1
|
Basta DW, Campbell IW, Sullivan EJ, Hotinger JA, Hullahalli K, Garg M, Waldor MK. Inducible transposon mutagenesis identifies bacterial fitness determinants during infection in mice. Nat Microbiol 2025; 10:1171-1183. [PMID: 40148565 PMCID: PMC12055562 DOI: 10.1038/s41564-025-01975-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 03/03/2025] [Indexed: 03/29/2025]
Abstract
Transposon insertion sequencing (Tn-seq) is a powerful method for genome-scale forward genetics in bacteria. However, inefficient transposon delivery or stochastic loss of mutants due to population bottlenecks can limit its effectiveness. Here we have developed 'InducTn-seq', where an arabinose-inducible Tn5 transposase enables temporal control of mini-Tn5 transposition. InducTn-seq generated up to 1.2 million transposon mutants from a single colony of enterotoxigenic Escherichia coli, Salmonella typhimurium, Shigella flexneri and Citrobacter rodentium. This mutant diversity enabled more sensitive detection of subtle fitness defects and measurement of quantitative fitness effects for essential and non-essential genes. Applying InducTn-seq to C. rodentium in a mouse model of infectious colitis bypassed a highly restrictive host bottleneck, generating a diverse population of >5 × 105 unique transposon mutants compared to 10-102 recovered by traditional Tn-seq. This in vivo screen revealed that the C. rodentium type I-E CRISPR system is required to suppress a toxin otherwise activated during gut colonization. Our findings highlight the potential of InducTn-seq for genome-scale forward genetic screens in bacteria.
Collapse
Affiliation(s)
- David W Basta
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Ian W Campbell
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Emily J Sullivan
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Julia A Hotinger
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Karthik Hullahalli
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Mehek Garg
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
2
|
Schwardt NH, Halsey CR, Sanchez ME, Ngo BM, Reniere ML. A genome-wide screen in ex vivo gallbladders identifies Listeria monocytogenes factors required for virulence in vivo. PLoS Pathog 2025; 21:e1012491. [PMID: 40029882 PMCID: PMC11892859 DOI: 10.1371/journal.ppat.1012491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 03/10/2025] [Accepted: 01/29/2025] [Indexed: 03/12/2025] Open
Abstract
Listeria monocytogenes is a Gram-positive pathogen that causes the severe foodborne disease listeriosis. Following oral infection of the host, L. monocytogenes disseminates from the gastrointestinal tract to peripheral organs, including the gallbladder, where it replicates to high densities, establishing the gallbladder as the primary bacterial reservoir. Despite its importance in pathogenesis, little is known about how L. monocytogenes survives and replicates in the gallbladder. In this study, we assessed the L. monocytogenes genes required for growth and survival in ex vivo non-human primate gallbladders using a transposon sequencing approach. The screen identified 43 genes required for replication in the gallbladder, some of which were known to be important for virulence, and others had not been previously studied in the context of infection. We evaluated the roles of 19 genes identified in our screen both in vitro and in vivo, and demonstrate that most were required for replication in bile in vitro, for intracellular infection of murine cells in tissue culture, and for virulence in an oral murine model of listeriosis. Interestingly, strains lacking the mannose and glucose phosphoenolpyruvate-dependent phosphotransferase system (PTS) permeases Mpt and Mpo exhibited no defects in intracellular growth or intercellular spread, but were significantly attenuated during murine infection. While the roles of PTS systems in vivo were not previously appreciated, these results suggest that PTS permeases are necessary for extracellular replication during infection. Overall, this study demonstrates that L. monocytogenes genes required for replication in the gallbladder also play broader roles in disease.
Collapse
Affiliation(s)
- Nicole H. Schwardt
- Microbiology Department, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Cortney R. Halsey
- Microbiology Department, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Madison E. Sanchez
- Microbiology Department, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Billy M. Ngo
- Microbiology Department, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Michelle L. Reniere
- Microbiology Department, University of Washington School of Medicine, Seattle, Washington, United States of America
| |
Collapse
|
3
|
Hotinger JA, Campbell IW, Hullahalli K, Osaki A, Waldor MK. Quantification of Salmonella enterica serovar Typhimurium population dynamics in murine infection using a highly diverse barcoded library. eLife 2025; 13:RP101388. [PMID: 39945742 PMCID: PMC11825126 DOI: 10.7554/elife.101388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2025] Open
Abstract
Murine models are often used to study the pathogenicity and dissemination of the enteric pathogen Salmonella enterica serovar Typhimurium. Here, we quantified S. Typhimurium population dynamics in mice using the STAMPR analytic pipeline and a highly diverse S. Typhimurium barcoded library containing ~55,000 unique strains distinguishable by genomic barcodes by enumerating S. Typhimurium founding populations and deciphering routes of spread in mice. We found that a severe bottleneck allowed only one in a million cells from an oral inoculum to establish a niche in the intestine. Furthermore, we observed compartmentalization of pathogen populations throughout the intestine, with few barcodes shared between intestinal segments and feces. This severe bottleneck widened and compartmentalization was reduced after streptomycin treatment, suggesting the microbiota plays a key role in restricting the pathogen's colonization and movement within the intestine. Additionally, there was minimal sharing between the intestine and extraintestinal organ populations, indicating dissemination to extraintestinal sites occurs rapidly, before substantial pathogen expansion in the intestine. Bypassing the intestinal bottleneck by inoculating mice via intravenous or intraperitoneal injection revealed that Salmonella re-enters the intestine after establishing niches in extraintestinal sites by at least two distinct pathways. One pathway results in a diverse intestinal population. The other re-seeding pathway is through the bile, where the pathogen is often clonal, leading to clonal intestinal populations and correlates with gallbladder pathology. Together, these findings deepen our understanding of Salmonella population dynamics.
Collapse
Affiliation(s)
- Julia A Hotinger
- Division of Infectious Diseases, Brigham & Women's HospitalBostonUnited States
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
| | - Ian W Campbell
- Division of Infectious Diseases, Brigham & Women's HospitalBostonUnited States
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
| | - Karthik Hullahalli
- Division of Infectious Diseases, Brigham & Women's HospitalBostonUnited States
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
| | - Akina Osaki
- Division of Infectious Diseases, Brigham & Women's HospitalBostonUnited States
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham & Women's HospitalBostonUnited States
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
- Howard Hughes Medical InstituteBostonUnited States
| |
Collapse
|
4
|
Leitner DR, Zingl FG, Morano AA, Zhang H, Waldor MK. The Mla pathway promotes Vibrio cholerae re-expansion from stationary phase. mBio 2025; 16:e0343324. [PMID: 39714184 PMCID: PMC11796348 DOI: 10.1128/mbio.03433-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 12/24/2024] Open
Abstract
Bacteria have evolved diverse strategies to ensure survival under nutrient-limited conditions, where rapid energy generation is not achievable. Here, we performed a transposon insertion site sequencing loss-of-function screen to identify Vibrio cholerae genes that promote pathogen fitness in stationary phase. We discovered that the maintenance of lipid asymmetry (Mla) pathway, which is crucial for transferring phospholipids from the outer to the inner membrane, is critical for stationary phase fitness. Competition experiments with barcoded and fluorophore labeled wild-type (WT) and mlaE mutant V. cholerae revealed that the Mla pathway promotes re-expansion from 48 h stationary phase cultures. The mutant defect in transitioning out of stationary phase into active growth (culturability) was also observed in monocultures at 48 h. However, by 96 h the culturability of the WT and mutant strains were equivalent. By monitoring the abundances of genomically barcoded libraries of WT and ∆mlaE strains, we observed that a few barcodes dominated the mutant culture at 96 h, suggesting that the similarity of the population sizes at this time was caused by expansion of a subpopulation containing a mutation that suppressed the defect of ∆mlaE. Whole genome sequencing revealed that mlaE suppressors inactivated flagellar biosynthesis. Additional mechanistic studies support the idea that the Mla pathway is critical for maintaining the culturability of V. cholerae because it promotes energy homeostasis, likely due to its role in regulating outer membrane vesicle shedding. Together our findings provide insights into the cellular processes that control re-expansion from stationary phase and demonstrate a previously undiscovered role for the Mla pathway. IMPORTANCE Bacteria regularly encounter conditions with nutrient scarcity, where cell growth and division are minimal. Knowledge of the pathways that enable re-growth following nutrient restriction is limited. Here, using the cholera pathogen, we uncovered a role for the Mla pathway, a system that enables phospholipid re-cycling, in promoting Vibrio cholerae re-expansion from stationary phase cultures. Cells labeled with DNA barcodes or fluorophores were useful to demonstrate that though the abundances of wild-type and Mla mutant cells were similar in stationary phase cultures, they had marked differences in their capacities to regrow on plates. Of note, Mla mutant cells lose cell envelope components including high-energy phospholipids due to OMV shedding. Our findings suggest that the defects in cellular energy homeostasis that emerge in the absence of the Mla pathway underlie its importance in maintaining V. cholerae culturability.
Collapse
Affiliation(s)
- Deborah R. Leitner
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Franz G. Zingl
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Alexander A. Morano
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Hailong Zhang
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew K. Waldor
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Holmes CL, Dailey KG, Hullahalli K, Wilcox AE, Mason S, Moricz BS, Unverdorben LV, Balazs GI, Waldor MK, Bachman MA. Patterns of Klebsiella pneumoniae bacteremic dissemination from the lung. Nat Commun 2025; 16:785. [PMID: 39824859 PMCID: PMC11742683 DOI: 10.1038/s41467-025-56095-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/06/2025] [Indexed: 01/20/2025] Open
Abstract
Bacteremia, a leading cause of death, generally arises after bacteria establish infection in a particular tissue and transit to secondary sites. Studying dissemination from primary sites by solely measuring bacterial burdens does not capture the movement of individual clones. By barcoding Klebsiella pneumoniae, a leading cause of bacteremia, we track pathogen dissemination following pneumonia. Variability in organ bacterial burdens is attributable to two distinct dissemination patterns distinguished by the degree of similarity between the lung and systemic sites. In metastatic dissemination, lung bacterial clones undergo heterogeneous expansion and the dominant clones spread to secondary organs, leading to greater similarity between sites. In direct dissemination, bacterial clones exit the lungs without clonal expansion, leading to lower burdens in systemic sites and more dissimilarity from the lung. We uncover bacterial and host factors that influence the dynamics of clonal sharing and expansion. Here, our data reveal unexpected heterogeneity in Klebsiella bacteremia dynamics and define a framework for understanding within-host bacterial dissemination.
Collapse
Affiliation(s)
- Caitlyn L Holmes
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Katherine G Dailey
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Karthik Hullahalli
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Alexis E Wilcox
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sophia Mason
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Bridget S Moricz
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lavinia V Unverdorben
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - George I Balazs
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Matthew K Waldor
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Michael A Bachman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Trende R, Darling TL, Gan T, Wang D, Boon ACM. Barcoded SARS-CoV-2 viruses define the impact of duration and route of exposure on the transmission bottleneck in a hamster model. SCIENCE ADVANCES 2025; 11:eads2927. [PMID: 39813353 PMCID: PMC11778309 DOI: 10.1126/sciadv.ads2927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/13/2024] [Indexed: 01/18/2025]
Abstract
The transmission bottleneck, defined as the number of viruses shed from one host to infect another, is an important determinant of the rate of virus evolution and the level of immunity required to protect against virus transmission. Despite its importance, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission bottleneck remains poorly characterized. We adapted a SARS-CoV-2 reverse genetics system to generate a pool of >200 isogenic SARS-CoV-2 viruses harboring specific 6-nucleotide barcodes, infected donor hamsters with this pool, and exposed contact hamsters to paired infected donors, varying the duration and route of exposure. Following exposure, the nasal turbinates, trachea, and lungs were collected and the number of barcodes in each tissue was enumerated. We found that longer and more direct exposures increased the transmission bottleneck and that the upper airway is the primary source of transmitted virus in this model. Together, these findings highlight the utility of barcoded viruses as tools to rigorously study virus transmission.
Collapse
Affiliation(s)
- Reed Trende
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tamarand L. Darling
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tianyu Gan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Adrianus C. M. Boon
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
7
|
Hotinger JA, Campbell IW, Hullahalli K, Osaki A, Waldor MK. Quantification of Salmonella enterica serovar Typhimurium Population Dynamics in Murine Infection Using a Highly Diverse Barcoded Library. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601246. [PMID: 38979326 PMCID: PMC11230369 DOI: 10.1101/2024.06.28.601246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Murine models are often used to study the pathogenicity and dissemination of the enteric pathogen Salmonella enterica serovar Typhimurium. Here, we quantified S. Typhimurium population dynamics in mice using the STAMPR analytic pipeline and a highly diverse S. Typhimurium barcoded library containing ~55,000 unique strains distinguishable by genomic barcodes by enumerating S. Typhimurium founding populations and deciphering routes of spread in mice. We found that a severe bottleneck allowed only one in a million cells from an oral inoculum to establish a niche in the intestine. Furthermore, we observed compartmentalization of pathogen populations throughout the intestine, with few barcodes shared between intestinal segments and feces. This severe bottleneck widened and compartmentalization was reduced after streptomycin treatment, suggesting the microbiota plays a key role in restricting the pathogen's colonization and movement within the intestine. Additionally, there was minimal sharing between the intestine and extraintestinal organ populations, indicating dissemination to extraintestinal sites occurs rapidly, before substantial pathogen expansion in the intestine. Bypassing the intestinal bottleneck by inoculating mice via intravenous or intraperitoneal injection revealed that Salmonella re-enters the intestine after establishing niches in extraintestinal sites by at least two distinct pathways. One pathway results in a diverse intestinal population. The other re-seeding pathway is through the bile, where the pathogen is often clonal, leading to clonal intestinal populations and correlates with gallbladder pathology. Together, these findings deepen our understanding of Salmonella population dynamics.
Collapse
Affiliation(s)
- Julia A. Hotinger
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Ian W. Campbell
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Karthik Hullahalli
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Akina Osaki
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Matthew K. Waldor
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| |
Collapse
|
8
|
Hafner L, Gadin E, Huang L, Frouin A, Laporte F, Gaultier C, Vieira A, Maudet C, Varet H, Moura A, Bracq-Dieye H, Tessaud-Rita N, Maury M, Dazas M, Legendre R, Gastineau P, Tsai YH, Coppée JY, Charlier C, Patin E, Chikhi R, Rocha EPC, Leclercq A, Disson O, Aschard H, Lecuit M. Differential stress responsiveness determines intraspecies virulence heterogeneity and host adaptation in Listeria monocytogenes. Nat Microbiol 2024; 9:3345-3361. [PMID: 39578578 DOI: 10.1038/s41564-024-01859-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 10/14/2024] [Indexed: 11/24/2024]
Abstract
Microbial pathogenesis is mediated by the expression of virulence genes. However, as microbes with identical virulence gene content can differ in their pathogenic potential, other virulence determinants must be involved. Here, by combining comparative genomics and transcriptomics of a large collection of isolates of the model pathogen Listeria monocytogenes, time-lapse microscopy, in vitro evolution and in vivo experiments, we show that the individual stress responsiveness of L. monocytogenes isolates determines their respective levels of virulence in vivo and reflects their degree of host adaptation. The transcriptional signature that accounts for the heterogeneity in the virulence of L. monocytogenes species is mediated by the stress response regulator SigB and driven by differential stress responsiveness. The tuning of SigB pathway responsiveness is polygenic and influenced by multiple, individually rare gene variations. This study reveals an overarching determinant of microbial virulence, challenging the paradigm of accessory virulence gene content as the major determinant of intraspecies virulence heterogeneity.
Collapse
Affiliation(s)
- Lukas Hafner
- Biology of Infection Unit, Institut Pasteur, Université Paris Cité, Inserm U1117, Paris, France
| | - Enzo Gadin
- Biology of Infection Unit, Institut Pasteur, Université Paris Cité, Inserm U1117, Paris, France
| | - Lei Huang
- Biology of Infection Unit, Institut Pasteur, Université Paris Cité, Inserm U1117, Paris, France
| | - Arthur Frouin
- Statistical Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS USR375, Paris, France
| | - Fabien Laporte
- Statistical Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS USR375, Paris, France
| | - Charlotte Gaultier
- Biology of Infection Unit, Institut Pasteur, Université Paris Cité, Inserm U1117, Paris, France
| | - Afonso Vieira
- Biology of Infection Unit, Institut Pasteur, Université Paris Cité, Inserm U1117, Paris, France
| | - Claire Maudet
- Biology of Infection Unit, Institut Pasteur, Université Paris Cité, Inserm U1117, Paris, France
| | - Hugo Varet
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, Paris, France
| | - Alexandra Moura
- Biology of Infection Unit, Institut Pasteur, Université Paris Cité, Inserm U1117, Paris, France
- National Reference Center and WHO Collaborating Center Listeria, Institut Pasteur, Paris, France
| | - Hélène Bracq-Dieye
- National Reference Center and WHO Collaborating Center Listeria, Institut Pasteur, Paris, France
| | - Nathalie Tessaud-Rita
- National Reference Center and WHO Collaborating Center Listeria, Institut Pasteur, Paris, France
| | - Mylène Maury
- Biology of Infection Unit, Institut Pasteur, Université Paris Cité, Inserm U1117, Paris, France
- National Reference Center and WHO Collaborating Center Listeria, Institut Pasteur, Paris, France
| | - Melody Dazas
- Biology of Infection Unit, Institut Pasteur, Université Paris Cité, Inserm U1117, Paris, France
| | - Rachel Legendre
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, Paris, France
| | - Pauline Gastineau
- Biology of Infection Unit, Institut Pasteur, Université Paris Cité, Inserm U1117, Paris, France
| | - Yu-Huan Tsai
- Biology of Infection Unit, Institut Pasteur, Université Paris Cité, Inserm U1117, Paris, France
| | - Jean-Yves Coppée
- Transcriptome et Epigenome Platform, Biomics, Center for Technological Resources and Research, Institut Pasteur, Université Paris Cité, Paris, France
| | - Caroline Charlier
- Biology of Infection Unit, Institut Pasteur, Université Paris Cité, Inserm U1117, Paris, France
- National Reference Center and WHO Collaborating Center Listeria, Institut Pasteur, Paris, France
- Necker-Enfants Malades University Hospital, Division of Infectious Diseases and Tropical Medicine, Institut Imagine, APHP, Paris, France
| | - Etienne Patin
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
| | - Rayan Chikhi
- Sequence Bioinformatics Group, Institut Pasteur, Université Paris Cité, Paris, France
| | - Eduardo P C Rocha
- Microbial Evolutionary Genomics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3525, Paris, France
| | - Alexandre Leclercq
- National Reference Center and WHO Collaborating Center Listeria, Institut Pasteur, Paris, France
| | - Olivier Disson
- Biology of Infection Unit, Institut Pasteur, Université Paris Cité, Inserm U1117, Paris, France
| | - Hugues Aschard
- Statistical Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS USR375, Paris, France
| | - Marc Lecuit
- Biology of Infection Unit, Institut Pasteur, Université Paris Cité, Inserm U1117, Paris, France.
- National Reference Center and WHO Collaborating Center Listeria, Institut Pasteur, Paris, France.
- Necker-Enfants Malades University Hospital, Division of Infectious Diseases and Tropical Medicine, Institut Imagine, APHP, Paris, France.
| |
Collapse
|
9
|
Graham AL, Regoes RR. Dose-dependent interaction of parasites with tiers of host defense predicts "wormholes" that prolong infection at intermediate inoculum sizes. PLoS Comput Biol 2024; 20:e1012652. [PMID: 39642189 DOI: 10.1371/journal.pcbi.1012652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 12/18/2024] [Accepted: 11/17/2024] [Indexed: 12/08/2024] Open
Abstract
Immune responses are induced by parasite exposure and can in turn reduce parasite burden. Despite such apparently simple rules of engagement, key drivers of within-host dynamics, including dose-dependence of defense and infection duration, have proven difficult to predict. Here, we model how varied inoculating doses interact with multi-tiered host defenses at a site of inoculation, by confronting barrier, innate, and adaptive tiers with replicating and non-replicating parasites across multiple orders of magnitude of dose. We find that, in general, intermediate parasite doses generate infections of longest duration because they are sufficient in number to breach barrier defenses, but insufficient to strongly induce subsequent tiers of defense. These doses reveal "wormholes" in defense from which parasites might profit: Deviation from the hypothesis of independent action, which postulates that each parasite has an independent probability of establishing infection, may therefore be widespread. Interestingly, our model predicts local maxima of duration at two doses-one for each tier transition. While some empirical evidence is consistent with nonlinear dose-dependencies, testing the predicted dynamics will require finer-scale dose variation than experiments usually incorporate. Our results help explain varied infection establishment and duration among differentially-exposed hosts and elucidate evolutionary pressures that shape both virulence and defense.
Collapse
Affiliation(s)
- Andrea L Graham
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- Institute of Integrative Biology, ETH Zürich, Zurich, Switzerland
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| | - Roland R Regoes
- Institute of Integrative Biology, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
10
|
Zhang T, Hasegawa Y, Waldor MK. Enteric bacterial infection stimulates remodelling of bile metabolites to promote intestinal homeostasis. Nat Microbiol 2024; 9:3376-3390. [PMID: 39567665 PMCID: PMC11602723 DOI: 10.1038/s41564-024-01862-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 10/15/2024] [Indexed: 11/22/2024]
Abstract
The liver makes bile, an aqueous solution critical for fat absorption, which is secreted into the duodenum. Despite extensive studies on bile salts, other components of bile are less well characterized. Here we used global metabolomic analysis on bile from specific-pathogen-free, germ-free, Citrobacter rodentium-infected or Listeria monocytogenes-infected mice and identified a metabolome of 812 metabolites that were altered by both microbiota and enteric infection. Hepatic transcriptomics identified enteric-infection-triggered pathways that probably underlie bile remodelling. Enteric infection increased levels of four dicarboxylates in bile, including itaconate. Analysis of Acod1-/- mice indicated that increased itaconate also increased tuft cell abundance, altered microbiota composition and function as detected by metagenomic analysis, and modulated host defence, leading to reduced Vibrio cholerae colonization. Our data suggest that enteric-infection-associated signals are relayed between the intestine and liver and induce transcriptional programmes that shape the bile metabolome, modifying the immunomodulatory and host defence functions of bile.
Collapse
Affiliation(s)
- Ting Zhang
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Yuko Hasegawa
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
11
|
Leitner DR, Zingl FG, Morano AA, Zhang H, Waldor MK. The Mla pathway promotes Vibrio cholerae re-expansion from stationary phase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.622497. [PMID: 39574722 PMCID: PMC11580980 DOI: 10.1101/2024.11.07.622497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
Bacteria have evolved diverse strategies to ensure survival under nutrient-limited conditions, where rapid energy generation is not achievable. Here, we performed a transposon insertion site sequencing loss-of-function screen to identify Vibrio cholerae genes that promote the pathogen's fitness in stationary phase. We discovered that the Mla (maintenance of lipid asymmetry) pathway, which is crucial for transferring phospholipids from the outer to the inner membrane, is critical for stationary phase fitness. Competition experiments with barcoded and fluorophore labeled wild-type and mlaE mutant V. cholerae revealed that the Mla pathway promotes re-expansion from 48h stationary phase cultures. The mutant's defect in transitioning out of stationary phase into active growth (culturability) was also observed in monocultures at 48h. However, by 96h the culturability of the mutant and wild-type strains were equivalent. By monitoring the abundances of genomically barcoded libraries of wild-type and ∆mlaE strains, we observed that a few barcodes dominated the mutant culture at 96h, suggesting that the similarity of the population sizes at this time was caused by expansion of a subpopulation containing a mutation that suppressed the mlaE mutant's defect. Whole genome sequencing revealed that mlaE suppressors inactivated flagellar biosynthesis. Additional mechanistic studies support the idea that the Mla pathway is critical for the maintenance of V. cholerae's culturability as it promotes energy homeostasis, likely due to its role in regulating outer membrane vesicle shedding. Together our findings provide insights into the cellular processes that control re-expansion from stationary phase and demonstrate a previously undiscovered role for the Mla pathway.
Collapse
Affiliation(s)
- Deborah R. Leitner
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Franz G. Zingl
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Alexander A. Morano
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Hailong Zhang
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew K. Waldor
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Tang J, Song H, Li S, Lam SM, Ping J, Yang M, Li N, Chang T, Yu Z, Liu W, Lu Y, Zhu M, Tang Z, Liu Z, Guo YR, Shui G, Veillette A, Zeng Z, Wu N. TMEM16F Expressed in Kupffer Cells Regulates Liver Inflammation and Metabolism to Protect Against Listeria Monocytogenes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402693. [PMID: 39136057 PMCID: PMC11497084 DOI: 10.1002/advs.202402693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/20/2024] [Indexed: 10/25/2024]
Abstract
Infection by bacteria leads to tissue damage and inflammation, which need to be tightly controlled by host mechanisms to avoid deleterious consequences. It is previously reported that TMEM16F, a calcium-activated lipid scramblase expressed in various immune cell types including T cells and neutrophils, is critical for the control of infection by bacterium Listeria monocytogenes (Lm) in vivo. This function correlated with the capacity of TMEM16F to repair the plasma membrane (PM) damage induced in T cells in vitro, by the Lm toxin listeriolysin O (LLO). However, whether the protective effect of TMEM16F on Lm infection in vivo is mediated by an impact in T cells, or in other cell types, is not determined. Herein, the immune cell types and mechanisms implicated in the protective effect of TMEM16F against Lm in vivo are elucidated. Cellular protective effects of TMEM16F correlated with its capacity of lipid scrambling and augment PM fluidity. Using cell type-specific TMEM16F-deficient mice, the indication is obtained that TMEM16F expressed in liver Kupffer cells (KCs), but not in T cells or B cells, is key for protection against Listeria in vivo. In the absence of TMEM16F, Listeria induced PM rupture and fragmentation of KCs in vivo. KC death associated with greater liver damage, inflammatory changes, and dysregulated liver metabolism. Overall, the results uncovered that TMEM16F expressed in Kupffer cells is crucial to protect the host against Listeria infection. This influence is associated with the capacity of Kupffer cell-expressed TMEM16F to prevent excessive inflammation and abnormal liver metabolism.
Collapse
Affiliation(s)
- Jianlong Tang
- Department of ImmunologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and Technology (HUST)Wuhan430030China
- The First Affiliated Hospital of Anhui Medical University and Institute of Clinical ImmunologyAnhui Medical UniversityHefei230032China
| | - Hua Song
- Department of ImmunologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and Technology (HUST)Wuhan430030China
| | - Shimin Li
- The CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230001China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100101China
| | - Jieming Ping
- Department of ImmunologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and Technology (HUST)Wuhan430030China
- The First Affiliated Hospital of Anhui Medical University and Institute of Clinical ImmunologyAnhui Medical UniversityHefei230032China
| | - Mengyun Yang
- Department of ImmunologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and Technology (HUST)Wuhan430030China
- The First Affiliated Hospital of Anhui Medical University and Institute of Clinical ImmunologyAnhui Medical UniversityHefei230032China
| | - Na Li
- Department of biochemistry and molecular biologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Teding Chang
- Department of Traumatic SurgeryTongji Trauma CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Ze Yu
- Department of Otolaryngology‐Head and Neck SurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyNo. 1095 Jiefang AvenueWuhan430030China
| | - Weixiang Liu
- Department of ImmunologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and Technology (HUST)Wuhan430030China
- The First Affiliated Hospital of Anhui Medical University and Institute of Clinical ImmunologyAnhui Medical UniversityHefei230032China
| | - Yan Lu
- Department of Clinical ImmunologyThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Min Zhu
- Department of Thoracic SurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Zhaohui Tang
- Department of Traumatic SurgeryTongji Trauma CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Zheng Liu
- Department of Otolaryngology‐Head and Neck SurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyNo. 1095 Jiefang AvenueWuhan430030China
| | - Yusong R. Guo
- Department of biochemistry and molecular biologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Cell Architecture Research CenterTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100101China
| | - André Veillette
- Laboratory of Molecular OncologyInstitut de recherches cliniques de Montréal (IRCM)MontréalQuébecH2W1R7Canada
- Department of MedicineUniversity of MontréalMontréalQuébecH3T 1J4Canada
- Department of MedicineMcGill UniversityMontréalQuébecH3G 1Y6Canada
| | - Zhutian Zeng
- The CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230001China
- Department of OncologyThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefei230001China
| | - Ning Wu
- Department of ImmunologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and Technology (HUST)Wuhan430030China
- The First Affiliated Hospital of Anhui Medical University and Institute of Clinical ImmunologyAnhui Medical UniversityHefei230032China
- Cell Architecture Research CenterTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| |
Collapse
|
13
|
Stamm CE, McFarland AP, Locke MN, Tabakh H, Tang Q, Thomason MK, Woodward JJ. RECON gene disruption enhances host resistance to enable genome-wide evaluation of intracellular pathogen fitness during infection. mBio 2024; 15:e0133224. [PMID: 38940553 PMCID: PMC11323731 DOI: 10.1128/mbio.01332-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024] Open
Abstract
Transposon sequencing (Tn-seq) is a powerful genome-wide technique to assess bacterial fitness under varying growth conditions. However, screening via Tn-seq in vivo is challenging. Dose limitations and host restrictions create bottlenecks that diminish the transposon mutant pool being screened. Here, we have developed a murine model with a disruption in Akr1c13 that renders the resulting RECON-/- mouse resistant to high-dose infection. We leveraged this model to perform a Tn-seq screen of the human pathogen Listeria monocytogenes in vivo. We identified 135 genes which were required for L. monocytogenes growth in mice including novel genes not previously identified for host survival. We identified organ-specific requirements for L. monocytogenes survival and investigated the role of the folate enzyme FolD in L. monocytogenes liver pathogenesis. A mutant lacking folD was impaired for growth in murine livers by 2.5-log10 compared to wild type and failed to spread cell-to-cell in fibroblasts. In contrast, a mutant in alsR, which encodes a transcription factor that represses an operon involved in D-allose catabolism, was attenuated in both livers and spleens of mice by 4-log10 and 3-log10, respectively, but showed modest phenotypes in in vitro models. We confirmed that dysregulation of the D-allose catabolism operon is responsible for the in vivo growth defect, as deletion of the operon in the ∆alsR background rescued virulence. By undertaking an unbiased, genome-wide screen in mice, we have identified novel fitness determinants for L. monocytogenes host infection, which highlights the utility of the RECON-/- mouse model for future screening efforts. IMPORTANCE Listeria monocytogenes is the gram-positive bacterium responsible for the food-borne disease listeriosis. Although infections with L. monocytogenes are limiting in healthy hosts, vulnerable populations, including pregnant and elderly people, can experience high rates of mortality. Thus, understanding the breadth of genetic requirements for L. monocytogenes in vivo survival will present new opportunities for treatment and prevention of listeriosis. We developed a murine model of infection using a RECON-/- mouse that is restrictive to systemic L. monocytogenes infection. We utilized this model to screen for L. monocytogenes genes required in vivo via transposon sequencing. We identified the liver-specific gene folD and a repressor, alsR, that only exhibits an in vivo growth defect. AlsR controls the expression of the D-allose operon which is a marker in diagnostic techniques to identify pathogenic Listeria. A better understanding of the role of the D-allose operon in human disease may further inform diagnostic and prevention measures.
Collapse
Affiliation(s)
- Chelsea E. Stamm
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Adelle P. McFarland
- Department of Microbiology, University of Washington, Seattle, Washington, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, USA
| | - Melissa N. Locke
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Hannah Tabakh
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Qing Tang
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Maureen K. Thomason
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Joshua J. Woodward
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
14
|
Torres M, Paszti S, Eberl L. Shedding light on bacteria-host interactions with the aid of TnSeq approaches. mBio 2024; 15:e0039024. [PMID: 38722161 PMCID: PMC11237515 DOI: 10.1128/mbio.00390-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024] Open
Abstract
Bacteria are highly adaptable and grow in diverse niches, where they often interact with eukaryotic organisms. These interactions with different hosts span the entire spectrum from symbiosis to pathogenicity and thus determine the lifestyle of the bacterium. Knowledge of the genetic determinants involved in animal and plant host colonization by pathogenic and mutualistic bacteria is not only crucial to discover new drug targets for disease management but also for developing novel biostimulant strategies. In the last decades, significant progress in genome-wide high-throughput technologies such as transposon insertion sequencing has led to the identification of pathways that enable efficient host colonization. However, the extent to which similar genes play a role in this process in different bacteria is yet unclear. This review highlights the commonalities and specificities of bacterial determinants important for bacteria-host interaction.
Collapse
Affiliation(s)
- Marta Torres
- Department of Plant and Microbial Biology, University of Zurich, Zürich, Switzerland
| | - Sarah Paszti
- Department of Plant and Microbial Biology, University of Zurich, Zürich, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, Zürich, Switzerland
| |
Collapse
|
15
|
Trende R, Darling TL, Gan T, Wang D, Boon AC. Barcoded SARS-CoV-2 viruses define the impact of time and route of transmission on the transmission bottleneck in a Syrian hamster model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.08.597602. [PMID: 38915710 PMCID: PMC11195048 DOI: 10.1101/2024.06.08.597602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The transmission bottleneck, defined as the number of viruses that transmit from one host to infect another, is an important determinant of the rate of virus evolution and the level of immunity required to protect against virus transmission. Despite its importance, SARS-CoV-2's transmission bottleneck remains poorly characterized, in part due to a lack of quantitative measurement tools. To address this, we adapted a SARS-CoV-2 reverse genetics system to generate a pool of >200 isogenic SARS-CoV-2 viruses harboring specific 6-nucleotide barcodes inserted in ORF10, a non-translated ORF. We directly inoculated donor Syrian hamsters intranasally with this barcoded virus pool and exposed a paired naïve contact hamster to each donor. Following exposure, the nasal turbinates, trachea, and lungs were collected, viral titers were measured, and the number of barcodes in each tissue were enumerated to quantify the transmission bottleneck. The duration and route (airborne, direct contact, and fomite) of exposure were varied to assess their impact on the transmission bottleneck. In airborne-exposed hamsters, the transmission bottleneck increased with longer exposure durations. We found that direct contact exposure produced the largest transmission bottleneck (average 27 BCs), followed by airborne exposure (average 16 BCs) then fomite exposure (average 8 BCs). Interestingly, we detected unique BCs in both the upper and lower respiratory tract of contact animals from all routes of exposure, suggesting that SARS-CoV-2 can directly infect hamster lungs. Altogether, these findings highlight the utility of barcoded viruses as tools to rigorously study virus transmission. In the future, barcoded SARS-CoV-2 will strengthen studies of immune factors that influence virus transmission.
Collapse
Affiliation(s)
- Reed Trende
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, MO 63110, USA
| | - Tamarand L. Darling
- Department of Medicine, Washington University School of Medicine in St. Louis, MO 63110, USA
| | - Tianyu Gan
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, MO 63110, USA
| | - David Wang
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, MO 63110, USA
| | - Adrianus C.M. Boon
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, MO 63110, USA
- Department of Medicine, Washington University School of Medicine in St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, MO 63110, USA
| |
Collapse
|
16
|
Basta DW, Campbell IW, Sullivan EJ, Hotinger JA, Hullahalli K, Waldor MK. Inducible transposon mutagenesis for genome-scale forward genetics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595064. [PMID: 38826325 PMCID: PMC11142078 DOI: 10.1101/2024.05.21.595064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Transposon insertion sequencing (Tn-seq) is a powerful method for genome-scale functional genetics in bacteria. However, its effectiveness is often limited by a lack of mutant diversity, caused by either inefficient transposon delivery or stochastic loss of mutants due to population bottlenecks. Here, we introduce "InducTn-seq", which leverages inducible mutagenesis for temporal control of transposition. InducTn-seq generates millions of transposon mutants from a single colony, enabling the sensitive detection of subtle fitness defects and transforming binary classifications of gene essentiality into a quantitative fitness measurement across both essential and non-essential genes. Using a mouse model of infectious colitis, we show that InducTn-seq bypasses a highly restrictive host bottleneck to generate a diverse transposon mutant population from the few cells that initiate infection, revealing the role of oxygen-related metabolic plasticity in pathogenesis. Overall, InducTn-seq overcomes the limitations of traditional Tn-seq, unlocking new possibilities for genome-scale forward genetic screens in bacteria.
Collapse
Affiliation(s)
- David W. Basta
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ian W. Campbell
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Emily J. Sullivan
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Julia A Hotinger
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Karthik Hullahalli
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Matthew K. Waldor
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| |
Collapse
|
17
|
Chevée V, Hullahalli K, Dailey KG, Güereca L, Zhang C, Waldor MK, Portnoy DA. Temporal and spatial dynamics of Listeria monocytogenes central nervous system infection in mice. Proc Natl Acad Sci U S A 2024; 121:e2320311121. [PMID: 38635627 PMCID: PMC11046682 DOI: 10.1073/pnas.2320311121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/22/2024] [Indexed: 04/20/2024] Open
Abstract
Listeria monocytogenes is a bacterial pathogen that can cause life-threatening central nervous system (CNS) infections. While mechanisms by which L. monocytogenes and other pathogens traffic to the brain have been studied, a quantitative understanding of the underlying dynamics of colonization and replication within the brain is still lacking. In this study, we used barcoded L. monocytogenes to quantify the bottlenecks and dissemination patterns that lead to cerebral infection. Following intravenous (IV) inoculation, multiple independent invasion events seeded all parts of the CNS from the blood, however, only one clone usually became dominant in the brain. Sequential IV inoculations and intracranial inoculations suggested that clones that had a temporal advantage (i.e., seeded the CNS first), rather than a spatial advantage (i.e., invaded a particular brain region), were the main drivers of clonal dominance. In a foodborne model of cerebral infection with immunocompromised mice, rare invasion events instead led to a highly infected yet monoclonal CNS. This restrictive bottleneck likely arose from pathogen transit into the blood, rather than directly from the blood to the brain. Collectively, our findings provide a detailed quantitative understanding of the L. monocytogenes population dynamics that lead to CNS infection and a framework for studying the dynamics of other cerebral infections.
Collapse
Affiliation(s)
- Victoria Chevée
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Karthik Hullahalli
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA02115
- Department of Microbiology, Harvard Medical School, Boston, MA02115
- HHMI, Bethesda, MD20815
| | - Katherine G. Dailey
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA02115
- Department of Microbiology, Harvard Medical School, Boston, MA02115
- HHMI, Bethesda, MD20815
| | - Leslie Güereca
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Chenyu Zhang
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Matthew K. Waldor
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA02115
- Department of Microbiology, Harvard Medical School, Boston, MA02115
- HHMI, Bethesda, MD20815
| | - Daniel A. Portnoy
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- Department of Plant and Microbial Biology, University of California, Berkeley, CA94720
| |
Collapse
|
18
|
Ordon J, Thouin J, Nakano RT, Ma KW, Zhang P, Huettel B, Garrido-Oter R, Schulze-Lefert P. Chromosomal barcodes for simultaneous tracking of near-isogenic bacterial strains in plant microbiota. Nat Microbiol 2024; 9:1117-1129. [PMID: 38503974 PMCID: PMC10994850 DOI: 10.1038/s41564-024-01619-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 01/22/2024] [Indexed: 03/21/2024]
Abstract
DNA-amplicon-based microbiota profiling can estimate species diversity and abundance but cannot resolve genetic differences within individuals of the same species. Here we report the development of modular bacterial tags (MoBacTags) encoding DNA barcodes that enable tracking of near-isogenic bacterial commensals in an array of complex microbiome communities. Chromosomally integrated DNA barcodes are then co-amplified with endogenous marker genes of the community by integrating corresponding primer binding sites into the barcode. We use this approach to assess the contributions of individual bacterial genes to Arabidopsis thaliana root microbiota establishment with synthetic communities that include MoBacTag-labelled strains of Pseudomonas capeferrum. Results show reduced root colonization for certain mutant strains with defects in gluconic-acid-mediated host immunosuppression, which would not be detected with traditional amplicon sequencing. Our work illustrates how MoBacTags can be applied to assess scaling of individual bacterial genetic determinants in the plant microbiota.
Collapse
Affiliation(s)
- Jana Ordon
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Institute of Plant Molecular Biology, University of Zurich, Zurich, Switzerland
| | - Julien Thouin
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ryohei Thomas Nakano
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Ka-Wai Ma
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Pengfan Zhang
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Innovative Genomics Institute (IGI), University of California, Berkeley, CA, USA
| | - Bruno Huettel
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ruben Garrido-Oter
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Earlham Institute, Norwich, UK
| | - Paul Schulze-Lefert
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
- Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, Cologne, Germany.
| |
Collapse
|
19
|
Guo L, Liu Q, Yin X. Clostridiales in the Gut Against Listeria monocytogenes Infection Through Growth Inhibition. Foodborne Pathog Dis 2024; 21:248-256. [PMID: 38150235 DOI: 10.1089/fpd.2023.0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
Listeria monocytogenes (Lm) mainly infect pregnant women, children, the elderly, and other populations with low immunity causing septicemia and meningitis. Healthy people can tolerate higher doses of Lm and only cause gastrointestinal symptoms such as abdominal pain and diarrhea after infection. Compared to the above population, healthy people have a richer and more diverse gut microbiota. In this study, we show that the microbiota in the large intestine and the feces of mice can significantly inhibit the growth of Lm compared to the microbiota in the small intestine. Bacteria larger than 1 μm in the gut microbiota play an important role in inhibiting Lm growth. 16s rRNA sequencing results show that these bacteria are mainly composed of Clostridiales under the phylum Firmicutes, including Ruminiclostridium, Butyricicoccus, Lachnoclostridium, Roseburia, Coprooccus, and Blautia. Thus, we demonstrate that there are some potential functional bacteria in the gut microbiota that can increase resistance against Lm.
Collapse
Affiliation(s)
- Liang Guo
- Zaozhuang University, Shandong, China
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Qing Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | | |
Collapse
|
20
|
Cong Z, Xiong Y, Lyu L, Fu B, Guo D, Sha Z, Yang B, Wu H. The relationship between Listeria infections and host immune responses: Listeriolysin O as a potential target. Biomed Pharmacother 2024; 171:116129. [PMID: 38194738 DOI: 10.1016/j.biopha.2024.116129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024] Open
Abstract
Listeria monocytogenes (Lm), a foodborne bacterium, can infect people and has a high fatality rate in immunocompromised individuals. Listeriolysin O (LLO), the primary virulence factor of Lm, is critical in regulating the pathogenicity of Lm. This review concludes that LLO may either directly or indirectly activate a number of host cell viral pathophysiology processes, such as apoptosis, pyroptosis, autophagy, necrosis and necroptosis. We describe the invasion of host cells by Lm and the subsequent removal of Lm by CD8 T cells and CD4 T cells upon receipt of the LLO epitopes from major histocompatibility complex class I (MHC-I) and major histocompatibility complex class II (MHC-II). The development of several LLO-based vaccines that make use of the pore-forming capabilities of LLO and the immune response of the host cells is then described. Finally, we conclude by outlining the several natural substances that have been shown to alter the three-dimensional conformation of LLO by binding to particular amino acid residues of LLO, which reduces LLO pathogenicity and may be a possible pharmacological treatment for Lm.
Collapse
Affiliation(s)
- Zixuan Cong
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Yan Xiong
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Lyu Lyu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Beibei Fu
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Dong Guo
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Zhou Sha
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Bo Yang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China.
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
21
|
May DA, Taha F, Child MA, Ewald SE. How colonization bottlenecks, tissue niches, and transmission strategies shape protozoan infections. Trends Parasitol 2023; 39:1074-1086. [PMID: 37839913 DOI: 10.1016/j.pt.2023.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023]
Abstract
Protozoan pathogens such as Plasmodium spp., Leishmania spp., Toxoplasma gondii, and Trypanosoma spp. are often associated with high-mortality, acute and chronic diseases of global health concern. For transmission and immune evasion, protozoans have evolved diverse strategies to interact with a range of host tissue environments. These interactions are linked to disease pathology, yet our understanding of the association between parasite colonization and host homeostatic disruption is limited. Recently developed techniques for cellular barcoding have the potential to uncover the biology regulating parasite transmission, dissemination, and the stability of infection. Understanding bottlenecks to infection and the in vivo tissue niches that facilitate chronic infection and spread has the potential to reveal new aspects of parasite biology.
Collapse
Affiliation(s)
- Dana A May
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Fatima Taha
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Matthew A Child
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Sarah E Ewald
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
22
|
Sloniker N, Raftopoulou O, Chen Y, Ryser ET, Beaudry R. Fate of Planktonic and Biofilm-Derived Listeria monocytogenes on Unwaxed Apples during Air and Controlled Atmosphere Storage. Foods 2023; 12:3673. [PMID: 37835326 PMCID: PMC10573035 DOI: 10.3390/foods12193673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Multiple recalls and outbreaks involving Listeria monocytogenes-contaminated apples have been linked to the post-harvest packing environment where this pathogen can persist in biofilms. Therefore, this study assessed L. monocytogenes survival on apples as affected by harvest year, apple cultivar, storage atmosphere, and growth conditions. Unwaxed Gala, Granny Smith, and Honeycrisp apples were dip-inoculated in an 8-strain L. monocytogenes cocktail of planktonic- or biofilm-grown cells (~6.5 log CFU/mL), dried, and then examined for numbers of L. monocytogenes during air or controlled atmosphere (CA) (1.5% O2, 1.5% CO2) storage at 2 °C. After 90 days, air or CA storage yielded similar L. monocytogenes survival (p > 0.05), regardless of harvest year. Populations gradually decreased with L. monocytogenes quantifiable in most samples after 7 months. Apple cultivar significantly impacted L. monocytogenes survival (p < 0.05) during both harvest years with greater reductions (p < 0.05) seen on Gala compared to Granny Smith and Honeycrisp. Biofilm-derived cells survived longer (p < 0.05) on L. monocytogenes-inoculated Gala and Honeycrisp apples compared to cells grown planktonically. These findings should aid in the development of improved L. monocytogenes intervention strategies for apple growers and packers.
Collapse
Affiliation(s)
- Natasha Sloniker
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - Ourania Raftopoulou
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27606, USA
| | - Yi Chen
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740, USA
| | - Elliot T. Ryser
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - Randy Beaudry
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
23
|
Hullahalli K, Dailey KG, Waldor MK. Innate immune responses yield tissue-specific bottlenecks that scale with pathogen dose. Proc Natl Acad Sci U S A 2023; 120:e2309151120. [PMID: 37669395 PMCID: PMC10500177 DOI: 10.1073/pnas.2309151120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/31/2023] [Indexed: 09/07/2023] Open
Abstract
To cause infection, pathogens must overcome bottlenecks imposed by the host immune system. These bottlenecks restrict the inoculum and largely determine whether pathogen exposure results in disease. Infection bottlenecks therefore quantify the effectiveness of immune barriers. Here, using a model of Escherichia coli systemic infection, we identify bottlenecks that tighten or widen with higher inoculum sizes, revealing that the efficacy of innate immune responses can increase or decrease with pathogen dose. We term this concept "dose scaling". During E. coli systemic infection, dose scaling is tissue specific, dependent on the lipopolysaccharide (LPS) receptor TLR4, and can be recapitulated by mimicking high doses with killed bacteria. Scaling therefore depends on sensing of pathogen molecules rather than interactions between the host and live bacteria. We propose that dose scaling quantitatively links innate immunity with infection bottlenecks and is a valuable framework for understanding how the inoculum size governs the outcome of pathogen exposure.
Collapse
Affiliation(s)
- Karthik Hullahalli
- Department of Microbiology, Harvard Medical School, Boston, MA02115
- Division of Infectious Disease, Brigham & Women’s Hospital, Boston, MA02115
| | - Katherine G. Dailey
- Department of Microbiology, Harvard Medical School, Boston, MA02115
- Division of Infectious Disease, Brigham & Women’s Hospital, Boston, MA02115
| | - Matthew K. Waldor
- Department of Microbiology, Harvard Medical School, Boston, MA02115
- Division of Infectious Disease, Brigham & Women’s Hospital, Boston, MA02115
- HHMI, Boston, MA02115
| |
Collapse
|
24
|
Hullahalli K, Dailey KG, Waldor MK. Innate immune responses yield tissue-specific bottlenecks that scale with pathogen dose. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.09.543079. [PMID: 37333208 PMCID: PMC10274871 DOI: 10.1101/2023.06.09.543079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
To cause infection, pathogens must overcome bottlenecks imposed by the host immune system. These bottlenecks restrict the inoculum and largely determine whether pathogen exposure results in disease. Infection bottlenecks therefore quantify the effectiveness of immune barriers. Here, using a model of Escherichia coli systemic infection, we identify bottlenecks that tighten or widen with higher inoculum sizes, revealing that the efficacy of innate immune responses can increase or decrease with pathogen dose. We term this concept "dose scaling". During E. coli systemic infection, dose scaling is tissue specific, dependent on the LPS receptor TLR4, and can be recapitulated by mimicking high doses with killed bacteria. Scaling is therefore due to sensing of pathogen molecules rather than interactions between the host and live bacteria. We propose that dose scaling quantitatively links innate immunity with infection bottlenecks and is a valuable framework for understanding how the inoculum size governs the outcome of pathogen exposure.
Collapse
Affiliation(s)
- Karthik Hullahalli
- Department of Microbiology, Harvard Medical School, Boston, MA 02115; Division of Infectious Diseases, Brigham & Women's Hospital, Boston, MA 02115
| | - Katherine G Dailey
- Department of Microbiology, Harvard Medical School, Boston, MA 02115; Division of Infectious Diseases, Brigham & Women's Hospital, Boston, MA 02115
| | - Matthew K Waldor
- Department of Microbiology, Harvard Medical School, Boston, MA 02115; Division of Infectious Diseases, Brigham & Women's Hospital, Boston, MA 02115
| |
Collapse
|
25
|
Giuliano CJ, Wei KJ, Harling FM, Waldman BS, Farringer MA, Boydston EA, Lan TCT, Thomas RW, Herneisen AL, Sanderlin AG, Coppens I, Dvorin JD, Lourido S. Functional profiling of the Toxoplasma genome during acute mouse infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.05.531216. [PMID: 36945434 PMCID: PMC10028831 DOI: 10.1101/2023.03.05.531216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Within a host, pathogens encounter a diverse and changing landscape of cell types, nutrients, and immune responses. Examining host-pathogen interactions in animal models can therefore reveal aspects of infection absent from cell culture. We use CRISPR-based screens to functionally profile the entire genome of the model apicomplexan parasite Toxoplasma gondii during mouse infection. Barcoded gRNAs were used to track mutant parasite lineages, enabling detection of bottlenecks and mapping of population structures. We uncovered over 300 genes that modulate parasite fitness in mice with previously unknown roles in infection. These candidates span multiple axes of host-parasite interaction, including determinants of tropism, host organelle remodeling, and metabolic rewiring. We mechanistically characterized three novel candidates, including GTP cyclohydrolase I, against which a small-molecule inhibitor could be repurposed as an antiparasitic compound. This compound exhibited antiparasitic activity against T. gondii and Plasmodium falciparum, the most lethal agent of malaria. Taken together, we present the first complete survey of an apicomplexan genome during infection of an animal host, and point to novel interfaces of host-parasite interaction that may offer new avenues for treatment.
Collapse
Affiliation(s)
| | - Kenneth J. Wei
- Whitehead Institute, Cambridge, MA
- Biology Department, MIT, Cambridge, MA
| | - Faye M. Harling
- Whitehead Institute, Cambridge, MA
- Biology Department, MIT, Cambridge, MA
| | | | - Madeline A. Farringer
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, USA
- Biological Sciences in Public Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | | | | | - Raina W. Thomas
- Whitehead Institute, Cambridge, MA
- Biology Department, MIT, Cambridge, MA
| | - Alice L. Herneisen
- Whitehead Institute, Cambridge, MA
- Biology Department, MIT, Cambridge, MA
| | | | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Jeffrey D. Dvorin
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Sebastian Lourido
- Whitehead Institute, Cambridge, MA
- Biology Department, MIT, Cambridge, MA
| |
Collapse
|
26
|
Woodward SE, Vogt SL, Peña-Díaz J, Melnyk RA, Cirstea M, Serapio-Palacios A, Neufeld LMP, Huus KE, Wang MA, Haney CH, Finlay BB. Gastric acid and escape to systemic circulation represent major bottlenecks to host infection by Citrobacter rodentium. THE ISME JOURNAL 2023; 17:36-46. [PMID: 36153406 PMCID: PMC9751147 DOI: 10.1038/s41396-022-01321-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/09/2022]
Abstract
The gastrointestinal (GI) environment plays a critical role in shaping enteric infections. Host environmental factors create bottlenecks, restrictive events that reduce the genetic diversity of invading bacterial populations. However, the identity and impact of bottleneck events on bacterial infection are largely unknown. We used Citrobacter rodentium infection of mice, a model of human pathogenic Escherichia coli infections, to examine bacterial population dynamics and quantify bottlenecks to host colonization. Using Sequence Tag-based Analysis of Microbial Populations (STAMP) we characterized the founding population size (Nb') and relatedness of C. rodentium populations at relevant tissue sites during early- and peak-infection. We demonstrate that the GI environment severely restricts the colonizing population, with an average Nb' of only 12-43 lineages (of 2,000+ inoculated) identified regardless of time or biogeographic location. Passage through gastric acid and escape to the systemic circulation were identified as major bottlenecks during C. rodentium colonization. Manipulating such events by increasing gastric pH dramatically increased intestinal Nb'. Importantly, removal of the stomach acid barrier had downstream consequences on host systemic colonization, morbidity, and mortality. These findings highlight the capability of the host GI environment to limit early pathogen colonization, controlling the population of initial founders with consequences for downstream infection outcomes.
Collapse
Affiliation(s)
- Sarah E Woodward
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Stefanie L Vogt
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Jorge Peña-Díaz
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Ryan A Melnyk
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Mihai Cirstea
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | | | - Laurel M P Neufeld
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Kelsey E Huus
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Madeline A Wang
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Cara H Haney
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - B Brett Finlay
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
27
|
Grima P, Urciuoli C, Simone G, Palazzo AG, Nuzzo M, Quarta M, Carraturo I, Maci AM, Marinaci S, Portaccio G, Guido M, Zizza A, Romano A. Fatal Listeria monocytogenes septicemia and meningitis complicated by Candida glabrata fungemia: a case report. Curr Med Res Opin 2022; 38:2119-2121. [PMID: 36053118 DOI: 10.1080/03007995.2022.2120689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Listeria monocytogenes is a Gram-positive bacteria and etiological agent of listeriosis. It has the ability to colonize the intestinal lumen and cross the intestinal, blood-brain, and placental barriers, leading to invasive listeriosis responsible for septicemia and meningitis in subjects at risk such as patients with diabetes mellitus, the elderly, and immunocompromised individuals and, for maternal-neonatal infection in pregnant women. We report a rare case of L. monocytogenes septicemia and meningitis complicated by Candida glabrata fungemia on a patient with a history of type 2 diabetes mellitus, hypothyroidism, hypertension, chronic kidney failure, chronic ischemic vascular encephalopathy, and atrial fibrillation. Although adequate therapy was rapidly started with an initial partial clinical improvement, the patient suddenly experienced clinical worsening concomitantly with Candida septicemia resulting in a fatal outcome. To our knowledge, this is the first described case of an invasive L. monocytogenes infection complicated by Candida sepsis. We hypothesize that concomitant Candida infection may play a significant role in the pathogenesis and virulence of L. monocytogenes.
Collapse
Affiliation(s)
| | - Caterina Urciuoli
- Operative Unit of Infectious Diseases, "V. Fazzi" Hospital, Lecce, Italy
| | - Giuseppe Simone
- Operative Unit of Infectious Diseases, "V. Fazzi" Hospital, Lecce, Italy
| | | | - Milva Nuzzo
- Operative Unit of Infectious Diseases, "V. Fazzi" Hospital, Lecce, Italy
| | - Maurizio Quarta
- Operative Unit of Infectious Diseases, "V. Fazzi" Hospital, Lecce, Italy
| | | | - Anna Maria Maci
- Operative Unit of Infectious Diseases, "V. Fazzi" Hospital, Lecce, Italy
| | - Salvatore Marinaci
- Operative Unit of Infectious Diseases, "V. Fazzi" Hospital, Lecce, Italy
| | - Gerolamo Portaccio
- Operative Unit of Infectious Diseases, "V. Fazzi" Hospital, Lecce, Italy
| | - Marcello Guido
- Laboratory of Hygiene, Department of Biological and Environmental Sciences and Technologies, Faculty of Sciences, University of Salento, Lecce, Italy
| | - Antonella Zizza
- Institute of Clinical Physiology, National Research Council, Lecce, Italy
| | - Anacleto Romano
- Operative Unit of Infectious Diseases, "V. Fazzi" Hospital, Lecce, Italy
| |
Collapse
|
28
|
Infection of the murine placenta by Listeria monocytogenes induces sex-specific responses in the fetal brain. Pediatr Res 2022; 93:1566-1573. [PMID: 36127406 DOI: 10.1038/s41390-022-02307-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/06/2022] [Accepted: 08/30/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Epidemiological data indicate that prenatal infection is associated with an increased risk of several neurodevelopmental disorders in the progeny. These disorders display sex differences in presentation. The role of the placenta in the sex-specificity of infection-induced neurodevelopmental abnormalities is not well-defined. We used an imaging-based animal model of the bacterial pathogen Listeria monocytogenes to identify sex-specific effects of placental infection on neurodevelopment of the fetus. METHODS Pregnant CD1 mice were infected with a bioluminescent strain of Listeria on embryonic day 14.5 (E14.5). Excised fetuses were imaged on E18.5 to identify the infected placentas. The associated fetal brains were analyzed for gene expression and altered brain structure due to infection. The behavior of adult offspring affected by prenatal Listeria infection was analyzed. RESULTS Placental infection induced sex-specific alteration of gene expression patterns in the fetal brain and resulted in abnormal cortical development correlated with placental infection levels. Furthermore, male offspring exhibited abnormal social interaction, whereas females exhibited elevated anxiety. CONCLUSION Placental infection by Listeria induced sex-specific abnormalities in neurodevelopment of the fetus. Prenatal infection also affected the behavior of the offspring in a sex-specific manner. IMPACT Placental infection with Listeria monocytogenes induces sexually dichotomous gene expression patterns in the fetal brains of mice. Abnormal cortical lamination is correlated with placental infection levels. Placental infection results in autism-related behavior in male offspring and heightened anxiety levels in female offspring.
Collapse
|
29
|
Rivera-Lugo R, Light SH, Garelis NE, Portnoy DA. RibU is an essential determinant of Listeria pathogenesis that mediates acquisition of FMN and FAD during intracellular growth. Proc Natl Acad Sci U S A 2022; 119:e2122173119. [PMID: 35316134 PMCID: PMC9060500 DOI: 10.1073/pnas.2122173119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/15/2022] [Indexed: 11/18/2022] Open
Abstract
Flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) are essential riboflavin-derived cofactors involved in a myriad of redox reactions across all forms of life. Nevertheless, the basis of flavin acquisition strategies by riboflavin auxotrophic pathogens remains poorly defined. In this study, we examined how the facultative intracellular pathogen Listeria monocytogenes, a riboflavin auxotroph, acquires flavins during infection. A L. monocytogenes mutant lacking the putative riboflavin transporter (RibU) was completely avirulent in mice but had no detectable growth defect in nutrient-rich media. However, unlike wild type, the RibU mutant was unable to grow in defined media supplemented with FMN or FAD or to replicate in macrophages starved for riboflavin. Consistent with RibU functioning to scavenge FMN and FAD inside host cells, a mutant unable to convert riboflavin to FMN or FAD retained virulence and grew in cultured macrophages and in spleens and livers of infected mice. However, this FMN- and FAD-requiring strain was unable to grow in the gallbladder or intestines, where L. monocytogenes normally grows extracellularly, suggesting that these sites do not contain sufficient flavin cofactors to promote replication. Thus, by deleting genes required to synthesize FMN and FAD, we converted L. monocytogenes from a facultative to an obligate intracellular pathogen. Collectively, these data indicate that L. monocytogenes requires riboflavin to grow extracellularly in vivo but scavenges FMN and FAD to grow in host cells.
Collapse
Affiliation(s)
- Rafael Rivera-Lugo
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Samuel H. Light
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Nicholas E. Garelis
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Daniel A. Portnoy
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
30
|
Muchaamba F, Eshwar AK, Stevens MJA, Stephan R, Tasara T. Different Shades of Listeria monocytogenes: Strain, Serotype, and Lineage-Based Variability in Virulence and Stress Tolerance Profiles. Front Microbiol 2022; 12:792162. [PMID: 35058906 PMCID: PMC8764371 DOI: 10.3389/fmicb.2021.792162] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/11/2021] [Indexed: 12/30/2022] Open
Abstract
Listeria monocytogenes is a public health and food safety challenge due to its virulence and natural stress resistance phenotypes. The variable distribution of L. monocytogenes molecular subtypes with respect to food products and processing environments and among human and animal clinical listeriosis cases is observed. Sixty-two clinical and food-associated L. monocytogenes isolates were examined through phenome and genome analysis. Virulence assessed using a zebrafish infection model revealed serotype and genotype-specific differences in pathogenicity. Strains of genetic lineage I serotype 4b and multilocus sequence type clonal complexes CC1, CC2, CC4, and CC6 grew and survived better and were more virulent than serotype 1/2a and 1/2c lineage II, CC8, and CC9 strains. Hemolysis, phospholipase activity, and lysozyme tolerance profiles were associated with the differences observed in virulence. Osmotic stress resistance evaluation revealed serotype 4b lineage I CC2 and CC4 strains as more osmotolerant, whereas serotype 1/2c lineage II CC9 strains were more osmo-sensitive than others. Variable tolerance to the widely used quaternary ammonium compound benzalkonium chloride (BC) was observed. Some outbreak and sporadic clinical case associated strains demonstrated BC tolerance, which might have contributed to their survival and transition in the food-processing environment facilitating food product contamination and ultimately outbreaks or sporadic listeriosis cases. Genome comparison uncovered various moderate differences in virulence and stress associated genes between the strains indicating that these differences in addition to gene expression regulation variations might largely be responsible for the observed virulence and stress sensitivity phenotypic differences. Overall, our study uncovered strain and genotype-dependent variation in virulence and stress resilience among clinical and food-associated L. monocytogenes isolates with potential public health risk implications. The extensive genome and phenotypic data generated provide a basis for developing improved Listeria control strategies and policies.
Collapse
Affiliation(s)
- Francis Muchaamba
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zürich, Zurich, Switzerland
| | - Athmanya K Eshwar
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zürich, Zurich, Switzerland
| | - Marc J A Stevens
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zürich, Zurich, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zürich, Zurich, Switzerland
| | - Taurai Tasara
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zürich, Zurich, Switzerland
| |
Collapse
|
31
|
Bacterial communication in the regulation of stress response in Listeria monocytogenes. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
32
|
Abstract
During infection, the rates of pathogen replication, death, and migration affect disease progression, dissemination, transmission, and resistance evolution. Here, we follow the population dynamics of Vibrio cholerae in a mouse model by labeling individual bacteria with one of >500 unique, fitness-neutral genomic tags. Using the changes in tag frequencies and CFU numbers, we inform a mathematical model that describes the within-host spatiotemporal bacterial dynamics. This allows us to disentangle growth, death, forward, and retrograde migration rates continuously during infection. Our model has robust predictive power across various experimental setups. The population dynamics of V. cholerae shows substantial spatiotemporal heterogeneity in replication, death, and migration. Importantly, we find that the niche available to V. cholerae in the host increases with inoculum size, suggesting cooperative effects during infection. Therefore, it is not enough to consider just the likelihood of exposure (50% infectious dose) but rather the magnitude of exposure to predict outbreaks. IMPORTANCE Determining the rates of bacterial migration, replication, and death during infection is important for understanding how infections progress. Separately measuring these rates is often difficult in systems where multiple processes happen simultaneously. Here, we use next-generation sequencing to measure V. cholerae migration, replication, death, and niche size along the mouse gastrointestinal tract. We show that the small intestine of the mouse is a heterogeneous environment, and the population dynamic characteristics change substantially between adjacent gut sections. Our approach also allows us to characterize the effect of inoculum size on these processes. We find that the niche size in mice increases with the infectious dose, hinting at cooperative effects in larger inocula. The dose-response relationship between inoculum size and final pathogen burden is important for the infected individual and is thought to influence the progression of V. cholerae epidemics.
Collapse
|
33
|
Kammoun H, Kim M, Hafner L, Gaillard J, Disson O, Lecuit M. Listeriosis, a model infection to study host-pathogen interactions in vivo. Curr Opin Microbiol 2021; 66:11-20. [PMID: 34923331 DOI: 10.1016/j.mib.2021.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/27/2021] [Accepted: 11/30/2021] [Indexed: 12/19/2022]
Abstract
Listeria monocytogenes (Lm) is a foodborne pathogen and the etiological agent of listeriosis. This facultative intracellular Gram-positive bacterium has the ability to colonize the intestinal lumen, cross the intestinal, blood-brain and placental barriers, leading to bacteremia, neurolisteriosis and maternal-fetal listeriosis. Lm is a model microorganism for the study of the interplay between a pathogenic microbe, host tissues and microbiota in vivo. Here we review how animal models permissive to Lm-host interactions allow deciphering some of the key steps of the infectious process, from the intestinal lumen to the crossing of host barriers and dissemination within the host. We also highlight recent investigations using tagged Lm and clinically relevant strains that have shed light on within-host dynamics and the purifying selection of Lm virulence factors. Studying Lm infection in vivo is a way forward to explore host biology and unveil the mechanisms that have selected its capacity to closely associate with its vertebrate hosts.
Collapse
Affiliation(s)
- Hana Kammoun
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015 Paris, France
| | - Minhee Kim
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015 Paris, France
| | - Lukas Hafner
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015 Paris, France
| | - Julien Gaillard
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015 Paris, France
| | - Olivier Disson
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015 Paris, France
| | - Marc Lecuit
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015 Paris, France; Institut Pasteur, National Reference Centre and WHO Collaborating Centre Listeria, 75015 Paris, France; Necker-Enfants Malades University Hospital, Division of Infectious Diseases and Tropical Medicine, APHP, Institut Imagine, 75006 Paris, France.
| |
Collapse
|
34
|
Hafner L, Pichon M, Burucoa C, Nusser SHA, Moura A, Garcia-Garcera M, Lecuit M. Listeria monocytogenes faecal carriage is common and depends on the gut microbiota. Nat Commun 2021; 12:6826. [PMID: 34819495 PMCID: PMC8613254 DOI: 10.1038/s41467-021-27069-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 11/03/2021] [Indexed: 01/15/2023] Open
Abstract
Listeria genus comprises two pathogenic species, L. monocytogenes (Lm) and L. ivanovii, and non-pathogenic species. All can thrive as saprophytes, whereas only pathogenic species cause systemic infections. Identifying Listeria species' respective biotopes is critical to understand the ecological contribution of Listeria virulence. In order to investigate the prevalence and abundance of Listeria species in various sources, we retrieved and analyzed 16S rRNA datasets from MG-RAST metagenomic database. 26% of datasets contain Listeria sensu stricto sequences, and Lm is the most prevalent species, most abundant in soil and host-associated environments, including 5% of human stools. Lm is also detected in 10% of human stool samples from an independent cohort of 900 healthy asymptomatic donors. A specific microbiota signature is associated with Lm faecal carriage, both in humans and experimentally inoculated mice, in which it precedes Lm faecal carriage. These results indicate that Lm faecal carriage is common and depends on the gut microbiota, and suggest that Lm faecal carriage is a crucial yet overlooked consequence of its virulence.
Collapse
Affiliation(s)
- Lukas Hafner
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015, Paris, France
| | - Maxime Pichon
- University Hospital of Poitiers, Infectious Agents Department, Bacteriology and Infection Control Laboratory, 86021, Poitiers, France
- Université de Poitiers, Faculté de Médecine et de Pharmacie, EA 4331, 86022, Poitiers, France
- Université de Poitiers, Faculté de Médecine et de Pharmacie, Inserm U1070, 86022, Poitiers, France
| | - Christophe Burucoa
- University Hospital of Poitiers, Infectious Agents Department, Bacteriology and Infection Control Laboratory, 86021, Poitiers, France
- Université de Poitiers, Faculté de Médecine et de Pharmacie, EA 4331, 86022, Poitiers, France
- Université de Poitiers, Faculté de Médecine et de Pharmacie, Inserm U1070, 86022, Poitiers, France
| | - Sophie H A Nusser
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015, Paris, France
| | - Alexandra Moura
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015, Paris, France
- Institut Pasteur, National Reference Center and WHO Collaborating Center Listeria, 75015, Paris, France
| | - Marc Garcia-Garcera
- University of Lausanne, Department of Fundamental Microbiology, 1015, Lausanne, Switzerland
| | - Marc Lecuit
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015, Paris, France.
- Institut Pasteur, National Reference Center and WHO Collaborating Center Listeria, 75015, Paris, France.
- Necker-Enfants Malades University Hospital, Division of Infectious Diseases and Tropical Medicine, APHP, Institut Imagine, 75006, Paris, France.
| |
Collapse
|
35
|
Hullahalli K, Waldor MK. Pathogen clonal expansion underlies multiorgan dissemination and organ-specific outcomes during murine systemic infection. eLife 2021; 10:e70910. [PMID: 34636322 PMCID: PMC8545400 DOI: 10.7554/elife.70910] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/07/2021] [Indexed: 12/31/2022] Open
Abstract
The dissemination of pathogens through blood and their establishment within organs lead to severe clinical outcomes. However, the within-host dynamics that underlie pathogen spread to and clearance from systemic organs remain largely uncharacterized. In animal models of infection, the observed pathogen population results from the combined contributions of bacterial replication, persistence, death, and dissemination, each of which can vary across organs. Quantifying the contribution of each these processes is required to interpret and understand experimental phenotypes. Here, we leveraged STAMPR, a new barcoding framework, to investigate the population dynamics of extraintestinal pathogenic Escherichia coli, a common cause of bacteremia, during murine systemic infection. We show that while bacteria are largely cleared by most organs, organ-specific clearance failures are pervasive and result from dramatic expansions of clones representing less than 0.0001% of the inoculum. Clonal expansion underlies the variability in bacterial burden between animals, and stochastic dissemination of clones profoundly alters the pathogen population structure within organs. Despite variable pathogen expansion events, host bottlenecks are consistent yet highly sensitive to infection variables, including inoculum size and macrophage depletion. We adapted our barcoding methodology to facilitate multiplexed validation of bacterial fitness determinants identified with transposon mutagenesis and confirmed the importance of bacterial hexose metabolism and cell envelope homeostasis pathways for organ-specific pathogen survival. Collectively, our findings provide a comprehensive map of the population biology that underlies bacterial systemic infection and a framework for barcode-based high-resolution mapping of infection dynamics.
Collapse
Affiliation(s)
- Karthik Hullahalli
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
- Division of Infectious Diseases, Brigham & Women’s HospitalBostonUnited States
| | - Matthew K Waldor
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
- Division of Infectious Diseases, Brigham & Women’s HospitalBostonUnited States
| |
Collapse
|
36
|
Abstract
Pathogen population dynamics during infection are critical determinants of infection susceptibility and define patterns of dissemination. However, deciphering these dynamics, particularly founding population sizes in host organs and patterns of dissemination between organs, is difficult because measuring bacterial burden alone is insufficient to observe these patterns. Introduction of allelic diversity into otherwise identical bacteria using DNA barcodes enables sequencing-based measurements of these parameters, in a method known as STAMP (Sequence Tag-based Analysis of Microbial Populations). However, bacteria often undergo unequal expansion within host organs, resulting in marked differences in the frequencies of barcodes in input and output libraries. Here, we show that these differences confound STAMP-based analyses of founding population sizes and dissemination patterns. We present STAMPR, a successor to STAMP, which accounts for such population expansions. Using data from systemic infection of barcoded extraintestinal pathogenic E. coli, we show that this new framework, along with the metrics it yields, enhances the fidelity of measurements of bottlenecks and dissemination patterns. STAMPR was also validated on an independent barcoded Pseudomonas aeruginosa data set, uncovering new patterns of dissemination within the data. This framework (available at https://github.com/hullahalli/stampr_rtisan), when coupled with barcoded data sets, enables a more complete assessment of within-host bacterial population dynamics. IMPORTANCE Barcoded bacteria are often employed to monitor pathogen population dynamics during infection. The accuracy of these measurements is diminished by unequal bacterial expansion rates. Here, we develop computational tools to circumvent this limitation and establish additional metrics that collectively enhance the fidelity of measuring within-host pathogen founding population sizes and dissemination patterns. These new tools will benefit future studies of the dynamics of pathogens and symbionts within their respective hosts and may have additional barcode-based applications beyond host-microbe interactions.
Collapse
|
37
|
Halsey CR, Glover RC, Thomason MK, Reniere ML. The redox-responsive transcriptional regulator Rex represses fermentative metabolism and is required for Listeria monocytogenes pathogenesis. PLoS Pathog 2021; 17:e1009379. [PMID: 34398937 PMCID: PMC8389512 DOI: 10.1371/journal.ppat.1009379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/26/2021] [Accepted: 07/27/2021] [Indexed: 11/30/2022] Open
Abstract
The Gram-positive bacterium Listeria monocytogenes is the causative agent of the foodborne disease listeriosis, one of the deadliest bacterial infections known. In order to cause disease, L. monocytogenes must properly coordinate its metabolic and virulence programs in response to rapidly changing environments within the host. However, the mechanisms by which L. monocytogenes senses and adapts to the many stressors encountered as it transits through the gastrointestinal (GI) tract and disseminates to peripheral organs are not well understood. In this study, we investigated the role of the redox-responsive transcriptional regulator Rex in L. monocytogenes growth and pathogenesis. Rex is a conserved canonical transcriptional repressor that monitors the intracellular redox state of the cell by sensing the ratio of reduced and oxidized nicotinamide adenine dinucleotides (NADH and NAD+, respectively). Here, we demonstrated that L. monocytogenes Rex represses fermentative metabolism and is therefore required for optimal growth in the presence of oxygen. We also show that in vitro, Rex represses the production of virulence factors required for survival and invasion of the GI tract, as a strain lacking rex was more resistant to acidified bile and invaded host cells better than wild type. Consistent with these results, Rex was dispensable for colonizing the GI tract and disseminating to peripheral organs in an oral listeriosis model of infection. However, Rex-dependent regulation was required for colonizing the spleen and liver, and L. monocytogenes lacking the Rex repressor were nearly sterilized from the gallbladder. Taken together, these results demonstrated that Rex functions as a repressor of fermentative metabolism and suggests a role for Rex-dependent regulation in L. monocytogenes pathogenesis. Importantly, the gallbladder is the bacterial reservoir during listeriosis, and our data suggest redox sensing and Rex-dependent regulation are necessary for bacterial survival and replication in this organ. Listeriosis is a foodborne illness caused by Listeria monocytogenes and is one of the deadliest bacterial infections known, with a mortality rate of up to 30%. Following ingestion of contaminated food, L. monocytogenes disseminates from the gastrointestinal (GI) tract to peripheral organs, including the spleen, liver, and gallbladder. In this work, we investigated the role of the redox-responsive regulator Rex in L. monocytogenes growth and pathogenesis. We demonstrated that alleviation of Rex repression coordinates expression of genes necessary in the GI tract during infection, including fermentative metabolism, bile resistance, and invasion of host cells. Accordingly, Rex was dispensable for colonizing the GI tract of mice during an oral listeriosis infection. Interestingly, Rex-dependent regulation was required for bacterial replication in the spleen, liver, and gallbladder. Taken together, our results demonstrate that Rex-mediated redox sensing and transcriptional regulation are important for L. monocytogenes metabolic adaptation and virulence.
Collapse
Affiliation(s)
- Cortney R. Halsey
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Rochelle C. Glover
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Maureen K. Thomason
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Michelle L. Reniere
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
38
|
Porras AM, Shi Q, Zhou H, Callahan R, Montenegro-Bethancourt G, Solomons N, Brito IL. Geographic differences in gut microbiota composition impact susceptibility to enteric infection. Cell Rep 2021; 36:109457. [PMID: 34320343 PMCID: PMC8333197 DOI: 10.1016/j.celrep.2021.109457] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/26/2021] [Accepted: 07/07/2021] [Indexed: 12/17/2022] Open
Abstract
Large-scale studies of human gut microbiomes have revealed broad differences in composition across geographically distinct populations. Yet, studies examining impacts of microbiome composition on various health outcomes typically focus on single populations, posing the question of whether compositional differences between populations translate into differences in susceptibility. Using germ-free mice humanized with microbiome samples from 30 donors representing three countries, we observe robust differences in susceptibility to Citrobacter rodentium, a model for enteropathogenic Escherichia coli infections, according to geographic origin. We do not see similar responses to Listeria monocytogenes infections. We further find that cohousing the most susceptible and most resistant mice confers protection from C. rodentium infection. This work underscores the importance of increasing global participation in microbiome studies related to health outcomes. Diverse cohorts are needed to identify both population-specific responses to specific microbiome interventions and to achieve broader-reaching biological conclusions that generalize across populations.
Collapse
Affiliation(s)
- Ana Maria Porras
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Qiaojuan Shi
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Hao Zhou
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| | - Rowan Callahan
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, USA
| | | | - Noel Solomons
- Center for Studies of Sensory Impairment, Aging and Metabolism (CeSSIAM), Guatemala City, Guatemala
| | - Ilana Lauren Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
39
|
Gensollen T, Lin X, Zhang T, Pyzik M, See P, Glickman JN, Ginhoux F, Waldor M, Salmi M, Rantakari P, Blumberg RS. Embryonic macrophages function during early life to determine invariant natural killer T cell levels at barrier surfaces. Nat Immunol 2021; 22:699-710. [PMID: 34040226 PMCID: PMC8171892 DOI: 10.1038/s41590-021-00934-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 04/16/2021] [Indexed: 12/24/2022]
Abstract
It is increasingly recognized that immune development within mucosal tissues is under the control of environmental factors during early life. However, the cellular mechanisms that underlie such temporally and regionally restrictive governance of these processes are unclear. Here, we uncover an extrathymic pathway of immune development within the colon that is controlled by embryonic but not bone marrow-derived macrophages, which determines the ability of these organs to receive invariant natural killer T (iNKT) cells and allow them to establish local residency. Consequently, early-life perturbations of fetal-derived macrophages result in persistent decreases of mucosal iNKT cells and is associated with later-life susceptibility or resistance to iNKT cell-associated mucosal disorders. These studies uncover a host developmental program orchestrated by ontogenically distinct macrophages that is regulated by microbiota, and they reveal an important postnatal function of macrophages that emerge in fetal life.
Collapse
Affiliation(s)
- Thomas Gensollen
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Xi Lin
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Ting Zhang
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA,Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Michal Pyzik
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Peter See
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Jonathan N. Glickman
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Matthew Waldor
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA,Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Marko Salmi
- Institute of Biomedicine, University of Turku, Turku, FI-20520, Finland,MediCity Research Laboratory, University of Turku, Turku, FI-20520, Finland
| | - Pia Rantakari
- Institute of Biomedicine, University of Turku, Turku, FI-20520, Finland,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, FI-20520, Finland
| | - Richard S. Blumberg
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA,Correspondence to:
| |
Collapse
|
40
|
Lopes-Luz L, Mendonça M, Bernardes Fogaça M, Kipnis A, Bhunia AK, Bührer-Sékula S. Listeria monocytogenes: review of pathogenesis and virulence determinants-targeted immunological assays. Crit Rev Microbiol 2021; 47:647-666. [PMID: 33896354 DOI: 10.1080/1040841x.2021.1911930] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Listeria monocytogenes is one of the most invasive foodborne pathogens and is responsible for numerous outbreaks worldwide. Most of the methods to detect this bacterium in food require selective enrichment using traditional bacterial culture techniques that can be time-consuming and labour-intensive. Moreover, molecular methods are expensive and need specific technical knowledge. In contrast, immunological approaches are faster, simpler, and user-friendly alternatives and have been developed for the detection of L. monocytogenes in food, environmental, and clinical samples. These techniques are dependent on the constitutive expression of L. monocytogenes antigens and the specificity of the antibodies used. Here, updated knowledge on pathogenesis and the key immunogenic virulence determinants of L. monocytogenes that are used for the generation of monoclonal and polyclonal antibodies for the serological assay development are summarised. In addition, immunological approaches based on enzyme-linked immunosorbent assay, immunofluorescence, lateral flow immunochromatographic assays, and immunosensors with relevant improvements are highlighted. Though the sensitivity and specificity of the assays were improved significantly, methods still face many challenges that require further validation before use.
Collapse
Affiliation(s)
- Leonardo Lopes-Luz
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brasil
| | - Marcelo Mendonça
- Curso de Medicina Veterinária, Universidade Federal do Agreste de Pernambuco, Garanhuns, Brasil
| | | | - André Kipnis
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brasil
| | - Arun K Bhunia
- Department of Food Science, Purdue University, West Lafayette, IN, USA.,Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA.,Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Samira Bührer-Sékula
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brasil
| |
Collapse
|
41
|
Lecuit M. Listeria monocytogenes, a model in infection biology. Cell Microbiol 2021; 22:e13186. [PMID: 32185900 DOI: 10.1111/cmi.13186] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 01/31/2020] [Accepted: 01/31/2020] [Indexed: 12/17/2022]
Abstract
Listeria monocytogenes causes listeriosis, a systemic infection which manifests as bacteremia, often complicated by meningoencephalitis in immunocompromised individuals and the elderly, and fetal-placental infection in pregnant women. It has emerged over the past decades as a major foodborne pathogen, responsible for numerous outbreaks in Western countries, and more recently in Africa. L. monocytogenes' pathogenic properties have been studied in detail, thanks to concomitant advances in biological sciences, in particular molecular biology, cell biology and immunology. L. monocytogenes has also been instrumental to basic advances in life sciences. L. monocytogenes therefore stands both a tool to understand biology and a model in infection biology. This review briefly summarises the clinical and some of the pathophysiological features of listeriosis. In the context of this special issue, it highlights some of the major discoveries made by Pascale Cossart in the fields of molecular and cellular microbiology since the mid-eighties regarding the identification and characterisation of multiple bacterial and host factors critical to L. monocytogenes pathogenicity. It also briefly summarises some of the key findings from our laboratory on this topic over the past years.
Collapse
Affiliation(s)
- Marc Lecuit
- Institut Pasteur, Biology of Infection Unit, Paris, France.,Inserm U1117, Paris, France.,National Reference Centre and WHO Collaborating Centre Listeria, Institut Pasteur, Paris, France.,Université de Paris, Paris, France.,Necker-Enfants Malades University Hospital, Division of Infectious Diseases and Tropical Medicine, APHP, Institut Imagine, Paris, France
| |
Collapse
|
42
|
Banerji R, Karkee A, Kanojiya P, Saroj SD. Pore-forming toxins of foodborne pathogens. Compr Rev Food Sci Food Saf 2021; 20:2265-2285. [PMID: 33773026 DOI: 10.1111/1541-4337.12737] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 02/01/2021] [Accepted: 02/08/2021] [Indexed: 01/04/2023]
Abstract
Pore-forming toxins (PFTs) are water-soluble molecules that have been identified as the most crucial virulence factors during bacterial pathogenesis. PFTs disrupt the host cell membrane to internalize or to deliver other bacterial or virulence factors for establishing infections. Disruption of the host cell membrane by PFTs can lead to uncontrollable exchanges between the extracellular and the intracellular matrix, thereby disturbing the cellular homeostasis. Recent studies have provided insights into the molecular mechanism of PFTs during pathogenesis. Evidence also suggests the activation of several signal transduction pathways in the host cell on recognition of PFTs. Additionally, numerous distinctive host defense mechanisms as well as membrane repair mechanisms have been reported; however, studies reveal that PFTs aid in host immune evasion of the bacteria through numerous pathways. PFTs have been primarily associated with foodborne pathogens. Infection and death from diseases by consuming contaminated food are a constant threat to public health worldwide, affecting socioeconomic development. Moreover, the emergence of new foodborne pathogens has led to the rise of bacterial antimicrobial resistance affecting the population. Hence, this review focuses on the role of PFTs secreted by foodborne pathogens. The review highlights the molecular mechanism of foodborne bacterial PFTs, assisting bacterial survival from the host immune responses and understanding the downstream mechanism in the activation of various signaling pathways in the host upon PFT recognition. PFT research is a remarkable and an important field for exploring novel and broad applications of antimicrobial compounds as therapeutics.
Collapse
Affiliation(s)
- Rajashri Banerji
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Astha Karkee
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Poonam Kanojiya
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Sunil D Saroj
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| |
Collapse
|
43
|
Increased Listeria monocytogenes Dissemination and Altered Population Dynamics in Muc2-Deficient Mice. Infect Immun 2021; 89:IAI.00667-20. [PMID: 33431704 DOI: 10.1128/iai.00667-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/22/2020] [Indexed: 12/18/2022] Open
Abstract
The mucin Muc2 is a major constituent of the mucus layer that covers the intestinal epithelium and creates a barrier between epithelial cells and luminal commensal or pathogenic microorganisms. The Gram-positive foodborne pathogen Listeria monocytogenes can cause enteritis and also disseminate from the intestine to give rise to systemic disease. L. monocytogenes can bind to intestinal Muc2, but the influence of the Muc2 mucin barrier on L. monocytogenes intestinal colonization and systemic dissemination has not been explored. Here, we used an orogastric L. monocytogenes infection model to investigate the role of Muc2 in host defense against L. monocytogenes Compared to wild-type mice, we found that Muc2-/- mice exhibited heightened susceptibility to orogastric challenge with L. monocytogenes, with higher mortality, elevated colonic pathology, and increased pathogen burdens in both the intestinal tract and distal organs. In contrast, L. monocytogenes burdens were equivalent in wild-type and Muc2-/- animals when the pathogen was administered intraperitoneally, suggesting that systemic immune defects related to Muc2 deficiency do not explain the heightened pathogen dissemination observed in oral infections. Using a barcoded L. monocytogenes library to measure intrahost pathogen population dynamics, we found that Muc2-/- animals had larger pathogen founding population sizes in the intestine and distal sites than observed in wild-type animals. Comparisons of barcode frequencies suggested that the colon becomes the major source for seeding the internal organs in Muc2-/- animals. Together, our findings reveal that Muc2 mucin plays a key role in controlling L. monocytogenes colonization, dissemination, and population dynamics.
Collapse
|
44
|
Ryan VE, Bailey TW, Liu D, Vemulapalli T, Cooper B, Cox AD, Bhunia AK. Listeria adhesion protein-expressing bioengineered probiotics prevent fetoplacental transmission of Listeria monocytogenes in a pregnant Guinea pig model. Microb Pathog 2021; 151:104752. [PMID: 33484805 DOI: 10.1016/j.micpath.2021.104752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 12/11/2022]
Abstract
Pregnancy is a high-risk factor for foodborne pathogen Listeria monocytogenes (Lm), which causes abortion, premature birth, or stillbirth. The primary route of Lm transmission is oral hence intestinal epithelial barrier crossing is a prerequisite for systemic spread. Intestinal barrier crossing, in part, is attributed to the interaction of Listeria adhesion protein (LAP) with its cognate receptor, Hsp60. In a recent study, we showed that oral-dosing of bioengineered Lactobacillus caseiprobiotic (BLP) expressing the LAP protected nonpregnant mice from lethal infection; however, its ability to prevent listeriosis during pregnancy is not known. Therefore, we investigated whether BLP could prevent fetoplacental transmission of Lm in a pregnant guinea pig model. After 14 consecutive days on probiotic (~109 CFU/ml in drinking water), pregnant guinea pigs (gestational days 24-28) were orally challenged with Lm (9 × 108-2.5 × 109 CFU/animal) and were euthanized 72 h post-infection. Maternal mesenteric lymph node (MLN), liver, spleen, lungs, blood, and placenta, and fetal liver were analyzed for the presence/absence of Lm. All tissues/organs from Lm-challenged naïve dams and fetuses were Lm positive. Similar tissue distribution was also seen in guinea pigs that received wild-type Lactobacillus casei (LbcWT). Remarkably, Lm was absent in the maternal blood, kidney, lungs, and placenta, and fetal liver from the BLP-fed group even though the Lm was present in the maternal liver, spleen, and MLN. BLP feeding also suppressed Lm-induced inflammatory response in mothers. These data highlight the potential for the prevention of fetoplacental transmission of Lm by LAP-expressing BLP during pregnancy.
Collapse
Affiliation(s)
- Valerie E Ryan
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA
| | - Taylor W Bailey
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, 47907, USA
| | - Dongqi Liu
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute of Inflammation, Immunology and Infectious Diseases (PI4D), Purdue University, West Lafayette, IN, 47907, USA
| | - Tracy Vemulapalli
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, 77843, USA
| | - Bruce Cooper
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Abigail D Cox
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, 47907, USA
| | - Arun K Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA; Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, 47907, USA; Purdue University Interdisciplinary Life Science Program (PULSe), Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute of Inflammation, Immunology and Infectious Diseases (PI4D), Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
45
|
Mahmutovic A, Gillman AN, Lauksund S, Robson Moe NA, Manzi A, Storflor M, Abel Zur Wiesch P, Abel S. RESTAMP - Rate estimates by sequence-tag analysis of microbial populations. Comput Struct Biotechnol J 2021; 19:1035-1051. [PMID: 33613869 PMCID: PMC7878984 DOI: 10.1016/j.csbj.2021.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/31/2022] Open
Abstract
Microbial division rates determine the speed of mutation accumulation and thus the emergence of antimicrobial resistance. Microbial death rates are affected by antibiotic action and the immune system. Therefore, measuring these rates has advanced our understanding of host-pathogen interactions and antibiotic action. Several methods based on marker-loss or few inheritable neutral markers exist that allow estimating microbial division and death rates, each of which has advantages and limitations. Technical bottlenecks, i.e., experimental sampling events, during the experiment can distort the rate estimates and are typically unaccounted for or require additional calibration experiments. In this work, we introduce RESTAMP (Rate Estimates by Sequence Tag Analysis of Microbial Populations) as a method for determining bacterial division and death rates. This method uses hundreds of fitness neutral sequence barcodes to measure the rates and account for experimental bottlenecks at the same time. We experimentally validate RESTAMP and compare it to established plasmid loss methods. We find that RESTAMP has a number of advantages over plasmid loss or previous marker based techniques. (i) It enables to correct the distortion of rate estimates by technical bottlenecks. (ii) Rate estimates are independent of the sequence tag distribution in the starting culture allowing the use of an arbitrary number of tags. (iii) It introduces a bottleneck sensitivity measure that can be used to maximize the accuracy of the experiment. RESTAMP allows studying microbial population dynamics with great resolution over a wide dynamic range and can thus advance our understanding of host-pathogen interactions or the mechanisms of antibiotic action.
Collapse
Affiliation(s)
- Anel Mahmutovic
- Department of Pharmacy, Faculty of Health Sciences, UiT - The Arctic University of Norway, 9037 Tromsø, Norway
| | - Aaron Nicholas Gillman
- Department of Pharmacy, Faculty of Health Sciences, UiT - The Arctic University of Norway, 9037 Tromsø, Norway.,Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, PA 16802, USA
| | - Silje Lauksund
- Department of Pharmacy, Faculty of Health Sciences, UiT - The Arctic University of Norway, 9037 Tromsø, Norway
| | - Natasha-Anne Robson Moe
- Department of Pharmacy, Faculty of Health Sciences, UiT - The Arctic University of Norway, 9037 Tromsø, Norway
| | - Aime Manzi
- Department of Pharmacy, Faculty of Health Sciences, UiT - The Arctic University of Norway, 9037 Tromsø, Norway
| | - Merete Storflor
- Department of Pharmacy, Faculty of Health Sciences, UiT - The Arctic University of Norway, 9037 Tromsø, Norway.,Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, PA 16802, USA
| | - Pia Abel Zur Wiesch
- Department of Pharmacy, Faculty of Health Sciences, UiT - The Arctic University of Norway, 9037 Tromsø, Norway.,Centre for Molecular Medicine Norway, Nordic EMBL Partnership, 0318 Oslo, Norway.,Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sören Abel
- Department of Pharmacy, Faculty of Health Sciences, UiT - The Arctic University of Norway, 9037 Tromsø, Norway.,Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, PA 16802, USA.,Centre for Molecular Medicine Norway, Nordic EMBL Partnership, 0318 Oslo, Norway.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
46
|
Vlazaki M, Price DJ, Restif O. An experimental design tool to optimize inference precision in data-driven mathematical models of bacterial infections in vivo. J R Soc Interface 2020; 17:20200717. [PMID: 33323052 DOI: 10.1098/rsif.2020.0717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The management of bacterial diseases calls for a detailed knowledge about the dynamic changes in host-bacteria interactions. Biological insights are gained by integrating experimental data with mechanistic mathematical models to infer experimentally unobservable quantities. This inter-disciplinary field would benefit from experiments with maximal information content yielding high-precision inference. Here, we present a computationally efficient tool for optimizing experimental design in terms of parameter inference in studies using isogenic-tagged strains. We study the effect of three experimental design factors: number of biological replicates, sampling timepoint selection and number of copies per tagged strain. We conduct a simulation study to establish the relationship between our optimality criterion and the size of parameter estimate confidence intervals, and showcase its application in a range of biological scenarios reflecting different dynamics patterns observed in experimental infections. We show that in low-variance systems with low killing and replication rates, predicting high-precision experimental designs is consistently achieved; higher replicate sizes and strategic timepoint selection yield more precise estimates. Finally, we address the question of resource allocation under constraints; given a fixed number of host animals and a constraint on total inoculum size per host, infections with fewer strains at higher copies per strain lead to higher-precision inference.
Collapse
Affiliation(s)
- Myrto Vlazaki
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - David J Price
- Centre for Epidemiology and Biostatistics, University of Melbourne, Grattan Street, Parkville, Victoria 3010, Australia.,The Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria 3000, Australia
| | - Olivier Restif
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| |
Collapse
|
47
|
Hausmann A, Hardt WD. Elucidating host-microbe interactions in vivo by studying population dynamics using neutral genetic tags. Immunology 2020; 162:341-356. [PMID: 32931019 PMCID: PMC7968395 DOI: 10.1111/imm.13266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/21/2020] [Accepted: 08/29/2020] [Indexed: 12/14/2022] Open
Abstract
Host–microbe interactions are highly dynamic in space and time, in particular in the case of infections. Pathogen population sizes, microbial phenotypes and the nature of the host responses often change dramatically over time. These features pose particular challenges when deciphering the underlying mechanisms of these interactions experimentally, as traditional microbiological and immunological methods mostly provide snapshots of population sizes or sparse time series. Recent approaches – combining experiments using neutral genetic tags with stochastic population dynamic models – allow more precise quantification of biologically relevant parameters that govern the interaction between microbe and host cell populations. This is accomplished by exploiting the patterns of change of tag composition in the microbe or host cell population under study. These models can be used to predict the effects of immunodeficiencies or therapies (e.g. antibiotic treatment) on populations and thereby generate hypotheses and refine experimental designs. In this review, we present tools to study population dynamics in vivo using genetic tags, explain examples for their implementation and briefly discuss future applications.
Collapse
Affiliation(s)
- Annika Hausmann
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
48
|
Imperato JN, Xu D, Romagnoli PA, Qiu Z, Perez P, Khairallah C, Pham QM, Andrusaite A, Bravo-Blas A, Milling SWF, Lefrancois L, Khanna KM, Puddington L, Sheridan BS. Mucosal CD8 T Cell Responses Are Shaped by Batf3-DC After Foodborne Listeria monocytogenes Infection. Front Immunol 2020; 11:575967. [PMID: 33042159 PMCID: PMC7518468 DOI: 10.3389/fimmu.2020.575967] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
While immune responses have been rigorously examined after intravenous Listeria monocytogenes (Lm) infection, less is understood about its dissemination from the intestines or the induction of adaptive immunity after more physiologic models of foodborne infection. Consequently, this study focused on early events in the intestinal mucosa and draining mesenteric lymph nodes (MLN) using foodborne infection of mice with Lm modified to invade murine intestinal epithelium (InlAMLm). InlAMLm trafficked intracellularly from the intestines to the MLN and were associated with Batf3-independent dendritic cells (DC) in the lymphatics. Consistent with this, InlAMLm initially disseminated from the gut to the MLN normally in Batf3–/– mice. Activated migratory DC accumulated in the MLN by 3 days post-infection and surrounded foci of InlAMLm. At this time Batf3–/– mice displayed reduced InlAMLm burdens, implicating cDC1 in maximal bacterial accumulation in the MLN. Batf3–/– mice also exhibited profound defects in the induction and gut-homing of InlAMLm-specific effector CD8 T cells. Restoration of pathogen burden did not rescue antigen-specific CD8 T cell responses in Batf3–/– mice, indicating a critical role for Batf3 in generating anti-InlAMLm immunity following foodborne infection. Collectively, these data suggest that DC play diverse, dynamic roles in the early events following foodborne InlAMLm infection and in driving the establishment of intestinal Lm-specific effector T cells.
Collapse
Affiliation(s)
- Jessica Nancy Imperato
- Department of Microbiology and Immunology, Center for Infectious Diseases, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States
| | - Daqi Xu
- Department of Immunology, UConn Health, Farmington, CT, United States
| | - Pablo A Romagnoli
- Centro de Investigacion en Medicina Traslacional Severo Amuchastegui, Instituto Universitario de Ciencias Biomédicas de Córdoba, Córdoba, Argentina
| | - Zhijuan Qiu
- Department of Microbiology and Immunology, Center for Infectious Diseases, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States
| | - Pedro Perez
- Department of Microbiology and Immunology, Center for Infectious Diseases, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States
| | - Camille Khairallah
- Department of Microbiology and Immunology, Center for Infectious Diseases, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States
| | - Quynh-Mai Pham
- Department of Immunology, UConn Health, Farmington, CT, United States
| | - Anna Andrusaite
- Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | | | - Simon W F Milling
- Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Leo Lefrancois
- Department of Immunology, UConn Health, Farmington, CT, United States
| | - Kamal M Khanna
- Department of Microbiology, New York University, New York City, NY, United States
| | - Lynn Puddington
- Department of Immunology, UConn Health, Farmington, CT, United States
| | - Brian S Sheridan
- Department of Microbiology and Immunology, Center for Infectious Diseases, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States
| |
Collapse
|
49
|
Vlazaki M, Huber J, Restif O. Integrating mathematical models with experimental data to investigate the within-host dynamics of bacterial infections. Pathog Dis 2020; 77:5704399. [PMID: 31942996 PMCID: PMC6986552 DOI: 10.1093/femspd/ftaa001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/13/2020] [Indexed: 12/23/2022] Open
Abstract
Bacterial infections still constitute a major cause of mortality and morbidity worldwide. The unavailability of therapeutics, antimicrobial resistance and the chronicity of infections due to incomplete clearance contribute to this phenomenon. Despite the progress in antimicrobial and vaccine development, knowledge about the effect that therapeutics have on the host–bacteria interactions remains incomplete. Insights into the characteristics of bacterial colonization and migration between tissues and the relationship between replication and host- or therapeutically induced killing can enable efficient design of treatment approaches. Recently, innovative experimental techniques have generated data enabling the qualitative characterization of aspects of bacterial dynamics. Here, we argue that mathematical modeling as an adjunct to experimental data can enrich the biological insight that these data provide. However, due to limited interdisciplinary training, efforts to combine the two remain limited. To promote this dialogue, we provide a categorization of modeling approaches highlighting their relationship to data generated by a range of experimental techniques in the area of in vivo bacterial dynamics. We outline common biological themes explored using mathematical models with case studies across all pathogen classes. Finally, this review advocates multidisciplinary integration to improve our mechanistic understanding of bacterial infections and guide the use of existing or new therapies.
Collapse
Affiliation(s)
- Myrto Vlazaki
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, CB3 0ES, Cambridge, UK
| | - John Huber
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, CB3 0ES, Cambridge, UK
| | - Olivier Restif
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, CB3 0ES, Cambridge, UK
| |
Collapse
|
50
|
Selection or drift: The population biology underlying transposon insertion sequencing experiments. Comput Struct Biotechnol J 2020; 18:791-804. [PMID: 32280434 PMCID: PMC7138912 DOI: 10.1016/j.csbj.2020.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/06/2020] [Accepted: 03/22/2020] [Indexed: 01/23/2023] Open
Abstract
Transposon insertion sequencing methods such as Tn-seq revolutionized microbiology by allowing the identification of genomic loci that are critical for viability in a specific environment on a genome-wide scale. While powerful, transposon insertion sequencing suffers from limited reproducibility when different analysis methods are compared. From the perspective of population biology, this may be explained by changes in mutant frequency due to chance (drift) rather than differential fitness (selection). Here, we develop a mathematical model of the population biology of transposon insertion sequencing experiments, i.e. the changes in size and composition of the transposon-mutagenized population during the experiment. We use this model to investigate mutagenesis, the growth of the mutant library, and its passage through bottlenecks. Specifically, we study how these processes can lead to extinction of individual mutants depending on their fitness and the distribution of fitness effects (DFE) of the entire mutant population. We find that in typical in vitro experiments few mutants with high fitness go extinct. However, bottlenecks of a size that is common in animal infection models lead to so much random extinction that a large number of viable mutants would be misclassified. While mutants with low fitness are more likely to be lost during the experiment, mutants with intermediate fitness are expected to be much more abundant and can constitute a large proportion of detected hits, i.e. false positives. Thus, incorporating the DFEs of randomly generated mutations in the analysis may improve the reproducibility of transposon insertion experiments, especially when strong bottlenecks are encountered.
Collapse
|