1
|
Sampietro M, Cellani M, Scielzo C. B cell mechanobiology in health and disease: emerging techniques and insights into therapeutic responses. FEBS Lett 2025. [PMID: 40387441 DOI: 10.1002/1873-3468.70071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/15/2025] [Accepted: 04/23/2025] [Indexed: 05/20/2025]
Abstract
Cells sense physical cues from their environment and convert them into biochemical responses through mechanotransduction. Unlike solid tumours, the role of such forces in haematological cancers is underexplored. In this context, immune cells experience dynamic mechanical stimuli as they migrate, extravasate and home to specific tissues. Understanding how these forces shape B-cell function and malignancy represents a groundbreaking area of research. This review examines the key mechanosensory pathways and molecules involved in lymphocyte mechanotransduction, beginning with mechanosensory proteins at the plasma membrane, followed by intracellular signal propagation through the cytoskeleton, eventually highlighting the nucleus as a 'signal actuator'. Subsequently, we cover some measurement approaches and advanced systems to investigate tumour biomechanics, highlighting their application in the context of B cells. Finally, we focus on the implications of mechanobiology in leukaemia, identifying molecules involved in B-cell malignancies that could serve as potential 'mechano-targets' for personalised therapies. This review emphasises the need to understand how lymphocytes generate, sense and respond to mechanical stimuli, which could open avenues for future biomedical innovations. Impact statement Our review is particularly valuable in highlighting the underexplored role of mechanobiology in B cell function and malignancies, while also discussing emerging techniques that can advance this research area. It bridges mechanotransduction, immunology, and cancer biology in a way that will be of interest to researchers across these three main fields.
Collapse
Affiliation(s)
- Marta Sampietro
- Unit of Malignant B Cells biology and 3D Modelling, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Marco Cellani
- Unit of Malignant B Cells biology and 3D Modelling, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Cristina Scielzo
- Unit of Malignant B Cells biology and 3D Modelling, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
2
|
Steinbeck L, Paul R, Litke J, Karkoszka I, Wiese GP, Linkhorst J, De Laporte L, Wessling M. Hierarchically Structured and Tunable Hydrogel Patches: Design, Characterization, and Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407311. [PMID: 39568251 PMCID: PMC11753498 DOI: 10.1002/smll.202407311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/25/2024] [Indexed: 11/22/2024]
Abstract
Recent studies show the importance of hydrogel geometry for various applications, such as encoding, micromachines, or tissue engineering. However, fabricating hydrogel structures with micrometer-sized features, advanced geometry, and precise control of porosity remains challenging. This work presents hierarchically structured hydrogels, so-called hydrogel patches, with internally deviating regions on a micron-scale. These regions are defined in a one-step, high-throughput fabrication process via stop-flow lithography. Between the specified projection pattern during fabrication, an interconnecting lower crosslinked and more porous hydrogel network forms, resulting in at least two degrees of crosslinking within the patches. A detailed investigation of patch formation is performed for two material systems and pattern variations, revealing basic principles for reliable patch formation. In addition to the two defined crosslinked regions, further regions are implemented in the patches by adapting the pattern accordingly. The variations in pattern geometry impact the mechanical characteristics of the hydrogel patches, which display pattern-dependent compression behavior due to predefined compression points. Cell culture on patches, as one possible application, reveals that the patch pattern determines the cell area of L929 mouse fibroblasts. These results introduce hierarchically structured hydrogel patches as a promising and versatile platform system with high customizability.
Collapse
Affiliation(s)
- Lea Steinbeck
- Chemical Process Engineering AVT.CVTRWTH Aachen UniversityForckenbeckstraße 5152074AachenGermany
| | - Richard Paul
- Chemical Process Engineering AVT.CVTRWTH Aachen UniversityForckenbeckstraße 5152074AachenGermany
- DWI – Leibniz‐Institute for Interactive Materials e. V.Forckenbeckstraße 5052074AachenGermany
| | - Julia Litke
- Chemical Process Engineering AVT.CVTRWTH Aachen UniversityForckenbeckstraße 5152074AachenGermany
| | - Isabel Karkoszka
- Chemical Process Engineering AVT.CVTRWTH Aachen UniversityForckenbeckstraße 5152074AachenGermany
| | - G. Philip Wiese
- Chemical Process Engineering AVT.CVTRWTH Aachen UniversityForckenbeckstraße 5152074AachenGermany
| | - John Linkhorst
- Chemical Process Engineering AVT.CVTRWTH Aachen UniversityForckenbeckstraße 5152074AachenGermany
- Present address:
Process Engineering of Electrochemical SystemsTechnical University of DarmstadtOtto‐Berndt‐Str. 264287DarmstadtGermany
| | - Laura De Laporte
- DWI – Leibniz‐Institute for Interactive Materials e. V.Forckenbeckstraße 5052074AachenGermany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 1‐252074AachenGermany
- Center for Biohybrid Medical Systems (CBMS)Advanced Materials for Biomedicine (AMB)Institute of Applied Medical Engineering (AME)University Hospital RWTH AachenForckenbeckstraße 5552074AachenGermany
| | - Matthias Wessling
- Chemical Process Engineering AVT.CVTRWTH Aachen UniversityForckenbeckstraße 5152074AachenGermany
- DWI – Leibniz‐Institute for Interactive Materials e. V.Forckenbeckstraße 5052074AachenGermany
| |
Collapse
|
3
|
İyisan N, Hausdörfer O, Wang C, Hiendlmeier L, Harder P, Wolfrum B, Özkale B. Mechanoactivation of Single Stem Cells in Microgels Using a 3D-Printed Stimulation Device. SMALL METHODS 2024; 8:e2400272. [PMID: 39011729 PMCID: PMC11672187 DOI: 10.1002/smtd.202400272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/03/2024] [Indexed: 07/17/2024]
Abstract
In this study, the novel 3D-printed pressure chamber for encapsulated single-cell stimulation (3D-PRESS) platform is introduced for the mechanical stimulation of single stem cells in 3D microgels. The custom-designed 3D-PRESS, allows precise pressure application up to 400 kPa at the single-cell level. Microfluidics is employed to encapsulate single mesenchymal stem cells within ionically cross-linked alginate microgels with cell adhesion RGD peptides. Rigorous testing affirms the leak-proof performance of the 3D-PRESS device up to 400 kPa, which is fully biocompatible. 3D-PRESS is implemented on mesenchymal stem cells for mechanotransduction studies, by specifically targeting intracellular calcium signaling and the nuclear translocation of a mechanically sensitive transcription factor. Applying 200 kPa pressure on individually encapsulated stem cells reveals heightened calcium signaling in 3D microgels compared to conventional 2D culture. Similarly, Yes-associated protein (YAP) translocation into the nucleus occurs at 200 kPa in 3D microgels with cell-binding RGD peptides unveiling the involvement of integrin-mediated mechanotransduction in singly encapsulated stem cells in 3D microgels. Combining live-cell imaging with precise mechanical control, the 3D-PRESS platform emerges as a versatile tool for exploring cellular responses to pressure stimuli, applicable to various cell types, providing novel insights into single-cell mechanobiology.
Collapse
Affiliation(s)
- Nergishan İyisan
- Microrobotic Bioengineering Lab (MRBL)School of Computation, Information, and TechnologyDepartment of Electrical EngineeringTechnical University of Munich (TUM)Hans‐Piloty‐Straße 185748GarchingGermany
- Munich Institute of Robotics and Machine IntelligenceTechnical University of MunichGeorg‐Brauchle‐Ring 6080992MünchenGermany
- Munich Institute of Biomedical EngineeringTechnical University of MunichBoltzmannstraße 1185748GarchingGermany
| | - Oliver Hausdörfer
- Microrobotic Bioengineering Lab (MRBL)School of Computation, Information, and TechnologyDepartment of Electrical EngineeringTechnical University of Munich (TUM)Hans‐Piloty‐Straße 185748GarchingGermany
| | - Chen Wang
- Microrobotic Bioengineering Lab (MRBL)School of Computation, Information, and TechnologyDepartment of Electrical EngineeringTechnical University of Munich (TUM)Hans‐Piloty‐Straße 185748GarchingGermany
- Munich Institute of Robotics and Machine IntelligenceTechnical University of MunichGeorg‐Brauchle‐Ring 6080992MünchenGermany
- Munich Institute of Biomedical EngineeringTechnical University of MunichBoltzmannstraße 1185748GarchingGermany
| | - Lukas Hiendlmeier
- Munich Institute of Biomedical EngineeringTechnical University of MunichBoltzmannstraße 1185748GarchingGermany
- Neuroelectronics, School of Computation, Information, and TechnologyDepartment of Electrical EngineeringDepartment of Electrical EngineeringTechnical University of Munich (TUM)85748GarchingGermany
| | - Philipp Harder
- Microrobotic Bioengineering Lab (MRBL)School of Computation, Information, and TechnologyDepartment of Electrical EngineeringTechnical University of Munich (TUM)Hans‐Piloty‐Straße 185748GarchingGermany
- Munich Institute of Robotics and Machine IntelligenceTechnical University of MunichGeorg‐Brauchle‐Ring 6080992MünchenGermany
- Munich Institute of Biomedical EngineeringTechnical University of MunichBoltzmannstraße 1185748GarchingGermany
| | - Bernhard Wolfrum
- Munich Institute of Biomedical EngineeringTechnical University of MunichBoltzmannstraße 1185748GarchingGermany
- Neuroelectronics, School of Computation, Information, and TechnologyDepartment of Electrical EngineeringDepartment of Electrical EngineeringTechnical University of Munich (TUM)85748GarchingGermany
| | - Berna Özkale
- Microrobotic Bioengineering Lab (MRBL)School of Computation, Information, and TechnologyDepartment of Electrical EngineeringTechnical University of Munich (TUM)Hans‐Piloty‐Straße 185748GarchingGermany
- Munich Institute of Robotics and Machine IntelligenceTechnical University of MunichGeorg‐Brauchle‐Ring 6080992MünchenGermany
- Munich Institute of Biomedical EngineeringTechnical University of MunichBoltzmannstraße 1185748GarchingGermany
| |
Collapse
|
4
|
Yang H, Yang J, Zheng X, Chen T, Zhang R, Chen R, Cao T, Zeng F, Liu Q. The Hippo Pathway in Breast Cancer: The Extracellular Matrix and Hypoxia. Int J Mol Sci 2024; 25:12868. [PMID: 39684583 DOI: 10.3390/ijms252312868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
As one of the most prevalent malignant neoplasms among women globally, the optimization of therapeutic strategies for breast cancer has perpetually been a research hotspot. The tumor microenvironment (TME) is of paramount importance in the progression of breast cancer, among which the extracellular matrix (ECM) and hypoxia are two crucial factors. The alterations of these two factors are predominantly regulated by the Hippo signaling pathway, which promotes tumor invasiveness, metastasis, therapeutic resistance, and susceptibility. Hence, this review focuses on the Hippo pathway in breast cancer, specifically, how the ECM and hypoxia impact the biological traits and therapeutic responses of breast cancer. Moreover, the role of miRNAs in modulating ECM constituents was investigated, and hsa-miR-33b-3p was identified as a potential therapeutic target for breast cancer. The review provides theoretical foundations and potential therapeutic direction for clinical treatment strategies in breast cancer, with the aspiration of attaining more precise and effective treatment alternatives in the future.
Collapse
Affiliation(s)
- Hanyu Yang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Jiaxin Yang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xiang Zheng
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Tianshun Chen
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Ranqi Zhang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Rui Chen
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Tingting Cao
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Fancai Zeng
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Qiuyu Liu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
- Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| |
Collapse
|
5
|
Eliahoo P, Setayesh H, Hoffman T, Wu Y, Li S, Treweek JB. Viscoelasticity in 3D Cell Culture and Regenerative Medicine: Measurement Techniques and Biological Relevance. ACS MATERIALS AU 2024; 4:354-384. [PMID: 39006396 PMCID: PMC11240420 DOI: 10.1021/acsmaterialsau.3c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 07/16/2024]
Abstract
The field of mechanobiology is gaining prominence due to recent findings that show cells sense and respond to the mechanical properties of their environment through a process called mechanotransduction. The mechanical properties of cells, cell organelles, and the extracellular matrix are understood to be viscoelastic. Various technologies have been researched and developed for measuring the viscoelasticity of biological materials, which may provide insight into both the cellular mechanisms and the biological functions of mechanotransduction. Here, we explain the concept of viscoelasticity and introduce the major techniques that have been used to measure the viscoelasticity of various soft materials in different length- and timescale frames. The topology of the material undergoing testing, the geometry of the probe, the magnitude of the exerted stress, and the resulting deformation should be carefully considered to choose a proper technique for each application. Lastly, we discuss several applications of viscoelasticity in 3D cell culture and tissue models for regenerative medicine, including organoids, organ-on-a-chip systems, engineered tissue constructs, and tunable viscoelastic hydrogels for 3D bioprinting and cell-based therapies.
Collapse
Affiliation(s)
- Payam Eliahoo
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089 United States
| | - Hesam Setayesh
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089 United States
| | - Tyler Hoffman
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095 United States
| | - Yifan Wu
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095 United States
| | - Song Li
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095 United States
| | - Jennifer B Treweek
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089 United States
| |
Collapse
|
6
|
Las Heras K, Garcia-Orue I, Rancan F, Igartua M, Santos-Vizcaino E, Hernandez RM. Modulating the immune system towards a functional chronic wound healing: A biomaterials and Nanomedicine perspective. Adv Drug Deliv Rev 2024; 210:115342. [PMID: 38797316 DOI: 10.1016/j.addr.2024.115342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
Chronic non-healing wounds persist as a substantial burden for healthcare systems, influenced by factors such as aging, diabetes, and obesity. In contrast to the traditionally pro-regenerative emphasis of therapies, the recognition of the immune system integral role in wound healing has significantly grown, instigating an approach shift towards immunological processes. Thus, this review explores the wound healing process, highlighting the engagement of the immune system, and delving into the behaviors of innate and adaptive immune cells in chronic wound scenarios. Moreover, the article investigates biomaterial-based strategies for the modulation of the immune system, elucidating how the adjustment of their physicochemical properties or their synergistic combination with other agents such as drugs, proteins or mesenchymal stromal cells can effectively modulate the behaviors of different immune cells. Finally this review explores various strategies based on synthetic and biological nanostructures, including extracellular vesicles, to finely tune the immune system as natural immunomodulators or therapeutic nanocarriers with promising biophysical properties.
Collapse
Affiliation(s)
- Kevin Las Heras
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Itxaso Garcia-Orue
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, Madrid, Spain
| | - Fiorenza Rancan
- Department of Dermatology, Venereology und Allergology,Clinical Research Center for Hair and Skin Science, Charité - Universitätsmedizin Berlin
| | - Manoli Igartua
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, Madrid, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, Madrid, Spain.
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
7
|
Filipe EC, Velayuthar S, Philp A, Nobis M, Latham SL, Parker AL, Murphy KJ, Wyllie K, Major GS, Contreras O, Mok ETY, Enriquez RF, McGowan S, Feher K, Quek L, Hancock SE, Yam M, Tran E, Setargew YFI, Skhinas JN, Chitty JL, Phimmachanh M, Han JZR, Cadell AL, Papanicolaou M, Mahmodi H, Kiedik B, Junankar S, Ross SE, Lam N, Coulson R, Yang J, Zaratzian A, Da Silva AM, Tayao M, Chin IL, Cazet A, Kansara M, Segara D, Parker A, Hoy AJ, Harvey RP, Bogdanovic O, Timpson P, Croucher DR, Lim E, Swarbrick A, Holst J, Turner N, Choi YS, Kabakova IV, Philp A, Cox TR. Tumor Biomechanics Alters Metastatic Dissemination of Triple Negative Breast Cancer via Rewiring Fatty Acid Metabolism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307963. [PMID: 38602451 PMCID: PMC11186052 DOI: 10.1002/advs.202307963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/11/2024] [Indexed: 04/12/2024]
Abstract
In recent decades, the role of tumor biomechanics on cancer cell behavior at the primary site has been increasingly appreciated. However, the effect of primary tumor biomechanics on the latter stages of the metastatic cascade, such as metastatic seeding of secondary sites and outgrowth remains underappreciated. This work sought to address this in the context of triple negative breast cancer (TNBC), a cancer type known to aggressively disseminate at all stages of disease progression. Using mechanically tuneable model systems, mimicking the range of stiffness's typically found within breast tumors, it is found that, contrary to expectations, cancer cells exposed to softer microenvironments are more able to colonize secondary tissues. It is shown that heightened cell survival is driven by enhanced metabolism of fatty acids within TNBC cells exposed to softer microenvironments. It is demonstrated that uncoupling cellular mechanosensing through integrin β1 blocking antibody effectively causes stiff primed TNBC cells to behave like their soft counterparts, both in vitro and in vivo. This work is the first to show that softer tumor microenvironments may be contributing to changes in disease outcome by imprinting on TNBC cells a greater metabolic flexibility and conferring discrete cell survival advantages.
Collapse
|
8
|
Peng X, Janićijević Ž, Lemm S, Hauser S, Knobel M, Pietzsch J, Bachmann M, Baraban L. Impact of Viscosity on Human Hepatoma Spheroids in Soft Core-Shell Microcapsules. Adv Healthc Mater 2024; 13:e2302609. [PMID: 38227977 PMCID: PMC11468952 DOI: 10.1002/adhm.202302609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/11/2023] [Indexed: 01/18/2024]
Abstract
The extracellular environment regulates the structures and functions of cells, from the molecular to the tissue level. However, the underlying mechanisms influencing the organization and adaptation of cancer in three-dimensional (3D) environments are not yet fully understood. In this study, the influence of the viscosity of the environment is investigated on the mechanical adaptability of human hepatoma cell (HepG2) spheroids in vitro, using 3D microcapsule reactors formed with droplet-based microfluidics. To mimic the environment with different mechanical properties, HepG2 cells are encapsulated in alginate core-shell reservoirs (i.e., microcapsules) with different core viscosities tuned by incorporating carboxymethylcellulose. The significant changes in cell and spheroid distribution, proliferation, and cytoskeleton are observed and quantified. Importantly, changes in the expression and distribution of F-actin and keratin 8 indicate the relation between spheroid stiffness and viscosity of the surrounding medium. The increase of F-actin levels in the viscous medium can indicate an enhanced ability of tumor cells to traverse dense tissue. These results demonstrate the ability of cancer cells to dynamically adapt to the changes in extracellular viscosity, which is an important physical cue regulating tumor development, and thus of relevance in cancer biology.
Collapse
Affiliation(s)
- Xuan Peng
- Helmholtz‐Zentrum Dresden‐RossendorfInstitute of Radiopharmaceutical Cancer Research01328DresdenGermany
- Faculty of Medicine and University Hospital Carl Gustav CarusTechnische Universität Dresden01307DresdenGermany
| | - Željko Janićijević
- Helmholtz‐Zentrum Dresden‐RossendorfInstitute of Radiopharmaceutical Cancer Research01328DresdenGermany
| | - Sandy Lemm
- Helmholtz‐Zentrum Dresden‐RossendorfInstitute of Radiopharmaceutical Cancer Research01328DresdenGermany
- Faculty of Chemistry and Food ChemistrySchool of SciencesTechnische Universität Dresden01062DresdenGermany
| | - Sandra Hauser
- Helmholtz‐Zentrum Dresden‐RossendorfInstitute of Radiopharmaceutical Cancer Research01328DresdenGermany
| | - Michael Knobel
- Helmholtz‐Zentrum Dresden‐RossendorfInstitute of Fluid Dynamics01328DresdenGermany
| | - Jens Pietzsch
- Helmholtz‐Zentrum Dresden‐RossendorfInstitute of Radiopharmaceutical Cancer Research01328DresdenGermany
- Faculty of Chemistry and Food ChemistrySchool of SciencesTechnische Universität Dresden01062DresdenGermany
| | - Michael Bachmann
- Helmholtz‐Zentrum Dresden‐RossendorfInstitute of Radiopharmaceutical Cancer Research01328DresdenGermany
- Faculty of Medicine and University Hospital Carl Gustav CarusTechnische Universität Dresden01307DresdenGermany
- National Center for Tumor Diseases (NCT)01307DresdenGermany
- German Cancer Research Center (DKFZ)69120HeidelbergGermany
- German Cancer Consortium (DKTK)01307DresdenGermany
| | - Larysa Baraban
- Helmholtz‐Zentrum Dresden‐RossendorfInstitute of Radiopharmaceutical Cancer Research01328DresdenGermany
| |
Collapse
|
9
|
Richbourg NR, Irakoze N, Kim H, Peyton SR. Outlook and opportunities for engineered environments of breast cancer dormancy. SCIENCE ADVANCES 2024; 10:eadl0165. [PMID: 38457510 PMCID: PMC10923521 DOI: 10.1126/sciadv.adl0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/01/2024] [Indexed: 03/10/2024]
Abstract
Dormant, disseminated breast cancer cells resist treatment and may relapse into malignant metastases after decades of quiescence. Identifying how and why these dormant breast cancer cells are triggered into outgrowth is a key unsolved step in treating latent, metastatic breast cancer. However, our understanding of breast cancer dormancy in vivo is limited by technical challenges and ethical concerns with triggering the activation of dormant breast cancer. In vitro models avoid many of these challenges by simulating breast cancer dormancy and activation in well-controlled, bench-top conditions, creating opportunities for fundamental insights into breast cancer biology that complement what can be achieved through animal and clinical studies. In this review, we address clinical and preclinical approaches to treating breast cancer dormancy, how precisely controlled artificial environments reveal key interactions that regulate breast cancer dormancy, and how future generations of biomaterials could answer further questions about breast cancer dormancy.
Collapse
Affiliation(s)
- Nathan R. Richbourg
- Department of Chemical Engineering, University of Massachusetts Amherst, MA 01003, USA
| | - Ninette Irakoze
- Department of Chemical Engineering, University of Massachusetts Amherst, MA 01003, USA
| | - Hyuna Kim
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, MA 01003, USA
| | - Shelly R. Peyton
- Department of Chemical Engineering, University of Massachusetts Amherst, MA 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, MA 01003, USA
- Department of Biomedical Engineering, University of Massachusetts Amherst Amherst, MA 01003, USA
| |
Collapse
|
10
|
Tissot FS, Gonzalez-Anton S, Lo Celso C. Intravital Microscopy to Study the Effect of Matrix Metalloproteinase Inhibition on Acute Myeloid Leukemia Cell Migration in the Bone Marrow. Methods Mol Biol 2024; 2747:211-227. [PMID: 38038943 DOI: 10.1007/978-1-0716-3589-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Hematopoiesis is the process through which all mature blood cells are formed and takes place in the bone marrow (BM). Acute myeloid leukemia (AML) is a blood cancer of the myeloid lineage. AML progression causes drastic remodeling of the BM microenvironment, making it no longer supportive of healthy hematopoiesis and leading to clinical cytopenia in patients. Understanding the mechanisms by which AML cells shape the BM to their benefit would lead to the development of new therapeutic strategies. While the role of extracellular matrix (ECM) in solid cancer has been extensively studied during decades, its role in the BM and in leukemia progression has only begun to be acknowledged. In this context, intravital microscopy (IVM) gives the unique insight of direct in vivo observation of AML cell behavior in their environment during disease progression and/or upon drug treatments. Here we describe our protocol for visualizing and analyzing MLL-AF9 AML cell dynamics upon systemic inhibition of matrix metalloproteinases (MMP), combining confocal and two-photon microscopy and focusing on cell migration.
Collapse
Affiliation(s)
- Floriane S Tissot
- Department of Life Sciences, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
| | - Sara Gonzalez-Anton
- Department of Life Sciences, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
| | - Cristina Lo Celso
- Department of Life Sciences, Imperial College London, London, UK.
- The Francis Crick Institute, London, UK.
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK.
| |
Collapse
|
11
|
Miari KE, Williams MTS. Stromal bone marrow fibroblasts and mesenchymal stem cells support acute myeloid leukaemia cells and promote therapy resistance. Br J Pharmacol 2024; 181:216-237. [PMID: 36609915 DOI: 10.1111/bph.16028] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 09/13/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023] Open
Abstract
The bone marrow (BM) is the primary site of adult haematopoiesis, where stromal elements (e.g. fibroblasts and mesenchymal stem cells [MSCs]) work in concert to support blood cell development. However, the establishment of an abnormal clone can lead to a blood malignancy, such as acute myeloid leukaemia (AML). Despite our increased understanding of the pathophysiology of the disease, patient survival remains suboptimal, mainly driven by the development of therapy resistance. In this review, we highlight the importance of bone marrow fibroblasts and MSCs in health and acute myeloid leukaemia and their impact on patient prognosis. We discuss how stromal elements reduce the killing effects of therapies via a combination of contact-dependent (e.g. integrins) and contact-independent (i.e. secreted factors) mechanisms, accompanied by the establishment of an immunosuppressive microenvironment. Importantly, we underline the challenges of therapeutically targeting the bone marrow stroma to improve acute myeloid leukaemia patient outcomes, due to the inherent heterogeneity of stromal cell populations. LINKED ARTICLES: This article is part of a themed issue on Cancer Microenvironment and Pharmacological Interventions. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.2/issuetoc.
Collapse
Affiliation(s)
- Katerina E Miari
- Charles Oakley Laboratories, Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Mark T S Williams
- Charles Oakley Laboratories, Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| |
Collapse
|
12
|
Wu J, Li X, Kong R, Wang J, Wang X. Analysis of biofilm expansion rate of Bacillus subtilis (MTC871) on agar substrates with different stiffness. Can J Microbiol 2023; 69:479-487. [PMID: 37379574 DOI: 10.1139/cjm-2022-0259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
The surface morphology of mature biofilms is heterogeneous and can be divided into concentric rings wrinkles (I), labyrinthine networks wrinkles (II), radial ridges wrinkles (III), and branches wrinkles (IV), according to surface wrinkle structure and distribution characteristics. Due to the wrinkle structures, channels are formed between the biofilm and substrate and transport nutrients, water, metabolic products, etc. We find that expansion rate variations of biofilms growing on substrates with high and low agar concentrations (1.5, 2.0, 2.5 wt.%) are not in the same phase. In the first 3 days' growth, the interaction stress between biofilm and each agar substrate increases, which makes the biofilm expansion rate decreases before wrinkle pattern IV (branches) comes up. After 3 days, in the later growth stage after wrinkle pattern IV appears, the biofilm has larger expansion rate growing on 2.0 wt.% agar concentration, which has the larger wrinkle distance in wrinkle pattern IV reducing energy consumption. Our study shows that the stiff substrate does not always inhibit the biofilm expansion, although it does in the earlier stage; after that, mature biofilms acquire larger expansion rate by adjusting the growth mode through the wrinkle evolution even in nutrient extremely depletion.
Collapse
Affiliation(s)
- Jin Wu
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xianyong Li
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Rui Kong
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiankun Wang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaoling Wang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
13
|
Buonvino S, Arciero I, Martinelli E, Seliktar D, Melino S. Modelling the disease: H 2S-sensitivity and drug-resistance of triple negative breast cancer cells can be modulated by embedding in isotropic micro-environment. Mater Today Bio 2023; 23:100862. [PMID: 38046276 PMCID: PMC10689286 DOI: 10.1016/j.mtbio.2023.100862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/26/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023] Open
Abstract
Three-dimensional (3D) cell culture systems provide more physiologically relevant information, representing more accurately the actual microenvironment where cells reside in tissues. However, the differences between the tissue culture plate (TCP) and 3D culture systems in terms of tumour cell growth, proliferation, migration, differentiation and response to the treatment have not been fully elucidated. Tumoroid microspheres containing the MDA-MB 231 breast cancer cell line were prepared using either tunable PEG-fibrinogen (PFs) or tunable PEG-silk fibroin (PSFs) hydrogels, respectively named MDAPFs and MDAPSFs. The cancer cells in the tumoroids showed changes both in globular morphology and at the protein expression level. A decrease of both Histone H3 acetylation and cyclin D1 expression in all 3D systems, compared to the 2D cell culture, was detected in parallel to changes of the matrix stiffness. The effects of a glutathionylated garlic extract (GSGa), a slow H2S-releasing donor, were investigated on both tumoroid systems. A pro-apoptotic effect of GSGa on tumour cell growth in 2D culture was observed as opposed to a pro-proliferative effect apparent in both MDAPFs and MDAPSFs. A dedicated ad hoc 3D cell migration chip was designed and optimized for studying tumour cell invasion in a gel-in-gel configuration. An anti-cell-invasion effect of the GSGa was observed in the 2D cell culture, whereas a pro-migratory effect in both MDAPFs and MDAPSFs was observed in the 3D cell migration chip assay. An increase of cyclin D1 expression after GSGa treatment was observed in agreement with an increase of the cell invasion index. Our results suggest that the "dimensionality" and the stiffness of the 3D cell culture milieu can change the response to both the gasotransmitter H2S and doxorubicin due to differences in both H2S diffusion and changes in protein expression. Moreover, we uncovered a direct relation between the cyclin D1 expression and the stiffness of the 3D cell culture milieu, suggesting the potential causal involvement of the cyclin D1 as a bio-marker for sensitivity of the tumour cells to their matrix stiffness. Therefore, our hydrogel-based tumoroids represent a valid tunable model for studying the physically induced transdifferentiation (PiT) of cancer cells and as a more reliable and predictive in vitro screening platform to investigate the effects of anti-tumour drugs.
Collapse
Affiliation(s)
- Silvia Buonvino
- Department of Chemical Sciences and Technologies, University of Rome “Tor Vergata”, via della Ricerca Scientifica, 00133, Rome, Italy
| | - Ilaria Arciero
- Department of Chemical Sciences and Technologies, University of Rome “Tor Vergata”, via della Ricerca Scientifica, 00133, Rome, Italy
| | - Eugenio Martinelli
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
- Interdisciplinary Center for Advanced Studies on Lab-on -Chip and Organ-on-Chip Applications, University of Rome Tor Vergata, Rome, Italy
| | - Dror Seliktar
- Department of Biomedical Engineering, Technion Israel Institute of Technology, 3200003, Haifa, Israel
| | - Sonia Melino
- Department of Chemical Sciences and Technologies, University of Rome “Tor Vergata”, via della Ricerca Scientifica, 00133, Rome, Italy
- NAST Centre, University of Rome ‘Tor Vergata’, Rome, Italy
| |
Collapse
|
14
|
Lovewell RR, Hong J, Kundu S, Fielder CM, Hu Q, Kim KW, Ramsey HE, Gorska AE, Fuller LS, Tian L, Kothari P, Paucarmayta A, Mason EF, Meza I, Manzanarez Y, Bosiacki J, Maloveste K, Mitchell N, Barbu EA, Morawski A, Maloveste S, Cusumano Z, Patel SJ, Savona MR, Langermann S, Myint H, Flies DB, Kim TK. LAIR-1 agonism as a therapy for acute myeloid leukemia. J Clin Invest 2023; 133:e169519. [PMID: 37966113 PMCID: PMC10650974 DOI: 10.1172/jci169519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 09/21/2023] [Indexed: 11/16/2023] Open
Abstract
Effective eradication of leukemic stem cells (LSCs) remains the greatest challenge in treating acute myeloid leukemia (AML). The immune receptor LAIR-1 has been shown to regulate LSC survival; however, the therapeutic potential of this pathway remains unexplored. We developed a therapeutic LAIR-1 agonist antibody, NC525, that induced cell death of LSCs, but not healthy hematopoietic stem cells in vitro, and killed LSCs and AML blasts in both cell- and patient-derived xenograft models. We showed that LAIR-1 agonism drives a unique apoptotic signaling program in leukemic cells that was enhanced in the presence of collagen. NC525 also significantly improved the activity of azacitidine and venetoclax to establish LAIR-1 targeting as a therapeutic strategy for AML that may synergize with standard-of-care therapies.
Collapse
Affiliation(s)
| | - Junshik Hong
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Seoul National University Hospital and
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | | | - Carly M. Fielder
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Qianni Hu
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kwang Woon Kim
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Haley E. Ramsey
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Agnieszka E. Gorska
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Londa S. Fuller
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | | | - Emily F. Mason
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center
| | | | | | | | | | | | | | | | | | | | | | - Michael R. Savona
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Center for Immunobiology
- Vanderbilt-Ingram Cancer Center, and
- Program in Cancer Biology, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Han Myint
- NextCure Inc., Beltsville, Maryland, USA
| | | | - Tae Kon Kim
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center
- Vanderbilt Center for Immunobiology
- Vanderbilt-Ingram Cancer Center, and
- Program in Cancer Biology, Vanderbilt University, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare, Nashville, Tennessee, USA
| |
Collapse
|
15
|
Richbourg NR, Peppas NA. Structurally decoupled stiffness and solute transport in multi-arm poly(ethylene glycol) hydrogels. Biomaterials 2023; 301:122272. [PMID: 37573839 PMCID: PMC10785603 DOI: 10.1016/j.biomaterials.2023.122272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023]
Abstract
Synthetic hydrogels are widely used as artificial 3D environments for cell culture, facilitating the controlled study of cell-environment interactions. However, most hydrogels are limited in their ability to represent the physical properties of biological tissues because stiffness and solute transport properties in hydrogels are closely correlated. Resultingly, experimental investigations of cell-environment interactions in hydrogels are confounded by simultaneous changes in multiple physical properties. Here, we overcame this limitation by simultaneously manipulating four structural parameters to synthesize a library of multi-arm poly (ethylene glycol) (PEG) hydrogel formulations with robustly decoupled stiffness and solute transport. This structural design approach avoids chemical alterations or additions to the network that might have unanticipated effects on encapsulated cells. An algorithm created to statistically evaluate stiffness-transport decoupling within the dataset identified 46 of the 73 synthesized formulations as robustly decoupled. We show that the swollen polymer network model accurately predicts 11 out of 12 structure-property relationships, suggesting that this approach to decoupling stiffness and solute transport in hydrogels is fundamentally validated and potentially broadly applicable. Furthermore, the unprecedented control of hydrogel network structure provided by multi-arm PEG hydrogels confirmed several fundamental modeling assumptions. This study enables nuanced hydrogel design for uncompromised investigation of cell-environment interactions.
Collapse
Affiliation(s)
- Nathan R Richbourg
- Department of Biomedical Engineering, University of Texas, Austin, TX, 78712, USA.
| | - Nicholas A Peppas
- Department of Biomedical Engineering, University of Texas, Austin, TX, 78712, USA; McKetta Department of Chemical Engineering, University of Texas, Austin, TX, 78712, USA; Division of Molecular Therapeutics and Drug Delivery, College of Pharmacy, University of Texas, Austin, TX, 78712, USA; Departments of Surgery and Pediatrics, Dell Medical School, University of Texas, Austin, TX, 78712, USA.
| |
Collapse
|
16
|
Özkan A, Stolley DL, Cressman ENK, McMillin M, Yankeelov TE, Rylander MN. Vascularized Hepatocellular Carcinoma on a Chip to Control Chemoresistance through Cirrhosis, Inflammation and Metabolic Activity. SMALL STRUCTURES 2023; 4:2200403. [PMID: 38073766 PMCID: PMC10707486 DOI: 10.1002/sstr.202200403] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Understanding the effects of inflammation and cirrhosis on the regulation of drug metabolism during the progression of hepatocellular carcinoma (HCC) is critical for developing patient-specific treatment strategies. In this work, we created novel three-dimensional vascularized HCC-on-a-chips (HCCoC), composed of HCC, endothelial, stellate, and Kupffer cells tuned to mimic normal or cirrhotic liver stiffness. HCC inflammation was controlled by tuning Kupffer macrophage numbers, and the impact of cytochrome P450-3A4 (CYP3A4) was investigated by culturing HepG2 HCC cells transfected with CYP3A4 to upregulate expression from baseline. This model allowed for the simulation of chemotherapeutic delivery methods such as intravenous injection and transcatheter arterial chemoembolization (TACE). We showed that upregulation of metabolic activity, incorporation of cirrhosis and inflammation, increase vascular permeability due to upregulated inflammatory cytokines leading to significant variability in chemotherapeutic treatment efficacy. Specifically, we show that further modulation of CYP3A4 activity of HCC cells by TACE delivery of doxorubicin provides an additional improvement to treatment response and reduces chemotherapy-associated endothelial porosity increase. The HCCoCs were shown to have utility in uncovering the impact of the tumor microenvironment (TME) during cancer progression on vascular properties, tumor response to therapeutics, and drug delivery strategies.
Collapse
Affiliation(s)
- Alican Özkan
- Department of Mechanical Engineering, The University of Texas, Austin, TX, 78712, United States
- Current address: Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, United States
| | - Danielle L Stolley
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030. United States
| | - Erik N K Cressman
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030. United States
| | - Matthew McMillin
- Department of Internal Medicine, The University of Texas at Austin, Dell Medical School
- Central Texas Veterans Health Care System, Austin, TX, 78712, United States
| | - Thomas E Yankeelov
- Department of Biomedical Engineering, The University of Texas, Austin, TX, 78712, United States
- Oden Institute for Computational Engineering and Sciences, The University of Texas, Austin, TX, 78712, United States
- Departments of Diagnostic Medicine, The University of Texas, Austin, TX, 78712, United States
- Department of Oncology, The University of Texas, Austin, TX, 78712, United States
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas, Austin, TX, 78712, United States
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Marissa Nichole Rylander
- Department of Mechanical Engineering, The University of Texas, Austin, TX, 78712, United States
- Department of Biomedical Engineering, The University of Texas, Austin, TX, 78712, United States
- Oden Institute for Computational Engineering and Sciences, The University of Texas, Austin, TX, 78712, United States
| |
Collapse
|
17
|
Shou Y, Teo XY, Wu KZ, Bai B, Kumar ARK, Low J, Le Z, Tay A. Dynamic Stimulations with Bioengineered Extracellular Matrix-Mimicking Hydrogels for Mechano Cell Reprogramming and Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300670. [PMID: 37119518 PMCID: PMC10375194 DOI: 10.1002/advs.202300670] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/10/2023] [Indexed: 06/19/2023]
Abstract
Cells interact with their surrounding environment through a combination of static and dynamic mechanical signals that vary over stimulus types, intensity, space, and time. Compared to static mechanical signals such as stiffness, porosity, and topography, the current understanding on the effects of dynamic mechanical stimulations on cells remains limited, attributing to a lack of access to devices, the complexity of experimental set-up, and data interpretation. Yet, in the pursuit of emerging translational applications (e.g., cell manufacturing for clinical treatment), it is crucial to understand how cells respond to a variety of dynamic forces that are omnipresent in vivo so that they can be exploited to enhance manufacturing and therapeutic outcomes. With a rising appreciation of the extracellular matrix (ECM) as a key regulator of biofunctions, researchers have bioengineered a suite of ECM-mimicking hydrogels, which can be fine-tuned with spatiotemporal mechanical cues to model complex static and dynamic mechanical profiles. This review first discusses how mechanical stimuli may impact different cellular components and the various mechanobiology pathways involved. Then, how hydrogels can be designed to incorporate static and dynamic mechanical parameters to influence cell behaviors are described. The Scopus database is also used to analyze the relative strength in evidence, ranging from strong to weak, based on number of published literatures, associated citations, and treatment significance. Additionally, the impacts of static and dynamic mechanical stimulations on clinically relevant cell types including mesenchymal stem cells, fibroblasts, and immune cells, are evaluated. The aim is to draw attention to the paucity of studies on the effects of dynamic mechanical stimuli on cells, as well as to highlight the potential of using a cocktail of various types and intensities of mechanical stimulations to influence cell fates (similar to the concept of biochemical cocktail to direct cell fate). It is envisioned that this progress report will inspire more exciting translational development of mechanoresponsive hydrogels for biomedical applications.
Collapse
Affiliation(s)
- Yufeng Shou
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
| | - Xin Yong Teo
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Kenny Zhuoran Wu
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Bingyu Bai
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Arun R. K. Kumar
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
- Yong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
| | - Jessalyn Low
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Zhicheng Le
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
| | - Andy Tay
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
- NUS Tissue Engineering ProgramNational University of SingaporeSingapore117510Singapore
| |
Collapse
|
18
|
Su CY, Wu A, Dong Z, Miller CP, Suarez A, Ewald AJ, Ahn EH, Kim DH. Tumor stromal topography promotes chemoresistance in migrating breast cancer cell clusters. Biomaterials 2023; 298:122128. [PMID: 37121102 PMCID: PMC10291492 DOI: 10.1016/j.biomaterials.2023.122128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/30/2023] [Accepted: 04/15/2023] [Indexed: 05/02/2023]
Abstract
Multicellular clustering provides cancer cells with survival advantages and facilitates metastasis. At the tumor migration front, cancer cell clusters are surrounded by an aligned stromal topography. It remains unknown whether aligned stromal topography regulates the resistance of migrating cancer cell clusters to therapeutics. Using a hybrid nanopatterned model to characterize breast cancer cell clusters at the migration front with aligned stromal topography, we demonstrate that topography-induced migrating cancer cell clusters exhibit upregulated cytochrome P450 family 1 (CYP1) drug metabolism and downregulated glycolysis gene signatures, which correlates with unfavorable prognosis. Screening on approved oncology drugs shows that cancer cell clusters on aligned stromal topography are more resistant to diverse chemotherapeutics. Full-dose drug testings further indicate that topography induces drug resistance of hormone receptor-positive breast cancer cell clusters to doxorubicin and tamoxifen and triple-negative breast cancer cell clusters to doxorubicin by activating the aryl hydrocarbon receptor (AhR)/CYP1 pathways. Inhibiting the AhR/CYP1 pathway restores reactive oxygen species-mediated drug sensitivity to migrating cancer cell clusters, suggesting a plausible therapeutic direction for preventing metastatic recurrence.
Collapse
Affiliation(s)
- Chia-Yi Su
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Alex Wu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Zhipeng Dong
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Chris P Miller
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Allister Suarez
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Andrew J Ewald
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Eun Hyun Ahn
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States.
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States; Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
19
|
Debnath K, Heras KL, Rivera A, Lenzini S, Shin JW. Extracellular vesicle-matrix interactions. NATURE REVIEWS. MATERIALS 2023; 8:390-402. [PMID: 38463907 PMCID: PMC10919209 DOI: 10.1038/s41578-023-00551-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/24/2023] [Indexed: 03/12/2024]
Abstract
The extracellular matrix in microenvironments harbors a variety of signals to control cellular functions and the materiality of tissues. Most efforts to synthetically reconstitute the matrix by biomaterial design have focused on decoupling cell-secreted and polymer-based cues. Cells package molecules into nanoscale lipid membrane-bound extracellular vesicles and secrete them. Thus, extracellular vesicles inherently interact with the meshwork of the extracellular matrix. In this Review, we discuss various aspects of extracellular vesicle-matrix interactions. Cells receive feedback from the extracellular matrix and leverage intracellular processes to control the biogenesis of extracellular vesicles. Once secreted, various biomolecular and biophysical factors determine whether extracellular vesicles are locally incorporated into the matrix or transported out of the matrix to be taken up by other cells or deposited into tissues at a distal location. These insights can be utilized to develop engineered biomaterials where EV release and retention can be precisely controlled in host tissue to elicit various biological and therapeutic outcomes.
Collapse
Affiliation(s)
- Koushik Debnath
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Kevin Las Heras
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy (UPV/EHU)
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Ambar Rivera
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60608, USA
| | - Stephen Lenzini
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Jae-Won Shin
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
20
|
Shakiba D, Genin GM, Zustiak SP. Mechanobiology of cancer cell responsiveness to chemotherapy and immunotherapy: Mechanistic insights and biomaterial platforms. Adv Drug Deliv Rev 2023; 196:114771. [PMID: 36889646 PMCID: PMC10133187 DOI: 10.1016/j.addr.2023.114771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/17/2022] [Accepted: 03/03/2023] [Indexed: 03/08/2023]
Abstract
Mechanical forces are central to how cancer treatments such as chemotherapeutics and immunotherapies interact with cells and tissues. At the simplest level, electrostatic forces underlie the binding events that are critical to therapeutic function. However, a growing body of literature points to mechanical factors that also affect whether a drug or an immune cell can reach a target, and to interactions between a cell and its environment affecting therapeutic efficacy. These factors affect cell processes ranging from cytoskeletal and extracellular matrix remodeling to transduction of signals by the nucleus to metastasis of cells. This review presents and critiques the state of the art of our understanding of how mechanobiology impacts drug and immunotherapy resistance and responsiveness, and of the in vitro systems that have been of value in the discovery of these effects.
Collapse
Affiliation(s)
- Delaram Shakiba
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, MO, USA; Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, USA
| | - Guy M Genin
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, MO, USA; Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, USA.
| | - Silviya P Zustiak
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, MO, USA; Department of Biomedical Engineering, School of Science and Engineering, Saint Louis University, St. Louis, MO, USA.
| |
Collapse
|
21
|
de Janon A, Mantalaris A, Panoskaltsis N. Three-Dimensional Human Bone Marrow Organoids for the Study and Application of Normal and Abnormal Hematoimmunopoiesis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:895-904. [PMID: 36947817 PMCID: PMC7614371 DOI: 10.4049/jimmunol.2200836] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/18/2023] [Indexed: 03/24/2023]
Abstract
Hematoimmunopoiesis takes place in the adult human bone marrow (BM), which is composed of heterogeneous niches with complex architecture that enables tight regulation of homeostatic and stress responses. There is a paucity of representative culture systems that recapitulate the heterogeneous three-dimensional (3D) human BM microenvironment and that can endogenously produce soluble factors and extracellular matrix that deliver culture fidelity for the study of both normal and abnormal hematopoiesis. Native BM lymphoid populations are also poorly represented in current in vitro and in vivo models, creating challenges for the study and treatment of BM immunopathology. BM organoid models leverage normal 3D organ structure to recreate functional niche microenvironments. Our focus herein is to review the current state of the art in the use of 3D BM organoids, focusing on their capacities to recreate critical quality attributes of the in vivo BM microenvironment for the study of human normal and abnormal hematopoiesis.
Collapse
Affiliation(s)
- Alejandro de Janon
- BioMedical Systems Engineering Laboratory, Wallace H. Coulter Department of Biomedical Engineering, The Georgia Institute of Technology, Atlanta, GA, USA
| | - Athanasios Mantalaris
- BioMedical Systems Engineering Laboratory, Wallace H. Coulter Department of Biomedical Engineering, The Georgia Institute of Technology, Atlanta, GA, USA
- School of Pharmacy & Pharmaceutical Sciences, Trinity College Dublin, Ireland
- National Institute for Bioprocessing Research and Training, Ireland
| | - Nicki Panoskaltsis
- BioMedical Systems Engineering Laboratory, Wallace H. Coulter Department of Biomedical Engineering, The Georgia Institute of Technology, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
- School of Pharmacy & Pharmaceutical Sciences, Trinity College Dublin, Ireland
- Department of Haematology, St. James’s Hospital Dublin, Ireland
| |
Collapse
|
22
|
James JR, Curd J, Ashworth JC, Abuhantash M, Grundy M, Seedhouse CH, Arkill KP, Wright AJ, Merry CLR, Thompson A. Hydrogel-Based Pre-Clinical Evaluation of Repurposed FDA-Approved Drugs for AML. Int J Mol Sci 2023; 24:ijms24044235. [PMID: 36835644 PMCID: PMC9966469 DOI: 10.3390/ijms24044235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
In vivo models of acute myeloid leukemia (AML) are low throughput, and standard liquid culture models fail to recapitulate the mechanical and biochemical properties of the extracellular matrix-rich protective bone marrow niche that contributes to drug resistance. Candidate drug discovery in AML requires advanced synthetic platforms to improve our understanding of the impact of mechanical cues on drug sensitivity in AML. By use of a synthetic, self-assembling peptide hydrogel (SAPH) of modifiable stiffness and composition, a 3D model of the bone marrow niche to screen repurposed FDA-approved drugs has been developed and utilized. AML cell proliferation was dependent on SAPH stiffness, which was optimized to facilitate colony growth. Three candidate FDA-approved drugs were initially screened against the THP-1 cell line and mAF9 primary cells in liquid culture, and EC50 values were used to inform drug sensitivity assays in the peptide hydrogel models. Salinomycin demonstrated efficacy in both an 'early-stage' model in which treatment was added shortly after initiation of AML cell encapsulation, and an 'established' model in which time-encapsulated cells had started to form colonies. Sensitivity to Vidofludimus treatment was not observed in the hydrogel models, and Atorvastatin demonstrated increased sensitivity in the 'established' compared to the 'early-stage' model. AML patient samples were equally sensitive to Salinomycin in the 3D hydrogels and partially sensitive to Atorvastatin. Together, this confirms that AML cell sensitivity is drug- and context-specific and that advanced synthetic platforms for higher throughput are valuable tools for pre-clinical evaluation of candidate anti-AML drugs.
Collapse
Affiliation(s)
- Jenna R. James
- Blood Cancer and Stem Cell Group, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
- Optics and Photonics Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Johnathan Curd
- Stem Cell Glycobiology Group, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Jennifer C. Ashworth
- Stem Cell Glycobiology Group, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
- School of Veterinary Medicine & Science, University of Nottingham, Nottingham NG7 2RD, UK
| | - Mays Abuhantash
- Blood Cancer and Stem Cell Group, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Martin Grundy
- Blood Cancer and Stem Cell Group, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Claire H. Seedhouse
- Blood Cancer and Stem Cell Group, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Kenton P. Arkill
- Endothelial and Vascular Imaging Laboratories, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Amanda J. Wright
- Optics and Photonics Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Catherine L. R. Merry
- Stem Cell Glycobiology Group, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Alexander Thompson
- Blood Cancer and Stem Cell Group, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
- Correspondence:
| |
Collapse
|
23
|
Wang Y, Zhang H, Wu S, Wan W, Kang X, Gao B, Shi H, Zhao S, Niu L, Zou R. Substrate Stiffness Regulates the Proliferation and Apoptosis of Periodontal Ligament Cells through Integrin-Linked Kinase ILK. ACS Biomater Sci Eng 2023; 9:662-670. [PMID: 36732940 DOI: 10.1021/acsbiomaterials.2c00925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The hallmark of orthodontic tooth movement (OTM) is time-consuming during clinical treatments. The acceleration of OTM through modulating proliferation and apoptosis of periodontal ligament cells (PDLCs) possesses the potential application in clinical treatments. Here, we established an in vitro model with a graded increase in substrate stiffness to investigate the underlying mechanism of proliferation and apoptosis of PDLCs. The role of the integrin-linked kinase (ILK) in response to substrate stiffness was investigated by the depletion model of PDLCs. We found that the proliferation and apoptosis of PDLCs show a stiffness-dependent property with stiffer substrates favoring increased bias at the transcript level. Depleting integrin-linked kinase diluted the correlation between PDLCs behaviors and substrate stiffness. Our results suggest that ILK plays a significant role in modulating PDLC proliferation and apoptosis and can serve as a potential target for accelerating OTM.
Collapse
Affiliation(s)
- Yijie Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China.,College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China
| | - Hui Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China.,College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
| | - Shiyang Wu
- College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China
| | - Wanting Wan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China.,College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China
| | - Xueping Kang
- College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China
| | - Bei Gao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China.,College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China
| | - Haoyu Shi
- Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Shuyang Zhao
- Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Lin Niu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China.,College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China
| | - Rui Zou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China.,College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China
| |
Collapse
|
24
|
Divya G, Madhura R, Khetan V, Rishi P, Narayanan J. Understanding the mechano and chemo response of retinoblastoma tumor cells. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
25
|
Dozzo A, Galvin A, Shin JW, Scalia S, O'Driscoll CM, Ryan KB. Modelling acute myeloid leukemia (AML): What's new? A transition from the classical to the modern. Drug Deliv Transl Res 2022:10.1007/s13346-022-01189-4. [PMID: 35930221 DOI: 10.1007/s13346-022-01189-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 11/24/2022]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous malignancy affecting myeloid cells in the bone marrow (BM) but can spread giving rise to impaired hematopoiesis. AML incidence increases with age and is associated with poor prognostic outcomes. There has been a disconnect between the success of novel drug compounds observed in preclinical studies of hematological malignancy and less than exceptional therapeutic responses in clinical trials. This review aims to provide a state-of-the-art overview on the different preclinical models of AML available to expand insights into disease pathology and as preclinical screening tools. Deciphering the complex physiological and pathological processes and developing predictive preclinical models are key to understanding disease progression and fundamental in the development and testing of new effective drug treatments. Standard scaffold-free suspension models fail to recapitulate the complex environment where AML occurs. To this end, we review advances in scaffold/matrix-based 3D models and outline the most recent advances in on-chip technology. We also provide an overview of clinically relevant animal models and review the expanding use of patient-derived samples, which offer the prospect to create more "patient specific" screening tools either in the guise of 3D matrix models, microphysiological "organ-on-chip" tools or xenograft models and discuss representative examples.
Collapse
Affiliation(s)
| | - Aoife Galvin
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Jae-Won Shin
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, 909 S. Wolcott Ave, Chicago, IL, 5091 COMRB, USA
| | - Santo Scalia
- Università degli Studi di Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Caitriona M O'Driscoll
- School of Pharmacy, University College Cork, Cork, Ireland.,SSPC Centre for Pharmaceutical Research, School of Pharmacy, University College Cork, Cork, Ireland
| | - Katie B Ryan
- School of Pharmacy, University College Cork, Cork, Ireland. .,SSPC Centre for Pharmaceutical Research, School of Pharmacy, University College Cork, Cork, Ireland.
| |
Collapse
|
26
|
Millet M, Bollmann E, Ringuette Goulet C, Bernard G, Chabaud S, Huot MÉ, Pouliot F, Bolduc S, Bordeleau F. Cancer-Associated Fibroblasts in a 3D Engineered Tissue Model Induce Tumor-like Matrix Stiffening and EMT Transition. Cancers (Basel) 2022; 14:cancers14153810. [PMID: 35954473 PMCID: PMC9367573 DOI: 10.3390/cancers14153810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The physical properties of a tumor, such as stiffness, are important drivers of tumor progression. However, current in vitro tumor models fail to recapitulate the full range of physical properties observed in solid tumors. Here, we proposed a 3D self-assembly engineered bladder model using cancer-associated fibroblasts in which stromal cells produce their extracellular matrix. We then proceeded to assess how our model recapitulates biological and mechanical features found in tumors. We confirmed that stroma assembled by cancer-associated fibroblasts have increased extracellular matrix content and display increased remodeling and higher stiffness. Moreover, normal urothelial cells seeded on the tumor model displayed a mechanotransduction response, increased cell proliferation, cell infiltration within stroma, and displayed features of the epithelial-to-mesenchymal transition. Altogether, we demonstrated that our cancer-associated fibroblast-derived tumor stroma recapitulates several biological and physical features expected from a tumor-like environment and, thus, provides the basis for more accurate cancer models. Abstract A tumor microenvironment is characterized by its altered mechanical properties. However, most models remain unable to faithfully recreate the mechanical properties of a tumor. Engineered models based on the self-assembly method have the potential to better recapitulate the stroma architecture and composition. Here, we used the self-assembly method based on a bladder tissue model to engineer a tumor-like environment. The tissue-engineered tumor models were reconstituted from stroma-derived healthy primary fibroblasts (HFs) induced into cancer-associated fibroblast cells (iCAFs) along with an urothelium overlay. The iCAFs-derived extracellular matrix (ECM) composition was found to be stiffer, with increased ECM deposition and remodeling. The urothelial cells overlaid on the iCAFs-derived ECM were more contractile, as measured by quantitative polarization microscopy, and displayed increased YAP nuclear translocation. We further showed that the proliferation and expression of epithelial-to-mesenchymal transition (EMT) marker in the urothelial cells correlate with the increased stiffness of the iCAFs-derived ECM. Our data showed an increased expression of EMT markers within the urothelium on the iCAFs-derived ECM. Together, our results demonstrate that our tissue-engineered tumor model can achieve stiffness levels comparable to that of a bladder tumor, while triggering a tumor-like response from the urothelium.
Collapse
Affiliation(s)
- Martial Millet
- CHU de Québec-Université Laval Research Center (Oncology Division) and Université Laval Cancer Research Center, Quebec City, QC G1R 3S3, Canada
| | - Enola Bollmann
- CHU de Québec-Université Laval Research Center (Oncology Division) and Université Laval Cancer Research Center, Quebec City, QC G1R 3S3, Canada
| | - Cassandra Ringuette Goulet
- CHU de Québec-Université Laval Research Center (Oncology Division) and Université Laval Cancer Research Center, Quebec City, QC G1R 3S3, Canada
- CHU de Québec-Université Laval Research Center (Regenerative Medicine Division), Quebec City, QC G1V 4G2, Canada
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Université Laval, Quebec City, QC G1J 1Z4, Canada
| | - Geneviève Bernard
- CHU de Québec-Université Laval Research Center (Regenerative Medicine Division), Quebec City, QC G1V 4G2, Canada
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Université Laval, Quebec City, QC G1J 1Z4, Canada
| | - Stéphane Chabaud
- CHU de Québec-Université Laval Research Center (Regenerative Medicine Division), Quebec City, QC G1V 4G2, Canada
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Université Laval, Quebec City, QC G1J 1Z4, Canada
| | - Marc-Étienne Huot
- CHU de Québec-Université Laval Research Center (Oncology Division) and Université Laval Cancer Research Center, Quebec City, QC G1R 3S3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Frédéric Pouliot
- CHU de Québec-Université Laval Research Center (Oncology Division) and Université Laval Cancer Research Center, Quebec City, QC G1R 3S3, Canada
- Department of Surgery, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Stéphane Bolduc
- CHU de Québec-Université Laval Research Center (Regenerative Medicine Division), Quebec City, QC G1V 4G2, Canada
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Université Laval, Quebec City, QC G1J 1Z4, Canada
- Department of Surgery, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - François Bordeleau
- CHU de Québec-Université Laval Research Center (Oncology Division) and Université Laval Cancer Research Center, Quebec City, QC G1R 3S3, Canada
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Université Laval, Quebec City, QC G1J 1Z4, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Quebec City, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-525-4444 (ext. 15554)
| |
Collapse
|
27
|
Vining KH, Marneth AE, Adu-Berchie K, Grolman JM, Tringides CM, Liu Y, Wong WJ, Pozdnyakova O, Severgnini M, Stafford A, Duda GN, Hodi FS, Mullally A, Wucherpfennig KW, Mooney DJ. Mechanical checkpoint regulates monocyte differentiation in fibrotic niches. NATURE MATERIALS 2022; 21:939-950. [PMID: 35817965 PMCID: PMC10197159 DOI: 10.1038/s41563-022-01293-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/18/2022] [Indexed: 05/05/2023]
Abstract
Myelofibrosis is a progressive bone marrow malignancy associated with monocytosis, and is believed to promote the pathological remodelling of the extracellular matrix. Here we show that the mechanical properties of myelofibrosis, namely the liquid-to-solid properties (viscoelasticity) of the bone marrow, contribute to aberrant differentiation of monocytes. Human monocytes cultured in stiff, elastic hydrogels show proinflammatory polarization and differentiation towards dendritic cells, as opposed to those cultured in a viscoelastic matrix. This mechanically induced cell differentiation is blocked by inhibiting a myeloid-specific isoform of phosphoinositide 3-kinase, PI3K-γ. We further show that murine bone marrow with myelofibrosis has a significantly increased stiffness and unveil a positive correlation between myelofibrosis grading and viscoelasticity. Treatment with a PI3K-γ inhibitor in vivo reduced frequencies of monocyte and dendritic cell populations in murine bone marrow with myelofibrosis. Moreover, transcriptional changes driven by viscoelasticity are consistent with transcriptional profiles of myeloid cells in other human fibrotic diseases. These results demonstrate that a fibrotic bone marrow niche can physically promote a proinflammatory microenvironment.
Collapse
Affiliation(s)
- Kyle H Vining
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Preventative and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Materials Science and Engineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Anna E Marneth
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA
| | - Kwasi Adu-Berchie
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Joshua M Grolman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
- Materials Science and Engineering, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Christina M Tringides
- Harvard Program in Biophysics, Harvard University, Cambridge, MA, USA
- Harvard-MIT Division in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yutong Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Waihay J Wong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Olga Pozdnyakova
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mariano Severgnini
- Center for Immuno-Oncology Immune Assessment Laboratory at the Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alexander Stafford
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Georg N Duda
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration at Berlin Institute of Health and Charité - Universitätsmedizin, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health and Charité - Universitätsmedizin, Berlin, Germany
| | - F Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ann Mullally
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.
| |
Collapse
|
28
|
Zhang W, Li QQ, Gao HY, Wang YC, Cheng M, Wang YX. The regulation of yes-associated protein/transcriptional coactivator with PDZ-binding motif and their roles in vascular endothelium. Front Cardiovasc Med 2022; 9:925254. [PMID: 35935626 PMCID: PMC9354077 DOI: 10.3389/fcvm.2022.925254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/04/2022] [Indexed: 12/14/2022] Open
Abstract
Normal endothelial function plays a pivotal role in maintaining cardiovascular homeostasis, while endothelial dysfunction causes the occurrence and development of cardiovascular diseases. Yes-associated protein (YAP) and its homolog transcriptional co-activator with PDZ-binding motif (TAZ) serve as crucial nuclear effectors in the Hippo signaling pathway, which are regulated by mechanical stress, extracellular matrix stiffness, drugs, and other factors. Increasing evidence supports that YAP/TAZ play an important role in the regulation of endothelial-related functions, including oxidative stress, inflammation, and angiogenesis. Herein, we systematically review the factors affecting YAP/TAZ, downstream target genes regulated by YAP/TAZ and the roles of YAP/TAZ in regulating endothelial functions, in order to provide novel potential targets and effective approaches to prevent and treat cardiovascular diseases.
Collapse
Affiliation(s)
- Wen Zhang
- School of Rehabilitation Medicine, Weifang Medical University, Weifang, China
| | - Qian-qian Li
- School of Rehabilitation Medicine, Weifang Medical University, Weifang, China
| | - Han-yi Gao
- Department of Rehabilitation Medicine, Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Yong-chun Wang
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Min Cheng
- School of Basic Medicine, Weifang Medical University, Weifang, China
- *Correspondence: Min Cheng,
| | - Yan-Xia Wang
- School of Rehabilitation Medicine, Weifang Medical University, Weifang, China
- Yan-Xia Wang,
| |
Collapse
|
29
|
Morphological Dependence of Breast Cancer Cell Responses to Doxorubicin on Micropatterned Surfaces. Polymers (Basel) 2022; 14:polym14142761. [PMID: 35890536 PMCID: PMC9323815 DOI: 10.3390/polym14142761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
Cell morphology has been widely investigated for its influence on the functions of normal cells. However, the influence of cell morphology on cancer cell resistance to anti-cancer drugs remains unclear. In this study, micropatterned surfaces were prepared and used to control the spreading area and elongation of human breast cancer cell line. The influences of cell adhesion area and elongation on resistance to doxorubicin were investigated. The percentage of apoptotic breast cancer cells decreased with cell spreading area, while did not change with cell elongation. Large breast cancer cells had higher resistance to doxorubicin, better assembled actin filaments, higher DNA synthesis activity and higher expression of P-glycoprotein than small breast cancer cells. The results suggested that the morphology of breast cancer cells could affect their resistance to doxorubicin. The influence was correlated with cytoskeletal organization, DNA synthesis activity and P-glycoprotein expression.
Collapse
|
30
|
Sneider A, Kiemen A, Kim JH, Wu PH, Habibi M, White M, Phillip JM, Gu L, Wirtz D. Deep learning identification of stiffness markers in breast cancer. Biomaterials 2022; 285:121540. [PMID: 35537336 PMCID: PMC9873266 DOI: 10.1016/j.biomaterials.2022.121540] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 02/07/2023]
Abstract
While essential to our understanding of solid tumor progression, the study of cell and tissue mechanics has yet to find traction in the clinic. Determining tissue stiffness, a mechanical property known to promote a malignant phenotype in vitro and in vivo, is not part of the standard algorithm for the diagnosis and treatment of breast cancer. Instead, clinicians routinely use mammograms to identify malignant lesions and radiographically dense breast tissue is associated with an increased risk of developing cancer. Whether breast density is related to tumor tissue stiffness, and what cellular and non-cellular components of the tumor contribute the most to its stiffness are not well understood. Through training of a deep learning network and mechanical measurements of fresh patient tissue, we create a bridge in understanding between clinical and mechanical markers. The automatic identification of cellular and extracellular features from hematoxylin and eosin (H&E)-stained slides reveals that global and local breast tissue stiffness best correlate with the percentage of straight collagen. Importantly, the percentage of dense breast tissue does not directly correlate with tissue stiffness or straight collagen content.
Collapse
Affiliation(s)
- Alexandra Sneider
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Ashley Kiemen
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Joo Ho Kim
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Pei-Hsun Wu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Mehran Habibi
- Johns Hopkins Breast Center, Johns Hopkins Bayview Medical Center, 4940 Eastern Ave, Baltimore, MD, 21224, USA
| | - Marissa White
- Department of Pathology, Johns Hopkins School of Medicine, 401 N Broadway, Baltimore, MD, 21231, USA
| | - Jude M. Phillip
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA,Department of Biomedical Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Luo Gu
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA,Department of Pathology, Johns Hopkins School of Medicine, 401 N Broadway, Baltimore, MD, 21231, USA,Department of Oncology, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD, 21205, USA,Corresponding author. Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, and Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA., (D. Wirtz)
| |
Collapse
|
31
|
Pirillo C, Birch F, Tissot FS, Anton SG, Haltalli M, Tini V, Kong I, Piot C, Partridge B, Pospori C, Keeshan K, Santamaria S, Hawkins E, Falini B, Marra A, Duarte D, Lee CF, Roberts E, Lo Celso C. Metalloproteinase inhibition reduces AML growth, prevents stem cell loss, and improves chemotherapy effectiveness. Blood Adv 2022; 6:3126-3141. [PMID: 35157757 PMCID: PMC9131921 DOI: 10.1182/bloodadvances.2021004321] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 01/25/2022] [Indexed: 11/20/2022] Open
Abstract
Acute myeloid leukemia (AML) is a blood cancer of the myeloid lineage. Its prognosis remains poor, highlighting the need for new therapeutic and precision medicine approaches. AML symptoms often include cytopenias linked to loss of healthy hematopoietic stem and progenitor cells (HSPCs). The mechanisms behind HSPC decline are complex and still poorly understood. Here, intravital microscopy (IVM) of a well-established experimental model of AML allows direct observation of the interactions between healthy and malignant cells in the bone marrow (BM), suggesting that physical dislodgment of healthy cells by AML through damaged vasculature may play an important role. Multiple matrix metalloproteinases (MMPs), known to remodel extracellular matrix, are expressed by AML cells and the BM microenvironment. We reason MMPs could be involved in cell displacement and vascular leakiness; therefore, we evaluate the therapeutic potential of MMP pharmacological inhibition using the broad-spectrum inhibitor prinomastat. IVM analyses of prinomastat-treated mice reveal reduced vascular permeability and healthy cell clusters in circulation and lower AML infiltration, proliferation, and cell migration. Furthermore, treated mice have increased retention of healthy HSPCs in the BM and increased survival following chemotherapy. Analysis of a human AML transcriptomic database reveals widespread MMP deregulation, and human AML cells show susceptibility to MMP inhibition. Overall, our results suggest that MMP inhibition could be a promising complementary therapy to reduce AML growth and limit HSPC loss and BM vascular damage caused by MLL-AF9 and possibly other AML subtypes.
Collapse
Affiliation(s)
- Chiara Pirillo
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | - Flora Birch
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Floriane S. Tissot
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Sara Gonzalez Anton
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Myriam Haltalli
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Valentina Tini
- Institute of Haematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Isabella Kong
- The Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Parkville, VIC, Australia
| | - Cécile Piot
- The Francis Crick Institute, London, United Kingdom
| | - Ben Partridge
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Constandina Pospori
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Karen Keeshan
- Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Edwin Hawkins
- The Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Parkville, VIC, Australia
| | - Brunangelo Falini
- Institute of Haematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Andrea Marra
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, London, United Kingdom
- Institute of Haematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Delfim Duarte
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, London, United Kingdom
- Instituto de Investigação e Inovação em Saúde (i3S) Universidade do Porto, Porto, Portugal
- Department of Onco-Hematology, Instituto Português de Oncologia (IPO), Porto, Portugal; and
- Department of Biomedicine, Unit of Biochemistry, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Chiu Fan Lee
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Edward Roberts
- Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | - Cristina Lo Celso
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| |
Collapse
|
32
|
Qazi TH, Blatchley MR, Davidson MD, Yavitt FM, Cooke ME, Anseth KS, Burdick JA. Programming hydrogels to probe spatiotemporal cell biology. Cell Stem Cell 2022; 29:678-691. [PMID: 35413278 PMCID: PMC9081204 DOI: 10.1016/j.stem.2022.03.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The recapitulation of complex microenvironments that regulate cell behavior during development, disease, and wound healing is key to understanding fundamental biological processes. In vitro, multicellular morphogenesis, organoid maturation, and disease modeling have traditionally been studied using either non-physiological 2D substrates or 3D biological matrices, neither of which replicate the spatiotemporal biochemical and biophysical complexity of biology. Here, we provide a guided overview of the recent advances in the programming of synthetic hydrogels that offer precise control over the spatiotemporal properties within cellular microenvironments, such as advances in the control of cell-driven remodeling, bioprinting, or user-defined manipulation of properties (e.g., via light irradiation).
Collapse
Affiliation(s)
- Taimoor H Qazi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael R Blatchley
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA; Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Matthew D Davidson
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA; Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| | - F Max Yavitt
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA; Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Megan E Cooke
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA; Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Kristi S Anseth
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA; Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA; Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA.
| |
Collapse
|
33
|
Breaking through the barrier: Modelling and exploiting the physical microenvironment to enhance drug transport and efficacy. Adv Drug Deliv Rev 2022; 184:114183. [PMID: 35278523 DOI: 10.1016/j.addr.2022.114183] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/03/2022] [Accepted: 03/06/2022] [Indexed: 02/08/2023]
Abstract
Pharmaceutical compounds are the main pillar in the treatment of various illnesses. To administer these drugs in the therapeutic setting, multiple routes of administration have been defined, including ingestion, inhalation, and injection. After administration, drugs need to find their way to the intended target for high effectiveness, and this penetration is greatly dependent on obstacles the drugs encounter along their path. Key hurdles include the physical barriers that are present within the body and knowledge of those is indispensable for progress in the development of drugs with increased therapeutic efficacy. In this review, we examine several important physical barriers, such as the blood-brain barrier, the gut-mucosal barrier, and the extracellular matrix barrier, and evaluate their influence on drug transport and efficacy. We explore various in vitro model systems that aid in understanding how parameters within the barrier model affect drug transfer and therapeutic effect. We conclude that physical barriers in the body restrict the quantity of drugs that can pass through, mainly as a consequence of the barrier architecture. In addition, the specific physical properties of the tissue can trigger intracellular changes, altering cell behavior in response to drugs. Though the barriers negatively influence drug distribution, physical stimulation of the surrounding environment may also be exploited as a mechanism to control drug release. This drug delivery approach is explored in this review as a potential alternative to the conventional ways of delivering therapeutics.
Collapse
|
34
|
Ronaldson-Bouchard K, Baldassarri I, Tavakol DN, Graney PL, Samaritano M, Cimetta E, Vunjak-Novakovic G. Engineering complexity in human tissue models of cancer. Adv Drug Deliv Rev 2022; 184:114181. [PMID: 35278521 PMCID: PMC9035134 DOI: 10.1016/j.addr.2022.114181] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/15/2022] [Accepted: 03/04/2022] [Indexed: 02/06/2023]
Abstract
Major progress in the understanding and treatment of cancer have tremendously improved our knowledge of this complex disease and improved the length and quality of patients' lives. Still, major challenges remain, in particular with respect to cancer metastasis which still escapes effective treatment and remains responsible for 90% of cancer related deaths. In recent years, the advances in cancer cell biology, oncology and tissue engineering converged into the engineered human tissue models of cancer that are increasingly recapitulating many aspects of cancer progression and response to drugs, in a patient-specific context. The complexity and biological fidelity of these models, as well as the specific questions they aim to investigate, vary in a very broad range. When selecting and designing these experimental models, the fundamental question is "how simple is complex enough" to accomplish a specific goal of cancer research. Here we review the state of the art in developing and using the human tissue models in cancer research and developmental drug screening. We describe the main classes of models providing different levels of biological fidelity and complexity, discuss their advantages and limitations, and propose a framework for designing an appropriate model for a given study. We close by outlining some of the current needs, opportunities and challenges in this rapidly evolving field.
Collapse
Affiliation(s)
- Kacey Ronaldson-Bouchard
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA
| | - Ilaria Baldassarri
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA
| | - Daniel Naveed Tavakol
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA
| | - Pamela L Graney
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA
| | - Maria Samaritano
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA
| | - Elisa Cimetta
- Department of Industrial Engineering, University of Padua, Via Marzolo 9, 35131 Padova, Italy; Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35127 Padova, Italy
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA; Department of Medicine, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA; College of Dental Medicine, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA.
| |
Collapse
|
35
|
Biomimetic hydrogel supports initiation and growth of patient-derived breast tumor organoids. Nat Commun 2022; 13:1466. [PMID: 35304464 PMCID: PMC8933543 DOI: 10.1038/s41467-022-28788-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/01/2022] [Indexed: 12/15/2022] Open
Abstract
Patient-derived tumor organoids (PDOs) are a highly promising preclinical model that recapitulates the histology, gene expression, and drug response of the donor patient tumor. Currently, PDO culture relies on basement-membrane extract (BME), which suffers from batch-to-batch variability, the presence of xenogeneic compounds and residual growth factors, and poor control of mechanical properties. Additionally, for the development of new organoid lines from patient-derived xenografts, contamination of murine host cells poses a problem. We propose a nanofibrillar hydrogel (EKGel) for the initiation and growth of breast cancer PDOs. PDOs grown in EKGel have histopathologic features, gene expression, and drug response that are similar to those of their parental tumors and PDOs in BME. In addition, EKGel offers reduced batch-to-batch variability, a range of mechanical properties, and suppressed contamination from murine cells. These results show that EKGel is an improved alternative to BME matrices for the initiation, growth, and maintenance of breast cancer PDOs. Patient-derived tumour organoids are important preclinical models but suffer from variability from the use of basement-membrane extract and cell contamination. Here, the authors report on the development of mimetic nanofibrilar hydrogel which supports tumour organoid growth with reduced batch variability and cell contamination.
Collapse
|
36
|
Nguyen RY, Xiao H, Gong X, Arroyo A, Cabral AT, Fischer TT, Flores KM, Zhang X, Robert ME, Ehrlich BE, Mak M. Cytoskeletal dynamics regulates stromal invasion behavior of distinct liver cancer subtypes. Commun Biol 2022; 5:202. [PMID: 35241781 PMCID: PMC8894393 DOI: 10.1038/s42003-022-03121-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/08/2022] [Indexed: 02/07/2023] Open
Abstract
Drug treatment against liver cancer has limited efficacy due to heterogeneous response among liver cancer subtypes. In addition, the functional biophysical phenotypes which arise from this heterogeneity and contribute to aggressive invasive behavior remain poorly understood. This study interrogated how heterogeneity in liver cancer subtypes contributes to differences in invasive phenotypes and drug response. Utilizing histological analysis, quantitative 2D invasion metrics, reconstituted 3D hydrogels, and bioinformatics, our study linked cytoskeletal dynamics to differential invasion profiles and drug resistance in liver cancer subtypes. We investigated cytoskeletal regulation in 2D and 3D culture environments using two liver cancer cell lines, SNU-475 and HepG2, chosen for their distinct cytoskeletal features and invasion profiles. For SNU-475 cells, a model for aggressive liver cancer, many cytoskeletal inhibitors abrogated 2D migration but only some suppressed 3D migration. For HepG2 cells, cytoskeletal inhibition did not significantly affect 3D migration but did affect proliferative capabilities and spheroid core growth. This study highlights cytoskeleton driven phenotypic variation, their consequences and coexistence within the same tumor, as well as efficacy of targeting biophysical phenotypes that may be masked in traditional screens against tumor growth.
Collapse
Affiliation(s)
- Ryan Y Nguyen
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Hugh Xiao
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Xiangyu Gong
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Alfredo Arroyo
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Aidan T Cabral
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Tom T Fischer
- Department of Pharmacology, Yale University, New Haven, CT, USA
- Institute of Pharmacology, University of Heidelberg, Heidelberg, Germany
| | - Kaitlin M Flores
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Xuchen Zhang
- Department of Pathology, Yale University, New Haven, CT, USA
| | - Marie E Robert
- Department of Pathology, Yale University, New Haven, CT, USA
| | | | - Michael Mak
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
37
|
Chen W, Yuan Y, Li C, Mao H, Liu B, Jiang X. Modulating Tumor Extracellular Matrix by Simultaneous Inhibition of Two Cancer Cell Receptors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109376. [PMID: 34967049 DOI: 10.1002/adma.202109376] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/25/2021] [Indexed: 06/14/2023]
Abstract
The extracellular matrix (ECM) is involved in fundamental cellular processes and pathological progression of many diseases. While most research and current knowledge focuses on the processes of biological and mechanical changes in ECM signaling residing cancer cells to respond, little is known of the converse-of how cancer cells initiate the changes of ECM properties. Here, it is reported that blocking the cancer cell signaling leads to disruption of tumor ECM. Using recombinant proteins (RPs) and recombinant protein-drug conjugates (RPDCs) that simultaneously target both epidermal growth factor receptor and integrin, it is demonstrated that multireceptor-mediated active modulation of tumor ECM can inhibit and even reverse tumor remodeling of the physiological and structural microenvironment. These results not only provide insights into the regulatory roles of cancer cells in developing a protumoral microenvironment, but also introduce a new therapeutic platform or strategy to treat cancers.
Collapse
Affiliation(s)
- Weizhi Chen
- College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yang Yuan
- College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Cheng Li
- College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, 30322, USA
| | - Baorui Liu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Xiqun Jiang
- College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
38
|
Cancer-Associated Fibroblasts: Mechanisms of Tumor Progression and Novel Therapeutic Targets. Cancers (Basel) 2022; 14:cancers14051231. [PMID: 35267539 PMCID: PMC8909913 DOI: 10.3390/cancers14051231] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The tumor microenvironment plays an important role in determining the biological behavior of several of the more aggressive malignancies. Among the various cell types evident in the tumor “field”, cancer-associated fibroblasts (CAFs) are a heterogenous collection of activated fibroblasts secreting a wide repertoire of factors that regulate tumor development and progression, inflammation, drug resistance, metastasis and recurrence. Insensitivity to chemotherapeutics and metastatic spread are the major contributors to cancer patient mortality. This review discusses the complex interactions between CAFs and the various populations of normal and neoplastic cells that interact within the dynamic confines of the tumor microenvironment with a focus on the involved pathways and genes. Abstract Cancer-associated fibroblasts (CAFs) are a heterogenous population of stromal cells found in solid malignancies that coexist with the growing tumor mass and other immune/nonimmune cellular elements. In certain neoplasms (e.g., desmoplastic tumors), CAFs are the prominent mesenchymal cell type in the tumor microenvironment, where their presence and abundance signal a poor prognosis in multiple cancers. CAFs play a major role in the progression of various malignancies by remodeling the supporting stromal matrix into a dense, fibrotic structure while secreting factors that lead to the acquisition of cancer stem-like characteristics and promoting tumor cell survival, reduced sensitivity to chemotherapeutics, aggressive growth and metastasis. Tumors with high stromal fibrotic signatures are more likely to be associated with drug resistance and eventual relapse. Clarifying the molecular basis for such multidirectional crosstalk among the various normal and neoplastic cell types present in the tumor microenvironment may yield novel targets and new opportunities for therapeutic intervention. This review highlights the most recent concepts regarding the complexity of CAF biology including CAF heterogeneity, functionality in drug resistance, contribution to a progressively fibrotic tumor stroma, the involved signaling pathways and the participating genes.
Collapse
|
39
|
p53 Signaling on Microenvironment and Its Contribution to Tissue Chemoresistance. MEMBRANES 2022; 12:membranes12020202. [PMID: 35207121 PMCID: PMC8877489 DOI: 10.3390/membranes12020202] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 02/06/2023]
Abstract
Chemoresistance persists as a significant, unresolved clinical challenge in many cancer types. The tumor microenvironment, in which cancer cells reside and interact with non-cancer cells and tissue structures, has a known role in promoting every aspect of tumor progression, including chemoresistance. However, the molecular determinants of microenvironment-driven chemoresistance are mainly unknown. In this review, we propose that the TP53 tumor suppressor, found mutant in over half of human cancers, is a crucial regulator of cancer cell-microenvironment crosstalk and a prime candidate for the investigation of microenvironment-specific modulators of chemoresistance. Wild-type p53 controls the secretion of factors that inhibit the tumor microenvironment, whereas altered secretion or mutant p53 interfere with p53 function to promote chemoresistance. We highlight resistance mechanisms promoted by mutant p53 and enforced by the microenvironment, such as extracellular matrix remodeling and adaptation to hypoxia. Alterations of wild-type p53 extracellular function may create a cascade of spatial amplification loops in the tumor tissue that can influence cellular behavior far from the initial oncogenic mutation. We discuss the concept of chemoresistance as a multicellular/tissue-level process rather than intrinsically cellular. Targeting p53-dependent crosstalk mechanisms between cancer cells and components of the tumor environment might disrupt the waves of chemoresistance that spread across the tumor tissue, increasing the efficacy of chemotherapeutic agents.
Collapse
|
40
|
The extracellular matrix of hematopoietic stem cell niches. Adv Drug Deliv Rev 2022; 181:114069. [PMID: 34838648 PMCID: PMC8860232 DOI: 10.1016/j.addr.2021.114069] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 12/21/2022]
Abstract
Comprehensive overview of different classes of ECM molecules in the HSC niche. Overview of current knowledge on role of biophysics of the HSC niche. Description of approaches to create artificial stem cell niches for several application. Importance of considering ECM in drug development and testing.
Hematopoietic stem cells (HSCs) are the life-long source of all types of blood cells. Their function is controlled by their direct microenvironment, the HSC niche in the bone marrow. Although the importance of the extracellular matrix (ECM) in the niche by orchestrating niche architecture and cellular function is widely acknowledged, it is still underexplored. In this review, we provide a comprehensive overview of the ECM in HSC niches. For this purpose, we first briefly outline HSC niche biology and then review the role of the different classes of ECM molecules in the niche one by one and how they are perceived by cells. Matrix remodeling and the emerging importance of biophysics in HSC niche function are discussed. Finally, the application of the current knowledge of ECM in the niche in form of artificial HSC niches for HSC expansion or targeted differentiation as well as drug testing is reviewed.
Collapse
|
41
|
Jeznach O, Kołbuk D, Marzec M, Bernasik A, Sajkiewicz P. Aminolysis as a surface functionalization method of aliphatic polyester nonwovens: impact on material properties and biological response. RSC Adv 2022; 12:11303-11317. [PMID: 35425046 PMCID: PMC8997583 DOI: 10.1039/d2ra00542e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/02/2022] [Indexed: 12/14/2022] Open
Abstract
Aminolysis treatment improves L929 cell–scaffold interaction. It is possible to reach compromise between the concentration of NH2 groups and mechanical properties change.
Collapse
Affiliation(s)
- Oliwia Jeznach
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02-106 Warsaw, Poland
| | - Dorota Kołbuk
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02-106 Warsaw, Poland
| | - Mateusz Marzec
- AGH University of Science and Technology, al. Adama Mickiewicza 30, 30-059 Cracow, Poland
| | - Andrzej Bernasik
- AGH University of Science and Technology, al. Adama Mickiewicza 30, 30-059 Cracow, Poland
| | - Paweł Sajkiewicz
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02-106 Warsaw, Poland
| |
Collapse
|
42
|
Brewer G, Fortier AM, Park M, Moraes C. The case for cancer-associated fibroblasts: essential elements in cancer drug discovery? FUTURE DRUG DISCOVERY 2022; 4:FDD71. [PMID: 35600290 PMCID: PMC9112234 DOI: 10.4155/fdd-2021-0004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 02/21/2022] [Indexed: 12/15/2022] Open
Abstract
Although cancer-associated fibroblasts (CAFs) have gained increased attention for supporting cancer progression, current CAF-targeted therapeutic options are limited and failing in clinical trials. As the largest component of the tumor microenvironment (TME), CAFs alter the biochemical and physical structure of the TME, modulating cancer progression. Here, we review the role of CAFs in altering drug response, modifying the TME mechanics and the current models for studying CAFs. To provide new perspectives, we highlight key considerations of CAF activity and discuss emerging technologies that can better address CAFs; and therefore, increase the likelihood of therapeutic efficacy. We argue that CAFs are crucial components of the cancer drug discovery pipeline and incorporating these cells will improve drug discovery success rates.
Collapse
Affiliation(s)
- Gabrielle Brewer
- Rosalind & Morris Goodman Cancer Research Centre, McGill University, 1160 Avenues des Pins, Montréal, QC, H3A 0G4, Canada
- Department of Biochemistry, McGill University, 3649 Promenade Sir-William-Osler, Montréal, QC, H3A 0G4, Canada
| | - Anne-Marie Fortier
- Rosalind & Morris Goodman Cancer Research Centre, McGill University, 1160 Avenues des Pins, Montréal, QC, H3A 0G4, Canada
| | - Morag Park
- Rosalind & Morris Goodman Cancer Research Centre, McGill University, 1160 Avenues des Pins, Montréal, QC, H3A 0G4, Canada
- Department of Biochemistry, McGill University, 3649 Promenade Sir-William-Osler, Montréal, QC, H3A 0G4, Canada
- Department of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montréal, QC, H3A 0G4, Canada
- Department of Oncology, McGill University, 5100 de Maisonneuve Blvd. West, Montréal, QC, H3A 0G4, Canada
- Department of Pathology, McGill University, 3775 rue University, Montréal, QC, H3A 0G4, Canada
| | - Christopher Moraes
- Rosalind & Morris Goodman Cancer Research Centre, McGill University, 1160 Avenues des Pins, Montréal, QC, H3A 0G4, Canada
- Department of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montréal, QC, H3A 0G4, Canada
- Department of Chemical Engineering, McGill University, 3610 rue University, Montréal, QC, H3A 0G4, Canada
- Department of Biomedical Engineering, McGill University, 3775 rue University, Montréal, QC, H3A 0G4, Canada
| |
Collapse
|
43
|
Barbosa MAG, Xavier CPR, Pereira RF, Petrikaitė V, Vasconcelos MH. 3D Cell Culture Models as Recapitulators of the Tumor Microenvironment for the Screening of Anti-Cancer Drugs. Cancers (Basel) 2021; 14:190. [PMID: 35008353 PMCID: PMC8749977 DOI: 10.3390/cancers14010190] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Today, innovative three-dimensional (3D) cell culture models have been proposed as viable and biomimetic alternatives for initial drug screening, allowing the improvement of the efficiency of drug development. These models are gaining popularity, given their ability to reproduce key aspects of the tumor microenvironment, concerning the 3D tumor architecture as well as the interactions of tumor cells with the extracellular matrix and surrounding non-tumor cells. The development of accurate 3D models may become beneficial to decrease the use of laboratory animals in scientific research, in accordance with the European Union's regulation on the 3R rule (Replacement, Reduction, Refinement). This review focuses on the impact of 3D cell culture models on cancer research, discussing their advantages, limitations, and compatibility with high-throughput screenings and automated systems. An insight is also given on the adequacy of the available readouts for the interpretation of the data obtained from the 3D cell culture models. Importantly, we also emphasize the need for the incorporation of additional and complementary microenvironment elements on the design of 3D cell culture models, towards improved predictive value of drug efficacy.
Collapse
Affiliation(s)
- Mélanie A. G. Barbosa
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; (M.A.G.B.); (C.P.R.X.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
| | - Cristina P. R. Xavier
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; (M.A.G.B.); (C.P.R.X.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
| | - Rúben F. Pereira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- Biofabrication Group, INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Vilma Petrikaitė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, A. Mickevičiaus g 9, LT-44307 Kaunas, Lithuania;
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| | - M. Helena Vasconcelos
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; (M.A.G.B.); (C.P.R.X.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- Department of Biological Sciences, FFUP—Faculty of Pharmacy of the University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
44
|
Wei Q, Wang S, Han F, Wang H, Zhang W, Yu Q, Liu C, Ding L, Wang J, Yu L, Zhu C, Li B, Bl, Cz, Cz, Cz, Qw, Sw, Fh, Hw, Wz, Qy, Cl, Ld, Jw, Ly, Cz, Qw. Cellular modulation by the mechanical cues from biomaterials for tissue engineering. BIOMATERIALS TRANSLATIONAL 2021; 2:323-342. [PMID: 35837415 PMCID: PMC9255801 DOI: 10.12336/biomatertransl.2021.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/13/2021] [Accepted: 07/10/2021] [Indexed: 01/17/2023]
Abstract
Mechanical cues from the extracellular matrix (ECM) microenvironment are known to be significant in modulating the fate of stem cells to guide developmental processes and maintain bodily homeostasis. Tissue engineering has provided a promising approach to the repair or regeneration of damaged tissues. Scaffolds are fundamental in cell-based regenerative therapies. Developing artificial ECM that mimics the mechanical properties of native ECM would greatly help to guide cell functions and thus promote tissue regeneration. In this review, we introduce various mechanical cues provided by the ECM including elasticity, viscoelasticity, topography, and external stimuli, and their effects on cell behaviours. Meanwhile, we discuss the underlying principles and strategies to develop natural or synthetic biomaterials with different mechanical properties for cellular modulation, and explore the mechanism by which the mechanical cues from biomaterials regulate cell function toward tissue regeneration. We also discuss the challenges in multimodal mechanical modulation of cell behaviours and the interplay between mechanical cues and other microenvironmental factors.
Collapse
Affiliation(s)
- Qiang Wei
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Shenghao Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Feng Han
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Huan Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Weidong Zhang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Qifan Yu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Changjiang Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Luguang Ding
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Jiayuan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Lili Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Caihong Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, China,Corresponding authors: Caihong Zhu, ; Bin Li,
| | - Bin Li
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China,College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, China,China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang Province, China,Corresponding authors: Caihong Zhu, ; Bin Li,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Eijkenboom L, Palacio-Castañeda V, Groenman F, Braat D, Beerendonk C, Brock R, Verdurmen W, Peek R. Assessing the use of tumor-specific DARPin-toxin fusion proteins for ex vivo purging of cancer metastases from human ovarian cortex before autotransplantation. F&S SCIENCE 2021; 2:330-344. [PMID: 35559858 DOI: 10.1016/j.xfss.2021.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To assess the use of tumor-specific designed ankyrin repeat proteins (DARPins) fused to a domain of Pseudomonas aeruginosa exotoxin A for purging of cancer metastases from the ovarian cortex. DESIGN Experimental study. SETTING University medical center. PATIENT(S) Human ovarian cortex. INTERVENTION(S) Ovarian cortex harboring artificially induced breast cancer metastases was treated with DARPins targeted to epithelial cell adhesion molecule (EpCAM) and human epidermal growth factor receptor 2 (HER2). MAIN OUTCOME MEASURE(S) The presence of any remaining cancer cells after purging was analyzed by (immuno)histochemistry and reverse transcriptase polymerase chain reaction. Effects on the viability of the ovarian cortex were determined by (immuno)histology, a follicular viability assay, and an assay to determine the in vitro growth capacity of small follicles. RESULT(S) After purging with EpCAM-targeted DARPin, all EpCAM-positive breast cancer cells were eradicated from the ovarian cortex. Although treatment had no effect on the morphology or viability of small follicles, a sharp decrease in oocyte viability during in vitro growth was observed, presumably due to low-level expression of EpCAM on oocytes. The HER2-targeted DARPins had no detrimental effects on the morphology, viability, or in vitro growth of small follicles. HER2-positive breast cancer foci were fully eliminated from the ovarian cortex, and the reverse transcriptase polymerase chain reaction showed a decrease to basal levels of HER2 mRNA after purging. CONCLUSION(S) Purging cancer metastases from ovarian cortex without impairing ovarian tissue integrity is possible by targeting tumor cell surface proteins with exotoxin A-fused DARPins. By adapting the target specificity of the cytotoxic DARPin fusions, it should be possible to eradicate metastases from all types of malignancies.
Collapse
Affiliation(s)
- Lotte Eijkenboom
- Department of Obstetrics and Gynaecology, Radboud University Medical Center, Nijmegen, Netherlands.
| | - Valentina Palacio-Castañeda
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Freek Groenman
- Department of Obstetrics and Gynecology, Amsterdam University Medical Center, Location Vrije Universiteit, Amsterdam, Netherlands
| | - Didi Braat
- Department of Obstetrics and Gynaecology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Catharina Beerendonk
- Department of Obstetrics and Gynaecology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Roland Brock
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands; Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Kingdom of Bahrain
| | - Wouter Verdurmen
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ronald Peek
- Department of Obstetrics and Gynaecology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
46
|
The metabolic flexibility of quiescent CSC: implications for chemotherapy resistance. Cell Death Dis 2021; 12:835. [PMID: 34482364 PMCID: PMC8418609 DOI: 10.1038/s41419-021-04116-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 08/10/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022]
Abstract
Quiescence has been observed in stem cells (SCs), including adult SCs and cancer SCs (CSCs). Conventional chemotherapies mostly target proliferating cancer cells, while the quiescent state favors CSCs escape to chemotherapeutic drugs, leaving risks for tumor recurrence or metastasis. The tumor microenvironment (TME) provides various signals that maintain resident quiescent CSCs, protect them from immune surveillance, and facilitates their recurrence potential. Since the TME has the potential to support and initiate stem cell-like programs in cancer cells, targeting the TME components may prove to be a powerful modality for the treatment of chemotherapy resistance. In addition, an increasing number of studies have discovered that CSCs exhibit the potential of metabolic flexibility when metabolic substrates are limited, and display increased robustness in response to stress. Accompanied by chemotherapy that targets proliferative cancer cells, treatments that modulate CSC quiescence through the regulation of metabolic pathways also show promise. In this review, we focus on the roles of metabolic flexibility and the TME on CSCs quiescence and further discuss potential treatments of targeting CSCs and the TME to limit chemotherapy resistance.
Collapse
|
47
|
Wang MM, Cui JF. Role of mechanosensitive ion channel Piezo1 in tumors. Shijie Huaren Xiaohua Zazhi 2021; 29:758-764. [DOI: 10.11569/wcjd.v29.i14.758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A better understanding of mechanotransduction mechanisms is the key to exploring biomechanical signal-regulated tumor malignant characteristics, and it is also the theoretical and practical basis for effective intervention from the upstream of mechanical cues. The discovery of the novel mechanosensitive ion channel protein Piezo1 (piezo type mechanosensitive ion channel component 1) provides a new perspective for the study of mechanotransduction mechanism in tumors. This article summarizes some of the latest research progress of Piezo1 in modulating tumor progression, including inducing cell carcinogenesis; regulating cell cycle, proliferation, invasion, and metastasis; influencing tumor stemness and angiogenesis; as well as reprogramming tumor immune microenvironment, etc.
Collapse
Affiliation(s)
- Mi-Mi Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jie-Feng Cui
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
48
|
Ansardamavandi A, Tafazzoli-Shadpour M. The functional cross talk between cancer cells and cancer associated fibroblasts from a cancer mechanics perspective. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119103. [PMID: 34293346 DOI: 10.1016/j.bbamcr.2021.119103] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/13/2021] [Accepted: 07/18/2021] [Indexed: 12/12/2022]
Abstract
The function of biological tissues in health and disease is regulated at cellular level and is highly influenced by the physical microenvironment, through the interaction of forces between cells and ECM, which are perceived through mechanosensing pathways. In cancer, both chemical and physical signaling cascades and their interactions are involved during cell-cell and cell-ECM communications to meet requirements of tumor growth. Among stroma cells, cancer associated fibroblasts (CAFs) play key role in tumor growth and pave the way for cancer cells to initiate metastasis and invasion to other tissues, and without recruitment of CAFs, the process of cancer invasion is dysfunctional. This is through an intense chemical and physical cross talks with tumor cells, and interactive remodeling of ECM. During such interaction CAFs apply traction forces and depending on the mechanical properties, deform ECM and in return receive physical signals from the micromechanical environment. Such interaction leads to ECM remodeling by manipulating ECM structure and its mechanical properties. The results are in form of deposition of extra fibers, stiffening, rearrangement and reorganization of fibrous structure, and degradation which are due to a complex secretion and expression of different markers triggered by mechanosensing of tumor cells, specially CAFs. Such events define cancer progress and invasion of cancer cells. A systemic knowledge of chemical and physical factors provides a holistic view of how cancer process and enhances the current treatment methods to provide more diversity among targets that involves tumor cells and ECM structure.
Collapse
Affiliation(s)
- Arian Ansardamavandi
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | |
Collapse
|
49
|
Özkan A, Stolley DL, Cressman ENK, McMillin M, DeMorrow S, Yankeelov TE, Rylander MN. Tumor Microenvironment Alters Chemoresistance of Hepatocellular Carcinoma Through CYP3A4 Metabolic Activity. Front Oncol 2021; 11:662135. [PMID: 34262860 PMCID: PMC8273608 DOI: 10.3389/fonc.2021.662135] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/07/2021] [Indexed: 12/20/2022] Open
Abstract
Variations in tumor biology from patient to patient combined with the low overall survival rate of hepatocellular carcinoma (HCC) present significant clinical challenges. During the progression of chronic liver diseases from inflammation to the development of HCC, microenvironmental properties, including tissue stiffness and oxygen concentration, change over time. This can potentially impact drug metabolism and subsequent therapy response to commonly utilized therapeutics, such as doxorubicin, multi-kinase inhibitors (e.g., sorafenib), and other drugs, including immunotherapies. In this study, we utilized four common HCC cell lines embedded in 3D collagen type-I gels of varying stiffnesses to mimic normal and cirrhotic livers with environmental oxygen regulation to quantify the impact of these microenvironmental factors on HCC chemoresistance. In general, we found that HCC cells with higher baseline levels of cytochrome p450-3A4 (CYP3A4) enzyme expression, HepG2 and C3Asub28, exhibited a cirrhosis-dependent increase in doxorubicin chemoresistance. Under the same conditions, HCC cell lines with lower CYP3A4 expression, HuH-7 and Hep3B2, showed a decrease in doxorubicin chemoresistance in response to an increase in microenvironmental stiffness. This differential therapeutic response was correlated with the regulation of CYP3A4 expression levels under the influence of stiffness and oxygen variation. In all tested HCC cell lines, the addition of sorafenib lowered the required doxorubicin dose to induce significant levels of cell death, demonstrating its potential to help reduce systemic doxorubicin toxicity when used in combination. These results suggest that patient-specific tumor microenvironmental factors, including tissue stiffness, hypoxia, and CYP3A4 activity levels, may need to be considered for more effective use of chemotherapeutics in HCC patients.
Collapse
Affiliation(s)
- Alican Özkan
- Department of Mechanical Engineering, The University of Texas, Austin, TX, United States
| | - Danielle L. Stolley
- Department of Biomedical Engineering, The University of Texas, Austin, TX, United States
| | - Erik N. K. Cressman
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Matthew McMillin
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
- Central Texas Veterans Health Care System, Temple, TX, United States
| | - Sharon DeMorrow
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
- Central Texas Veterans Health Care System, Temple, TX, United States
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States
| | - Thomas E. Yankeelov
- Department of Biomedical Engineering, The University of Texas, Austin, TX, United States
- Oden Institute for Computational Engineering and Sciences, The University of Texas, Austin, TX, United States
- Departments of Diagnostic Medicine, The University of Texas, Austin, TX, United States
- Department of Oncology, The University of Texas, Austin, TX, United States
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas, Austin, TX, United States
| | - Marissa Nichole Rylander
- Department of Mechanical Engineering, The University of Texas, Austin, TX, United States
- Department of Biomedical Engineering, The University of Texas, Austin, TX, United States
- Oden Institute for Computational Engineering and Sciences, The University of Texas, Austin, TX, United States
| |
Collapse
|
50
|
Co-evolution of matrisome and adaptive adhesion dynamics drives ovarian cancer chemoresistance. Nat Commun 2021; 12:3904. [PMID: 34162871 PMCID: PMC8222388 DOI: 10.1038/s41467-021-24009-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 05/20/2021] [Indexed: 02/05/2023] Open
Abstract
Due to its dynamic nature, the evolution of cancer cell-extracellular matrix (ECM) crosstalk, critically affecting metastasis and treatment resistance, remains elusive. Our results show that platinum-chemotherapy itself enhances resistance by progressively changing the cancer cell-intrinsic adhesion signaling and cell-surrounding ECM. Examining ovarian high-grade serous carcinoma (HGSC) transcriptome and histology, we describe the fibrotic ECM heterogeneity at primary tumors and distinct metastatic sites, prior and after chemotherapy. Using cell models from systematic ECM screen to collagen-based 2D and 3D cultures, we demonstrate that both specific ECM substrates and stiffness increase resistance to platinum-mediated, apoptosis-inducing DNA damage via FAK and β1 integrin-pMLC-YAP signaling. Among such substrates around metastatic HGSCs, COL6 was upregulated by chemotherapy and enhanced the resistance of relapse, but not treatment-naïve, HGSC organoids. These results identify matrix adhesion as an adaptive response, driving HGSC aggressiveness via co-evolving ECM composition and sensing, suggesting stromal and tumor strategies for ECM pathway targeting.
Collapse
|