1
|
Mitra P, Saha U, Stephen KJ, Prasad P, Jena S, Patel AK, Bv H, Mondal SK, Kurkalang S, Roy S, Ghosh A, Roy SS, Das Sarma J, Biswas NK, Acharya M, Sharan R, Arun P, Jolly MK, Maitra A, Singh S. Tie2 activity in cancer associated myofibroblasts serves as novel target against reprogramming of cancer cells to embryonic-like cell state and associated poor prognosis in oral carcinoma patients. J Exp Clin Cancer Res 2025; 44:142. [PMID: 40349056 PMCID: PMC12065280 DOI: 10.1186/s13046-025-03405-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 05/01/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND Myofibroblastic cancer-associated fibroblasts (CAF) in tumor stroma serves as an independent poor prognostic indicator, supporting higher stemness in oral cancer; however, the underlying biology is not fully comprehended. Here, we have explored the crucial role of Tunica Interna Endothelial Cell Kinase (Tie2/TEK) signaling in transition and maintenance of myofibroblastic phenotype of CAFs, and as possible link with the poor prognosis of head and neck squamous cell carcinoma (HNSCC) patients. METHODS Bulk and single cell RNA-sequencing (scRNAseq) methods and in-depth bioinformatic analysis were applied for CAF and cancer cells co-culture for studying molecular relationships. In vitro 3D-spheroid-forming ability, expression of stemness markers, in vivo tumor formation ability in zebrafish embryo and syngeneic mouse allografts formation was conducted to test stemness, upon targeting CAF-specific Tie2 activity by gene silencing or with small molecule inhibitor. Immunohistochemistry analysis was performed to locate the distribution of Tie2 and αSMA in primary tumors of oral carcinoma. Prognosis in HNSCC patient cohort from The Cancer Genome Atlas (TCGA) study was analysed based on single sample gene set enrichment score (ssGSEA) and Kaplan-Meier analysis. RESULTS Autocrine or exogenous TGFβ-induction in CAF led to the recruitment of histone deacetylase 2 (HDAC2) on the promoter of Tie2-antagonist, Angiopoietin-2 (ANGPT2), resulting in its downregulation, leading to phosphorylation of Tie2 (Y992) and subsequent activation of SRC (Y418). This led to SRC/ROCK mediated αSMA-positive stress-fiber formation with gain of myofibroblast phenotype. The CAF-specific Tie2-signaling was responsible for producing embryonic-like cell state in co-cultured cancer cells; with enhanced tumor initiating ability. Tie2 activity in CAF exerted the dynamic gene expression reprogramming, with the upregulation of 'cell migration' and downregulation of 'protein biosynthesis' related gene-regulatory-network modules in malignant cells. The AUCell scores calculated for gene signatures derived from these modules showed significant concordance in independently reported scRNAseq studies of HNSCC tumors and significant association with poor prognosis in HNSCC patient cohort. CONCLUSIONS CAF-specific Tie2 activity may serve as direct stromal-target against cancer cell plasticity leading to poor prognosis of oral cancer patients. Overall, our work has provided wider applicability of Tie2-specific functions in tumor biology, along with its known role in endothelial cell-specific function.
Collapse
Affiliation(s)
- Paromita Mitra
- BRIC National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, WB, 741251, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Uday Saha
- BRIC National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, WB, 741251, India
- Regional Centre for Biotechnology, Faridabad, India
| | | | - Priyanka Prasad
- BRIC National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, WB, 741251, India
| | - Subhashree Jena
- BRIC National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, WB, 741251, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Ankit Kumar Patel
- BRIC National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, WB, 741251, India
- Umea University, Umea, Sweden
| | | | | | - Sillarine Kurkalang
- BRIC National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, WB, 741251, India
- Comprehensive Cancer Center, University of Chicago Medicine, Chicago, IL, USA
| | - Sumitava Roy
- BRIC National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, WB, 741251, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Arnab Ghosh
- BRIC National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, WB, 741251, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Shantanu Saha Roy
- BRIC National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, WB, 741251, India
| | | | - Nidhan Kumar Biswas
- BRIC National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, WB, 741251, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Moulinath Acharya
- BRIC National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, WB, 741251, India
- Regional Centre for Biotechnology, Faridabad, India
| | | | | | | | - Arindam Maitra
- BRIC National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, WB, 741251, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Sandeep Singh
- BRIC National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, WB, 741251, India.
- Regional Centre for Biotechnology, Faridabad, India.
| |
Collapse
|
2
|
Ghanbarpour Houshangi M, Shirakura K, Vestweber D. Tie-2 regulates endothelial morphological responses to shear stress by FOXO1-triggered autophagy. PLoS One 2025; 20:e0322869. [PMID: 40323944 PMCID: PMC12052130 DOI: 10.1371/journal.pone.0322869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/26/2025] [Indexed: 05/07/2025] Open
Abstract
INTRODUCTION Endothelial cells respond to flow-induced shear stress by morphological changes, a process which is important for vascular development and physiology. High laminar shear stress activates Tie-2 which supports endothelial junction integrity and protects against vascular leaks and the generation of atherosclerotic plaques. METHODS We have examined the role of Tie-2 and FOXO1 in controlling vascular endothelial cell morphology under physiological shear stress. To address this, we exposed human umbilical vein endothelial cells (HUVECs) transfected with siRNA to 15 dyn/cm2 of shear stress for 24 hours. The resulting cells were analyzed by immunofluorescence staining. RESULTS We found that shear stress-induced activation of Tie-2 is required for endothelial cell alignment and elongation in the direction of flow. Mechanistically, we found that FOXO1 is an essential target downstream of Tie-2, which becomes translocated from the nucleus into the cytosol. There, FOXO1 stimulates the formation of autophagosomes, and both FOXO1 and autophagy stimulation are needed for Tie-2-dependent cell alignment. CONCLUSION In conclusion, laminar fluid shear stress stimulates a novel Tie-2-FOXO1-autophagy signaling axis which is required for endothelial cell alignment. This represents a new mechanism by which Tie-2 contributes to vascular protection under laminar shear stress.
Collapse
Affiliation(s)
| | - Keisuke Shirakura
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Dietmar Vestweber
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
3
|
Suzuki T, Loyde E, Chen S, Etzrodt V, Idowu TO, Clark AJ, Saade MC, Flores BM, Lu S, Birrane G, Vemireddy V, Seeliger B, David S, Parikh SM. Cathepsin K cleavage of angiopoietin-2 creates detrimental Tie2 antagonist fragments in sepsis. J Clin Invest 2025; 135:e174135. [PMID: 40029709 PMCID: PMC11996858 DOI: 10.1172/jci174135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/17/2025] [Indexed: 03/05/2025] Open
Abstract
Elevated angiopoietin-2 is associated with diverse inflammatory conditions, including sepsis, a leading global cause of mortality. During inflammation, angiopoietin-2 antagonizes the endothelium-enriched receptor Tie2 to destabilize the vasculature. In other contexts, angiopoietin-2 stimulates Tie2. The basis for context-dependent antagonism remains incompletely understood. Here, we show that inflammation-induced proteolytic cleavage of angiopoietin-2 converts this ligand from Tie2 agonist to antagonist. Conditioned media from stimulated macrophages induced endothelial angiopoietin-2 secretion. Unexpectedly, this was associated with reduction of the 75 kDa full-length protein and appearance of new 25 and 50 kDa C-terminal fragments. Peptide sequencing proposed cathepsin K as a candidate protease. Cathepsin K was necessary and sufficient to cleave angiopoietin-2. Recombinant 25 and 50 kDa angiopoietin-2 fragments (cANGPT225 and cANGPT250) bound and antagonized Tie2. Cathepsin K inhibition with the phase 3 small-molecule inhibitor odanacatib improved survival in distinct murine sepsis models. Full-length angiopoietin-2 enhanced survival in endotoxemic mice administered odanacatib and, conversely, increased mortality in the drug's absence. Odanacatib's benefit was reversed by heterologous cANGPT225. Septic humans accumulated circulating angiopoietin-2 fragments, which were associated with adverse outcomes. These results identify cathepsin K as a candidate marker of sepsis and a proteolytic mechanism for the conversion of angiopoietin-2 from Tie2 agonist to antagonist, with therapeutic implications for inflammatory conditions associated with angiopoietin-2 induction.
Collapse
Affiliation(s)
- Takashi Suzuki
- Division of Nephrology, Department of Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Erik Loyde
- Division of Nephrology, Department of Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Sara Chen
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Valerie Etzrodt
- Division of Nephrology, Department of Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Temitayo O. Idowu
- Division of Nephrology, Department of Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Amanda J. Clark
- Division of Nephrology, Department of Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
- Division of Pediatric Nephrology, Department of Pediatrics, UT Southwestern Medical Center and Children’s Medical Center, Dallas, Texas, USA
| | - Marie Christelle Saade
- Division of Nephrology, Department of Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Brenda Mendoza Flores
- Division of Nephrology, Department of Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Shulin Lu
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Gabriel Birrane
- Division of Experimental Medicine, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Vamsidhara Vemireddy
- Division of Nephrology, Department of Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Benjamin Seeliger
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease, Hannover Medical School, German Center for Lung Research, Hannover, Germany
| | - Sascha David
- Institute of Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Samir M. Parikh
- Division of Nephrology, Department of Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
4
|
Dubelaar DPC, Volleman C, Phelp PG, Ibelings R, Voorn I, Tuip-de Boer AM, Polet CA, Roelofs JJ, Vlaar APJ, van Meurs M, van den Brom CE. Razuprotafib Does Not Improve Microcirculatory Perfusion Disturbances nor Renal Edema in Rats on Extracorporeal Circulation. Int J Mol Sci 2025; 26:3000. [PMID: 40243701 PMCID: PMC11989219 DOI: 10.3390/ijms26073000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Extracorporeal membrane oxygenation (ECMO) can be a life-saving intervention, but it is associated with high complication rates. ECMO induces systemic inflammation and endothelial hyperpermeability, thereby causing tissue edema, microcirculatory perfusion disturbances, and organ failure. This study investigated whether the inhibition of vascular endothelial protein tyrosine phosphatase (VE-PTP), a regulator of endothelial permeability, reduces extracorporeal circulation (ECC)-induced microvascular dysfunction. Rats were subjected to ECC after treatment with Razuprotafib (n = 11) or a placebo (n = 11), or they underwent a sham procedure (n = 8). Razuprotafib had no effect on the ECC-induced impairment of capillary perfusion, as assessed with intravital microscopy, nor did it influence the increased wet-to-dry weight ratio in kidneys, a marker of edema associated with ECC. Interestingly, Razuprotafib suppressed the ECC-induced increase in TNFα, whereas angiopoietin-2 even further increased, following the discontinuation of ECC. Circulating interleukin-6, ICAM-1, angiopoietin-1, and soluble Tie2 and tissue VE-PTP, Tie1, and Tie2 mRNA expression were not affected by Razuprotafib. Furthermore, Razuprotafib improved the PaO2/FiO2 ratio and reduced histopathological pulmonary interstitial inflammation following ECC compared to the placebo. To conclude, treatment with Razuprotafib did not improve ECC-induced microcirculatory perfusion disturbances nor renal edema.
Collapse
Affiliation(s)
- Dionne P. C. Dubelaar
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (D.P.C.D.); (C.V.); (P.G.P.); (A.M.T.-d.B.); (C.A.P.); (A.P.J.V.)
- Laboratory for Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Carolien Volleman
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (D.P.C.D.); (C.V.); (P.G.P.); (A.M.T.-d.B.); (C.A.P.); (A.P.J.V.)
- Laboratory for Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Anesthesiology, Amsterdam UMC, VU University, 1081 HV Amsterdam, The Netherlands
| | - Philippa G. Phelp
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (D.P.C.D.); (C.V.); (P.G.P.); (A.M.T.-d.B.); (C.A.P.); (A.P.J.V.)
- Laboratory for Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Roselique Ibelings
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (D.P.C.D.); (C.V.); (P.G.P.); (A.M.T.-d.B.); (C.A.P.); (A.P.J.V.)
- Laboratory for Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Anesthesiology, Amsterdam UMC, VU University, 1081 HV Amsterdam, The Netherlands
| | - Iris Voorn
- Laboratory for Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Anesthesiology, Amsterdam UMC, VU University, 1081 HV Amsterdam, The Netherlands
| | - Anita M. Tuip-de Boer
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (D.P.C.D.); (C.V.); (P.G.P.); (A.M.T.-d.B.); (C.A.P.); (A.P.J.V.)
- Laboratory for Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Chantal A. Polet
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (D.P.C.D.); (C.V.); (P.G.P.); (A.M.T.-d.B.); (C.A.P.); (A.P.J.V.)
- Laboratory for Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Joris J. Roelofs
- Department of Pathology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Alexander P. J. Vlaar
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (D.P.C.D.); (C.V.); (P.G.P.); (A.M.T.-d.B.); (C.A.P.); (A.P.J.V.)
- Laboratory for Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Matijs van Meurs
- Department of Critical Care, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands;
| | - Charissa E. van den Brom
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (D.P.C.D.); (C.V.); (P.G.P.); (A.M.T.-d.B.); (C.A.P.); (A.P.J.V.)
- Laboratory for Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Anesthesiology, Amsterdam UMC, VU University, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
5
|
Tamas F, Tamas CI, Suciu BA, Balasa AF. Extracellular Vesicle-Associated Angiopoietin-2 and Cell Migration-Inducing Protein in Lung Cancer Progression and Brain Metastases. Cureus 2025; 17:e80200. [PMID: 40190907 PMCID: PMC11972550 DOI: 10.7759/cureus.80200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2025] [Indexed: 04/09/2025] Open
Abstract
BACKGROUND Angiopoietin-2 (ANGPT2) and cell migration-inducing protein (CEMIP) are key regulators of angiogenesis, extracellular matrix remodeling, and metastatic progression in various cancers, including lung cancer (LC). The presence of these biomarkers in extracellular vesicles (EVs) may offer valuable insights into the molecular mechanisms underlying LC progression and metastasis. Extracellular vesicles play a critical role in LC by enhancing intercellular communication and supporting processes such as angiogenesis, immune evasion, and metastasis, transferring key molecules like vascular endothelial growth factor (VEGF) and pro-angiogenic microRNAs (miRNAs). METHODS This study aimed to investigate the presence and quantification of ANGPT2 and CEMIP in the cargo of EVs isolated from plasma samples obtained from the peripheral venous blood of patients with localized lung cancer (LLC group), lung cancer with brain metastases (LCM group), and healthy controls (HC group). EVs were isolated using the density gradient ultracentrifugation method, and their characterization was performed through scanning and transmission electron microscopy as well as flow cytometry. Western blot analysis was used to identify ANGPT2 and CEMIP in EV cargo, and band intensity from western blot images was quantified using specialized software. RESULTS The expression of ANGPT2 and CEMIP in EV cargo was significantly higher in the oncologic groups (LLC and LCM combined) compared to the HC group. Notably, EV CEMIP levels were, on average, 59% higher in patients with brain metastases than in those with localized lung cancer. Following surgical resection, postoperative EV ANGPT2 and EV CEMIP levels decreased by 36% and 8.5%, respectively, in the LLC group, and by 40% and 4.6%, respectively, in the LCM group. CONCLUSION These findings emphasize the potential of ANGPT2 and CEMIP as biomarkers for LC progression and prognosis. To our knowledge, no previous study has evaluated the presence and quantification of ANGPT2 and CEMIP in EV cargo from lung cancer patients. To further validate their role in cancer progression, functional studies should explore the mechanistic effects of EV-associated ANGPT2 and CEMIP on angiogenesis, immune modulation, cell migration, extracellular matrix remodeling, and tumor progression in lung cancer models.
Collapse
Affiliation(s)
- Flaviu Tamas
- Neurosurgery, Doctoral School of Medicine and Pharmacy, "George Emil Palade" University of Medicine, Pharmacy, Science and Technology, Târgu Mureș, ROU
- Neurosurgery, Emergency Clinical County Hospital, Târgu Mureș, ROU
| | - Corina I Tamas
- Neurosurgery, Doctoral School of Medicine and Pharmacy, "George Emil Palade" University of Medicine, Pharmacy, Science and Technology, Târgu Mureș, ROU
- Neurosurgery, Emergency Clinical County Hospital, Târgu Mureș, ROU
| | - Bogdan A Suciu
- Thoracic Surgery, Emergency Clinical County Hospital, Târgu Mureș, ROU
| | - Adrian F Balasa
- Neurosurgery, Emergency Clinical County Hospital, Târgu Mureș, ROU
| |
Collapse
|
6
|
Kuonqui KG, Campbell AC, Pollack BL, Shin J, Sarker A, Brown S, Park HJ, Mehrara BJ, Kataru RP. Regulation of VEGFR3 signaling in lymphatic endothelial cells. Front Cell Dev Biol 2025; 13:1527971. [PMID: 40046235 PMCID: PMC11880633 DOI: 10.3389/fcell.2025.1527971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/22/2025] [Indexed: 03/09/2025] Open
Abstract
The receptor tyrosine kinase vascular endothelial growth factor (VEGF) receptor 3 (VEGFR3) is the principal transmembrane receptor responsible for sensing and coordinating cellular responses to environmental lymphangiogenic stimuli in lymphatic endothelial cells (LECs). VEGFC and D (VEGFC/D) function as the cognate ligands to VEGFR3 by stimulating autophosphorylation of intracellular VEGFR3 tyrosine kinase domains that activate signal cascades involved in lymphatic growth and survival. VEGFR3 primarily promotes downstream signaling through the phosphoinositide 3-kinase (PI3K) and Ras signaling cascades that promote functions including cell proliferation and migration. The importance of VEGFR3 cascades in lymphatic physiology is underscored by identification of dysfunctional VEGFR3 signaling across several lymphatic-related diseases. Recently, our group has shown that intracellular modification of VEGFR3 signaling is a potent means of inducing lymphangiogenesis independent of VEGFC. This is important because long-term treatment with recombinant VEGFC may have deleterious consequences due to off-target effects. A more complete understanding of VEGFR3 signaling pathways may lead to novel drug development strategies. The purpose of this review is to 1) characterize molecular mediators of VEGFC/VEGFR3 downstream signaling activation and their functional roles in LEC physiology and 2) explore molecular regulation of overall VEGFR3 expression and activity within LECs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Raghu P. Kataru
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
7
|
Luo AJ, Chang FC, Lin SL. Exploring Angiopoietin-2: Clinical Insights and Experimental Perspectives in Kidney Diseases. Kidney Int Rep 2024; 9:3375-3385. [PMID: 39698365 PMCID: PMC11652073 DOI: 10.1016/j.ekir.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 12/20/2024] Open
Abstract
Angiopoietin-2, an important contributor to angiogenesis and vascular remodeling, is increasingly recognized in kidney research. This review explores clinical insights and experimental perspectives on angiopoietin-2 in kidney diseases. Traditionally seen as an antagonist of the Tie-2, which is a receptor tyrosine kinase of endothelial cells and some hematopoietic stem cells, angiopoietin-2 exerts both proangiogenic and antiangiogenic effects, making it a versatile and context-dependent player in kidney pathophysiology. Elevated circulating angiopoietin-2 levels in clinical scenarios are associated with sepsis and acute kidney injury (AKI), emphasizing its role as a biomarker of disease severity. In diabetic kidney disease, circulating angiopoietin-2 correlates with albuminuria, a crucial indicator of disease progression, and may serve as a treatment target in protecting the endothelium. Angiopoietin-2 is implicated in chronic kidney diseases (CKDs), where its elevated circulating levels correlate with kidney outcomes and cardiovascular complications, suggesting its potential impact on kidney function and overall health. In experimental settings, angiopoietin-2 plays a pivotal role in angiogenesis and lymphangiogenesis, influencing vascular stability and endothelial integrity. The context-dependent agonist and antagonist role of angiopoietin-2 is regulated by a Tie-2 phosphatase, vascular endothelial protein tyrosine phosphatase (VEPTP), further underscoring its complexity. Angiopoietin-2 is also involved in regulating cellular integrity, inflammation, and endothelial permeability, making it a promising therapeutic target for conditions characterized by disrupted endothelial junctions and vascular dysfunction. This review provides a comprehensive overview of the diverse roles of angiopoietin-2 in kidney research, offering insights into potential therapeutic targets and advancements in managing kidney diseases.
Collapse
Affiliation(s)
- An-Jie Luo
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Fan-Chi Chang
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shuei-Liong Lin
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
8
|
Alderfer L, Saha S, Fan F, Wu J, Littlepage LE, Hanjaya-Putra D. Multi-parameter tunable synthetic matrix for engineering lymphatic vessels. Commun Biol 2024; 7:1262. [PMID: 39367247 PMCID: PMC11452684 DOI: 10.1038/s42003-024-06935-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 09/20/2024] [Indexed: 10/06/2024] Open
Abstract
Controlling the formation of new lymphatic vessels has been postulated as an innovative therapeutic strategy for various disease phenotypes, including neurodegenerative diseases, metabolic syndrome, cardiovascular disease, and lymphedema. Yet, compared to the blood vascular system, little is known about the molecular regulation that controls lymphatic tube formation in a synthetic matrix. In this study, we utilize hyaluronic acid (HA)-hydrogels to design a novel platform for decoupled investigation into how mechanical and biochemical cues regulate lymphatic vessel formation in a synthetic matrix. Using HA and controlling the degree of modification provides a method to preserve and modulate key lymphatic markers Prox1, LYVE-1, and Pdpn. The chemistry of the system allows for spatial and temporal patterning of specific peptides and substrate stiffnesses, and an MMP-sensitive crosslinker allowed cells to degrade and remodel their matrix. Through systematic optimization of multiple parameters, we have designed a system that allows human lymphatic endothelial cells (LECs) to self-assemble into vessels in vitro within 3 days. These engineered vessels can be cultured for up to 3 weeks and can be used for high-throughput mechanistic studies, or can be implanted into immunodeficient mice where they have demonstrated the ability to integrate and mature. Collectively, these studies report a novel, fully-defined 3D synthetic matrix system capable of generating lymphatic vessels in vitro that provide promise as an in vitro screening platform and as a therapeutic vessel transplant, which to our knowledge, is the first ever 3D lymphatic tissue engineering approach to not require the use of support cells.
Collapse
Affiliation(s)
- Laura Alderfer
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, USA
| | - Sanjoy Saha
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, USA
| | - Fei Fan
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, USA
| | - Junmin Wu
- Department of Biochemistry, University of Notre Dame, Notre Dame, IN, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Laurie E Littlepage
- Department of Biochemistry, University of Notre Dame, Notre Dame, IN, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Donny Hanjaya-Putra
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, USA.
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA.
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA.
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
9
|
Sha L, Zhao Y, Li S, Wei D, Tao Y, Wang Y. Insights to Ang/Tie signaling pathway: another rosy dawn for treating retinal and choroidal vascular diseases. J Transl Med 2024; 22:898. [PMID: 39367441 PMCID: PMC11451039 DOI: 10.1186/s12967-024-05441-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/27/2024] [Indexed: 10/06/2024] Open
Abstract
Retinal neurovascular unit (NVU) is a multi-cellular structure that consists of the functional coupling between neural tissue and vascular system. Disrupted NVU will result in the occurrence of retinal and choroidal vascular diseases, which are characterized by the development of neovascularization, increased vascular permeability, and inflammation. This pathological entity mainly includes neovascular age-related macular degeneration (neovascular-AMD), diabetic retinopathy (DR) retinal vein occlusion (RVO), and retinopathy of prematurity (ROP). Emerging evidences suggest that the angopoietin/tyrosine kinase with immunoglobulin and epidermal growth factor homology domains (Ang/Tie) signaling pathway is essential for the development of retinal and choroidal vascular. Tie receptors and their downstream pathways play a key role in modulating the vascular development, vascular stability, remodeling and angiogenesis. Angiopoietin 1 (Ang1) is a natural agonist of Tie2 receptor, which can promote vascular stability. On the other hand, angiopoietin 2 (Ang2) is an antagonist of Tie2 receptor that causes vascular instability. Currently, agents targeting the Ang/Tie signaling pathway have been used to inhibit neovascularization and vascular leakage in neovascular-AMD and DR animal models. Particularly, the AKB-9778 and Faricimab have shown promising efficacy in improving visual acuity in patients with neovascular-AMD and DR. These experimental and clinical evidences suggest that activation of Ang/Tie signaling pathway can inhibit the vascular permeability, neovascularization, thereby maintaining the normal function and structure of NVU. This review seeks to introduce the versatile functions and elucidate the modulatory mechanisms of Ang/Tie signaling pathway. Recent pharmacologic therapies targeting this pathway are also elaborated and summarized. Further translation of these findings may afford a new therapeutic strategy from bench to bedside.
Collapse
Affiliation(s)
- Lulu Sha
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Yameng Zhao
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Siyu Li
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Dong Wei
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Ye Tao
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| | - Yange Wang
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| |
Collapse
|
10
|
Wagner KT, Lu RXZ, Landau S, Shawky SA, Zhao Y, Bodenstein DF, Jiménez Vargas LF, Jiang R, Okhovatian S, Wang Y, Liu C, Vosoughi D, Gustafson D, Fish JE, Cummins CL, Radisic M. Endothelial extracellular vesicles enhance vascular self-assembly in engineered human cardiac tissues. Biofabrication 2024; 16:045037. [PMID: 39226913 PMCID: PMC11409464 DOI: 10.1088/1758-5090/ad76d9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 09/03/2024] [Indexed: 09/05/2024]
Abstract
The fabrication of complex and stable vasculature in engineered cardiac tissues represents a significant hurdle towards building physiologically relevant models of the heart. Here, we implemented a 3D model of cardiac vasculogenesis, incorporating endothelial cells (EC), stromal cells, and human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CM) in a fibrin hydrogel. The presence of CMs disrupted vessel formation in 3D tissues, resulting in the upregulation of endothelial activation markers and altered extracellular vesicle (EV) signaling in engineered tissues as determined by the proteomic analysis of culture supernatant. miRNA sequencing of CM- and EC-secreted EVs highlighted key EV-miRNAs that were postulated to play differing roles in cardiac vasculogenesis, including the let-7 family and miR-126-3p in EC-EVs. In the absence of CMs, the supplementation of CM-EVs to EC monolayers attenuated EC migration and proliferation and resulted in shorter and more discontinuous self-assembling vessels when applied to 3D vascular tissues. In contrast, supplementation of EC-EVs to the tissue culture media of 3D vascularized cardiac tissues mitigated some of the deleterious effects of CMs on vascular self-assembly, enhancing the average length and continuity of vessel tubes that formed in the presence of CMs. Direct transfection validated the effects of the key EC-EV miRNAs let-7b-5p and miR-126-3p in improving the maintenance of continuous vascular networks. EC-EV supplementation to biofabricated cardiac tissues and microfluidic devices resulted in tissue vascularization, illustrating the use of this approach in the engineering of enhanced, perfusable, microfluidic models of the myocardium.
Collapse
Affiliation(s)
- Karl T Wagner
- Institute of Biomedical Engineering, University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada
| | - Rick X Z Lu
- Institute of Biomedical Engineering, University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada
| | - Shira Landau
- Institute of Biomedical Engineering, University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada
| | - Sarah A Shawky
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, ON M5S 3M2, Canada
| | - Yimu Zhao
- Institute of Biomedical Engineering, University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada
- Acceleration Consortium, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - David F Bodenstein
- Institute of Biomedical Engineering, University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada
- Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street, Toronto, ON M5G 2C4, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5G 2C8, Canada
| | - Luis Felipe Jiménez Vargas
- Institute of Biomedical Engineering, University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada
| | - Richard Jiang
- Institute of Biomedical Engineering, University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada
| | - Sargol Okhovatian
- Institute of Biomedical Engineering, University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada
- Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street, Toronto, ON M5G 2C4, Canada
| | - Ying Wang
- Institute of Biomedical Engineering, University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada
| | - Chuan Liu
- Institute of Biomedical Engineering, University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada
| | - Daniel Vosoughi
- Latner Thoracic Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Dakota Gustafson
- Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street, Toronto, ON M5G 2C4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada
| | - Jason E Fish
- Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street, Toronto, ON M5G 2C4, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada
- Peter Munk Cardiac Centre, Toronto General Hospital,University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Carolyn L Cummins
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, ON M5S 3M2, Canada
| | - Milica Radisic
- Institute of Biomedical Engineering, University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada
- Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street, Toronto, ON M5G 2C4, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
11
|
Fowler JWM, Song L, Tam K, Roth Flach RJ. Targeting lymphatic function in cardiovascular-kidney-metabolic syndrome: preclinical methods to analyze lymphatic function and therapeutic opportunities. Front Cardiovasc Med 2024; 11:1412857. [PMID: 38915742 PMCID: PMC11194411 DOI: 10.3389/fcvm.2024.1412857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/24/2024] [Indexed: 06/26/2024] Open
Abstract
The lymphatic vascular system spans nearly every organ in the body and serves as an important network that maintains fluid, metabolite, and immune cell homeostasis. Recently, there has been a growing interest in the role of lymphatic biology in chronic disorders outside the realm of lymphatic abnormalities, lymphedema, or oncology, such as cardiovascular-kidney-metabolic syndrome (CKM). We propose that enhancing lymphatic function pharmacologically may be a novel and effective way to improve quality of life in patients with CKM syndrome by engaging multiple pathologies at once throughout the body. Several promising therapeutic targets that enhance lymphatic function have already been reported and may have clinical benefit. However, much remains unclear of the discreet ways the lymphatic vasculature interacts with CKM pathogenesis, and translation of these therapeutic targets to clinical development is challenging. Thus, the field must improve characterization of lymphatic function in preclinical mouse models of CKM syndrome to better understand molecular mechanisms of disease and uncover effective therapies.
Collapse
Affiliation(s)
| | | | | | - Rachel J. Roth Flach
- Internal Medicine Research Unit, Pfizer Research and Development, Cambridge, MA, United States
| |
Collapse
|
12
|
Brouillard P, Murtomäki A, Leppänen VM, Hyytiäinen M, Mestre S, Potier L, Boon LM, Revencu N, Greene A, Anisimov A, Salo MH, Hinttala R, Eklund L, Quéré I, Alitalo K, Vikkula M. Loss-of-function mutations of the TIE1 receptor tyrosine kinase cause late-onset primary lymphedema. J Clin Invest 2024; 134:e173586. [PMID: 38820174 PMCID: PMC11245153 DOI: 10.1172/jci173586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 05/24/2024] [Indexed: 06/02/2024] Open
Abstract
Primary lymphedema (PL), characterized by tissue swelling, fat accumulation, and fibrosis, results from defects in lymphatic vessels or valves caused by mutations in genes involved in development, maturation, and function of the lymphatic vascular system. Pathogenic variants in various genes have been identified in about 30% of PL cases. By screening of a cohort of 755 individuals with PL, we identified two TIE1 (tyrosine kinase with immunoglobulin- and epidermal growth factor-like domains 1) missense variants and one truncating variant, all predicted to be pathogenic by bioinformatic algorithms. The TIE1 receptor, in complex with TIE2, binds angiopoietins to regulate the formation and remodeling of blood and lymphatic vessels. The premature stop codon mutant encoded an inactive truncated extracellular TIE1 fragment with decreased mRNA stability, and the amino acid substitutions led to decreased TIE1 signaling activity. By reproducing the two missense variants in mouse Tie1 via CRISPR/Cas9, we showed that both cause edema and are lethal in homozygous mice. Thus, our results indicate that TIE1 loss-of-function variants can cause lymphatic dysfunction in patients. Together with our earlier demonstration that ANGPT2 loss-of-function mutations can also cause PL, our results emphasize the important role of the ANGPT2/TIE1 pathway in lymphatic function.
Collapse
Affiliation(s)
- Pascal Brouillard
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
| | - Aino Murtomäki
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Veli-Matti Leppänen
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Marko Hyytiäinen
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sandrine Mestre
- Department of Vascular Medicine, Centre de Référence des Maladies Lymphatiques et Vasculaires Rares, Inserm IDESP, CHU Montpellier, Université de Montpellier, Montpellier, France
| | - Lucas Potier
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
| | - Laurence M. Boon
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
- Center for Vascular Anomalies, Division of Plastic Surgery, Cliniques Universitaires Saint-Luc, University of Louvain, VASCERN-VASCA Reference Centre, Brussels, Belgium
| | - Nicole Revencu
- Center for Human Genetics, Cliniques Universitaires Saint-Luc, University of Louvain, Brussels, Belgium
| | - Arin Greene
- Department of Plastic and Oral Surgery, Lymphedema Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrey Anisimov
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Miia H. Salo
- Biocenter Oulu, Research Unit of Clinical Medicine and Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Reetta Hinttala
- Biocenter Oulu, Research Unit of Clinical Medicine and Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Lauri Eklund
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Isabelle Quéré
- Department of Vascular Medicine, Centre de Référence des Maladies Lymphatiques et Vasculaires Rares, Inserm IDESP, CHU Montpellier, Université de Montpellier, Montpellier, France
| | - Kari Alitalo
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
- WELBIO department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
13
|
Du J, Liu P, Zhou Y, Misener S, Sharma I, Leeaw P, Thomson BR, Jin J, Quaggin SE. The mechanosensory channel PIEZO1 functions upstream of angiopoietin/TIE/FOXO1 signaling in lymphatic development. J Clin Invest 2024; 134:e176577. [PMID: 38747287 PMCID: PMC11093609 DOI: 10.1172/jci176577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/12/2024] [Indexed: 05/19/2024] Open
Abstract
Lymphedema is a debilitating disease with no effective cure and affects an estimated 250 million individuals worldwide. Prior studies have identified mutations in piezo-type mechanosensitive ion channel component 1 (PIEZO1), angiopoietin 2 (ANGPT2), and tyrosine kinase with Ig-like and EGF-like domains 1 (TIE1) in patients with primary lymphedema. Here, we identified crosstalk between these molecules and showed that activation of the mechanosensory channel PIEZO1 in lymphatic endothelial cells (LECs) caused rapid exocytosis of the TIE ligand ANGPT2, ectodomain shedding of TIE1 by disintegrin and metalloproteinase domain-containing protein 17 (ADAM17), and increased TIE/PI3K/AKT signaling, followed by nuclear export of the transcription factor FOXO1. These data establish a functional network between lymphedema-associated genes and provide what we believe to be the first molecular mechanism bridging channel function with vascular signaling and intracellular events culminating in transcriptional regulation of genes expressed in LECs. Our study provides insights into the regulation of lymphatic function and molecular pathways involved in human disease.
Collapse
Affiliation(s)
- Jing Du
- Feinberg Cardiovascular and Renal Research Institute
| | - Pan Liu
- Feinberg Cardiovascular and Renal Research Institute
| | - Yalu Zhou
- Feinberg Cardiovascular and Renal Research Institute
| | - Sol Misener
- Feinberg Cardiovascular and Renal Research Institute
| | - Isha Sharma
- Feinberg Cardiovascular and Renal Research Institute
| | - Phoebe Leeaw
- Feinberg Cardiovascular and Renal Research Institute
| | - Benjamin R. Thomson
- Feinberg Cardiovascular and Renal Research Institute
- Department of Ophthalmology, and
| | - Jing Jin
- Feinberg Cardiovascular and Renal Research Institute
- Division of Nephrology, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Susan E. Quaggin
- Feinberg Cardiovascular and Renal Research Institute
- Division of Nephrology, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
14
|
Vázquez-Liébanas E, Mocci G, Li W, Laviña B, Reddy A, O'Connor C, Hudson N, Elbeck Z, Nikoloudis I, Gaengel K, Vanlandewijck M, Campbell M, Betsholtz C, Mäe MA. Mosaic deletion of claudin-5 reveals rapid non-cell-autonomous consequences of blood-brain barrier leakage. Cell Rep 2024; 43:113911. [PMID: 38446668 DOI: 10.1016/j.celrep.2024.113911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/19/2023] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
Claudin-5 (CLDN5) is an endothelial tight junction protein essential for blood-brain barrier (BBB) formation. Abnormal CLDN5 expression is common in brain disease, and knockdown of Cldn5 at the BBB has been proposed to facilitate drug delivery to the brain. To study the consequences of CLDN5 loss in the mature brain, we induced mosaic endothelial-specific Cldn5 gene ablation in adult mice (Cldn5iECKO). These mice displayed increased BBB permeability to tracers up to 10 kDa in size from 6 days post induction (dpi) and ensuing lethality from 10 dpi. Single-cell RNA sequencing at 11 dpi revealed profound transcriptomic differences in brain endothelial cells regardless of their Cldn5 status in mosaic mice, suggesting major non-cell-autonomous responses. Reactive microglia and astrocytes suggested rapid cellular responses to BBB leakage. Our study demonstrates a critical role for CLDN5 in the adult BBB and provides molecular insight into the consequences and risks associated with CLDN5 inhibition.
Collapse
Affiliation(s)
- Elisa Vázquez-Liébanas
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Giuseppe Mocci
- Single Cell Core Facility of Flemingsberg Campus (SICOF), Karolinska Institute, 14157 Huddinge, Sweden
| | - Weihan Li
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Bàrbara Laviña
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Avril Reddy
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Claire O'Connor
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Natalie Hudson
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Zaher Elbeck
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Ioannis Nikoloudis
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Konstantin Gaengel
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Michael Vanlandewijck
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden; Single Cell Core Facility of Flemingsberg Campus (SICOF), Karolinska Institute, 14157 Huddinge, Sweden; Department of Medicine, Karolinska Institute, 14157 Huddinge, Sweden
| | - Matthew Campbell
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Christer Betsholtz
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden; Department of Medicine, Karolinska Institute, 14157 Huddinge, Sweden
| | - Maarja Andaloussi Mäe
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden.
| |
Collapse
|
15
|
Agarwal R, Iezhitsa I. Genetic rodent models of glaucoma in representing disease phenotype and insights into the pathogenesis. Mol Aspects Med 2023; 94:101228. [PMID: 38016252 DOI: 10.1016/j.mam.2023.101228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/31/2023] [Accepted: 11/11/2023] [Indexed: 11/30/2023]
Abstract
Genetic rodent models are widely used in glaucoma related research. With vast amount of information revealed by human studies about genetic correlations with glaucoma, use of these models is relevant and required. In this review, we discuss the glaucoma endophenotypes and importance of their representation in an experimental animal model. Mice and rats are the most popular animal species used as genetic models due to ease of genetic manipulations in these animal species as well as the availability of their genomic information. With technological advances, induction of glaucoma related genetic mutations commonly observed in human is possible to achieve in rodents in a desirable manner. This approach helps to study the pathobiology of the disease process with the background of genetic abnormalities, reveals potential therapeutic targets and gives an opportunity to test newer therapeutic options. Various genetic manipulation leading to appearance of human relevant endophenotypes in rodents indicate their relevance in glaucoma pathology and the utility of these rodent models for exploring various aspects of the disease related to targeted mutation. The molecular pathways involved in the pathophysiology of glaucoma leading to elevated intraocular pressure and the disease hallmark, apoptosis of retinal ganglion cells and optic nerve degeneration, have been extensively explored in genetic rodent models. In this review, we discuss the consequences of various genetic manipulations based on the primary site of pathology in the anterior or the posterior segment. We discuss how these genetic manipulations produce features in rodents that can be considered a close representation of disease phenotype in human. We also highlight several molecular mechanisms revealed by using genetic rodent models of glaucoma including those involved in increased aqueous outflow resistance, loss of retinal ganglion cells and optic neuropathy. Lastly, we discuss the limitations of the use of genetic rodent models in glaucoma related research.
Collapse
Affiliation(s)
- Renu Agarwal
- School of Medicine, International Medical University, Malaysia.
| | - Igor Iezhitsa
- School of Medicine, International Medical University, Malaysia
| |
Collapse
|
16
|
Ujiie N, Norden PR, Fang R, Beckmann L, Cai Z, Kweon J, Liu T, Tan C, Kuhn MS, Stamer WD, Aoto K, Quaggin SE, Zhang HF, Kume T. Differential roles of FOXC2 in the trabecular meshwork and Schlemm's canal in glaucomatous pathology. Life Sci Alliance 2023; 6:e202201721. [PMID: 37414529 PMCID: PMC10326420 DOI: 10.26508/lsa.202201721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023] Open
Abstract
Impaired development and maintenance of Schlemm's canal (SC) are associated with perturbed aqueous humor outflow and intraocular pressure. The angiopoietin (ANGPT)/TIE2 signaling pathway regulates SC development and maintenance, whereas the molecular mechanisms of crosstalk between SC and the neural crest (NC)-derived neighboring tissue, the trabecular meshwork (TM), are poorly understood. Here, we show NC-specific forkhead box (Fox)c2 deletion in mice results in impaired SC morphogenesis, loss of SC identity, and elevated intraocular pressure. Visible-light optical coherence tomography analysis further demonstrated functional impairment of the SC in response to changes in intraocular pressure in NC-Foxc2 -/- mice, suggesting altered TM biomechanics. Single-cell RNA-sequencing analysis identified that this phenotype is predominately characterized by transcriptional changes associated with extracellular matrix organization and stiffness in TM cell clusters, including increased matrix metalloproteinase expression, which can cleave the TIE2 ectodomain to produce soluble TIE2. Moreover, endothelial-specific Foxc2 deletion impaired SC morphogenesis because of reduced TIE2 expression, which was rescued by deleting the TIE2 phosphatase VE-PTP. Thus, Foxc2 is critical in maintaining SC identity and morphogenesis via TM-SC crosstalk.
Collapse
Affiliation(s)
- Naoto Ujiie
- Feinberg Cardiovascular and Renal Research Institute, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Pieter R Norden
- Feinberg Cardiovascular and Renal Research Institute, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Raymond Fang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Lisa Beckmann
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Zhen Cai
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Junghun Kweon
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Ting Liu
- Feinberg Cardiovascular and Renal Research Institute, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Can Tan
- Feinberg Cardiovascular and Renal Research Institute, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Megan S Kuhn
- Duke Eye Center, Duke University, Durham, NC, USA
| | | | - Kazushi Aoto
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Susan E Quaggin
- Feinberg Cardiovascular and Renal Research Institute, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Hao F Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Ophthalmology, Northwestern University, Chicago, IL, USA
| | - Tsutomu Kume
- Feinberg Cardiovascular and Renal Research Institute, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Ophthalmology, Northwestern University, Chicago, IL, USA
| |
Collapse
|
17
|
Zhou X, Pucel JC, Nomura-Kitabayashi A, Chandakkar P, Guidroz AP, Jhangiani NL, Bao D, Fan J, Arthur HM, Ullmer C, Klein C, Marambaud P, Meadows SM. ANG2 Blockade Diminishes Proangiogenic Cerebrovascular Defects Associated With Models of Hereditary Hemorrhagic Telangiectasia. Arterioscler Thromb Vasc Biol 2023; 43:1384-1403. [PMID: 37288572 PMCID: PMC10524982 DOI: 10.1161/atvbaha.123.319385] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/16/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Hereditary hemorrhagic telangiectasia (HHT) is a vascular disorder characterized by arteriovenous malformations and blood vessel enlargements. However, there are no effective drug therapies to combat arteriovenous malformation formation in patients with HHT. Here, we aimed to address whether elevated levels of ANG2 (angiopoietin-2) in the endothelium is a conserved feature in mouse models of the 3 major forms of HHT that could be neutralized to treat brain arteriovenous malformations and associated vascular defects. In addition, we sought to identify the angiogenic molecular signature linked to HHT. METHODS Cerebrovascular defects, including arteriovenous malformations and increased vessel calibers, were characterized in mouse models of the 3 common forms of HHT using transcriptomic and dye injection labeling methods. RESULTS Comparative RNA sequencing analyses of isolated brain endothelial cells revealed a common, but unique proangiogenic transcriptional program associated with HHT. This included a consistent upregulation in cerebrovascular expression of ANG2 and downregulation of its receptor Tyr kinase with Ig and EGF homology domains (TIE2/TEK) in HHT mice compared with controls. Furthermore, in vitro experiments revealed TEK signaling activity was hampered in an HHT setting. Pharmacological blockade of ANG2 improved brain vascular pathologies in all HHT models, albeit to varying degrees. Transcriptomic profiling further indicated that ANG2 inhibition normalized the brain vasculature by impacting a subset of genes involved in angiogenesis and cell migration processes. CONCLUSIONS Elevation of ANG2 in the brain vasculature is a shared trait among the mouse models of the common forms of HHT. Inhibition of ANG2 activity can significantly limit or prevent brain arteriovenous malformation formation and blood vessel enlargement in HHT mice. Thus, ANG2-targeted therapies may represent a compelling approach to treat arteriovenous malformations and vascular pathologies related to all forms of HHT.
Collapse
Affiliation(s)
- Xingyan Zhou
- Cell and Molecular Biology Department, Tulane University, New Orleans, LA, USA
| | - Jenna C. Pucel
- Cell and Molecular Biology Department, Tulane University, New Orleans, LA, USA
| | - Aya Nomura-Kitabayashi
- Litwin-Zucker Alzheimer’s Research Center, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Pallavi Chandakkar
- Litwin-Zucker Alzheimer’s Research Center, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Adella P. Guidroz
- Cell and Molecular Biology Department, Tulane University, New Orleans, LA, USA
| | - Nikita L. Jhangiani
- Cell and Molecular Biology Department, Tulane University, New Orleans, LA, USA
| | - Duran Bao
- Biochemistry and Molecular Biology Department, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jia Fan
- Biochemistry and Molecular Biology Department, Tulane University School of Medicine, New Orleans, LA, USA
| | - Helen M. Arthur
- Biosciences Institute, Center for Life, Newcastle University, Newcastle NE1 3BZ, UK
| | | | | | - Philippe Marambaud
- Litwin-Zucker Alzheimer’s Research Center, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Stryder M. Meadows
- Cell and Molecular Biology Department, Tulane University, New Orleans, LA, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| |
Collapse
|
18
|
Harrington J, Nixon AB, Daubert MA, Yow E, Januzzi J, Fiuzat M, Whellan DJ, O'Connor CM, Ezekowitz J, Piña IL, Adams KF, Felker GM, Karra R. Circulating Angiokines Are Associated With Reverse Remodeling and Outcomes in Chronic Heart Failure. J Card Fail 2023; 29:896-906. [PMID: 36632934 PMCID: PMC10272021 DOI: 10.1016/j.cardfail.2022.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND We sought to determine whether circulating modifiers of endothelial function are associated with cardiac structure and clinical outcomes in patients with heart failure with reduced ejection fraction (HFrEF). METHODS We measured 25 proteins related to endothelial function in 99 patients from the GUIDE-IT study. Protein levels were evaluated for association with echocardiographic parameters and the incidence of all-cause death and hospitalization for heart failure (HHF). RESULTS Higher concentrations of angiopoietin 2 (ANGPT2), vascular endothelial growth factor receptor 1 (VEGFR1) and hepatocyte growth factor (HGF) were significantly associated with worse function and larger ventricular volumes. Over time, decreases in ANGPT2 and, to a lesser extent, VEGFR1 and HGF, were associated with improvements in cardiac size and function. Individuals with higher concentrations of ANGPT2, VEGFR1 or HGF had increased risks for a composite of death and HHF in the following year (HR 2.76 (95% CI 1.73-4.40) per 2-fold change in ANGPT2; HR 1.76 (95% CI 1.11-2.79) for VEGFR1; and HR 4.04 (95% CI 2.19-7.44) for HGF). CONCLUSIONS Proteins related to endothelial function associate with cardiac size, cardiac function and clinical outcomes in patients with HFrEF. These results support the concept that endothelial function may be an important contributor to the progression to and the recovery from HFrEF.
Collapse
Affiliation(s)
- Josephine Harrington
- Department of Medicine, Duke University Medical Center, Durham, NC; Duke Clinical Research Institute, Durham, NC
| | - Andrew B Nixon
- Department of Medicine, Duke University Medical Center, Durham, NC; Duke Cancer Institute, Duke University Medical Center, Durham, NC
| | - Melissa A Daubert
- Department of Medicine, Duke University Medical Center, Durham, NC; Duke Clinical Research Institute, Durham, NC
| | - Eric Yow
- Duke Clinical Research Institute, Durham, NC
| | - James Januzzi
- Massachusetts General Hospital; Harvard Medical School, Boston, MA; Baim Institute for Clinical Research, Boston, MA
| | - Mona Fiuzat
- Duke Clinical Research Institute, Durham, NC
| | - David J Whellan
- Department of Medicine, Thomas Jefferson University, Philadelphia, PA
| | | | - Justin Ezekowitz
- Canadian VIGOUR Centre, University of Alberta, Edmonton, Alberta, Canada
| | | | - Kirkwood F Adams
- Department of Medicine, University of North Carolina, Chapel Hill, NC
| | - G Michael Felker
- Department of Medicine, Duke University Medical Center, Durham, NC; Duke Clinical Research Institute, Durham, NC
| | - Ravi Karra
- Department of Medicine, Duke University Medical Center, Durham, NC; Department of Pathology, Duke University Medical Center, Durham, NC.
| |
Collapse
|
19
|
Kloka JA, Friedrichson B, Wülfroth P, Henning R, Zacharowski K. Microvascular Leakage as Therapeutic Target for Ischemia and Reperfusion Injury. Cells 2023; 12:1345. [PMID: 37408180 DOI: 10.3390/cells12101345] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/03/2023] [Accepted: 05/07/2023] [Indexed: 07/07/2023] Open
Abstract
Reperfusion injury is a very common complication of various indicated therapies such as the re-opening of vessels in the myocardium or brain as well as reflow in hemodynamic shutdown (cardiac arrest, severe trauma, aortic cross-clamping). The treatment and prevention of reperfusion injury has therefore been a topic of immense interest in terms of mechanistic understanding, the exploration of interventions in animal models and in the clinical setting in major prospective studies. While a wealth of encouraging results has been obtained in the lab, the translation into clinical success has met with mixed outcomes at best. Considering the still very high medical need, progress continues to be urgently needed. Multi-target approaches rationally linking interference with pathophysiological pathways as well as a renewed focus on aspects of microvascular dysfunction, especially on the role of microvascular leakage, are likely to provide new insights.
Collapse
Affiliation(s)
- Jan Andreas Kloka
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University, 60590 Frankfurt, Germany
| | - Benjamin Friedrichson
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University, 60590 Frankfurt, Germany
| | | | | | - Kai Zacharowski
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University, 60590 Frankfurt, Germany
| |
Collapse
|
20
|
Kawagishi N, Suda G, Yamamoto Y, Baba M, Furuya K, Maehara O, Ohnishi S, Yoshida S, Fu Q, Yang Z, Hosoda S, Tokuchi Y, Kitagataya T, Ohara M, Suzuki K, Nakai M, Sho T, Natsuizaka M, Ogawa K, Sakamoto N. Serum Angiopoietin-2 Predicts the Occurrence and Recurrence of Hepatocellular Carcinoma after Direct-Acting Antiviral Therapy for Hepatitis C. Viruses 2023; 15:181. [PMID: 36680221 PMCID: PMC9862289 DOI: 10.3390/v15010181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Progressive liver fibrosis after anti-HCV treatment is a risk factor for HCC. Angiopoietin-2 (Ang2) is associated with non-regression of liver fibrosis after direct-acting antiviral (DAA). This study evaluated the predictive value of serum Ang2 levels for HCC occurrence or recurrence after DAA administration. In this retrospective study, 310 HCV-infected patients treated with DAAs in 2014-2020 were screened and evaluated for HCC occurrence or recurrence every three-six months. Multivariate Cox regression analysis revealed that age ≥ 75 years (HR: 2.92, 95% CI: 1.34-6.33; p = 0.007) and baseline Ang2 level ≥ 464 pg/mL (HR: 2.75, 95% CI: 1.18-6.37; p = 0.019) were significantly associated with HCC occurrence after DAA therapy. A high or low risk of HCC after DAA therapy could be distinguished by the combination of age and baseline Ang2 level. The cumulative incidences of de-novo HCC at two and four years were 0.8% and 3.8% in the low-risk group and 22.6% and 27.1% in the high-risk group, respectively. Baseline Ang2 level ≥ 402 pg/mL was significantly associated with HCC recurrence in patients who achieved sustained virological response with DAAs (HR: 3.68). In conclusion, serum Ang2 levels can predict HCC occurrence and recurrence after successful HCV eradication by DAAs.
Collapse
Affiliation(s)
- Naoki Kawagishi
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo 0608638, Japan
| | - Goki Suda
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo 0608638, Japan
| | - Yoshiya Yamamoto
- Department of Gastroenterology, Hakodate Municipal Hospital, Sapporo 0608638, Japan
| | - Masaru Baba
- Department of Gastroenterology and Hepatology, Japan Community Health Care Organization (JCHO) Hokkaido Hospital, Sapporo 0608638, Japan
| | - Ken Furuya
- Department of Gastroenterology and Hepatology, Japan Community Health Care Organization (JCHO) Hokkaido Hospital, Sapporo 0608638, Japan
| | - Osamu Maehara
- Laboratory of Molecular and Cellular Medicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 0608638, Japan
| | - Shunsuke Ohnishi
- Laboratory of Molecular and Cellular Medicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 0608638, Japan
| | - Sonoe Yoshida
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo 0608638, Japan
| | - Qingjie Fu
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo 0608638, Japan
| | - Zijian Yang
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo 0608638, Japan
| | - Shunichi Hosoda
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo 0608638, Japan
| | - Yoshimasa Tokuchi
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo 0608638, Japan
| | - Takashi Kitagataya
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo 0608638, Japan
| | - Masatsugu Ohara
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo 0608638, Japan
| | - Kazuharu Suzuki
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo 0608638, Japan
| | - Masato Nakai
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo 0608638, Japan
| | - Takuya Sho
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo 0608638, Japan
| | - Mitsuteru Natsuizaka
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo 0608638, Japan
| | - Koji Ogawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo 0608638, Japan
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo 0608638, Japan
| |
Collapse
|
21
|
Shi X, Seidle KA, Simms KJ, Dong F, Chilian WM, Zhang P. Endothelial progenitor cells in the host defense response. Pharmacol Ther 2023; 241:108315. [PMID: 36436689 PMCID: PMC9944665 DOI: 10.1016/j.pharmthera.2022.108315] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Extensive injury of endothelial cells in blood vasculature, especially in the microcirculatory system, frequently occurs in hosts suffering from sepsis and the accompanied systemic inflammation. Pathological factors, including toxic components derived from invading microbes, oxidative stress associated with tissue ischemia/reperfusion, and vessel active mediators generated during the inflammatory response, are known to play important roles in mediating endothelial injury. Collapse of microcirculation and tissue edema developed from the failure of endothelial barrier function in vital organ systems, including the lung, brain, and kidney, are detrimental, which often predict fatal outcomes. The host body possesses a substantial capacity for maintaining vascular homeostasis and repairing endothelial damage. Bone marrow and vascular wall niches house endothelial progenitor cells (EPCs). In response to septic challenges, EPCs in their niche environment are rapidly activated for proliferation and angiogenic differentiation. In the meantime, release of EPCs from their niches into the blood stream and homing of these vascular precursors to tissue sites of injury are markedly increased. The recruited EPCs actively participate in host defense against endothelial injury and repair of damage in blood vasculature via direct differentiation into endothelial cells for re-endothelialization as well as production of vessel active mediators to exert paracrine and autocrine effects on angiogenesis/vasculogenesis. In recent years, investigations on significance of EPCs in host defense and molecular signaling mechanisms underlying regulation of the EPC response have achieved substantial progress, which promotes exploration of vascular precursor cell-based approaches for effective prevention and treatment of sepsis-induced vascular injury as well as vital organ system failure.
Collapse
Affiliation(s)
- Xin Shi
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - Kelly A Seidle
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - Kevin J Simms
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - Feng Dong
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - William M Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - Ping Zhang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America.
| |
Collapse
|
22
|
Impact of eradication of hepatitis C virus on liver-related and -unrelated diseases: morbidity and mortality of chronic hepatitis C after SVR. J Gastroenterol 2022; 58:299-310. [PMID: 36585501 DOI: 10.1007/s00535-022-01940-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/05/2022] [Indexed: 12/31/2022]
Abstract
Hepatitis C virus infection is characterized by chronic liver inflammation and fibrogenesis, leading to end-stage liver failure and hepatocellular carcinoma over the course of 20 to 30 years. It seems not only the chronicity of hepatitis C but also the presence of the virus in non-hepatic tissues creates a favorable environment for the potential development of pathogenic impacts on extrahepatic systems and organs. Numerous extra-hepatic manifestations have been reported in association with HCV infection, all of which can substantially affect morbidity, mortality, and quality of life. With the recent development of DAAs, antiviral treatment can cure almost all patients with HCV infection, even those intolerant of or unresponsive to IFN treatment, and several large multicenter studies have confirmed the association of DAA-induced SVR with reductions in liver-related and liver-unrelated complications, such as cardiovascular events, end stage renal disease, and so on. Because, in addition to liver-related diseases, extrahepatic lesions are threatening for patients, it is important to eradicate the virus before these progress and affect life prognosis; in other words, patients should be treated before reaching the point of no return. Tailored surveillance with biomarkers such as M2BPGi and Ang-2, which can be used to identify patients with an elevated risk of EHM, and early prevention or treatment for these patients could improve the morbidity, mortality and QOL. Advancement of both basic and clinical research in this field including the development of more precise biomarkers is highly anticipated.
Collapse
|
23
|
Itoh F, Watabe T. TGF-β signaling in lymphatic vascular vessel formation and maintenance. Front Physiol 2022; 13:1081376. [PMID: 36589453 PMCID: PMC9799095 DOI: 10.3389/fphys.2022.1081376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Transforming growth factor (TGF)-β and its family members, including bone morphogenetic proteins (BMPs), nodal proteins, and activins, are implicated in the development and maintenance of various organs. Here, we review its role in the lymphatic vascular system (the secondary vascular system in vertebrates), which plays a crucial role in various physiological and pathological processes, participating in the maintenance of the normal tissue fluid balance, immune cell trafficking, and fatty acid absorption in the gut. The lymphatic system is associated with pathogenesis in multiple diseases, including lymphedema, inflammatory diseases, and tumor metastasis. Lymphatic vessels are composed of lymphatic endothelial cells, which differentiate from blood vascular endothelial cells (BECs). Although TGF-β family signaling is essential for maintaining blood vessel function, little is known about the role of TGF-β in lymphatic homeostasis. Recently, we reported that endothelial-specific depletion of TGF-β signaling affects lymphatic function. These reports suggest that TGF-β signaling in lymphatic endothelial cells maintains the structure of lymphatic vessels and lymphatic homeostasis, and promotes tumor lymphatic metastasis. Suppression of TGF-β signaling in lymphatic endothelial cells may therefore be effective in inhibiting cancer metastasis. We highlight recent advances in understanding the roles of TGF-β signaling in the formation and maintenance of the lymphatic system.
Collapse
Affiliation(s)
- Fumiko Itoh
- Laboratory of Stem Cells Regulations, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan,*Correspondence: Fumiko Itoh, ; Tetsuro Watabe,
| | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan,*Correspondence: Fumiko Itoh, ; Tetsuro Watabe,
| |
Collapse
|
24
|
Engelbrecht E, Kooistra T, Knipe RS. The Vasculature in Pulmonary Fibrosis. CURRENT TISSUE MICROENVIRONMENT REPORTS 2022; 3:83-97. [PMID: 36712832 PMCID: PMC9881604 DOI: 10.1007/s43152-022-00040-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/23/2022] [Indexed: 02/02/2023]
Abstract
Purpose of Review The current paradigm of idiopathic pulmonary fibrosis (IPF) pathogenesis involves recurrent injury to a sensitive alveolar epithelium followed by impaired repair responses marked by fibroblast activation and deposition of extracellular matrix. Multiple cell types are involved in this response with potential roles suggested by advances in single-cell RNA sequencing and lung developmental biology. Notably, recent work has better characterized the cell types present in the pulmonary endothelium and identified vascular changes in patients with IPF. Recent Findings Lung tissue from patients with IPF has been examined at single-cell resolution, revealing reductions in lung capillary cells and expansion of a population of vascular cells expressing markers associated with bronchial endothelium. In addition, pre-clinical models have demonstrated a fundamental role for aging and vascular permeability in the development of pulmonary fibrosis. Summary Mounting evidence suggests that the endothelium undergoes changes in the context of fibrosis, and these changes may contribute to the development and/or progression of pulmonary fibrosis. Additional studies will be needed to further define the functional role of these vascular changes.
Collapse
Affiliation(s)
| | - Tristan Kooistra
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Rachel S. Knipe
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
25
|
He P, Wan H, Wan J, Jiang H, Yang Y, Xie K, Wu H. Systemic therapies in hepatocellular carcinoma: Existing and emerging biomarkers for treatment response. Front Oncol 2022; 12:1015527. [PMID: 36483039 PMCID: PMC9723250 DOI: 10.3389/fonc.2022.1015527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/28/2022] [Indexed: 07/21/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common malignancy and the third most common cause of cancer-related death worldwide. Due to asymptomatic patients in the early stage, most patients are diagnosed at an advanced stage and lose the opportunity for radical resection. In addition, for patients who underwent procedures with curative intent for early-stage HCC, up to 70% of patients may have disease recurrence within 5 years. With the advent of an increasing number of systemic therapy medications, we now have more options for the treatment of HCC. However, data from clinical studies show that with different combinations of regimens, the objective response rate is approximately 40%, and most patients will not respond to treatment. In this setting, biomarkers for predicting treatment response are of great significance for precise treatment, reducing drug side effects and saving medical resources. In this review, we summarized the existing and emerging biomarkers in the literature, with special emphasis on the pathways and mechanism underlying the prediction value of those biomarkers for systemic treatment response.
Collapse
Affiliation(s)
- Penghui He
- Department of Liver Transplant Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haifeng Wan
- Department of Liver Transplant Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Juan Wan
- Department of Pancreatitis Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hanyu Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Yang
- Department of Abdominal Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Kunlin Xie
- Department of Liver Transplant Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Wu
- Department of Liver Transplant Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
26
|
He JN, Ng TK, Lu SY, Tam POS, Chan PP, Tham CC, Pang CP, Chen LJ, Chu WK. Genetic association of ANGPT2 with primary open-angle glaucoma. EYE AND VISION (LONDON, ENGLAND) 2022; 9:37. [PMID: 36199153 PMCID: PMC9535884 DOI: 10.1186/s40662-022-00309-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/15/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND To determine the association of the ANGPT2 gene with primary open-angle glaucoma (POAG) in Chinese. METHODS Six single-nucleotide polymorphisms (SNPs) in ANGPT2 (rs2515487, rs2922869, rs13255574, rs4455855, rs13269021, and rs11775442) were genotyped in a total of 2601 study subjects from two cohorts. One is a Hong Kong Chinese cohort of 484 high tension glaucoma (HTG) and 537 normal tension glaucoma (NTG) patients, and 496 non-glaucoma control subjects. Another cohort is a Shantou Chinese cohort of 403 HTG and 135 NTG patients, and 543 non-glaucoma control subjects. Subgroup analysis by sex was conducted. Outcomes from different cohorts were combined for meta-analysis. RESULTS The association of SNP rs11775442 with NTG in the Hong Kong cohort [P = 0.0498, OR = 1.24, 95% confidence interval (CI) 1.00-1.55] after adjusting for age and sex did not reach statistical significance after Bonferroni correction. Other SNPs were not significantly associated with NTG, HTG and POAG in individual cohort or in the combined analyses (P > 0.05). In the subgroup analysis by sex, SNP rs13269021 in the Shantou cohort, but not in the Hong Kong cohort, was significantly associated with NTG in males (P = 0.0081, OR = 1.67, 95% CI: 1.14-2.43) but not in females (P = 0.874). In the combined analyses by sex, no SNPs were significantly associated with NTG, HTG and POAG. CONCLUSIONS In the subgroup analysis by sex, a significant association was shown in SNP rs13269021 with NTG in Shantou males, but not in Hong Kong males. Further studies are needed to verify the association between ANGPT2 locus (rs13269021) and NTG in Chinese males.
Collapse
Affiliation(s)
- Jing Na He
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Tsz Kin Ng
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Shi Yao Lu
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Pancy Oi Sin Tam
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Poemen P Chan
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Lam Kin Chung, Jet King-Shing Ho Glaucoma Treatment and Research Centre, The Chinese University of Hong Kong, Hong Kong, China
- Lim Por-Yen Eye Genetics Research Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Clement C Tham
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Lam Kin Chung, Jet King-Shing Ho Glaucoma Treatment and Research Centre, The Chinese University of Hong Kong, Hong Kong, China
- Lim Por-Yen Eye Genetics Research Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Pui Pang
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Lam Kin Chung, Jet King-Shing Ho Glaucoma Treatment and Research Centre, The Chinese University of Hong Kong, Hong Kong, China
- Lim Por-Yen Eye Genetics Research Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Li Jia Chen
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Lam Kin Chung, Jet King-Shing Ho Glaucoma Treatment and Research Centre, The Chinese University of Hong Kong, Hong Kong, China
- Lim Por-Yen Eye Genetics Research Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Wai Kit Chu
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.
- Lam Kin Chung, Jet King-Shing Ho Glaucoma Treatment and Research Centre, The Chinese University of Hong Kong, Hong Kong, China.
- Lim Por-Yen Eye Genetics Research Centre, The Chinese University of Hong Kong, Hong Kong, China.
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Eye Hospital, 147K Argyle Street, Kowloon, Hong Kong, China.
| |
Collapse
|
27
|
Kapiainen E, Elamaa H, Miinalainen I, Izzi V, Eklund L. Cooperation of Angiopoietin-2 and Angiopoietin-4 in Schlemm's Canal Maintenance. Invest Ophthalmol Vis Sci 2022; 63:1. [PMID: 36190459 PMCID: PMC9547357 DOI: 10.1167/iovs.63.11.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Defects in the iridocorneal angle tissues, including the trabecular meshwork (TM) and Schlemm's canal (SC), impair aqueous humor flow and increase the intraocular pressure (IOP), eventually resulting in glaucoma. Activation of endothelial tyrosine kinase receptor Tie2 by angiopoietin-1 (Angpt1) has been demonstrated to be essential for SC formation, but roles of the other two Tie2 ligands, Angpt2 and Angpt4, have been controversial or not yet characterized, respectively. Methods Angpt4 expression was investigated using genetic cell fate mapping and reporter mice. Congenital deletion of Angpt2 and Angpt4 and tamoxifen-inducible deletion of Angpt1 in mice were used to study the effects of Angpt4 deletion alone and in combination with the other angiopoietins. SC morphology was examined with immunofluorescent staining. IOP measurements, electron microscopy, and histologic evaluation were used to study glaucomatous changes. Results Angpt4 was postnatally expressed in the TM. While Angpt4 deletion alone did not affect SC and Angpt4 deletion did not aggravate Angpt1 deletion phenotype, absence of Angpt4 combined with Angpt2 deletion had detrimental effects on SC morphology in adult mice. Consequently, Angpt2−/−;Angpt4−/− mice displayed glaucomatous changes in the eye. Mice with Angpt2 deletion alone showed only moderate SC defects, but Angpt2 was necessary for proper limbal vasculature development. Mechanistically, analysis of Tie2 phosphorylation suggested that Angpt2 and Angpt4 cooperate as agonistic Tie2 ligands in maintaining SC integrity. Conclusions Our results indicated an additive effect of Angpt4 in SC maintenance and Tie2 activation and a spatiotemporally regulated interplay between the angiopoietins in the mouse iridocorneal angle.
Collapse
Affiliation(s)
- Emmi Kapiainen
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Harri Elamaa
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ilkka Miinalainen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Valerio Izzi
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Faculty of Medicine, University of Oulu, Oulu, Finland.,Foundation for the Finnish Cancer Institute, Helsinki, Finland
| | - Lauri Eklund
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
28
|
Samuel CS. Targeting angiopoietin-2 as a novel treatment option for kidney fibrosis. Kidney Int 2022; 102:691-694. [PMID: 36150760 DOI: 10.1016/j.kint.2022.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 10/14/2022]
Abstract
Kidney fibrosis is a hallmark of chronic kidney disease yet is poorly treated. Chang et al. determined that plasma and kidney levels of the vascular growth factor, angiopoietin-2, were elevated in patients with chronic kidney disease and mice with kidney disease. Angiopoietin-2 inhibited the renoprotective effects of angiopoietin-1 and promoted CC chemokine ligand 2-mediated kidney damage, endothelial cell apoptosis, vascular rarefaction, inflammation, fibrosis, and kidney dysfunction. Hence, therapeutically inhibiting angiopoietin-2 may represent a novel means of treating these chronic kidney disease-associated pathologies.
Collapse
Affiliation(s)
- Chrishan S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia; Department of Biochemistry and Molecular Biology, the University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
29
|
Chang FC, Liu CH, Luo AJ, Tao-Min Huang T, Tsai MH, Chen YJ, Lai CF, Chiang CK, Lin TH, Chiang WC, Chen YM, Chu TS, Lin SL. Angiopoietin-2 inhibition attenuates kidney fibrosis by hindering chemokine C-C motif ligand 2 expression and apoptosis of endothelial cells. Kidney Int 2022; 102:780-797. [DOI: 10.1016/j.kint.2022.06.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/16/2022] [Accepted: 06/23/2022] [Indexed: 12/17/2022]
|
30
|
Kaufmann M, Schaupp AL, Sun R, Coscia F, Dendrou CA, Cortes A, Kaur G, Evans HG, Mollbrink A, Navarro JF, Sonner JK, Mayer C, DeLuca GC, Lundeberg J, Matthews PM, Attfield KE, Friese MA, Mann M, Fugger L. Identification of early neurodegenerative pathways in progressive multiple sclerosis. Nat Neurosci 2022; 25:944-955. [PMID: 35726057 DOI: 10.1038/s41593-022-01097-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/16/2022] [Indexed: 11/08/2022]
Abstract
Progressive multiple sclerosis (MS) is characterized by unrelenting neurodegeneration, which causes cumulative disability and is refractory to current treatments. Drug development to prevent disease progression is an urgent clinical need yet is constrained by an incomplete understanding of its complex pathogenesis. Using spatial transcriptomics and proteomics on fresh-frozen human MS brain tissue, we identified multicellular mechanisms of progressive MS pathogenesis and traced their origin in relation to spatially distributed stages of neurodegeneration. By resolving ligand-receptor interactions in local microenvironments, we discovered defunct trophic and anti-inflammatory intercellular communications within areas of early neuronal decline. Proteins associated with neuronal damage in patient samples showed mechanistic concordance with published in vivo knockdown and central nervous system (CNS) disease models, supporting their causal role and value as potential therapeutic targets in progressive MS. Our findings provide a new framework for drug development strategies, rooted in an understanding of the complex cellular and signaling dynamics in human diseased tissue that facilitate this debilitating disease.
Collapse
Affiliation(s)
- Max Kaufmann
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Anna-Lena Schaupp
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Rosa Sun
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Department of Neurosurgery, Queen Elizabeth Hospital, Birmingham, UK
| | - Fabian Coscia
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Spatial Proteomics Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Calliope A Dendrou
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Adrian Cortes
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Gurman Kaur
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hayley G Evans
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Annelie Mollbrink
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Solna, Sweden
| | - José Fernández Navarro
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Solna, Sweden
| | - Jana K Sonner
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Christina Mayer
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Gabriele C DeLuca
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Joakim Lundeberg
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Solna, Sweden
| | - Paul M Matthews
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute, Imperial College London, London, UK
| | - Kathrine E Attfield
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Manuel A Friese
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Mann
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Lars Fugger
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK.
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| |
Collapse
|
31
|
Lansdell TA, Chambers LC, Dorrance AM. Endothelial Cells and the Cerebral Circulation. Compr Physiol 2022; 12:3449-3508. [PMID: 35766836 DOI: 10.1002/cphy.c210015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Endothelial cells form the innermost layer of all blood vessels and are the only vascular component that remains throughout all vascular segments. The cerebral vasculature has several unique properties not found in the peripheral circulation; this requires that the cerebral endothelium be considered as a unique entity. Cerebral endothelial cells perform several functions vital for brain health. The cerebral vasculature is responsible for protecting the brain from external threats carried in the blood. The endothelial cells are central to this requirement as they form the basis of the blood-brain barrier. The endothelium also regulates fibrinolysis, thrombosis, platelet activation, vascular permeability, metabolism, catabolism, inflammation, and white cell trafficking. Endothelial cells regulate the changes in vascular structure caused by angiogenesis and artery remodeling. Further, the endothelium contributes to vascular tone, allowing proper perfusion of the brain which has high energy demands and no energy stores. In this article, we discuss the basic anatomy and physiology of the cerebral endothelium. Where appropriate, we discuss the detrimental effects of high blood pressure on the cerebral endothelium and the contribution of cerebrovascular disease endothelial dysfunction and dementia. © 2022 American Physiological Society. Compr Physiol 12:3449-3508, 2022.
Collapse
Affiliation(s)
- Theresa A Lansdell
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Laura C Chambers
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
32
|
Korhonen EA, Murtomäki A, Jha SK, Anisimov A, Pink A, Zhang Y, Stritt S, Liaqat I, Stanczuk L, Alderfer L, Sun Z, Kapiainen E, Singh A, Sultan I, Lantta A, Leppänen VM, Eklund L, He Y, Augustin HG, Vaahtomeri K, Saharinen P, Mäkinen T, Alitalo K. Lymphangiogenesis requires Ang2/Tie/PI3K signaling for VEGFR3 cell surface expression. J Clin Invest 2022; 132:155478. [PMID: 35763346 PMCID: PMC9337826 DOI: 10.1172/jci155478] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
Vascular endothelial growth factor C (VEGF-C) induces lymphangiogenesis via VEGF receptor 3 (VEGFR3), which is encoded by the most frequently mutated gene in human primary lymphedema. Angiopoietins (Angs) and their Tie receptors regulate lymphatic vessel development, and mutations of the ANGPT2 gene were recently found in human primary lymphedema. However, the mechanistic basis of Ang2 activity in lymphangiogenesis is not fully understood. Here, we used gene deletion, blocking Abs, transgene induction, and gene transfer to study how Ang2, its Tie2 receptor, and Tie1 regulate lymphatic vessels. We discovered that VEGF-C–induced Ang2 secretion from lymphatic endothelial cells (LECs) was involved in full Akt activation downstream of phosphoinositide 3 kinase (PI3K). Neonatal deletion of genes encoding the Tie receptors or Ang2 in LECs, or administration of an Ang2-blocking Ab decreased VEGFR3 presentation on LECs and inhibited lymphangiogenesis. A similar effect was observed in LECs upon deletion of the PI3K catalytic p110α subunit or with small-molecule inhibition of a constitutively active PI3K located downstream of Ang2. Deletion of Tie receptors or blockade of Ang2 decreased VEGF-C–induced lymphangiogenesis also in adult mice. Our results reveal an important crosstalk between the VEGF-C and Ang signaling pathways and suggest new avenues for therapeutic manipulation of lymphangiogenesis by targeting Ang2/Tie/PI3K signaling.
Collapse
Affiliation(s)
- Emilia A Korhonen
- Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Aino Murtomäki
- Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Sawan Kumar Jha
- Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Andrey Anisimov
- Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Anne Pink
- Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Yan Zhang
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Simon Stritt
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Inam Liaqat
- Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Lukas Stanczuk
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Laura Alderfer
- Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Zhiliang Sun
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Emmi Kapiainen
- Oulu Centre for Cell-Matrix Research, Faculty of Biochemistry and Molecular, University of Oulu, Oulu, Finland
| | - Abhishek Singh
- Oulu Centre for Cell-Matrix Research, Faculty of Biochemistry and Molecular, University of Oulu, Oulu, Finland
| | - Ibrahim Sultan
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
| | - Anni Lantta
- Translational Cancer Medicine Program, University of Helsinki, Helsinki, Finland
| | - Veli-Matti Leppänen
- Translational Cancer Medicine Program, University of Helsinki, Helsinki, Finland
| | - Lauri Eklund
- Oulu Centre for Cell-Matrix Research, Faculty of Biochemistry and Molecular, University of Oulu, Oulu, Finland
| | - Yulong He
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Hellmut G Augustin
- Division of Vascular Oncology and Metastasis, German Cancer Research Center, Heidelberg, Germany
| | - Kari Vaahtomeri
- Translational Cancer Medicine Program, University of Helsinki, Helsinki, Finland
| | - Pipsa Saharinen
- Translational Cancer Medicine Program, University of Helsinki, Helsinki, Finland
| | - Taija Mäkinen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Kari Alitalo
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
| |
Collapse
|
33
|
Luxen M, van Meurs M, Molema G. Unlocking the Untapped Potential of Endothelial Kinase and Phosphatase Involvement in Sepsis for Drug Treatment Design. Front Immunol 2022; 13:867625. [PMID: 35634305 PMCID: PMC9136877 DOI: 10.3389/fimmu.2022.867625] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022] Open
Abstract
Sepsis is a devastating clinical condition that can lead to multiple organ failure and death. Despite advancements in our understanding of molecular mechanisms underlying sepsis and sepsis-associated multiple organ failure, no effective therapeutic treatment to directly counteract it has yet been established. The endothelium is considered to play an important role in sepsis. This review highlights a number of signal transduction pathways involved in endothelial inflammatory activation and dysregulated endothelial barrier function in response to sepsis conditions. Within these pathways – NF-κB, Rac1/RhoA GTPases, AP-1, APC/S1P, Angpt/Tie2, and VEGF/VEGFR2 – we focus on the role of kinases and phosphatases as potential druggable targets for therapeutic intervention. Animal studies and clinical trials that have been conducted for this purpose are discussed, highlighting reasons why they might not have resulted in the expected outcomes, and which lessons can be learned from this. Lastly, opportunities and challenges that sepsis and sepsis-associated multiple organ failure research are currently facing are presented, including recommendations on improved experimental design to increase the translational power of preclinical research to the clinic.
Collapse
Affiliation(s)
- Matthijs Luxen
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- *Correspondence: Matthijs Luxen,
| | - Matijs van Meurs
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Grietje Molema
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
34
|
Dynamic genome-wide gene expression and immune cell composition in the developing human placenta. J Reprod Immunol 2022; 151:103624. [DOI: 10.1016/j.jri.2022.103624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/23/2022] [Accepted: 04/13/2022] [Indexed: 11/23/2022]
|
35
|
Angiopoietin-2-induced lymphatic endothelial cell migration drives lymphangiogenesis via the β1 integrin-RhoA-formin axis. Angiogenesis 2022; 25:373-396. [PMID: 35103877 DOI: 10.1007/s10456-022-09831-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 11/08/2021] [Indexed: 11/01/2022]
Abstract
Lymphangiogenesis is an essential physiological process but also a determining factor in vascular-related pathological conditions. Angiopoietin-2 (Ang2) plays an important role in lymphatic vascular development and function and its upregulation has been reported in several vascular-related diseases, including cancer. Given the established role of the small GTPase RhoA on cytoskeleton-dependent endothelial functions, we investigated the relationship between RhoA and Ang2-induced cellular activities. This study shows that Ang2-driven human dermal lymphatic endothelial cell migration depends on RhoA. We demonstrate that Ang2-induced migration is independent of the Tie receptors, but dependent on β1 integrin-mediated RhoA activation with knockdown, pharmacological approaches, and protein sequencing experiments. Although the key proteins downstream of RhoA, Rho kinase (ROCK) and myosin light chain, were activated, blockade of ROCK did not abrogate the Ang2-driven migratory effect. However, formins, an alternative target of RhoA, were identified as key players, and especially FHOD1. The Ang2-RhoA relationship was explored in vivo, where lymphatic endothelial RhoA deficiency blocked Ang2-induced lymphangiogenesis, highlighting RhoA as an important target for anti-lymphangiogenic treatments.
Collapse
|
36
|
Luo H, Zhang Y, Deng Y, Li L, Sheng Z, Yu Y, Lin Y, Chen X, Feng P. Nxhl Controls Angiogenesis by Targeting VE-PTP Through Interaction With Nucleolin. Front Cell Dev Biol 2021; 9:728821. [PMID: 34733844 PMCID: PMC8558974 DOI: 10.3389/fcell.2021.728821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/08/2021] [Indexed: 11/13/2022] Open
Abstract
Precise regulation of angiogenesis is required for organ development, wound repair, and tumor progression. Here, we identified a novel gene, nxhl (New XingHuo light), that is conserved in vertebrates and that plays a crucial role in vascular integrity and angiogenesis. Bioinformatic analysis uncovered its essential roles in development based on co-expression with several key developmental genes. Knockdown of nxhl in zebrafish causes global and pericardial edema, loss of blood circulation, and vascular defects characterized by both reduced vascularization in intersegmental vessels and decreased sprouting in the caudal vein plexus. The nxhl gene also affects human endothelial cell behavior in vitro. We found that nxhl functions in part by targeting VE-PTP through interaction with NCL (nucleolin). Loss of ptprb (a VE-PTP ortholo) in zebrafish resulted in defects similar to nxhl knockdown. Moreover, nxhl deficiency attenuates tumor invasion and proteins (including VE-PTP and NCL) associated with angiogenesis and EMT. These findings illustrate that nxhl can regulate angiogenesis via a novel nxhl-NCL-VE-PTP axis, providing a new therapeutic target for modulating vascular formation and function, especially for cancer treatment.
Collapse
Affiliation(s)
- Honglin Luo
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China.,Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Yongde Zhang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Yanfei Deng
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Lequn Li
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Zhaoan Sheng
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yanling Yu
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Yong Lin
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Xiaohan Chen
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Pengfei Feng
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| |
Collapse
|
37
|
Schmaier AA, Pajares Hurtado GM, Manickas-Hill ZJ, Sack KD, Chen SM, Bhambhani V, Quadir J, Nath AK, Collier ARY, Ngo D, Barouch DH, Shapiro NI, Gerszten RE, Yu XG, Peters KG, Flaumenhaft R, Parikh SM. Tie2 activation protects against prothrombotic endothelial dysfunction in COVID-19. JCI Insight 2021; 6:e151527. [PMID: 34506304 PMCID: PMC8564889 DOI: 10.1172/jci.insight.151527] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/09/2021] [Indexed: 12/27/2022] Open
Abstract
Endothelial dysfunction accompanies the microvascular thrombosis commonly observed in severe COVID-19. Constitutively, the endothelial surface is anticoagulant, a property maintained at least in part via signaling through the Tie2 receptor. During inflammation, the Tie2 antagonist angiopoietin-2 (Angpt-2) is released from endothelial cells and inhibits Tie2, promoting a prothrombotic phenotypic shift. We sought to assess whether severe COVID-19 is associated with procoagulant endothelial dysfunction and alterations in the Tie2/angiopoietin axis. Primary HUVECs treated with plasma from patients with severe COVID-19 upregulated the expression of thromboinflammatory genes, inhibited the expression of antithrombotic genes, and promoted coagulation on the endothelial surface. Pharmacologic activation of Tie2 with the small molecule AKB-9778 reversed the prothrombotic state induced by COVID-19 plasma in primary endothelial cells. Lung autopsies from patients with COVID-19 demonstrated a prothrombotic endothelial signature. Assessment of circulating endothelial markers in a cohort of 98 patients with mild, moderate, or severe COVID-19 revealed endothelial dysfunction indicative of a prothrombotic state. Angpt-2 concentrations rose with increasing disease severity, and the highest levels were associated with worse survival. These data highlight the disruption of Tie2/angiopoietin signaling and procoagulant changes in endothelial cells in severe COVID-19. Our findings provide rationale for current trials of Tie2-activating therapy with AKB-9778 in COVID-19.
Collapse
Affiliation(s)
- Alec A. Schmaier
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Kelsey D. Sack
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
- Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Siyu M. Chen
- Cardiovascular Research Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Victoria Bhambhani
- Cardiovascular Research Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Juweria Quadir
- Cardiovascular Research Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Anjali K. Nath
- Cardiovascular Research Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | - Debby Ngo
- Division of Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Dan H. Barouch
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Center for Virology and Vaccine Research, and
| | - Nathan I. Shapiro
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Robert E. Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Xu G. Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Infectious Diseases Division, Brigham and Women’s Hospital and Harvard Medical School, Massachusetts, Boston USA
| | - MGH COVID-19 Collection and Processing Team
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- The MGH COVID-19 Collection and Processing Team is detailed in Supplemental Acknowledgments
| | | | | | - Samir M. Parikh
- Division of Nephrology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
- Division of Nephrology, University of Texas Southwestern, Dallas, Texas, USA
| |
Collapse
|
38
|
Brouillard P, Witte MH, Erickson RP, Damstra RJ, Becker C, Quéré I, Vikkula M. Primary lymphoedema. Nat Rev Dis Primers 2021; 7:77. [PMID: 34675250 DOI: 10.1038/s41572-021-00309-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/17/2021] [Indexed: 11/09/2022]
Abstract
Lymphoedema is the swelling of one or several parts of the body owing to lymph accumulation in the extracellular space. It is often chronic, worsens if untreated, predisposes to infections and causes an important reduction in quality of life. Primary lymphoedema (PLE) is thought to result from abnormal development and/or functioning of the lymphatic system, can present in isolation or as part of a syndrome, and can be present at birth or develop later in life. Mutations in numerous genes involved in the initial formation of lymphatic vessels (including valves) as well as in the growth and expansion of the lymphatic system and associated pathways have been identified in syndromic and non-syndromic forms of PLE. Thus, the current hypothesis is that most cases of PLE have a genetic origin, although a causative mutation is identified in only about one-third of affected individuals. Diagnosis relies on clinical presentation, imaging of the structure and functionality of the lymphatics, and in genetic analyses. Management aims at reducing or preventing swelling by compression therapy (with manual drainage, exercise and compressive garments) and, in carefully selected cases, by various surgical techniques. Individuals with PLE often have a reduced quality of life owing to the psychosocial and lifelong management burden associated with their chronic condition. Improved understanding of the underlying genetic origins of PLE will translate into more accurate diagnosis and prognosis and personalized treatment.
Collapse
Affiliation(s)
- Pascal Brouillard
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
| | - Marlys H Witte
- Department of Surgery, Neurosurgery, and Pediatrics, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Robert P Erickson
- Department of Pediatrics, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Robert J Damstra
- VASCERN PPL European Reference Centre; Department of Dermatology, Phlebology and Lymphology, Nij Smellinghe Hospital, Drachten, Netherlands
| | | | - Isabelle Quéré
- Department of Vascular Medicine, Centre de référence des Maladies Lymphatiques et Vasculaires Rares, Inserm IDESP, CHU Montpellier, Université de Montpellier, Montpellier, France
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium. .,VASCERN VASCA European Reference Centre; Center for Vascular Anomalies, Division of Plastic Surgery, University Clinics Saint-Luc, University of Louvain, Brussels, Belgium. .,Walloon Excellence in Lifesciences and Biotechnology (WELBIO), de Duve Institute, University of Louvain, Brussels, Belgium.
| |
Collapse
|
39
|
Thomson BR, Liu P, Onay T, Du J, Tompson SW, Misener S, Purohit RR, Young TL, Jin J, Quaggin SE. Cellular crosstalk regulates the aqueous humor outflow pathway and provides new targets for glaucoma therapies. Nat Commun 2021; 12:6072. [PMID: 34663817 PMCID: PMC8523664 DOI: 10.1038/s41467-021-26346-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/30/2021] [Indexed: 11/09/2022] Open
Abstract
Primary congenital glaucoma (PCG) is a severe disease characterized by developmental defects in the trabecular meshwork (TM) and Schlemm's canal (SC), comprising the conventional aqueous humor outflow pathway of the eye. Recently, heterozygous loss of function variants in TEK and ANGPT1 or compound variants in TEK/SVEP1 were identified in children with PCG. Moreover, common variants in ANGPT1and SVEP1 have been identified as risk alleles for primary open angle glaucoma (POAG) in GWAS studies. Here, we show tissue-specific deletion of Angpt1 or Svep1 from the TM causes PCG in mice with severe defects in the adjacent SC. Single-cell transcriptomic analysis of normal and glaucomatous Angpt1 deficient eyes allowed us to identify distinct TM and SC cell populations and discover additional TM-SC signaling pathways. Furthermore, confirming the importance of angiopoietin signaling in SC, delivery of a recombinant ANGPT1-mimetic promotes developmental SC expansion in healthy and Angpt1 deficient eyes, blunts intraocular pressure (IOP) elevation and RGC loss in a mouse model of PCG and lowers IOP in healthy adult mice. Our data highlight the central role of ANGPT1-TEK signaling and TM-SC crosstalk in IOP homeostasis and provide new candidates for SC-targeted glaucoma therapy.
Collapse
Affiliation(s)
- Benjamin R Thomson
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- The Feinberg Cardiovascular and Renal Research Institute, Chicago, IL, USA
| | - Pan Liu
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- The Feinberg Cardiovascular and Renal Research Institute, Chicago, IL, USA
| | - Tuncer Onay
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jing Du
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- The Feinberg Cardiovascular and Renal Research Institute, Chicago, IL, USA
| | - Stuart W Tompson
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Sol Misener
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- The Feinberg Cardiovascular and Renal Research Institute, Chicago, IL, USA
| | - Raj R Purohit
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- The Feinberg Cardiovascular and Renal Research Institute, Chicago, IL, USA
| | - Terri L Young
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Jing Jin
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- The Feinberg Cardiovascular and Renal Research Institute, Chicago, IL, USA
| | - Susan E Quaggin
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- The Feinberg Cardiovascular and Renal Research Institute, Chicago, IL, USA.
| |
Collapse
|
40
|
Donnan MD, Kenig-Kozlovsky Y, Quaggin SE. The lymphatics in kidney health and disease. Nat Rev Nephrol 2021; 17:655-675. [PMID: 34158633 DOI: 10.1038/s41581-021-00438-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
The mammalian vascular system consists of two networks: the blood vascular system and the lymphatic vascular system. Throughout the body, the lymphatic system contributes to homeostatic mechanisms by draining extravasated interstitial fluid and facilitating the trafficking and activation of immune cells. In the kidney, lymphatic vessels exist mainly in the kidney cortex. In the medulla, the ascending vasa recta represent a hybrid lymphatic-like vessel that performs lymphatic-like roles in interstitial fluid reabsorption. Although the lymphatic network is mainly derived from the venous system, evidence supports the existence of lymphatic beds that are of non-venous origin. Following their development and maturation, lymphatic vessel density remains relatively stable; however, these vessels undergo dynamic functional changes to meet tissue demands. Additionally, new lymphatic growth, or lymphangiogenesis, can be induced by pathological conditions such as tissue injury, interstitial fluid overload, hyperglycaemia and inflammation. Lymphangiogenesis is also associated with conditions such as polycystic kidney disease, hypertension, ultrafiltration failure and transplant rejection. Although lymphangiogenesis has protective functions in clearing accumulated fluid and immune cells, the kidney lymphatics may also propagate an inflammatory feedback loop, exacerbating inflammation and fibrosis. Greater understanding of lymphatic biology, including the developmental origin and function of the lymphatics and their response to pathogenic stimuli, may aid the development of new therapeutic agents that target the lymphatic system.
Collapse
Affiliation(s)
- Michael D Donnan
- Feinberg Cardiovascular & Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Susan E Quaggin
- Feinberg Cardiovascular & Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
41
|
Akwii RG, Mikelis CM. Targeting the Angiopoietin/Tie Pathway: Prospects for Treatment of Retinal and Respiratory Disorders. Drugs 2021; 81:1731-1749. [PMID: 34586603 PMCID: PMC8479497 DOI: 10.1007/s40265-021-01605-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2021] [Indexed: 12/21/2022]
Abstract
Anti-angiogenic approaches have significantly advanced the treatment of vascular-related pathologies. The ephemeral outcome and known side effects of the current vascular endothelial growth factor (VEGF)-based anti-angiogenic treatments have intensified research on other growth factors. The angiopoietin/Tie (Ang/Tie) family has an established role in vascular physiology and regulates angiogenesis, vascular permeability, and inflammatory responses. The Ang/Tie family consists of angiopoietins 1-4, their receptors, tie1 and 2 and the vascular endothelial-protein tyrosine phosphatase (VE-PTP). Modulation of Tie2 activation has provided a promising outcome in preclinical models and has led to clinical trials of Ang/Tie-targeting drug candidates for retinal disorders. Although less is known about the role of Ang/Tie in pulmonary disorders, several studies have revealed great potential of the Ang/Tie family members as drug targets for pulmonary vascular disorders as well. In this review, we summarize the functions of the Ang/Tie pathway in retinal and pulmonary vascular physiology and relevant disorders and highlight promising drug candidates targeting this pathway currently being or expected to be under clinical evaluation for retinal and pulmonary vascular disorders.
Collapse
Affiliation(s)
- Racheal Grace Akwii
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1406 S. Coulter St., Amarillo, TX, 79106, USA
| | - Constantinos M Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1406 S. Coulter St., Amarillo, TX, 79106, USA.
| |
Collapse
|
42
|
Dadwal UC, Bhatti FUR, Awosanya OD, Nagaraj RU, Perugini AJ, Sun S, Valuch CR, de Andrade Staut C, Mendenhall SK, Tewari NP, Mostardo SL, Nazzal MK, Battina HL, Zhou D, Kanagasabapathy D, Blosser RJ, Mulcrone PL, Li J, Kacena MA. The effects of bone morphogenetic protein 2 and thrombopoietin treatment on angiogenic properties of endothelial cells derived from the lung and bone marrow of young and aged, male and female mice. FASEB J 2021; 35:e21840. [PMID: 34423881 DOI: 10.1096/fj.202001616rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 06/30/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022]
Abstract
With an aging world population, there is an increased risk of fracture and impaired healing. One contributing factor may be aging-associated decreases in vascular function; thus, enhancing angiogenesis could improve fracture healing. Both bone morphogenetic protein 2 (BMP-2) and thrombopoietin (TPO) have pro-angiogenic effects. The aim of this study was to investigate the effects of treatment with BMP-2 or TPO on the in vitro angiogenic and proliferative potential of endothelial cells (ECs) isolated from lungs (LECs) or bone marrow (BMECs) of young (3-4 months) and old (22-24 months), male and female, C57BL/6J mice. Cell proliferation, vessel-like structure formation, migration, and gene expression were used to evaluate angiogenic properties. In vitro characterization of ECs generally showed impaired vessel-like structure formation and proliferation in old ECs compared to young ECs, but improved migration characteristics in old BMECs. Differential sex-based angiogenic responses were observed, especially with respect to drug treatments and gene expression. Importantly, these studies suggest that NTN1, ROBO2, and SLIT3, along with angiogenic markers (CD31, FLT-1, ANGPT1, and ANGP2) differentially regulate EC proliferation and functional outcomes based on treatment, sex, and age. Furthermore, treatment of old ECs with TPO typically improved vessel-like structure parameters, but impaired migration. Thus, TPO may serve as an alternative treatment to BMP-2 for fracture healing in aging owing to improved angiogenesis and fracture healing, and the lack of side effects associated with BMP-2.
Collapse
Affiliation(s)
- Ushashi C Dadwal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Fazal Ur Rehman Bhatti
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Olatundun D Awosanya
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rohit U Nagaraj
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anthony J Perugini
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Seungyup Sun
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Conner R Valuch
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Caio de Andrade Staut
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Stephen K Mendenhall
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nikhil P Tewari
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sarah L Mostardo
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Murad K Nazzal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hanisha L Battina
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Donghui Zhou
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Deepa Kanagasabapathy
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rachel J Blosser
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Patrick L Mulcrone
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jiliang Li
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
43
|
Zhang Y, Kontos CD, Annex BH, Popel AS. A systems biology model of junctional localization and downstream signaling of the Ang-Tie signaling pathway. NPJ Syst Biol Appl 2021; 7:34. [PMID: 34417472 PMCID: PMC8379279 DOI: 10.1038/s41540-021-00194-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 08/04/2021] [Indexed: 01/20/2023] Open
Abstract
The Ang–Tie signaling pathway is an important vascular signaling pathway regulating vascular growth and stability. Dysregulation in the pathway is associated with vascular dysfunction and numerous diseases that involve abnormal vascular permeability and endothelial cell inflammation. The understanding of the molecular mechanisms of the Ang–Tie pathway has been limited due to the complex reaction network formed by the ligands, receptors, and molecular regulatory mechanisms. In this study, we developed a mechanistic computational model of the Ang–Tie signaling pathway validated against experimental data. The model captures and reproduces the experimentally observed junctional localization and downstream signaling of the Ang–Tie signaling axis, as well as the time-dependent role of receptor Tie1. The model predicts that Tie1 modulates Tie2’s response to the context-dependent agonist Ang2 by junctional interactions. Furthermore, modulation of Tie1’s junctional localization, inhibition of Tie2 extracellular domain cleavage, and inhibition of VE-PTP are identified as potential molecular strategies for potentiating Ang2’s agonistic activity and rescuing Tie2 signaling in inflammatory endothelial cells.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Christopher D Kontos
- Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, NC, USA
| | - Brian H Annex
- Department of Medicine and the Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
44
|
New mechanism-based approaches to treating and evaluating the vasculopathy of scleroderma. Curr Opin Rheumatol 2021; 33:471-479. [PMID: 34402454 DOI: 10.1097/bor.0000000000000830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE OF REVIEW Utilizing recent insight into the vasculopathy of scleroderma (SSc), the review will highlight new opportunities for evaluating and treating the disease by promoting stabilization and protection of the microvasculature. RECENT FINDINGS Endothelial junctional signaling initiated by vascular endothelial-cadherin (VE-cadherin) and Tie2 receptors, which are fundamental to promoting vascular health and stability, are disrupted in SSc. This would be expected to not only diminish their protective activity, but also increase pathological processes that are normally restrained by these signaling mediators, resulting in pathological changes in vascular function and structure. Indeed, key features of SSc vasculopathy, from the earliest signs of edema and puffy fingers to pathological disruption of hemodynamics, nutritional blood flow, capillary structure and angiogenesis are all consistent with this altered endothelial signaling. It also likely contributes to further progression of the disease including tissue fibrosis, and organ and tissue injury. SUMMARY Restoring protective endothelial junctional signaling should combat the vasculopathy of SSc and prevent further deterioration in vascular and organ function. Indeed, this type of targeted approach has achieved remarkable results in preclinical models for other diseases. Furthermore, tracking this endothelial junctional signaling, for example by assessing vascular permeability, should facilitate insight into disease progression and its response to therapy.
Collapse
|
45
|
Idowu TO, Etzrodt V, Pape T, Heineke J, Stahl K, Haller H, David S. Flow-dependent regulation of endothelial Tie2 by GATA3 in vivo. Intensive Care Med Exp 2021; 9:38. [PMID: 34337671 PMCID: PMC8326239 DOI: 10.1186/s40635-021-00402-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/24/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Reduced endothelial Tie2 expression occurs in diverse experimental models of critical illness, and experimental Tie2 suppression is sufficient to increase spontaneous vascular permeability. Looking for a common denominator among different critical illnesses that could drive the same Tie2 suppressive (thereby leak inducing) phenotype, we identified "circulatory shock" as a shared feature and postulated a flow-dependency of Tie2 gene expression in a GATA3 dependent manner. Here, we analyzed if this mechanism of flow-regulation of gene expression exists in vivo in the absence of inflammation. RESULTS To experimentally mimic a shock-like situation, we developed a murine model of clonidine-induced hypotension by targeting a reduced mean arterial pressure (MAP) of approximately 50% over 4 h. We found that hypotension-induced reduction of flow in the absence of confounding disease factors (i.e., inflammation, injury, among others) is sufficient to suppress GATA3 and Tie2 transcription. Conditional endothelial-specific GATA3 knockdown (B6-Gata3tm1-Jfz VE-Cadherin(PAC)-cerERT2) led to baseline Tie2 suppression inducing spontaneous vascular leak. On the contrary, the transient overexpression of GATA3 in the pulmonary endothelium (jet-PEI plasmid delivery platform) was sufficient to increase Tie2 at baseline and completely block its hypotension-induced acute drop. On the functional level, the Tie2 protection by GATA3 overexpression abrogated the development of pulmonary capillary leakage. CONCLUSIONS The data suggest that the GATA3-Tie2 signaling pathway might play a pivotal role in controlling vascular barrier function and that it is affected in diverse critical illnesses with shock as a consequence of a flow-regulated gene response. Targeting this novel mechanism might offer therapeutic opportunities to treat vascular leakage of diverse etiologies.
Collapse
Affiliation(s)
- Temitayo O Idowu
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Valerie Etzrodt
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Thorben Pape
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Joerg Heineke
- Department of Cardiovascular Physiology, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg, Mannheim, Germany
| | - Klaus Stahl
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Hermann Haller
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Sascha David
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany.
- Institute of Intensive Care Medicine, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland.
| |
Collapse
|
46
|
Stritt S, Koltowska K, Mäkinen T. Homeostatic maintenance of the lymphatic vasculature. Trends Mol Med 2021; 27:955-970. [PMID: 34332911 DOI: 10.1016/j.molmed.2021.07.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 12/24/2022]
Abstract
The lymphatic vasculature is emerging as a multifaceted regulator of tissue homeostasis and regeneration. Lymphatic vessels drain fluid, macromolecules, and immune cells from peripheral tissues to lymph nodes (LNs) and the systemic circulation. Their recently uncovered functions extend beyond drainage and include direct modulation of adaptive immunity and paracrine regulation of organ growth. The developmental mechanisms controlling lymphatic vessel growth have been described with increasing precision. It is less clear how the essential functional features of lymphatic vessels are established and maintained. We discuss the mechanisms that maintain lymphatic vessel integrity in adult tissues and control vessel repair and regeneration. This knowledge is crucial for understanding the pathological vessel changes that contribute to disease, and provides an opportunity for therapy development.
Collapse
Affiliation(s)
- Simon Stritt
- Uppsala University, Department of Immunology, Genetics, and Pathology, 751 85 Uppsala, Sweden
| | - Katarzyna Koltowska
- Uppsala University, Department of Immunology, Genetics, and Pathology, 751 85 Uppsala, Sweden
| | - Taija Mäkinen
- Uppsala University, Department of Immunology, Genetics, and Pathology, 751 85 Uppsala, Sweden.
| |
Collapse
|
47
|
Procter TV, Williams A, Montagne A. Interplay between brain pericytes and endothelial cells in dementia. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1917-1931. [PMID: 34329605 DOI: 10.1016/j.ajpath.2021.07.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/23/2021] [Accepted: 07/02/2021] [Indexed: 02/06/2023]
Abstract
Dementia is becoming an increasingly important disease due to an aging population and limited treatment options. Cerebral small vessel disease (cSVD) and Alzheimer's disease (AD) are the two most common causes of dementia with vascular dysfunction being a large component of both their pathophysiologies. The neurogliovascular unit (NVU), and in particular the blood-brain barrier (BBB) are required for maintaining brain homeostasis. A complex interaction exists between the endothelial cells, which line the blood vessels and pericytes, which surround them in the NVU. Disruption of the BBB occurs in dementia precipitating cognitive decline. In this review, we highlight how dysfunction of the endothelial-pericyte crosstalk contributes to dementia, focusing on cSVD and AD. This review examines how loss of pericyte coverage occurs and subsequent downstream changes. Furthermore, it examines how disruption to intimate crosstalk between endothelial cells and pericytes leads to alterations in cerebral blood flow, transcription, neuroinflammation and transcytosis contributing to breakdown of the BBB. This review illustrates how cumulation of loss of endothelial-pericyte crosstalk is a major driving force in dementia pathology.
Collapse
Affiliation(s)
- Tessa V Procter
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Anna Williams
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK; UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Axel Montagne
- UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
48
|
Li C, Li L, Sun M, Sun J, Shao L, Xu M, Hou Y, Peng J, Wang L, Hou M. Predictive Value of High ICAM-1 Level for Poor Treatment Response to Low-Dose Decitabine in Adult Corticosteroid Resistant ITP Patients. Front Immunol 2021; 12:689663. [PMID: 34326842 PMCID: PMC8313967 DOI: 10.3389/fimmu.2021.689663] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/15/2021] [Indexed: 11/13/2022] Open
Abstract
Primary immune thrombocytopenia (ITP) is an autoimmune hemorrhagic disease. Endothelial cell activation/injury has been found in some autoimmune diseases including SLE, systemic sclerosis, and rheumatoid arthritis, but its role in ITP pathogenesis remains unclear. This study attempted to elucidate the correlation between endothelial dysfunction and disease severity of ITP and find related markers to predict response to low-dose decitabine treatment. Compared with healthy volunteers, higher plasma levels of soluble intercellular adhesion molecule-1 (ICAM-1), vascular endothelial growth factor (VEGF), and Angiopoietin-2 were found in adult corticosteroid resistant ITP patients. Notably, ICAM-1 levels were negatively correlated with the platelet count, and positively associated with the bleeding score. Recently, we have reported the efficacy and safety of low-dose decitabine in adult patients with ITP who failed for the first line therapies. Here, we evaluated the correlation of plasma ICAM-1 level with the efficacy of low-dose decitabine therapy for corticosteroid resistant ITP. A total of 29 adult corticosteroid resistant ITP patients who received consecutive treatments of low-dose decitabine were enrolled in this study. Fourteen patients showed response (nine showed complete response and five showed partial response). The levels of ICAM-1 before and after treatment were significantly higher in the non-responsive ITP patients than in the responsive patients. As shown in the multivariable logistic regression model, the odds of developing no-response to low-dose decitabine increased by 36.8% for per 5 ng/ml increase in plasma ICAM-1 level [odds ratio (OR) 1.368, 95% confidence interval (CI): 1.060 to 1.764]. In summary, this was the first study to elucidate the relationship between endothelial dysfunction and corticosteroid resistant ITP and identify the potential predictive value of ICAM-1 level for response to low-dose decitabine.
Collapse
Affiliation(s)
- Chaoyang Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lizhen Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Meng Sun
- Jinan Vocational College of Nursing, Jinan, China
| | - Jianzhi Sun
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Linlin Shao
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Miao Xu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yu Hou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Leading Research Group of Scientific Innovation, Department of Science and Technology of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lin Wang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Leading Research Group of Scientific Innovation, Department of Science and Technology of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
49
|
Leppänen VM, Brouillard P, Korhonen EA, Sipilä T, Jha SK, Revencu N, Labarque V, Fastré E, Schlögel M, Ravoet M, Singer A, Luzzatto C, Angelone D, Crichiutti G, D'Elia A, Kuurne J, Elamaa H, Koh GY, Saharinen P, Vikkula M, Alitalo K. Characterization of ANGPT2 mutations associated with primary lymphedema. Sci Transl Med 2021; 12:12/560/eaax8013. [PMID: 32908006 DOI: 10.1126/scitranslmed.aax8013] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 12/31/2019] [Accepted: 08/14/2020] [Indexed: 12/11/2022]
Abstract
Primary lymphedema is caused by developmental and functional defects of the lymphatic vascular system that result in accumulation of protein-rich fluid in tissues, resulting in edema. The 28 currently known genes causing primary lymphedema can explain <30% of cases. Angiopoietin 1 (ANGPT1) and ANGPT2 function via the TIE1-TIE2 (tyrosine kinase with immunoglobulin-like and epidermal growth factor-like domains 1 and 2) receptor complex and α5β1 integrin to form an endothelial cell signaling pathway that is critical for blood and lymphatic vessel formation and remodeling during embryonic development, as well as for homeostasis of the mature vasculature. By screening a cohort of 543 individuals affected by primary lymphedema, we identified one heterozygous de novo ANGPT2 whole-gene deletion and four heterozygous ANGPT2 missense mutations. Functional analyses revealed three missense mutations that resulted in decreased ANGPT2 secretion and inhibited the secretion of wild-type (WT)-ANGPT2, suggesting that they have a dominant-negative effect on ANGPT2 signaling. WT-ANGPT2 and soluble mutants T299M and N304K activated TIE1 and TIE2 in an autocrine assay in human lymphatic endothelial cells. Molecular modeling and biophysical studies showed that amino-terminally truncated ANGPT subunits formed asymmetrical homodimers that bound TIE2 in a 2:1 ratio. The T299M mutant, located in the dimerization interphase, showed reduced integrin α5 binding, and its expression in mouse skin promoted hyperplasia and dilation of cutaneous lymphatic vessels. These results demonstrate that primary lymphedema can be associated with ANGPT2 mutations and provide insights into TIE1 and TIE2 activation mechanisms.
Collapse
Affiliation(s)
- Veli-Matti Leppänen
- Wihuri Research Institute, Biomedicum Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland. .,Translational Cancer Medicine Program, Faculty of Medicine and Helsinki Institute of Life Science, 00014 University of Helsinki, Finland
| | - Pascal Brouillard
- Human Molecular Genetics, de Duve Institute, University of Louvain, 1200 Brussels, Belgium.
| | - Emilia A Korhonen
- Wihuri Research Institute, Biomedicum Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Tuomas Sipilä
- Wihuri Research Institute, Biomedicum Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Sawan Kumar Jha
- Translational Cancer Medicine Program, Faculty of Medicine and Helsinki Institute of Life Science, 00014 University of Helsinki, Finland
| | - Nicole Revencu
- Center for Human Genetics, Cliniques universitaires Saint-Luc, University of Louvain, 1200 Brussels, Belgium
| | - Veerle Labarque
- Centre for Molecular and Vascular Biology, University of Leuven, 3000 Leuven, Belgium
| | - Elodie Fastré
- Human Molecular Genetics, de Duve Institute, University of Louvain, 1200 Brussels, Belgium
| | - Matthieu Schlögel
- Human Molecular Genetics, de Duve Institute, University of Louvain, 1200 Brussels, Belgium
| | - Marie Ravoet
- Center for Human Genetics, Cliniques universitaires Saint-Luc, University of Louvain, 1200 Brussels, Belgium
| | | | | | | | - Giovanni Crichiutti
- Azienda Ospedaliero-Universitaria Santa Maria della Misericordia, 33100 Udine, Italy
| | - Angela D'Elia
- Azienda Ospedaliero-Universitaria Santa Maria della Misericordia, 33100 Udine, Italy
| | - Jaakko Kuurne
- Wihuri Research Institute, Biomedicum Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Harri Elamaa
- Oulu Centre for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Gou Young Koh
- Center for Vascular Research, Institute of Basic Science (IBS), 34141 Daejeon, Republic of Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 34141 Daejeon, Republic of Korea
| | - Pipsa Saharinen
- Wihuri Research Institute, Biomedicum Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland.,Translational Cancer Medicine Program, Faculty of Medicine and Helsinki Institute of Life Science, 00014 University of Helsinki, Finland
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of Louvain, 1200 Brussels, Belgium. .,Walloon Excellence in Lifesciences and Biotechnology (WELBIO), University of Louvain, 1200 Brussels, Belgium
| | - Kari Alitalo
- Wihuri Research Institute, Biomedicum Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland. .,Translational Cancer Medicine Program, Faculty of Medicine and Helsinki Institute of Life Science, 00014 University of Helsinki, Finland
| |
Collapse
|
50
|
Siragusa M, Oliveira Justo AF, Malacarne PF, Strano A, Buch A, Withers B, Peters KG, Fleming I. VE-PTP inhibition elicits eNOS phosphorylation to blunt endothelial dysfunction and hypertension in diabetes. Cardiovasc Res 2021; 117:1546-1556. [PMID: 32653904 DOI: 10.1093/cvr/cvaa213] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/18/2020] [Accepted: 07/06/2020] [Indexed: 12/11/2022] Open
Abstract
AIMS Receptor-type vascular endothelial protein tyrosine phosphatase (VE-PTP) dephosphorylates Tie-2 as well as CD31, VE-cadherin, and vascular endothelial growth factor receptor 2 (VEGFR2). The latter form a signal transduction complex that mediates the endothelial cell response to shear stress, including the activation of the endothelial nitric oxide (NO) synthase (eNOS). As VE-PTP expression is increased in diabetes, we investigated the consequences of VE-PTP inhibition (using AKB-9778) on blood pressure in diabetic patients and the role of VE-PTP in the regulation of eNOS activity and vascular reactivity. METHODS AND RESULTS In diabetic patients AKB-9778 significantly lowered systolic and diastolic blood pressure. This could be linked to elevated NO production, as AKB increased NO generation by cultured endothelial cells and elicited the NOS inhibitor-sensitive relaxation of endothelium-intact rings of mouse aorta. At the molecular level, VE-PTP inhibition increased the phosphorylation of eNOS on Tyr81 and Ser1177 (human sequence). The PIEZO1 activator Yoda1, which was used to mimic the response to shear stress, also increased eNOS Tyr81 phosphorylation, an effect that was enhanced by VE-PTP inhibition. Two kinases, i.e. abelson-tyrosine protein kinase (ABL)1 and Src were identified as eNOS Tyr81 kinases as their inhibition and down-regulation significantly reduced the basal and Yoda1-induced tyrosine phosphorylation and activity of eNOS. VE-PTP, on the other hand, formed a complex with eNOS in endothelial cells and directly dephosphorylated eNOS Tyr81 in vitro. Finally, phosphorylation of eNOS on Tyr80 (murine sequence) was found to be reduced in diabetic mice and diabetes-induced endothelial dysfunction (isolated aortic rings) was blunted by VE-PTP inhibition. CONCLUSIONS VE-PTP inhibition enhances eNOS activity to improve endothelial function and decrease blood pressure indirectly, through the activation of Tie-2 and the CD31/VE-cadherin/VEGFR2 complex, and directly by dephosphorylating eNOS Tyr81. VE-PTP inhibition, therefore, represents an attractive novel therapeutic option for diabetes-induced endothelial dysfunction and hypertension.
Collapse
MESH Headings
- Aniline Compounds/therapeutic use
- Animals
- Antihypertensive Agents/therapeutic use
- Blood Pressure/drug effects
- Cells, Cultured
- Diabetes Mellitus/drug therapy
- Diabetes Mellitus/enzymology
- Diabetes Mellitus/genetics
- Diabetes Mellitus/physiopathology
- Disease Models, Animal
- Endothelial Cells/drug effects
- Endothelial Cells/enzymology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/physiopathology
- Enzyme Inhibitors/therapeutic use
- Humans
- Hypertension/drug therapy
- Hypertension/enzymology
- Hypertension/genetics
- Hypertension/physiopathology
- Mice, Inbred C57BL
- Mice, Transgenic
- Nitric Oxide/metabolism
- Nitric Oxide Synthase Type III/genetics
- Nitric Oxide Synthase Type III/metabolism
- Phosphorylation
- Receptor-Like Protein Tyrosine Phosphatases, Class 3/antagonists & inhibitors
- Receptor-Like Protein Tyrosine Phosphatases, Class 3/genetics
- Receptor-Like Protein Tyrosine Phosphatases, Class 3/metabolism
- Signal Transduction
- Sulfonic Acids/therapeutic use
- Treatment Outcome
- United States
- Mice
Collapse
Affiliation(s)
- Mauro Siragusa
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
- German Center for Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany
| | - Alberto Fernando Oliveira Justo
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | | | - Anna Strano
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | - Akshay Buch
- Aerpio Pharmaceuticals, Inc., Cincinnati, OH, USA
| | | | | | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
- German Center for Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany
| |
Collapse
|