a median age of 43 years (IQR 31, 61). The median absolute neutrophil count was 1.42×109/L (IQR 0.74, 1.80). Ten patients (29.4%) referred for isolated neutropenia were subsequently found to have another cytopenia. Ten patients (29.4%) had confirmed Duffy null status, with all 10 patients reporting African heritage. Of those with confirmed Duffy null status, there was no history of recurrent infections, constitutional symptoms or other causes of isolated neutropenia. Of those who expressed Duffy positive phenotype (n=24), three patients (12.5%) were found to have a causative haematological disorder. Other causes of neutropenia in the cohort included autoimmune (20.6%), cyclical (5.9%) and drug-related (5.9%). Ten patients (29.4%) had no cause identified or had spontaneous resolution of their neutropenia. DANC was the most common cause of referred isolated neutropenia. Initial investigations could be limited to assessing Duffy null status in asymptomatic patients from African heritage.
Collapse
Affiliation(s)
- Ghassan Zammar
- Haematology Department, PathWest Laboratory Medicine, Perth, WA, Australia; Haematology Department, Sir Charles Gairdner Hospital, Perth, WA, Australia.
| | - Elizabeth Fong
- Haematology Department, PathWest Laboratory Medicine, Perth, WA, Australia
| | - Katherine J Creeper
- Haematology Department, PathWest Laboratory Medicine, Perth, WA, Australia; Haematology Department, Sir Charles Gairdner Hospital, Perth, WA, Australia; Haematology Department, King Edward Memorial Hospital, Perth, WA, Australia
| |
Collapse
|
2
|
Shaikh R, Ghosh K, Gorakshakar A. Plasmodium vivax Infections in Duffy-Negative Individuals: A Paradigm Shift in Indian Malaria Epidemiology. Mediterr J Hematol Infect Dis 2025; 17:e2025044. [PMID: 40375909 PMCID: PMC12081053 DOI: 10.4084/mjhid.2025.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/26/2025] [Indexed: 05/18/2025] Open
Abstract
Background To investigate the occurrence of Plasmodium vivax infections in Duffy-negative individuals, challenging the long-held belief that P. vivax requires the Duffy antigen receptor for chemokines to infect human erythrocytes. Materials and Methods In the present study, 365 samples were screened using serological techniques, PCR-RFLP analysis, and DNA sequencing of the ACKR1 gene promoter region mutation to identify Duffy-negative individuals. P. vivax infection was detected using PCR targeting the 18S rRNA gene and microscopic examination of Giemsa-stained blood smears. Results Five individuals (1.36%) were confirmed Duffy-negative (Fy(a-b-)). Surprisingly, 3 out of these 5 Duffy-negative subjects (60%) were infected with P. vivax, as confirmed by both microscopy and PCR. Various parasite stages were observed in infected Duffy-negative samples, with parasitaemia ranging from 0.01% to 0.5%. Discussion Our findings provide compelling evidence that P. vivax can infect Duffy-negative individuals, suggesting the existence of alternative invasion pathways or adaptations. This has profound implications for P. vivax biology, evolution, and global distribution. The burden of vivax malaria may be underestimated, particularly in regions with a high prevalence of Duffy negativity. This study highlights the need to reevaluate P. vivax epidemiology, diagnostic approaches, and control strategies, especially in areas previously considered at low risk. Further research is needed to elucidate the mechanisms enabling P. vivax invasion of Duffy-negative erythrocytes and to assess the clinical and epidemiological consequences of these infections.
Collapse
Affiliation(s)
| | - Kanjaksha Ghosh
- Former Director - ICMR - National Institute of Immunohaematology
| | | |
Collapse
|
3
|
Nasir Y, Molla E, Habtamu G, Sisay S, Ejigu LA, Kassa FA, Demisse M, Chali W, Abdo M, Alemayehu DH, Alemayehu L, Letebo A, Emiru T, Deressa JD, Hamza TA, Tamirat AB, Misganaw T, Bogale A, Abriham ZY, Dugassa S, Keffale M, Massebo F, Mamo H, Gadisa E, Drakeley C, Birhanu AG, Koepfli C, Tadesse FG. Spatial distribution of Plasmodium vivax Duffy Binding Protein copy number variation and Duffy genotype, and their association with parasitemia in Ethiopia. PLoS Negl Trop Dis 2025; 19:e0012837. [PMID: 39946429 PMCID: PMC11870341 DOI: 10.1371/journal.pntd.0012837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 02/28/2025] [Accepted: 01/13/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Duffy Binding Protein (PvDBP) binding to the Duffy antigen receptor for chemokine (DARC) is essential for Plasmodium vivax invasion of human reticulocytes. PvDBP copy number variation (CNV) might increase parasite invasion and thus parasitemia. We examined the spatial distribution of PvDBP CNVs and DARC genotypes and their association with parasitemia in P. vivax endemic settings in Ethiopia. METHODOLOGY/PRINCIPAL FINDINGS P. vivax isolates (n = 435) collected from five P. vivax endemic settings in Ethiopia were genotyped by amplifying the GATA1 transcription factor-binding site of the Duffy blood group and the CNV of PvDBP was quantified. Parasitemia was determined using 18S-based qPCR. The majority of participants were Duffy positive (96.8%, 421/435). Of the few Duffy negative individuals, most (n = 8) were detected from one site (Gondar). Multiple copies of PvDBP were detected in 83% (363/435) isolates with significant differences between sites (range 60%-94%). Both heterozygous (p = 0.005) and homozygous (p = 0.006) patients were more likely to have been infected by parasites with multiple PvDBP copies than Duffy negatives. Parasitemia was higher among the Duffy positives (median 17,218 parasites/µL; interquartile range [IQR] 2,895-104,489) than Duffy negatives (170; 78-24,132, p = 0.004) as well as in infections with 2 to 3 PvDBP copies (20,468; 3,649-110,632, p = 0.001) and more than 3 PvDBP copies (17,139; 2,831-95,946, p = 0.004) than single copy (5,673; 249-76,605). CONCLUSIONS/SIGNIFICANCE A high proportion of P. vivax infection was observed in Duffy positives in this study, yet few Duffy negatives were found infected with P. vivax. The significant prevalence of multi-copy PvDBP observed among Ethiopian P. vivax isolates explains the high prevalence and parasitemia observed in clinical cases. This suggests that vivax malaria is a public health concern in the country where the Duffy positive population predominates. Investigating the relative contribution to the maintenance of the infectious reservoir of infections with different genotyping backgrounds (both host and parasite) might be required.
Collapse
Affiliation(s)
- Yasin Nasir
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
- Addis Ababa University, Addis Ababa, Ethiopia
| | - Eshetu Molla
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
- Addis Ababa University, Addis Ababa, Ethiopia
| | - Getnet Habtamu
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Solomon Sisay
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | | | | | - Wakweya Chali
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Melat Abdo
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | - Lina Alemayehu
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Alemayehu Letebo
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
- Arba Minch University, Arba Minch, Ethiopia
| | - Tadele Emiru
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | | | - Abel Beliyu Tamirat
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
- Madda Walabu University Goba Referral Hospital, Bale Goba, Ethiopia
| | - Tadesse Misganaw
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
- Woldia University, Woldia, Ethiopia
| | - Alayu Bogale
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
- Dilla University, Dilla, Ethiopia
| | - Zufan Yiheyis Abriham
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
- University of Gondar, Gondar, Ethiopia
| | | | | | | | - Hassen Mamo
- Addis Ababa University, Addis Ababa, Ethiopia
| | | | - Chris Drakeley
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Cristian Koepfli
- University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Fitsum G Tadesse
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
4
|
Pestana K, Ford A, Rama R, Abagero B, Kepple D, Tomida J, Popovici J, Yewhalaw D, Lo E. Copy Number Variations of Plasmodium vivax DBP1, EBP/DBP2, and RBP2b in Ethiopians Who Are Duffy Positive and Duffy Negative. J Infect Dis 2024; 230:1004-1012. [PMID: 39102894 PMCID: PMC11481331 DOI: 10.1093/infdis/jiae388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/19/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024] Open
Abstract
Recent evidence challenges the belief that individuals who are Duffy-negative are resistant to Plasmodium vivax due to lacking the Duffy antigen receptor for chemokines. Erythrocyte-binding protein (EBP/DBP2) has shown moderate binding to Duffy-negative erythrocytes in vitro. Reticulocyte-binding protein 2b (RBP2b) interactions with transferrin receptor 1 suggest involvement in Duffy-negative infections. Gene copy number variations in PvDBP1, PvEBP/DBP2, and PvRBP2b were investigated in Duffy-positive and Duffy-negative P vivax infections from Ethiopia. Among Duffy-positive samples, 34% displayed PvDBP1 duplications (Cambodian type). In Duffy-negative infections, 30% showed duplications, mostly Cambodian type. For PvEBP/DBP2 and PvRBP2b, Duffy-positive samples exhibited higher duplication rates (1-8 copies for PvEBP/DBP2, 46%; 1-5 copies for PvRBP2b, 43%) as compared with Duffy-negative samples (20.8% and 26%, respectively). The range of copy number variations was lower in Duffy-negative infections. Demographic and clinical factors associated with gene multiplications in both Duffy types were explored, enhancing understanding of P vivax evolution in Africans who are Duffy negative.
Collapse
Affiliation(s)
- Kareen Pestana
- Department of Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| | - Anthony Ford
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Rei Rama
- Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Beka Abagero
- Department of Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| | - Daniel Kepple
- Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Junya Tomida
- Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Jean Popovici
- Malaria Molecular Epidemiology Unit, Malaria Translational Research Unit, Institut Pasteur du Cambodge, Institut Pasteur, Phnom Penh, Cambodia
- Infectious Disease Epidemiology and Analytics, Institut Pasteur, Paris, France
| | - Delenasaw Yewhalaw
- Tropical Infectious Disease Research Center, Jimma University, Jimma, Ethiopia
| | - Eugenia Lo
- Department of Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| |
Collapse
|
5
|
Fernandes GM, Rodrigues-Mattos GH, Torres LM, Guedes KS, Fontes CJF, Ntumngia FB, Adams JH, Brito CFA, Kano FS, de Sousa TN, Carvalho LH. Natural genetic diversity of the DBL domain of a novel member of the Plasmodium vivax erythrocyte binding-like proteins (EBP2) in the Amazon rainforest. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105628. [PMID: 38936525 PMCID: PMC11425718 DOI: 10.1016/j.meegid.2024.105628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
In malaria parasites, the erythrocyte binding-like proteins (EBL) are a family of invasion proteins that are attractive vaccine targets. In the case of Plasmodium vivax, the widespread malaria parasite, blood-stage vaccines have been largely focused on a single EBL candidate, the Duffy binding-like domain (DBL) of the Duffy binding protein (DBPII), due to its well-characterized role in the reticulocyte invasion. A novel P. vivax EBL family member, the Erythrocyte binding protein (EBP2, also named EBP or DBP2), binds preferentially to reticulocytes and may mediate an alternative P. vivax invasion pathway. To gain insight into the natural genetic diversity of the DBL domain of EBP2 (region II; EBP2-II), we analyzed ebp2-II gene sequences of 71 P. vivax isolates collected in different endemic settings of the Brazilian Amazon rainforest, where P. vivax is the predominant malaria-associated species. Although most of the substitutions in the ebp2-II gene were non-synonymous and suggested positive selection, the results showed that the DBL domain of the EBP2 was much less polymorphic than that of DBPII. The predominant EBP2 haplotype in the Amazon region corresponded to the C127 reference sequence first described in Cambodia (25% C127-like haplotype). An overview of ebp2-II gene sequences available at GenBank (n = 352) from seven countries (Cambodia, Madagascar, Myanmar, PNG, South Korea, Thailand, Vietnam) confirmed the C127-like haplotype as highly prevalent worldwide. Two out of 43 haplotypes (5 to 20 inferred per country) showed a global frequency of 60%. The results presented here open new avenues of research pursuit while suggesting that a vaccine based on the DBL domain of EBP2 should target a few haplotypes for broad coverage.
Collapse
Affiliation(s)
- Gabriela M Fernandes
- Biologia Molecular e Imunologia da Malária, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil; Universidade Federal de Minas Gerais (UFMG), Departamento de Parasitologia, Belo Horizonte, Brazil
| | - Guilherme H Rodrigues-Mattos
- Biologia Molecular e Imunologia da Malária, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Letícia M Torres
- Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Karla S Guedes
- Julio Muller School Hospital, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Cor J F Fontes
- Julio Muller School Hospital, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Francis B Ntumngia
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - John H Adams
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - Cristiana F A Brito
- Biologia Molecular e Imunologia da Malária, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Flora S Kano
- Biologia Molecular e Imunologia da Malária, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Taís N de Sousa
- Biologia Molecular e Imunologia da Malária, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden.
| | - Luzia H Carvalho
- Biologia Molecular e Imunologia da Malária, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
6
|
Bradley L, Yewhalaw D, Hemming-Schroeder E, Jeang B, Lee MC, Zemene E, Degefa T, Lo E, King C, Kazura J, Yan G. Epidemiology of Plasmodium vivax in Duffy negatives and Duffy positives from community and health centre collections in Ethiopia. Malar J 2024; 23:76. [PMID: 38486245 PMCID: PMC10941426 DOI: 10.1186/s12936-024-04895-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Malaria remains a significant cause of morbidity and mortality in Ethiopia with an estimated 3.8 million cases in 2021 and 61% of the population living in areas at risk of malaria transmission. Throughout the country Plasmodium vivax and Plasmodium falciparum are co-endemic, and Duffy expression is highly heterogeneous. The public health significance of Duffy negativity in relation to P. vivax malaria in Ethiopia, however, remains unclear. This study seeks to explore the prevalence and rates of P. vivax malaria infection across Duffy phenotypes in clinical and community settings. METHODS A total of 9580 and 4667 subjects from community and health facilities from a malaria endemic site and an epidemic-prone site in western Ethiopia were enrolled and examined for P. vivax infection and Duffy expression from February 2018 to April 2021. Association between Duffy expression, P. vivax and P. falciparum infections were examined for samples collected from asymptomatic community volunteers and symptomatic subjects from health centres. RESULTS Infection rate of P. vivax among Duffy positives was 2-22 fold higher than Duffy negatives in asymptomatic volunteers from the community. Parasite positivity rate was 10-50 fold higher in Duffy positives than Duffy negatives among samples collected from febrile patients attending health centres and mixed P. vivax and P. falciparum infections were significantly more common than P. vivax mono infections among Duffy negative individuals. Plasmodium vivax parasitaemia measured by 18sRNA parasite gene copy number was similar between Duffy positives and Duffy negatives. CONCLUSIONS Duffy negativity does not offer complete protection against infection by P. vivax, and cases of P. vivax in Duffy negatives are widespread in Ethiopia, being found in asymptomatic volunteers from communities and in febrile patients from health centres. These findings offer evidence for consideration when developing control and intervention strategies in areas of endemic P. vivax and Duffy heterogeneity.
Collapse
Affiliation(s)
- Lauren Bradley
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
| | - Delenasaw Yewhalaw
- Department of Medical Laboratory Sciences and Pathology, College of Health Sciences, Jimma University, 5195, Jimma, Ethiopia
- Tropical and Infectious Diseases Research Centre, Jimma University, Jimma, Ethiopia
| | - Elizabeth Hemming-Schroeder
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Brook Jeang
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
| | - Ming-Chieh Lee
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
| | - Endalew Zemene
- Tropical and Infectious Diseases Research Centre, Jimma University, Jimma, Ethiopia
| | - Teshome Degefa
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Eugenia Lo
- Department of Microbiology and Immunology, Drexel University, Philadelphia, PA, 19104, USA
| | - Christopher King
- Center for Global Health and Disease, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - James Kazura
- Center for Global Health and Disease, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Guiyun Yan
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA.
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
7
|
Abebe A, Dieng CC, Dugassa S, Abera D, Shenkutie TT, Assefa A, Menard D, Lo E, Golassa L. Genetic differentiation of Plasmodium vivax duffy binding protein in Ethiopia and comparison with other geographical isolates. Malar J 2024; 23:55. [PMID: 38395885 PMCID: PMC10885561 DOI: 10.1186/s12936-024-04887-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/21/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Plasmodium vivax Duffy binding protein (PvDBP) is a merozoite surface protein located in the micronemes of P. vivax. The invasion of human reticulocytes by P. vivax merozoites depends on the parasite DBP binding domain engaging Duffy Antigen Receptor for Chemokine (DARC) on these red blood cells (RBCs). PvDBPII shows high genetic diversity which is a major challenge to its use in the development of a vaccine against vivax malaria. METHODS A cross-sectional study was conducted from February 2021 to September 2022 in five study sites across Ethiopia. A total of 58 blood samples confirmed positive for P. vivax by polymerase chain reaction (PCR) were included in the study to determine PvDBPII genetic diversity. PvDBPII were amplified using primers designed from reference sequence of P. vivax Sal I strain. Assembling of sequences was done using Geneious Prime version 2023.2.1. Alignment and phylogenetic tree constructions using MEGA version 10.1.1. Nucleotide diversity and haplotype diversity were analysed using DnaSP version 6.12.03, and haplotype network was generated with PopART version 1.7. RESULTS The mean age of the participants was 25 years, 5 (8.6%) participants were Duffy negatives. From the 58 PvDBPII sequences, seven haplotypes based on nucleotide differences at 8 positions were identified. Nucleotide diversity and haplotype diversity were 0.00267 ± 0.00023 and 0.731 ± 0.036, respectively. Among the five study sites, the highest numbers of haplotypes were identified in Arbaminch with six different haplotypes while only two haplotypes were identified in Gambella. The phylogenetic tree based on PvDBPII revealed that parasites of different study sites shared similar genetic clusters with few exceptions. Globally, a total of 39 haplotypes were identified from 223 PvDBPII sequences representing different geographical isolates obtained from NCBI archive. The nucleotide and haplotype diversity were 0.00373 and 0.845 ± 0.015, respectively. The haplotype prevalence ranged from 0.45% to 27.3%. Two haplotypes were shared among isolates from all geographical areas of the globe. CONCLUSIONS PvDBPII of the Ethiopian P. vivax isolates showed low nucleotide but high haplotype diversity, this pattern of genetic variability suggests that the population may have undergone a recent expansion. Among the Ethiopian P. vivax isolates, almost half of the sequences were identical to the Sal-I reference sequence. However, there were unique haplotypes observed in the Ethiopian isolates, which does not share with isolates from other geographical areas. There were two haplotypes that were common among populations across the globe. Categorizing population haplotype frequency can help to determine common haplotypes for designing an effective blood-stage vaccine which will have a significant role for the control and elimination of P. vivax.
Collapse
Affiliation(s)
- Abnet Abebe
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P.O. Box 24756, Addis Ababa, Ethiopia.
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia.
| | - Cheikh Cambel Dieng
- Department of Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, USA
| | - Sisay Dugassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P.O. Box 24756, Addis Ababa, Ethiopia
| | - Deriba Abera
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P.O. Box 24756, Addis Ababa, Ethiopia
| | - Tassew T Shenkutie
- Department of Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, USA
| | - Ashenafi Assefa
- Institute of Infectious Disease and Global Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Didier Menard
- Malaria Genetics and Resistance Unit, INSERM U1201, Institut Pasteur, Université Paris Cité, 75015, Paris, France
- Dynamics of Host-Pathogen Interactions, Université de Strasbourg, Institute of Parasitology and Tropical Diseases, 67000, Strasbourg, France
| | - Eugenia Lo
- Department of Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, USA
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P.O. Box 24756, Addis Ababa, Ethiopia.
| |
Collapse
|
8
|
Lee SK, Crosnier C, Valenzuela-Leon PC, Dizon BLP, Atkinson JP, Mu J, Wright GJ, Calvo E, Gunalan K, Miller LH. Complement receptor 1 is the human erythrocyte receptor for Plasmodium vivax erythrocyte binding protein. Proc Natl Acad Sci U S A 2024; 121:e2316304121. [PMID: 38261617 PMCID: PMC10835065 DOI: 10.1073/pnas.2316304121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024] Open
Abstract
The discovery that Africans were resistant to infection by Plasmodium vivax (P. vivax) led to the conclusion that P. vivax invasion relied on the P. vivax Duffy Binding Protein (PvDBP) interacting with the Duffy Antigen Receptor for Chemokines (DARC) expressed on erythrocytes. However, the recent reporting of P. vivax infections in DARC-negative Africans suggests that the parasite might use an alternate invasion pathway to infect DARC-negative reticulocytes. To identify the parasite ligands and erythrocyte receptors that enable P. vivax invasion of both DARC-positive and -negative erythrocytes, we expressed region II containing the Duffy Binding-Like (DBL) domain of P. vivax erythrocyte binding protein (PvEBP-RII) and verified that the DBL domain binds to both DARC-positive and -negative erythrocytes. Furthermore, an AVidity-based EXtracelluar Interaction Screening (AVEXIS) was used to identify the receptor for PvEBP among over 750 human cell surface receptor proteins, and this approach identified only Complement Receptor 1 (CR1, CD35, or C3b/C4b receptor) as a PvEBP receptor. CR1 is a well-known receptor for P. falciparum Reticulocyte binding protein Homology 4 (PfRh4) and is present on the surfaces of both reticulocytes and normocytes, but its expression decreases as erythrocytes age. Indeed, PvEBP-RII bound to a subpopulation of both reticulocytes and normocytes, and this binding was blocked by the addition of soluble CR1 recombinant protein, indicating that CR1 is the receptor of PvEBP. In addition, we found that the Long Homology Repeat A (LHR-A) subdomain of CR1 is the only subdomain responsible for mediating the interaction with PvEBP-RII.
Collapse
Affiliation(s)
- Seong-Kyun Lee
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD20852
| | - Cécile Crosnier
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York, YorkYO10 5DD, United Kingdom
| | - Paola Carolina Valenzuela-Leon
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD20852
| | - Brian L. P. Dizon
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD20852
- Rheumatology Fellowship Training Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD20892
| | - John P. Atkinson
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO63110
| | - Jianbing Mu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD20852
| | - Gavin J. Wright
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York, YorkYO10 5DD, United Kingdom
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD20852
| | - Karthigayan Gunalan
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD20852
| | - Louis H. Miller
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD20852
| |
Collapse
|
9
|
Kepple D, Ford CT, Williams J, Abagero B, Li S, Popovici J, Yewhalaw D, Lo E. Comparative transcriptomics reveal differential gene expression among Plasmodium vivax geographical isolates and implications on erythrocyte invasion mechanisms. PLoS Negl Trop Dis 2024; 18:e0011926. [PMID: 38285730 PMCID: PMC10901308 DOI: 10.1371/journal.pntd.0011926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/28/2024] [Accepted: 01/19/2024] [Indexed: 01/31/2024] Open
Abstract
The documentation of Plasmodium vivax malaria across Africa especially in regions where Duffy negatives are dominant suggests possibly alternative erythrocyte invasion mechanisms. While the transcriptomes of the Southeast Asian and South American P. vivax are well documented, the gene expression profile of P. vivax in Africa is unclear. In this study, we examined the expression of 4,404 gene transcripts belong to 12 functional groups and 43 erythrocyte binding gene candidates in Ethiopian isolates and compared them with the Cambodian and Brazilian P. vivax transcriptomes. Overall, there were 10-26% differences in the gene expression profile amongst geographical isolates, with the Ethiopian and Cambodian P. vivax being most similar. Majority of the gene transcripts involved in protein transportation, housekeeping, and host interaction were highly transcribed in the Ethiopian isolates. Members of the reticulocyte binding protein PvRBP2a and PvRBP3 expressed six-fold higher than Duffy binding protein PvDBP1 and 60-fold higher than PvEBP/DBP2 in the Ethiopian isolates. Other genes including PvMSP3.8, PvMSP3.9, PvTRAG2, PvTRAG14, and PvTRAG22 also showed relatively high expression. Differential expression patterns were observed among geographical isolates, e.g., PvDBP1 and PvEBP/DBP2 were highly expressed in the Cambodian but not the Brazilian and Ethiopian isolates, whereas PvRBP2a and PvRBP2b showed higher expression in the Ethiopian and Cambodian than the Brazilian isolates. Compared to Pvs25, gametocyte genes including PvAP2-G, PvGAP (female gametocytes), and Pvs47 (male gametocytes) were highly expressed across geographical samples.
Collapse
Affiliation(s)
- Daniel Kepple
- Biological Sciences, University of North Carolina, Charlotte, North Carolina, United States of America
| | - Colby T. Ford
- Bioinformatics and Genomics, University of North Carolina, Charlotte, North Carolina, United States of America
- School of Data Science, University of North Carolina, Charlotte, North Carolina, United States of America
| | - Jonathan Williams
- Biological Sciences, University of North Carolina, Charlotte, North Carolina, United States of America
| | - Beka Abagero
- Biological Sciences, University of North Carolina, Charlotte, North Carolina, United States of America
| | - Shaoyu Li
- Mathematics and Statistics, University of North Carolina, Charlotte, North Carolina, United States of America
| | - Jean Popovici
- Malaria Research Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Delenasaw Yewhalaw
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Eugenia Lo
- Biological Sciences, University of North Carolina, Charlotte, North Carolina, United States of America
- Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
10
|
Duffy PE, Gunalan K, Miller LH. Vivax malaria and Duffy antigen: Stop being so negative. Cell Host Microbe 2023; 31:1959-1960. [PMID: 38096790 DOI: 10.1016/j.chom.2023.11.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023]
Abstract
Duffy blood group antigen (Duffy antigen/receptor for chemokines, atypical chemokine receptor-1, Duffy antigen), an essential Plasmodium vivax invasion receptor, is absent in most Africans. In this issue, two papers show erythroid precursors from Duffy-negative individuals transiently surface-express Duffy antigen and support vivax infection, potentially explaining low-density vivax infections across Africa.
Collapse
Affiliation(s)
- Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA.
| | - Karthigayan Gunalan
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, USA
| | - Louis H Miller
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, USA
| |
Collapse
|
11
|
Kebede AM, Sutanto E, Trimarsanto H, Benavente ED, Barnes M, Pearson RD, Siegel SV, Erko B, Assefa A, Getachew S, Aseffa A, Petros B, Lo E, Mohammed R, Yilma D, Rumaseb A, Nosten F, Noviyanti R, Rayner JC, Kwiatkowski DP, Price RN, Golassa L, Auburn S. Genomic analysis of Plasmodium vivax describes patterns of connectivity and putative drivers of adaptation in Ethiopia. Sci Rep 2023; 13:20788. [PMID: 38012191 PMCID: PMC10682486 DOI: 10.1038/s41598-023-47889-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023] Open
Abstract
Ethiopia has the greatest burden of Plasmodium vivax in Africa, but little is known about the epidemiological landscape of parasites across the country. We analysed the genomic diversity of 137 P. vivax isolates collected nine Ethiopian districts from 2012 to 2016. Signatures of selection were detected by cross-country comparisons with isolates from Thailand (n = 104) and Indonesia (n = 111), representing regions with low and high chloroquine resistance respectively. 26% (35/137) of Ethiopian infections were polyclonal, and 48.5% (17/35) of these comprised highly related clones (within-host identity-by-descent > 25%), indicating frequent co-transmission and superinfection. Parasite gene flow between districts could not be explained entirely by geographic distance, with economic and cultural factors hypothesised to have an impact on connectivity. Amplification of the duffy binding protein gene (pvdbp1) was prevalent across all districts (16-75%). Cross-population haplotype homozygosity revealed positive selection in a region proximal to the putative chloroquine resistance transporter gene (pvcrt-o). An S25P variant in amino acid transporter 1 (pvaat1), whose homologue has recently been implicated in P. falciparum chloroquine resistance evolution, was prevalent in Ethiopia (96%) but not Thailand or Indonesia (35-53%). The genomic architecture in Ethiopia highlights circulating variants of potential public health concern in an endemic setting with evidence of stable transmission.
Collapse
Affiliation(s)
| | | | - Hidayat Trimarsanto
- Menzies School of Health Research and Charles Darwin University, Casuarina, PO Box 41096, Darwin, NT, 0811, Australia
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Ernest Diez Benavente
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mariana Barnes
- Menzies School of Health Research and Charles Darwin University, Casuarina, PO Box 41096, Darwin, NT, 0811, Australia
| | | | | | - Berhanu Erko
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ashenafi Assefa
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
- School of Public Health, Addis Ababa University, Addis Ababa, Ethiopia
| | - Sisay Getachew
- Armauer Hansen Research Unit (AHRI), Addis Ababa, Ethiopia
- Addis Ababa University, Addis Ababa, Ethiopia
- Millipore Sigma (Bioreliance), Rockville, USA
| | - Abraham Aseffa
- Armauer Hansen Research Unit (AHRI), Addis Ababa, Ethiopia
| | | | - Eugenia Lo
- Department of Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, USA
| | | | - Daniel Yilma
- Jimma University Clinical Trial Unit, Department of Internal Medicine, Jimma University, Jimma, Ethiopia
| | - Angela Rumaseb
- Menzies School of Health Research and Charles Darwin University, Casuarina, PO Box 41096, Darwin, NT, 0811, Australia
| | - Francois Nosten
- Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Julian C Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | | | - Ric N Price
- Menzies School of Health Research and Charles Darwin University, Casuarina, PO Box 41096, Darwin, NT, 0811, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Sarah Auburn
- Menzies School of Health Research and Charles Darwin University, Casuarina, PO Box 41096, Darwin, NT, 0811, Australia.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
12
|
Bradley L, Yewhalaw D, Hemming-Schroeder E, Jeang B, Lee MC, Zemene E, Degefa T, Lo E, King C, Kazura J, Yan G. Comparison of Plasmodium Vivax Infections in Duffy Negatives From Community and Health Center Collections in Ethiopia. RESEARCH SQUARE 2023:rs.3.rs-3385916. [PMID: 37886593 PMCID: PMC10602065 DOI: 10.21203/rs.3.rs-3385916/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Background Malaria remains a significant cause of morbidity and mortality in Ethiopia with an estimated 4.2 million annual cases and 61% of the population living in areas at risk of malaria transmission. Throughout the country Plasmodium vivax and P. falciparum are co-endemic, and Duffy expression is highly heterogeneous. The public health significance of Duffy negativity in relation to P. vivax malaria in Ethiopia, however, remains unclear. Methods A total of 9,580 and 4,667 subjects from community and health facilities from a malaria endemic site and an epidemic-prone site in western Ethiopia were enrolled and examined for P. vivax infection and Duffy expression. Association between Duffy expression, P. vivax and P. falciparum infections were examined for samples collected from asymptomatic community volunteers and symptomatic subjects from health centers. Results Among the community-based cross-sectional samples, infection rate of P. vivax among the Duffy positives was 2-22 fold higher than among the Duffy negatives. Parasite positivity rate was 10-50 fold higher in Duffy positive than Duffy negatives among samples collected from the health center settings and mixed P. vivax and P. falciparum infections were significantly more common than P. vivax mono infections among Duffy negative individuals. P. vivax parasitemia measured by 18sRNA parasite gene copy number was similar between Duffy positives and Duffy negatives. Conclusions Duffy negativity does not offer complete protection against infection by P. vivax, and cases of P. vivax in Duffy negatives are widespread in Ethiopia, being found in asymptomatic volunteers from communities and in febrile patients from health centers. These findings offer evidence for consideration when developing control and intervention strategies in areas of endemic P. vivax and Duffy heterogeneity.
Collapse
|
13
|
Ahmed S, Pestana K, Ford A, Elfaki M, Gamil E, Elamin AF, Hamad SO, Elfaki TM, Abukashawa SMA, Lo E, Abdel Hamid MM. Prevalence and distribution of Plasmodium vivax Duffy Binding Protein gene duplications in Sudan. PLoS One 2023; 18:e0287668. [PMID: 37471337 PMCID: PMC10358875 DOI: 10.1371/journal.pone.0287668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 06/12/2023] [Indexed: 07/22/2023] Open
Abstract
Plasmodium vivax Duffy Binding Protein (PvDBP) is essential for interacting with Duffy antigen receptor for chemokines (DARC) on the surface of red blood cells to allow invasion. Earlier whole genome sequence analyses provided evidence for the duplications of PvDBP. It is unclear whether PvDBP duplications play a role in recent increase of P. vivax in Sudan and in Duffy-negative individuals. In this study, the prevalence and type of PvDBP duplications, and its relationship to demographic and clinical features were investigated. A total of 200 malaria-suspected blood samples were collected from health facilities in Khartoum, River Nile, and Al-Obied. Among them, 145 were confirmed to be P. vivax, and 43 (29.7%) had more than one PvDBP copies with up to four copies being detected. Both the Malagasy and Cambodian types of PvDBP duplication were detected. No significant difference was observed between the two types of duplications between Duffy groups. Parasitemia was significantly higher in samples with the Malagasy-type than those without duplications. No significant difference was observed in PvDBP duplication prevalence and copy number among study sites. The functional significance of PvDBP duplications, especially those Malagasy-type that associated with higher parasitemia, merit further investigations.
Collapse
Affiliation(s)
- Safaa Ahmed
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
- Department of Zoology, Faculty of Science, University of Khartoum, Khartoum, Sudan
| | - Kareen Pestana
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Anthony Ford
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, NC, United States of America
| | - Mohammed Elfaki
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
- Department of Microbiology and Parasitology, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Eiman Gamil
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Arwa F. Elamin
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Samuel Omer Hamad
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Tarig Mohamed Elfaki
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
- National Malaria Control Program, Federal Ministry of Health, Khartoum, Sudan
| | | | - Eugenia Lo
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
- School of Data Science, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | | |
Collapse
|
14
|
Oyogoa E, Mathews R, Olson S, DeLoughery T, Shatzel JJ, Martens KL. Clinical outcomes of patients referred for asymptomatic neutropenia: A focus on racial disparities in hematology. Eur J Haematol 2023; 111:41-46. [PMID: 36951011 PMCID: PMC10272056 DOI: 10.1111/ejh.13963] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/24/2023]
Abstract
BACKGROUND Asymptomatic neutropenia is a common hematology referral, though standardized reference ranges and published clinical outcomes are lacking. METHODS In our retrospective analysis, we evaluated demographics, laboratory, and clinical outcomes of adult patients referred to an academic hematology practice for evaluation of neutropenia from 2010 to 2018. Primary and secondary outcomes included incidence of hematologic disorders and rates of Duffy-null positivity by race, respectively. In a separate analysis, we reviewed absolute neutrophil count (ANC) reference ranges from publicly available Association of American Medical Colleges Medical School Member laboratory directories to assess institutional variations. RESULTS In total, 163 patients were included, with disproportionate number of Black patients referred compared to local demographics. Twenty-three percent of patients (n = 38) were found to have a clinically relevant hematologic outcome (mean ANC of 0.59 × 109 /L), and only six were identified with ANC ≥1.0 × 109 /L. Incidence of hematologic outcomes was lowest among Black patients (p = .05), and nearly all Blacks who underwent Duffy-null phenotype testing were positive (93%), compared to 50% of Whites (p = .04). In separate review of laboratory directories, we confirmed wide variation in ANC lower limit of normal (0.91-2.40 × 109 /L). CONCLUSION Hematologic disorders were rare in patients with mild neutropenia and among Blacks, highlighting the need to standardize hematological ranges representative of non-White communities.
Collapse
Affiliation(s)
- Emmanuella Oyogoa
- Division of Internal Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Rick Mathews
- Department of Biomedical Engineering, Oregon Health & Science University, School of Medicine, Portland, Oregon, USA
| | - Sven Olson
- Division of Hematology & Medical Oncology, Oregon Health & Science University, Portland, Oregon, USA
| | - Thomas DeLoughery
- Division of Hematology & Medical Oncology, Oregon Health & Science University, Portland, Oregon, USA
| | - Joseph J Shatzel
- Division of Hematology & Medical Oncology, Oregon Health & Science University, Portland, Oregon, USA
| | - Kylee L Martens
- Division of Hematology & Medical Oncology, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
15
|
Kepple D, Ford CT, Williams J, Abagero B, Li S, Popovici J, Yewhalaw D, Lo E. Comparative transcriptomics reveal differential gene expression in Plasmodium vivax geographical isolates and implications on erythrocyte invasion mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528793. [PMID: 36824754 PMCID: PMC9949051 DOI: 10.1101/2023.02.16.528793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Plasmodium vivax uses Duffy binding protein (PvDBP1) to bind to the Duffy Antigen-Chemokine Receptor (DARC) to invade human erythrocytes. Individuals who lack DARC expression (Duffy-negative) are thought to be resistance to P. vivax. In recent years, P. vivax malaria is becoming more prevalent in Africa with a portion of these cases detected in Duffy-negatives. Apart from DBP1, members of the reticulocyte binding protein (RBP) and tryptophan-rich antigen (TRAg) families may also play a role in erythrocyte invasion. While the transcriptomes of the Southeast Asian and South American P. vivax are well documented, the gene expression profile of P. vivax in Africa and more specifically the expression level of several erythrocyte binding gene candidates as compared to DBP1 are largely unknown. This paper characterized the first P. vivax transcriptome in Africa and compared with those from the Southeast Asian and South American isolates. The expression of 4,404 gene transcripts belong to 12 functional groups including 43 specific erythrocyte binding gene candidates were examined. Overall, there were 10-26% differences in the gene expression profile amongst the geographical isolates, with the Ethiopian and Cambodian P. vivax being most similar. Majority of the gene transcripts involved in protein transportation, housekeeping, and host interaction were highly transcribed in the Ethiopian P. vivax. Erythrocyte binding genes including PvRBP2a and PvRBP3 expressed six-fold higher than PvDBP1and 60-fold higher than PvEBP/DBP2. Other genes including PvRBP1a, PvMSP3.8, PvMSP3.9, PvTRAG2, PvTRAG14, and PvTRAG22 also showed relatively high expression. Differential expression was observed among geographical isolates, e.g., PvDBP1 and PvEBP/DBP2 were highly expressed in the Cambodian but not the Brazilian and Ethiopian isolates, whereas PvRBP2a and PvRBP2b showed higher expression in the Ethiopian and Cambodian than the Brazilian isolates. Compared to Pvs25, the standard biomarker for detecting female gametocytes, PvAP2-G (PVP01_1440800), GAP (PVP01_1403000), and Pvs47 (PVP01_1208000) were highly expressed across geographical samples. These findings provide an important baseline for future comparisons of P. vivax transcriptomes from Duffy-negative infections and highlight potential biomarkers for improved gametocyte detection.
Collapse
Affiliation(s)
- Daniel Kepple
- Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA
| | - Colby T. Ford
- Bioinformatics and Genomics, University of North Carolina, Charlotte, NC 28223, USA
- School of Data Science, University of North Carolina, Charlotte, NC 28223, USA
| | - Jonathan Williams
- Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA
| | - Beka Abagero
- Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA
| | - Shaoyu Li
- Mathematics and Statistics, University of North Carolina, Charlotte, NC 28223, USA
| | - Jean Popovici
- Malaria Research Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Delenasaw Yewhalaw
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Eugenia Lo
- Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA
- School of Data Science, University of North Carolina, Charlotte, NC 28223, USA
| |
Collapse
|
16
|
Impact of the COVID-19 Pandemic on Malaria Control in Africa: A Preliminary Analysis. Trop Med Infect Dis 2023; 8:tropicalmed8010067. [PMID: 36668974 PMCID: PMC9863638 DOI: 10.3390/tropicalmed8010067] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/17/2023] Open
Abstract
Malaria remains a significant public health concern in Africa, and the emerging coronavirus disease 2019 (COVID-19) pandemic may have negatively impacted malaria control. Here, we conducted a descriptive epidemiological analysis of malaria globally, and preliminarily explored the impact of COVID-19 on the malaria elimination program in regions of Africa (AFR). The present analysis found that there was a vast heterogeneity of incidence of deaths caused by malaria globally in different continents, and the highest malaria burden was observed in AFR. In 2020, there was an obviously increasing trend in the malaria epidemic in AFR, while the other four continents exhibited stable and declining patterns. Historically, malaria has been largely concentrated in high-malaria-burden regions, such as West Africa, and there has been an obvious increasing trend in Nigeria. These data suggest that dynamic changes in the malaria epidemic situation worldwide have primarily originated from AFR, and West Africa has played an important role in the global malaria increase in recent years. Under the coercion of COVID-19, multiple factors have co-driven the increase in malaria in AFR, including insufficient financial investments, a high native malaria burden, weak surveillance systems, limited medical resources, and low socioeconomic development levels. In addition, the shift of medical resources (e.g., health workers and personal protective equipment (PPE), the manufacturing of diagnostic reagents, and drugs) from malaria control to emergency COVID-19 response in the pandemic's early stage caused disruptions, reductions, and delays in pillar malaria control measures, leading to a significant negative impact on malaria control. In particular, a funding shortfall at both the international and domestic levels led to a "significant threat," resulting in vast gaps in access to proven malaria control tools. Although there has been a declining trend in malaria control over time due to COVID-19, the effect still cannot be ignored. Hence, we recommend the implementation of medical and technical resource assistance as a priority strategy to support Africa (West Africa) in order to curb further transmission.
Collapse
|
17
|
Lee SK, Low LM, Andersen JF, Yeoh LM, Valenzuela Leon PC, Drew DR, Doehl JSP, Calvo E, Miller LH, Beeson JG, Gunalan K. The direct binding of Plasmodium vivax AMA1 to erythrocytes defines a RON2-independent invasion pathway. Proc Natl Acad Sci U S A 2023; 120:e2215003120. [PMID: 36577076 PMCID: PMC9910450 DOI: 10.1073/pnas.2215003120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/19/2022] [Indexed: 12/29/2022] Open
Abstract
We used a transgenic parasite in which Plasmodium falciparum parasites were genetically modified to express Plasmodium vivax apical membrane antigen 1 (PvAMA1) protein in place of PfAMA1 to study PvAMA1-mediated invasion. In P. falciparum, AMA1 interaction with rhoptry neck protein 2 (RON2) is known to be crucial for invasion, and PfRON2 peptides (PfRON2p) blocked the invasion of PfAMA1 wild-type parasites. However, PfRON2p has no effect on the invasion of transgenic parasites expressing PvAMA1 indicating that PfRON2 had no role in the invasion of PvAMA1 transgenic parasites. Interestingly, PvRON2p blocked the invasion of PvAMA1 transgenic parasites in a dose-dependent manner. We found that recombinant PvAMA1 domains 1 and 2 (rPvAMA1) bound to reticulocytes and normocytes indicating that PvAMA1 directly interacts with erythrocytes during the invasion, and invasion blocking of PvRON2p may result from it interfering with PvAMA1 binding to erythrocytes. It was previously shown that the peptide containing Loop1a of PvAMA1 (PvAMA1 Loop1a) is also bound to reticulocytes. We found that the Loop1a peptide blocked the binding of PvAMA1 to erythrocytes. PvAMA1 Loop1a has no polymorphisms in contrast to other PvAMA1 loops and may be an attractive vaccine target. We thus present the evidence that PvAMA1 binds to erythrocytes in addition to interacting with PvRON2 suggesting that the P. vivax merozoites may exploit complex pathways during the invasion process.
Collapse
Affiliation(s)
- Seong-Kyun Lee
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD20852
| | - Leanne M. Low
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD20852
| | - John F. Andersen
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD20852
| | - Lee M. Yeoh
- Burnet Institute, Melbourne, VIC3004, Australia
| | - Paola Carolina Valenzuela Leon
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD20852
| | | | - Johannes S. P. Doehl
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD20852
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD20852
| | - Louis H. Miller
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD20852
| | - James G. Beeson
- Burnet Institute, Melbourne, VIC3004, Australia
- Central Clinical School and Department of Microbiology, Monash University, VIC3004, Australia
- Department of Infectious Diseases, University of Melbourne, VIC3010, Australia
| | - Karthigayan Gunalan
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD20852
| |
Collapse
|
18
|
Corder RM, Arez AP, Ferreira MU. Individual variation in Plasmodium vivax malaria risk: Are repeatedly infected people just unlucky? PLoS Negl Trop Dis 2023; 17:e0011020. [PMID: 36634044 PMCID: PMC9836309 DOI: 10.1371/journal.pntd.0011020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Extensive research has examined why some people have frequent Plasmodium falciparum malaria episodes in sub-Saharan Africa while others remain free of disease most of the time. In contrast, malaria risk heterogeneity remains little studied in regions where P. vivax is the dominant species. Are repeatedly infected people in vivax malaria settings such as the Amazon just unlucky? Here, we briefly review evidence that human genetic polymorphism and acquired immunity after repeated exposure to parasites can modulate the risk of P. vivax infection and disease in predictable ways. One-fifth of the hosts account for 80% or more of the community-wide vivax malaria burden and contribute disproportionally to onward transmission, representing a priority target of more intensive interventions to achieve malaria elimination. Importantly, high-risk individuals eventually develop clinical immunity, even in areas with very low or residual malaria transmission, and may constitute a large but silent parasite reservoir.
Collapse
Affiliation(s)
- Rodrigo M. Corder
- Department of Epidemiology and Biostatistics, University of California, Berkeley School of Public Health, Berkeley, California, United States of America
| | - Ana Paula Arez
- Global Health and Tropical Medicine (GHTM), institute of Hygiene and Tropical Medicine, NOVA University of Lisbon, Lisbon, Portugal
| | - Marcelo U. Ferreira
- Global Health and Tropical Medicine (GHTM), institute of Hygiene and Tropical Medicine, NOVA University of Lisbon, Lisbon, Portugal
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
19
|
Bouyssou I, Martínez FJ, Campagne P, Ma L, Doderer-Lang C, Chitnis CE, Ménard D. Plasmodium vivax blood stage invasion pathways: Contribution of omics technologies in deciphering molecular and cellular mechanisms. C R Biol 2022; 345:91-133. [PMID: 36847467 DOI: 10.5802/crbiol.95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/25/2022]
Abstract
Vivax malaria is an infectious disease caused by Plasmodium vivax, a parasitic protozoan transmitted by female Anopheline mosquitoes. Historically, vivax malaria has often been regarded as a benign self-limiting infection due to the observation of low parasitemia in Duffy-positive patients in endemic transmission areas and the virtual absence of infections in Duffy-negative individuals in Sub Saharan Africa. However, the latest estimates show that the burden of the disease is not decreasing in many countries and cases of vivax infections in Duffy-negative individuals are increasingly reported throughout Africa. This raised questions about the accuracy of diagnostics and the evolution of interactions between humans and parasites. For a long time, our knowledge on P. vivax biology has been hampered due to the limited access to biological material and the lack of robust in vitro culture methods. Consequently, little is currently known about P. vivax blood stage invasion mechanisms. The introduction of omics technologies with novel and accessible techniques such as third generation sequencing and RNA sequencing at single cell level, two-dimensional electrophoresis, liquid chromatography, and mass spectrometry, has progressively improved our understanding of P. vivax genetics, transcripts, and proteins. This review aims to provide broad insights into P. vivax invasion mechanisms generated by genomics, transcriptomics, and proteomics and to illustrate the importance of integrated multi-omics studies.
Collapse
|
20
|
Tashi T, Upadhye A, Kundu P, Wu C, Menant S, Soares RR, Ferreira MU, Longley RJ, Mueller I, Hoang QQ, Tham WH, Rayner JC, Scopel KKG, Lima-Junior JC, Tran TM. Longitudinal IgG antibody responses to Plasmodium vivax blood-stage antigens during and after acute vivax malaria in individuals living in the Brazilian Amazon. PLoS Negl Trop Dis 2022; 16:e0010773. [PMID: 36417454 PMCID: PMC9728838 DOI: 10.1371/journal.pntd.0010773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/07/2022] [Accepted: 11/11/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND To make progress towards malaria elimination, a highly effective vaccine targeting Plasmodium vivax is urgently needed. Evaluating the kinetics of natural antibody responses to vaccine candidate antigens after acute vivax malaria can inform the design of serological markers of exposure and vaccines. METHODOLOGY/PRINCIPAL FINDINGS The responses of IgG antibodies to 9 P. vivax vaccine candidate antigens were evaluated in longitudinal serum samples from Brazilian individuals collected at the time of acute vivax malaria and 30, 60, and 180 days afterwards. Antigen-specific IgG correlations, seroprevalence, and half-lives were determined for each antigen using the longitudinal data. Antibody reactivities against Pv41 and PVX_081550 strongly correlated with each other at each of the four time points. The analysis identified robust responses in terms of magnitude and seroprevalence against Pv41 and PvGAMA at 30 and 60 days. Among the 8 P. vivax antigens demonstrating >50% seropositivity across all individuals, antibodies specific to PVX_081550 had the longest half-life (100 days; 95% CI, 83-130 days), followed by PvRBP2b (91 days; 95% CI, 76-110 days) and Pv12 (82 days; 95% CI, 64-110 days). CONCLUSION/SIGNIFICANCE This study provides an in-depth assessment of the kinetics of antibody responses to key vaccine candidate antigens in Brazilians with acute vivax malaria. Follow-up studies are needed to determine whether the longer-lived antibody responses induced by natural infection are effective in controlling blood-stage infection and mediating clinical protection.
Collapse
Affiliation(s)
- Tenzin Tashi
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Microbiology and Immunology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Aditi Upadhye
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Prasun Kundu
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Chunxiang Wu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Sébastien Menant
- Infectious Diseases and Immune Defence Division, Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Roberta Reis Soares
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Marcelo U. Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, Nova University of Lisbon, Lisbon, Portugal
| | - Rhea J. Longley
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Ivo Mueller
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Quyen Q. Hoang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Wai-Hong Tham
- Infectious Diseases and Immune Defence Division, Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Julian C. Rayner
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Kézia KG Scopel
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Josué C. Lima-Junior
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Tuan M. Tran
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Microbiology and Immunology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
21
|
Molina-Franky J, Reyes C, Picón Jaimes YA, Kalkum M, Patarroyo MA. The Black Box of Cellular and Molecular Events of Plasmodium vivax Merozoite Invasion into Reticulocytes. Int J Mol Sci 2022; 23:ijms232314528. [PMID: 36498854 PMCID: PMC9739029 DOI: 10.3390/ijms232314528] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
Plasmodium vivax is the most widely distributed malaria parasite affecting humans worldwide, causing ~5 million cases yearly. Despite the disease's extensive burden, there are gaps in the knowledge of the pathophysiological mechanisms by which P. vivax invades reticulocytes. In contrast, this crucial step is better understood for P. falciparum, the less widely distributed but more often fatal malaria parasite. This discrepancy is due to the difficulty of studying P. vivax's exclusive invasion of reticulocytes, which represent 1-2% of circulating cells. Its accurate targeting mechanism has not yet been clarified, hindering the establishment of long-term continuous in vitro culture systems. So far, only three reticulocyte invasion pathways have been characterised based on parasite interactions with DARC, TfR1 and CD98 host proteins. However, exposing the parasite's alternative invasion mechanisms is currently being considered, opening up a large field for exploring the entry receptors used by P. vivax for invading host cells. New methods must be developed to ensure better understanding of the parasite to control malarial transmission and to eradicate the disease. Here, we review the current state of knowledge on cellular and molecular mechanisms of P. vivax's merozoite invasion to contribute to a better understanding of the parasite's biology, pathogenesis and epidemiology.
Collapse
Affiliation(s)
- Jessica Molina-Franky
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 112111, Colombia
- Biotechnology, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - César Reyes
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 112111, Colombia
- Biotechnology, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Animal Sciences Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá 111166, Colombia
| | | | - Markus Kalkum
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Correspondence: (M.K.); (M.A.P.)
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 112111, Colombia
- Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Correspondence: (M.K.); (M.A.P.)
| |
Collapse
|
22
|
Brashear AM, Cui L. Population genomics in neglected malaria parasites. Front Microbiol 2022; 13:984394. [PMID: 36160257 PMCID: PMC9493318 DOI: 10.3389/fmicb.2022.984394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Malaria elimination includes neglected human malaria parasites Plasmodium vivax, Plasmodium ovale spp., and Plasmodium malariae. Biological features such as association with low-density infection and the formation of hypnozoites responsible for relapse make their elimination challenging. Studies on these parasites rely primarily on clinical samples due to the lack of long-term culture techniques. With improved methods to enrich parasite DNA from clinical samples, whole-genome sequencing of the neglected malaria parasites has gained increasing popularity. Population genomics of more than 2200 P. vivax global isolates has improved our knowledge of parasite biology and host-parasite interactions, identified vaccine targets and potential drug resistance markers, and provided a new way to track parasite migration and introduction and monitor the evolutionary response of local populations to elimination efforts. Here, we review advances in population genomics for neglected malaria parasites, discuss how the rich genomic information is being used to understand parasite biology and epidemiology, and explore opportunities for the applications of malaria genomic data in malaria elimination practice.
Collapse
|
23
|
Kar S, Sinha A. Plasmodium vivax Duffy Binding Protein-Based Vaccine: a Distant Dream. Front Cell Infect Microbiol 2022; 12:916702. [PMID: 35909975 PMCID: PMC9325973 DOI: 10.3389/fcimb.2022.916702] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
The neglected but highly prevalent Plasmodium vivax in South-east Asia and South America poses a great challenge, with regards to long-term in-vitro culturing and heavily limited functional assays. Such visible challenges as well as narrowed progress in development of experimental research tools hinders development of new drugs and vaccines. The leading vaccine candidate antigen Plasmodium vivax Duffy Binding Protein (PvDBP), is essential for reticulocyte invasion by binding to its cognate receptor, the Duffy Antigen Receptor for Chemokines (DARC), on the host’s reticulocyte surface. Despite its highly polymorphic nature, the amino-terminal cysteine-rich region II of PvDBP (PvDBPII) has been considered as an attractive target for vaccine-mediated immunity and has successfully completed the clinical trial Phase 1. Although this molecule is an attractive vaccine candidate against vivax malaria, there is still a question on its viability due to recent findings, suggesting that there are still some aspects which needs to be looked into further. The highly polymorphic nature of PvDBPII and strain-specific immunity due to PvDBPII allelic variation in Bc epitopes may complicate vaccine efficacy. Emergence of various blood-stage antigens, such as PvRBP, PvEBP and supposedly many more might stand in the way of attaining full protection from PvDBPII. As a result, there is an urgent need to assess and re-assess various caveats connected to PvDBP, which might help in designing a long-term promising vaccine for P. vivax malaria. This review mainly deals with a bunch of rising concerns for validation of DBPII as a vaccine candidate antigen for P. vivax malaria.
Collapse
|
24
|
Wilairatana P, Masangkay FR, Kotepui KU, De Jesus Milanez G, Kotepui M. Prevalence and risk of Plasmodium vivax infection among Duffy-negative individuals: a systematic review and meta-analysis. Sci Rep 2022; 12:3998. [PMID: 35256675 PMCID: PMC8901689 DOI: 10.1038/s41598-022-07711-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/23/2022] [Indexed: 12/30/2022] Open
Abstract
A better understanding of the occurrence and risk of Plasmodium vivax infection among Duffy-negative individuals is required to guide further research on these infections across Africa. To address this, we used a meta-analysis approach to investigate the prevalence of P. vivax infection among Duffy-negative individuals and assessed the risk of infection in these individuals when compared with Duffy-positive individuals. This study was registered with The International Prospective Register of Systematic Reviews website (ID: CRD42021240202) and followed Preferred Reporting Items for Systematic review and Meta-Analyses guidelines. Literature searches were conducted using medical subject headings to retrieve relevant studies in Medline, Web of Science, and Scopus, from February 22, 2021 to January 31, 2022. Selected studies were methodologically evaluated using the Joanna Briggs Institute (JBI) Critical Appraisal Tools to assess the quality of cross-sectional, case-control, and cohort studies. The pooled prevalence of P. vivax infection among Duffy-negative individuals and the odds ratio (OR) of infection among these individuals when compared with Duffy-positive individuals was estimated using a random-effects model. Results from individual studies were represented in forest plots. Heterogeneity among studies was assessed using Cochrane Q and I2 statistics. We also performed subgroup analysis of patient demographics and other relevant variables. Publication bias among studies was assessed using funnel plot asymmetry and the Egger's test. Of 1593 retrieved articles, 27 met eligibility criteria and were included for analysis. Of these, 24 (88.9%) reported P. vivax infection among Duffy-negative individuals in Africa, including Cameroon, Ethiopia, Sudan, Botswana, Nigeria, Madagascar, Angola, Benin, Kenya, Mali, Mauritania, Democratic Republic of the Congo, and Senegal; while three reported occurrences in South America (Brazil) and Asia (Iran). Among studies, 11 reported that all P. vivax infection cases occurred in Duffy-negative individuals (100%). Also, a meta-analysis on 14 studies showed that the pooled prevalence of P. vivax infection among Duffy-negative individuals was 25% (95% confidence interval (CI) - 3%-53%, I2 = 99.96%). A meta-analysis of 11 studies demonstrated a decreased odds of P. vivax infection among Duffy-negative individuals (p = 0.009, pooled OR 0.46, 95% CI 0.26-0.82, I2 = 80.8%). We confirmed that P. vivax infected Duffy-negative individuals over a wide prevalence range from 0 to 100% depending on geographical area. Future investigations on P. vivax infection in these individuals must determine if Duffy-negativity remains a protective factor for P. vivax infection.
Collapse
Affiliation(s)
- Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Kwuntida Uthaisar Kotepui
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand
| | - Giovanni De Jesus Milanez
- Department of Medical Technology, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines
| | - Manas Kotepui
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand.
| |
Collapse
|
25
|
Spatial cluster analysis of Plasmodium vivax and P. malariae exposure using serological data among Haitian school children sampled between 2014 and 2016. PLoS Negl Trop Dis 2022; 16:e0010049. [PMID: 34986142 PMCID: PMC8765618 DOI: 10.1371/journal.pntd.0010049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 01/18/2022] [Accepted: 12/03/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Estimation of malaria prevalence in very low transmission settings is difficult by even the most advanced diagnostic tests. Antibodies against malaria antigens provide an indicator of active or past exposure to these parasites. The prominent malaria species within Haiti is Plasmodium falciparum, but P. vivax and P. malariae infections are also known to be endemic. METHODOLOGY/PRINCIPAL FINDINGS From 2014-2016, 28,681 Haitian children were enrolled in school-based serosurveys and were asked to provide a blood sample for detection of antibodies against multiple infectious diseases. IgG against the P. falciparum, P. vivax, and P. malariae merozoite surface protein 19kD subunit (MSP119) antigens was detected by a multiplex bead assay (MBA). A subset of samples was also tested for Plasmodium DNA by PCR assays, and for Plasmodium antigens by a multiplex antigen detection assay. Geospatial clustering of high seroprevalence areas for P. vivax and P. malariae antigens was assessed by both Ripley's K-function and Kulldorff's spatial scan statistic. Of 21,719 children enrolled in 680 schools in Haiti who provided samples to assay for IgG against PmMSP119, 278 (1.27%) were seropositive. Of 24,559 children enrolled in 788 schools providing samples for PvMSP119 serology, 113 (0.46%) were seropositive. Two significant clusters of seropositivity were identified throughout the country for P. malariae exposure, and two identified for P. vivax. No samples were found to be positive for Plasmodium DNA or antigens. CONCLUSIONS/SIGNIFICANCE From school-based surveys conducted from 2014 to 2016, very few Haitian children had evidence of exposure to P. vivax or P. malariae, with no children testing positive for active infection. Spatial scan statistics identified non-overlapping areas of the country with higher seroprevalence for these two malarias. Serological data provides useful information of exposure to very low endemic malaria species in a population that is unlikely to present to clinics with symptomatic infections.
Collapse
|
26
|
Hang JW, Tukijan F, Lee EQH, Abdeen SR, Aniweh Y, Malleret B. Zoonotic Malaria: Non- Laverania Plasmodium Biology and Invasion Mechanisms. Pathogens 2021; 10:889. [PMID: 34358039 PMCID: PMC8308728 DOI: 10.3390/pathogens10070889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 12/27/2022] Open
Abstract
Malaria, which is caused by Plasmodium parasites through Anopheles mosquito transmission, remains one of the most life-threatening diseases affecting hundreds of millions of people worldwide every year. Plasmodium vivax, which accounts for the majority of cases of recurring malaria caused by the Plasmodium (non-Laverania) subgenus, is an ancient and continuing zoonosis originating from monkey hosts probably outside Africa. The emergence of other zoonotic malarias (P. knowlesi, P. cynomolgi, and P. simium) further highlights the seriousness of the disease. The severity of this epidemic disease is dependent on many factors, including the parasite characteristics, host-parasite interactions, and the pathology of the infection. Successful infection depends on the ability of the parasite to invade the host; however, little is known about the parasite invasion biology and mechanisms. The lack of this information adds to the challenges to malaria control and elimination, hence enhancing the potential for continuation of this zoonosis. Here, we review the literature describing the characteristics, distribution, and genome details of the parasites, as well as host specificity, host-parasite interactions, and parasite pathology. This information will provide the basis of a greater understanding of the epidemiology and pathogenesis of malaria to support future development of strategies for the control and prevention of this zoonotic infection.
Collapse
Affiliation(s)
- Jing-Wen Hang
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117545, Singapore; (J.W.H.); (F.T.); (E.Q.H.L.)
| | - Farhana Tukijan
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117545, Singapore; (J.W.H.); (F.T.); (E.Q.H.L.)
| | - Erica-Qian-Hui Lee
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117545, Singapore; (J.W.H.); (F.T.); (E.Q.H.L.)
| | - Shifana Raja Abdeen
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore 138648, Singapore;
| | - Yaw Aniweh
- West Africa Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Legon, Accra, Ghana;
| | - Benoit Malleret
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117545, Singapore; (J.W.H.); (F.T.); (E.Q.H.L.)
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore 138648, Singapore;
| |
Collapse
|
27
|
Lo E, Russo G, Pestana K, Kepple D, Abagero BR, Dongho GBD, Gunalan K, Miller LH, Hamid MMA, Yewhalaw D, Paganotti GM. Contrasting epidemiology and genetic variation of Plasmodium vivax infecting Duffy-negative individuals across Africa. Int J Infect Dis 2021; 108:63-71. [PMID: 33991680 DOI: 10.1016/j.ijid.2021.05.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES Plasmodium vivax malaria was thought to be rare in Africans who lack the Duffy blood group antigen expression. However, recent studies indicate that P. vivax can infect Duffy-negative individuals and has spread into areas of high Duffy negativity across Africa. Our study compared epidemiological and genetic features of P. vivax between African regions. METHODS A standardized approach was used to identify and quantify P. vivax from Botswana, Ethiopia, and Sudan, where Duffy-positive and Duffy-negative individuals coexist. The study involved sequencing the Duffy binding protein (DBP) gene and inferring genetic relationships among P. vivax populations across Africa. RESULTS Among 1215 febrile patients, the proportions of Duffy negativity ranged from 20-36% in East Africa to 84% in southern Africa. Average P. vivax prevalence among Duffy-negative populations ranged from 9.2% in Sudan to 86% in Botswana. Parasite density in Duffy-negative infections was significantly lower than in Duffy-positive infections. P. vivax in Duffy-negative populations were not monophyletic, with P. vivax in Duffy-negative and Duffy-positive populations sharing similar DBP haplotypes and occurring in multiple, well-supported clades. CONCLUSIONS Duffy-negative Africans are not resistant to P. vivax, and the public health significance of this should not be neglected. Our study highlights the need for a standardized approach and more resources/training directed towards the diagnosis of vivax malaria in Africa.
Collapse
Affiliation(s)
- Eugenia Lo
- Biological Sciences, University of North Carolina at Charlotte, USA.
| | - Gianluca Russo
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy.
| | - Kareen Pestana
- Biological Sciences, University of North Carolina at Charlotte, USA
| | - Daniel Kepple
- Biological Sciences, University of North Carolina at Charlotte, USA
| | - Beka Raya Abagero
- Tropical Infectious Disease Research Center, Jimma University, Jimma, Ethiopia
| | - Ghyslaine Bruna Djeunang Dongho
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy; Evangelical University of Cameroon, Bandjoun, Cameroon
| | | | - Louis H Miller
- Laboratory of Malaria and Vector Research, NIAID/NIH, Bethesda, USA
| | - Muzamil Mahdi Abdel Hamid
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Delenasaw Yewhalaw
- Tropical Infectious Disease Research Center, Jimma University, Jimma, Ethiopia
| | - Giacomo Maria Paganotti
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana; Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Biomedical Sciences, Faculty of Medicine, University of Botswana, Gaborone, Botswana
| |
Collapse
|
28
|
Brown CA, Pappoe-Ashong PJ, Duah N, Ghansah A, Asmah H, Afari E, Koram KA. High frequency of the Duffy-negative genotype and absence of Plasmodium vivax infections in Ghana. Malar J 2021; 20:99. [PMID: 33596926 PMCID: PMC7888148 DOI: 10.1186/s12936-021-03618-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/02/2021] [Indexed: 01/01/2023] Open
Abstract
Background Recent studies from different malaria-endemic regions including western Africa have now shown that Plasmodium vivax can infect red blood cells (RBCs) and cause clinical disease in Duffy-negative people, though the Duffy-negative phenotype was thought to confer complete refractoriness against blood invasion with P. vivax. The actual prevalence of P. vivax in local populations in Ghana is unknown and little information is available about the distribution of Duffy genotypes. The aim of this study was to assess the prevalence of P. vivax in both asymptomatic and symptomatic outpatients and the distribution of Duffy genotypes in Ghana. Methods DNA was extracted from dried blood spots (DBS) collected from 952 subjects (845 malaria patients and 107 asymptomatic persons) from nine locations in Ghana. Plasmodium species identification was carried out by nested polymerase chain reaction (PCR) amplification of the small-subunit (SSU) rRNA genes. For P. vivax detection, a second PCR of the central region of the Pvcsp gene was carried out. Duffy blood group genotyping was performed by allele-specific PCR to detect the presence of the FYES allele. Results No cases of P. vivax were detected in any of the samples by both PCR methods used. Majority of infections (542, 94.8%) in the malaria patient samples were due to P. falciparum with only 1 infection (0.0017%) due to Plasmodium malariae, and 2 infections (0.0034%) due to Plasmodium ovale. No case of mixed infection was identified. Of the samples tested for the FYES allele from all the sites, 90.5% (862/952) had the FYES allele. All positive samples were genotyped as FY*B-33/FY*B-33 (Duffy-negative homozygous) and therefore classified as Fy(a−b−). Conclusions No cases of P. vivax were detected by both PCRs and majority of the subjects tested carried the FYES allele. The lack of P. vivax infections observed can be attributed to the high frequency of the FYES allele that silences erythroid expression of the Duffy. These results provide insights on the host susceptibility for P. vivax infections that had not been investigated in Ghana before.
Collapse
Affiliation(s)
- Charles A Brown
- School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Legon, Ghana.
| | - Prince J Pappoe-Ashong
- School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Nancy Duah
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Anita Ghansah
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Harry Asmah
- School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Edwin Afari
- School of Public Health, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Kwadwo A Koram
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| |
Collapse
|
29
|
De SL, Ntumngia FB, Nicholas J, Adams JH. Progress towards the development of a P. vivax vaccine. Expert Rev Vaccines 2021; 20:97-112. [PMID: 33481638 PMCID: PMC7994195 DOI: 10.1080/14760584.2021.1880898] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/21/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Plasmodium vivax causes significant public health problems in endemic regions. A vaccine to prevent disease is critical, considering the rapid spread of drug-resistant parasite strains, and the development of hypnozoites in the liver with potential for relapse. A minimally effective vaccine should prevent disease and transmission while an ideal vaccine provides sterile immunity. AREAS COVERED Despite decades of research, the complex life cycle, technical challenges and a lack of funding have hampered progress of P. vivax vaccine development. Here, we review the progress of potential P. vivax vaccine candidates from different stages of the parasite life cycle. We also highlight the challenges and important strategies for rational vaccine design. These factors can significantly increase immune effector mechanisms and improve the protective efficacy of these candidates in clinical trials to generate sustained protection over longer periods of time. EXPERT OPINION A vaccine that presents functionally-conserved epitopes from multiple antigens from various stages of the parasite life cycle is key to induce broadly neutralizing strain-transcending protective immunity to effectively disrupt parasite development and transmission.
Collapse
Affiliation(s)
- Sai Lata De
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa – 33612, FL
| | - Francis B. Ntumngia
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa – 33612, FL
| | - Justin Nicholas
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa – 33612, FL
| | - John H. Adams
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa – 33612, FL
| |
Collapse
|
30
|
Kepple D, Pestana K, Tomida J, Abebe A, Golassa L, Lo E. Alternative Invasion Mechanisms and Host Immune Response to Plasmodium vivax Malaria: Trends and Future Directions. Microorganisms 2020; 9:E15. [PMID: 33374596 PMCID: PMC7822457 DOI: 10.3390/microorganisms9010015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 11/21/2022] Open
Abstract
Plasmodium vivax malaria is a neglected tropical disease, despite being more geographically widespread than any other form of malaria. The documentation of P. vivax infections in different parts of Africa where Duffy-negative individuals are predominant suggested that there are alternative pathways for P. vivax to invade human erythrocytes. Duffy-negative individuals may be just as fit as Duffy-positive individuals and are no longer resistant to P.vivax malaria. In this review, we describe the complexity of P. vivax malaria, characterize pathogenesis and candidate invasion genes of P. vivax, and host immune responses to P. vivax infections. We provide a comprehensive review on parasite ligands in several Plasmodium species that further justify candidate genes in P. vivax. We also summarize previous genomic and transcriptomic studies related to the identification of ligand and receptor proteins in P. vivax erythrocyte invasion. Finally, we identify topics that remain unclear and propose future studies that will greatly contribute to our knowledge of P. vivax.
Collapse
Affiliation(s)
- Daniel Kepple
- Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA; (K.P.); (J.T.)
| | - Kareen Pestana
- Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA; (K.P.); (J.T.)
| | - Junya Tomida
- Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA; (K.P.); (J.T.)
| | - Abnet Abebe
- Ethiopian Public Health Institute, Addis Ababa 1000, Ethiopia;
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa 1000, Ethiopia;
| | - Eugenia Lo
- Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA; (K.P.); (J.T.)
| |
Collapse
|
31
|
Oboh MA, Oyebola KM, Idowu ET, Badiane AS, Otubanjo OA, Ndiaye D. Rising report of Plasmodium vivax in sub-Saharan Africa: Implications for malaria elimination agenda. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
32
|
Ford A, Kepple D, Abagero BR, Connors J, Pearson R, Auburn S, Getachew S, Ford C, Gunalan K, Miller LH, Janies DA, Rayner JC, Yan G, Yewhalaw D, Lo E. Whole genome sequencing of Plasmodium vivax isolates reveals frequent sequence and structural polymorphisms in erythrocyte binding genes. PLoS Negl Trop Dis 2020; 14:e0008234. [PMID: 33044985 PMCID: PMC7581005 DOI: 10.1371/journal.pntd.0008234] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 10/22/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022] Open
Abstract
Plasmodium vivax malaria is much less common in Africa than the rest of the world because the parasite relies primarily on the Duffy antigen/chemokine receptor (DARC) to invade human erythrocytes, and the majority of Africans are Duffy negative. Recently, there has been a dramatic increase in the reporting of P. vivax cases in Africa, with a high number of them being in Duffy negative individuals, potentially indicating P. vivax has evolved an alternative invasion mechanism that can overcome Duffy negativity. Here, we analyzed single nucleotide polymorphism (SNP) and copy number variation (CNV) in Whole Genome Sequence (WGS) data from 44 P. vivax samples isolated from symptomatic malaria patients in southwestern Ethiopia, where both Duffy positive and Duffy negative individuals are found. A total of 123,711 SNPs were detected, of which 22.7% were nonsynonymous and 77.3% were synonymous mutations. The largest number of SNPs were detected on chromosomes 9 (24,007 SNPs; 19.4% of total) and 10 (16,852 SNPs, 13.6% of total). There were particularly high levels of polymorphism in erythrocyte binding gene candidates including merozoite surface protein 1 (MSP1) and merozoite surface protein 3 (MSP3.5, MSP3.85 and MSP3.9). Two genes, MAEBL and MSP3.8 related to immunogenicity and erythrocyte binding function were detected with significant signals of positive selection. Variation in gene copy number was also concentrated in genes involved in host-parasite interactions, including the expansion of the Duffy binding protein gene (PvDBP) on chromosome 6 and MSP3.11 on chromosome 10. Based on the phylogeny constructed from the whole genome sequences, the expansion of these genes was an independent process among the P. vivax lineages in Ethiopia. We further inferred transmission patterns of P. vivax infections among study sites and showed various levels of gene flow at a small geographical scale. The genomic features of P. vivax provided baseline data for future comparison with those in Duffy-negative individuals and allowed us to develop a panel of informative Single Nucleotide Polymorphic markers diagnostic at a micro-geographical scale.
Collapse
Affiliation(s)
- Anthony Ford
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, United States of America
- Department of Biological Sciences, University of North Carolina at Charlotte, United States of America
| | - Daniel Kepple
- Department of Biological Sciences, University of North Carolina at Charlotte, United States of America
| | - Beka Raya Abagero
- Tropical Infectious Disease Research Center, Jimma University, Ethiopia
| | - Jordan Connors
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, United States of America
| | - Richard Pearson
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, United States of America
| | - Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Sisay Getachew
- College of Natural Sciences, Addis Ababa University, Ethiopia
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Colby Ford
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, United States of America
| | - Karthigayan Gunalan
- Laboratory of Malaria and Vector Research, NIAID/NIH, Bethesda, United States of America
| | - Louis H. Miller
- Laboratory of Malaria and Vector Research, NIAID/NIH, Bethesda, United States of America
| | - Daniel A. Janies
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, United States of America
| | - Julian C. Rayner
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 OXY, United Kingdom
| | - Guiyun Yan
- Program in Public Health, University of California at Irvine, United States of America
| | | | - Eugenia Lo
- Department of Biological Sciences, University of North Carolina at Charlotte, United States of America
| |
Collapse
|
33
|
Golden CD, Rice BL, Randriamady HJ, Vonona AM, Randrianasolo JF, Tafangy AN, Andrianantenaina MY, Arisco NJ, Emile GN, Lainandrasana F, Mahonjolaza RFF, Raelson HP, Rakotoarilalao VR, Rakotomalala AANA, Rasamison AD, Mahery R, Tantely ML, Girod R, Annapragada A, Wesolowski A, Winter A, Hartl DL, Hazen J, Metcalf CJE. Study Protocol: A Cross-Sectional Examination of Socio-Demographic and Ecological Determinants of Nutrition and Disease Across Madagascar. Front Public Health 2020; 8:500. [PMID: 33042943 PMCID: PMC7527467 DOI: 10.3389/fpubh.2020.00500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/04/2020] [Indexed: 11/13/2022] Open
Abstract
Madagascar has experienced significant environmental change since 1960, particularly through forest clearing for agricultural expansion. Climatic patterns are undergoing change in Madagascar as well, with increasing temperatures, droughts, and cyclonic activity. The impact of these environmental and climatic changes will pose threats to food availability, income generation, and local ecosystems, with significant potential effects on the spatial and temporal distribution of disease burden. This study seeks to describe the health status of a large sample of geographically and socially diverse Malagasy communities through multiple clinical measurements, detailed social surveys, and paired data on regional variation in local ecologies. With an increased understanding of the current patterns of variation in human health and nutrition, future studies will be better able to identify associations with climate and anticipate and mitigate the burdens expected from larger, longer-term changes. Our mixed-method approach included an observational cross-sectional study. Research subjects were men, women, and children from 1,125 households evenly distributed across 24 communities in four ecologically and socio-demographically distinct regions of Madagascar. For these 1,125 households, all persons of both sexes and all ages therein (for a total of 6,292 individuals) were recruited into the research study and a total of 5,882 individuals were enrolled. Through repeated social survey recalls and focus group meetings, we obtained social and demographic data, including broad categories of seasonal movements, and characterized the fluctuation of income generation, food production and dietary consumption. Through collection of clinical and biological samples for both point-of-care diagnoses and laboratory analyses, we obtained detailed occurrence (and importantly co-occurrence) data on micronutrient nutritional, infectious disease, and non-communicable disease status. Our research highlights the highly variable social, cultural, and environmental contexts of health conditions in Madagascar, and the tremendous inter-regional, inter-community, and intra-community variation in nutritional and disease status. More than 30% of the surveyed population was afflicted by anemia and 14% of the population had a current malaria infection. This type of rich metadata associated with a suite of biological samples and nutritional and disease outcome data should allow disentangling some of the underlying drivers of ill health across the changing landscapes of Madagascar.
Collapse
Affiliation(s)
- Christopher D. Golden
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, United States
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, United States
- Department of Global Health and Population, Harvard TH Chan School of Public Health, Boston, MA, United States
- Madagascar Health and Environmental Research (MAHERY), Maroantsetra, Madagascar
| | - Benjamin L. Rice
- Madagascar Health and Environmental Research (MAHERY), Maroantsetra, Madagascar
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, United States
| | | | | | | | | | | | - Nicholas J. Arisco
- Department of Global Health and Population, Harvard TH Chan School of Public Health, Boston, MA, United States
| | - Gauthier N. Emile
- Madagascar Health and Environmental Research (MAHERY), Maroantsetra, Madagascar
| | | | | | | | | | | | | | - Rebaliha Mahery
- Madagascar Health and Environmental Research (MAHERY), Maroantsetra, Madagascar
| | - M. Luciano Tantely
- Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Romain Girod
- Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Akshaya Annapragada
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
| | - Amy Wesolowski
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Amy Winter
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Daniel L. Hartl
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
| | - James Hazen
- Madagascar Country Program, Catholic Relief Services, Antananarivo, Madagascar
| | - C. Jessica E. Metcalf
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, United States
- Princeton School of Public and International Affairs, Princeton University, Princeton, NJ, United States
| |
Collapse
|
34
|
Golassa L, Amenga-Etego L, Lo E, Amambua-Ngwa A. The biology of unconventional invasion of Duffy-negative reticulocytes by Plasmodium vivax and its implication in malaria epidemiology and public health. Malar J 2020; 19:299. [PMID: 32831093 PMCID: PMC7443611 DOI: 10.1186/s12936-020-03372-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/10/2020] [Indexed: 12/30/2022] Open
Abstract
Plasmodium vivax has been largely neglected over the past century, despite a widespread recognition of its burden across region where it is endemic. The parasite invades reticulocytes, employing the interaction between Plasmodium vivax Duffy binding protein (PvDBP) and human Duffy antigen receptor for chemokines (DARC). However, P. vivax has now been observed in Duffy-negative individuals, presenting a potentially serious public health problem as the majority of African populations are Duffy-negative. Invasion of Duffy-negative reticulocytes is suggested to be through duplication of the PvDBP and a novel protein encoded by P. vivax erythrocyte binding protein (EBP) genes. The emergence and spread of specific P. vivax strains with ability to invade Duffy-negative reticulocytes has, therefore, drawn substantial attention and further complicated the epidemiology and public health implication of vivax malaria. Given the right environment and vectorial capacity for transmission coupled with the parasite’s ability to invade Duffy-negative individuals, P. vivax could increase its epidemiological significance in Africa. In this review, authors present accruing knowledge on the paradigm shift in P. vivax invasion of Duffy-negative reticulocytes against the established mechanism of invading only Duffy-positive individuals and offer a perspective on the epidemiological diagnostic and public health implication in Africa.
Collapse
Affiliation(s)
- Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.
| | - Lucas Amenga-Etego
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Eugenia Lo
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Alfred Amambua-Ngwa
- Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| |
Collapse
|
35
|
Hotspots in Plasmodium and RBC Receptor-Ligand Interactions: Key Pieces for Inhibiting Malarial Parasite Invasion. Int J Mol Sci 2020; 21:ijms21134729. [PMID: 32630804 PMCID: PMC7370042 DOI: 10.3390/ijms21134729] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/15/2020] [Accepted: 05/24/2020] [Indexed: 11/17/2022] Open
Abstract
Protein-protein interactions (IPP) play an essential role in practically all biological processes, including those related to microorganism invasion of their host cells. It has been found that a broad repertoire of receptor-ligand interactions takes place in the binding interphase with host cells in malaria, these being vital interactions for successful parasite invasion. Several trials have been conducted for elucidating the molecular interface of interactions between some Plasmodium falciparum and Plasmodium vivax antigens with receptors on erythrocytes and/or reticulocytes. Structural information concerning these complexes is available; however, deeper analysis is required for correlating structural, functional (binding, invasion, and inhibition), and polymorphism data for elucidating new interaction hotspots to which malaria control methods can be directed. This review describes and discusses recent structural and functional details regarding three relevant interactions during erythrocyte invasion: Duffy-binding protein 1 (DBP1)–Duffy antigen receptor for chemokines (DARC); reticulocyte-binding protein homolog 5 (PfRh5)-basigin, and erythrocyte binding antigen 175 (EBA175)-glycophorin A (GPA).
Collapse
|
36
|
Ferreira AIC, Brandão de Mattos CC, Frederico FB, Bernardo CR, de Almeida Junior GC, Siqueira RC, Meira-Strejevitch CS, Pereira-Chioccola VL, de Mattos LC. Duffy blood group system and ocular toxoplasmosis. INFECTION GENETICS AND EVOLUTION 2020; 85:104430. [PMID: 32565360 DOI: 10.1016/j.meegid.2020.104430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 10/24/2022]
Abstract
Duffy blood group phenotypes [Fy(a + b-), Fy(a-b+), Fy(a + b+), Fy(a-b-)], characterized by the expression of Fya, and Fyb antigens, are present in red blood cells. Therefore, we hypothesize that the non-hematopoietic expression of these antigens might influence cell invasion by T. gondii. 576 consecutive patients from both genders were enrolled. The presumed OT clinical diagnosis was performed. Duffy phenotyping was performed by hemagglutination in gel columns and for the correct molecular characterization Fy(a-b-) phenotype, using PCR-RFLP. Anti-T. gondii IgG antibodies were detected by ELISA. Chi-square, Fisher's exact tests were used to compare the proportions. OT was present in 22.9% (n = 132) and absent in 77.1% (n = 444) of patients. The frequencies of anti-T. gondii IgG antibodies were higher in OT (127/132, 96.2%) than those without this disease (321/444, 72.3%) (p < .0001). None of the Duffy antigens or phenotypes were associated with T. gondii infection (χ2: 2.222, GL: 3, p = .5276) as well as the risk of OT (χ2: 0.771, GL: 3, p = .8566). Duffy blood group system phenotypes and their antigens do not constitute risk factors for infection by T. gondii infection and the development of OT.
Collapse
Affiliation(s)
- Ana Iara Costa Ferreira
- Universidade Federal de Roraima. Brazil; Faculdade de Medicina de São Jose do Rio Preto, SP, Brazil
| | | | - Fábio Batista Frederico
- Ophthalmology Outpatient Clinic of Fundação Faculdade Regional de Medicina de São José do Rio Preto, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
37
|
Sà JM, Cannon MV, Caleon RL, Wellems TE, Serre D. Single-cell transcription analysis of Plasmodium vivax blood-stage parasites identifies stage- and species-specific profiles of expression. PLoS Biol 2020; 18:e3000711. [PMID: 32365102 PMCID: PMC7224573 DOI: 10.1371/journal.pbio.3000711] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 05/14/2020] [Accepted: 04/15/2020] [Indexed: 12/21/2022] Open
Abstract
Plasmodium vivax and P. falciparum, the parasites responsible for most human malaria worldwide, exhibit striking biological differences, which have important clinical consequences. Unfortunately, P. vivax, unlike P. falciparum, cannot be cultivated continuously in vitro, which limits our understanding of its biology and, consequently, our ability to effectively control vivax malaria. Here, we describe single-cell gene expression profiles of 9,215 P. vivax parasites from bloodstream infections of Aotus and Saimiri monkeys. Our results show that transcription of most P. vivax genes occurs during short periods of the intraerythrocytic cycle and that this pattern of gene expression is conserved in other Plasmodium species. However, we also identify a strikingly high proportion of species-specific transcripts in late schizonts, possibly associated with the specificity of erythrocyte invasion. Our findings provide new and robust markers of blood-stage parasites, including some that are specific to the elusive P. vivax male gametocytes, and will be useful for analyzing gene expression data from laboratory and field samples. Analysis of individual Plasmodium vivax parasites reveals the tight control of the expression of most genes during the intra-erythrocytic cycle and the differentiation of male and female gametocytes, and highlights differences between the development of P. vivax and P. falciparum.
Collapse
Affiliation(s)
- Juliana M. Sà
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Matthew V. Cannon
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Ramoncito L. Caleon
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thomas E. Wellems
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David Serre
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
38
|
A Way Forward for Culturing Plasmodium vivax. Trends Parasitol 2020; 36:512-519. [PMID: 32360314 DOI: 10.1016/j.pt.2020.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/28/2020] [Accepted: 04/02/2020] [Indexed: 01/12/2023]
Abstract
Trager and Jensen established a method for culturing Plasmodium falciparum, a breakthrough for malaria research worldwide. Since then, multiple attempts to establish Plasmodium vivax in continuous culture have failed. Unlike P. falciparum, which can invade all aged erythrocytes, P. vivax is restricted to reticulocytes. Thus, a constant supply of reticulocytes is considered critical for continuous P. vivax growth in vitro. A critical question remains why P. vivax selectively invades reticulocytes? What do reticulocytes offer to P. vivax that is not present in mature erythrocytes? One possibility is protection from oxidative stress by glucose-6-phosphate dehydrogenase (G6PD). Here, we also suggest supplements to the media and procedures that may reduce oxidative stress and, as a result, establish a system for the continuous culture of P. vivax.
Collapse
|
39
|
Patarroyo MA, Arévalo-Pinzón G, Moreno-Pérez DA. From a basic to a functional approach for developing a blood stage vaccine against Plasmodium vivax. Expert Rev Vaccines 2020; 19:195-207. [PMID: 32077349 DOI: 10.1080/14760584.2020.1733421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Numerous challenges have hampered developing an anti-malarial vaccine against the most widespread malarial parasite worldwide: Plasmodium vivax. Despite the progress achieved in studying proteins in short-term in vitro culture or in experimental models, there is still no clear method for defining which antigens or their regions should be prioritized for including them in a vaccine.Areas covered: The methods used by research groups so far which have focused on the functional analysis of P. vivax blood stage antigens have been reviewed here. A logical strategy orientated toward resolving two of the most commonly occurring problems in designing vaccines against this species has thus been proposed (i.e. the search for candidates and evaluating/ascertaining their functional role in the invasion of such molecules).Expert commentary: Advances in knowledge regarding P. vivax biology have been extremely slow. Only two key receptor-ligand interactions concerning merozoite entry to reticulocytes have been reported during the last 20 years: PvDBP1-DARC and PvRBP2b-CD71. Despite increasing knowledge about the parasite's intimate preference for its host cells, it has yet to be determined which regions of the merozoite molecules characterized to date meet the requirement of inducing protective immune responses effectively blocking heterologous parasite entry to human cells.
Collapse
Affiliation(s)
- Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá D.C., Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Bogotá D.C., Colombia
| | - Gabriela Arévalo-Pinzón
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá D.C., Colombia.,Receptor-Ligand Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá D.C., Colombia
| | - Darwin A Moreno-Pérez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá D.C., Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Bogotá D.C., Colombia.,Livestock Sciences Faculty, Universidad de Ciencias Aplicadas Y Ambientales (U.D.C.A), Bogotá DC, Colombia
| |
Collapse
|
40
|
Amplification of Duffy binding protein-encoding gene allows Plasmodium vivax to evade host anti-DBP humoral immunity. Nat Commun 2020; 11:953. [PMID: 32075983 PMCID: PMC7031336 DOI: 10.1038/s41467-020-14574-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 01/18/2020] [Indexed: 01/02/2023] Open
Abstract
Antigenic variation, the capacity to produce a range of variable antigens, is a well-described strategy of Plasmodium and other parasites to evade host immunity. Here, we show that gene amplification is an additional evasion mechanism used by Plasmodium vivax to escape humoral immunity targeting PvDBP, the key ligand involved in reticulocyte invasion. PvDBP gene amplification leads to increased mRNA levels and protects P. vivax in vitro against invasion inhibitory human monoclonal antibodies targeting a conserved binding domain of DBP. Patient samples suggest that parasites with increased pvdbp copy number are able to infect individuals with naturally acquired antibodies highly blocking the binding of PvDBP to the Duffy receptor. These results show that gene copy number variation affect the parasite’s ability to evade anti-PvDBP humoral immunity. Duffy binding protein (DBP) of Plasmodium vivax is important for invasion and is a potential vaccine candidate. Here, the authors show that PvDBP gene amplification protects P vivax in vitro against invasion inhibitory human monoclonal antibodies and is associated to infection of patients with PvDBP binding inhibitory antibodies.
Collapse
|
41
|
Popovici J, Roesch C, Rougeron V. The enigmatic mechanisms by which Plasmodium vivax infects Duffy-negative individuals. PLoS Pathog 2020; 16:e1008258. [PMID: 32078643 PMCID: PMC7032691 DOI: 10.1371/journal.ppat.1008258] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The absence of the Duffy protein at the surface of erythrocytes was considered for decades to confer full protection against Plasmodium vivax as this blood group is the receptor for the key parasite ligand P. vivax Duffy binding protein (PvDBP). However, it is now clear that the parasite is able to break through this protection and induce clinical malaria in Duffy-negative people, although the underlying mechanisms are still not understood. Here, we briefly review the evidence of Duffy-negative infections by P. vivax and summarize the current hypothesis at the basis of this invasion process. We discuss those in the perspective of malaria-elimination challenges, notably in African countries.
Collapse
Affiliation(s)
- Jean Popovici
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh Cambodia
- Malaria Translational Research Unit, Institut Pasteur, Paris & Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Camille Roesch
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh Cambodia
- Malaria Translational Research Unit, Institut Pasteur, Paris & Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Virginie Rougeron
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), Montpellier, France
| |
Collapse
|
42
|
Auburn S, Getachew S, Pearson RD, Amato R, Miotto O, Trimarsanto H, Zhu SJ, Rumaseb A, Marfurt J, Noviyanti R, Grigg MJ, Barber B, William T, Goncalves SM, Drury E, Sriprawat K, Anstey NM, Nosten F, Petros B, Aseffa A, McVean G, Kwiatkowski DP, Price RN. Genomic Analysis of Plasmodium vivax in Southern Ethiopia Reveals Selective Pressures in Multiple Parasite Mechanisms. J Infect Dis 2019; 220:1738-1749. [PMID: 30668735 PMCID: PMC6804337 DOI: 10.1093/infdis/jiz016] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/18/2019] [Indexed: 01/12/2023] Open
Abstract
The Horn of Africa harbors the largest reservoir of Plasmodium vivax in the continent. Most of sub-Saharan Africa has remained relatively vivax-free due to a high prevalence of the human Duffy-negative trait, but the emergence of strains able to invade Duffy-negative reticulocytes poses a major public health threat. We undertook the first population genomic investigation of P. vivax from the region, comparing the genomes of 24 Ethiopian isolates against data from Southeast Asia to identify important local adaptions. The prevalence of the Duffy binding protein amplification in Ethiopia was 79%, potentially reflecting adaptation to Duffy negativity. There was also evidence of selection in a region upstream of the chloroquine resistance transporter, a putative chloroquine-resistance determinant. Strong signals of selection were observed in genes involved in immune evasion and regulation of gene expression, highlighting the need for a multifaceted intervention approach to combat P. vivax in the region.
Collapse
Affiliation(s)
- Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
| | - Sisay Getachew
- College of Natural Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Richard D Pearson
- Wellcome Sanger Institute, Hinxton, Cambridge
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Oxford, United Kingdom
| | - Roberto Amato
- Wellcome Sanger Institute, Hinxton, Cambridge
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Oxford, United Kingdom
| | - Olivo Miotto
- Wellcome Sanger Institute, Hinxton, Cambridge
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Oxford, United Kingdom
- Mahidol–Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Hidayat Trimarsanto
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Agency for Assessment and Application of Technology, Jakarta, Indonesia
| | - Sha Joe Zhu
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Oxford, United Kingdom
| | - Angela Rumaseb
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Jutta Marfurt
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | | | - Matthew J Grigg
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society, Sabah-Menzies School of Health Research Clinical Research Unit, Sabah, Malaysia
| | - Bridget Barber
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society, Sabah-Menzies School of Health Research Clinical Research Unit, Sabah, Malaysia
| | - Timothy William
- Infectious Diseases Society, Sabah-Menzies School of Health Research Clinical Research Unit, Sabah, Malaysia
- Clinical Research Centre, Queen Elizabeth Hospital, Sabah, Malaysia
- Jesselton Medical Centre, Sabah, Malaysia
| | | | | | - Kanlaya Sriprawat
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Francois Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Beyene Petros
- College of Natural Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Gil McVean
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Oxford, United Kingdom
| | - Dominic P Kwiatkowski
- Wellcome Sanger Institute, Hinxton, Cambridge
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Oxford, United Kingdom
| | - Ric N Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
| |
Collapse
|
43
|
Lo E, Hostetler JB, Yewhalaw D, Pearson RD, Hamid MMA, Gunalan K, Kepple D, Ford A, Janies DA, Rayner JC, Miller LH, Yan G. Frequent expansion of Plasmodium vivax Duffy Binding Protein in Ethiopia and its epidemiological significance. PLoS Negl Trop Dis 2019; 13:e0007222. [PMID: 31509523 PMCID: PMC6756552 DOI: 10.1371/journal.pntd.0007222] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 09/23/2019] [Accepted: 07/23/2019] [Indexed: 01/20/2023] Open
Abstract
Plasmodium vivax invasion of human erythrocytes depends on the Duffy Binding Protein (PvDBP) which interacts with the Duffy antigen. PvDBP copy number has been recently shown to vary between P. vivax isolates in Sub-Saharan Africa. However, the extent of PvDBP copy number variation, the type of PvDBP multiplications, as well as its significance across broad samples are still unclear. We determined the prevalence and type of PvDBP duplications, as well as PvDBP copy number variation among 178 Ethiopian P. vivax isolates using a PCR-based diagnostic method, a novel quantitative real-time PCR assay and whole genome sequencing. For the 145 symptomatic samples, PvDBP duplications were detected in 95 isolates, of which 81 had the Cambodian and 14 Malagasy-type PvDBP duplications. PvDBP varied from 1 to >4 copies. Isolates with multiple PvDBP copies were found to be higher in symptomatic than asymptomatic infections. For the 33 asymptomatic samples, PvDBP was detected with two copies in two of the isolates, and both were the Cambodian-type PvDBP duplication. PvDBP copy number in Duffy-negative heterozygotes was not significantly different from that in Duffy-positives, providing no support for the hypothesis that increased copy number is a specific association with Duffy-negativity, although the number of Duffy-negatives was small and further sampling is required to test this association thoroughly. Plasmodium vivax invasion of human erythrocytes relies on interaction between the Duffy antigen and P. vivax Duffy Binding Protein (PvDBP). Whole genome sequences from P. vivax field isolates in Madagascar identified a duplication of the PvDBP gene and PvDBP duplication has also been detected in non-African P. vivax-endemic countries. Two types of PvDBP duplications have been reported, termed Cambodian and Malagasy-type duplications. Our study used a combination of PCR-based diagnostic method, a novel quantitative real-time PCR assay, and whole genome sequencing to determine the prevalence and type of PvDBP duplications, as well as PvDBP copy number on a broad number of P. vivax samples in Ethiopia. We found that over 65% of P. vivax isolated from the symptomatic infections were detected with PvDBP duplications and PvDBP varied from 1 to >4 copies. The majority of PvDBP duplications belongs to the Cambodian-type while the Malagasy-type duplications was also detected. For the asymptomatic infections, despite a small sample size, the majority of P. vivax were detected with a single-copy based on both PCR and qPCR assays. There was no significant difference in PvDBP copy number between Duffy-null heterozygote and Duffy-positive homozygote/heterozygote. Further investigation is needed with expanded Duffy-null homozygotes to examine the functional significance of PvDBP expansion.
Collapse
Affiliation(s)
- Eugenia Lo
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
- * E-mail: (EL); (LHM); (GY)
| | - Jessica B. Hostetler
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Delenasaw Yewhalaw
- Department of Medical Laboratory Sciences and Pathology, College of Public Health and Medical Sciences, Jimma University, Jimma, Ethiopia
| | - Richard D. Pearson
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Muzamil M. A. Hamid
- Department of Parasitology and Medical Entomology, University of Khartoum, Khartoum, Sudan
| | - Karthigayan Gunalan
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Daniel Kepple
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Anthony Ford
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Daniel A. Janies
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Julian C. Rayner
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Louis H. Miller
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (EL); (LHM); (GY)
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, United States of America
- * E-mail: (EL); (LHM); (GY)
| |
Collapse
|
44
|
Brazeau NF, Whitesell AN, Doctor SM, Keeler C, Mwandagalirwa MK, Tshefu AK, Likwela JL, Juliano JJ, Meshnick SR. Plasmodium vivax Infections in Duffy-Negative Individuals in the Democratic Republic of the Congo. Am J Trop Med Hyg 2019; 99:1128-1133. [PMID: 30203741 DOI: 10.4269/ajtmh.18-0277] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Although Plasmodium vivax has been assumed to be absent from sub-Saharan Africa because of the protective mutation conferring the Duffy-negative phenotype, recent evidence has suggested that P. vivax cases are prevalent in these regions. We selected 292 dried blood spots from children who participated in the 2013-2014 Demographic and Health Survey of the Democratic Republic of the Congo (DRC), to assess for P. vivax infection. Four P. vivax infections were identified by polymerase chain reaction, each in a geographically different survey cluster. Using these as index cases, we tested the remaining 73 samples from the four clusters. With this approach, 10 confirmed cases, three probable cases, and one possible case of P. vivax were identified. Among the 14 P. vivax cases, nine were coinfected with Plasmodium falciparum. All 14 individuals were confirmed to be Duffy-negative by sequencing for the single point mutation in the GATA motif that represses the expression of the Duffy antigen. This finding is consistent with a growing body of literature that suggests that P. vivax can infect Duffy-negative individuals in Africa. Future molecular and sequencing work is needed to understand the relationship of these isolates with other P. vivax samples from Asia and South America and discover variants linked to P. vivax virulence and erythrocyte invasion.
Collapse
Affiliation(s)
- Nicholas F Brazeau
- Medical Scientist Training Program, University of North Carolina School of Medicine, Chapel Hill, North Carolina.,Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Amy N Whitesell
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Stephanie M Doctor
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Corinna Keeler
- Department of Geography, University of North Carolina, Chapel Hill, North Carolina
| | | | - Antoinette K Tshefu
- Programme National de la Lutte Contre le Paludisme, Kinshasa, Democratic Republic of Congo
| | - Joris L Likwela
- Kinshasa School of Public Health, Kinshasa, Democratic Republic of the Congo
| | - Jonathan J Juliano
- Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, North Carolina.,Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Steven R Meshnick
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
45
|
Huckaby AC, Granum CS, Carey MA, Szlachta K, Al-Barghouthi B, Wang YH, Guler JL. Complex DNA structures trigger copy number variation across the Plasmodium falciparum genome. Nucleic Acids Res 2019; 47:1615-1627. [PMID: 30576466 PMCID: PMC6393310 DOI: 10.1093/nar/gky1268] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/04/2018] [Accepted: 12/07/2018] [Indexed: 02/06/2023] Open
Abstract
Antimalarial resistance is a major obstacle in the eradication of the human malaria parasite, Plasmodium falciparum. Genome amplifications, a type of DNA copy number variation (CNV), facilitate overexpression of drug targets and contribute to parasite survival. Long monomeric A/T tracks are found at the breakpoints of many Plasmodium resistance-conferring CNVs. We hypothesize that other proximal sequence features, such as DNA hairpins, act with A/T tracks to trigger CNV formation. By adapting a sequence analysis pipeline to investigate previously reported CNVs, we identified breakpoints in 35 parasite clones with near single base-pair resolution. Using parental genome sequence, we predicted the formation of stable hairpins within close proximity to all future breakpoint locations. Especially stable hairpins were predicted to form near five shared breakpoints, establishing that the initiating event could have occurred at these sites. Further in-depth analyses defined characteristics of these 'trigger sites' across the genome and detected signatures of error-prone repair pathways at the breakpoints. We propose that these two genomic signals form the initial lesion (hairpins) and facilitate microhomology-mediated repair (A/T tracks) that lead to CNV formation across this highly repetitive genome. Targeting these repair pathways in P. falciparum may be used to block adaptation to antimalarial drugs.
Collapse
Affiliation(s)
- Adam C Huckaby
- Department of Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Claire S Granum
- Department of Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Maureen A Carey
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908, USA.,Division of Infectious Diseases and International Health, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Karol Szlachta
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Basel Al-Barghouthi
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908, USA.,Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Jennifer L Guler
- Department of Biology, University of Virginia, Charlottesville, VA 22908, USA.,Division of Infectious Diseases and International Health, University of Virginia Health System, Charlottesville, VA 22908, USA
| |
Collapse
|
46
|
Transcriptome profiling of Plasmodium vivax in Saimiri monkeys identifies potential ligands for invasion. Proc Natl Acad Sci U S A 2019; 116:7053-7061. [PMID: 30872477 DOI: 10.1073/pnas.1818485116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Unlike the case in Asia and Latin America, Plasmodium vivax infections are rare in sub-Saharan Africa due to the absence of the Duffy blood group antigen (Duffy antigen), the only known erythrocyte receptor for the P. vivax merozoite invasion ligand, Duffy binding protein 1 (DBP1). However, P. vivax infections have been documented in Duffy-negative individuals throughout Africa, suggesting that P. vivax may use ligands other than DBP1 to invade Duffy-negative erythrocytes through other receptors. To identify potential P. vivax ligands, we compared parasite gene expression in Saimiri and Aotus monkey erythrocytes infected with P. vivax Salvador I (Sal I). DBP1 binds Aotus but does not bind to Saimiri erythrocytes; thus, P. vivax Sal I must invade Saimiri erythrocytes independent of DBP1. Comparing RNA sequencing (RNAseq) data for late-stage infections in Saimiri and Aotus erythrocytes when invasion ligands are expressed, we identified genes that belong to tryptophan-rich antigen and merozoite surface protein 3 (MSP3) families that were more abundantly expressed in Saimiri infections compared with Aotus infections. These genes may encode potential ligands responsible for P. vivax infections of Duffy-negative Africans.
Collapse
|
47
|
Twohig KA, Pfeffer DA, Baird JK, Price RN, Zimmerman PA, Hay SI, Gething PW, Battle KE, Howes RE. Growing evidence of Plasmodium vivax across malaria-endemic Africa. PLoS Negl Trop Dis 2019; 13:e0007140. [PMID: 30703083 PMCID: PMC6372205 DOI: 10.1371/journal.pntd.0007140] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/12/2019] [Accepted: 01/07/2019] [Indexed: 01/12/2023] Open
Abstract
Effective malaria control strategies require an accurate understanding of the epidemiology of locally transmitted Plasmodium species. Compared to Plasmodium falciparum infection, Plasmodium vivax has a lower asexual parasitaemia, forms dormant liver-stages (hypnozoites), and is more transmissible. Hence, treatment and diagnostic policies aimed exclusively at P. falciparum are far less efficient against endemic P. vivax. Within sub-Saharan Africa, malaria control programmes justly focus on reducing the morbidity and mortality associated with P. falciparum. However, the recent emphasis on malaria elimination and increased accessibility of more sensitive diagnostic tools have revealed greater intricacies in malaria epidemiology across the continent. Since 2010, the number of studies identifying P. vivax endemic to Africa has expanded considerably, with 88 new scientific reports published since a review of evidence in 2015, approximately doubling the available data. There is evidence of P. vivax in all regions of Africa, apparent from infected vectors, clinical cases, serological indicators, parasite prevalence, exported infections, and P. vivax-infected Duffy-negative individuals. Where the prevalence of microscopic parasitaemia is low, a greater proportion of P. vivax infections were observed relative to P. falciparum. This evidence highlights an underlying widespread presence of P. vivax across all malaria-endemic regions of Africa, further complicating the current practical understanding of malaria epidemiology in this region. Thus, ultimate elimination of malaria in Africa will require national malaria control programmes to adopt policy and practice aimed at all human species of malaria.
Collapse
Affiliation(s)
- Katherine A. Twohig
- Malaria Atlas Project, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom,* E-mail: (KAT); (REH)
| | - Daniel A. Pfeffer
- Malaria Atlas Project, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom,Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - J. Kevin Baird
- Eijkman-Oxford Clinical Research Unit, Eijkman Institute of Molecular Biology, Jakarta, Indonesia,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Peter A. Zimmerman
- The Center for Global Health & Diseases, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Simon I. Hay
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington, United States of America
| | - Peter W. Gething
- Malaria Atlas Project, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Katherine E. Battle
- Malaria Atlas Project, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Rosalind E. Howes
- Malaria Atlas Project, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom,* E-mail: (KAT); (REH)
| |
Collapse
|
48
|
Kanjee U, Rangel GW, Clark MA, Duraisingh MT. Molecular and cellular interactions defining the tropism of Plasmodium vivax for reticulocytes. Curr Opin Microbiol 2018; 46:109-115. [PMID: 30366310 DOI: 10.1016/j.mib.2018.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 01/19/2023]
Abstract
Plasmodium vivax is uniquely restricted to invading reticulocytes, the youngest of red blood cells. Parasite invasion relies on the sequential deployment of multiple parasite invasion ligands. Correct targeting of the host reticulocyte is mediated by two families of invasion ligands: the reticulocyte binding proteins (RBPs) and erythrocyte binding proteins (EBPs). The Duffy receptor has long been established as a key determinant for P. vivax invasion. However, recently, the RBP protein PvRBP2b has been shown to bind to transferrin receptor, which is expressed on reticulocytes but lost on normocytes, implicating the ligand-receptor in the reticulocyte tropism of P. vivax. Furthermore there is increasing evidence for P. vivax growth and sexual development in reticulocyte-enriched tissues such as the bone marrow.
Collapse
Affiliation(s)
- Usheer Kanjee
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Gabriel W Rangel
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Martha A Clark
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
49
|
Roesch C, Popovici J, Bin S, Run V, Kim S, Ramboarina S, Rakotomalala E, Rakotoarison RL, Rasoloharimanana T, Andriamanantena Z, Kumar A, Guillotte-Blisnick M, Huon C, Serre D, Chitnis CE, Vigan-Womas I, Menard D. Genetic diversity in two Plasmodium vivax protein ligands for reticulocyte invasion. PLoS Negl Trop Dis 2018; 12:e0006555. [PMID: 30346980 PMCID: PMC6211765 DOI: 10.1371/journal.pntd.0006555] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 11/01/2018] [Accepted: 08/17/2018] [Indexed: 01/30/2023] Open
Abstract
The interaction between Plasmodium vivax Duffy binding protein (PvDBP) and Duffy antigen receptor for chemokines (DARC) has been described as critical for the invasion of human reticulocytes, although increasing reports of P. vivax infections in Duffy-negative individuals questions its unique role. To investigate the genetic diversity of the two main protein ligands for reticulocyte invasion, PvDBP and P. vivax Erythrocyte Binding Protein (PvEBP), we analyzed 458 isolates collected in Cambodia and Madagascar from individuals genotyped as Duffy-positive. First, we observed a high proportion of isolates with multiple copies PvEBP from Madagascar (56%) where Duffy negative and positive individuals coexist compared to Cambodia (19%) where Duffy-negative population is virtually absent. Whether the gene amplification observed is responsible for alternate invasion pathways remains to be tested. Second, we found that the PvEBP gene was less diverse than PvDBP gene (12 vs. 33 alleles) but provided evidence for an excess of nonsynonymous mutations with the complete absence of synonymous mutations. This finding reveals that PvEBP is under strong diversifying selection, and confirms the importance of this protein ligand in the invasion process of the human reticulocytes and as a target of acquired immunity. These observations highlight how genomic changes in parasite ligands improve the fitness of P. vivax isolates in the face of immune pressure and receptor polymorphisms.
Collapse
Affiliation(s)
- Camille Roesch
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Jean Popovici
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Sophalai Bin
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Vorleak Run
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Saorin Kim
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Stéphanie Ramboarina
- Immunology of Infectious Diseases Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Emma Rakotomalala
- Immunology of Infectious Diseases Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | | | | | - Zo Andriamanantena
- Immunology of Infectious Diseases Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Anuj Kumar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | | | - Christèle Huon
- Malaria Parasite Biology and Vaccines Unit, Institut Pasteur, Paris, France
| | - David Serre
- Institute for Genome Sciences, University of Maryland, Baltimore, Maryland, United States of America
| | - Chetan E. Chitnis
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
- Malaria Parasite Biology and Vaccines Unit, Institut Pasteur, Paris, France
- * E-mail: (CEC); (IVW); (DM)
| | - Inès Vigan-Womas
- Immunology of Infectious Diseases Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
- * E-mail: (CEC); (IVW); (DM)
| | - Didier Menard
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
- * E-mail: (CEC); (IVW); (DM)
| |
Collapse
|
50
|
Kano FS, de Souza AM, de Menezes Torres L, Costa MA, Souza-Silva FA, Sanchez BAM, Fontes CJF, Soares IS, de Brito CFA, Carvalho LH, Sousa TN. Susceptibility to Plasmodium vivax malaria associated with DARC (Duffy antigen) polymorphisms is influenced by the time of exposure to malaria. Sci Rep 2018; 8:13851. [PMID: 30218021 PMCID: PMC6138695 DOI: 10.1038/s41598-018-32254-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/03/2018] [Indexed: 11/28/2022] Open
Abstract
Malaria has provided a major selective pressure and has modulated the genetic diversity of the human genome. The variants of the Duffy Antigen/Receptor for Chemokines (DARC) gene have probably been selected by malaria parasites, particularly the FY*O allele, which is fixed in sub-Saharan Africa and confers resistance to Plasmodium vivax infection. Here, we showed the influence of genomic ancestry on the distribution of DARC genotypes in a highly admixed Brazilian population and confirmed the decreased susceptibility of the FY*A/FY*O genotype to clinical P. vivax malaria. FY*B/FY*O individuals were associated with a greater risk of developing clinical malaria. A remarkable difference among DARC variants concerning the susceptibility to clinical malaria was more evident for individuals who were less exposed to malaria, as measured by the time of residence in the endemic area. Additionally, we found that DARC-negative and FY*A/FY*O individuals had a greater chance of acquiring high levels of antibodies against the 19-kDa C-terminal region of the P. vivax merozoite surface protein-1. Altogether, our results provide evidence that DARC polymorphisms modulate the susceptibility to clinical P. vivax malaria and influence the naturally-acquired humoral immune response to malaria blood antigens, which may interfere with the efficacy of a future vaccine against malaria.
Collapse
Affiliation(s)
- Flora Satiko Kano
- Molecular Biology and Malaria Immunology Research Group, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
| | - Aracele Maria de Souza
- Molecular Biology and Malaria Immunology Research Group, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
| | - Leticia de Menezes Torres
- Molecular Biology and Malaria Immunology Research Group, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
| | - Marcelo Azevedo Costa
- Departamento de Engenharia de Produção, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Flávia Alessandra Souza-Silva
- Molecular Biology and Malaria Immunology Research Group, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Irene Silva Soares
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Cristiana Ferreira Alves de Brito
- Molecular Biology and Malaria Immunology Research Group, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
| | - Luzia Helena Carvalho
- Molecular Biology and Malaria Immunology Research Group, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
| | - Tais Nobrega Sousa
- Molecular Biology and Malaria Immunology Research Group, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|