1
|
Wu Y, Liu X, Fan Y, Zuo H, Niu X, Zuo B, Xu Z. MiR-34b Regulates Muscle Growth and Development by Targeting SYISL. Cells 2025; 14:379. [PMID: 40072107 PMCID: PMC11898696 DOI: 10.3390/cells14050379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025] Open
Abstract
Non-coding genes, such as microRNA and lncRNA, which have been widely studied, play an important role in the regulatory network of skeletal muscle development. However, the functions and mechanisms of most non-coding RNAs in skeletal muscle regulatory networks are unclear. This study investigated the function and mechanism of miR-34b in muscle growth and development. MiR-34b overexpression and interference tests were performed in C2C12 myoblasts and animal models. It was demonstrated that miR-34b significantly promoted mouse muscle growth and development in vivo, while miR-34b inhibited myoblast proliferation and promoted myoblast differentiation in vitro. Bioinformatics prediction using TargetScan for miRNA target identification and Bibiserv2 for potential miRNA-gene interaction analysis revealed a miR-34b binding site in the SYlSL sequence. The molecular mechanism of miR-34b regulating muscle growth and development was studied by co-transfection experiment, luciferase reporter gene detection, RNA immunoprecipitation, and RNA pull-down. MiR-34b can directly bind to SYISL and AGO2 proteins and regulate the expression of SYISL target genes p21 and MyoG by targeting SYISL, thereby regulating muscle growth and development. This study highlights that, as a novel regulator of myogenesis, miR-34b regulates muscle growth and development by targeting SYISL.
Collapse
Affiliation(s)
- Yuting Wu
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Afairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.W.); (X.L.); (Y.F.); (H.Z.); (X.N.)
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao Liu
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Afairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.W.); (X.L.); (Y.F.); (H.Z.); (X.N.)
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yonghui Fan
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Afairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.W.); (X.L.); (Y.F.); (H.Z.); (X.N.)
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Zuo
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Afairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.W.); (X.L.); (Y.F.); (H.Z.); (X.N.)
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoyu Niu
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Afairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.W.); (X.L.); (Y.F.); (H.Z.); (X.N.)
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Zuo
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Afairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.W.); (X.L.); (Y.F.); (H.Z.); (X.N.)
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430068, China
| | - Zaiyan Xu
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Afairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.W.); (X.L.); (Y.F.); (H.Z.); (X.N.)
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Olvera N, Sánchez-Valle J, Núñez-Carpintero I, Rojas-Quintero J, Noell G, Casas-Recasens S, Faiz A, Hansbro P, Guirao A, Lepore R, Cirillo D, Agustí A, Polverino F, Valencia A, Faner R. Lung Tissue Multilayer Network Analysis Uncovers the Molecular Heterogeneity of Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2024; 210:1219-1229. [PMID: 38626356 PMCID: PMC11568432 DOI: 10.1164/rccm.202303-0500oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/16/2024] [Indexed: 04/18/2024] Open
Abstract
Rationale: Chronic obstructive pulmonary disease (COPD) is a heterogeneous condition. Objectives: We hypothesized that the unbiased integration of different COPD lung omics using a novel multilayer approach might unravel mechanisms associated with clinical characteristics. Methods: We profiled mRNA, microRNA and methylome in lung tissue samples from 135 former smokers with COPD. For each omic (layer), we built a patient network on the basis of molecular similarity. The three networks were used to build a multilayer network, and optimization of multiplex modularity was used to identify patient communities across the three distinct layers. Uncovered communities were related to clinical features. Measurements and Main Results: We identified five patient communities in the multilayer network that were molecularly distinct and related to clinical characteristics, such as FEV1 and blood eosinophils. Two communities (C#3 and C#4) had both similarly low FEV1 values and emphysema but were molecularly different: C#3, but not C#4, presented B- and T-cell signatures and a downregulation of secretory (SCGB1A1/SCGB3A1) and ciliated cells. A machine learning model was set up to discriminate C#3 and C#4 in our cohort and to validate them in an independent cohort. Finally, using spatial transcriptomics, we characterized the small airway differences between C#3 and C#4, identifying an upregulation of T-/B-cell homing chemokines and bacterial response genes in C#3. Conclusions: A novel multilayer network analysis is able to identify clinically relevant COPD patient communities. Patients with similarly low FEV1 and emphysema can have molecularly distinct small airways and immune response patterns, indicating that different endotypes can lead to similar clinical presentation.
Collapse
Affiliation(s)
- Nuria Olvera
- Institut d’Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain
- Barcelona Supercomputing Center, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Barcelona, Spain
| | | | | | - Joselyn Rojas-Quintero
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Guillaume Noell
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Barcelona, Spain
| | - Sandra Casas-Recasens
- Institut d’Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Barcelona, Spain
| | - Alen Faiz
- Respiratory Bioinformatics and Molecular Biology Group, University of Technology, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Philip Hansbro
- Respiratory Bioinformatics and Molecular Biology Group, University of Technology, University of Technology Sydney, Sydney, New South Wales, Australia
- Centre for Inflammation, Centenary Institute, Camperdown, New South Wales, Australia
| | - Angela Guirao
- Institut d’Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Barcelona, Spain
- Respiratory Institute, Hospital Clinic, Barcelona, Spain
| | - Rosalba Lepore
- Barcelona Supercomputing Center, Barcelona, Spain
- Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
| | | | - Alvar Agustí
- Institut d’Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Barcelona, Spain
- Respiratory Institute, Hospital Clinic, Barcelona, Spain
- Medicine Department and
| | - Francesca Polverino
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Alfonso Valencia
- Barcelona Supercomputing Center, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Rosa Faner
- Institut d’Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Barcelona, Spain
- Biomedicine Department, University of Barcelona, Barcelona, Spain; and
| |
Collapse
|
3
|
Nguyen TK, Baker S, Rodriguez JM, Arceri L, Wingert RA. Using Zebrafish to Study Multiciliated Cell Development and Disease States. Cells 2024; 13:1749. [PMID: 39513856 PMCID: PMC11545745 DOI: 10.3390/cells13211749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Multiciliated cells (MCCs) serve many important functions, including fluid propulsion and chemo- and mechanosensing. Diseases ranging from rare conditions to the recent COVID-19 global health pandemic have been linked to MCC defects. In recent years, the zebrafish has emerged as a model to investigate the biology of MCCs. Here, we review the major events in MCC formation including centriole biogenesis and basal body docking. Then, we discuss studies on the role of MCCs in diseases of the brain, respiratory, kidney and reproductive systems, as well as recent findings about the link between MCCs and SARS-CoV-2. Next, we explore why the zebrafish is a useful model to study MCCs and provide a comprehensive overview of previous studies of genetic components essential for MCC development and motility across three major tissues in the zebrafish: the pronephros, brain ependymal cells and nasal placode. Taken together, here we provide a cohesive summary of MCC research using the zebrafish and its future potential for expanding our understanding of MCC-related disease states.
Collapse
Affiliation(s)
- Thanh Khoa Nguyen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (S.B.); (J.-M.R.); (L.A.)
| | | | | | | | - Rebecca A. Wingert
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (S.B.); (J.-M.R.); (L.A.)
| |
Collapse
|
4
|
Chauhan M, Singh K, Chongtham C, A G A, Sharma P. miR-449a mediated repression of the cell cycle machinery prevents neuronal apoptosis. J Biol Chem 2024; 300:107698. [PMID: 39173945 PMCID: PMC11419829 DOI: 10.1016/j.jbc.2024.107698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/18/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024] Open
Abstract
Aberrant activation of the cell cycle of terminally differentiated neurons results in their apoptosis and is known to contribute to neuronal loss in various neurodegenerative disorders like Alzheimer's Disease. However, the mechanisms that regulate cell cycle-related neuronal apoptosis are poorly understood. We identified several miRNA that are dysregulated in neurons from a transgenic APP/PS1 mouse model for AD (TgAD). Several of these miRNA are known to and/or are predicted to target cell cycle-related genes. Detailed investigation on miR-449a revealed the following: a, it promotes neuronal differentiation by suppressing the neuronal cell cycle; b, its expression in cortical neurons was impaired in response to amyloid peptide Aβ42; c, loss of its expression resulted in aberrant activation of the cell cycle leading to apoptosis. miR-449a may prevent cell cycle-related neuronal apoptosis by targeting cyclin D1 and protein phosphatase CDC25A, which are important for G1-S transition. Importantly, the lentiviral-mediated delivery of miR-449a in TgAD mouse brain significantly reverted the defects in learning and memory, which are associated with AD.
Collapse
Affiliation(s)
- Monika Chauhan
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi, India.
| | - Komal Singh
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi, India
| | - Chen Chongtham
- Molecular Genetics Laboratory, National Institute of Immunology, New Delhi, India
| | - Aneeshkumar A G
- Molecular Genetics Laboratory, National Institute of Immunology, New Delhi, India
| | - Pushkar Sharma
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi, India.
| |
Collapse
|
5
|
Farc O, Budisan L, Zaharie F, Țăulean R, Vălean D, Talvan E, Neagoe IB, Zănoagă O, Braicu C, Cristea V. Expression and Functional Analysis of Immuno-Micro-RNAs mir-146a and mir-326 in Colorectal Cancer. Curr Issues Mol Biol 2024; 46:7065-7085. [PMID: 39057062 PMCID: PMC11276483 DOI: 10.3390/cimb46070421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Micro-RNAs (miRNAs) are non-coding RNAs with importance in the development of cancer. They are involved in both tumor development and immune processes in tumors. The present study aims to characterize the behavior of two miRNAs, the proinflammatory miR-326-5p and the anti-inflammatory miR-146a-5p, in colorectal cancer (CRC), to decipher the mechanisms that regulate their expression, and to study potential applications. Tissue levels of miR-326-5p and miR-146a-5p were determined by qrt-PCR (real-time quantitative reverse transcription polymerase chain reaction) in 45 patients with colorectal cancer in tumoral and normal adjacent tissue. Subsequent bioinformatic analysis was performed to characterize the transcriptional networks that control the expression of the two miRNAs. The biomarker potential of miRNAs was assessed. The expression of miR-325-5p and miR-146a-5p was decreased in tumors compared to normal tissue. The two miRNAs are regulated through a transcriptional network, which originates in the inflammatory and proliferative pathways and regulates a set of cellular functions related to immunity, proliferation, and differentiation. The miRNAs coordinate distinct modules in the network. There is good biomarker potential of miR-326 with an AUC (Area under the curve) of 0.827, 0.911 sensitivity (Sn), and 0.689 specificity (Sp), and of the combination miR-326-miR-146a, with an AUC of 0.845, Sn of 0.75, and Sp of 0.89. The miRNAs are downregulated in the tumor tissue. They are regulated by a transcriptional network in which they coordinate distinct modules. The structure of the network highlights possible therapeutic approaches. MiR-326 and the combination of the two miRNAs may serve as biomarkers in CRC.
Collapse
Affiliation(s)
- Ovidiu Farc
- Research Center for Functional Genomics, Biomedicine and Translational Medicine “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (O.F.); (I.B.N.); (O.Z.); (C.B.)
| | - Liviuta Budisan
- Research Center for Functional Genomics, Biomedicine and Translational Medicine “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (O.F.); (I.B.N.); (O.Z.); (C.B.)
| | - Florin Zaharie
- Surgical Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (F.Z.); (R.Ț.); (D.V.)
| | - Roman Țăulean
- Surgical Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (F.Z.); (R.Ț.); (D.V.)
| | - Dan Vălean
- Surgical Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (F.Z.); (R.Ț.); (D.V.)
| | - Elena Talvan
- Faculty of Medicine Lucian Blaga, University of Sibiu, 550169 Sibiu, Romania;
| | - Ioana Berindan Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (O.F.); (I.B.N.); (O.Z.); (C.B.)
| | - Oana Zănoagă
- Research Center for Functional Genomics, Biomedicine and Translational Medicine “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (O.F.); (I.B.N.); (O.Z.); (C.B.)
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (O.F.); (I.B.N.); (O.Z.); (C.B.)
| | - Victor Cristea
- Immunology Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania;
| |
Collapse
|
6
|
Chattopadhyay A, Tak H, Anirudh J, Naick BH. Meta-analysis of Circulatory mitomiRs in stress Response: Unveiling the significance of miR-34a and miR-146a. Gene 2024; 912:148370. [PMID: 38490506 DOI: 10.1016/j.gene.2024.148370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/21/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND MicroRNAs (miRNAs) are short, noncoding RNAs with essential roles in cellular pathways and are often associated with various diseases and stress conditions. Recently, they have been discovered in mitochondria, termed "mitomiRs," with unique functions. Mitochondria, crucial organelles for energy production and stress responses, Dysregulated mitomiRs functions and expression has been evident in stress conditions such as cardiovascular and neurodegenerative. In this meta-analysis we have systematically identified miR-34a & miR-146a as possible potential biomarkers for affliction. METHODS A meta-analysis was conducted to assess the potential role of miR-34a and miR-146a, two specific mitomiRs, as biomarkers in stress-related conditions. The study followed PRISMA guidelines, involving comprehensive database searches in May and September 2023. Twelve studies meeting predefined inclusion criteria were selected, and data analysis included the evaluation of miR-34a and miR-146a expression levels in various stress conditions compared to control groups. We also performed Gene ontology (GO) and Pathway enrichment analysis to observe how mitomiRs affects our body. RESULTS The meta-analysis revealed a significant increase in overall mitomiRs (miR-34a and miR-146a) expression levels in experimental groups experiencing different stress conditions compared to control groups (Z = 3.54, p < 0.05 using RevMan software). miR-34a demonstrated more pronounced upregulation and exhibited potential as a specific biomarker in certain stress-related conditions (Z = 2.22, p < 0.05). However, miR-146a did not show a significant difference, requiring further investigation in various stress-related contexts. The Analysis indicated a high degree of heterogeneity among the studies. CONCLUSION This meta-analysis emphasises the importance of mitomiRs, especially miR-34a, as potential biomarkers in the intricate interplay between stress, mitochondrial function, and disease. The study opens new avenues for exploring miRNAs' diagnostic and therapeutic applications in stress-related diseases, highlighting their pivotal role at the crossroads of molecular biology, psychology, and medicine.
Collapse
Affiliation(s)
| | - Harshita Tak
- Department of Sports Biosciences, Central University of Rajasthan, India
| | - Jivanage Anirudh
- Department of Sports Biosciences, Central University of Rajasthan, India
| | - B Hemanth Naick
- Department of Sports Biosciences, Central University of Rajasthan, India.
| |
Collapse
|
7
|
Pathania AS, Chava H, Balusu R, Pasupulati AK, Coulter DW, Challagundla KB. The crosstalk between non-coding RNAs and cell-cycle events: A new frontier in cancer therapy. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200785. [PMID: 38595981 PMCID: PMC10973673 DOI: 10.1016/j.omton.2024.200785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The cell cycle comprises sequential events during which a cell duplicates its genome and divides it into two daughter cells. This process is tightly regulated to ensure that the daughter cell receives identical copied chromosomal DNA and that any errors in the DNA during replication are correctly repaired. Cyclins and their enzyme partners, cyclin-dependent kinases (CDKs), are critical regulators of G- to M-phase transitions during the cell cycle. Mitogenic signals induce the formation of the cyclin/CDK complexes, resulting in phosphorylation and activation of the CDKs. Once activated, cyclin/CDK complexes phosphorylate specific substrates that drive the cell cycle forward. The sequential activation and inactivation of cyclin-CDK complexes are tightly controlled by activating and inactivating phosphorylation events induced by cell-cycle proteins. The non-coding RNAs (ncRNAs), which do not code for proteins, regulate cell-cycle proteins at the transcriptional and translational levels, thereby controlling their expression at different cell-cycle phases. Deregulation of ncRNAs can cause abnormal expression patterns of cell-cycle-regulating proteins, resulting in abnormalities in cell-cycle regulation and cancer development. This review explores how ncRNA dysregulation can disrupt cell division balance and discusses potential therapeutic approaches targeting these ncRNAs to control cell-cycle events in cancer treatment.
Collapse
Affiliation(s)
- Anup S. Pathania
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Haritha Chava
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ramesh Balusu
- Department of Hematologic Malignancies and Cellular Therapeutics, Kansas University Medical Center, Kansas City, KS 66160, USA
| | - Anil K. Pasupulati
- Department of Biochemistry, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Don W. Coulter
- Department of Pediatrics, Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kishore B. Challagundla
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- The Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
8
|
Sindhu P, Magotra A, Sindhu V, Chaudhary P. Unravelling the impact of epigenetic mechanisms on offspring growth, production, reproduction and disease susceptibility. ZYGOTE 2024; 32:190-206. [PMID: 39291610 DOI: 10.1017/s0967199424000224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Epigenetic mechanisms, such as DNA methylation, histone modifications and non-coding RNA molecules, play a critical role in gene expression and regulation in livestock species, influencing development, reproduction and disease resistance. DNA methylation patterns silence gene expression by blocking transcription factor binding, while histone modifications alter chromatin structure and affect DNA accessibility. Livestock-specific histone modifications contribute to gene expression and genome stability. Non-coding RNAs, including miRNAs, piRNAs, siRNAs, snoRNAs, lncRNAs and circRNAs, regulate gene expression post-transcriptionally. Transgenerational epigenetic inheritance occurs in livestock, with environmental factors impacting epigenetic modifications and phenotypic traits across generations. Epigenetic regulation revealed significant effect on gene expression profiling that can be exploited for various targeted traits like muscle hypertrophy, puberty onset, growth, metabolism, disease resistance and milk production in livestock and poultry breeds. Epigenetic regulation of imprinted genes affects cattle growth and metabolism while epigenetic modifications play a role in disease resistance and mastitis in dairy cattle, as well as milk protein gene regulation during lactation. Nutri-epigenomics research also reveals the influence of maternal nutrition on offspring's epigenetic regulation of metabolic homeostasis in cattle, sheep, goat and poultry. Integrating cyto-genomics approaches enhances understanding of epigenetic mechanisms in livestock breeding, providing insights into chromosomal structure, rearrangements and their impact on gene regulation and phenotypic traits. This review presents potential research areas to enhance production potential and deepen our understanding of epigenetic changes in livestock, offering opportunities for genetic improvement, reproductive management, disease control and milk production in diverse livestock species.
Collapse
Affiliation(s)
- Pushpa Sindhu
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Ankit Magotra
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Vikas Sindhu
- Department of Animal Nutrition, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Pradeep Chaudhary
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| |
Collapse
|
9
|
Singh J, Khanna NN, Rout RK, Singh N, Laird JR, Singh IM, Kalra MK, Mantella LE, Johri AM, Isenovic ER, Fouda MM, Saba L, Fatemi M, Suri JS. GeneAI 3.0: powerful, novel, generalized hybrid and ensemble deep learning frameworks for miRNA species classification of stationary patterns from nucleotides. Sci Rep 2024; 14:7154. [PMID: 38531923 PMCID: PMC11344070 DOI: 10.1038/s41598-024-56786-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
Due to the intricate relationship between the small non-coding ribonucleic acid (miRNA) sequences, the classification of miRNA species, namely Human, Gorilla, Rat, and Mouse is challenging. Previous methods are not robust and accurate. In this study, we present AtheroPoint's GeneAI 3.0, a powerful, novel, and generalized method for extracting features from the fixed patterns of purines and pyrimidines in each miRNA sequence in ensemble paradigms in machine learning (EML) and convolutional neural network (CNN)-based deep learning (EDL) frameworks. GeneAI 3.0 utilized five conventional (Entropy, Dissimilarity, Energy, Homogeneity, and Contrast), and three contemporary (Shannon entropy, Hurst exponent, Fractal dimension) features, to generate a composite feature set from given miRNA sequences which were then passed into our ML and DL classification framework. A set of 11 new classifiers was designed consisting of 5 EML and 6 EDL for binary/multiclass classification. It was benchmarked against 9 solo ML (SML), 6 solo DL (SDL), 12 hybrid DL (HDL) models, resulting in a total of 11 + 27 = 38 models were designed. Four hypotheses were formulated and validated using explainable AI (XAI) as well as reliability/statistical tests. The order of the mean performance using accuracy (ACC)/area-under-the-curve (AUC) of the 24 DL classifiers was: EDL > HDL > SDL. The mean performance of EDL models with CNN layers was superior to that without CNN layers by 0.73%/0.92%. Mean performance of EML models was superior to SML models with improvements of ACC/AUC by 6.24%/6.46%. EDL models performed significantly better than EML models, with a mean increase in ACC/AUC of 7.09%/6.96%. The GeneAI 3.0 tool produced expected XAI feature plots, and the statistical tests showed significant p-values. Ensemble models with composite features are highly effective and generalized models for effectively classifying miRNA sequences.
Collapse
Affiliation(s)
- Jaskaran Singh
- Department of Computer Science, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
| | - Ranjeet K Rout
- Department of Computer Science and Engineering, NIT Srinagar, Hazratbal, Srinagar, India
| | - Narpinder Singh
- Department of Food Science, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, USA
| | - Inder M Singh
- Advanced Cardiac and Vascular Institute, Sacramento, CA, USA
| | - Mannudeep K Kalra
- Department of Radiology, Massachusetts General Hospital, Boston, MA, 02115, USA
| | - Laura E Mantella
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Amer M Johri
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Esma R Isenovic
- Laboratory for Molecular Genetics and Radiobiology, University of Belgrade, Belgrade, Serbia
| | - Mostafa M Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID, 83209, USA
| | - Luca Saba
- Department of Neurology, University of Cagliari, Cagliari, Italy
| | - Mostafa Fatemi
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint LLC, Roseville, CA, 95661, USA.
| |
Collapse
|
10
|
Wang W, Dai X, Li Y, Li M, Chi Z, Hu X, Wang Z. The miR-669a-5p/G3BP/HDAC6/AKAP12 Axis Regulates Primary Cilia Length. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305068. [PMID: 38088586 PMCID: PMC10853727 DOI: 10.1002/advs.202305068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/13/2023] [Indexed: 02/10/2024]
Abstract
Primary cilia are conserved organelles in most mammalian cells, acting as "antennae" to sense external signals. Maintaining a physiological cilium length is required for cilium function. MicroRNAs (miRNAs) are potent gene expression regulators, and aberrant miRNA expression is closely associated with ciliopathies. However, how miRNAs modulate cilium length remains elusive. Here, using the calcium-shock method and small RNA sequencing, a miRNA is identified, namely, miR-669a-5p, that is highly expressed in the cilia-enriched noncellular fraction. It is shown that miR-669a-5p promotes cilium elongation but not cilium formation in cultured cells. Mechanistically, it is demonstrated that miR-669a-5p represses ras-GTPase-activating protein SH3-domain-binding protein (G3BP) expression to inhibit histone deacetylase 6 (HDAC6) expression, which further upregulates A-kinase anchor protein 12 (AKAP12) expression. This effect ultimately blocks cilia disassembly and leads to greater cilium length, which can be restored to wild-type lengths by either upregulating HDAC6 or downregulating AKAP12. Collectively, these results elucidate a previously unidentified miR-669a-5p/G3BP/HDAC6/AKAP12 signaling pathway that regulates cilium length, providing potential pharmaceutical targets for treating ciliopathies.
Collapse
Affiliation(s)
- Weina Wang
- School of Life SciencesInstitute of Life Science and Green DevelopmentHebei UniversityBaoding071002China
| | - Xuyao Dai
- School of Life SciencesInstitute of Life Science and Green DevelopmentHebei UniversityBaoding071002China
| | - Yue Li
- School of Life SciencesInstitute of Life Science and Green DevelopmentHebei UniversityBaoding071002China
| | - Mo Li
- School of Public HealthHebei UniversityBaoding071000China
| | - Zongqi Chi
- School of Public HealthHebei UniversityBaoding071000China
| | - Xiaoyu Hu
- School of Life SciencesInstitute of Life Science and Green DevelopmentHebei UniversityBaoding071002China
| | - Zhenshan Wang
- School of Life SciencesInstitute of Life Science and Green DevelopmentHebei UniversityBaoding071002China
| |
Collapse
|
11
|
Tao Q, Zhang L, Zhang Y, Liu M, Wang J, Zhang Q, Wu J, Wang A, Jin Y, Tang K. The miR-34b/MEK/ERK pathway is regulated by NR5A1 and promotes differentiation in primary bovine Sertoli cells. Theriogenology 2024; 215:224-233. [PMID: 38100994 DOI: 10.1016/j.theriogenology.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Sertoli cells play a key role in testicular development and spermatogenesis. It has been suggested that Sertoli cells differentiate after their proliferation ceases. Our previous study showed that miR-34b inhibits proliferation by targeting MAP2K1 mediated MEK/ERK signaling pathway in bovine immature Sertoli cells. Subsequent studies have revealed that the differentiation marker androgen receptor is upregulated during this process. However, the effect of the miR-34b/MEK/ERK pathway on immature bovine Sertoli cell differentiation and the underlying molecular mechanisms are yet to be explored. In this study, we determined that the miR-34b/MEK/ERK pathway was involved in the differentiation of primary Sertoli cells (PSCs) in response to retinoic acid. Transfection of an miR-34b mimic into PSCs promoted cell differentiation, whereas transfection of an miR-34b inhibitor into PSCs delayed it. Pharmacological inhibition of MEK/ERK signaling by AZD6244 promoted PSCs differentiation. Mechanistically, miR-34b promoted PSCs differentiation by inhibiting the MEK/ERK signaling pathway. Through a combination of bioinformatics analysis, dual-luciferase reporter assay, quantitative real-time PCR, and western blotting, nuclear receptor subfamily 5 group A member 1 (NR5A1) was identified as an upstream negative transcription factor of miR-34b. Furthermore, NR5A1 knockdown promoted Sertoli cell differentiation, whereas NR5A1 overexpression had the opposite effect. Together, this study revealed a new NR5A1/miR-34b/MEK/ERK axis that plays a significant role in Sertoli cell differentiation and provides a theoretical and experimental framework for further clarifying the regulation of cell differentiation in bovine PSCs.
Collapse
Affiliation(s)
- Qibing Tao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Linlin Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Yun Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Mingming Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Jie Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Qian Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiancheng Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China.
| | - Keqiong Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
12
|
Ferrero G, Festa R, Follia L, Lettieri G, Tarallo S, Notari T, Giarra A, Marinaro C, Pardini B, Marano A, Piaggeschi G, Di Battista C, Trifuoggi M, Piscopo M, Montano L, Naccarati A. Small noncoding RNAs and sperm nuclear basic proteins reflect the environmental impact on germ cells. Mol Med 2024; 30:12. [PMID: 38243211 PMCID: PMC10799426 DOI: 10.1186/s10020-023-00776-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/26/2023] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Molecular techniques can complement conventional spermiogram analyses to provide new information on the fertilizing potential of spermatozoa and to identify early alterations due to environmental pollution. METHODS Here, we present a multilevel molecular profiling by small RNA sequencing and sperm nuclear basic protein analysis of male germ cells from 33 healthy young subjects residing in low and high-polluted areas. RESULTS Although sperm motility and sperm concentration were comparable between samples from the two sites, those from the high-pollution area had a higher concentration of immature/immune cells, a lower protamine/histone ratio, a reduced ability of sperm nuclear basic proteins to protect DNA from oxidative damage, and an altered copper/zinc ratio in sperm. Sperm levels of 32 microRNAs involved in intraflagellar transport, oxidative stress response, and spermatogenesis were different between the two areas. In parallel, a decrease of Piwi-interacting RNA levels was observed in samples from the high-polluted area. CONCLUSIONS This comprehensive analysis provides new insights into pollution-driven epigenetic alterations in sperm not detectable by spermiogram.
Collapse
Affiliation(s)
- Giulio Ferrero
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
- Department of Computer Science, University of Turin, Corso Svizzera, 185, 10149, Turin, Italy
| | - Rosaria Festa
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Laura Follia
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Gennaro Lettieri
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Sonia Tarallo
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, SP 142 Km. 3,95, 10060, Candiolo, Turin, Italy
| | - Tiziana Notari
- Check-Up PolyDiagnostic and Research Laboratory, Andrology Unit, Viale Andrea De Luca 5, 84131, Salerno, Italy
| | - Antonella Giarra
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Carmela Marinaro
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Barbara Pardini
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, SP 142 Km. 3,95, 10060, Candiolo, Turin, Italy
| | - Alessandra Marano
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Giulia Piaggeschi
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, SP 142 Km. 3,95, 10060, Candiolo, Turin, Italy
| | - Carla Di Battista
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, SP 142 Km. 3,95, 10060, Candiolo, Turin, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy.
| | - Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in UroAndrology, Local Health Authority (ASL) Salerno, Coordination Unit of the Network for Environmental and Reproductive Health (Eco-FoodFertility Project), S. Francesco di Assisi Hospital, 84020, Oliveto Citra, Salerno, Italy.
- PhD Program in Evolutionary Biology and Ecology, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Alessio Naccarati
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, SP 142 Km. 3,95, 10060, Candiolo, Turin, Italy
| |
Collapse
|
13
|
Chen Y, Chen Y, Yu XQ, Feng Q, Wang X, Liu L. Expression profiles of lncRNAs, miRNAs, and mRNAs and interaction analysis indicate their potential involvement during testicular fusion in Spodoptera litura. Genomics 2024; 116:110758. [PMID: 38065236 DOI: 10.1016/j.ygeno.2023.110758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 01/22/2024]
Abstract
Testicular fusion of Spodoptera litura occures during metamorphosis, which benefits sperms development. Previous research identified involvement of ECM-integrin interaction pathways, MMPs in testicular fusion, but the regulatory mechanism remains unclear. RNA-seq was performed to analyze long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in testes, aiming to uncover potential regulatory mechanisms of testicular fusion. 2150 lncRNAs, 2742 targeted mRNAs, and 347 miRNAs were identified in testes at three different developmental stages. Up-regulated DElncRNAs and DEmRNAs, as well as down-regulated DEmiRNAs, were observed during testicular fusion, while the opposite expression pattern was observed after fusion. Enrichment analysis of DEmRNAs revealed that cAMP signal pathway, ECM remodeling enzymes, ECM-integrin interaction pathways, and cell adhesion molecules were potentially associated with testicular fusion. The identified DElncRNA-DEmiRNA-DEmRNA regulatory network related to cAMP signal pathway, ECM remodeling enzymes suggests their roles during testicular fusion. Our research will provide new targets for studying the mechanism of testicular fusion.
Collapse
Affiliation(s)
- Yaqing Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yu Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| | - Xiao-Qiang Yu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| | - Qili Feng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| | - Xiaoyun Wang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| | - Lin Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
14
|
Maharati A, Tolue Ghasaban F, Akhlaghipour I, Taghehchian N, Zangouei AS, Moghbeli M. MicroRNA-495: a therapeutic and diagnostic tumor marker. J Mol Histol 2023; 54:559-578. [PMID: 37759132 DOI: 10.1007/s10735-023-10159-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Therapeutic and diagnostic progresses have significantly reduced the mortality rate among cancer patients during the last decade. However, there is still a high rate of mortality among cancer patients. One of the important reasons involved in the high mortality rate is the late diagnosis in advanced tumor stages that causes the failure of therapeutic strategies in these patients. Therefore, investigating the molecular mechanisms involved in tumor progression has an important role in introducing the efficient early detection markers. MicroRNAs (miRNAs) as stable factors in body fluids are always considered as non-invasive diagnostic and prognostic markers. In the present review, we investigated the role of miR-495 in tumor progression. It has been reported that miR-495 has mainly a tumor suppressor function through the regulation of transcription factors and tyrosine kinases as well as cellular processes such as multidrug resistance, chromatin remodeling, and signaling pathways. This review can be an effective step towards introducing the miR-495 as a non-invasive diagnostic/prognostic marker as well as a suitable target in tumor therapy.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Tolue Ghasaban
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
15
|
Aharon-Yariv A, Wang Y, Ahmed A, Delgado-Olguín P. Integrated small RNA, mRNA and protein omics reveal a miRNA network orchestrating metabolic maturation of the developing human heart. BMC Genomics 2023; 24:709. [PMID: 37996818 PMCID: PMC10668469 DOI: 10.1186/s12864-023-09801-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/11/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND As the fetal heart develops, cardiomyocyte proliferation potential decreases while fatty acid oxidative capacity increases in a highly regulated transition known as cardiac maturation. Small noncoding RNAs, such as microRNAs (miRNAs), contribute to the establishment and control of tissue-specific transcriptional programs. However, small RNA expression dynamics and genome-wide miRNA regulatory networks controlling maturation of the human fetal heart remain poorly understood. RESULTS Transcriptome profiling of small RNAs revealed the temporal expression patterns of miRNA, piRNA, circRNA, snoRNA, snRNA and tRNA in the developing human heart between 8 and 19 weeks of gestation. Our analysis demonstrated that miRNAs were the most dynamically expressed small RNA species throughout mid-gestation. Cross-referencing differentially expressed miRNAs and mRNAs predicted 6200 mRNA targets, 2134 of which were upregulated and 4066 downregulated as gestation progressed. Moreover, we found that downregulated targets of upregulated miRNAs, including hsa-let-7b, miR-1-3p, miR-133a-3p, miR-143-3p, miR-499a-5p, and miR-30a-5p predominantly control cell cycle progression. In contrast, upregulated targets of downregulated miRNAs, including hsa-miR-1276, miR-183-5p, miR-1229-3p, miR-615-3p, miR-421, miR-200b-3p and miR-18a-3p, are linked to energy sensing and oxidative metabolism. Furthermore, integrating miRNA and mRNA profiles with proteomes and reporter metabolites revealed that proteins encoded in mRNA targets and their associated metabolites mediate fatty acid oxidation and are enriched as the heart develops. CONCLUSIONS This study presents the first comprehensive analysis of the small RNAome of the maturing human fetal heart. Our findings suggest that coordinated activation and repression of miRNA expression throughout mid-gestation is essential to establish a dynamic miRNA-mRNA-protein network that decreases cardiomyocyte proliferation potential while increasing the oxidative capacity of the maturing human fetal heart. Our results provide novel insights into the molecular control of metabolic maturation of the human fetal heart.
Collapse
Affiliation(s)
- Adar Aharon-Yariv
- Translational Medicine, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, M5G0A4, Canada
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Yaxu Wang
- Translational Medicine, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, M5G0A4, Canada
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Abdalla Ahmed
- Translational Medicine, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, M5G0A4, Canada
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Paul Delgado-Olguín
- Translational Medicine, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, M5G0A4, Canada.
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
- Heart & Stroke, Richard Lewar Centre of Excellence, Toronto, Ontario, Canada.
| |
Collapse
|
16
|
Namløs HM, Khelik K, Nakken S, Vodák D, Hovig E, Myklebost O, Boye K, Meza‐Zepeda LA. Chromosomal instability and a deregulated cell cycle are intrinsic features of high-risk gastrointestinal stromal tumours with a metastatic potential. Mol Oncol 2023; 17:2432-2450. [PMID: 37622176 PMCID: PMC10620130 DOI: 10.1002/1878-0261.13514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/22/2023] [Accepted: 08/23/2023] [Indexed: 08/26/2023] Open
Abstract
Patients with localised, high-risk gastrointestinal stromal tumours (GIST) benefit from adjuvant imatinib treatment. Still, approximately 40% of patients relapse within 3 years after adjuvant therapy and the clinical and histopathological features currently used for risk classification cannot precisely predict poor outcomes after standard treatment. This study aimed to identify genomic and transcriptomic profiles that could be associated with disease relapse and thus a more aggressive phenotype. Using a multi-omics approach, we analysed a cohort of primary tumours from patients with untreated, resectable high-risk GISTs. We compared patients who developed metastatic disease within 3 years after finishing adjuvant imatinib treatment and patients without disease relapse after more than 5 years of follow-up. Combining genomics and transcriptomics data, we identified somatic mutations and deregulated mRNA and miRNA genes intrinsic to each group. Our study shows that increased chromosomal instability (CIN), including chromothripsis and deregulated kinetochore and cell cycle signalling, separates high-risk samples according to metastatic potential. The increased CIN seems to be an intrinsic feature for tumours that metastasise and should be further validated as a novel prognostic biomarker for high-risk GIST.
Collapse
Affiliation(s)
- Heidi Maria Namløs
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium HospitalOslo University HospitalOsloNorway
| | - Ksenia Khelik
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium HospitalOslo University HospitalOsloNorway
| | - Sigve Nakken
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium HospitalOslo University HospitalOsloNorway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, Institute of Clinical MedicineUniversity of OsloOsloNorway
- Department of InformaticsUniversity of OsloOsloNorway
| | - Daniel Vodák
- Bioinformatics Core Facility, Department of Core Facilities, Institute for Cancer ResearchOslo University HospitalOsloNorway
| | - Eivind Hovig
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium HospitalOslo University HospitalOsloNorway
- Department of InformaticsUniversity of OsloOsloNorway
| | - Ola Myklebost
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium HospitalOslo University HospitalOsloNorway
- Department for Clinical ScienceUniversity of BergenBergenNorway
| | - Kjetil Boye
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium HospitalOslo University HospitalOsloNorway
- Department of OncologyOslo University HospitalOsloNorway
| | - Leonardo A. Meza‐Zepeda
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium HospitalOslo University HospitalOsloNorway
- Genomics Core Facility, Department of Core Facilities, Institute for Cancer ResearchOslo University HospitalOsloNorway
| |
Collapse
|
17
|
Kim HY, Lee SW, Choi SK, Ashim J, Kim W, Beak SM, Park JK, Han JE, Cho GJ, Ryoo ZY, Jeong J, Lee YH, Jeong H, Yu W, Park S. Veratramine Inhibits the Cell Cycle Progression, Migration, and Invasion via ATM/ATR Pathway in Androgen-Independent Prostate Cancer. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1309-1333. [PMID: 37385965 DOI: 10.1142/s0192415x2350060x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Prostate cancer (PC) is the second leading cause of cancer-related death among men. Treatment of PC becomes difficult after progression because PC that used to be androgen-dependent becomes androgen-independent prostate cancer (AIPC). Veratramine, an alkaloid extracted from the root of the Veratrum genus, has recently been reported to have anticancer effects that work against various cancers; however, its anticancer effects and the underlying mechanism of action in PC remain unknown. We investigated the anticancer effects of veratramine on AIPC using PC3 and DU145 cell lines, as well as a xenograft mouse model. The antitumor effects of veratramine were evaluated using the CCK-8, anchorage-independent colony formation, trans-well, wound healing assays, and flow cytometry in AIPC cell lines. Microarray and proteomics analyses were performed to investigate the differentially expressed genes and proteins induced by veratramine in AIPC cells. A xenograft mouse model was used to confirm the therapeutic response and in vivo efficacy of veratramine. Veratramine dose dependently reduced the proliferation of cancer cells both in vitro and in vivo. Moreover, veratramine treatment effectively suppressed the migration and invasion of PC cells. The immunoblot analysis revealed that veratramine significantly downregulated Cdk4/6 and cyclin D1 via the ATM/ATR and Akt pathways, both of which induce a DNA damage response that eventually leads to G1 phase arrest. In this study, we discovered that veratramine exerted antitumor effects on AIPC cells. We demonstrated that veratramine significantly inhibited the proliferation of cancer cells via G0/G1 phase arrest induced by the ATM/ATR and Akt pathways. These results suggest that veratramine is a promising natural therapeutic agent for AIPC.
Collapse
Affiliation(s)
- Hee-Yeon Kim
- Core Protein Resources Center, DGIST, Daegu, Republic of Korea
- College of Veterinary Medicine, BK21 FOUR KNU Creative Bioresearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seoung-Woo Lee
- Core Protein Resources Center, DGIST, Daegu, Republic of Korea
- Division of Biotechnology, DGIST, Daegu, Republic of Korea
| | - Seong-Kyoon Choi
- Core Protein Resources Center, DGIST, Daegu, Republic of Korea
- Division of Biotechnology, DGIST, Daegu, Republic of Korea
| | - Janbolat Ashim
- Department of Brain Sciences, DGIST, Daegu, Republic of Korea
| | - Wansoo Kim
- Division of Biotechnology, DGIST, Daegu, Republic of Korea
- School of Life Science, BK21 FOUR KNU Creative Bioresearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Su-Min Beak
- College of Veterinary Medicine, BK21 FOUR KNU Creative Bioresearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jin-Kyu Park
- College of Veterinary Medicine, BK21 FOUR KNU Creative Bioresearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jee Eun Han
- College of Veterinary Medicine, BK21 FOUR KNU Creative Bioresearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Gil-Jae Cho
- College of Veterinary Medicine, BK21 FOUR KNU Creative Bioresearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Zae Young Ryoo
- School of Life Science, BK21 FOUR KNU Creative Bioresearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jain Jeong
- Digestive Diseases Section, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Yong-Ho Lee
- Department of Biomedical Science, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Hyohoon Jeong
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Wookyung Yu
- Core Protein Resources Center, DGIST, Daegu, Republic of Korea
- Department of Brain Sciences, DGIST, Daegu, Republic of Korea
| | - Song Park
- Core Protein Resources Center, DGIST, Daegu, Republic of Korea
- Department of Brain Sciences, DGIST, Daegu, Republic of Korea
| |
Collapse
|
18
|
Hosseini SF, Javanshir-Giv S, Soleimani H, Mollaei H, Sadri F, Rezaei Z. The importance of hsa-miR-28 in human malignancies. Biomed Pharmacother 2023; 161:114453. [PMID: 36868012 DOI: 10.1016/j.biopha.2023.114453] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
MicroRNA production in tumorigenesis is dysregulated by a variety of processes, such as proliferation and removal of microRNA genes, aberrant transcriptional regulation of microRNAs, disrupted epigenetic alterations, and failures in the miRNA biogenesis machinery. Under some circumstances, miRNAs may act as tumorigenic and maybe anti-oncogenes. Tumor aspects such as maintaining proliferating signals, bypassing development suppressors, delaying apoptosis, stimulating metastasis and invasion, and promoting angiogenesis have been linked to dysfunctional and dysregulated miRNAs. MiRNAs have been found as possible biomarkers for human cancer in a great deal of research, which requires additional evaluation and confirmation. It is known that hsa-miR-28 can function as an oncogene or tumor suppressor in many malignancies, and it does this by modulating the expression of several genes and the downstream signaling network. MiR-28-5p and miR-28-3p, which originate from the same RNA hairpin precursor miR-28, have essential roles in a variety of cancers. This review outlines the function and mechanisms of miR-28-3p and miR-28-5p in human cancers and illustrates the miR-28 family's potential utility as a diagnostic biomarker for prognosis and early detection of cancers.
Collapse
Affiliation(s)
- Seyede Fatemeh Hosseini
- Faculty Member, Tabas School of Nursing, Birjand University of Medical Sciences, Birjand, Iran
| | - Setareh Javanshir-Giv
- Faculty of Medicine, Department of Biochemistry, Birjand University of Medical Sciences, Birjand, Iran; Department of Clinical Biochemistry, Afzalipour School of Medicine & Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Hanieh Soleimani
- Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran
| | - Homa Mollaei
- Department of Biology, Faculty of Sciences, University of Birjand, Birjand, Iran
| | - Farzad Sadri
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran.
| | - Zohreh Rezaei
- Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran; Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
19
|
Ryu IS, Kim DH, Cho HJ, Ryu JH. The role of microRNA-485 in neurodegenerative diseases. Rev Neurosci 2023; 34:49-62. [PMID: 35793556 DOI: 10.1515/revneuro-2022-0039] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/19/2022] [Indexed: 01/11/2023]
Abstract
Neurodegenerative diseases (NDDs) are age-related disorders characterized by progressive neurodegeneration and neuronal cell loss in the central nervous system. Neuropathological conditions such as the accumulation of misfolded proteins can cause neuroinflammation, apoptosis, and synaptic dysfunction in the brain, leading to the development of NDDs including Alzheimer's disease (AD) and Parkinson's disease (PD). MicroRNAs (miRNAs) are small noncoding RNA molecules that regulate gene expression post-transcriptionally via RNA interference. Recently, some studies have reported that some miRNAs play an important role in the development of NDDs by regulating target gene expression. MiRNA-485 (miR-485) is a highly conserved brain-enriched miRNA. Accumulating clinical reports suggest that dysregulated miR-485 may be involved in the pathogenesis of AD and PD. Emerging studies have also shown that miR-485 plays a novel role in the regulation of neuroinflammation, apoptosis, and synaptic function in the pathogenesis of NDDs. In this review, we introduce the biological characteristics of miR-485, provide clinical evidence of the dysregulated miR-485 in NDDs, novel roles of miR-485 in neuropathological events, and discuss the potential of targeting miR-485 as a diagnostic and therapeutic marker for NDDs.
Collapse
Affiliation(s)
- In Soo Ryu
- Biorchestra Co. Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea
| | - Dae Hoon Kim
- Biorchestra Co. Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea
| | - Hyun-Jeong Cho
- Department of Biomedical Laboratory Science, College of Medical Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, South Korea
| | - Jin-Hyeob Ryu
- Biorchestra Co. Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea.,Biorchestra Co. Ltd., 245 Main St, Cambridge, MA 02142, USA
| |
Collapse
|
20
|
Naydenov M, Nikolova M, Apostolov A, Glogovitis I, Salumets A, Baev V, Yahubyan G. The Dynamics of miR-449a/c Expression during Uterine Cycles Are Associated with Endometrial Development. BIOLOGY 2022; 12:biology12010055. [PMID: 36671747 PMCID: PMC9855972 DOI: 10.3390/biology12010055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022]
Abstract
The human endometrium is a highly dynamic tissue. Increasing evidence has shown that microRNAs (miRs) play essential roles in human endometrium development. Our previous assay, based on small RNA-sequencing (sRNA-seq) indicated the complexity and dynamics of numerous sequence variants of miRs (isomiRs) that can act together to control genes of functional relevance to the receptive endometrium (RE). Here, we used a greater average depth of sRNA-seq to detect poorly expressed small RNAs. The sequencing data confirmed the up-regulation of miR-449c and uncovered other members of the miR-449 family up-regulated in RE-among them miR-449a, as well as several isoforms of both miR-449a and miR-449c, while the third family member, miR-449b, was not identified. Stem-looped RT-qPCR analysis of miR expression at four-time points of the endometrial cycle verified the increased expression of the miR-449a/c family members in RE, among which the 5' isoform of miR-449c-miR-449c.1 was the most strongly up-regulated. Moreover, we found in a case study that the expression of miR-449c.1 and its precursor correlated with the histological assessment of the endometrial phase and patient age. We believe this study will promote the clinical investigation and application of the miR-449 family in the diagnosis and prognosis of human reproductive diseases.
Collapse
Affiliation(s)
- Mladen Naydenov
- Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Maria Nikolova
- Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
- Center for Women’s Health, 4000 Plovdiv, Bulgaria
| | - Apostol Apostolov
- Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
- Competence Centre on Health Technologies, 50406 Tartu, Estonia
| | - Ilias Glogovitis
- Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Andres Salumets
- Competence Centre on Health Technologies, 50406 Tartu, Estonia
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Karolinska University Hospital, 14186 Stockholm, Sweden
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia
| | - Vesselin Baev
- Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Galina Yahubyan
- Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
- Correspondence:
| |
Collapse
|
21
|
Bai X, Zheng L, Xu Y, Liang Y, Li D. Role of microRNA-34b-5p in cancer and injury: how does it work? Cancer Cell Int 2022; 22:381. [PMID: 36457043 PMCID: PMC9713203 DOI: 10.1186/s12935-022-02797-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) are a class of noncoding single-stranded RNAs that can regulate gene expression by binding to the untranslated sequences at the 3 ' end of messenger RNAs. The microRNA-34 family is dysregulated in various human diseases. It is considered as a tumor-suppressive microRNA because of its synergistic effect with the well-known tumor suppressor p53. As a member of the miRNA-34 family, miR-34b-5p serves as a powerful regulator of a suite of cellular activities, including cell growth, multiplication, development, differentiation, and apoptosis. It promotes or represses disease occurrence and progression by participating in some important signaling pathways. This review aimed to provide an overview and update on the differential expression and function of miR-34b-5p in pathophysiologic processes, especially cancer and injury. Additionally, miR-34b-5p-mediated clinical trials have indicated promising consequences for the therapies of carcinomatosis and injury. With the application of the first tumor-targeted microRNA drug based on miR-34a mimics, it can be inferred that miR-34b-5p may become a crucial factor in the therapy of various diseases. However, further studies on miR-34b-5p should shed light on its involvement in disease pathogenesis and treatment options.
Collapse
Affiliation(s)
- Xuechun Bai
- grid.452829.00000000417660726The Second Hospital of Jilin University, Changchun, Jilin China
| | - Lianwen Zheng
- grid.452829.00000000417660726The Second Hospital of Jilin University, Changchun, Jilin China
| | - Ying Xu
- grid.452829.00000000417660726The Second Hospital of Jilin University, Changchun, Jilin China
| | - Yan Liang
- grid.452829.00000000417660726The Second Hospital of Jilin University, Changchun, Jilin China
| | - Dandan Li
- grid.452829.00000000417660726The Second Hospital of Jilin University, Changchun, Jilin China
| |
Collapse
|
22
|
Gosselin MRF, Mournetas V, Borczyk M, Verma S, Occhipinti A, Róg J, Bozycki L, Korostynski M, Robson SC, Angione C, Pinset C, Gorecki DC. Loss of full-length dystrophin expression results in major cell-autonomous abnormalities in proliferating myoblasts. eLife 2022; 11:e75521. [PMID: 36164827 PMCID: PMC9514850 DOI: 10.7554/elife.75521] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 09/02/2022] [Indexed: 12/05/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) affects myofibers and muscle stem cells, causing progressive muscle degeneration and repair defects. It was unknown whether dystrophic myoblasts-the effector cells of muscle growth and regeneration-are affected. Using transcriptomic, genome-scale metabolic modelling and functional analyses, we demonstrate, for the first time, convergent abnormalities in primary mouse and human dystrophic myoblasts. In Dmdmdx myoblasts lacking full-length dystrophin, the expression of 170 genes was significantly altered. Myod1 and key genes controlled by MyoD (Myog, Mymk, Mymx, epigenetic regulators, ECM interactors, calcium signalling and fibrosis genes) were significantly downregulated. Gene ontology analysis indicated enrichment in genes involved in muscle development and function. Functionally, we found increased myoblast proliferation, reduced chemotaxis and accelerated differentiation, which are all essential for myoregeneration. The defects were caused by the loss of expression of full-length dystrophin, as similar and not exacerbated alterations were observed in dystrophin-null Dmdmdx-βgeo myoblasts. Corresponding abnormalities were identified in human DMD primary myoblasts and a dystrophic mouse muscle cell line, confirming the cross-species and cell-autonomous nature of these defects. The genome-scale metabolic analysis in human DMD myoblasts showed alterations in the rate of glycolysis/gluconeogenesis, leukotriene metabolism, and mitochondrial beta-oxidation of various fatty acids. These results reveal the disease continuum: DMD defects in satellite cells, the myoblast dysfunction affecting muscle regeneration, which is insufficient to counteract muscle loss due to myofiber instability. Contrary to the established belief, our data demonstrate that DMD abnormalities occur in myoblasts, making these cells a novel therapeutic target for the treatment of this lethal disease.
Collapse
Affiliation(s)
- Maxime RF Gosselin
- School of Pharmacy and Biomedical Sciences, University of PortsmouthPortsmouthUnited Kingdom
| | | | - Malgorzata Borczyk
- Laboratory of Pharmacogenomics, Maj Institute of Pharmacology PASKrakowPoland
| | - Suraj Verma
- School of Computing, Engineering and Digital Technologies, Teesside UniversityMiddlesbroughUnited Kingdom
| | - Annalisa Occhipinti
- School of Computing, Engineering and Digital Technologies, Teesside UniversityMiddlesbroughUnited Kingdom
| | - Justyna Róg
- School of Pharmacy and Biomedical Sciences, University of PortsmouthPortsmouthUnited Kingdom
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental BiologyWarsawPoland
| | - Lukasz Bozycki
- School of Pharmacy and Biomedical Sciences, University of PortsmouthPortsmouthUnited Kingdom
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental BiologyWarsawPoland
| | - Michal Korostynski
- Laboratory of Pharmacogenomics, Maj Institute of Pharmacology PASKrakowPoland
| | - Samuel C Robson
- School of Pharmacy and Biomedical Sciences, University of PortsmouthPortsmouthUnited Kingdom
- Centre for Enzyme Innovation, University of PortsmouthPortsmouthUnited Kingdom
| | - Claudio Angione
- School of Computing, Engineering and Digital Technologies, Teesside UniversityMiddlesbroughUnited Kingdom
| | | | - Dariusz C Gorecki
- School of Pharmacy and Biomedical Sciences, University of PortsmouthPortsmouthUnited Kingdom
| |
Collapse
|
23
|
Boateng E, Kovacevic D, Oldenburg V, Rådinger M, Krauss-Etschmann S. Role of airway epithelial cell miRNAs in asthma. FRONTIERS IN ALLERGY 2022; 3:962693. [PMID: 36203653 PMCID: PMC9530201 DOI: 10.3389/falgy.2022.962693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/01/2022] [Indexed: 12/07/2022] Open
Abstract
The airway epithelial cells and overlying layer of mucus are the first point of contact for particles entering the lung. The severity of environmental contributions to pulmonary disease initiation, progression, and exacerbation is largely determined by engagement with the airway epithelium. Despite the cellular cross-talk and cargo exchange in the microenvironment, epithelial cells produce miRNAs associated with the regulation of airway features in asthma. In line with this, there is evidence indicating miRNA alterations related to their multifunctional regulation of asthma features in the conducting airways. In this review, we discuss the cellular components and functions of the airway epithelium in asthma, miRNAs derived from epithelial cells in disease pathogenesis, and the cellular exchange of miRNA-bearing cargo in the airways.
Collapse
Affiliation(s)
- Eistine Boateng
- Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
- Correspondence: Eistine Boateng
| | - Draginja Kovacevic
- DZL Laboratory for Experimental Microbiome Research, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Vladimira Oldenburg
- Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Madeleine Rådinger
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Susanne Krauss-Etschmann
- Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
- DZL Laboratory for Experimental Microbiome Research, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
- Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
24
|
Wildung M, Herr C, Riedel D, Wiedwald C, Moiseenko A, Ramírez F, Tasena H, Heimerl M, Alevra M, Movsisyan N, Schuldt M, Volceanov-Hahn L, Provoost S, Nöthe-Menchen T, Urrego D, Freytag B, Wallmeier J, Beisswenger C, Bals R, van den Berge M, Timens W, Hiemstra PS, Brandsma CA, Maes T, Andreas S, Heijink IH, Pardo LA, Lizé M. miR449 Protects Airway Regeneration by Controlling AURKA/HDAC6-Mediated Ciliary Disassembly. Int J Mol Sci 2022; 23:ijms23147749. [PMID: 35887096 PMCID: PMC9320302 DOI: 10.3390/ijms23147749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 01/25/2023] Open
Abstract
Airway mucociliary regeneration and function are key players for airway defense and are impaired in chronic obstructive pulmonary disease (COPD). Using transcriptome analysis in COPD-derived bronchial biopsies, we observed a positive correlation between cilia-related genes and microRNA-449 (miR449). In vitro, miR449 was strongly increased during airway epithelial mucociliary differentiation. In vivo, miR449 was upregulated during recovery from chemical or infective insults. miR0449−/− mice (both alleles are deleted) showed impaired ciliated epithelial regeneration after naphthalene and Haemophilus influenzae exposure, accompanied by more intense inflammation and emphysematous manifestations of COPD. The latter occurred spontaneously in aged miR449−/− mice. We identified Aurora kinase A and its effector target HDAC6 as key mediators in miR449-regulated ciliary homeostasis and epithelial regeneration. Aurora kinase A is downregulated upon miR449 overexpression in vitro and upregulated in miR449−/− mouse lungs. Accordingly, imaging studies showed profoundly altered cilia length and morphology accompanied by reduced mucociliary clearance. Pharmacological inhibition of HDAC6 rescued cilia length and coverage in miR449−/− cells, consistent with its tubulin-deacetylating function. Altogether, our study establishes a link between miR449, ciliary dysfunction, and COPD pathogenesis.
Collapse
Affiliation(s)
- Merit Wildung
- Molecular & Experimental Pneumology Group, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, 37075 Gottingen, Germany; (M.W.); (C.W.); (M.H.); (L.V.-H.); (S.A.)
- Molecular Oncology, University Medical Center Goettingen, 37077 Goettingen, Germany; (M.S.); (B.F.)
| | - Christian Herr
- Department of Internal Medicine V, Saarland University, 66421 Homburg, Germany; (C.H.); (C.B.); (R.B.)
| | - Dietmar Riedel
- Laboratory for Electron Microscopy, Max Planck Institute for Multidisciplinary Sciences, 37075 Goettingen, Germany;
| | - Cornelia Wiedwald
- Molecular & Experimental Pneumology Group, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, 37075 Gottingen, Germany; (M.W.); (C.W.); (M.H.); (L.V.-H.); (S.A.)
- Molecular Oncology, University Medical Center Goettingen, 37077 Goettingen, Germany; (M.S.); (B.F.)
| | - Alena Moiseenko
- Immunology & Respiratory Department, Boehringer Ingelheim Pharma GmbH, 88400 Biberach an der Riss, Germany;
| | - Fidel Ramírez
- Global Computational Biology and Digital Sciences Department, Boehringer Ingelheim Pharma GmbH, 88400 Biberach an der Riss, Germany;
| | - Hataitip Tasena
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands; (H.T.); (W.T.); (C.-A.B.); (I.H.H.)
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands;
| | - Maren Heimerl
- Molecular & Experimental Pneumology Group, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, 37075 Gottingen, Germany; (M.W.); (C.W.); (M.H.); (L.V.-H.); (S.A.)
- Molecular Oncology, University Medical Center Goettingen, 37077 Goettingen, Germany; (M.S.); (B.F.)
| | - Mihai Alevra
- Institute of Neuro- and Sensory Physiology, Goettingen University, 37073 Goettingen, Germany;
| | - Naira Movsisyan
- Oncophysiology Group, Max Planck Institute for Multidisciplinary Sciences, 37075 Goettingen, Germany; (N.M.); (D.U.); (L.A.P.)
| | - Maike Schuldt
- Molecular Oncology, University Medical Center Goettingen, 37077 Goettingen, Germany; (M.S.); (B.F.)
| | - Larisa Volceanov-Hahn
- Molecular & Experimental Pneumology Group, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, 37075 Gottingen, Germany; (M.W.); (C.W.); (M.H.); (L.V.-H.); (S.A.)
| | - Sharen Provoost
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, 9000 Ghent, Belgium; (S.P.); (T.M.)
| | - Tabea Nöthe-Menchen
- Department of General Pediatrics, University Hospital Muenster, 48149 Muenster, Germany; (T.N.-M.); (J.W.)
| | - Diana Urrego
- Oncophysiology Group, Max Planck Institute for Multidisciplinary Sciences, 37075 Goettingen, Germany; (N.M.); (D.U.); (L.A.P.)
| | - Bernard Freytag
- Molecular Oncology, University Medical Center Goettingen, 37077 Goettingen, Germany; (M.S.); (B.F.)
| | - Julia Wallmeier
- Department of General Pediatrics, University Hospital Muenster, 48149 Muenster, Germany; (T.N.-M.); (J.W.)
| | - Christoph Beisswenger
- Department of Internal Medicine V, Saarland University, 66421 Homburg, Germany; (C.H.); (C.B.); (R.B.)
| | - Robert Bals
- Department of Internal Medicine V, Saarland University, 66421 Homburg, Germany; (C.H.); (C.B.); (R.B.)
| | - Maarten van den Berge
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands;
- Department of Pulmonology, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands
| | - Wim Timens
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands; (H.T.); (W.T.); (C.-A.B.); (I.H.H.)
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands;
| | - Pieter S. Hiemstra
- Department of Pulmonology, Leiden University Medical Centre, 2333 Leiden, The Netherlands;
| | - Corry-Anke Brandsma
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands; (H.T.); (W.T.); (C.-A.B.); (I.H.H.)
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands;
| | - Tania Maes
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, 9000 Ghent, Belgium; (S.P.); (T.M.)
| | - Stefan Andreas
- Molecular & Experimental Pneumology Group, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, 37075 Gottingen, Germany; (M.W.); (C.W.); (M.H.); (L.V.-H.); (S.A.)
| | - Irene H. Heijink
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands; (H.T.); (W.T.); (C.-A.B.); (I.H.H.)
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands;
- Department of Pulmonology, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands
| | - Luis A. Pardo
- Oncophysiology Group, Max Planck Institute for Multidisciplinary Sciences, 37075 Goettingen, Germany; (N.M.); (D.U.); (L.A.P.)
| | - Muriel Lizé
- Molecular & Experimental Pneumology Group, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, 37075 Gottingen, Germany; (M.W.); (C.W.); (M.H.); (L.V.-H.); (S.A.)
- Molecular Oncology, University Medical Center Goettingen, 37077 Goettingen, Germany; (M.S.); (B.F.)
- Immunology & Respiratory Department, Boehringer Ingelheim Pharma GmbH, 88400 Biberach an der Riss, Germany;
- Correspondence:
| |
Collapse
|
25
|
Regulation of vtg and VtgR in mud crab Scylla paramamosain by miR-34. Mol Biol Rep 2022; 49:7367-7376. [PMID: 35715603 DOI: 10.1007/s11033-022-07530-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Vitellogenin (Vtg) is the precursor of major yolk protein and plays a crucial role in the maturation of oocytes and the production of eggs in oviparous animals. Vitellogenin receptor (VtgR) mediates the transport of Vtg explicitly to oocytes in the membrane. In a previous study, we found that miR-34 can regulate the expression of some eyestalk genes and affect reproduction in mud crab Scylla paramamosain, one of the most important economic crabs on the coasts of southern China. METHODS AND RESULTS In this study, firstly, we found that miR-34 can target at 3'-UTR of Vtg and VtgR genes by using bioinformatic tools and predicted miR-34 might depress the expression of Vtg and VtgR. Secondly, the relative luciferase activity of HEK293T cells co-transfected with miRNA mimic and pmir-RB-REPORTTM-Vtg/VtgR-3'UTR was significantly lower than those of cells co-transfected with mimic NC and pmir-RB-REPORTTM-Vtg/VtgR-3'UTR. Finally, in vivo experiments showed that agomiR-34 could repress the expression of Vtg and VtgR genes, while Antigomir-34 could promote the expression of these two genes. CONCLUSIONS These results confirm our hypothesis and previous published results that miR-34 may indirectly regulate ovarian development by binding to the 3'-UTR of Vtg and VtgR genes and inhibiting their expression.
Collapse
|
26
|
MicroRNA Signature and Cellular Characterization of Undifferentiated and Differentiated House Ear Institute-Organ of Corti 1 (HEI-OC1) Cells. J Assoc Res Otolaryngol 2022; 23:467-489. [PMID: 35546217 PMCID: PMC9094604 DOI: 10.1007/s10162-022-00850-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 04/20/2022] [Indexed: 11/29/2022] Open
Abstract
MicroRNAs (miRNAs) regulate gene expressions and control a wide variety of cellular functions. House Ear Institute-Organ of Corti 1 (HEI-OC1) cells are widely used to screen ototoxic drugs and to investigate cellular and genetic alterations in response to various conditions. HEI-OC1 cells are almost exclusively studied under permissive conditions that promote cell replication at the expense of differentiation. Many researchers suggest that permissive culture condition findings are relevant to understanding human hearing disorders. The mature human cochlea however consists of differentiated cells and lacks proliferative capacity. This study therefore aimed to compare the miRNA profiles and cellular characteristics of HEI-OC1 cells cultured under permissive (P-HEI-OC1) and non-permissive (NP-HEI-OC1) conditions. A significant increase in the level of expression of tubulin β1 class VI (Tubb1), e-cadherin (Cdh1), espin (Espn), and SRY (sex determining region Y)-box2 (Sox2) mRNAs was identified in non-permissive cells compared with permissive cells (P < 0.05, Kruskal–Wallis H test, 2-sided). miR-200 family, miR-34b/c, and miR-449a/b functionally related cluster miRNAs, rodent-specific maternally imprinted gene Sfmbt2 intron 10th cluster miRNAs (-466a/ -467a), and miR-17 family were significantly (P < 0.05, Welch’s t-test, 2-tailed) differentially expressed in non-permissive cells when compared with permissive cells. Putative target genes were significantly predominantly enriched in mitogen-activated protein kinase (MAPK), epidermal growth factor family of receptor tyrosine kinases (ErbB), and Ras signaling pathways in non-permissive cells compared with permissive cells. This distinct miRNA signature of differentiated HEI-OC1 cells could help in understanding miRNA-mediated cellular responses in the adult cochlea.
Collapse
|
27
|
Zhang X, Ren Z, Xu J, Chen Q, Ma J, Liu Z, Kou J, Zhao X, Lang R, He Q. MiR-1301-3p Inhibits Epithelial-Mesenchymal Transition via Targeting RhoA in Pancreatic Cancer. JOURNAL OF ONCOLOGY 2022; 2022:5514715. [PMID: 35256884 PMCID: PMC8898114 DOI: 10.1155/2022/5514715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 11/14/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022]
Abstract
Micro(mi)RNAs play an essential role in the epithelial-mesenchymal transition (EMT) process in human cancers. This study aimed to uncover the regulatory mechanism of miR-1301-3p on EMT in pancreatic cancer (PC). The miRNA profilings from Gene Expression Omnibus data sets (GSE31568, GSE41372, and GSE32688) demonstrated the downregulation of miR-1301-3p in PC tissues, which was validated with 72 paired PC tissue samples through qRT-PCR detection. The low level of miR-1301-3p was associated with a poor prognosis for PC patients from the PC cohort of The Cancer Genome Atlas and the validation cohort. Gene Ontology analyses indicated that the target genes of miR-1301-3p were involved in cell cycle and adherent junction regulation. In vitro assays revealed that miR-1301-3p suppressed the proliferation and migration abilities of PC cells. Western blotting and luciferase reporter assays suggested that miR-1301-3p inhibited RhoA expression by targeting its 3'-untranslated region; RhoA upregulated N-cadherin and vimentin levels; however, it downregulated the E-cadherin level. In conclusion, our study showed that miR-1301-3p could serve as a prognostic biomarker for PC and suppress PC cell malignancy by targeting the RhoA-induced EMT process.
Collapse
Affiliation(s)
- Xinxue Zhang
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Zhangyong Ren
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Junming Xu
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Qing Chen
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jun Ma
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Zhe Liu
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jiantao Kou
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Xin Zhao
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Ren Lang
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Qiang He
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
28
|
Isakova A, Neff N, Quake SR. Single-cell quantification of a broad RNA spectrum reveals unique noncoding patterns associated with cell types and states. Proc Natl Acad Sci U S A 2021; 118:e2113568118. [PMID: 34911763 PMCID: PMC8713755 DOI: 10.1073/pnas.2113568118] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2021] [Indexed: 12/22/2022] Open
Abstract
The ability to interrogate total RNA content of single cells would enable better mapping of the transcriptional logic behind emerging cell types and states. However, current single-cell RNA-sequencing (RNA-seq) methods are unable to simultaneously monitor all forms of RNA transcripts at the single-cell level, and thus deliver only a partial snapshot of the cellular RNAome. Here we describe Smart-seq-total, a method capable of assaying a broad spectrum of coding and noncoding RNA from a single cell. Smart-seq-total does not require splitting the RNA content of a cell and allows the incorporation of unique molecular identifiers into short and long RNA molecules for absolute quantification. It outperforms current poly(A)-independent total RNA-seq protocols by capturing transcripts of a broad size range, thus enabling simultaneous analysis of protein-coding, long-noncoding, microRNA, and other noncoding RNA transcripts from single cells. We used Smart-seq-total to analyze the total RNAome of human primary fibroblasts, HEK293T, and MCF7 cells, as well as that of induced murine embryonic stem cells differentiated into embryoid bodies. By analyzing the coexpression patterns of both noncoding RNA and mRNA from the same cell, we were able to discover new roles of noncoding RNA throughout essential processes, such as cell cycle and lineage commitment during embryonic development. Moreover, we show that independent classes of short-noncoding RNA can be used to determine cell-type identity.
Collapse
Affiliation(s)
- Alina Isakova
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | - Norma Neff
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| | - Stephen R Quake
- Department of Bioengineering, Stanford University, Stanford, CA 94305;
- Chan Zuckerberg Biohub, San Francisco, CA 94158
- Department of Applied Physics, Stanford University, Stanford, CA 94305
| |
Collapse
|
29
|
Rencelj A, Gvozdenovic N, Cemazar M. MitomiRs: their roles in mitochondria and importance in cancer cell metabolism. Radiol Oncol 2021; 55:379-392. [PMID: 34821131 PMCID: PMC8647792 DOI: 10.2478/raon-2021-0042] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/28/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are short non-coding RNAs that play important roles in almost all biological pathways. They regulate post-transcriptional gene expression by binding to the 3'untranslated region (3'UTR) of messenger RNAs (mRNAs). MitomiRs are miRNAs of nuclear or mitochondrial origin that are localized in mitochondria and have a crucial role in regulation of mitochondrial function and metabolism. In eukaryotes, mitochondria are the major sites of oxidative metabolism of sugars, lipids, amino acids, and other bio-macromolecules. They are also the main sites of adenosine triphosphate (ATP) production. CONCLUSIONS In the review, we discuss the role of mitomiRs in mitochondria and introduce currently well studied mitomiRs, their target genes and functions. We also discuss their role in cancer initiation and progression through the regulation of mRNA expression in mitochondria. MitomiRs directly target key molecules such as transporters or enzymes in cell metabolism and regulate several oncogenic signaling pathways. They also play an important role in the Warburg effect, which is vital for cancer cells to maintain their proliferative potential. In addition, we discuss how they indirectly upregulate hexokinase 2 (HK2), an enzyme involved in glucose phosphorylation, and thus may affect energy metabolism in breast cancer cells. In tumor tissues such as breast cancer and head and neck tumors, the expression of one of the mitomiRs (miR-210) correlates with hypoxia gene signatures, suggesting a direct link between mitomiR expression and hypoxia in cancer. The miR-17/92 cluster has been shown to act as a key factor in metabolic reprogramming of tumors by regulating glycolytic and mitochondrial metabolism. This cluster is deregulated in B-cell lymphomas, B-cell chronic lymphocytic leukemia, acute myeloid leukemia, and T-cell lymphomas, and is particularly overexpressed in several other cancers. Based on the current knowledge, we can conclude that there is a large number of miRNAs present in mitochondria, termed mitomiR, and that they are important regulators of mitochondrial function. Therefore, mitomiRs are important players in the metabolism of cancer cells, which need to be further investigated in order to develop a potential new therapies for cancer.
Collapse
Affiliation(s)
- Andrej Rencelj
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nada Gvozdenovic
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Ljubljana, Slovenia
| | - Maja Cemazar
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| |
Collapse
|
30
|
Murlistyarini S, Sardjono TW, Hakim L, Widyarti S, Utomo DH, Permatasari GW, Hernowaty TE. miRNA-17-5p Target Prediction and its Role in Senescence Mechanism through p21 Interference. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.5986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Cellular senescence is known to be correlated with the cessation of cell cycle. The progression of cell cycle is promoted by activities of various proteins, including cyclin-dependent kinase (CDK) and cyclin proteins, which work synergistically. CDK-cyclin complexes are influenced by other proteins, such as retinoblastoma (Rb) and E2F proteins. In cell cycle, both Rb and E2F proteins could be affected by one of the CDK inhibitors, that is, p21. MicroRNA (miRNA) is well known for its role in biological processes, including cell cycle. However, the contribution of miRNA in cell cycle is still poorly understood. Some miRNAs play a role in pro-proliferation and anti-proliferation.
AIM: This study was performed an in silico study analysis to reveal the relationship between miRNA-17-5p and p21 in the process of cellular senescence.
METHODS: The extensive data mining was conducted to determine the miRNA that contributes to the process of anti-aging prevention and the desired target genes through the Human Protein Atlas and cancer database. miRNA target prediction was performed using DIANA-microT-CDS. Gene function of the miRNA-17-5p target was annotated using DAVID GO.
RESULTS: The sequence of hsa-miRNA-17-5p (CAAAGUGCUUACAGUGCAGGUAG) has three attachment sites with binding types of 8 mer, 6 mer, and 8 mer at the transcription sites of 447–474, 485–513, and 1132–1154, respectively. The main profile of hsa-miRNA-17-5p showed that it bound to 3’-untranslated region and the coding region (exon).
CONCLUSIONS: The miRNA-17-5p was involved in cellular senescence by influencing the process of cell proliferation in the cell cycle pathway.
Collapse
|
31
|
Loukas I, Skamnelou M, Tsaridou S, Bournaka S, Grigoriadis S, Taraviras S, Lygerou Z, Arbi M. Fine-tuning multiciliated cell differentiation at the post-transcriptional level: contribution of miR-34/449 family members. Biol Rev Camb Philos Soc 2021; 96:2321-2332. [PMID: 34132477 DOI: 10.1111/brv.12755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/13/2021] [Accepted: 05/25/2021] [Indexed: 01/28/2023]
Abstract
Cell differentiation is a process that must be precisely regulated for the maintenance of tissue homeostasis. Differentiation towards a multiciliated cell fate is characterized by well-defined stages, where a transcriptional cascade is activated leading to the formation of multiple centrioles and cilia. Centrioles migrate and dock to the apical cell surface and, acting as basal bodies, give rise to multiple motile cilia. The concerted movement of cilia ensures directional fluid flow across epithelia and defects either in their number or structure can lead to disease phenotypes. Micro-RNAs (miRNAs; miRs) are small, non-coding RNA molecules that play an important role in post-transcriptional regulation of gene expression. miR-34b/c and miR-449a/b/c specifically function throughout the differentiation of multiciliated cells, fine-tuning the expression of many different centriole- and cilia-related genes. They strictly regulate the expression levels of genes that are required both for commitment towards the multiciliated cell fate (e.g. Notch) and for the establishment and maintenance of this fate by regulating the expression of transcription factors and structural components of the pathway. Herein we review miR-34 and miR-449 spatiotemporal regulation along with their roles during the different stages of multiciliogenesis.
Collapse
Affiliation(s)
- Ioannis Loukas
- Laboratory of Biology, School of Medicine, University of Patras, Rio, Patras, 26504, Greece
| | - Margarita Skamnelou
- Laboratory of Biology, School of Medicine, University of Patras, Rio, Patras, 26504, Greece
| | - Stavroula Tsaridou
- Laboratory of Biology, School of Medicine, University of Patras, Rio, Patras, 26504, Greece
| | - Spyridoula Bournaka
- Laboratory of Biology, School of Medicine, University of Patras, Rio, Patras, 26504, Greece
| | - Sokratis Grigoriadis
- Laboratory of Biology, School of Medicine, University of Patras, Rio, Patras, 26504, Greece
| | - Stavros Taraviras
- Laboratory of Physiology, School of Medicine, University of Patras, Rio, Patras, 26504, Greece
| | - Zoi Lygerou
- Laboratory of Biology, School of Medicine, University of Patras, Rio, Patras, 26504, Greece
| | - Marina Arbi
- Laboratory of Biology, School of Medicine, University of Patras, Rio, Patras, 26504, Greece
| |
Collapse
|
32
|
Liang Y, Li S, Tang L. MicroRNA 320, an Anti-Oncogene Target miRNA for Cancer Therapy. Biomedicines 2021; 9:biomedicines9060591. [PMID: 34071109 PMCID: PMC8224659 DOI: 10.3390/biomedicines9060591] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs are a set of highly conserved non-coding RNAs that control gene expression at the post-transcriptional/translational levels by binding to the 3′-UTR of diverse target genes. Increasing evidence indicates that miRNAs not only play a vital role in many biological processes, but they are also frequently deregulated in pathological conditions, including cancer. The miR-320 family is one of many tumor suppressor families and is composed of five members, which has been demonstrated to be related to the repression of epithelial-mesenchymal transition (EMT) inhibition, cell proliferation, and apoptosis. Moreover, this family has been shown to regulate drug resistance, and act as a potential biomarker for the diagnosis, prognosis, and prediction of cancer. In this review, we summarized recent research with reference to the tumor suppressor function of miR-320 and the regulation mechanisms of miR-320 expression. The collected evidence shown here supports that miR-320 may act as a novel biomarker for cancer prognosis and therapeutic response to cancer treatment.
Collapse
Affiliation(s)
- Yuanyuan Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China;
| | - Shun Li
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu 610500, China
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu 610500, China
- Correspondence: (S.L.); (L.T.)
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China;
- Correspondence: (S.L.); (L.T.)
| |
Collapse
|
33
|
Ding L, Tian W, Zhang H, Li W, Ji C, Wang Y, Li Y. MicroRNA-486-5p Suppresses Lung Cancer via Downregulating mTOR Signaling In Vitro and In Vivo. Front Oncol 2021; 11:655236. [PMID: 34094949 PMCID: PMC8172781 DOI: 10.3389/fonc.2021.655236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/23/2021] [Indexed: 11/13/2022] Open
Abstract
Lung cancer is one of the central causes of tumor-related deaths globally, of which non-small cell lung cancer (NSCLC) takes up about 85%. As key regulators of various biological processes, microRNAs (miRNAs) have been verified as crucial factors in NSCLC. To elucidate the role of miR-486-5p in the mTOR pathway, we investigated its role in NSCLC and related signaling. Our results confirmed that miR-486-5p was downregulated in most of human NSCLC tissue samples and cell lines. Further study confirmed that it inhibited NSCLC through repression of the mTOR pathway via targeting both ribosomal proteins S6 kinase A1 (RPS6KA1, RSK) and ribosomal proteins S6 kinase B1 (RPS6KB1, p70S6K), which are critical components of the mTOR signaling. Additionally, miR-486-5p impeded tumor growth in vivo and inhibited tumor metastasis through repression of the epithelial-mesenchymal transition (EMT). Taken together, our study verified the role that miR-486-5p exerts in NSCLC, and its expression pattern in the different stages and morphologies of NSCLC makes it a promising biomarker in the early diagnosis of the disease.
Collapse
Affiliation(s)
- Lei Ding
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China.,Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China
| | - Wu Tian
- Department of General Surgery, Orthopedics Hospital of Guizhou Province, Guiyang, China
| | - Hui Zhang
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Wanqiu Li
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Chunyu Ji
- Department of Thoracic Surgery, Shanghai Chest Hospital, Jiaotong University Medical School, Shanghai, China
| | - Yuanyuan Wang
- Department of Respiratory and Critical Care Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yanli Li
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
34
|
What we can learn from embryos to understand the mesenchymal-to-epithelial transition in tumor progression. Biochem J 2021; 478:1809-1825. [PMID: 33988704 DOI: 10.1042/bcj20210083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/06/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022]
Abstract
Epithelial plasticity involved the terminal and transitional stages that occur during epithelial-to-mesenchymal transition (EMT) and mesenchymal-to-epithelial transition (MET), both are essential at different stages of early embryonic development that have been co-opted by cancer cells to undergo tumor metastasis. These processes are regulated at multiple instances, whereas the post-transcriptional regulation of key genes mediated by microRNAs is gaining major attention as a common and conserved pathway. In this review, we focus on discussing the latest findings of the cellular and molecular basis of the less characterized process of MET during embryonic development, with special attention to the role of microRNAs. Although we take in consideration the necessity of being cautious when extrapolating the obtained evidence, we propose some commonalities between early embryonic development and cancer progression that can shed light into our current understanding of this complex event and might aid in the design of specific therapeutic approaches.
Collapse
|
35
|
Wu YJ, Liu Y, Hu YQ, Wang L, Bai FR, Xu C, Wu JW. Control of multiciliogenesis by miR-34/449 in the male reproductive tract through enforcing cell cycle exit. J Cell Sci 2021; 134:261955. [PMID: 33973639 PMCID: PMC8182409 DOI: 10.1242/jcs.253450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Multiciliated cells (MCCs) are terminally differentiated postmitotic cells that possess hundreds of motile cilia on their apical surface. Defects in cilia formation are associated with ciliopathies that affect many organs. In this study, we tested the role and mechanism of the miR-34/449 family in the regulation of multiciliogenesis in EDs using an miR-34b/c−/−; miR-449−/− double knockout (dKO) mouse model. MiR-34b/c and miR-449 depletion led to a reduced number of MCCs and abnormal cilia structure in the EDs starting from postnatal day (P)14. However, abnormal MCC differentiation in the dKO EDs could be observed as early as P7. RNA-seq analyses revealed that the aberrant development of MCCs in the EDs of dKO mice was associated with the upregulation of genes involved in cell cycle control. Using a cyclin-dependent kinase inhibitor to force cell cycle exit promoted MCC differentiation, and partially rescued the defective multiciliogenesis in the EDs of dKO mice. Taken together, our results suggest that miR-34b/c and miR-449 play an essential role in multiciliogenesis in EDs by regulating cell cycle exit. Summary: Mutagenic, expression and histological analyses reveal an essential role for miR-34b/c and miR-449 in multiciliogenesis in efferent ductules of the male reproductive tract by regulating cell cycle exit.
Collapse
Affiliation(s)
- Yu-Jie Wu
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China
| | - Yue Liu
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China
| | - Yan-Qin Hu
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China
| | - Li Wang
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China
| | - Fu-Rong Bai
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China
| | - Chen Xu
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China
| | - Jing-Wen Wu
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China
| |
Collapse
|
36
|
Xiong R, Wu L, Wu Y, Muskhelishvili L, Wu Q, Chen Y, Chen T, Bryant M, Rosenfeldt H, Healy SM, Cao X. Transcriptome analysis reveals lung-specific miRNAs associated with impaired mucociliary clearance induced by cigarette smoke in an in vitro human airway tissue model. Arch Toxicol 2021; 95:1763-1778. [PMID: 33704509 DOI: 10.1007/s00204-021-03016-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/25/2021] [Indexed: 12/27/2022]
Abstract
Exposure to cigarette smoke (CS) is strongly associated with impaired mucociliary clearance (MCC), which has been implicated in the pathogenesis of CS-induced respiratory diseases, such as chronic obstructive pulmonary diseases (COPD). In this study, we aimed to identify microRNAs (miRNAs) that are associated with impaired MCC caused by CS in an in vitro human air-liquid-interface (ALI) airway tissue model. ALI cultures were exposed to CS (diluted with 0.5 L/min, 1.0 L/min, and 4.0 L/min of clean air) from smoking five 3R4F University of Kentucky reference cigarettes under the International Organization for Standardization (ISO) machine smoking regimen, every other day for 1 week (a total of 3 days, 40 min/day). Transcriptome analyses of ALI cultures exposed to the high concentration of CS identified 5090 differentially expressed genes and 551 differentially expressed miRNAs after the third exposure. Genes involved in ciliary function and ciliogenesis were significantly perturbed by repeated CS exposures, leading to changes in cilia beating frequency and ciliary protein expression. In particular, a time-dependent decrease in the expression of miR-449a, a conserved miRNA highly enriched in ciliated airway epithelia and implicated in motile ciliogenesis, was observed in CS-exposed cultures. Similar alterations in miR-449a have been reported in smokers with COPD. Network analysis further indicates that downregulation of miR-449a by CS may derepress cell-cycle proteins, which, in turn, interferes with ciliogenesis. Investigating the effects of CS on transcriptome profile in human ALI cultures may provide not only mechanistic insights, but potential early biomarkers for CS exposure and harm.
Collapse
Affiliation(s)
- Rui Xiong
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Leihong Wu
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, 72079, AR, USA
| | - Yue Wu
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, 72079, AR, USA
| | | | - Qiangen Wu
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, 72079, AR, USA
| | - Ying Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Tao Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Matthew Bryant
- Office of Scientific Coordination, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, 72079, AR, USA
| | - Hans Rosenfeldt
- Division of Nonclinical Science, Center for Tobacco Products, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Sheila M Healy
- Division of Nonclinical Science, Center for Tobacco Products, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Xuefei Cao
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.
| |
Collapse
|
37
|
Qian H, Hou C, Liao H, Wang L, Han S, Peng S, Chen W, Huang Q, Luo X. The species evenness of "prey" bacteria correlated with Bdellovibrio-and-like-organisms (BALOs) in the microbial network supports the biomass of BALOs in a paddy soil. FEMS Microbiol Ecol 2021; 96:5911575. [PMID: 32975583 DOI: 10.1093/femsec/fiaa195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 09/23/2020] [Indexed: 11/14/2022] Open
Abstract
To seek how soil biotic and abiotic factors which might shape the Bdellovibrio-and-like-organisms community, we sampled paddy soils under different fertilization treatments including fertilization without nitrogen (Control), the nitrogen use treatment (N) and the nitrogen overuse one (HNK) at three rice growing stages. The abundances of BALOs were impacted by the rice-growing stages but not the fertilization treatments. The abundances of Bdellovibrionaceae-like were positively associated with soil moisture, which showed a negative relationship with Bacteriovoracaceae-like bacteria. High-throughput sequencing analysis of the whole bacterial community revealed that the α-diversity of BALOs was not correlated with any soil properties data. Network analysis detected eight families directly linked to BALOs, namely, Pseudomonadaceae, Peptostreptococcaceae, Flavobacteriaceae, Sediment-4, Verrucomicrobiaceae, OM27, Solirubrobacteraceae and Roseiflexaceae. The richness and composition of OTUs in the eight families were correlated with different soil properties, while the evenness of them had a positive effect on the predicted BALO biomass. These results highlighted that the bottom-up control of BALOs in paddy soil at least partially relied on the changes of soil water content and the diversity of bacteria directly linked to BALOs in the microbial network.
Collapse
Affiliation(s)
- Hang Qian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunli Hou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Liao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Shun Han
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shaobing Peng
- Crop Physiology and Production Center (CPPC), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuesong Luo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
38
|
Yang Y, Wang Y. Role of Epigenetic Regulation in Plasticity of Tumor Immune Microenvironment. Front Immunol 2021; 12:640369. [PMID: 33868269 PMCID: PMC8051582 DOI: 10.3389/fimmu.2021.640369] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/15/2021] [Indexed: 12/24/2022] Open
Abstract
The tumor immune microenvironment (TIME), an immunosuppressive niche, plays a pivotal role in contributing to the development, progression, and immune escape of various types of cancer. Compelling evidence highlights the feasibility of cancer therapy targeting the plasticity of TIME as a strategy to retrain the immunosuppressive immune cells, including innate immune cells and T cells. Epigenetic alterations, such as DNA methylation, histone post-translational modifications, and noncoding RNA-mediated regulation, regulate the expression of many human genes and have been reported to be accurate in the reprogramming of TIME according to vast majority of published results. Recently, mounting evidence has shown that the gut microbiome can also influence the colorectal cancer and even extraintestinal tumors via metabolites or microbiota-derived molecules. A tumor is a kind of heterogeneous disease with specificity in time and space, which is not only dependent on genetic regulation, but also regulated by epigenetics. This review summarizes the reprogramming of immune cells by epigenetic modifications in TIME and surveys the recent progress in epigenetic-based cancer clinical therapeutic approaches. We also discuss the ongoing studies and future areas of research that benefits to cancer eradication.
Collapse
Affiliation(s)
- Yunkai Yang
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
39
|
Feng D, Lin J, Wang W, Yan K, Liang H, Liang J, Yu H, Ling B. Wnt3a/β-Catenin/CBP Activation in the Progression of Cervical Intraepithelial Neoplasia. Pathol Oncol Res 2021; 27:609620. [PMID: 34257574 PMCID: PMC8262210 DOI: 10.3389/pore.2021.609620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/10/2021] [Indexed: 11/21/2022]
Abstract
Piwil2 reprograms HPV-infected reserve cells in the cervix into tumor-initiated cells (TICs) and upregulates Wnt3a expression sequentially, which leads to cervical intraepithelial neoplasia (CIN) and ultimately squamous cell carcinoma (SCC). However, little is known regarding Wnt signaling in the maintenance of TIC stemness during the progression of cervical lesions. We herein investigated the expression of canonical Wnt3a signaling and related genes by microarray data set analysis and immunohistochemical (IHC) staining of samples obtained by biopsy of normal cervix, low- and high-grade CIN, and invasive SCC tissue. Array data analyzed by GEO2R showed higher expression levels of Wnt signaling and their target genes, significant upregulation of stemness-associated markers, and notably downregulated cell differentiation markers in CIN and SCC tissues compared with those in the normal cervix tissue. Further, Gene Set Enrichment Analysis (GSEA) revealed that Wnt pathway-related genes significantly enriched in SCC. IHC staining showed gradually increased immunoreactivity score of Wnt3a and CBP and notable translocation of β-catenin from the membrane to the cytoplasm and nucleus during the lesion progression. The intensity and proportion of P16, Ki67 and CK17 staining also increased with the progression of cervical lesions, whereas minimal to negative Involucrin expression was observed in CIN2/3 and SCC. Therefore, canonical Wnt signaling may contribute to the progression of CIN to SCC and may be a potential therapeutic target.
Collapse
Affiliation(s)
- Dingqing Feng
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, China
| | - Jie Lin
- Department of Pathology, China-Japan Friendship Hospital, Beijing, China
| | - Wenhui Wang
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, China.,Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Keqin Yan
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, China
| | - Haiyan Liang
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, China
| | - Jing Liang
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, China
| | - Huan Yu
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, China
| | - Bin Ling
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, China.,Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
40
|
Chang SH, Su YC, Chang M, Chen JA. MicroRNAs mediate precise control of spinal interneuron populations to exert delicate sensory-to-motor outputs. eLife 2021; 10:63768. [PMID: 33787491 PMCID: PMC8075582 DOI: 10.7554/elife.63768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/19/2021] [Indexed: 12/17/2022] Open
Abstract
Although the function of microRNAs (miRNAs) during embryonic development has been intensively studied in recent years, their postnatal physiological functions remain largely unexplored due to inherent difficulties with the presence of redundant paralogs of the same seed. Thus, it is particularly challenging to uncover miRNA functions at neural circuit level since animal behaviors would need to be assessed upon complete loss of miRNA family functions. Here, we focused on the neural functions of MiR34/449 that manifests a dynamic expression pattern in the spinal cord from embryonic to postnatal stages. Our behavioral assays reveal that the loss of MiR34/449 miRNAs perturb thermally induced pain response thresholds and compromised delicate motor output in mice. Mechanistically, MiR34/449 directly target Satb1 and Satb2 to fine-tune the precise number of a sub-population of motor synergy encoder (MSE) neurons. Thus, MiR34/449 fine-tunes optimal development of Satb1/2on interneurons in the spinal cord, thereby refining explicit sensory-to-motor circuit outputs. The spinal cord is an information superhighway that connects the body with the brain. There, circuits of neurons process information from the brain before sending commands to muscles to generate movement. Each spinal cord circuit contains many types of neurons, whose identity is defined by the set of genes that are active or ‘expressed’ in each cell. When a gene is turned on, its DNA sequence is copied to produce a messenger RNA (mRNA), a type of molecule that the cell then uses as a template to produce a protein. MicroRNAs (or miRNAs), on the other hand, are tiny RNA molecules that help to regulate gene expression by binding to and ‘deactivating’ specific mRNAs, stopping them from being used to make proteins. Mammalian cells contain thousands of types of microRNAs, many of which have unknown roles: this includes MiR34/449, a group of six microRNAs found mainly within the nervous system. By using genetic technology to delete this family from the mouse genome, Chang et al. now show that MiR34/449 has a key role in regulating spinal cord circuits. The first clue came from discovering that mice without the MiR34/449 family had unusual posture and a tendency to walk on tiptoe. The animals were also more sensitive to heat, flicking their tails away from a heat source more readily than control mice. At a finer level, the spinal cords of the mutants contained greater numbers of cells in which two genes, Satb1 and Satb2, were turned on. Compared to their counterparts in control mice, the Satb1/2-positive neurons also showed differences in the rest of the genes they expressed. In essence, these neurons had a different genetic profile in MiR34/449 mutant mice, therefore disrupting the neural circuit they belong to. Based on these findings, Chang et al. propose that in wild-type mice, the MiR34/449 family fine-tunes the expression of Satb1/2 in the spinal cord during development. In doing so, it regulates the formation of the spinal cord circuits that help to control movement. More generally, these results provide clues about how miRNAs help to determine cell identities; further studies could then examine whether other miRNAs contribute to the development and maintenance of neuronal circuits.
Collapse
Affiliation(s)
- Shih-Hsin Chang
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.,Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan
| | - Yi-Ching Su
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Mien Chang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Jun-An Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.,Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
41
|
Peixoto da Silva S, Caires HR, Bergantim R, Guimarães JE, Vasconcelos MH. miRNAs mediated drug resistance in hematological malignancies. Semin Cancer Biol 2021; 83:283-302. [PMID: 33757848 DOI: 10.1016/j.semcancer.2021.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/11/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
Despite improvements in the therapeutic approaches for hematological malignancies in the last decades, refractory disease still occurs, and cancer drug resistance still remains a major hurdle in the clinical management of these cancer patients. The investigation of this problem has been extensive and different mechanism and molecules have been associated with drug resistance. MicroRNAs (miRNAs) have been described as having an important action in the emergence of cancer, including hematological tumors, and as being major players in their progression, aggressiveness and response to treatments. Moreover, miRNAs have been strongly associated with cancer drug resistance and with the modulation of the sensitivity of cancer cells to a wide array of anticancer drugs. Furthermore, this role has also been reported for miRNAs packaged into extracellular vesicles (EVs-miRNAs), which in turn have been described as essential for the horizontal transfer of drug resistance to sensitive cells. Several studies have been suggesting the use of miRNAs as biomarkers for drug response and clinical outcome prediction, as well as promising therapeutic tools in hematological diseases. Indeed, the combination of miRNA-based therapeutic tools with conventional drugs contributes to overcome drug resistance. This review addresses the role of miRNAs in the pathogenesis of hematological malignances, namely multiple myeloma, leukemias and lymphomas, highlighting their important action (either in their cell-free circulating form or within circulating EVs) in drug resistance and their potential clinical applications.
Collapse
Affiliation(s)
- Sara Peixoto da Silva
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135, Porto, Portugal
| | - Hugo R Caires
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135, Porto, Portugal
| | - Rui Bergantim
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135, Porto, Portugal; Clinical Hematology, Hospital São João, 4200-319, Porto, Portugal; Clinical Hematology, FMUP - Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
| | - José E Guimarães
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135, Porto, Portugal; Clinical Hematology, FMUP - Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal; Instituto Universitário de Ciências da Saúde, Cooperativa de Ensino Superior Politécnico e Universitário, IUCSCESPU, 4585-116, Gandra, Paredes, Portugal
| | - M Helena Vasconcelos
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135, Porto, Portugal; Department of Biological Sciences, FFUP - Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| |
Collapse
|
42
|
Zhao L, Luo H, Huang D, Yu P, Dong Q, Mwaliko C, Atoni E, Nyaruaba R, Yuan J, Zhang G, Bente D, Yuan Z, Xia H. Pathogenesis and Immune Response of Ebinur Lake Virus: A Newly Identified Orthobunyavirus That Exhibited Strong Virulence in Mice. Front Microbiol 2021; 11:625661. [PMID: 33597934 PMCID: PMC7882632 DOI: 10.3389/fmicb.2020.625661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/29/2020] [Indexed: 11/13/2022] Open
Abstract
Orthobunyaviruses are a group of viruses with significant public and veterinary health importance. These viruses are mainly transmitted through mosquito-, midge-, and tick-vectors, and are endemic to various regions of the world. Ebinur Lake virus (EBIV), a newly identified member of Orthobunyavirus, was isolated from Culex mosquitoes in Northwest China. In the present study, we aimed to characterize the pathogenesis and host immune responses of EBIV in BALB/c mice, as an animal model. Herein, we determined that BALB/c mice are highly susceptible to EBIV infection. The infected mice exhibited evident clinical signs including weight loss, mild encephalitis, and death. High mortality of mice was observed even with inoculation of one plaque-forming unit (PFU) of EBIV, and the infected mice succumbed to death within 5-9 days. After EBIV challenge, rapid viremic dissemination was detected in the peripheral tissues and the central nervous system, with prominent histopathologic changes observed in liver, spleen, thymus, and brain. Blood constituents' analysis of EBIV infected mice exhibited leukopenia, thrombocytopenia, and significantly elevated ALT, LDH-L, and CK. Further, EBIV infection induced obvious cytokines changes in serum, spleen, and brain in mice. Collectively, our data describe the first study that systematically examines the pathogenesis of EBIV and induced immune response in an immunocompetent standard mouse model, expanding our knowledge of this virus, which may pose a threat to One Health.
Collapse
Affiliation(s)
- Lu Zhao
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Huanle Luo
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Doudou Huang
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ping Yu
- Computing Virus Discipline Group, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Qiannan Dong
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Caroline Mwaliko
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Evans Atoni
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Raphael Nyaruaba
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiangling Yuan
- The Center for Disease Control and Prevention of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Guilin Zhang
- Xinjiang Heribase Biotechnology Co., Ltd., Urumqi, China
| | - Dennis Bente
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Zhiming Yuan
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Han Xia
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
43
|
Pantos K, Grigoriadis S, Tomara P, Louka I, Maziotis E, Pantou A, Nitsos N, Vaxevanoglou T, Kokkali G, Agarwal A, Sfakianoudis K, Simopoulou M. Investigating the Role of the microRNA-34/449 Family in Male Infertility: A Critical Analysis and Review of the Literature. Front Endocrinol (Lausanne) 2021; 12:709943. [PMID: 34276570 PMCID: PMC8281345 DOI: 10.3389/fendo.2021.709943] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/17/2021] [Indexed: 12/11/2022] Open
Abstract
There is a great body of evidence suggesting that in both humans and animal models the microRNA-34/449 (miR-34/449) family plays a crucial role for normal testicular functionality as well as for successful spermatogenesis, regulating spermatozoa maturation and functionality. This review and critical analysis aims to summarize the potential mechanisms via which miR-34/449 dysregulation could lead to male infertility. Existing data indicate that miR-34/449 family members regulate ciliogenesis in the efferent ductules epithelium. Upon miR-34/449 dysregulation, ciliogenesis in the efferent ductules is significantly impaired, leading to sperm aggregation and agglutination as well as to defective reabsorption of the seminiferous tubular fluids. These events in turn cause obstruction of the efferent ductules and thus accumulation of the tubular fluids resulting to high hydrostatic pressure into the testis. High hydrostatic pressure progressively leads to testicular dysfunction as well as to spermatogenic failure and finally to male infertility, which could range from severe oligoasthenozoospermia to azoospermia. In addition, miR-34/449 family members act as significant regulators of spermatogenesis with an essential role in controlling expression patterns of several spermatogenesis-related proteins. It is demonstrated that these microRNAs are meiotic specific microRNAs as their expression is relatively higher at the initiation of meiotic divisions during spermatogenesis. Moreover, data indicate that these molecules are essential for proper formation as well as for proper function of spermatozoa per se. MicroRNA-34/449 family seems to exert significant anti-oxidant and anti-apoptotic properties and thus contribute to testicular homeostatic regulation. Considering the clinical significance of these microRNAs, data indicate that the altered expression of the miR-34/449 family members is strongly associated with several aspects of male infertility. Most importantly, miR-34/449 levels in spermatozoa, in testicular tissues as well as in seminal plasma seem to be directly associated with severity of male infertility, indicating that these microRNAs could serve as potential sensitive biomarkers for an accurate individualized differential diagnosis, as well as for the assessment of the severity of male factor infertility. In conclusion, dysregulation of miR-34/449 family detrimentally affects male reproductive potential, impairing both testicular functionality as well as spermatogenesis. Future studies are needed to verify these conclusions.
Collapse
Affiliation(s)
| | - Sokratis Grigoriadis
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Assisted Reproduction Unit, Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Penelope Tomara
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioanna Louka
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Maziotis
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Assisted Reproduction Unit, Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Agni Pantou
- Centre for Human Reproduction, Genesis Athens Clinic, Athens, Greece
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Nitsos
- Centre for Human Reproduction, Genesis Athens Clinic, Athens, Greece
| | | | - Georgia Kokkali
- Centre for Human Reproduction, Genesis Athens Clinic, Athens, Greece
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, United States
| | | | - Mara Simopoulou
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Assisted Reproduction Unit, Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- *Correspondence: Mara Simopoulou,
| |
Collapse
|
44
|
Ryu CS, Oh SH, Lee KO, Park HS, An HJ, Lee JY, Ko EJ, Park HW, Kim OJ, Kim NK. MiR-10a, 27a, 34b/c, and 300 Polymorphisms are Associated with Ischemic Stroke Susceptibility and Post-Stroke Mortality. Life (Basel) 2020; 10:life10120309. [PMID: 33255549 PMCID: PMC7760023 DOI: 10.3390/life10120309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
A recent study of the ischemic stroke described the roles played by miRNAs in the downregulation of specific cell-cycle gene expression and it is thought to require the development of biomarkers for the prognostic of ischemic stroke. Here, we hypothesized that four miRNA polymorphisms (miR-10a, miR-27a, miR-34b/c, and miR-300) may affect stroke susceptibility and mortality. Blood samples were collected from 530 patients and 403 controls. Genetic polymorphisms were detected by polymerase chain reaction (PCR)-restriction fragment length polymorphism analysis and real-time PCR. We found that the miR-300 rs12894467 TC genotype and the dominant model (AOR: 2.069, p-value: 0.017; AOR: 1.931, p-value: 0.027) were significantly associated with an increased risk for the ischemic stroke subtype. In Cox proportional hazard regression models, the miR-10a rs3809783 A>T and miR-34b/c rs4938723 T>C polymorphisms were associated with the mortality rates among ischemic stroke patients. We found that a miR-300 polymorphism was associated with increased ischemic stroke susceptibility among the Korean population. Additionally, polymorphisms in miR-10a and miR-34b/c were associated with the increased or decreased mortality of ischemic stroke patients. This study marks the first report of an association between ischemic stroke and miRNA polymorphisms (miR-10aA>T, miR-27aT>C, miR-34b/cT>C, and miR-300T>C) in the Korean population.
Collapse
Affiliation(s)
- Chang Soo Ryu
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea; (C.S.R.); (H.S.P.); (H.J.A.); (J.Y.L.); (E.J.K.); (H.W.P.)
| | - Seung Hun Oh
- Department of Neurology, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 13496, Korea; (S.H.O.); (K.O.L.)
| | - Kee Ook Lee
- Department of Neurology, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 13496, Korea; (S.H.O.); (K.O.L.)
| | - Han Sung Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea; (C.S.R.); (H.S.P.); (H.J.A.); (J.Y.L.); (E.J.K.); (H.W.P.)
| | - Hui Jeong An
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea; (C.S.R.); (H.S.P.); (H.J.A.); (J.Y.L.); (E.J.K.); (H.W.P.)
| | - Jeong Yong Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea; (C.S.R.); (H.S.P.); (H.J.A.); (J.Y.L.); (E.J.K.); (H.W.P.)
| | - Eun Ju Ko
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea; (C.S.R.); (H.S.P.); (H.J.A.); (J.Y.L.); (E.J.K.); (H.W.P.)
| | - Hyeon Woo Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea; (C.S.R.); (H.S.P.); (H.J.A.); (J.Y.L.); (E.J.K.); (H.W.P.)
| | - Ok Joon Kim
- Department of Neurology, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 13496, Korea; (S.H.O.); (K.O.L.)
- Correspondence: (O.J.K.); (N.K.K.)
| | - Nam Keun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea; (C.S.R.); (H.S.P.); (H.J.A.); (J.Y.L.); (E.J.K.); (H.W.P.)
- Correspondence: (O.J.K.); (N.K.K.)
| |
Collapse
|
45
|
Konoshenko MY, Bryzgunova OE, Laktionov PP. miRNAs and radiotherapy response in prostate cancer. Andrology 2020; 9:529-545. [PMID: 33053272 DOI: 10.1111/andr.12921] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Gaining insight into microRNAs (miRNAs) and genes that regulate the therapeutic response of cancer diseases in general and prostate cancer (PCa) in particular is an important issue in current molecular biomedicine and allows the discovery of predictive miRNA targets. OBJECTIVES The aim of this study was to analyze the available data on the influence of radiotherapy (RT) on miRNA expression and on miRNA involved in radiotherapy response in PCa. MATERIALS AND METHODS The data used in this review were extracted from research papers and the DIANA, STRING, and other databases with a special focus on the mechanisms of radiotherapy PCa response and the miRNA involved and associated genes. RESULTS AND DISCUSSION A search for miRNA prognostic and therapeutic effectiveness markers should rely on both the data of recent experimental studies on the influence of RT on miRNA expression and miRNAs involved in regulation of radiosensitivity in PCa and on bioinformatics resources. miRNA panels and genes targeted by them and involved in radioresponse regulation highlighted by meta-analysis and cross-analysis of the data in the present review have. CONCLUSION Selected miRNA and gene panel has good potential as prognostic and radiotherapy effectiveness markers for PCa and, moreover, as radiotherapy effectiveness markers in other types of cancer, as the proposed model is not specific to PCa, which opens up opportunities for the development of a universal diagnostic system (or several intersecting systems) for oncology radiotherapy in general.
Collapse
Affiliation(s)
- Maria Yu Konoshenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia.,Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - Olga E Bryzgunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia.,Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - Pavel P Laktionov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia.,Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| |
Collapse
|
46
|
Callejas‐Díaz B, Fernandez G, Fuentes M, Martínez‐Antón A, Alobid I, Roca‐Ferrer J, Picado C, Tubita V, Mullol J. Integrated mRNA and microRNA transcriptome profiling during differentiation of human nasal polyp epithelium reveals an altered ciliogenesis. Allergy 2020; 75:2548-2561. [PMID: 32249954 DOI: 10.1111/all.14307] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/18/2020] [Accepted: 03/04/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Human adult basal stem/progenitor cells (BSCs) obtained from chronic rhinosinusitis with nasal polyps (CRSwNP) when differentiated in an air-liquid interface (ALI) usually provide a pseudostratified airway epithelium with similar abnormalities than original in vivo phenotype. However, the intrinsic mechanisms regulating this complex process are not well defined and their understanding could offer potential new therapies for CRSwNP (incurable disease). METHODS We performed a transcriptome-wide analysis during in vitro mucociliary differentiation of human adult BSCs from CRSwNP, compared to those isolated from control nasal mucosa (control-NM), in order to identify which key mRNA and microRNAs are regulating this complex process in pathological and healthy conditions. RESULTS A number of genes, miRs, biological processes, and pathways were identified during mucociliary differentiation of both CRSwNP and control-NM epithelia, and notably, we have demonstrated for the first time that genetic transcriptional program responsible of ciliogenesis and cilia function is significantly impaired in CRSwNP epithelium, presumably produced by an altered expression of microRNAs, particularly of those miRs belonging to mir-34 and mi-449 families. CONCLUSIONS This study provides for the first time a novel insight into the molecular basis of sinonasal mucociliary differentiation, demonstrating that transcriptome related to ciliogenesis and cilia function is significantly impaired during differentiation of CRSwNP epithelium due to an altered expression of microRNAs.
Collapse
Affiliation(s)
- Borja Callejas‐Díaz
- IRCE Laboratory Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS) Barcelona Spain
- CIBER of Respiratory Diseases (CIBERES) Barcelona Spain
| | - Guerau Fernandez
- Bioinformatics Unit Genetics and Molecular Medicine Service Hospital Sant Joan de Déu Barcelona Spain
| | - Mireya Fuentes
- IRCE Laboratory Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS) Barcelona Spain
- CIBER of Respiratory Diseases (CIBERES) Barcelona Spain
| | - Asunción Martínez‐Antón
- IRCE Laboratory Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS) Barcelona Spain
- Aix Marseille Université Marseille France
| | - Isam Alobid
- IRCE Laboratory Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS) Barcelona Spain
- CIBER of Respiratory Diseases (CIBERES) Barcelona Spain
- Rhinology Unit & Smell Clinic ENT Department Hospital Clínic Universitat de Barcelona Barcelona Spain
| | - Jordi Roca‐Ferrer
- IRCE Laboratory Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS) Barcelona Spain
- CIBER of Respiratory Diseases (CIBERES) Barcelona Spain
| | - César Picado
- IRCE Laboratory Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS) Barcelona Spain
- CIBER of Respiratory Diseases (CIBERES) Barcelona Spain
- Pneumology & Respiratory Allergy Department Hospital Clínic Universitat de Barcelona Barcelona Spain
| | - Valeria Tubita
- IRCE Laboratory Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS) Barcelona Spain
| | - Joaquim Mullol
- IRCE Laboratory Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS) Barcelona Spain
- CIBER of Respiratory Diseases (CIBERES) Barcelona Spain
- Rhinology Unit & Smell Clinic ENT Department Hospital Clínic Universitat de Barcelona Barcelona Spain
| |
Collapse
|
47
|
Li G, Guo X. LncRNA STARD13-AS blocks lung squamous carcinoma cells growth and movement by targeting miR-1248/C3A. Pulm Pharmacol Ther 2020; 64:101949. [PMID: 32949706 DOI: 10.1016/j.pupt.2020.101949] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND This research aims to illustrate the effect of lncRNA StAR Related Lipid Transfer Domain Containing 13 antisense RN (STARD13-AS)/miR-1248/C3A on lung squamous carcinoma cells growth and metastasis. METHODS Bioinformatics analysis was applied to detect the expression of STARD13-AS/miR-1248/C3A in lung cancer samples and establish the ceRNA network. Transfection was performed to construct over-expression or knockdown models. PCR was implemented to examine the transfection efficiency. The biological function including growth, invasion and migration of LUSC cells were estimated by CCK-8 analysis, colony formation assay and transwell assay. Luciferase assay was executed to analyze the relationship between C3A and miR-1248, as well as miR-1248 and STARD13-AS. RESULTS By consulting the TCGA database and GEPIA website, we found that C3A expression was significantly reduced in LUSC samples. Additionally, we also discovered that miR-1248, which was a downstream target of STARD13-AS, was presented as an upstream regulator of C3A. Moreover, STARD13-AS was under expressed in LUSC cells and has a negative effect on LUSC cells growth ability. C3A expression was co-regulated by miR-1248 and STARD13-AS. Importantly, the inhibitory effect of C3A or the promoting effect of miR-1248 on LUSC cells growth, invasion and migration abilities can be regulated by STARD13-AS. CONCLUSIONS Our findings revealed that overexpression of STARD13-AS restricted the growth and aggressiveness of LUSC cells via regulating miR-1248/C3A.
Collapse
Affiliation(s)
- Guosen Li
- Queen Mary School of Medical College, Jiangxi Medical College, Qianhu Campus, Nanchang University, No. 1299 Xuefu Street, Nanchang, Jiangxi, China.
| | - Xiangyun Guo
- Department of Internal Medicine, Jining Infectious Disease Hospital, Jiu Mi Gu Dui, Rencheng District, Jining, Shandong, China
| |
Collapse
|
48
|
Sciandra M, De Feo A, Parra A, Landuzzi L, Lollini PL, Manara MC, Mattia G, Pontecorvi G, Baricordi C, Guerzoni C, Bazzocchi A, Longhi A, Scotlandi K. Circulating miR34a levels as a potential biomarker in the follow-up of Ewing sarcoma. J Cell Commun Signal 2020; 14:335-347. [PMID: 32504411 PMCID: PMC7511499 DOI: 10.1007/s12079-020-00567-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/24/2020] [Indexed: 01/06/2023] Open
Abstract
Appropriate tools for monitoring sarcoma progression are still limited. The aim of the present study was to investigate the value of miR-34a-5p (miR34a) as a circulating biomarker to follow disease progression and measure the therapeutic response. Stable forced re-expression of miR34a in Ewing sarcoma (EWS) cells significantly limited tumor growth in mice. Absolute quantification of miR34a in the plasma of mice and 31 patients showed that high levels of this miRNA inversely correlated with tumor volume. In addition, miR34a expression was higher in the blood of localized EWS patients than in the blood of metastatic EWS patients. In 12 patients, we followed miR34a expression during preoperative chemotherapy. While there was no variation in the blood miR34a levels in metastatic patients at the time of diagnosis or after the last cycle of preoperative chemotherapy, there was an increase in the circulating miR34a levels in patients with localized tumors. The three patients with the highest fold-increase in the miR levels did not show evidence of metastasis. Although this analysis should be extended to a larger cohort of patients, these findings imply that detection of the miR34a levels in the blood of EWS patients may assist with the clinical management of EWS.
Collapse
Affiliation(s)
- Marika Sciandra
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Alessandra De Feo
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Alessandro Parra
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Lorena Landuzzi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Pier-Luigi Lollini
- Department of Experimental, Diagnostic and Specialty Medicine, DIMES, University of Bologna, Bologna, Italy
| | - Maria Cristina Manara
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Gianfranco Mattia
- Oncology Unit, Center for Gender Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giada Pontecorvi
- Oncology Unit, Center for Gender Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Cristina Baricordi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Clara Guerzoni
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Alberto Bazzocchi
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alessandra Longhi
- Department of Chemotherapy, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| |
Collapse
|
49
|
Saleh R, Toor SM, Sasidharan Nair V, Elkord E. Role of Epigenetic Modifications in Inhibitory Immune Checkpoints in Cancer Development and Progression. Front Immunol 2020; 11:1469. [PMID: 32760400 PMCID: PMC7371937 DOI: 10.3389/fimmu.2020.01469] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/05/2020] [Indexed: 12/16/2022] Open
Abstract
A balance between co-inhibitory and co-stimulatory signals in the tumor microenvironment (TME) is critical to suppress tumor development and progression, primarily via maintaining effective immunosurveillance. Aberrant expression of immune checkpoints (ICs), including programmed cell death protein 1 (PD-1), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), T cell immunoglobulin and mucin-domain containing-3 (TIM-3), lymphocyte-activation gene 3 (LAG-3) and T cell immunoreceptor with Ig and ITIM domains (TIGIT), can create an immune-subversive environment, which helps tumor cells to evade immune destruction. Recent studies showed that epigenetic modifications play critical roles in regulating the expression of ICs and their ligands in the TME. Reports showed that the promoter regions of genes encoding ICs/IC ligands can undergo inherent epigenetic alterations, such as DNA methylation and histone modifications (acetylation and methylation). These epigenetic aberrations can significantly contribute to the transcriptomic upregulation of ICs and their ligands. Epigenetic therapeutics, including DNA methyltransferase and histone deacetylase inhibitors, can be used to revert these epigenetic anomalies acquired during the progression of disease. These discoveries have established a promising therapeutic modality utilizing the combination of epigenetic and immunotherapeutic agents to restore the physiological epigenetic profile and to re-establish potent host immunosurveillance mechanisms. In this review, we highlight the roles of epigenetic modifications on the upregulation of ICs, focusing on tumor development, and progression. We discuss therapeutic approaches of epigenetic modifiers, including clinical trials in various cancer settings and their impact on current and future anti-cancer therapies.
Collapse
Affiliation(s)
- Reem Saleh
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Salman M Toor
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Varun Sasidharan Nair
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Eyad Elkord
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.,Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester, United Kingdom
| |
Collapse
|
50
|
Li N, Liu XL, Zhang FL, Tian Y, Zhu M, Meng LY, Dyce PW, Shen W, Li L. Whole-transcriptome analysis of the toxic effects of zearalenone exposure on ceRNA networks in porcine granulosa cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114007. [PMID: 32036198 DOI: 10.1016/j.envpol.2020.114007] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/12/2020] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
Zearalenone (ZEA), an estrogen-like mycotoxin, is commonly detected in animal feeds including improperly stored grains. It has been well demonstrated that ovarian granulosa cells (GCs) perform vital roles during follicular development, however, the competing endogenous RNA (ceRNA) network in GCs after ZEA exposure remains to be well described. Here, for the first time, we adopted whole-transcriptome sequence technology to explore the molecular mechanism of ZEA toxicology on porcine GCs. The results provide evidence that the cell cycle of porcine GCs is arrested in the G2/M phase after exposure to ZEA. Furthermore, bioinformation analysis found that cell cycle arrest related genes were perturbed, including CDK1, CCNB1, CDC25A, and CDC25C, which was consistent with the results of RT-qPCR, immunofluorescence, and Western Blotting. Based on the whole-transcriptome sequence data, by constructing ceRNA networks related to cell cycle arrest, we observed that ZEA exposure arrested cell cycle progression at the G2/M phase in porcine GCs, and non-coding RNAs (ncRNAs) played an important role in this process via regulating the expressions of cell cycle arrest related genes. Taken together, our data here provides strong data to support that the toxicological mechanism regarding the widely distributed toxicant ZEA acts through ceRNA networks in porcine granulosa cells.
Collapse
Affiliation(s)
- Na Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xue-Lian Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fa-Li Zhang
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yu Tian
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Zhu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ling-Yu Meng
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Paul W Dyce
- Department of Animal Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Wei Shen
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lan Li
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|