1
|
Schmidt SK, Fischer S, El Ahmad Z, Schmid R, Metzger E, Schüle R, Hellerbrand C, Arkudas A, Kengelbach-Weigand A, Kappelmann-Fenzl M, Bosserhoff AK. Modeling a mesenchymal cell state by bioprinting for the molecular analysis of dormancy in melanoma. Mater Today Bio 2025; 32:101674. [PMID: 40206148 PMCID: PMC11979991 DOI: 10.1016/j.mtbio.2025.101674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/03/2025] [Accepted: 03/15/2025] [Indexed: 04/11/2025] Open
Abstract
Malignant melanoma is a highly aggressive tumor originating from the pigment producing cells, the melanocytes. It accounts for the majority of skin cancer related deaths worldwide. This is often due to the development of therapy resistance or tumor dormancy, eventually resulting in tumor relapse by yet undefined mechanisms. Tumor dormancy is thought to be mediated by the cellular microenvironment and models taking this factor into account are urgently needed. We 3D bioprinted melanoma cells in the hydrogels Cellink Bioink (CIB) or Matrigel (MG), each as a substitute of the extracellular matrix, and, thereby, induced a quiescent or a proliferative phenotype of the melanoma cell lines, respectively. RNA-Seq with subsequent comprehensive bioinformatical and molecular analyses assigned CIB-cultured cells to a predominantly mesenchymal and Matrigel-cultured cells to a more mitotic phenotype, emphasizing the CIB model as a suitable platform for the investigation of dormancy under consideration of the microenvironment. Melanoma cells in CIB 3D culture reflect a quiescent and migratory active cell state e.g. by revealing significant downregulation of genes associated with replication and cell cycle progression in this setting. Using this model system, we identified the mechanosensory gene FHL2 as one early sensor of changes in the ECM and suggest a FHL2-p21/AP-1 axis contributing to the dormant phenotype of melanoma cells in CIB.
Collapse
Affiliation(s)
- Sonja K. Schmidt
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054, Erlangen, Germany
| | - Stefan Fischer
- Faculty of Computer Science, Deggendorf Institute of Technology, Dieter-Görlitz-Platz 1, 94469, Deggendorf, Germany
| | - Zubeir El Ahmad
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054, Erlangen, Germany
- Faculty of Computer Science, Deggendorf Institute of Technology, Dieter-Görlitz-Platz 1, 94469, Deggendorf, Germany
| | - Rafael Schmid
- Laboratory for Tissue-Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Eric Metzger
- Klinik für Urologie und Zentrale Klinische Forschung, Universitätsklinikum Freiburg, Medizinische Fakultät, Albert-Ludwigs-University Freiburg, 79106, Freiburg, Germany
| | - Roland Schüle
- Klinik für Urologie und Zentrale Klinische Forschung, Universitätsklinikum Freiburg, Medizinische Fakultät, Albert-Ludwigs-University Freiburg, 79106, Freiburg, Germany
| | - Claus Hellerbrand
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054, Erlangen, Germany
- CCC Erlangen-EMN: Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054, Erlangen, Germany
- CCC WERA: Comprehensive Cancer Center Alliance WERA (CCC WERA), 91054, Erlangen, Germany
- BZKF: Bavarian Cancer Research Center (BZKF), 91054, Erlangen, Germany
| | - Andreas Arkudas
- Laboratory for Tissue-Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Annika Kengelbach-Weigand
- Laboratory for Tissue-Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Melanie Kappelmann-Fenzl
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054, Erlangen, Germany
- Faculty of Computer Science, Deggendorf Institute of Technology, Dieter-Görlitz-Platz 1, 94469, Deggendorf, Germany
| | - Anja K. Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054, Erlangen, Germany
- CCC Erlangen-EMN: Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054, Erlangen, Germany
- CCC WERA: Comprehensive Cancer Center Alliance WERA (CCC WERA), 91054, Erlangen, Germany
- BZKF: Bavarian Cancer Research Center (BZKF), 91054, Erlangen, Germany
| |
Collapse
|
2
|
Nakazawa N, Grenci G, Kameo Y, Takeda N, Sawada T, Kurisu J, Zhang Z, Toma K, Adachi T, Nonomura K, Kengaku M. PIEZO1-dependent mode switch of neuronal migration in heterogeneous microenvironments in the developing brain. Cell Rep 2025; 44:115405. [PMID: 40053456 DOI: 10.1016/j.celrep.2025.115405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 01/09/2025] [Accepted: 02/14/2025] [Indexed: 03/09/2025] Open
Abstract
The migration of newborn neurons is essential for brain morphogenesis and circuit formation, yet controversy exists regarding how neurons generate the driving force against strong mechanical stresses in crowded neural tissues. We found that cerebellar granule neurons employ a mechanosensing mechanism to switch the driving forces to maneuver in irregular brain tissue. In two-dimensional (2D) cultures, actomyosin is enriched in the leading process, exerting traction force on the cell soma. In tissue or 3D confinement, however, actomyosin concentrates at the posterior cell membrane, generating contractile forces that assist passage through narrow spaces, working alongside the traction force in the leading process. The 3D migration is initiated by the activation of a mechanosensitive channel, PIEZO1. PIEZO1-induced calcium influx in the soma triggers the PKC-ezrin cascade, which recruits actomyosin and transmits its contractile force to the posterior plasma membrane. Thus, migrating neurons adapt their motility modes in distinct extracellular environments in the developing brain.
Collapse
Affiliation(s)
- Naotaka Nakazawa
- Institute for Integrated Cell-Material Sciences (KUIAS-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Faculty of Science and Engineering, Kindai University, Osaka 577-8502, Japan.
| | - Gianluca Grenci
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; Biomedical Engineering Department, National University of Singapore, Singapore 117583, Singapore
| | - Yoshitaka Kameo
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan; Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8501, Japan; Graduate School of Engineering, Kyoto University, Kyoto 615-8530, Japan; College of Engineering, Shibaura Institute of Technology, Tokyo 135-8548, Japan
| | - Noriko Takeda
- Institute for Integrated Cell-Material Sciences (KUIAS-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Tsuyoshi Sawada
- Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8501, Japan; Graduate School of Engineering, Kyoto University, Kyoto 615-8530, Japan
| | - Junko Kurisu
- Institute for Integrated Cell-Material Sciences (KUIAS-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Zhejing Zhang
- Institute for Integrated Cell-Material Sciences (KUIAS-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Kenichi Toma
- Institute for Integrated Cell-Material Sciences (KUIAS-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Taiji Adachi
- Institute for Integrated Cell-Material Sciences (KUIAS-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan; Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8501, Japan; Graduate School of Engineering, Kyoto University, Kyoto 615-8530, Japan
| | - Keiko Nonomura
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan; Department of Life Science and Technology, Tokyo Institute of Technology, Kanagawa 226-8501, Japan; National Institute for Basic Biology, Aichi 444-8585, Japan
| | - Mineko Kengaku
- Institute for Integrated Cell-Material Sciences (KUIAS-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
3
|
Urbanska M, Ge Y, Winzi M, Abuhattum S, Ali SS, Herbig M, Kräter M, Toepfner N, Durgan J, Florey O, Dori M, Calegari F, Lolo FN, del Pozo MÁ, Taubenberger A, Cannistraci CV, Guck J. De novo identification of universal cell mechanics gene signatures. eLife 2025; 12:RP87930. [PMID: 39960760 PMCID: PMC11832173 DOI: 10.7554/elife.87930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
Cell mechanical properties determine many physiological functions, such as cell fate specification, migration, or circulation through vasculature. Identifying factors that govern the mechanical properties is therefore a subject of great interest. Here, we present a mechanomics approach for establishing links between single-cell mechanical phenotype changes and the genes involved in driving them. We combine mechanical characterization of cells across a variety of mouse and human systems with machine learning-based discriminative network analysis of associated transcriptomic profiles to infer a conserved network module of five genes with putative roles in cell mechanics regulation. We validate in silico that the identified gene markers are universal, trustworthy, and specific to the mechanical phenotype across the studied mouse and human systems, and demonstrate experimentally that a selected target, CAV1, changes the mechanical phenotype of cells accordingly when silenced or overexpressed. Our data-driven approach paves the way toward engineering cell mechanical properties on demand to explore their impact on physiological and pathological cell functions.
Collapse
Affiliation(s)
- Marta Urbanska
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität DresdenDresdenGermany
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und MedizinErlangenGermany
| | - Yan Ge
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität DresdenDresdenGermany
| | - Maria Winzi
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität DresdenDresdenGermany
| | - Shada Abuhattum
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität DresdenDresdenGermany
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und MedizinErlangenGermany
| | - Syed Shafat Ali
- Center for Complex Network Intelligence, Tsinghua Laboratory of Brain and Intelligence, Department of Computer Science and School of Biomedical Engineering, Tsinghua UniversityBeijingChina
- Department of Computer Science and Department of Economics, Jamia Millia IslamiaNew DelhiIndia
| | - Maik Herbig
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität DresdenDresdenGermany
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und MedizinErlangenGermany
- Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering, Technische Universität DresdenDresdenGermany
| | - Martin Kräter
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität DresdenDresdenGermany
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und MedizinErlangenGermany
| | - Nicole Toepfner
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität DresdenDresdenGermany
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, Technische Universität DresdenDresdenGermany
| | - Joanne Durgan
- Signalling Programme, The Babraham InstituteCambridgeUnited Kingdom
| | - Oliver Florey
- Signalling Programme, The Babraham InstituteCambridgeUnited Kingdom
| | - Martina Dori
- Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering, Technische Universität DresdenDresdenGermany
| | - Federico Calegari
- Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering, Technische Universität DresdenDresdenGermany
| | - Fidel-Nicolás Lolo
- Mechanoadaptation and Caveolae Biology Lab, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
| | - Miguel Ángel del Pozo
- Mechanoadaptation and Caveolae Biology Lab, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
| | - Anna Taubenberger
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität DresdenDresdenGermany
| | - Carlo Vittorio Cannistraci
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität DresdenDresdenGermany
- Center for Complex Network Intelligence, Tsinghua Laboratory of Brain and Intelligence, Department of Computer Science and School of Biomedical Engineering, Tsinghua UniversityBeijingChina
- Center for Systems Biology DresdenDresdenGermany
- Cluster of Excellence Physics of Life, Technische Universität DresdenDresdenGermany
| | - Jochen Guck
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität DresdenDresdenGermany
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und MedizinErlangenGermany
| |
Collapse
|
4
|
Jain K, Kishan K, Minhaj RF, Kanchanawong P, Sheetz MP, Changede R. Immobile Integrin Signaling Transit and Relay Nodes Organize Mechanosignaling through Force-Dependent Phosphorylation in Focal Adhesions. ACS NANO 2025; 19:2070-2088. [PMID: 39760672 DOI: 10.1021/acsnano.4c03214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Transmembrane signaling receptors, such as integrins, organize as nanoclusters that provide several advantages, including increasing avidity, sensitivity (increasing the signal-to-noise ratio), and robustness (signaling threshold) of the signal in contrast to signaling by single receptors. Furthermore, compared to large micron-sized clusters, nanoclusters offer the advantage of rapid turnover for the disassembly of the signal. However, whether nanoclusters function as signaling hubs remains poorly understood. Here, we employ fluorescence nanoscopy combined with photoactivation and photobleaching at subdiffraction limited resolution of ∼100 nm length scale within a focal adhesion to examine the dynamics of diverse focal adhesion proteins. We show that (i) subregions of focal adhesions are enriched in an immobile population of integrin β3 organized as nanoclusters, which (ii) in turn serve to organize nanoclusters of associated key adhesome proteins-vinculin, focal adhesion kinase (FAK) and paxillin, demonstrating that signaling proceeds by formation of nanoclusters rather than through individual proteins. (iii) Distinct focal adhesion protein nanoclusters exhibit distinct protein dynamics, which is closely correlated to their function in signaling. (iv) Long-lived nanoclusters function as signaling hubs─wherein immobile integrin nanoclusters organize phosphorylated FAK to form stable nanoclusters in close proximity to them, which are disassembled in response to inactivation signal by removal of force and in turn activation of phosphatase PTPN12. (v) Signaling takes place in response to external signals such as force or geometric arrangement of the nanoclusters and when the signal is removed, these nanoclusters disassemble. We term these functional nanoclusters as integrin signaling transit and relay nodes (STARnodes). Taken together, these results demonstrate that integrin STARnodes seed signaling downstream of the integrin receptors by organizing hubs of signaling proteins (FAK, paxillin, vinculin) to relay the incoming signal intracellularly and bring about robust function.
Collapse
Affiliation(s)
- Kashish Jain
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Kishan Kishan
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Neurobit Inc., New York, New York 10036, United States
| | - Rida F Minhaj
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Pakorn Kanchanawong
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Michael P Sheetz
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Molecular Mechanomedicine Program, Biochemistry and Molecular Biology Department, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Rishita Changede
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Teora Pte. Ltd, Singapore 139955, Singapore
| |
Collapse
|
5
|
Liao YR, Tsai YC, Hsieh TH, Tsai MT, Lin FY, Lin SJ, Lin CC, Chiang HY, Chu PH, Li SY. FHL2 in arterial medial calcification in chronic kidney disease. Nephrol Dial Transplant 2024; 39:2025-2039. [PMID: 38664060 PMCID: PMC11596093 DOI: 10.1093/ndt/gfae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Arterial medial calcification (AMC) is a common complication in individuals with chronic kidney disease (CKD), which can lead to cardiovascular morbidity and mortality. The progression of AMC is controlled by a key transcription factor called runt-related transcription factor 2 (RUNX2), which induces vascular smooth muscle cells (VSMCs) transdifferentiation into an osteogenic phenotype. However, RUNX2 has not been targeted for therapy due to its essential role in bone development. The objective of our study was to discover a RUNX2 coactivator that is highly expressed in arterial VSMCs as a potential therapy for AMC. METHODS We employed transcriptomic analysis of human data and an animal reporter system to pinpoint four and a half LIM domains 2 (FHL2) as a potential target. Subsequently, we investigated the mRNA and protein expression patterns of FHL2 in the aortas of both human and animal subjects with CKD. To examine the role of FHL2 in the RUNX2 transcription machinery, we conducted coimmunoprecipitation and chromatin immunoprecipitation experiments. Next, we manipulated FHL2 expression in cultured VSMCs to examine its impact on high phosphate-induced transdifferentiation. Finally, we employed FHL2-null mice to confirm the role of FHL2 in the development of AMC in vivo. RESULTS Among all the potential RUNX2 cofactors, FHL2 displays selective expression within the cardiovascular system. In the context of CKD subjects, FHL2 undergoes upregulation and translocation from the cytosol to the nucleus of arterial VSMCs. Once in the nucleus, FHL2 interacts structurally and functionally with RUNX2, acting as a coactivator of RUNX2. Notably, the inhibition of FHL2 expression averts transdifferentiation of VSMCs into an osteogenic phenotype and mitigates aortic calcification in uremic animals, without causing any detrimental effects on the skeletal system. CONCLUSION These observations provide evidence that FHL2 is a promising target for treating arterial calcification in patients with CKD.
Collapse
MESH Headings
- Animals
- LIM-Homeodomain Proteins/metabolism
- LIM-Homeodomain Proteins/genetics
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/etiology
- Renal Insufficiency, Chronic/complications
- Humans
- Mice
- Muscle Proteins/metabolism
- Muscle Proteins/genetics
- Core Binding Factor Alpha 1 Subunit/metabolism
- Core Binding Factor Alpha 1 Subunit/genetics
- Transcription Factors/metabolism
- Transcription Factors/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Cells, Cultured
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Vascular Calcification/etiology
- Vascular Calcification/genetics
- Male
- Cell Transdifferentiation
- Mice, Inbred C57BL
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Mice, Knockout
Collapse
Affiliation(s)
- Yuan-Ru Liao
- Division of Nephrology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Cheng Tsai
- Division of Nephrology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tsung-Han Hsieh
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Ming-Tsun Tsai
- Division of Nephrology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Feng-Yen Lin
- Division of Cardiology, Department of Internal Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shing-Jong Lin
- Division of Cardiology, Department of Internal Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Ching Lin
- Division of Nephrology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hou-Yu Chiang
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Science, College of Medicine, Chang Guang University, Taoyuan, Taiwan
| | - Pao-Hsien Chu
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Taiwan
| | - Szu-Yuan Li
- Division of Nephrology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
6
|
Bakhshandeh S, Heras U, Taïeb HM, Varadarajan AR, Lissek SM, Hücker SM, Lu X, Garske DS, Young SAE, Abaurrea A, Caffarel MM, Riestra A, Bragado P, Contzen J, Gossen M, Kirsch S, Warfsmann J, Honarnejad K, Klein CA, Cipitria A. Dormancy-inducing 3D engineered matrix uncovers mechanosensitive and drug-protective FHL2-p21 signaling axis. SCIENCE ADVANCES 2024; 10:eadr3997. [PMID: 39504377 PMCID: PMC11540038 DOI: 10.1126/sciadv.adr3997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/26/2024] [Indexed: 11/08/2024]
Abstract
Solid cancers frequently relapse with distant metastasis, despite local and systemic treatment. Cellular dormancy has been identified as an important mechanism underlying drug resistance enabling late relapse. Therefore, relapse from invisible, minimal residual cancer of seemingly disease-free patients call for in vitro models of dormant cells suited for drug discovery. Here, we explore dormancy-inducing 3D engineered matrices, which generate mechanical confinement and induce growth arrest and survival against chemotherapy in cancer cells. We characterized the dormant phenotype of solitary cells by P-ERKlow:P-p38high dormancy signaling ratio, along with Ki67- expression. As underlying mechanism, we identified stiffness-dependent nuclear localization of the four-and-a-half LIM domain 2 (FHL2) protein, leading to p53-independent high p21Cip1/Waf1 nuclear expression, validated in murine and human tissue. Suggestive of a resistance-causing role, cells in the dormancy-inducing matrix became sensitive against chemotherapy upon FHL2 down-regulation. Thus, our biomaterial-based approach will enable systematic screens for previously unidentified compounds suited to eradicate potentially relapsing dormant cancer cells.
Collapse
Affiliation(s)
- Sadra Bakhshandeh
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Unai Heras
- Group of Bioengineering in Regeneration and Cancer, Biogipuzkoa Health Research Institute, San Sebastian, Spain
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Hubert M. Taïeb
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Adithi R. Varadarajan
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Susanna M. Lissek
- Experimental Medicine and Therapy Research, University of Regensburg, Regensburg, Germany
| | - Sarah M. Hücker
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Xin Lu
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Daniela S. Garske
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Sarah A. E. Young
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Andrea Abaurrea
- Group of Breast Cancer, Biogipuzkoa Health Research Institute, San Sebastian, Spain
| | - Maria M Caffarel
- Group of Breast Cancer, Biogipuzkoa Health Research Institute, San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Ana Riestra
- Department of Pharmacy, Fundación Onkologikoa Fundazioa, San Sebastian, Spain
- Department of Medicine, University of Deusto, Bilbao, Spain
| | - Paloma Bragado
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - Jörg Contzen
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Teltow, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité Campus Virchow Klinikum, Berlin, Germany
| | - Manfred Gossen
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Teltow, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité Campus Virchow Klinikum, Berlin, Germany
| | - Stefan Kirsch
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Jens Warfsmann
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Kamran Honarnejad
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Christoph A. Klein
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
- Experimental Medicine and Therapy Research, University of Regensburg, Regensburg, Germany
| | - Amaia Cipitria
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Group of Bioengineering in Regeneration and Cancer, Biogipuzkoa Health Research Institute, San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
7
|
Carl AG, Reynolds MJ, Gurel PS, Phua DY, Sun X, Mei L, Hamilton K, Takagi Y, Noble AJ, Sellers JR, Alushin GM. Myosin forces elicit an F-actin structural landscape that mediates mechanosensitive protein recognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.608188. [PMID: 39185238 PMCID: PMC11343212 DOI: 10.1101/2024.08.15.608188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Cells mechanically interface with their surroundings through cytoskeleton-linked adhesions, allowing them to sense physical cues that instruct development and drive diseases such as cancer. Contractile forces generated by myosin motor proteins mediate these mechanical signal transduction processes through unclear protein structural mechanisms. Here, we show that myosin forces elicit structural changes in actin filaments (F-actin) that modulate binding by the mechanosensitive adhesion protein α-catenin. Using correlative cryo-fluorescence microscopy and cryo-electron tomography, we identify F-actin featuring domains of nanoscale oscillating curvature at cytoskeleton-adhesion interfaces enriched in zyxin, a marker of actin-myosin generated traction forces. We next introduce a reconstitution system for visualizing F-actin in the presence of myosin forces with cryo-electron microscopy, which reveals morphologically similar superhelical F-actin spirals. In simulations, transient forces mimicking tugging and release of filaments by motors produce spirals, supporting a mechanistic link to myosin's ATPase mechanochemical cycle. Three-dimensional reconstruction of spirals uncovers extensive asymmetric remodeling of F-actin's helical lattice. This is recognized by α-catenin, which cooperatively binds along individual strands, preferentially engaging interfaces featuring extended inter-subunit distances while simultaneously suppressing rotational deviations to regularize the lattice. Collectively, we find that myosin forces can deform F-actin, generating a conformational landscape that is detected and reciprocally modulated by a mechanosensitive protein, providing a direct structural glimpse at active force transduction through the cytoskeleton.
Collapse
Affiliation(s)
- Ayala G. Carl
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
- Tri-Institutional Program in Chemical Biology, The Rockefeller University, New York, NY, USA
| | - Matthew J. Reynolds
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Pinar S. Gurel
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Donovan Y.Z. Phua
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Xiaoyu Sun
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Lin Mei
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
- Tri-Institutional Program in Chemical Biology, The Rockefeller University, New York, NY, USA
| | - Keith Hamilton
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Yasuharu Takagi
- Laboratory of Molecular Physiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Alex J. Noble
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - James R. Sellers
- Laboratory of Molecular Physiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Gregory M. Alushin
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
8
|
Fujimoto Y, Nakazawa N. The roles of FHL2 as a mechanotransducer for cellular functions in the mechanical environment. Front Cell Dev Biol 2024; 12:1431690. [PMID: 39129787 PMCID: PMC11310055 DOI: 10.3389/fcell.2024.1431690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/03/2024] [Indexed: 08/13/2024] Open
Abstract
The cell has multiple mechanisms for sensing and responding to dynamic changes in the mechanical environment. In the process, intracellular signaling is activated to modulate gene expression. Recent studies have shown that multifunctional signaling molecules that link intracellular force and gene expression are important for understanding cellular functions in the mechanical environment. This review discusses recent studies on one of the mechanotransducers, Four-and-a-half LIM domains 2 (FHL2), which localizes to focal adhesions (FAs), actin cytoskeleton, and nucleus. FHL2 localizes to FAs and the actin cytoskeleton in the cell on stiff substrate. In this situation, intracellular tension of F-actin by Myosin II is critical for FHL2 localization to FAs and actin stress fibers. In the case, a conserved phenylalanine in each LIM domain is responsible for its localization to F-actin. On the other hand, lower tension of F-actin in the cell on a soft substrate causes FHL2 to be released into the cytoplasm, resulting in its localization in the nucleus. At the molecular level, phosphorylation of specific tyrosine in FHL2 by FAK, non-receptor tyrosine kinase, is critical to nuclear localization. Finally, by binding to transcription factors, FHL2 modulates gene expression for cell proliferation as a transcriptional co-factor. Thus, FHL2 is involved in mechano-sensing and -transduction in the cell in a mechanical environment.
Collapse
Affiliation(s)
- Yukari Fujimoto
- Graduate School of Science and Engineering, Kindai University, Higashiosaka, Japan
| | - Naotaka Nakazawa
- Department of Energy and Materials, Faculty of Science and Engineering, Kindai University, Higashiosaka, Japan
| |
Collapse
|
9
|
Seetharaman S, Devany J, Kim HR, van Bodegraven E, Chmiel T, Tzu-Pin S, Chou WH, Fang Y, Gardel ML. Mechanosensitive FHL2 tunes endothelial function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.16.599227. [PMID: 38948838 PMCID: PMC11212908 DOI: 10.1101/2024.06.16.599227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Endothelial tissues are essential mechanosensors in the vasculature and facilitate adaptation to various blood flow-induced mechanical cues. Defects in endothelial mechanoresponses can perturb tissue remodelling and functions leading to cardiovascular disease progression. In this context, the precise mechanisms of endothelial mechanoresponses contributing to normal and diseased tissue functioning remain elusive. Here, we sought to uncover how flow-mediated transcriptional regulation drives endothelial mechanoresponses in healthy and atherosclerotic-prone tissues. Using bulk RNA sequencing, we identify novel mechanosensitive genes in response to healthy unidirectional flow (UF) and athero-prone disturbed flow (DF). We find that the transcription as well as protein expression of Four-and-a-half LIM protein 2 (FHL2) are enriched in athero-prone DF both in vitro and in vivo. We then demonstrate that the exogenous expression of FHL2 is necessary and sufficient to drive discontinuous adherens junction morphology and increased tissue permeability. This athero-prone phenotype requires the force-sensitive binding of FHL2 to actin. In turn, the force-dependent localisation of FHL2 to stress fibres promotes microtubule dynamics to release the RhoGEF, GEF-H1, and activate the Rho-ROCK pathway. Thus, we unravelled a novel mechanochemical feedback wherein force-dependent FHL2 localisation promotes hypercontractility. This misregulated mechanoresponse creates highly permeable tissues, depicting classic hallmarks of atherosclerosis progression. Overall, we highlight crucial functions for the FHL2 force-sensitivity in tuning multi-scale endothelial mechanoresponses.
Collapse
Affiliation(s)
- Shailaja Seetharaman
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - John Devany
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Ha Ram Kim
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, 60637, USA
| | - Emma van Bodegraven
- Department of Translational Neuroscience, Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Theresa Chmiel
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Shentu Tzu-Pin
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, 60637, USA
| | - Wen-hung Chou
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Yun Fang
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, 60637, USA
| | - Margaret Lise Gardel
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
10
|
Jinsheng L, Qing D, Junhao C, Qiqi S, Jieru C, Liwen Y, Zhiyun G, Tailin G, Jie W. Micro/nano topological modification of TiO 2 nanotubes activates Thy-1 signaling to control osteogenic differentiation of stem cells. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100139. [PMID: 38169172 DOI: 10.1016/j.slasd.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/04/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024]
Abstract
Micro/nano topological modification is critical for improving the in vivo behaviors of bone implants, regulating multiple cellular functions. Titania (TiO2) nanotubes show the capacity of promoting osteoblast-related cell differentiation and induce effective osseointegration, serving as a model material for studying the effects of micro/nano-topological modifications on cells. However, the intracellular signaling pathways by which TiO2 nanotubes regulate the osteogenic differentiation of stem cells are not fully defined. Thy-1 (CD90), a cell surface glycoprotein anchored by glycosylphosphatidylinositol, has been considered a key molecule in osteoblast differentiation in recent years. Nevertheless, whether the micro/nano topology of the implant surface leads to changes in Thy-1 is unknown, as well as whether these changes promote osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Here, TiO2 nanotubes of various diameters were prepared by adjusting the anodizing voltage. qPCR and immunoblot were carried out to assess the mechanism by which TiO2 nanotubes regulate Thy-1. The results revealed Ti plates harboring TiO2 nanotubes ∼100-nm diameter (TNT-100) markedly upregulated Thy-1. Subsequently, upregulated Thy-1 promoted the activation of Fyn/RhoA/MLC Ⅱ/F-actin axis, which enhanced the nuclear translocation of YAP. After Thy-1 knockdown by siRNA, the Fyn/RhoA/MLC Ⅱ/F-actin axis was significantly inhibited and TiO2 nanotubes showed decreased effects on osteogenic differentiation. Therefore, Thy-1 upregulation might be a major mechanism by which micro/nano-topological modification of TiO2 nanotubes promotes osteogenic differentiation in BMSCs. This study provides novel insights into the molecular mechanism of TiO2 nanotubes, which may help design improved bone implants for clinical application.
Collapse
Affiliation(s)
- Li Jinsheng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Deng Qing
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Chen Junhao
- School of Finance and Economics, Xizang Minzu University, Xianyang 712082, PR China
| | - Si Qiqi
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Chen Jieru
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yang Liwen
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Guo Zhiyun
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Guo Tailin
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China.
| | - Weng Jie
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China.
| |
Collapse
|
11
|
Dennhag N, Kahsay A, Nissen I, Nord H, Chermenina M, Liu J, Arner A, Liu JX, Backman LJ, Remeseiro S, von Hofsten J, Pedrosa Domellöf F. fhl2b mediates extraocular muscle protection in zebrafish models of muscular dystrophies and its ectopic expression ameliorates affected body muscles. Nat Commun 2024; 15:1950. [PMID: 38431640 PMCID: PMC10908798 DOI: 10.1038/s41467-024-46187-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
In muscular dystrophies, muscle fibers loose integrity and die, causing significant suffering and premature death. Strikingly, the extraocular muscles (EOMs) are spared, functioning well despite the disease progression. Although EOMs have been shown to differ from body musculature, the mechanisms underlying this inherent resistance to muscle dystrophies remain unknown. Here, we demonstrate important differences in gene expression as a response to muscle dystrophies between the EOMs and trunk muscles in zebrafish via transcriptomic profiling. We show that the LIM-protein Fhl2 is increased in response to the knockout of desmin, plectin and obscurin, cytoskeletal proteins whose knockout causes different muscle dystrophies, and contributes to disease protection of the EOMs. Moreover, we show that ectopic expression of fhl2b can partially rescue the muscle phenotype in the zebrafish Duchenne muscular dystrophy model sapje, significantly improving their survival. Therefore, Fhl2 is a protective agent and a candidate target gene for therapy of muscular dystrophies.
Collapse
Affiliation(s)
- Nils Dennhag
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
- Department of Clinical Sciences, Ophthalmology, Umeå University, Umeå, Sweden
| | - Abraha Kahsay
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
- Department of Clinical Sciences, Ophthalmology, Umeå University, Umeå, Sweden
| | - Itzel Nissen
- Department of Medical and Translational Biology; Section of Molecular Medicine, Umeå University, Umeå, Sweden
- Wallenberg Center for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Hanna Nord
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Maria Chermenina
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
- Department of Clinical Sciences, Ophthalmology, Umeå University, Umeå, Sweden
| | - Jiao Liu
- Div. Thoracic Surgery, Dept. Clinical Sciences, Lund University, Lund, Sweden
- College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Anders Arner
- Div. Thoracic Surgery, Dept. Clinical Sciences, Lund University, Lund, Sweden
| | - Jing-Xia Liu
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Ludvig J Backman
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Silvia Remeseiro
- Department of Medical and Translational Biology; Section of Molecular Medicine, Umeå University, Umeå, Sweden
- Wallenberg Center for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Jonas von Hofsten
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden.
| | - Fatima Pedrosa Domellöf
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden.
- Department of Clinical Sciences, Ophthalmology, Umeå University, Umeå, Sweden.
| |
Collapse
|
12
|
Jain K, Minhaj RF, Kanchanawong P, Sheetz MP, Changede R. Nano-clusters of ligand-activated integrins organize immobile, signalling active, nano-clusters of phosphorylated FAK required for mechanosignaling in focal adhesions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.25.581925. [PMID: 38464288 PMCID: PMC10925161 DOI: 10.1101/2024.02.25.581925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Transmembrane signalling receptors, such as integrins, organise as nanoclusters that are thought to provide several advantages including, increasing avidity, sensitivity (increasing the signal-to-noise ratio) and robustness (signalling above a threshold rather than activation by a single receptor) of the signal compared to signalling by single receptors. Compared to large micron-sized clusters, nanoclusters offer the advantage of rapid turnover for the disassembly of the signal. However, if nanoclusters function as signalling hubs remains poorly understood. Here, we employ fluorescence nanoscopy combined with photoactivation and photobleaching at sub-diffraction limited resolution of ~100nm length scale within a focal adhesion to examine the dynamics of diverse focal adhesion proteins. We show that (i) subregions of focal adhesions are enriched in immobile population of integrin β3 organised as nanoclusters, which (ii) in turn serve to organise nanoclusters of associated key adhesome proteins- vinculin, focal adhesion kinase (FAK) and paxillin, demonstrating that signalling proceeds by formation of nanoclusters rather than through individual proteins. (iii) Distinct focal adhesion protein nanoclusters exhibit distinct dynamics dependent on function. (iv) long-lived nanoclusters function as signalling hubs- wherein phosphorylated FAK and paxillin formed stable nanoclusters in close proximity to immobile integrin nanoclusters which are disassembled in response to inactivation signal by phosphatase PTPN12 (v) signalling takes place in response to an external signal such as force or geometric arrangement of the nanoclusters and when the signal is removed, these nanoclusters disassemble. Taken together, these results demonstrate that signalling downstream of transmembrane receptors is organised as hubs of signalling proteins (FAK, paxillin, vinculin) seeded by nanoclusters of the transmembrane receptor (integrin).
Collapse
Affiliation(s)
- Kashish Jain
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Rida F Minhaj
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Pakorn Kanchanawong
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Michael P Sheetz
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Molecular Mechanomedicine Program, Biochemistry and Molecular Biology Department, University of Texas Medical Branch, Galveston, TX, USA
| | - Rishita Changede
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- TeOra Pte. Ltd, Singapore, Singapore
| |
Collapse
|
13
|
Nakamura F. The Role of Mechanotransduction in Contact Inhibition of Locomotion and Proliferation. Int J Mol Sci 2024; 25:2135. [PMID: 38396812 PMCID: PMC10889191 DOI: 10.3390/ijms25042135] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Contact inhibition (CI) represents a crucial tumor-suppressive mechanism responsible for controlling the unbridled growth of cells, thus preventing the formation of cancerous tissues. CI can be further categorized into two distinct yet interrelated components: CI of locomotion (CIL) and CI of proliferation (CIP). These two components of CI have historically been viewed as separate processes, but emerging research suggests that they may be regulated by both distinct and shared pathways. Specifically, recent studies have indicated that both CIP and CIL utilize mechanotransduction pathways, a process that involves cells sensing and responding to mechanical forces. This review article describes the role of mechanotransduction in CI, shedding light on how mechanical forces regulate CIL and CIP. Emphasis is placed on filamin A (FLNA)-mediated mechanotransduction, elucidating how FLNA senses mechanical forces and translates them into crucial biochemical signals that regulate cell locomotion and proliferation. In addition to FLNA, trans-acting factors (TAFs), which are proteins or regulatory RNAs capable of directly or indirectly binding to specific DNA sequences in distant genes to regulate gene expression, emerge as sensitive players in both the mechanotransduction and signaling pathways of CI. This article presents methods for identifying these TAF proteins and profiling the associated changes in chromatin structure, offering valuable insights into CI and other biological functions mediated by mechanotransduction. Finally, it addresses unanswered research questions in these fields and delineates their possible future directions.
Collapse
Affiliation(s)
- Fumihiko Nakamura
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| |
Collapse
|
14
|
Paukner D, Eichinger JF, Cyron CJ. What are the key mechanical mechanisms governing integrin-mediated cell migration in three-dimensional fiber networks? Biomech Model Mechanobiol 2023:10.1007/s10237-023-01709-2. [PMID: 37318643 PMCID: PMC10366304 DOI: 10.1007/s10237-023-01709-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/01/2023] [Indexed: 06/16/2023]
Abstract
Cell migration plays a vital role in numerous processes such as development, wound healing, or cancer. It is well known that numerous complex mechanisms are involved in cell migration. However, so far it remains poorly understood what are the key mechanisms required to produce the main characteristics of this behavior. The reason is a methodological one. In experimental studies, specific factors and mechanisms can be promoted or inhibited. However, while doing so, there can always be others in the background which play key roles but which have simply remained unattended so far. This makes it very difficult to validate any hypothesis about a minimal set of factors and mechanisms required to produce cell migration. To overcome this natural limitation of experimental studies, we developed a computational model where cells and extracellular matrix fibers are represented by discrete mechanical objects on the micrometer scale. In this model, we had exact control of the mechanisms by which cells and matrix fibers interacted with each other. This enabled us to identify the key mechanisms required to produce physiologically realistic cell migration (including advanced phenomena such as durotaxis and a biphasic relation between migration efficiency and matrix stiffness). We found that two main mechanisms are required to this end: a catch-slip bond of individual integrins and cytoskeletal actin-myosin contraction. Notably, more advanced phenomena such as cell polarization or details of mechanosensing were not necessary to qualitatively reproduce the main characteristics of cell migration observed in experiments.
Collapse
Affiliation(s)
- Daniel Paukner
- Institute for Continuum and Material Mechanics, Hamburg University of Technology, Eißendorfer Straße 42 (M), 21073, Hamburg, Hamburg, Germany
- Institute of Material Systems Modeling, Helmholtz-Zentrum Hereon, Max-Planck Straße 1, 21502, Geesthacht, Schleswig-Holstein, Germany
| | - Jonas F Eichinger
- Institute for Continuum and Material Mechanics, Hamburg University of Technology, Eißendorfer Straße 42 (M), 21073, Hamburg, Hamburg, Germany
- Institute for Computational Mechanics, Technical University of Munich, Boltzmannstraße 15, Garching b., 85748, München, Bavaria, Germany
| | - Christian J Cyron
- Institute for Continuum and Material Mechanics, Hamburg University of Technology, Eißendorfer Straße 42 (M), 21073, Hamburg, Hamburg, Germany.
- Institute of Material Systems Modeling, Helmholtz-Zentrum Hereon, Max-Planck Straße 1, 21502, Geesthacht, Schleswig-Holstein, Germany.
| |
Collapse
|
15
|
Wong D, Auguste G, Cardenas CLL, Turner AW, Chen Y, Song Y, Ma L, Perry RN, Aherrahrou R, Kuppusamy M, Yang C, Mosquera JV, Dube CJ, Khan MD, Palmore M, Kalra JK, Kavousi M, Peyser PA, Matic L, Hedin U, Manichaikul A, Sonkusare SK, Civelek M, Kovacic JC, Björkegren JL, Malhotra R, Miller CL. FHL5 Controls Vascular Disease-Associated Gene Programs in Smooth Muscle Cells. Circ Res 2023; 132:1144-1161. [PMID: 37017084 PMCID: PMC10147587 DOI: 10.1161/circresaha.122.321692] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 03/21/2023] [Indexed: 04/06/2023]
Abstract
BACKGROUND Genome-wide association studies have identified hundreds of loci associated with common vascular diseases, such as coronary artery disease, myocardial infarction, and hypertension. However, the lack of mechanistic insights for many GWAS loci limits their translation into the clinic. Among these loci with unknown functions is UFL1-four-and-a-half LIM (LIN-11, Isl-1, MEC-3) domain 5 (FHL5; chr6q16.1), which reached genome-wide significance in a recent coronary artery disease/ myocardial infarction GWAS meta-analysis. UFL1-FHL5 is also associated with several vascular diseases, consistent with the widespread pleiotropy observed for GWAS loci. METHODS We apply a multimodal approach leveraging statistical fine-mapping, epigenomic profiling, and ex vivo analysis of human coronary artery tissues to implicate FHL5 as the top candidate causal gene. We unravel the molecular mechanisms of the cross-phenotype genetic associations through in vitro functional analyses and epigenomic profiling experiments in coronary artery smooth muscle cells. RESULTS We prioritized FHL5 as the top candidate causal gene at the UFL1-FHL5 locus through expression quantitative trait locus colocalization methods. FHL5 gene expression was enriched in the smooth muscle cells and pericyte population in human artery tissues with coexpression network analyses supporting a functional role in regulating smooth muscle cell contraction. Unexpectedly, under procalcifying conditions, FHL5 overexpression promoted vascular calcification and dysregulated processes related to extracellular matrix organization and calcium handling. Lastly, by mapping FHL5 binding sites and inferring FHL5 target gene function using artery tissue gene regulatory network analyses, we highlight regulatory interactions between FHL5 and downstream coronary artery disease/myocardial infarction loci, such as FOXL1 and FN1 that have roles in vascular remodeling. CONCLUSIONS Taken together, these studies provide mechanistic insights into the pleiotropic genetic associations of UFL1-FHL5. We show that FHL5 mediates vascular disease risk through transcriptional regulation of downstream vascular remodeling gene programs. These transacting mechanisms may explain a portion of the heritable risk for complex vascular diseases.
Collapse
Affiliation(s)
- Doris Wong
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| | - Gaëlle Auguste
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Christian L. Lino Cardenas
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Adam W. Turner
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Yixuan Chen
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Yipei Song
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Lijiang Ma
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - R. Noah Perry
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Redouane Aherrahrou
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Maniselvan Kuppusamy
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| | - Chaojie Yang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Jose Verdezoto Mosquera
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Collin J. Dube
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Mohammad Daud Khan
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Meredith Palmore
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Jaspreet K. Kalra
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus University Medical Center, The Netherlands
| | | | - Ljubica Matic
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ani Manichaikul
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
- Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, USA
| | - Swapnil K. Sonkusare
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Mete Civelek
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Jason C. Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
- St. Vincent’s Clinical School, University of New South Wales, Sydney, Australia
| | - Johan L.M. Björkegren
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, USA
- Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Rajeev Malhotra
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Clint L. Miller
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Guneri-Sozeri PY, Özden-Yılmaz G, Kisim A, Cakiroglu E, Eray A, Uzuner H, Karakülah G, Pesen-Okvur D, Senturk S, Erkek-Ozhan S. FLI1 and FRA1 transcription factors drive the transcriptional regulatory networks characterizing muscle invasive bladder cancer. Commun Biol 2023; 6:199. [PMID: 36805539 PMCID: PMC9941102 DOI: 10.1038/s42003-023-04561-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
Bladder cancer is mostly present in the form of urothelium carcinoma, causing over 150,000 deaths each year. Its histopathological classification as muscle invasive (MIBC) and non-muscle invasive (NMIBC) is the most prominent aspect, affecting the prognosis and progression of this disease. In this study, we defined the active regulatory landscape of MIBC and NMIBC cell lines using H3K27ac ChIP-seq and used an integrative approach to combine our findings with existing data. Our analysis revealed FRA1 and FLI1 as two critical transcription factors differentially regulating MIBC regulatory landscape. We show that FRA1 and FLI1 regulate the genes involved in epithelial cell migration and cell junction organization. Knock-down of FRA1 and FLI1 in MIBC revealed the downregulation of several EMT-related genes such as MAP4K4 and FLOT1. Further, ChIP-SICAP performed for FRA1 and FLI1 enabled us to infer chromatin binding partners of these transcription factors and link this information with their target genes. Finally, we show that knock-down of FRA1 and FLI1 result in significant reduction of invasion capacity of MIBC cells towards muscle microenvironment using IC-CHIP assays. Our results collectively highlight the role of these transcription factors in selection and design of targeted options for treatment of MIBC.
Collapse
Affiliation(s)
- Perihan Yagmur Guneri-Sozeri
- grid.21200.310000 0001 2183 9022Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey ,grid.21200.310000 0001 2183 9022Dokuz Eylül University Izmir International Biomedicine and Genome Institute, Inciralti, 35340 Izmir, Turkey
| | - Gülden Özden-Yılmaz
- grid.21200.310000 0001 2183 9022Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey
| | - Asli Kisim
- grid.419609.30000 0000 9261 240XIzmir Institute of Technology, Urla, 35430 Izmir, Turkey
| | - Ece Cakiroglu
- grid.21200.310000 0001 2183 9022Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey ,grid.21200.310000 0001 2183 9022Dokuz Eylül University Izmir International Biomedicine and Genome Institute, Inciralti, 35340 Izmir, Turkey
| | - Aleyna Eray
- grid.21200.310000 0001 2183 9022Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey ,grid.21200.310000 0001 2183 9022Dokuz Eylül University Izmir International Biomedicine and Genome Institute, Inciralti, 35340 Izmir, Turkey
| | - Hamdiye Uzuner
- grid.21200.310000 0001 2183 9022Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey ,grid.21200.310000 0001 2183 9022Dokuz Eylül University Izmir International Biomedicine and Genome Institute, Inciralti, 35340 Izmir, Turkey
| | - Gökhan Karakülah
- grid.21200.310000 0001 2183 9022Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey ,grid.21200.310000 0001 2183 9022Dokuz Eylül University Izmir International Biomedicine and Genome Institute, Inciralti, 35340 Izmir, Turkey
| | - Devrim Pesen-Okvur
- grid.419609.30000 0000 9261 240XIzmir Institute of Technology, Urla, 35430 Izmir, Turkey
| | - Serif Senturk
- grid.21200.310000 0001 2183 9022Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey ,grid.21200.310000 0001 2183 9022Dokuz Eylül University Izmir International Biomedicine and Genome Institute, Inciralti, 35340 Izmir, Turkey
| | - Serap Erkek-Ozhan
- Izmir Biomedicine and Genome Center, Inciralti, 35340, Izmir, Turkey.
| |
Collapse
|
17
|
Torres-Gomez A, Fiyouzi T, Guerra-Espinosa C, Cardeñes B, Clares I, Toribio V, Reche PA, Cabañas C, Lafuente EM. Expression of the phagocytic receptors αMβ2 and αXβ2 is controlled by RIAM, VASP and Vinculin in neutrophil-differentiated HL-60 cells. Front Immunol 2022; 13:951280. [PMID: 36238292 PMCID: PMC9552961 DOI: 10.3389/fimmu.2022.951280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022] Open
Abstract
Activation of the integrin phagocytic receptors CR3 (αMβ2, CD11b/CD18) and CR4 (αXβ2, CD11c/CD18) requires Rap1 activation and RIAM function. RIAM controls integrin activation by recruiting Talin to β2 subunits, enabling the Talin-Vinculin interaction, which in term bridges integrins to the actin-cytoskeleton. RIAM also recruits VASP to phagocytic cups and facilitates VASP phosphorylation and function promoting particle internalization. Using a CRISPR-Cas9 knockout approach, we have analyzed the requirement for RIAM, VASP and Vinculin expression in neutrophilic-HL-60 cells. All knockout cells displayed abolished phagocytosis that was accompanied by a significant and specific reduction in ITGAM (αM), ITGAX (αX) and ITGB2 (β2) mRNA, as revealed by RT-qPCR. RIAM, VASP and Vinculin KOs presented reduced cellular F-actin content that correlated with αM expression, as treatment with the actin filament polymerizing and stabilizing drug jasplakinolide, partially restored αM expression. In general, the expression of αX was less responsive to jasplakinolide treatment than αM, indicating that regulatory mechanisms independent of F-actin content may be involved. The Serum Response Factor (SRF) was investigated as the potential transcription factor controlling αMβ2 expression, since its coactivator MRTF-A requires actin polymerization to induce transcription. Immunofluorescent MRTF-A localization in parental cells was primarily nuclear, while in knockouts it exhibited a diffuse cytoplasmic pattern. Localization of FHL-2 (SRF corepressor) was mainly sub-membranous in parental HL-60 cells, but in knockouts the localization was disperse in the cytoplasm and the nucleus, suggesting RIAM, VASP and Vinculin are required to maintain FHL-2 close to cytoplasmic membranes, reducing its nuclear localization and inhibiting its corepressor activity. Finally, reexpression of VASP in the VASP knockout resulted in a complete reversion of the phenotype, as knock-ins restored αM expression. Taken together, our results suggest that RIAM, VASP and Vinculin, are necessary for the correct expression of αMβ2 and αXβ2 during neutrophilic differentiation in the human promyelocytic HL-60 cell line, and strongly point to an involvement of these proteins in the acquisition of a phagocytic phenotype.
Collapse
Affiliation(s)
- Alvaro Torres-Gomez
- Department of Immunology, Ophthalmology and Otorhinolaryngology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Inflammatory Diseases and Immune Disorders (Lymphocyte Immunobiology Unit), Madrid, Spain
- *Correspondence: Esther M. Lafuente, ; Alvaro Torres-Gomez,
| | - Tara Fiyouzi
- Department of Immunology, Ophthalmology and Otorhinolaryngology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Inflammatory Diseases and Immune Disorders (Lymphocyte Immunobiology Unit), Madrid, Spain
| | - Claudia Guerra-Espinosa
- Department of Immunology, Ophthalmology and Otorhinolaryngology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Beatriz Cardeñes
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Inflammatory Diseases and Immune Disorders (Lymphocyte Immunobiology Unit), Madrid, Spain
| | - Irene Clares
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Inflammatory Diseases and Immune Disorders (Lymphocyte Immunobiology Unit), Madrid, Spain
| | - Víctor Toribio
- Tissue and Organ Homeostasis Program (Cell-Cell Communication and Inflammation Unit), Centre for Molecular Biology "Severo Ochoa", Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Pedro A. Reche
- Department of Immunology, Ophthalmology and Otorhinolaryngology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Inflammatory Diseases and Immune Disorders (Lymphocyte Immunobiology Unit), Madrid, Spain
| | - Carlos Cabañas
- Department of Immunology, Ophthalmology and Otorhinolaryngology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Inflammatory Diseases and Immune Disorders (Lymphocyte Immunobiology Unit), Madrid, Spain
- Tissue and Organ Homeostasis Program (Cell-Cell Communication and Inflammation Unit), Centre for Molecular Biology "Severo Ochoa", Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Esther M. Lafuente
- Department of Immunology, Ophthalmology and Otorhinolaryngology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Inflammatory Diseases and Immune Disorders (Lymphocyte Immunobiology Unit), Madrid, Spain
- *Correspondence: Esther M. Lafuente, ; Alvaro Torres-Gomez,
| |
Collapse
|
18
|
Sun X, Alushin GM. Cellular force-sensing through actin filaments. FEBS J 2022; 290:2576-2589. [PMID: 35778931 PMCID: PMC9945651 DOI: 10.1111/febs.16568] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/17/2022] [Accepted: 06/30/2022] [Indexed: 02/05/2023]
Abstract
The actin cytoskeleton orchestrates cell mechanics and facilitates the physical integration of cells into tissues, while tissue-scale forces and extracellular rigidity in turn govern cell behaviour. Here, we discuss recent evidence that actin filaments (F-actin), the core building blocks of the actin cytoskeleton, also serve as molecular force sensors. We delineate two classes of proteins, which interpret forces applied to F-actin through enhanced binding interactions: 'mechanically tuned' canonical actin-binding proteins, whose constitutive F-actin affinity is increased by force, and 'mechanically switched' proteins, which bind F-actin only in the presence of force. We speculate mechanically tuned and mechanically switched actin-binding proteins are biophysically suitable for coordinating cytoskeletal force-feedback and mechanical signalling processes, respectively. Finally, we discuss potential mechanisms mediating force-activated actin binding, which likely occurs both through the structural remodelling of F-actin itself and geometric rearrangements of higher-order actin networks. Understanding the interplay of these mechanisms will enable the dissection of force-activated actin binding's specific biological functions.
Collapse
Affiliation(s)
- Xiaoyu Sun
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University. New York, NY, USA.,Correspondence: ;
| | - Gregory M. Alushin
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University. New York, NY, USA.,Correspondence: ;
| |
Collapse
|
19
|
Aloisio FM, Barber DL. Arp2/3 complex activity is necessary for mouse ESC differentiation, times formative pluripotency, and enables lineage specification. Stem Cell Reports 2022; 17:1318-1333. [PMID: 35658973 PMCID: PMC9214060 DOI: 10.1016/j.stemcr.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/28/2022] Open
Abstract
Mouse embryonic stem cells (mESCs), a model for differentiation into primed epiblast-like cells (EpiLCs), have revealed transcriptional and epigenetic control of early embryonic development. The control and significance of morphological changes, however, remain less defined. We show marked changes in morphology and actin architectures during differentiation that depend on Arp2/3 complex but not formin activity. Inhibiting Arp2/3 complex activity pharmacologically or genetically does not block exit from naive pluripotency, but attenuates increases in EpiLC markers. We find that inhibiting Arp2/3 complex activity delays formative pluripotency and causes globally defective lineage specification as indicated by RNA sequencing, with significant effects on TBX3-depedendent transcriptional programs. We also identify two previously unreported indicators of mESC differentiation, namely, MRTF and FHL2, which have inverse Arp2/3 complex-dependent nuclear translocation. Our findings on Arp2/3 complex activity in differentiation and the established role of formins in EMT indicate that these two actin nucleators regulate distinct modes of epithelial plasticity.
Collapse
Affiliation(s)
- Francesca M Aloisio
- Department of Cell & Tissue Biology, University of California San Francisco, Box 0512, 513 Parnassus Ave., San Francisco, CA 94143, USA
| | - Diane L Barber
- Department of Cell & Tissue Biology, University of California San Francisco, Box 0512, 513 Parnassus Ave., San Francisco, CA 94143, USA.
| |
Collapse
|
20
|
Byron A, Griffith BGC, Herrero A, Loftus AEP, Koeleman ES, Kogerman L, Dawson JC, McGivern N, Culley J, Grimes GR, Serrels B, von Kriegsheim A, Brunton VG, Frame MC. Characterisation of a nucleo-adhesome. Nat Commun 2022; 13:3053. [PMID: 35650196 PMCID: PMC9160004 DOI: 10.1038/s41467-022-30556-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 05/02/2022] [Indexed: 11/09/2022] Open
Abstract
In addition to central functions in cell adhesion signalling, integrin-associated proteins have wider roles at sites distal to adhesion receptors. In experimentally defined adhesomes, we noticed that there is clear enrichment of proteins that localise to the nucleus, and conversely, we now report that nuclear proteomes contain a class of adhesome components that localise to the nucleus. We here define a nucleo-adhesome, providing experimental evidence for a remarkable scale of nuclear localisation of adhesion proteins, establishing a framework for interrogating nuclear adhesion protein functions. Adding to nuclear FAK's known roles in regulating transcription, we now show that nuclear FAK regulates expression of many adhesion-related proteins that localise to the nucleus and that nuclear FAK binds to the adhesome component and nuclear protein Hic-5. FAK and Hic-5 work together in the nucleus, co-regulating a subset of genes transcriptionally. We demonstrate the principle that there are subcomplexes of nuclear adhesion proteins that cooperate to control transcription.
Collapse
Affiliation(s)
- Adam Byron
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK.
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
| | - Billie G C Griffith
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Ana Herrero
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, 39011, Santander, Spain
| | - Alexander E P Loftus
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Emma S Koeleman
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
- Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, 69120, Heidelberg, Germany
| | - Linda Kogerman
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - John C Dawson
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Niamh McGivern
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
- Almac Diagnostic Services, 19 Seagoe Industrial Estate, Craigavon, BT63 5QD, UK
| | - Jayne Culley
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Graeme R Grimes
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Bryan Serrels
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
- NanoString Technologies, Inc., Seattle, WA, 98109, USA
| | - Alex von Kriegsheim
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Valerie G Brunton
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Margaret C Frame
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| |
Collapse
|
21
|
Impact of Treadmill Interval Running on the Appearance of Zinc Finger Protein FHL2 in Bone Marrow Cells in a Rat Model: A Pilot Study. Life (Basel) 2022; 12:life12040528. [PMID: 35455019 PMCID: PMC9029125 DOI: 10.3390/life12040528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
Although the benefits of physical exercise to preserve bone quality are now widely recognized, the intimate mechanisms leading to the underlying cell responses still require further investigations. Interval training running, for instance, appears as a generator of impacts on the skeleton, and particularly on the progenitor cells located in the bone marrow. Therefore, if this kind of stimulus initiates bone cell proliferation and differentiation, the activation of a devoted signaling pathway by mechano-transduction seems likely. This study aimed at investigating the effects of an interval running program on the appearance of the zinc finger protein FHL2 in bone cells and their anatomical location. Twelve 5-week-old male Wistar rats were randomly allocated to one of the following groups (n = 6 per group): sedentary control (SED) or high-intensity interval running (EX, 8 consecutive weeks). FHL2 identification in bone cells was performed by immuno-histochemistry on serial sections of radii. We hypothesized that impacts generated by running could activate, in vivo, a specific signaling pathway, through an integrin-mediated mechano-transductive process, leading to the synthesis of FHL2 in bone marrow cells. Our data demonstrated the systematic appearance of FHL2 (% labeled cells: 7.5%, p < 0.001) in bone marrow obtained from EX rats, whereas no FHL2 was revealed in SED rats. These results suggest that the mechanical impacts generated during high-intensity interval running activate a signaling pathway involving nuclear FHL2, such as that also observed with dexamethasone administration. Consequently, interval running could be proposed as a non-pharmacological strategy to contribute to bone marrow cell osteogenic differentiation.
Collapse
|
22
|
Kostallari E, Wei B, Sicard D, Li J, Cooper SA, Gao J, Dehankar M, Li Y, Cao S, Yin M, Tschumperlin DJ, Shah VH. Stiffness is associated with hepatic stellate cell heterogeneity during liver fibrosis. Am J Physiol Gastrointest Liver Physiol 2022; 322:G234-G246. [PMID: 34941452 PMCID: PMC8793867 DOI: 10.1152/ajpgi.00254.2021] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The fibrogenic wound-healing response in liver increases stiffness. Stiffness mechanotransduction, in turn, amplifies fibrogenesis. Here, we aimed to understand the distribution of stiffness in fibrotic liver, how it impacts hepatic stellate cell (HSC) heterogeneity, and identify mechanisms by which stiffness amplifies fibrogenic responses. Magnetic resonance elastography and atomic force microscopy demonstrated a heterogeneous distribution of liver stiffness at macroscopic and microscopic levels, respectively, in a carbon tetrachloride (CCl4) mouse model of liver fibrosis as compared with controls. High stiffness was mainly attributed to extracellular matrix dense areas. To identify a stiffness-sensitive HSC subpopulation, we performed single-cell RNA sequencing (scRNA-seq) on primary HSCs derived from healthy versus CCl4-treated mice. A subcluster of HSCs was matrix-associated with the most upregulated pathway in this subpopulation being focal adhesion signaling, including a specific protein termed four and a half LIM domains protein 2 (FHL2). In vitro, FHL2 expression was increased in primary human HSCs cultured on stiff matrix as compared with HSCs on soft matrix. Moreover, FHL2 knockdown inhibited fibronectin and collagen 1 expression, whereas its overexpression promoted matrix production. In summary, we demonstrate stiffness heterogeneity at the whole organ, lobular, and cellular level, which drives an amplification loop of fibrogenesis through specific focal adhesion molecular pathways.NEW & NOTEWORTHY The fibrogenic wound-healing response in liver increases stiffness. Here, macro and microheterogeneity of liver stiffness correlate with HSC heterogeneity in a hepatic fibrosis mouse model. Fibrogenic HSCs localized in stiff collagen-high areas upregulate the expression of focal adhesion molecule FHL2, which, in turn, promotes extracellular matrix protein expression. These results demonstrate that stiffness heterogeneity at the whole organ, lobular, and cellular level drives an amplification loop of fibrogenesis through specific focal adhesion molecular pathways.
Collapse
Affiliation(s)
- Enis Kostallari
- 1Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Bo Wei
- 1Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota,2Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Delphine Sicard
- 3Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Jiahui Li
- 4Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Shawna A. Cooper
- 5Department of Biochemistry and Molecular Biology, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota
| | - Jinhang Gao
- 1Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota,2Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Mrunal Dehankar
- 6Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Ying Li
- 6Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Sheng Cao
- 1Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Meng Yin
- 4Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | | | - Vijay H. Shah
- 1Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
23
|
van der Pijl RJ, Domenighetti AA, Sheikh F, Ehler E, Ottenheijm CAC, Lange S. The titin N2B and N2A regions: biomechanical and metabolic signaling hubs in cross-striated muscles. Biophys Rev 2021; 13:653-677. [PMID: 34745373 PMCID: PMC8553726 DOI: 10.1007/s12551-021-00836-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
Muscle specific signaling has been shown to originate from myofilaments and their associated cellular structures, including the sarcomeres, costameres or the cardiac intercalated disc. Two signaling hubs that play important biomechanical roles for cardiac and/or skeletal muscle physiology are the N2B and N2A regions in the giant protein titin. Prominent proteins associated with these regions in titin are chaperones Hsp90 and αB-crystallin, members of the four-and-a-half LIM (FHL) and muscle ankyrin repeat protein (Ankrd) families, as well as thin filament-associated proteins, such as myopalladin. This review highlights biological roles and properties of the titin N2B and N2A regions in health and disease. Special emphasis is placed on functions of Ankrd and FHL proteins as mechanosensors that modulate muscle-specific signaling and muscle growth. This region of the sarcomere also emerged as a hotspot for the modulation of passive muscle mechanics through altered titin phosphorylation and splicing, as well as tethering mechanisms that link titin to the thin filament system.
Collapse
Affiliation(s)
| | - Andrea A. Domenighetti
- Shirley Ryan AbilityLab, Chicago, IL USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL USA
| | - Farah Sheikh
- Division of Cardiology, School of Medicine, UC San Diego, La Jolla, CA USA
| | - Elisabeth Ehler
- Randall Centre for Cell and Molecular Biophysics, School of Cardiovascular Medicine and Sciences, King’s College London, London, UK
| | - Coen A. C. Ottenheijm
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ USA
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Stephan Lange
- Division of Cardiology, School of Medicine, UC San Diego, La Jolla, CA USA
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
24
|
Mohanta TK, Mishra AK, Al-Harrasi A. The 3D Genome: From Structure to Function. Int J Mol Sci 2021; 22:11585. [PMID: 34769016 PMCID: PMC8584255 DOI: 10.3390/ijms222111585] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 01/09/2023] Open
Abstract
The genome is the most functional part of a cell, and genomic contents are organized in a compact three-dimensional (3D) structure. The genome contains millions of nucleotide bases organized in its proper frame. Rapid development in genome sequencing and advanced microscopy techniques have enabled us to understand the 3D spatial organization of the genome. Chromosome capture methods using a ligation approach and the visualization tool of a 3D genome browser have facilitated detailed exploration of the genome. Topologically associated domains (TADs), lamin-associated domains, CCCTC-binding factor domains, cohesin, and chromatin structures are the prominent identified components that encode the 3D structure of the genome. Although TADs are the major contributors to 3D genome organization, they are absent in Arabidopsis. However, a few research groups have reported the presence of TAD-like structures in the plant kingdom.
Collapse
Affiliation(s)
- Tapan Kumar Mohanta
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea; or
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| |
Collapse
|
25
|
Xie Z, Xu Y, Wei X, An G, Hao M, Yu Z, Qiu L. Four and a Half LIM Domains Protein 2 Mediates Bortezomib-Induced Osteogenic Differentiation of Mesenchymal Stem Cells in Multiple Myeloma Through p53 Signaling and β-Catenin Nuclear Enrichment. Front Oncol 2021; 11:729799. [PMID: 34589431 PMCID: PMC8473907 DOI: 10.3389/fonc.2021.729799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/23/2021] [Indexed: 11/30/2022] Open
Abstract
Myeloma bone disease (MBD), caused by the inhibition of osteoblast activity and the activation of osteoclast in the bone marrow environment, is the most frequent and life-threatening complication in multiple myeloma (MM) patients. Bortezomib (Bzb) was shown to promote MM-derived mesenchymal stem cells (MM-MSCs) differentiation to osteoblast in vitro and in animal models, promoting the bone formation and regeneration, may be mediated via β-catenin/T-cell factor (TCF) pathway. Further defining molecular mechanism of Bzb-enhanced bone formation in MM will be beneficial for the treatment of myeloma patients. The present study has identified for the first time four and a half LIM domains protein 2 (FHL2), a tissue-specific coregulator that interacts with many osteogenic marker molecules, as a therapeutic target to ameliorate MM bone disease. First, increased messenger RNA (mRNA) and protein levels of FHL2, and the mRNA level of main osteoblast markers (including Runx2, ALP, and Col1A1), were found in MM-patients-derived MSCs after Bzb treatment. FHL2 KD with short hairpin RNA (shRNA) reduced the expression of osteoblast marker genes and blocked the osteogenic differentiation of MM-MSCs regardless of the presence or absence of Bzb, implying that FHL2 is an important activator of the osteogenic differentiation of human MSCs under a proteasome inhibition condition. Molecular analysis showed that the enhanced expression of FHL2 was associated with the Bzb-induced upregulation of p53. No significant change at protein level of total β-catenin was observed with or without Bzb treatment. However, it was mostly enriched to nuclei in MSCs after Bzb treatment. Moreover, β-catenin was restricted to the perinuclear region in FHL2 KD cells. These data provide evidence that FHL2 is essential for promoting β-catenin nuclear enrichment in MM-MSCs. In conclusion, FHL2 is critical for Bzb-induced osteoblast differentiation of MM-MSCs and promotes the osteogenesis, through p53 signaling and β-catenin activation. Targeting FHL2 in MM may provide a new therapeutic strategy for treating MBD.
Collapse
Affiliation(s)
- Zhenqing Xie
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yan Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiaojing Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Gang An
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Mu Hao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Zhen Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
26
|
Solís C, Russell B. Striated muscle proteins are regulated both by mechanical deformation and by chemical post-translational modification. Biophys Rev 2021; 13:679-695. [PMID: 34777614 PMCID: PMC8555064 DOI: 10.1007/s12551-021-00835-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/23/2021] [Indexed: 01/09/2023] Open
Abstract
All cells sense force and build their cytoskeleton to optimize function. How is this achieved? Two major systems are involved. The first is that load deforms specific protein structures in a proportional and orientation-dependent manner. The second is post-translational modification of proteins as a consequence of signaling pathway activation. These two processes work together in a complex way so that local subcellular assembly as well as overall cell function are controlled. This review discusses many cell types but focuses on striated muscle. Detailed information is provided on how load deforms the structure of proteins in the focal adhesions and filaments, using α-actinin, vinculin, talin, focal adhesion kinase, LIM domain-containing proteins, filamin, myosin, titin, and telethonin as examples. Second messenger signals arising from external triggers are distributed throughout the cell causing post-translational or chemical modifications of protein structures, with the actin capping protein CapZ and troponin as examples. There are numerous unanswered questions of how mechanical and chemical signals are integrated by muscle proteins to regulate sarcomere structure and function yet to be studied. Therefore, more research is needed to see how external triggers are integrated with local tension generated within the cell. Nonetheless, maintenance of tension in the sarcomere is the essential and dominant mechanism, leading to the well-known phrase in exercise physiology: "use it or lose it."
Collapse
Affiliation(s)
- Christopher Solís
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Brenda Russell
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612 USA
| |
Collapse
|
27
|
Wang CY, Yu GT, Gao C, Chen J, Li QL, Zhang L, Wu M, Sun ZJ, Li LY. Genome-Wide Enhancer Analysis Reveals the Role of AP-1 Transcription Factor in Head and Neck Squamous Cell Carcinoma. Front Mol Biosci 2021; 8:701531. [PMID: 34409068 PMCID: PMC8365880 DOI: 10.3389/fmolb.2021.701531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/28/2021] [Indexed: 01/11/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most common cancers in the world, but its epigenomic features have not been determined. Here, we studied the chromatin landscape of active enhancers of HNSCC head tumor tissues by performing H3K27ac and H3K4me1 ChIP-Seq with a Tgfbr1/Pten double conditional knockout HNSCC mouse model. We identified 1,248 gain variant enhancer loci (VELs) and 2,188 lost VELs, as well as 153 gain variant super enhancer loci (VSELs) and 234 lost VSELs. Potentially involved transcription factors were predicted with motif analysis, and we identified AP-1 as one of the critical oncogenic transcription factors in HNSCC and many other types of cancer. Combining transcriptomic and epigenomic data, our analysis also showed that AP-1 and histone modifications coordinately regulate target gene expression in HNSCC. In conclusion, our study provides important epigenomic information for enhancer studies in HNSCC and reveals new mechanism for AP-1 regulating HNSCC.
Collapse
Affiliation(s)
- Chen-Yu Wang
- Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, Wuhan University, Wuhan, China
| | - Guang-Tao Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Chuan Gao
- Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, Wuhan University, Wuhan, China
| | - Ji Chen
- Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, Wuhan University, Wuhan, China
| | - Qing-Lan Li
- Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, Wuhan University, Wuhan, China
| | - Lu Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Min Wu
- Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, Wuhan University, Wuhan, China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lian-Yun Li
- Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, Wuhan University, Wuhan, China
| |
Collapse
|
28
|
Basu H, Pekkurnaz G, Falk J, Wei W, Chin M, Steen J, Schwarz TL. FHL2 anchors mitochondria to actin and adapts mitochondrial dynamics to glucose supply. J Cell Biol 2021; 220:212527. [PMID: 34342639 PMCID: PMC8340551 DOI: 10.1083/jcb.201912077] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/05/2021] [Accepted: 07/08/2021] [Indexed: 01/24/2023] Open
Abstract
Mitochondrial movement and distribution are fundamental to their function. Here we report a mechanism that regulates mitochondrial movement by anchoring mitochondria to the F-actin cytoskeleton. This mechanism is activated by an increase in glucose influx and the consequent O-GlcNAcylation of TRAK (Milton), a component of the mitochondrial motor-adaptor complex. The protein four and a half LIM domains protein 2 (FHL2) serves as the anchor. FHL2 associates with O-GlcNAcylated TRAK and is both necessary and sufficient to drive the accumulation of F-actin around mitochondria and to arrest mitochondrial movement by anchoring to F-actin. Disruption of F-actin restores mitochondrial movement that had been arrested by either TRAK O-GlcNAcylation or forced direction of FHL2 to mitochondria. This pathway for mitochondrial immobilization is present in both neurons and non-neuronal cells and can thereby adapt mitochondrial dynamics to changes in glucose availability.
Collapse
Affiliation(s)
- Himanish Basu
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA.,Division of Medical Sciences, Harvard Medical School, Boston, MA.,Department of Neurobiology, Harvard Medical School, Boston, MA
| | - Gulcin Pekkurnaz
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA.,Department of Neurobiology, Harvard Medical School, Boston, MA
| | - Jill Falk
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA.,Department of Neurobiology, Harvard Medical School, Boston, MA
| | - Wei Wei
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA
| | - Morven Chin
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA.,Division of Medical Sciences, Harvard Medical School, Boston, MA.,Department of Neurobiology, Harvard Medical School, Boston, MA
| | - Judith Steen
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA
| | - Thomas L Schwarz
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA.,Department of Neurobiology, Harvard Medical School, Boston, MA
| |
Collapse
|
29
|
Wagh K, Ishikawa M, Garcia DA, Stavreva DA, Upadhyaya A, Hager GL. Mechanical Regulation of Transcription: Recent Advances. Trends Cell Biol 2021; 31:457-472. [PMID: 33712293 PMCID: PMC8221528 DOI: 10.1016/j.tcb.2021.02.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 01/01/2023]
Abstract
Mechanotransduction is the ability of a cell to sense mechanical cues from its microenvironment and convert them into biochemical signals to elicit adaptive transcriptional and other cellular responses. Here, we describe recent advances in the field of mechanical regulation of transcription, highlight mechanical regulation of the epigenome as a key novel aspect of mechanotransduction, and describe recent technological advances that could further elucidate the link between mechanical stimuli and gene expression. In this review, we emphasize the importance of mechanotransduction as one of the governing principles of cancer progression, underscoring the need to conduct further studies of the molecular mechanisms involved in sensing mechanical cues and coordinating transcriptional responses.
Collapse
Affiliation(s)
- Kaustubh Wagh
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Department of Physics, University of Maryland, College Park, MD 20742, USA
| | - Momoko Ishikawa
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David A Garcia
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Department of Physics, University of Maryland, College Park, MD 20742, USA
| | - Diana A Stavreva
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Arpita Upadhyaya
- Department of Physics, University of Maryland, College Park, MD 20742, USA; Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA.
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
30
|
Anderson CA, Kovar DR, Gardel ML, Winkelman JD. LIM domain proteins in cell mechanobiology. Cytoskeleton (Hoboken) 2021; 78:303-311. [PMID: 34028199 DOI: 10.1002/cm.21677] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022]
Abstract
The actin cytoskeleton is important for maintaining mechanical homeostasis in adherent cells, largely through its regulation of adhesion and cortical tension. The LIM (Lin-11, Isl1, MEC-3) domain-containing proteins are involved in a myriad of cellular mechanosensitive pathways. Recent work has discovered that LIM domains bind to mechanically stressed actin filaments, suggesting a novel and widely conserved mechanism of mechanosensing. This review summarizes the current state of knowledge of LIM protein mechanosensitivity.
Collapse
Affiliation(s)
- Caitlin A Anderson
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, USA
| | - David R Kovar
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, USA.,Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| | - Margaret L Gardel
- Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois, USA.,James Franck Institute, University of Chicago, Chicago, Illinois, USA.,Department of Physics, University of Chicago, Chicago, Illinois, USA.,Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois, USA
| | - Jonathan D Winkelman
- Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
31
|
Wang GF, Niu X, Liu H, Dong Q, Yao Y, Wang D, Liu X, Cao C. c-Abl kinase regulates cell proliferation and ionizing radiation-induced G2/M arrest via phosphorylation of FHL2. FEBS Open Bio 2021; 11:1731-1738. [PMID: 33932144 PMCID: PMC8167852 DOI: 10.1002/2211-5463.13177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 03/20/2021] [Accepted: 04/27/2021] [Indexed: 11/21/2022] Open
Abstract
Nonreceptor tyrosine kinase c‐Abl participates in several cellular processes by phosphorylating transcription factors or cofactors. c‐Abl binds and phosphorylates four‐and‐a‐half‐LIM‐only protein 2 (FHL2), but the identity of the phosphorylation sites and their contribution to cell cycle regulation is unclear. In this study, we demonstrate that c‐Abl highly phosphorylates FHL2 at Y97, Y176, Y217, and Y236 through mass spectrometry and tyrosine‐to‐phenylalanine (Y → F) mutant analysis. Proliferation was inhibited in cells expressing wild‐type (WT) FHL2 but not cells expressing the phosphorylation‐defective mutant FHL2(4YF). Moreover, FHL2 contributed to cell cycle arrest at G2/M induced by ionizing radiation (IR). FHL2 WT but not FHL2(4YF) rescued FHL2 function in FHL2‐depleted cells by causing IR‐induced G2/M arrest. These results demonstrate that c‐Abl regulates cell cycle progression by phosphorylating FHL2.
Collapse
Affiliation(s)
| | | | - Hainan Liu
- Beijing Institute of Biotechnology, China
| | | | - Yebao Yao
- Beijing Institute of Biotechnology, China
| | - Di Wang
- Anhui University, Hefei, China
| | - Xuan Liu
- Beijing Institute of Biotechnology, China
| | - Cheng Cao
- Beijing Institute of Biotechnology, China
| |
Collapse
|
32
|
Mechanically tuning actin filaments to modulate the action of actin-binding proteins. Curr Opin Cell Biol 2020; 68:72-80. [PMID: 33160108 DOI: 10.1016/j.ceb.2020.09.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 12/16/2022]
Abstract
In cells, the actin cytoskeleton is regulated by an interplay between mechanics and biochemistry. A key mechanism, which has emerged based on converging indications from structural, cellular, and biophysical data, depicts the actin filament as a mechanically tunable substrate: mechanical stress applied to an actin filament induces conformational changes, which modify the binding and the regulatory action of actin-binding proteins. For a long time, however, direct evidence of this mechanotransductive mechanism was very scarce. This situation is changing rapidly, and recent in vitro single-filament studies using different techniques have revealed that several actin-binding proteins are able to sense tension, curvature, and/or torsion, applied to actin filaments. Here, we discuss these recent advances and their possible implications.
Collapse
|
33
|
Sun X, Phua DYZ, Axiotakis L, Smith MA, Blankman E, Gong R, Cail RC, Espinosa de Los Reyes S, Beckerle MC, Waterman CM, Alushin GM. Mechanosensing through Direct Binding of Tensed F-Actin by LIM Domains. Dev Cell 2020; 55:468-482.e7. [PMID: 33058779 DOI: 10.1016/j.devcel.2020.09.022] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/04/2020] [Accepted: 09/21/2020] [Indexed: 01/21/2023]
Abstract
Mechanical signals transmitted through the cytoplasmic actin cytoskeleton must be relayed to the nucleus to control gene expression. LIM domains are protein-protein interaction modules found in cytoskeletal proteins and transcriptional regulators. Here, we identify three LIM protein families (zyxin, paxillin, and FHL) whose members preferentially localize to the actin cytoskeleton in mechanically stimulated cells through their tandem LIM domains. A minimal actin-myosin reconstitution system reveals that representatives of all three families directly bind F-actin only in the presence of mechanical force. Point mutations at a site conserved in each LIM domain of these proteins disrupt tensed F-actin binding in vitro and cytoskeletal localization in cells, demonstrating a common, avidity-based mechanism. Finally, we find that binding to tensed F-actin in the cytoplasm excludes the cancer-associated transcriptional co-activator FHL2 from the nucleus in stiff microenvironments. This establishes direct force-activated F-actin binding as a mechanosensing mechanism by which cytoskeletal tension can govern nuclear localization.
Collapse
Affiliation(s)
- Xiaoyu Sun
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY 10065, USA
| | - Donovan Y Z Phua
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY 10065, USA
| | - Lucas Axiotakis
- Laboratory of Macromolecular Interactions, Cell Biology and Physiology Center, Division of Intramural Research, National Heart Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Mark A Smith
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Elizabeth Blankman
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Rui Gong
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY 10065, USA
| | - Robert C Cail
- Laboratory of Macromolecular Interactions, Cell Biology and Physiology Center, Division of Intramural Research, National Heart Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | | | - Mary C Beckerle
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Clare M Waterman
- Cell and Developmental Biology Center, Division of Intramural Research, National Heart Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Gregory M Alushin
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY 10065, USA; Laboratory of Macromolecular Interactions, Cell Biology and Physiology Center, Division of Intramural Research, National Heart Lung and Blood Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
34
|
Winkelman JD, Anderson CA, Suarez C, Kovar DR, Gardel ML. Evolutionarily diverse LIM domain-containing proteins bind stressed actin filaments through a conserved mechanism. Proc Natl Acad Sci U S A 2020; 117:25532-25542. [PMID: 32989126 PMCID: PMC7568268 DOI: 10.1073/pnas.2004656117] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The actin cytoskeleton assembles into diverse load-bearing networks, including stress fibers (SFs), muscle sarcomeres, and the cytokinetic ring to both generate and sense mechanical forces. The LIM (Lin11, Isl- 1, and Mec-3) domain family is functionally diverse, but most members can associate with the actin cytoskeleton with apparent force sensitivity. Zyxin rapidly localizes via its LIM domains to failing SFs in cells, known as strain sites, to initiate SF repair and maintain mechanical homeostasis. The mechanism by which these LIM domains associate with stress fiber strain sites (SFSS) is not known. Additionally, it is unknown how widespread strain sensing is within the LIM protein family. We identify that the LIM domain-containing region of 18 proteins from the Zyxin, Paxillin, Tes, and Enigma proteins accumulate to SFSS. Moreover, the LIM domain region from the fission yeast protein paxillin like 1 (Pxl1) also localizes to SFSS in mammalian cells, suggesting that the strain sensing mechanism is ancient and highly conserved. We then used sequence and domain analysis to demonstrate that tandem LIM domains contribute additively, for SFSS localization. Employing in vitro reconstitution, we show that the LIM domain-containing region from mammalian zyxin and fission yeast Pxl1 binds to mechanically stressed F-actin networks but does not associate with relaxed actin filaments. We propose that tandem LIM domains recognize an F-actin conformation that is rare in the relaxed state but is enriched in the presence of mechanical stress.
Collapse
Affiliation(s)
| | - Caitlin A Anderson
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Cristian Suarez
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - David R Kovar
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637;
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637
| | - Margaret L Gardel
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637;
- James Franck Institute, University of Chicago, Chicago, IL 60637
- Physics Department, University of Chicago, Chicago, IL 60637
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637
| |
Collapse
|
35
|
Huang X, Yang X, Sun C, Huang S, Cheng M, Han Y. Biophysical signal transduction in cancer cells: Understanding its role in cancer pathogenesis and treatment. Biochim Biophys Acta Rev Cancer 2020; 1874:188402. [PMID: 32771535 DOI: 10.1016/j.bbcan.2020.188402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Abstract
Signaling between cells can promote both the development and progression of cancer. It has been found that chemical and physical signals, together with extracellular factors, can influence cancer progression. In this review, we focus on the physical microenvironment of cancer cells and examine the action of mechanical, electromagnetic, thermal, and acoustic signals on cancer cells, which may provide new directions for cancer research and treatment.
Collapse
Affiliation(s)
- XiaoLei Huang
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - XiaoXu Yang
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Chenchen Sun
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - ShuXia Huang
- Department of Psychology, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Min Cheng
- Department of Physiology, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Yangyang Han
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong 261053, PR China.
| |
Collapse
|
36
|
Todorovski V, Fox AH, Choi YS. Matrix stiffness-sensitive long noncoding RNA NEAT1 seeded paraspeckles in cancer cells. Mol Biol Cell 2020; 31:1654-1662. [PMID: 32293985 PMCID: PMC7521846 DOI: 10.1091/mbc.e20-02-0097] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 12/15/2022] Open
Abstract
Cancer progression is influenced by changes in the tumor microenvironment, such as the stiffening of the extracellular matrix. Yet our understanding of how cancer cells sense and convert mechanical stimuli into biochemical signals and physiological responses is still limited. The long noncoding RNA nuclear paraspeckle assembly transcript 1 (NEAT1), which forms the backbone of subnuclear "paraspeckle" bodies, has been identified as a key genetic regulator in numerous cancers. Here, we investigated whether paraspeckles, as defined by NEAT1 localization, are mechanosensitive. Using tunable polyacrylamide hydrogels of extreme stiffnesses, we measured paraspeckle parameters in several cancer cell lines and observed an increase in paraspeckles in cells cultured on soft (3 kPa) hydrogels compared with stiffer (40 kPa) hydrogels. This response to soft substrate is erased when cells are first conditioned on stiff substrate, and then transferred onto soft hydrogels, suggestive of mechanomemory upstream of paraspeckle regulation. We also examined some well-characterized mechanosensitive markers, but found that lamin A expression, as well as YAP and MRTF-A nuclear translocation did not show consistent trends between stiffnesses, despite all cell types having increased migration, nuclear, and cell area on stiffer hydrogels. We thus propose that paraspeckles may prove of use as mechanosensors in cancer mechanobiology.
Collapse
Affiliation(s)
- Vanja Todorovski
- School of Human Sciences, The University of Western Australia, Crawley 6009, Australia
| | - Archa H. Fox
- School of Human Sciences, The University of Western Australia, Crawley 6009, Australia
- School of Molecular Sciences, The University of Western Australia, Crawley 6009, Australia
| | - Yu Suk Choi
- School of Human Sciences, The University of Western Australia, Crawley 6009, Australia
| |
Collapse
|
37
|
Nakazawa N, Kengaku M. Mechanical Regulation of Nuclear Translocation in Migratory Neurons. Front Cell Dev Biol 2020; 8:150. [PMID: 32226788 PMCID: PMC7080992 DOI: 10.3389/fcell.2020.00150] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
Neuronal migration is a critical step during the formation of functional neural circuits in the brain. Newborn neurons need to move across long distances from the germinal zone to their individual sites of function; during their migration, they must often squeeze their large, stiff nuclei, against strong mechanical stresses, through narrow spaces in developing brain tissue. Recent studies have clarified how actomyosin and microtubule motors generate mechanical forces in specific subcellular compartments and synergistically drive nuclear translocation in neurons. On the other hand, the mechanical properties of the surrounding tissues also contribute to their function as an adhesive support for cytoskeletal force transmission, while they also serve as a physical barrier to nuclear translocation. In this review, we discuss recent studies on nuclear migration in developing neurons, from both cell and mechanobiological viewpoints.
Collapse
Affiliation(s)
- Naotaka Nakazawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study, Kyoto University, Kyoto, Japan
| | - Mineko Kengaku
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study, Kyoto University, Kyoto, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
38
|
Ward M, Iskratsch T. Mix and (mis-)match - The mechanosensing machinery in the changing environment of the developing, healthy adult and diseased heart. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118436. [PMID: 30742931 PMCID: PMC7042712 DOI: 10.1016/j.bbamcr.2019.01.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/07/2019] [Accepted: 01/29/2019] [Indexed: 01/01/2023]
Abstract
The composition and the stiffness of cardiac microenvironment change during development and/or in heart disease. Cardiomyocytes (CMs) and their progenitors sense these changes, which decides over the cell fate and can trigger CM (progenitor) proliferation, differentiation, de-differentiation or death. The field of mechanobiology has seen a constant increase in output that also includes a wealth of new studies specific to cardiac or cardiomyocyte mechanosensing. As a result, mechanosensing and transduction in the heart is increasingly being recognised as a main driver of regulating the heart formation and function. Recent work has for instance focused on measuring the molecular, physical and mechanical changes of the cellular environment - as well as intracellular contributors to the passive stiffness of the heart. On the other hand, a variety of new studies shed light into the molecular machinery that allow the cardiomyocytes to sense these properties. Here we want to discuss the recent work on this topic, but also specifically focus on how the different components are regulated at various stages during development, in health or disease in order to highlight changes that might contribute to disease progression and heart failure.
Collapse
Key Words
- cm, cardiomyocytes
- hcm, hypertrophic cardiomyopathy
- dcm, dilated cardiomyopathy
- icm, idiopathic cardiomyopathy
- myh, myosin heavy chain
- tnnt, troponin t
- tnni, troponin i
- afm, atomic force microscope
- mre, magnetic resonance elastography
- swe, ultrasound cardiac shear-wave elastography
- lv, left ventricle
- lox, lysyl oxidase
- loxl, lysyl oxidase like protein
- lh, lysyl hydroxylase
- lys, lysin
- lccs, lysald-derived collagen crosslinks
- hlccs, hylald-derived collagen crosslinks
- pka, protein kinase a
- pkc, protein kinase c
- vash1, vasohibin-1
- svbp, small vasohibin binding protein
- tcp, tubulin carboxypeptidase
- ttl, tubulin tyrosine ligase
- mrtf, myocardin-related transcription factor
- gap, gtpase activating protein
- gef, guanine nucleotide exchange factor
Collapse
Affiliation(s)
- Matthew Ward
- Division of Bioengineering, School of Engineering and Materials Science & Institute for Bioengineering, Queen Mary University of London, United Kingdom
| | - Thomas Iskratsch
- Division of Bioengineering, School of Engineering and Materials Science & Institute for Bioengineering, Queen Mary University of London, United Kingdom.
| |
Collapse
|
39
|
Yang B, Wolfenson H, Chung VY, Nakazawa N, Liu S, Hu J, Huang RYJ, Sheetz MP. Stopping transformed cancer cell growth by rigidity sensing. NATURE MATERIALS 2020; 19:239-250. [PMID: 31659296 PMCID: PMC7477912 DOI: 10.1038/s41563-019-0507-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 09/11/2019] [Indexed: 05/16/2023]
Abstract
A common feature of cancer cells is the alteration of kinases and biochemical signalling pathways enabling transformed growth on soft matrices, whereas cytoskeletal protein alterations are thought to be a secondary issue. However, we report here that cancer cells from different tissues can be toggled between transformed and rigidity-dependent growth states by the absence or presence of mechanosensory modules, respectively. In various cancer lines from different tissues, cells had over tenfold fewer rigidity-sensing contractions compared with normal cells from the same tissues. Restoring normal levels of cytoskeletal proteins, including tropomyosins, restored rigidity sensing and rigidity-dependent growth. Further depletion of other rigidity sensor proteins, including myosin IIA, restored transformed growth and blocked sensing. In addition, restoration of rigidity sensing to cancer cells inhibited tumour formation and changed expression patterns. Thus, the depletion of rigidity-sensing modules through alterations in cytoskeletal protein levels enables cancer cell growth on soft surfaces, which is an enabling factor for cancer progression.
Collapse
Affiliation(s)
- Bo Yang
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Haguy Wolfenson
- Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel of Technology, Haifa, Israel
| | - Vin Yee Chung
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Naotaka Nakazawa
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan
| | - Shuaimin Liu
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Junqiang Hu
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Ruby Yun-Ju Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Michael P Sheetz
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore.
- Department of Biological Sciences, Columbia University, New York, NY, USA.
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
40
|
Dou J, Mao S, Li H, Lin JM. Combination Stiffness Gradient with Chemical Stimulation Directs Glioma Cell Migration on a Microfluidic Chip. Anal Chem 2019; 92:892-898. [DOI: 10.1021/acs.analchem.9b03681] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jinxin Dou
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Sifeng Mao
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Haifang Li
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
41
|
McColloch A, Rabiei M, Rabbani P, Bowling A, Cho M. Correlation between Nuclear Morphology and Adipogenic Differentiation: Application of a Combined Experimental and Computational Modeling Approach. Sci Rep 2019; 9:16381. [PMID: 31705037 PMCID: PMC6842088 DOI: 10.1038/s41598-019-52926-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/22/2019] [Indexed: 12/18/2022] Open
Abstract
Stem cells undergo drastic morphological alterations during differentiation. While extensive studies have been performed to examine the cytoskeletal remodeling, there is a growing interest to determine the morphological, structural and functional changes of the nucleus. The current study is therefore aimed at quantifying the extent of remodeling of the nuclear morphology of human mesenchymal stem cells during biochemically-induced adipogenic differentiation. Results show the size of nuclei decreased exponentially over time as the lipid accumulation is up-regulated. Increases in the lipid accumulation appear to lag the nuclear reorganization, suggesting the nuclear deformation is a prerequisite to adipocyte maturation. Furthermore, the lamin A/C expression was increased and redistributed to the nuclear periphery along with a subsequent increase in the nuclear aspect ratio. To further assess the role of the nucleus, a nuclear morphology with a high aspect ratio was achieved using microcontact-printed substrate. The cells with an elongated nuclear shape did not efficiently undergo adipogenesis, suggesting the cellular and nuclear processes associated with stem cell differentiation at the early stage of adipogenesis cause a change in the nuclear morphology and cannot be abrogated by the morphological cues. In addition, a novel computational biomechanical model was generated to simulate the nuclear shape change during differentiation and predict the forces acting upon the nucleus. This effort led to the development of computational scaling approach to simulate the experimentally observed adipogenic differentiation processes over 15 days in less than 1.5 hours.
Collapse
Affiliation(s)
- Andrew McColloch
- University of Texas at Arlington, Department of Biomedical Engineering, Arlington, 76010, USA
| | - Manoochehr Rabiei
- University of Texas at Arlington, Department of Mechanical and Aerospace Engineering, Arlington, TX, 76010, USA
| | - Parisa Rabbani
- University of Texas at Arlington, Department of Biomedical Engineering, Arlington, 76010, USA
| | - Alan Bowling
- University of Texas at Arlington, Department of Mechanical and Aerospace Engineering, Arlington, TX, 76010, USA
| | - Michael Cho
- University of Texas at Arlington, Department of Biomedical Engineering, Arlington, 76010, USA.
| |
Collapse
|
42
|
FHL2 mediates podocyte Rac1 activation and foot process effacement in hypertensive nephropathy. Sci Rep 2019; 9:6693. [PMID: 31040292 PMCID: PMC6491468 DOI: 10.1038/s41598-019-42328-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 03/06/2019] [Indexed: 01/04/2023] Open
Abstract
RAAS inhibition has been the standard treatment for CKD for years because it can reduce proteinuria and hence retard renal function decline, but the proteinuria reduction effect is still insufficient in many patients. Podocyte foot process and slit diaphragm are the final barrier to prevent serum proteins leak into urine, and podocyte foot process effacement is the common pathway of all proteinruic diseases. Cell structure are regulated by three evolutionarily conserved Rho GTPases, notably, Rac1 activation is sufficient and necessary for podocyte foot process effacement, however, Rac1 inhibition is not an option for kidney disease treatment because of its systemic side effects. Four-and-a-half LIM domains protein 2 (FHL2) is highly expressed in podocytes and has been implicated in regulating diverse biological functions. Here, we used micro-dissected human kidney samples, in vitro podocyte culture experiments, and a hypertension animal model to determine the possible role of FHL2 in hypertensive nephropathy. FHL2 was abundantly upregulated in hypertensive human glomeruli and animal kidney samples. Genetic deletion of the FHL2 did not alter normal renal structure or function but mitigated hypertension-induced podocyte foot process effacement and albuminuria. Mechanistically, angiotensin II-induced podocyte cytoskeleton reorganization via FAK-Rac1 axis, FHL2 binds with FAK and is an important mediator of Ang II induced Rac1 activation, thus, FHL2 inhibition can selectively block FAK-Rac1 axis in podocyte and prevent proteinuria. These results provide important insights into the mechanisms of podocyte foot process effacement and points out a promising strategy to treat kidney disease.
Collapse
|
43
|
Abstract
The 4-and-a-half LIM domain protein 2 (FHL2) is a multifunctional adaptor protein that can interact with cell surface receptors, cytosolic adaptor and structural proteins, kinases, and nuclear transcription factors. It is involved in numerous functional activities, including the epithelial-mesenchymal transition, cell proliferation, apoptosis, adhesion, migration, structural stability, and gene expression. Despite this, FHL2-knockout (KO) mice are viable and fertile with no obvious abnormalities, rather suggesting a high capacity for fine-tuning adjustment and functional redundancy of FHL2. Indeed, challenging FHL2-KO cells or mice provided numerous evidences for the great functional significance of FHL2. In recent years, several reviews have been published describing the high capacity of FHL2 to bind diverse proteins as well as the versatile functions of FHL2, emphasizing in particular its role in cardiovascular diseases and carcinogenesis. Here, we view the function of FHL2 from a different perspective. We summarize the published data demonstrating the impact of FHL2 on wound healing and inflammation. FHL2 seems to be involved in numerous steps of these extremely complex and multidirectional but tightly regulated tissue remodeling processes, supporting tissue repair and coordinating inflammation. Deficiency of FHL2 not only slows down ongoing wound healing but also often turns it into a chronic condition.-Wixler, V. The role of FHL2 in wound healing and inflammation.
Collapse
Affiliation(s)
- Viktor Wixler
- Centre for Molecular Biology of Inflammation, Institute of Molecular Virology, Westfaelische Wilhelms University Muenster, Muenster, Germany
| |
Collapse
|
44
|
Papalazarou V, Salmeron-Sanchez M, Machesky LM. Tissue engineering the cancer microenvironment-challenges and opportunities. Biophys Rev 2018; 10:1695-1711. [PMID: 30406572 PMCID: PMC6297082 DOI: 10.1007/s12551-018-0466-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/15/2018] [Indexed: 12/25/2022] Open
Abstract
Mechanosensing is increasingly recognised as important for tumour progression. Tumours become stiff and the forces that normally balance in the healthy organism break down and become imbalanced, leading to increases in migration, invasion and metastatic dissemination. Here, we review recent advances in our understanding of how extracellular matrix properties, such as stiffness, viscoelasticity and architecture control cell behaviour. In addition, we discuss how the tumour microenvironment can be modelled in vitro, capturing these mechanical aspects, to better understand and develop therapies against tumour spread. We argue that by gaining a better understanding of the microenvironment and the mechanical forces that govern tumour dynamics, we can make advances in combatting cancer dormancy, recurrence and metastasis.
Collapse
Affiliation(s)
- Vassilis Papalazarou
- CRUK Beatson Institute for Cancer Research and Institute of cancer Sciences, University of Glasgow, Garscube Campus, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
- The Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | - Laura M Machesky
- CRUK Beatson Institute for Cancer Research and Institute of cancer Sciences, University of Glasgow, Garscube Campus, Switchback Road, Bearsden, Glasgow, G61 1BD, UK.
| |
Collapse
|
45
|
Abstract
It is increasingly clear that mechanotransduction pathways play important roles in regulating fundamental cellular functions. Of the basic mechanical functions, the determination of cellular morphology is critical. Cells typically use many mechanosensitive steps and different cell states to achieve a polarized shape through repeated testing of the microenvironment. Indeed, morphology is determined by the microenvironment through periodic activation of motility, mechanotesting, and mechanoresponse functions by hormones, internal clocks, and receptor tyrosine kinases. Patterned substrates and controlled environments with defined rigidities limit the range of cell behavior and influence cell state decisions and are thus very useful for studying these steps. The recently defined rigidity sensing process provides a good example of how cells repeatedly test their microenvironment and is also linked to cancer. In general, aberrant extracellular matrix mechanosensing is associated with numerous conditions, including cardiovascular disease, aging, and fibrosis, that correlate with changes in tissue morphology and matrix composition. Hence, detailed descriptions of the steps involved in sensing and responding to the microenvironment are needed to better understand both the mechanisms of tissue homeostasis and the pathomechanisms of human disease.
Collapse
Affiliation(s)
- Haguy Wolfenson
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel 31096;
| | - Bo Yang
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore;
| | - Michael P Sheetz
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; .,Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
46
|
Lorda‐Diez C, Montero J, Sanchez‐Fernandez C, Garcia‐Porrero J, Chimal‐Monroy J, Hurle J. Four and a half domain 2 (FHL2) scaffolding protein is a marker of connective tissues of developing digits and regulates fibrogenic differentiation of limb mesodermal progenitors. J Tissue Eng Regen Med 2018; 12:e2062-e2072. [DOI: 10.1002/term.2637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 11/13/2017] [Accepted: 01/02/2018] [Indexed: 01/22/2023]
Affiliation(s)
- C.I. Lorda‐Diez
- Departamento de Anatomía y Biología Celular and IDIVAL, Facultad de MedicinaUniversidad de Cantabria Santander Spain
| | - J.A. Montero
- Departamento de Anatomía y Biología Celular and IDIVAL, Facultad de MedicinaUniversidad de Cantabria Santander Spain
| | - C. Sanchez‐Fernandez
- Departamento de Anatomía y Biología Celular and IDIVAL, Facultad de MedicinaUniversidad de Cantabria Santander Spain
| | - J.A. Garcia‐Porrero
- Departamento de Anatomía y Biología Celular and IDIVAL, Facultad de MedicinaUniversidad de Cantabria Santander Spain
| | - J. Chimal‐Monroy
- Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de México, Ciudad Universitaria Ciudad de Mexico Mexico
| | - J.M. Hurle
- Departamento de Anatomía y Biología Celular and IDIVAL, Facultad de MedicinaUniversidad de Cantabria Santander Spain
| |
Collapse
|
47
|
Gauthier NC, Roca-Cusachs P. Mechanosensing at integrin-mediated cell–matrix adhesions: from molecular to integrated mechanisms. Curr Opin Cell Biol 2018; 50:20-26. [DOI: 10.1016/j.ceb.2017.12.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 12/22/2017] [Indexed: 12/21/2022]
|
48
|
Chromosome Intermingling: Mechanical Hotspots for Genome Regulation. Trends Cell Biol 2017; 27:810-819. [DOI: 10.1016/j.tcb.2017.06.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/20/2017] [Accepted: 06/20/2017] [Indexed: 11/20/2022]
|
49
|
Uhler C, Shivashankar GV. Regulation of genome organization and gene expression by nuclear mechanotransduction. Nat Rev Mol Cell Biol 2017; 18:717-727. [PMID: 29044247 DOI: 10.1038/nrm.2017.101] [Citation(s) in RCA: 258] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It is well established that cells sense chemical signals from their local microenvironment and transduce them to the nucleus to regulate gene expression programmes. Although a number of experiments have shown that mechanical cues can also modulate gene expression, the underlying mechanisms are far from clear. Nevertheless, we are now beginning to understand how mechanical cues are transduced to the nucleus and how they influence nuclear mechanics, genome organization and transcription. In particular, recent progress in super-resolution imaging, in genome-wide application of RNA sequencing, chromatin immunoprecipitation and chromosome conformation capture and in theoretical modelling of 3D genome organization enables the exploration of the relationship between cell mechanics, 3D chromatin configurations and transcription, thereby shedding new light on how mechanical forces regulate gene expression.
Collapse
Affiliation(s)
- Caroline Uhler
- Department of Electrical Engineering and Computer Science, Laboratory of Information and Decision Systems, Institute for Data, Systems and Society, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA
| | - G V Shivashankar
- Mechanobiology Institute, National University of Singapore, 119077 Singapore.,Italian Foundation for Cancer Research (FIRC) Institute of Molecular Oncology (IFOM), Milan 20139, Italy
| |
Collapse
|
50
|
Randazzo D, Pierantozzi E, Rossi D, Sorrentino V. The potential of obscurin as a therapeutic target in muscle disorders. Expert Opin Ther Targets 2017; 21:897-910. [DOI: 10.1080/14728222.2017.1361931] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Davide Randazzo
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda
| | - Enrico Pierantozzi
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Daniela Rossi
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Vincenzo Sorrentino
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|