1
|
Hart R, Moran NA, Ochman H. Genomic divergence across the tree of life. Proc Natl Acad Sci U S A 2025; 122:e2319389122. [PMID: 40014554 PMCID: PMC11912424 DOI: 10.1073/pnas.2319389122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025] Open
Abstract
Nucleotide sequence data are being harnessed to identify species, even in cases in which organisms themselves are neither in hand nor witnessed. But how genome-wide sequence divergence maps to species status is far from clear. While gene sequence divergence is commonly used to delineate bacterial species, its correspondence to established species boundaries has yet to be explored across eukaryotic taxa. Because the processes underlying gene flow differ fundamentally between prokaryotes and eukaryotes, these domains are likely to differ in the relationship between reproductive isolation and genome-wide sequence divergence. In prokaryotes, homologous recombination, the basis of gene flow, depends directly on the degree of genomic sequence divergence, whereas in sexually reproducing eukaryotes, reproductive incompatibility can stem from changes in very few genes. Guided by measures of genome-wide sequence divergence in bacteria, we gauge how genomic criteria correspond to species boundaries in eukaryotes. In recognized species of eukaryotes, levels of gene sequence divergence within species are typically very small, averaging <1% across protein-coding regions in most animals, plants, and fungi. There are even instances in which divergence between sister species is the same or less than that among conspecifics. In contrast, bacterial species, defined as populations exchanging homologous genes, show levels of divergence both within and between species that are considerably higher. Although no single threshold delineates species, eukaryotic populations with >1% genome-wide sequence divergence are likely separate species, whereas prokaryotic populations with 1% divergence are still able to recombine and thus can be considered the same species.
Collapse
Affiliation(s)
- Rowan Hart
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX78712
- Department of Ecology and Evolution, University of Chicago, Chicago, IL60637
| | - Nancy A. Moran
- Department of Integrative Biology, University of Texas at Austin, Austin, TX78712
| | - Howard Ochman
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX78712
| |
Collapse
|
2
|
Ndovie W, Havránek J, Leconte J, Koszucki J, Chindelevitch L, Adriaenssens EM, Mostowy RJ. Exploration of the genetic landscape of bacterial dsDNA viruses reveals an ANI gap amid extensive mosaicism. mSystems 2025; 10:e0166124. [PMID: 39878503 PMCID: PMC11834439 DOI: 10.1128/msystems.01661-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/06/2025] [Indexed: 01/31/2025] Open
Abstract
Average nucleotide identity (ANI) is a widely used metric to estimate genetic relatedness, especially in microbial species delineation. While ANI calculation has been well optimized for bacteria and closely related viral genomes, accurate estimation of ANI below 80%, particularly in large reference data sets, has been challenging due to a lack of accurate and scalable methods. To bridge this gap, we introduce MANIAC, an efficient computational pipeline optimized for estimating ANI and alignment fraction (AF) in viral genomes with divergence around ANI of 70%. Using a rigorous simulation framework, we demonstrate MANIAC's accuracy and scalability compared to existing approaches, even to data sets of hundreds of thousands of viral genomes. Applying MANIAC to a curated data set of complete bacterial dsDNA viruses revealed a multimodal ANI distribution, with a distinct gap around 80%, akin to the bacterial ANI gap (~90%) but shifted, likely due to viral-specific evolutionary processes such as recombination dynamics and mosaicism. We then evaluated ANI and AF as predictors of genus-level taxonomy using a logistic regression model. We found that this model has strong predictive power (PR-AUC = 0.981), but that it works much better for virulent (PR-AUC = 0.997) than temperate (PR-AUC = 0.847) bacterial viruses. This highlights the complexity of taxonomic classification in temperate phages, known for their extensive mosaicism, and cautions against over-reliance on ANI in such cases. MANIAC can be accessed at https://github.com/bioinf-mcb/MANIAC.IMPORTANCEWe introduce a novel computational pipeline called MANIAC, designed to accurately assess average nucleotide identity (ANI) and alignment fraction (AF) between diverse viral genomes, scalable to data sets of over 100k genomes. Using computer simulations and real data analyses, we show that MANIAC could accurately estimate genetic relatedness between pairs of viral genomes of around 60%-70% ANI. We applied MANIAC to investigate the question of ANI discontinuity in bacterial dsDNA viruses, finding evidence for an ANI gap, akin to the one seen in bacteria but around ANI of 80%. We then assessed the ability of ANI and AF to predict taxonomic genus boundaries, finding its strong predictive power in virulent, but not in temperate phages. Our results suggest that bacterial dsDNA viruses may exhibit an ANI threshold (on average around 80%) above which recombination helps maintain population cohesiveness, as previously argued in bacteria.
Collapse
Affiliation(s)
- Wanangwa Ndovie
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Jan Havránek
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Jade Leconte
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Janusz Koszucki
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Leonid Chindelevitch
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | | | - Rafal J. Mostowy
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
3
|
Suzuki Y, Yaeshiro M, Uehara D, Ishihara R. Shared clusters between phylogenetic trees for genomic segments of Rotavirus A with distinct genotype constellations. GENE REPORTS 2024; 36:101956. [DOI: 10.1016/j.genrep.2024.101956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Barth ZK, Hicklin I, Thézé J, Takatsuka J, Nakai M, Herniou EA, Brown AM, Aylward FO. Genomic analysis of hyperparasitic viruses associated with entomopoxviruses. Virus Evol 2024; 10:veae051. [PMID: 39100687 PMCID: PMC11296320 DOI: 10.1093/ve/veae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/17/2024] [Accepted: 07/11/2024] [Indexed: 08/06/2024] Open
Abstract
Polinton-like viruses (PLVs) are a diverse group of small integrative dsDNA viruses that infect diverse eukaryotic hosts. Many PLVs are hypothesized to parasitize viruses in the phylum Nucleocytoviricota for their own propagation and spread. Here, we analyze the genomes of novel PLVs associated with the occlusion bodies of entomopoxvirus (EPV) infections of two separate lepidopteran hosts. The presence of these elements within EPV occlusion bodies suggests that they are the first known hyperparasites of poxviruses. We find that these PLVs belong to two distinct lineages that are highly diverged from known PLVs. These PLVs possess mosaic genomes, and some essential genes share homology with mobile genes within EPVs. Based on this homology and observed PLV mosaicism, we propose a mechanism to explain the turnover of PLV replication and integration genes.
Collapse
Affiliation(s)
- Zachary K Barth
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, USA
| | - Ian Hicklin
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Julien Thézé
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, Saint-Genès-Champanelle, France
| | - Jun Takatsuka
- Forestry and Forest Products Research Institute, Matsunosato, Tsukuba, Ibaraki 305-8687, Japan
| | - Madoka Nakai
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Saiwai, Fuchu, Tokyo 183-8509, Japan
| | - Elisabeth A Herniou
- Institut de Recherche sur la Biologie de l’Insecte, UMR7261 CNRS-Université de Tours, 20 Avenue Monge, Parc de Grandmont, Tours 37200, France
| | - Anne M Brown
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, 1981 Kraft Dr, Blacksburg, VA 24061, USA
- Research and Informatics, University Libraries, Virginia Tech, Blacksburg, VA 24061, USA
| | - Frank O Aylward
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, USA
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, 1981 Kraft Dr, Blacksburg, VA 24061, USA
| |
Collapse
|
5
|
Caetano-Anollés G. Are Viruses Taxonomic Units? A Protein Domain and Loop-Centric Phylogenomic Assessment. Viruses 2024; 16:1061. [PMID: 39066224 PMCID: PMC11281659 DOI: 10.3390/v16071061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Virus taxonomy uses a Linnaean-like subsumption hierarchy to classify viruses into taxonomic units at species and higher rank levels. Virus species are considered monophyletic groups of mobile genetic elements (MGEs) often delimited by the phylogenetic analysis of aligned genomic or metagenomic sequences. Taxonomic units are assumed to be independent organizational, functional and evolutionary units that follow a 'natural history' rationale. Here, I use phylogenomic and other arguments to show that viruses are not self-standing genetically-driven systems acting as evolutionary units. Instead, they are crucial components of holobionts, which are units of biological organization that dynamically integrate the genetics, epigenetic, physiological and functional properties of their co-evolving members. Remarkably, phylogenomic analyses show that viruses share protein domains and loops with cells throughout history via massive processes of reticulate evolution, helping spread evolutionary innovations across a wider taxonomic spectrum. Thus, viruses are not merely MGEs or microbes. Instead, their genomes and proteomes conduct cellularly integrated processes akin to those cataloged by the GO Consortium. This prompts the generation of compositional hierarchies that replace the 'is-a-kind-of' by a 'is-a-part-of' logic to better describe the mereology of integrated cellular and viral makeup. My analysis demands a new paradigm that integrates virus taxonomy into a modern evolutionarily centered taxonomy of organisms.
Collapse
Affiliation(s)
- Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, C. R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
6
|
Suzuki Y, Kimura H, Katayama K. Classification of sapoviruses based on comparison of phylogenetic trees for structural and non-structural proteins. GENE REPORTS 2024; 34:101875. [DOI: 10.1016/j.genrep.2023.101875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
7
|
Lou YC, Chen L, Borges AL, West-Roberts J, Firek BA, Morowitz MJ, Banfield JF. Infant gut DNA bacteriophage strain persistence during the first 3 years of life. Cell Host Microbe 2024; 32:35-47.e6. [PMID: 38096814 PMCID: PMC11156429 DOI: 10.1016/j.chom.2023.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/27/2023] [Accepted: 11/16/2023] [Indexed: 01/13/2024]
Abstract
Bacteriophages are key components of gut microbiomes, yet the phage colonization process in the infant gut remains uncertain. Here, we establish a large phage sequence database and use strain-resolved analyses to investigate DNA phage succession in infants throughout the first 3 years of life. Analysis of 819 fecal metagenomes collected from 28 full-term and 24 preterm infants and their mothers revealed that early-life phageome richness increases over time and reaches adult-like complexity by age 3. Approximately 9% of early phage colonizers, which are mostly maternally transmitted and infect Bacteroides, persist for 3 years and are more prevalent in full-term than in preterm infants. Although rare, phages with stop codon reassignment are more likely to persist than non-recoded phages and generally display an increase in in-frame reassigned stop codons over 3 years. Overall, maternal seeding, stop codon reassignment, host CRISPR-Cas locus prevalence, and diverse phage populations contribute to stable viral colonization.
Collapse
Affiliation(s)
- Yue Clare Lou
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - LinXing Chen
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94709, USA
| | - Adair L Borges
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jacob West-Roberts
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Brian A Firek
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Michael J Morowitz
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
8
|
Labutin A, Heckel G. Genome-wide support for incipient Tula hantavirus species within a single rodent host lineage. Virus Evol 2024; 10:veae002. [PMID: 38361825 PMCID: PMC10868551 DOI: 10.1093/ve/veae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 11/08/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024] Open
Abstract
Evolutionary divergence of viruses is most commonly driven by co-divergence with their hosts or through isolation of transmission after host shifts. It remains mostly unknown, however, whether divergent phylogenetic clades within named virus species represent functionally equivalent byproducts of high evolutionary rates or rather incipient virus species. Here, we test these alternatives with genomic data from two widespread phylogenetic clades in Tula orthohantavirus (TULV) within a single evolutionary lineage of their natural rodent host, the common vole Microtus arvalis. We examined voles from forty-two locations in the contact region between clades for TULV infection by reverse transcription (RT)-PCR. Sequencing yielded twenty-three TULV Central North and twenty-one TULV Central South genomes, which differed by 14.9-18.5 per cent at the nucleotide and 2.2-3.7 per cent at the amino acid (AA) level without evidence of recombination or reassortment between clades. Geographic cline analyses demonstrated an abrupt (<1 km wide) transition between the parapatric TULV clades in continuous landscape. This transition was located within the Central mitochondrial lineage of M. arvalis, and genomic single nucleotide polymorphisms showed gradual mixing of host populations across it. Genomic differentiation of hosts was much weaker across the TULV Central North to South transition than across the nearby hybrid zone between two evolutionary lineages in the host. We suggest that these parapatric TULV clades represent functionally distinct, incipient species, which are likely differently affected by genetic polymorphisms in the host. This highlights the potential of natural viral contact zones as systems for investigating the genetic and evolutionary factors enabling or restricting the transmission of RNA viruses.
Collapse
Affiliation(s)
- Anton Labutin
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, Bern 3012, Switzerland
| | - Gerald Heckel
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, Bern 3012, Switzerland
| |
Collapse
|
9
|
Turner D, Adriaenssens EM, Lehman SM, Moraru C, Kropinski AM. Bacteriophage Taxonomy: A Continually Evolving Discipline. Methods Mol Biol 2024; 2734:27-45. [PMID: 38066361 DOI: 10.1007/978-1-0716-3523-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
While taxonomy is an often underappreciated branch of science, it serves very important roles. Bacteriophage taxonomy has evolved from a discipline based mainly on morphology, characterized by the work of David Bradley and Hans-Wolfgang Ackermann, to the sequence-based approach that is taken today. The Bacterial Viruses Subcommittee of the International Committee on Taxonomy of Viruses (ICTV) takes a holistic approach to classifying prokaryote viruses by measuring overall DNA and protein similarity and phylogeny before making decisions about the taxonomic position of a new virus. The huge number of complete genomes being deposited with the National Center for Biotechnology Information (NCBI) and other public databases has resulted in a reassessment of the taxonomy of many viruses, and the future will see the introduction of new viral families and higher orders.
Collapse
Affiliation(s)
- Dann Turner
- School of Applied Sciences, College of Health, Science and Society, University of the West of England, Bristol, UK
| | | | - Susan M Lehman
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Cristina Moraru
- Department of The Biology of Geological Processes, Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Andrew M Kropinski
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
10
|
Hikida H, Okazaki Y, Zhang R, Nguyen TT, Ogata H. A rapid genome-wide analysis of isolated giant viruses using MinION sequencing. Environ Microbiol 2023; 25:2621-2635. [PMID: 37543720 DOI: 10.1111/1462-2920.16476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/20/2023] [Indexed: 08/07/2023]
Abstract
Following the discovery of Acanthamoeba polyphaga mimivirus, diverse giant viruses have been isolated. However, only a small fraction of these isolates have been completely sequenced, limiting our understanding of the genomic diversity of giant viruses. MinION is a portable and low-cost long-read sequencer that can be readily used in a laboratory. Although MinION provides highly error-prone reads that require correction through additional short-read sequencing, recent studies assembled high-quality microbial genomes only using MinION sequencing. Here, we evaluated the accuracy of MinION-only genome assemblies for giant viruses by re-sequencing a prototype marseillevirus. Assembled genomes presented over 99.98% identity to the reference genome with a few gaps, demonstrating a high accuracy of the MinION-only assembly. As a proof of concept, we de novo assembled five newly isolated viruses. Average nucleotide identities to their closest known relatives suggest that the isolates represent new species of marseillevirus, pithovirus and mimivirus. The assembly of subsampled reads demonstrated that their taxonomy and genomic composition could be analysed at the 50× sequencing coverage. We also identified a pithovirus gene whose homologues were detected only in metagenome-derived relatives. Collectively, we propose that MinION-only assembly is an effective approach to rapidly perform a genome-wide analysis of isolated giant viruses.
Collapse
Affiliation(s)
- Hiroyuki Hikida
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto, Japan
| | - Yusuke Okazaki
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto, Japan
| | - Ruixuan Zhang
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto, Japan
| | - Thi Tuyen Nguyen
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto, Japan
| | - Hiroyuki Ogata
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto, Japan
| |
Collapse
|
11
|
Lequime S. The sociality continuum of viruses: a commentary on Leeks et al. 2023. J Evol Biol 2023; 36:1568-1570. [PMID: 37975506 DOI: 10.1111/jeb.14247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Affiliation(s)
- Sebastian Lequime
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
12
|
Anthony MA, Bender SF, van der Heijden MGA. Enumerating soil biodiversity. Proc Natl Acad Sci U S A 2023; 120:e2304663120. [PMID: 37549278 PMCID: PMC10437432 DOI: 10.1073/pnas.2304663120] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/02/2023] [Indexed: 08/09/2023] Open
Abstract
Soil is an immense habitat for diverse organisms across the tree of life, but just how many organisms live in soil is surprisingly unknown. Previous efforts to enumerate soil biodiversity consider only certain types of organisms (e.g., animals) or report values for diverse groups without partitioning species that live in soil versus other habitats. Here, we reviewed the biodiversity literature to show that soil is likely home to 59 ± 15% of the species on Earth. We therefore estimate an approximately two times greater soil biodiversity than previous estimates, and we include representatives from the simplest (microbial) to most complex (mammals) organisms. Enchytraeidae have the greatest percentage of species in soil (98.6%), followed by fungi (90%), Plantae (85.5%), and Isoptera (84.2%). Our results demonstrate that soil is the most biodiverse singular habitat. By using this estimate of soil biodiversity, we can more accurately and quantitatively advocate for soil organismal conservation and restoration as a central goal of the Anthropocene.
Collapse
Affiliation(s)
- Mark A. Anthony
- Plant-Soil Interactions Unit, Research Division Agroecology and Environment, Agroscope, Zürich8046, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research, Forest Dynamics Research Unit, Birmensdorf8903, Switzerland
| | - S. Franz Bender
- Plant-Soil Interactions Unit, Research Division Agroecology and Environment, Agroscope, Zürich8046, Switzerland
- Department of Plant and Microbial Biology, University of Zürich, Zürich8008, Switzerland
| | - Marcel G. A. van der Heijden
- Plant-Soil Interactions Unit, Research Division Agroecology and Environment, Agroscope, Zürich8046, Switzerland
- Department of Plant and Microbial Biology, University of Zürich, Zürich8008, Switzerland
| |
Collapse
|
13
|
Doud MB, Gupta A, Li V, Medina SJ, De La Fuente CA, Meyer JR. Competition-driven eco-evolutionary feedback reshapes bacteriophage lambda's fitness landscape and enables speciation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.11.553017. [PMID: 37645887 PMCID: PMC10461988 DOI: 10.1101/2023.08.11.553017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
A major challenge in evolutionary biology is explaining how populations navigate rugged fitness landscapes without getting trapped on local optima. One idea illustrated by adaptive dynamics theory is that as populations adapt, their newly enhanced capacities to exploit resources alter fitness payoffs and restructure the landscape in ways that promote speciation by opening new adaptive pathways. While there have been indirect tests of this theory, none have measured how fitness landscapes deform during adaptation, or test whether these shifts promote diversification. Here, we achieve this by studying bacteriophage λ, a virus that readily speciates into co-existing receptor specialists under controlled laboratory conditions. We used a high-throughput gene editing-phenotyping technology to measure λ's fitness landscape in the presence of different evolved-λ competitors and found that the fitness effects of individual mutations, and their epistatic interactions, depend on the competitor. Using these empirical data, we simulated λ's evolution on an unchanging landscape and one that recapitulates how the landscape deforms during evolution. λ heterogeneity only evolved in the shifting landscape regime. This study provides a test of adaptive dynamics, and, more broadly, shows how fitness landscapes dynamically change during adaptation, potentiating phenomena like speciation by opening new adaptive pathways.
Collapse
Affiliation(s)
- Michael B. Doud
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego, San Diego, CA, USA
- Department of Ecology, Behavior and Evolution, University of California San Diego, San Diego, CA, USA
| | - Animesh Gupta
- Department of Ecology, Behavior and Evolution, University of California San Diego, San Diego, CA, USA
| | - Victor Li
- Department of Ecology, Behavior and Evolution, University of California San Diego, San Diego, CA, USA
| | - Sarah J. Medina
- Department of Ecology, Behavior and Evolution, University of California San Diego, San Diego, CA, USA
| | - Caesar A. De La Fuente
- Department of Ecology, Behavior and Evolution, University of California San Diego, San Diego, CA, USA
| | - Justin R. Meyer
- Department of Ecology, Behavior and Evolution, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
14
|
Li R, Wang Y, Hu H, Tan Y, Ma Y. Metagenomic analysis reveals unexplored diversity of archaeal virome in the human gut. Nat Commun 2022; 13:7978. [PMID: 36581612 PMCID: PMC9800368 DOI: 10.1038/s41467-022-35735-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/19/2022] [Indexed: 12/30/2022] Open
Abstract
The human gut microbiome has been extensively explored, while the archaeal viruses remain largely unknown. Here, we present a comprehensive analysis of the archaeal viruses from the human gut metagenomes and the existing virus collections using the CRISPR spacer and viral signature-based approach. This results in 1279 viral species, of which, 95.2% infect Methanobrevibacteria_A, 56.5% shared high identity (>95%) with the archaeal proviruses, 37.2% have a host range across archaeal species, and 55.7% are highly prevalent in the human population (>1%). A methanogenic archaeal virus-specific gene for pseudomurein endoisopeptidase (PeiW) frequently occurs in the viral sequences (n = 150). Analysis of 33 Caudoviricetes viruses with a complete genome often discovers the genes (integrase, n = 29; mazE, n = 10) regulating the viral lysogenic-lytic cycle, implying the dominance of temperate viruses in the archaeal virome. Together, our work uncovers the unexplored diversity of archaeal viruses, revealing the novel facet of the human gut microbiome.
Collapse
Affiliation(s)
- Ran Li
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongming Wang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Han Hu
- Xbiome, Scientific Research Building, Tsinghua High-Tech Park, Shenzhen, China
| | - Yan Tan
- Xbiome, Scientific Research Building, Tsinghua High-Tech Park, Shenzhen, China
| | - Yingfei Ma
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
15
|
Jia K, Peng Y, Chen X, Jian H, Jin M, Yi Z, Su M, Dong X, Yi M. A Novel Inovirus Reprograms Metabolism and Motility of Marine Alteromonas. Microbiol Spectr 2022; 10:e0338822. [PMID: 36301121 PMCID: PMC9769780 DOI: 10.1128/spectrum.03388-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/09/2022] [Indexed: 01/10/2023] Open
Abstract
Members from the Inoviridae family with striking features are widespread, highly diverse, and ecologically pervasive across multiple hosts and environments. However, a small number of inoviruses have been isolated and studied. Here, a filamentous phage infecting Alteromonas abrolhosensis, designated ϕAFP1, was isolated from the South China Sea and represented a novel genus of Inoviridae. ϕAFP1 consisted of a single-stranded DNA genome (5986 bp), encoding eight putative ORFs. Comparative analyses revealed ϕAFP1 could be regarded as genetic mosaics having homologous sequences with Ralstonia and Stenotrophomonas phages. The temporal transcriptome analysis of A. abrolhosensis to ϕAFP1 infection revealed that 7.78% of the host genes were differentially expressed. The genes involved in translation processes, ribosome pathways, and degradation of multiple amino acid pathways at the plateau period were upregulated, while host material catabolic and bacterial motility-related genes were downregulated, indicating that ϕAFP1 might hijack the energy of the host for the synthesis of phage proteins. ϕAFP1 exerted step-by-step control on host genes through the appropriate level of utilizing host resources. Our study provided novel information for a better understanding of filamentous phage characteristics and phage-host interactions. IMPORTANCE Alteromonas is widely distributed and plays a vital role in biogeochemical in marine environments. However, little information about Alteromonas phages is available. Here, we isolated and characterized the biological characteristics and genome sequence of a novel inovirus infecting Alteromonas abrolhosensis, designated ϕAFP1, representing a novel viral genus of Inoviridae. We then presented a comprehensive view of the ϕAFP1 phage-Alteromonas abrolhosensis interactions, elucidating reprogramed host metabolism and motility. Our study provided novel information for better comprehension of filamentous phage characteristics and phage-host interactions.
Collapse
Affiliation(s)
- Kuntong Jia
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
| | - Yongyi Peng
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
| | - Xueji Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
| | - Huahua Jian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Min Jin
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China
| | - Zhiwei Yi
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China
| | - Ming Su
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
| | - Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
| | - Meisheng Yi
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
| |
Collapse
|
16
|
Fecal Microbiota Transplantation and Other Gut Microbiota Manipulation Strategies. Microorganisms 2022; 10:microorganisms10122424. [PMID: 36557677 PMCID: PMC9781458 DOI: 10.3390/microorganisms10122424] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
The gut microbiota is composed of bacteria, archaea, phages, and protozoa. It is now well known that their mutual interactions and metabolism influence host organism pathophysiology. Over the years, there has been growing interest in the composition of the gut microbiota and intervention strategies in order to modulate it. Characterizing the gut microbial populations represents the first step to clarifying the impact on the health/illness equilibrium, and then developing potential tools suited for each clinical disorder. In this review, we discuss the current gut microbiota manipulation strategies available and their clinical applications in personalized medicine. Among them, FMT represents the most widely explored therapeutic tools as recent guidelines and standardization protocols, not only for intestinal disorders. On the other hand, the use of prebiotics and probiotics has evidence of encouraging findings on their safety, patient compliance, and inter-individual effectiveness. In recent years, avant-garde approaches have emerged, including engineered bacterial strains, phage therapy, and genome editing (CRISPR-Cas9), which require further investigation through clinical trials.
Collapse
|
17
|
Olo Ndela É, Cobigo LM, Roux S, Enault F. [A better understanding of Earth's viruses thanks to metagenomes]. Med Sci (Paris) 2022; 38:999-1007. [PMID: 36692279 DOI: 10.1051/medsci/2022166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Despite their large number, viruses present in the environment remain largely unknown. Metagenomic approaches, targeting viruses specifically or not, have allowed us a better understanding of the composition of natural viral communities, with Caudoviricetes, Microviridae, Cressdnaviricota or Phycodnaviridae being the most frequently found viral groups. Metagenomes are gradually revealing the extent of the diversity of these groups and their structure, highlighting the large number of species, genera and even viral families, most of which being seen for the first time. Within these groups, the gene content, infected hosts and inhabited ecosystems are often consistent with the evolutionary history traced with marker genes. Thus, the diversity of viruses and their genes is more a reflection of their ancient origin and long coevolution with their hosts than of their ability to mutate rapidly.
Collapse
Affiliation(s)
- Éric Olo Ndela
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France
| | - Louis-Marie Cobigo
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France
| | - Simon Roux
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, États-Unis
| | - François Enault
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France
| |
Collapse
|
18
|
Górniak M, Zalewska A, Jurczak-Kurek A. Recombination Events in Putative Tail Fibre Gene in Litunavirus Phages Infecting Pseudomonas aeruginosa and Their Phylogenetic Consequences. Viruses 2022; 14:v14122669. [PMID: 36560673 PMCID: PMC9786124 DOI: 10.3390/v14122669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Recombination is the main driver of bacteriophage evolution. It may serve as a tool for extending the phage host spectrum, which is significant not only for phages' ecology but also for their utilisation as therapeutic agents of bacterial infections. The aim of this study was to detect the recombination events in the genomes of Litunavirus phages infecting Pseudomonas aeruginosa, and present their impact on phylogenetic relations within this phage group. The phylogenetic analyses involved: the whole-genome, core-genome (Schitoviridae conserved genes), variable genome region, and the whole-genome minus variable region. Interestingly, the recombination events taking place in the putative host recognition region (tail fibre protein gene and the adjacent downstream gene) significantly influenced tree topology, suggesting a strong phylogenetic signal. Our results indicate the recombination between phages from two genera Litunavirus and Luzeptimavirus and demonstrate its influence on phage phylogeny.
Collapse
|
19
|
Zhang QY, Ke F, Gui L, Zhao Z. Recent insights into aquatic viruses: Emerging and reemerging pathogens, molecular features, biological effects, and novel investigative approaches. WATER BIOLOGY AND SECURITY 2022; 1:100062. [DOI: 10.1016/j.watbs.2022.100062] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
20
|
Waite DW, Liefting L, Delmiglio C, Chernyavtseva A, Ha HJ, Thompson JR. Development and Validation of a Bioinformatic Workflow for the Rapid Detection of Viruses in Biosecurity. Viruses 2022; 14:v14102163. [PMID: 36298719 PMCID: PMC9610911 DOI: 10.3390/v14102163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/25/2022] [Indexed: 11/05/2022] Open
Abstract
The field of biosecurity has greatly benefited from the widespread adoption of high-throughput sequencing technologies, for its ability to deeply query plant and animal samples for pathogens for which no tests exist. However, the bioinformatics analysis tools designed for rapid analysis of these sequencing datasets are not developed with this application in mind, limiting the ability of diagnosticians to standardise their workflows using published tool kits. We sought to assess previously published bioinformatic tools for their ability to identify plant- and animal-infecting viruses while distinguishing from the host genetic material. We discovered that many of the current generation of virus-detection pipelines are not adequate for this task, being outperformed by more generic classification tools. We created synthetic MinION and HiSeq libraries simulating plant and animal infections of economically important viruses and assessed a series of tools for their suitability for rapid and accurate detection of infection, and further tested the top performing tools against the VIROMOCK Challenge dataset to ensure that our findings were reproducible when compared with international standards. Our work demonstrated that several methods provide sensitive and specific detection of agriculturally important viruses in a timely manner and provides a key piece of ground truthing for method development in this space.
Collapse
Affiliation(s)
- David W. Waite
- Plant Health and Environment Laboratory, Ministry for Primary Industries, P.O. Box 2095, Auckland 1140, New Zealand
- Correspondence:
| | - Lia Liefting
- Plant Health and Environment Laboratory, Ministry for Primary Industries, P.O. Box 2095, Auckland 1140, New Zealand
| | - Catia Delmiglio
- Plant Health and Environment Laboratory, Ministry for Primary Industries, P.O. Box 2095, Auckland 1140, New Zealand
| | | | - Hye Jeong Ha
- Animal Health Laboratory, Ministry for Primary Industries, Upper Hutt 5018, New Zealand
| | - Jeremy R. Thompson
- Plant Health and Environment Laboratory, Ministry for Primary Industries, P.O. Box 2095, Auckland 1140, New Zealand
| |
Collapse
|
21
|
Paxton RJ, Schäfer MO, Nazzi F, Zanni V, Annoscia D, Marroni F, Bigot D, Laws-Quinn ER, Panziera D, Jenkins C, Shafiey H. Epidemiology of a major honey bee pathogen, deformed wing virus: potential worldwide replacement of genotype A by genotype B. Int J Parasitol Parasites Wildl 2022; 18:157-171. [PMID: 35592272 PMCID: PMC9112108 DOI: 10.1016/j.ijppaw.2022.04.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/16/2022] [Accepted: 04/29/2022] [Indexed: 01/10/2023]
Abstract
The western honey bee (Apis mellifera) is of major economic and ecological importance, with elevated rates of colony losses in temperate regions over the last two decades thought to be largely caused by the exotic ectoparasitic mite Varroa destructor and deformed wing virus (DWV), which the mite transmits. DWV currently exists as two main genotypes: the formerly widespread DWV-A and the more recently described and rapidly expanding DWV-B. It is an excellent system to understand viral evolution and the replacement of one viral variant by another. Here we synthesise published results on the distribution and prevalence of DWV-A and -B over the period 2008-2021 and present novel data for Germany, Italy and the UK to suggest that (i) DWV-B has rapidly expanded worldwide since its first description in 2004 and (ii) that it is potentially replacing DWV-A. Both genotypes are also found in wild bee species. Based on a simple mathematical model, we suggest that interference between viral genotypes when co-infecting the same host is key to understanding their epidemiology. We finally discuss the consequences of genotype replacement for beekeeping and for wild pollinator species.
Collapse
Affiliation(s)
- Robert J. Paxton
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
| | - Marc O. Schäfer
- Institute of Infectology Medicine, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Francesco Nazzi
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Via delle Scienze 206, 33100, Udine, Italy
| | - Virginia Zanni
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Via delle Scienze 206, 33100, Udine, Italy
| | - Desiderato Annoscia
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Via delle Scienze 206, 33100, Udine, Italy
| | - Fabio Marroni
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Via delle Scienze 206, 33100, Udine, Italy
| | - Diane Bigot
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
| | - Eoin R. Laws-Quinn
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
| | - Delphine Panziera
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
| | - Christina Jenkins
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
| | - Hassan Shafiey
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
| |
Collapse
|
22
|
Dominguez-Huerta G, Zayed AA, Wainaina JM, Guo J, Tian F, Pratama AA, Bolduc B, Mohssen M, Zablocki O, Pelletier E, Delage E, Alberti A, Aury JM, Carradec Q, da Silva C, Labadie K, Poulain J, Bowler C, Eveillard D, Guidi L, Karsenti E, Kuhn JH, Ogata H, Wincker P, Culley A, Chaffron S, Sullivan MB. Diversity and ecological footprint of Global Ocean RNA viruses. Science 2022; 376:1202-1208. [PMID: 35679415 DOI: 10.1126/science.abn6358] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
DNA viruses are increasingly recognized as influencing marine microbes and microbe-mediated biogeochemical cycling. However, little is known about global marine RNA virus diversity, ecology, and ecosystem roles. In this study, we uncover patterns and predictors of marine RNA virus community- and "species"-level diversity and contextualize their ecological impacts from pole to pole. Our analyses revealed four ecological zones, latitudinal and depth diversity patterns, and environmental correlates for RNA viruses. Our findings only partially parallel those of cosampled plankton and show unexpectedly high polar ecological interactions. The influence of RNA viruses on ecosystems appears to be large, as predicted hosts are ecologically important. Moreover, the occurrence of auxiliary metabolic genes indicates that RNA viruses cause reprogramming of diverse host metabolisms, including photosynthesis and carbon cycling, and that RNA virus abundances predict ocean carbon export.
Collapse
Affiliation(s)
- Guillermo Dominguez-Huerta
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.,EMERGE Biology Integration Institute, The Ohio State University, Columbus, OH 43210, USA.,Center of Microbiome Science, The Ohio State University, Columbus, OH 43210, USA
| | - Ahmed A Zayed
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.,EMERGE Biology Integration Institute, The Ohio State University, Columbus, OH 43210, USA.,Center of Microbiome Science, The Ohio State University, Columbus, OH 43210, USA
| | - James M Wainaina
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.,Center of Microbiome Science, The Ohio State University, Columbus, OH 43210, USA
| | - Jiarong Guo
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.,EMERGE Biology Integration Institute, The Ohio State University, Columbus, OH 43210, USA.,Center of Microbiome Science, The Ohio State University, Columbus, OH 43210, USA
| | - Funing Tian
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.,Center of Microbiome Science, The Ohio State University, Columbus, OH 43210, USA
| | - Akbar Adjie Pratama
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.,EMERGE Biology Integration Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Benjamin Bolduc
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.,EMERGE Biology Integration Institute, The Ohio State University, Columbus, OH 43210, USA.,Center of Microbiome Science, The Ohio State University, Columbus, OH 43210, USA
| | - Mohamed Mohssen
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.,Center of Microbiome Science, The Ohio State University, Columbus, OH 43210, USA.,The Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, USA
| | - Olivier Zablocki
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.,EMERGE Biology Integration Institute, The Ohio State University, Columbus, OH 43210, USA.,Center of Microbiome Science, The Ohio State University, Columbus, OH 43210, USA
| | - Eric Pelletier
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France.,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Erwan Delage
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France.,Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000 Nantes, France
| | - Adriana Alberti
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France.,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
| | - Quentin Carradec
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France.,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Corinne da Silva
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
| | - Karine Labadie
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France.,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France.,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | | | - Chris Bowler
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France.,Institut de Biologie de l'Ecole Normale Supérieure, Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Damien Eveillard
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France.,Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000 Nantes, France
| | - Lionel Guidi
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France.,Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefanche, LOV, F-06230 Villefranche-sur-mer, France
| | - Eric Karsenti
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France.,Institut de Biologie de l'Ecole Normale Supérieure, Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France.,Directors' Research European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Hiroyuki Ogata
- Institute for Chemical Research, Kyoto University, Kyoto 611-0011, Japan
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France.,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Alexander Culley
- Département de Biochimie, Microbiologie et Bio-informatique, Université Laval, Québec, QC G1V 0A6, Canada
| | - Samuel Chaffron
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France.,Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000 Nantes, France
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.,EMERGE Biology Integration Institute, The Ohio State University, Columbus, OH 43210, USA.,Center of Microbiome Science, The Ohio State University, Columbus, OH 43210, USA.,The Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, USA.,Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
23
|
Li Y, Leonard SP, Powell JE, Moran NA. Species divergence in gut-restricted bacteria of social bees. Proc Natl Acad Sci U S A 2022; 119:e2115013119. [PMID: 35467987 PMCID: PMC9170019 DOI: 10.1073/pnas.2115013119] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/16/2022] [Indexed: 01/07/2023] Open
Abstract
Host-associated microbiomes, particularly gut microbiomes, often harbor related but distinct microbial lineages, but how this diversity arises and is maintained is not well understood. A prerequisite for lineage diversification is reproductive isolation imposed by barriers to gene flow. In host-associated microbes, genetic recombination can be disrupted by confinement to different hosts, for example following host speciation, or by niche partitioning within the same host. Taking advantage of the simple gut microbiome of social bees, we explore the diversification of two groups of gut-associated bacteria, Gilliamella and Snodgrassella, which have evolved for 80 million y with honey bees and bumble bees. Our analyses of sequenced genomes show that these lineages have diversified into discrete populations with limited gene flow. Divergence has occurred between symbionts of different host species and, in some cases, between symbiont lineages within a single host individual. Populations have acquired genes to adapt to specific hosts and ecological niches; for example, Gilliamella lineages differ markedly in abilities to degrade dietary polysaccharides and to use the resulting sugar components. Using engineered fluorescent bacteria in vivo, we show that Gilliamella lineages localize to different hindgut regions, corresponding to differences in their abilities to use spatially concentrated nitrogenous wastes of hosts. Our findings show that bee gut bacteria can diversify due to isolation in different host species and also due to spatial niche partitioning within individual hosts, leading to barriers to gene flow.
Collapse
Affiliation(s)
- Yiyuan Li
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712
| | - Sean P. Leonard
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712
| | - J. Elijah Powell
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712
| | - Nancy A. Moran
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
24
|
Martinez-Hernandez F, Diop A, Garcia-Heredia I, Bobay LM, Martinez-Garcia M. Unexpected myriad of co-occurring viral strains and species in one of the most abundant and microdiverse viruses on Earth. THE ISME JOURNAL 2022; 16:1025-1035. [PMID: 34775488 PMCID: PMC8940918 DOI: 10.1038/s41396-021-01150-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/15/2021] [Accepted: 10/28/2021] [Indexed: 11/09/2022]
Abstract
Viral genetic microdiversity drives adaptation, pathogenicity, and speciation and has critical consequences for the viral-host arms race occurring at the strain and species levels, which ultimately impact microbial community structure and biogeochemical cycles. Despite the fact that most efforts have focused on viral macrodiversity, little is known about the microdiversity of ecologically important viruses on Earth. Recently, single-virus genomics discovered the putatively most abundant ocean virus in temperate and tropical waters: the uncultured dsDNA virus vSAG 37-F6 infecting Pelagibacter, the most abundant marine bacteria. In this study, we report the cooccurrence of up to ≈1,500 different viral strains (>95% nucleotide identity) and ≈30 related species (80-95% nucleotide identity) in a single oceanic sample. Viral microdiversity was maintained over space and time, and most alleles were the result of synonymous mutations without any apparent adaptive benefits to cope with host translation codon bias and efficiency. Gene flow analysis used to delimitate species according to the biological species concept (BSC) revealed the impact of recombination in shaping vSAG 37-F6 virus and Pelagibacter speciation. Data demonstrated that this large viral microdiversity somehow mirrors the host species diversity since ≈50% of the 926 analyzed Pelagibacter genomes were found to belong to independent BSC species that do not significantly engage in gene flow with one another. The host range of this evolutionarily successful virus revealed that a single viral species can infect multiple Pelagibacter BSC species, indicating that this virus crosses not only formal BSC barriers but also biomes since viral ancestors are found in freshwater.
Collapse
Affiliation(s)
| | - Awa Diop
- Department of Biology, University of North Carolina at Greensboro, Greensboro, USA
| | | | - Louis-Marie Bobay
- Department of Biology, University of North Carolina at Greensboro, Greensboro, USA
| | - Manuel Martinez-Garcia
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, Spain.
| |
Collapse
|
25
|
Gregory AC, Gerhardt K, Zhong ZP, Bolduc B, Temperton B, Konstantinidis KT, Sullivan MB. MetaPop: a pipeline for macro- and microdiversity analyses and visualization of microbial and viral metagenome-derived populations. MICROBIOME 2022; 10:49. [PMID: 35287721 PMCID: PMC8922842 DOI: 10.1186/s40168-022-01231-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 11/29/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND Microbes and their viruses are hidden engines driving Earth's ecosystems from the oceans and soils to humans and bioreactors. Though gene marker approaches can now be complemented by genome-resolved studies of inter-(macrodiversity) and intra-(microdiversity) population variation, analytical tools to do so remain scattered or under-developed. RESULTS Here, we introduce MetaPop, an open-source bioinformatic pipeline that provides a single interface to analyze and visualize microbial and viral community metagenomes at both the macro- and microdiversity levels. Macrodiversity estimates include population abundances and α- and β-diversity. Microdiversity calculations include identification of single nucleotide polymorphisms, novel codon-constrained linkage of SNPs, nucleotide diversity (π and θ), and selective pressures (pN/pS and Tajima's D) within and fixation indices (FST) between populations. MetaPop will also identify genes with distinct codon usage. Following rigorous validation, we applied MetaPop to the gut viromes of autistic children that underwent fecal microbiota transfers and their neurotypical peers. The macrodiversity results confirmed our prior findings for viral populations (microbial shotgun metagenomes were not available) that diversity did not significantly differ between autistic and neurotypical children. However, by also quantifying microdiversity, MetaPop revealed lower average viral nucleotide diversity (π) in autistic children. Analysis of the percentage of genomes detected under positive selection was also lower among autistic children, suggesting that higher viral π in neurotypical children may be beneficial because it allows populations to better "bet hedge" in changing environments. Further, comparisons of microdiversity pre- and post-FMT in autistic children revealed that the delivery FMT method (oral versus rectal) may influence viral activity and engraftment of microdiverse viral populations, with children who received their FMT rectally having higher microdiversity post-FMT. Overall, these results show that analyses at the macro level alone can miss important biological differences. CONCLUSIONS These findings suggest that standardized population and genetic variation analyses will be invaluable for maximizing biological inference, and MetaPop provides a convenient tool package to explore the dual impact of macro- and microdiversity across microbial communities. Video abstract.
Collapse
Affiliation(s)
- Ann C Gregory
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
- Present Address: Department of Microbiology and Immunology, Rega Institute for Medical Research, VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Kenji Gerhardt
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Zhi-Ping Zhong
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, 43210, USA
| | - Benjamin Bolduc
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
| | - Ben Temperton
- School of Biosciences, University of Exeter, Exeter, UK
| | - Konstantinos T Konstantinidis
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Matthew B Sullivan
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA.
- Center of Microbiome Science, Ohio State University, Columbus, OH, 43210, USA.
- Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
26
|
Duan Y, Young R, Schnabl B. Bacteriophages and their potential for treatment of gastrointestinal diseases. Nat Rev Gastroenterol Hepatol 2022; 19:135-144. [PMID: 34782783 PMCID: PMC8966578 DOI: 10.1038/s41575-021-00536-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 02/08/2023]
Abstract
Although bacteriophages have been overshadowed as therapeutic agents by antibiotics for decades, the emergence of multidrug-resistant bacteria and a better understanding of the role of the gut microbiota in human health and disease have brought them back into focus. In this Perspective, we briefly introduce basic phage biology and summarize recent discoveries about phages in relation to their role in the gut microbiota and gastrointestinal diseases, such as inflammatory bowel disease and chronic liver disease. In addition, we review preclinical studies and clinical trials of phage therapy for enteric disease and explore current challenges and potential future directions.
Collapse
Affiliation(s)
- Yi Duan
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Ry Young
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
- Center for Phage Technology, Texas A&M AgriLife Research and Texas A&M University, College Station, TX, USA
- Center for Innovative Phage Applications and Therapeutics, University of California San Diego, La Jolla, CA, USA
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA.
- Center for Innovative Phage Applications and Therapeutics, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
27
|
Santamaría RI, Bustos P, Van Cauwenberghe J, González V. Hidden diversity of double-stranded DNA phages in symbiotic Rhizobium species. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200468. [PMID: 34839703 PMCID: PMC8628074 DOI: 10.1098/rstb.2020.0468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In this study, we addressed the extent of diversification of phages associated with nitrogen-fixing symbiotic Rhizobium species. Despite the ecological and economic importance of the Rhizobium genus, little is known about the diversity of the associated phages. A thorough assessment of viral diversity requires investigating both lytic phages and prophages harboured in diverse Rhizobium genomes. Protein-sharing networks identified 56 viral clusters (VCs) among a set of 425 isolated phages and predicted prophages. The VCs formed by phages had more proteins in common and a higher degree of synteny, and they group together in clades in the associated phylogenetic tree. By contrast, the VCs of prophages showed significant genetic variation and gene loss, with selective pressure on the remaining genes. Some VCs were found in various Rhizobium species and geographical locations, suggesting that they have wide host ranges. Our results indicate that the VCs represent distinct taxonomic units, probably representing taxa equivalent to genera or even species. The finding of previously undescribed phage taxa indicates the need for further exploration of the diversity of phages associated with Rhizobium species. This article is part of the theme issue 'The secret lives of microbial mobile genetic elements'.
Collapse
Affiliation(s)
- Rosa I. Santamaría
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Patricia Bustos
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Jannick Van Cauwenberghe
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico,Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Víctor González
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
28
|
Chibani CM, Mahnert A, Borrel G, Almeida A, Werner A, Brugère JF, Gribaldo S, Finn RD, Schmitz RA, Moissl-Eichinger C. A catalogue of 1,167 genomes from the human gut archaeome. Nat Microbiol 2022; 7:48-61. [PMID: 34969981 PMCID: PMC8727293 DOI: 10.1038/s41564-021-01020-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 11/10/2021] [Indexed: 12/19/2022]
Abstract
The human gut microbiome plays an important role in health, but its archaeal diversity remains largely unexplored. In the present study, we report the analysis of 1,167 nonredundant archaeal genomes (608 high-quality genomes) recovered from human gastrointestinal tract, sampled across 24 countries and rural and urban populations. We identified previously undescribed taxa including 3 genera, 15 species and 52 strains. Based on distinct genomic features, we justify the split of the Methanobrevibacter smithii clade into two separate species, with one represented by the previously undescribed 'Candidatus Methanobrevibacter intestini'. Patterns derived from 28,581 protein clusters showed significant associations with sociodemographic characteristics such as age groups and lifestyle. We additionally show that archaea are characterized by specific genomic and functional adaptations to the host and carry a complex virome. Our work expands our current understanding of the human archaeome and provides a large genome catalogue for future analyses to decipher its impact on human physiology.
Collapse
Affiliation(s)
| | - Alexander Mahnert
- Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Graz, Austria
| | - Guillaume Borrel
- Department of Microbiology, Unit of Evolutionary Biology of the Microbial Cell, Institut Pasteur, Paris, France
| | - Alexandre Almeida
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
- Wellcome Sanger Institute, Cambridge, UK
| | - Almut Werner
- Institute for Microbiology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Jean-François Brugère
- Institut Universitaire de Technologie Clermont Auvergne, Université Clermont Auvergne, CNRS, UMR 6023 Laboratoire Microorganismes: Genome et Environnement, Clermont-Ferrand, France
| | - Simonetta Gribaldo
- Department of Microbiology, Unit of Evolutionary Biology of the Microbial Cell, Institut Pasteur, Paris, France
| | - Robert D Finn
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | - Ruth A Schmitz
- Institute for Microbiology, Christian-Albrechts-University Kiel, Kiel, Germany.
| | - Christine Moissl-Eichinger
- Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Graz, Austria.
- BioTechMed, Graz, Austria.
| |
Collapse
|
29
|
Gorbalenya AE, Lauber C. Bioinformatics of virus taxonomy: foundations and tools for developing sequence-based hierarchical classification. Curr Opin Virol 2021; 52:48-56. [PMID: 34883443 DOI: 10.1016/j.coviro.2021.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/22/2021] [Accepted: 11/04/2021] [Indexed: 11/03/2022]
Abstract
The genome sequence is the only characteristic readily obtainable for all known viruses, underlying the growing role of comparative genomics in organizing knowledge about viruses in a systematic evolution-aware way, known as virus taxonomy. Overseen by the International Committee on Taxonomy of Viruses (ICTV), development of virus taxonomy involves taxa demarcation at 15 ranks of a hierarchical classification, often in host-specific manner. Outside the ICTV remit, researchers assess fitting numerous unclassified viruses into the established taxa. They employ different metrics of virus clustering, basing on conserved domain(s), separation of viruses in rooted phylogenetic trees and pair-wise distance space. Computational approaches differ further in respect to methodology, number of ranks considered, sensitivity to uneven virus sampling, and visualization of results. Advancing and using computational tools will be critical for improving taxa demarcation across the virosphere and resolving rank origins in research that may also inform experimental virology.
Collapse
Affiliation(s)
- Alexander E Gorbalenya
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands; Faculty of Bioengineering and Bioinformatics and Belozersky, Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119899, Moscow, Russia.
| | - Chris Lauber
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, A Joint Venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| |
Collapse
|
30
|
Dutilh BE, Varsani A, Tong Y, Simmonds P, Sabanadzovic S, Rubino L, Roux S, Muñoz AR, Lood C, Lefkowitz EJ, Kuhn JH, Krupovic M, Edwards RA, Brister JR, Adriaenssens EM, Sullivan MB. Perspective on taxonomic classification of uncultivated viruses. Curr Opin Virol 2021; 51:207-215. [PMID: 34781105 DOI: 10.1016/j.coviro.2021.10.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/19/2022]
Abstract
Historically, virus taxonomy has been limited to describing viruses that were readily cultivated in the laboratory or emerging in natural biomes. Metagenomic analyses, single-particle sequencing, and database mining efforts have yielded new sequence data on an astounding number of previously unknown viruses. As metagenomes are relatively free of biases, these data provide an unprecedented insight into the vastness of the virosphere, but to properly value the extent of this diversity it is critical that the viruses are taxonomically classified. Inclusion of uncultivated viruses has already improved the process as well as the understanding of the taxa, viruses, and their evolutionary relationships. The continuous development and testing of computational tools will be required to maintain a dynamic virus taxonomy that can accommodate the new discoveries.
Collapse
Affiliation(s)
- Bas E Dutilh
- Theoretical Biology and Bioinformatics, Science for Life, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands; Institute of Bioloversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, 07743, Jena, Germany.
| | - Arvind Varsani
- The Biodesign Center of Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85287, USA; Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, 7925, Cape Town, South Africa
| | - Yigang Tong
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Peter Medawar Building, South Parks Road, Oxford, OX1 3SY, UK
| | - Sead Sabanadzovic
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, MS 39762, USA
| | - Luisa Rubino
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Simon Roux
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Alejandro Reyes Muñoz
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Cédric Lood
- Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 23, 3001, Leuven, Belgium; Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001, Leuven, Belgium
| | - Elliot J Lefkowitz
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Mart Krupovic
- Institut Pasteur, Université de Paris, Archaeal Virology Unit, F-75015, Paris, France
| | - Robert A Edwards
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - J Rodney Brister
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda MD 20894, USA
| | | | - Matthew B Sullivan
- Departments of Microbiology and Civil, Environmental, and Geodetic Engineering, Ohio State University, Columbus, OH, USA
| |
Collapse
|
31
|
Aylward FO, Moniruzzaman M, Ha AD, Koonin EV. A phylogenomic framework for charting the diversity and evolution of giant viruses. PLoS Biol 2021; 19:e3001430. [PMID: 34705818 PMCID: PMC8575486 DOI: 10.1371/journal.pbio.3001430] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/08/2021] [Accepted: 09/29/2021] [Indexed: 11/22/2022] Open
Abstract
Large DNA viruses of the phylum Nucleocytoviricota have recently emerged as important members of ecosystems around the globe that challenge traditional views of viral complexity. Numerous members of this phylum that cannot be classified within established families have recently been reported, and there is presently a strong need for a robust phylogenomic and taxonomic framework for these viruses. Here, we report a comprehensive phylogenomic analysis of the Nucleocytoviricota, present a set of giant virus orthologous groups (GVOGs) together with a benchmarked reference phylogeny, and delineate a hierarchical taxonomy within this phylum. We show that the majority of Nucleocytoviricota diversity can be partitioned into 6 orders, 32 families, and 344 genera, substantially expanding the number of currently recognized taxonomic ranks for these viruses. We integrate our results within a taxonomy that has been adopted for all viruses to establish a unifying framework for the study of Nucleocytoviricota diversity, evolution, and environmental distribution. Giant viruses have transformed our understanding of viral complexity, but we lack a framework for examining their diversity in the biosphere. This study presents a phylogenomic resource for charting the diversity, ecology, and evolution of giant viruses.
Collapse
Affiliation(s)
- Frank O. Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail:
| | - Mohammad Moniruzzaman
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Anh D. Ha
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
32
|
Ha AD, Moniruzzaman M, Aylward FO. High Transcriptional Activity and Diverse Functional Repertoires of Hundreds of Giant Viruses in a Coastal Marine System. mSystems 2021; 6:e0029321. [PMID: 34254826 PMCID: PMC8407384 DOI: 10.1128/msystems.00293-21] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022] Open
Abstract
Viruses belonging to the Nucleocytoviricota phylum are globally distributed and include members with notably large genomes and complex functional repertoires. Recent studies have shown that these viruses are particularly diverse and abundant in marine systems, but the magnitude of actively replicating Nucleocytoviricota present in ocean habitats remains unclear. In this study, we compiled a curated database of 2,431 Nucleocytoviricota genomes and used it to examine the gene expression of these viruses in a 2.5-day metatranscriptomic time-series from surface waters of the California Current. We identified 145 viral genomes with high levels of gene expression, including 90 Imitervirales and 49 Algavirales viruses. In addition to recovering high expression of core genes involved in information processing that are commonly expressed during viral infection, we also identified transcripts of diverse viral metabolic genes from pathways such as glycolysis, the TCA cycle, and the pentose phosphate pathway, suggesting that virus-mediated reprogramming of central carbon metabolism is common in oceanic surface waters. Surprisingly, we also identified viral transcripts with homology to actin, myosin, and kinesin domains, suggesting that viruses may use these gene products to manipulate host cytoskeletal dynamics during infection. We performed phylogenetic analysis on the virus-encoded myosin and kinesin proteins, which demonstrated that most belong to deep-branching viral clades, but that others appear to have been acquired from eukaryotes more recently. Our results highlight a remarkable diversity of active Nucleocytoviricota in a coastal marine system and underscore the complex functional repertoires expressed by these viruses during infection. IMPORTANCE The discovery of giant viruses has transformed our understanding of viral complexity. Although viruses have traditionally been viewed as filterable infectious agents that lack metabolism, giant viruses can reach sizes rivalling cellular lineages and possess genomes encoding central metabolic processes. Recent studies have shown that giant viruses are widespread in aquatic systems, but the activity of these viruses and the extent to which they reprogram host physiology in situ remains unclear. Here, we show that numerous giant viruses consistently express central metabolic enzymes in a coastal marine system, including components of glycolysis, the TCA cycle, and other pathways involved in nutrient homeostasis. Moreover, we found expression of several viral-encoded actin, myosin, and kinesin genes, indicating viral manipulation of the host cytoskeleton during infection. Our study reveals a high activity of giant viruses in a coastal marine system and indicates they are a diverse and underappreciated component of microbial diversity in the ocean.
Collapse
Affiliation(s)
- Anh D. Ha
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | | | - Frank O. Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
33
|
Chaikeeratisak V, Birkholz EA, Pogliano J. The Phage Nucleus and PhuZ Spindle: Defining Features of the Subcellular Organization and Speciation of Nucleus-Forming Jumbo Phages. Front Microbiol 2021; 12:641317. [PMID: 34326818 PMCID: PMC8314001 DOI: 10.3389/fmicb.2021.641317] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/16/2021] [Indexed: 01/21/2023] Open
Abstract
Bacteriophages and their bacterial hosts are ancient organisms that have been co-evolving for billions of years. Some jumbo phages, those with a genome size larger than 200 kilobases, have recently been discovered to establish complex subcellular organization during replication. Here, we review our current understanding of jumbo phages that form a nucleus-like structure, or “Phage Nucleus,” during replication. The phage nucleus is made of a proteinaceous shell that surrounds replicating phage DNA and imparts a unique subcellular organization that is temporally and spatially controlled within bacterial host cells by a phage-encoded tubulin (PhuZ)-based spindle. This subcellular architecture serves as a replication factory for jumbo Pseudomonas phages and provides a selective advantage when these replicate in some host strains. Throughout the lytic cycle, the phage nucleus compartmentalizes proteins according to function and protects the phage genome from host defense mechanisms. Early during infection, the PhuZ spindle positions the newly formed phage nucleus at midcell and, later in the infection cycle, the spindle rotates the nucleus while delivering capsids and distributing them uniformly on the nuclear surface, where they dock for DNA packaging. During the co-infection of two different nucleus-forming jumbo phages in a bacterial cell, the phage nucleus establishes Subcellular Genetic Isolation that limits the potential for viral genetic exchange by physically separating co-infection genomes, and the PhuZ spindle causes Virogenesis Incompatibility, whereby interacting components from two diverging phages negatively affect phage reproduction. Thus, the phage nucleus and PhuZ spindle are defining cell biological structures that serve roles in both the life cycle of nucleus-forming jumbo phages and phage speciation.
Collapse
Affiliation(s)
- Vorrapon Chaikeeratisak
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States.,Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Erica A Birkholz
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States
| | - Joe Pogliano
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
34
|
Du J, Zayed AA, Kigerl KA, Zane K, Sullivan MB, Popovich PG. Spinal Cord Injury Changes the Structure and Functional Potential of Gut Bacterial and Viral Communities. mSystems 2021; 6:e01356-20. [PMID: 33975974 PMCID: PMC8125080 DOI: 10.1128/msystems.01356-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/25/2021] [Indexed: 01/11/2023] Open
Abstract
Emerging data indicate that gut dysbiosis contributes to many human diseases, including several comorbidities that develop after traumatic spinal cord injury (SCI). To date, all analyses of SCI-induced gut dysbiosis have used 16S rRNA amplicon sequencing. This technique has several limitations, including being susceptible to taxonomic "blind spots," primer bias, and an inability to profile microbiota functions or identify viruses. Here, SCI-induced gut dysbiosis was assessed by applying genome- and gene-resolved metagenomic analysis of murine stool samples collected 21 days after an experimental SCI at the 4th thoracic spine (T4) or 10th thoracic spine (T10) spinal level. These distinct injuries partially (T10) or completely (T4) abolish sympathetic tone in the gut. Among bacteria, 105 medium- to high-quality metagenome-assembled genomes (MAGs) were recovered, with most (n = 96) representing new bacterial species. Read mapping revealed that after SCI, the relative abundance of beneficial commensals (Lactobacillus johnsonii and CAG-1031 spp.) decreased, while potentially pathogenic bacteria (Weissella cibaria, Lactococcus lactis _A, Bacteroides thetaiotaomicron) increased. Functionally, microbial genes encoding proteins for tryptophan, vitamin B6, and folate biosynthesis, essential pathways for central nervous system function, were reduced after SCI. Among viruses, 1,028 mostly novel viral populations were recovered, expanding known murine gut viral species sequence space ∼3-fold compared to that of public databases. Phages of beneficial commensal hosts (CAG-1031, Lactobacillus, and Turicibacter) decreased, while phages of pathogenic hosts (Weissella, Lactococcus, and class Clostridia) increased after SCI. Although the microbiomes and viromes were changed in all SCI mice, some of these changes varied as a function of spinal injury level, implicating loss of sympathetic tone as a mechanism underlying gut dysbiosis.IMPORTANCE To our knowledge, this is the first article to apply metagenomics to characterize changes in gut microbial population dynamics caused by a clinically relevant model of central nervous system (CNS) trauma. It also utilizes the most current approaches in genome-resolved metagenomics and viromics to maximize the biological inferences that can be made from these data. Overall, this article highlights the importance of autonomic nervous system regulation of a distal organ (gut) and its microbiome inhabitants after traumatic spinal cord injury (SCI). By providing information on taxonomy, function, and viruses, metagenomic data may better predict how SCI-induced gut dysbiosis influences systemic and neurological outcomes after SCI.
Collapse
Affiliation(s)
- Jingjie Du
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Ahmed A Zayed
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
| | - Kristina A Kigerl
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio, USA
- The Belford Center for Spinal Cord Injury, The Ohio State University College of Medicine, Columbus, Ohio, USA
- The Center for Brain and Spinal Cord Repair, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
| | - Kylie Zane
- Medical Scientist Training Program, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, Ohio, USA
- Infectious Disease Institute, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
| | - Phillip G Popovich
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio, USA
- The Belford Center for Spinal Cord Injury, The Ohio State University College of Medicine, Columbus, Ohio, USA
- The Center for Brain and Spinal Cord Repair, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
35
|
Hockenberry AJ, Wilke CO. BACPHLIP: predicting bacteriophage lifestyle from conserved protein domains. PeerJ 2021; 9:e11396. [PMID: 33996289 PMCID: PMC8106911 DOI: 10.7717/peerj.11396] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/12/2021] [Indexed: 12/28/2022] Open
Abstract
Bacteriophages are broadly classified into two distinct lifestyles: temperate and virulent. Temperate phages are capable of a latent phase of infection within a host cell (lysogenic cycle), whereas virulent phages directly replicate and lyse host cells upon infection (lytic cycle). Accurate lifestyle identification is critical for determining the role of individual phage species within ecosystems and their effect on host evolution. Here, we present BACPHLIP, a BACterioPHage LIfestyle Predictor. BACPHLIP detects the presence of a set of conserved protein domains within an input genome and uses this data to predict lifestyle via a Random Forest classifier that was trained on a dataset of 634 phage genomes. On an independent test set of 423 phages, BACPHLIP has an accuracy of 98% greatly exceeding that of the previously existing tools (79%). BACPHLIP is freely available on GitHub (https://github.com/adamhockenberry/bacphlip) and the code used to build and test the classifier is provided in a separate repository (https://github.com/adamhockenberry/bacphlip-model-dev) for users wishing to interrogate and re-train the underlying classification model.
Collapse
Affiliation(s)
- Adam J. Hockenberry
- Department of Integrative Biology, The University of Texas, Austin, TX, United States of America
| | - Claus O. Wilke
- Department of Integrative Biology, The University of Texas, Austin, TX, United States of America
| |
Collapse
|
36
|
Abstract
Mosquito-borne arboviruses, including a diverse array of alphaviruses and flaviviruses, lead to hundreds of millions of human infections each year. Current methods for species-level classification of arboviruses adhere to guidelines prescribed by the International Committee on Taxonomy of Viruses (ICTV), and generally apply a polyphasic approach that might include information about viral vectors, hosts, geographical distribution, antigenicity, levels of DNA similarity, disease association and/or ecological characteristics. However, there is substantial variation in the criteria used to define viral species, which can lead to the establishment of artificial boundaries between species and inconsistencies when inferring their relatedness, variation and evolutionary history. In this study, we apply a single, uniform principle - that underlying the Biological Species Concept (BSC) - to define biological species of arboviruses based on recombination between genomes. Given that few recombination events have been documented in arboviruses, we investigate the incidence of recombination within and among major arboviral groups using an approach based on the ratio of homoplastic sites (recombinant alleles) to non-homoplastic sites (vertically transmitted alleles). This approach supports many ICTV-designations but also recognizes several cases in which a named species comprises multiple biological species. These findings demonstrate that this metric may be applied to all lifeforms, including viruses, and lead to more consistent and accurate delineation of viral species.
Collapse
Affiliation(s)
- Yiyuan Li
- Department of Integrative Biology, University of Texas at Austin, TX 78712, USA
| | - Angela C O'Donnell
- Department of Integrative Biology, University of Texas at Austin, TX 78712, USA
| | - Howard Ochman
- Department of Integrative Biology, University of Texas at Austin, TX 78712, USA
| |
Collapse
|
37
|
Abstract
Species taxa are the units of taxonomy most suited to measure virus diversity, and they account for more than 70% of all virus taxa. Yet, as evidenced by the content of GenBank entries and illustrated by the recent literature on SARS-CoV-2, they are the most neglected taxa of virus research. To correct this disparity, we propose to make species taxa a first choice for communicating virus taxonomy in publications concerning viruses. We see it as a key step toward promoting research on diverse viruses, including pathogens, at this fundamental level of biology.
Collapse
Affiliation(s)
- Alexander E Gorbalenya
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Stuart G Siddell
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
38
|
Viral speciation through subcellular genetic isolation and virogenesis incompatibility. Nat Commun 2021; 12:342. [PMID: 33436625 PMCID: PMC7804931 DOI: 10.1038/s41467-020-20575-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
Understanding how biological species arise is critical for understanding the evolution of life on Earth. Bioinformatic analyses have recently revealed that viruses, like multicellular life, form reproductively isolated biological species. Viruses are known to share high rates of genetic exchange, so how do they evolve genetic isolation? Here, we evaluate two related bacteriophages and describe three factors that limit genetic exchange between them: 1) A nucleus-like compartment that physically separates replicating phage genomes, thereby limiting inter-phage recombination during co-infection; 2) A tubulin-based spindle that orchestrates phage replication and forms nonfunctional hybrid polymers; and 3) A nuclear incompatibility factor that reduces phage fitness. Together, these traits maintain species differences through Subcellular Genetic Isolation where viral genomes are physically separated during co-infection, and Virogenesis Incompatibility in which the interaction of cross-species components interferes with viral production. Virus speciation cannot be fully explained by the evolution of different host specificities. Here, Chaikeeratisak et al. identify ways viruses can remain genetically isolated despite co-infecting the same cell, providing insight into how new virus species evolve.
Collapse
|
39
|
Bobay LM, O’Donnell AC, Ochman H. Recombination events are concentrated in the spike protein region of Betacoronaviruses. PLoS Genet 2020; 16:e1009272. [PMID: 33332358 PMCID: PMC7775116 DOI: 10.1371/journal.pgen.1009272] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/31/2020] [Accepted: 11/17/2020] [Indexed: 12/24/2022] Open
Abstract
The Betacoronaviruses comprise multiple subgenera whose members have been implicated in human disease. As with SARS, MERS and now SARS-CoV-2, the origin and emergence of new variants are often attributed to events of recombination that alter host tropism or disease severity. In most cases, recombination has been detected by searches for excessively similar genomic regions in divergent strains; however, such analyses are complicated by the high mutation rates of RNA viruses, which can produce sequence similarities in distant strains by convergent mutations. By applying a genome-wide approach that examines the source of individual polymorphisms and that can be tested against null models in which recombination is absent and homoplasies can arise only by convergent mutations, we examine the extent and limits of recombination in Betacoronaviruses. We find that recombination accounts for nearly 40% of the polymorphisms circulating in populations and that gene exchange occurs almost exclusively among strains belonging to the same subgenus. Although experimental studies have shown that recombinational exchanges occur at random along the coronaviral genome, in nature, they are vastly overrepresented in regions controlling viral interaction with host cells.
Collapse
Affiliation(s)
- Louis-Marie Bobay
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina, United States of America
| | - Angela C. O’Donnell
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Howard Ochman
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
40
|
Gregory AC, Zablocki O, Zayed AA, Howell A, Bolduc B, Sullivan MB. The Gut Virome Database Reveals Age-Dependent Patterns of Virome Diversity in the Human Gut. Cell Host Microbe 2020; 28:724-740.e8. [PMID: 32841606 PMCID: PMC7443397 DOI: 10.1016/j.chom.2020.08.003] [Citation(s) in RCA: 365] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/14/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022]
Abstract
The gut microbiome profoundly affects human health and disease, and their infecting viruses are likely as important, but often missed because of reference database limitations. Here, we (1) built a human Gut Virome Database (GVD) from 2,697 viral particle or microbial metagenomes from 1,986 individuals representing 16 countries, (2) assess its effectiveness, and (3) report a meta-analysis that reveals age-dependent patterns across healthy Westerners. The GVD contains 33,242 unique viral populations (approximately species-level taxa) and improves average viral detection rates over viral RefSeq and IMG/VR nearly 182-fold and 2.6-fold, respectively. GVD meta-analyses show highly personalized viromes, reveal that inter-study variability from technical artifacts is larger than any "disease" effect at the population level, and document how viral diversity changes from human infancy into senescence. Together, this compact foundational resource, these standardization guidelines, and these meta-analysis findings provide a systematic toolkit to help maximize our understanding of viral roles in health and disease.
Collapse
Affiliation(s)
- Ann C Gregory
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | - Olivier Zablocki
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA; Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Ahmed A Zayed
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA; Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Allison Howell
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | - Benjamin Bolduc
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA; Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Matthew B Sullivan
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA; Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH 43210, USA; Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
41
|
Liwinski T, Elinav E. Harnessing the microbiota for therapeutic purposes. Am J Transplant 2020; 20:1482-1488. [PMID: 31858698 DOI: 10.1111/ajt.15753] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/24/2019] [Accepted: 12/08/2019] [Indexed: 01/25/2023]
Abstract
The myriads of microorganisms colonizing the human host (microbiome) affect virtually every aspect of its physiology in health and disease. The past decade witnessed unprecedented advances in microbiome research. The field rapidly transitioned from descriptive studies to deep mechanistic insights into host-microbiome interactions. This offers the opportunity for microbiome-targeted therapeutic manipulation. Currently, several strategies of microbiome-targeted interventions are intensively explored. Best evidence from human randomized clinical trials is available for fecal microbiota transplantation (FMT). However, patient eligibility as well as long-term efficacy and safety are not sufficiently defined. Therefore, there is currently no officially approved indication for FMT. Probiotics (live microorganisms) have long been discussed as a means to aid human health but have yielded varying results. Emerging techniques utilizing microbiota-targeted diets, small microbial molecules, recombinant bacteriophages, and precise control of strain abundance recently yielded promising results but require further investigation. The rapid technological progress of "omics" tools spurs advances in personalized medicine. Understanding and integration of interindividual microbiome variability holds potential to promote personalized preventive and therapeutic approaches. Emerging evidence points towards the microbiome as an important player having an impact on transplantation outcomes. Microbiome-targeted interventions have potential to aid against the many challenges faced by transplant recipients.
Collapse
Affiliation(s)
- Timur Liwinski
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel.,1st Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel.,Cancer-Microbiome Division Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| |
Collapse
|
42
|
Phylogenomic Analyses of Members of the Widespread Marine Heterotrophic Genus Pseudovibrio Suggest Distinct Evolutionary Trajectories and a Novel Genus, Polycladidibacter gen. nov. Appl Environ Microbiol 2020; 86:AEM.02395-19. [PMID: 31811036 PMCID: PMC6997731 DOI: 10.1128/aem.02395-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 12/04/2019] [Indexed: 12/16/2022] Open
Abstract
Bacteria belonging to the Pseudovibrio genus are widespread, metabolically versatile, and able to thrive as both free-living and host-associated organisms. Although more than 50 genomes are available, a comprehensive comparative genomics study to resolve taxonomic inconsistencies is currently missing. We analyzed all available genomes and used 552 core genes to perform a robust phylogenomic reconstruction. This in-depth analysis revealed the divergence of two monophyletic basal lineages of strains isolated from polyclad flatworm hosts, namely, Pseudovibrio hongkongensis and Pseudovibrio stylochi These strains have reduced genomes and lack sulfur-related metabolisms and major biosynthetic gene clusters, and their environmental distribution appears to be tightly associated with invertebrate hosts. We showed experimentally that the divergent strains are unable to utilize various sulfur compounds that, in contrast, can be utilized by the type strain Pseudovibrio denitrificans Our analyses suggest that the lineage leading to these two strains has been subject to relaxed purifying selection resulting in great gene loss. Overall genome relatedness indices (OGRI) indicate substantial differences between the divergent strains and the rest of the genus. While 16S rRNA gene analyses do not support the establishment of a different genus for the divergent strains, their substantial genomic, phylogenomic, and physiological differences strongly suggest a divergent evolutionary trajectory and the need for their reclassification. Therefore, we propose the novel genus Polycladidibacter gen. nov.IMPORTANCE The genus Pseudovibrio is commonly associated with marine invertebrates, which are essential for ocean health and marine nutrient cycling. Traditionally, the phylogeny of the genus has been based on 16S rRNA gene analysis. The use of the 16S rRNA gene or any other single marker gene for robust phylogenetic placement has recently been questioned. We used a large set of marker genes from all available Pseudovibrio genomes for in-depth phylogenomic analyses. We identified divergent monophyletic basal lineages within the Pseudovibrio genus, including two strains isolated from polyclad flatworms. These strains showed reduced sulfur metabolism and biosynthesis capacities. The phylogenomic analyses revealed distinct evolutionary trajectories and ecological adaptations that differentiate the divergent strains from the other Pseudovibrio members and suggest that they fall into a novel genus. Our data show the importance of widening the use of phylogenomics for better understanding bacterial physiology, phylogeny, and evolution.
Collapse
|
43
|
Howard-Varona C, Lindback MM, Bastien GE, Solonenko N, Zayed AA, Jang H, Andreopoulos B, Brewer HM, Glavina Del Rio T, Adkins JN, Paul S, Sullivan MB, Duhaime MB. Phage-specific metabolic reprogramming of virocells. ISME JOURNAL 2020; 14:881-895. [PMID: 31896786 PMCID: PMC7082346 DOI: 10.1038/s41396-019-0580-z] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/25/2019] [Accepted: 12/17/2019] [Indexed: 12/22/2022]
Abstract
Ocean viruses are abundant and infect 20–40% of surface microbes. Infected cells, termed virocells, are thus a predominant microbial state. Yet, virocells and their ecosystem impacts are understudied, thus precluding their incorporation into ecosystem models. Here we investigated how unrelated bacterial viruses (phages) reprogram one host into contrasting virocells with different potential ecosystem footprints. We independently infected the marine Pseudoalteromonas bacterium with siphovirus PSA-HS2 and podovirus PSA-HP1. Time-resolved multi-omics unveiled drastically different metabolic reprogramming and resource requirements by each virocell, which were related to phage–host genomic complementarity and viral fitness. Namely, HS2 was more complementary to the host in nucleotides and amino acids, and fitter during infection than HP1. Functionally, HS2 virocells hardly differed from uninfected cells, with minimal host metabolism impacts. HS2 virocells repressed energy-consuming metabolisms, including motility and translation. Contrastingly, HP1 virocells substantially differed from uninfected cells. They repressed host transcription, responded to infection continuously, and drastically reprogrammed resource acquisition, central carbon and energy metabolisms. Ecologically, this work suggests that one cell, infected versus uninfected, can have immensely different metabolisms that affect the ecosystem differently. Finally, we relate phage–host genome complementarity, virocell metabolic reprogramming, and viral fitness in a conceptual model to guide incorporating viruses into ecosystem models.
Collapse
Affiliation(s)
- Cristina Howard-Varona
- Department of Microbiology, The Ohio State University, 484 W 12th Ave, Columbus, OH, 43210, USA
| | - Morgan M Lindback
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Ave, Ann Arbor, MI, 48109, USA
| | - G Eric Bastien
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Ave, Ann Arbor, MI, 48109, USA
| | - Natalie Solonenko
- Department of Microbiology, The Ohio State University, 484 W 12th Ave, Columbus, OH, 43210, USA
| | - Ahmed A Zayed
- Department of Microbiology, The Ohio State University, 484 W 12th Ave, Columbus, OH, 43210, USA
| | - HoBin Jang
- Department of Microbiology, The Ohio State University, 484 W 12th Ave, Columbus, OH, 43210, USA
| | - Bill Andreopoulos
- US Department of Energy Joint Genome Institute, 1800 Mitchell Dr #100, Walnut Creek, CA, 94598, USA
| | - Heather M Brewer
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory (PNNL), 902 Battelle Blvd, Richland, WA, 99354, USA
| | - Tijana Glavina Del Rio
- US Department of Energy Joint Genome Institute, 1800 Mitchell Dr #100, Walnut Creek, CA, 94598, USA
| | - Joshua N Adkins
- Biological Science Division, PNNL, 902 Battelle Blvd, Richland, WA, 99354, USA
| | - Subhadeep Paul
- Department of Statistics, The Ohio State University, 1958 Neil Ave, Columbus, OH, 43210, USA
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, 484 W 12th Ave, Columbus, OH, 43210, USA. .,Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, 2070 Neil Ave, Columbus, OH, 43210, USA. .,Center for RNA Biology, The Ohio State University, 484 W. 12th Ave, Columbus, OH, 43210, USA.
| | - Melissa B Duhaime
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Ave, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
44
|
Coutinho FH, Edwards RA, Rodríguez-Valera F. Charting the diversity of uncultured viruses of Archaea and Bacteria. BMC Biol 2019. [PMID: 31884971 DOI: 10.1101/480491v1.full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Viruses of Archaea and Bacteria are among the most abundant and diverse biological entities on Earth. Unraveling their biodiversity has been challenging due to methodological limitations. Recent advances in culture-independent techniques, such as metagenomics, shed light on the unknown viral diversity, revealing thousands of new viral nucleotide sequences at an unprecedented scale. However, these novel sequences have not been properly classified and the evolutionary associations between them were not resolved. RESULTS Here, we performed phylogenomic analysis of nearly 200,000 viral nucleotide sequences to establish GL-UVAB: Genomic Lineages of Uncultured Viruses of Archaea and Bacteria. The pan-genome content of the identified lineages shed light on some of their infection strategies, potential to modulate host physiology, and mechanisms to escape host resistance systems. Furthermore, using GL-UVAB as a reference database for annotating metagenomes revealed elusive habitat distribution patterns of viral lineages and environmental drivers of community composition. CONCLUSIONS These findings provide insights about the genomic diversity and ecology of viruses of prokaryotes. The source code used in these analyses is freely available at https://sourceforge.net/projects/gluvab/.
Collapse
Affiliation(s)
- F H Coutinho
- Evolutionary Genomics Group, Departamento de Produccíon Vegetal y Microbiología, Universidad Miguel Hernández, Campus San Juan, San Juan, 03550, Alicante, Spain.
| | - R A Edwards
- Viral Information Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92128, USA
| | - F Rodríguez-Valera
- Evolutionary Genomics Group, Departamento de Produccíon Vegetal y Microbiología, Universidad Miguel Hernández, Campus San Juan, San Juan, 03550, Alicante, Spain
| |
Collapse
|
45
|
Coutinho FH, Edwards RA, Rodríguez-Valera F. Charting the diversity of uncultured viruses of Archaea and Bacteria. BMC Biol 2019; 17:109. [PMID: 31884971 PMCID: PMC6936153 DOI: 10.1186/s12915-019-0723-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/13/2019] [Indexed: 12/21/2022] Open
Abstract
Background Viruses of Archaea and Bacteria are among the most abundant and diverse biological entities on Earth. Unraveling their biodiversity has been challenging due to methodological limitations. Recent advances in culture-independent techniques, such as metagenomics, shed light on the unknown viral diversity, revealing thousands of new viral nucleotide sequences at an unprecedented scale. However, these novel sequences have not been properly classified and the evolutionary associations between them were not resolved. Results Here, we performed phylogenomic analysis of nearly 200,000 viral nucleotide sequences to establish GL-UVAB: Genomic Lineages of Uncultured Viruses of Archaea and Bacteria. The pan-genome content of the identified lineages shed light on some of their infection strategies, potential to modulate host physiology, and mechanisms to escape host resistance systems. Furthermore, using GL-UVAB as a reference database for annotating metagenomes revealed elusive habitat distribution patterns of viral lineages and environmental drivers of community composition. Conclusions These findings provide insights about the genomic diversity and ecology of viruses of prokaryotes. The source code used in these analyses is freely available at https://sourceforge.net/projects/gluvab/.
Collapse
Affiliation(s)
- F H Coutinho
- Evolutionary Genomics Group, Departamento de Produccíon Vegetal y Microbiología, Universidad Miguel Hernández, Campus San Juan, San Juan, 03550, Alicante, Spain.
| | - R A Edwards
- Viral Information Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92128, USA
| | - F Rodríguez-Valera
- Evolutionary Genomics Group, Departamento de Produccíon Vegetal y Microbiología, Universidad Miguel Hernández, Campus San Juan, San Juan, 03550, Alicante, Spain
| |
Collapse
|
46
|
Divya Ganeshan S, Hosseinidoust Z. Phage Therapy with a Focus on the Human Microbiota. Antibiotics (Basel) 2019; 8:E131. [PMID: 31461990 PMCID: PMC6783874 DOI: 10.3390/antibiotics8030131] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/14/2019] [Accepted: 08/23/2019] [Indexed: 01/12/2023] Open
Abstract
Bacteriophages are viruses that infect bacteria. After their discovery in the early 1900s, bacteriophages were a primary cure against infectious disease for almost 25 years, before being completely overshadowed by antibiotics. With the rise of antibiotic resistance, bacteriophages are being explored again for their antibacterial activity. One of the critical apprehensions regarding bacteriophage therapy, however, is the possibility of genome evolution, development of phage resistance, and subsequent perturbations to our microbiota. Through this review, we set out to explore the principles supporting the use of bacteriophages as a therapeutic agent, discuss the human gut microbiome in relation to the utilization of phage therapy, and the co-evolutionary arms race between host bacteria and phage in the context of the human microbiota.
Collapse
Affiliation(s)
| | - Zeinab Hosseinidoust
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada.
- Department of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada.
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4K1, Canada.
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada.
| |
Collapse
|
47
|
Forsdyke DR. Success of alignment-free oligonucleotide (k-mer) analysis confirms relative importance of genomes not genes in speciation and phylogeny. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AbstractThe utility of DNA sequence substrings (k-mers) in alignment-free phylogenetic classification, including that of bacteria and viruses, is increasingly recognized. However, its biological basis eludes many 21st century practitioners. A path from the 19th century recognition of the informational basis of heredity to the modern era can be discerned. Crick’s DNA ‘unpairing postulate’ predicted that recombinational pairing of homologous DNAs during meiosis would be mediated by short k-mers in the loops of stem-loop structures extruded from classical duplex helices. The complementary ‘kissing’ duplex loops – like tRNA anticodon–codon k-mer duplexes – would seed a more extensive pairing that would then extend until limited by lack of homology or other factors. Indeed, this became the principle behind alignment-based methods that assessed similarity by degree of DNA–DNA reassociation in vitro. These are now seen as less sensitive than alignment-free methods that are closely consistent, both theoretically and mechanistically, with chromosomal anti-recombination models for the initiation of divergence into new species. The analytical power of k-mer differences supports the theses that evolutionary advance sometimes serves the needs of nucleic acids (genomes) rather than proteins (genes), and that such differences can play a role in early speciation events.
Collapse
Affiliation(s)
- Donald R Forsdyke
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| |
Collapse
|
48
|
Abstract
Although viruses comprise the most abundant genetic material in the biosphere, to date only several thousand virus species have been formally defined. Such a limited perspective on virus diversity has in part arisen because viruses were traditionally considered only as etiologic agents of overt disease in humans or economically important species and were often difficult to identify using cell culture. This view has dramatically changed with the rise of metagenomics, which is transforming virus discovery and revealing a remarkable diversity of viruses sampled from diverse cellular organisms. These newly discovered viruses help fill major gaps in the evolutionary history of viruses, revealing a near continuum of diversity among genera, families, and even orders of RNA viruses. Herein, we review some of the recent advances in our understanding of the RNA virosphere that have stemmed from metagenomics, note future directions, and highlight some of the remaining challenges to this rapidly developing field.
Collapse
Affiliation(s)
- Yong-Zhen Zhang
- Shanghai Public Health Clinical Center and School of Public Health, Fudan University, Shanghai 200433, China; .,Department of Zoonosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China
| | - Yan-Mei Chen
- Shanghai Public Health Clinical Center and School of Public Health, Fudan University, Shanghai 200433, China; .,Department of Zoonosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China
| | - Wen Wang
- Department of Zoonosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China
| | - Xin-Chen Qin
- Department of Zoonosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China
| | - Edward C Holmes
- Shanghai Public Health Clinical Center and School of Public Health, Fudan University, Shanghai 200433, China; .,Department of Zoonosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China.,Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
49
|
Gregory AC, Zayed AA, Conceição-Neto N, Temperton B, Bolduc B, Alberti A, Ardyna M, Arkhipova K, Carmichael M, Cruaud C, Dimier C, Domínguez-Huerta G, Ferland J, Kandels S, Liu Y, Marec C, Pesant S, Picheral M, Pisarev S, Poulain J, Tremblay JÉ, Vik D, Babin M, Bowler C, Culley AI, de Vargas C, Dutilh BE, Iudicone D, Karp-Boss L, Roux S, Sunagawa S, Wincker P, Sullivan MB. Marine DNA Viral Macro- and Microdiversity from Pole to Pole. Cell 2019; 177:1109-1123.e14. [PMID: 31031001 PMCID: PMC6525058 DOI: 10.1016/j.cell.2019.03.040] [Citation(s) in RCA: 461] [Impact Index Per Article: 76.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/05/2019] [Accepted: 03/20/2019] [Indexed: 01/04/2023]
Abstract
Microbes drive most ecosystems and are modulated by viruses that impact their lifespan, gene flow, and metabolic outputs. However, ecosystem-level impacts of viral community diversity remain difficult to assess due to classification issues and few reference genomes. Here, we establish an ∼12-fold expanded global ocean DNA virome dataset of 195,728 viral populations, now including the Arctic Ocean, and validate that these populations form discrete genotypic clusters. Meta-community analyses revealed five ecological zones throughout the global ocean, including two distinct Arctic regions. Across the zones, local and global patterns and drivers in viral community diversity were established for both macrodiversity (inter-population diversity) and microdiversity (intra-population genetic variation). These patterns sometimes, but not always, paralleled those from macro-organisms and revealed temperate and tropical surface waters and the Arctic as biodiversity hotspots and mechanistic hypotheses to explain them. Such further understanding of ocean viruses is critical for broader inclusion in ecosystem models.
Collapse
Affiliation(s)
- Ann C Gregory
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Ahmed A Zayed
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Nádia Conceição-Neto
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, KU Leuven-University of Leuven, Leuven, Belgium; Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory for Clinical and Epidemiological Virology, KU Leuven-University of Leuven, Leuven, Belgium
| | - Ben Temperton
- School of Biosciences, University of Exeter, Exeter, UK
| | - Ben Bolduc
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Adriana Alberti
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France; Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France
| | - Mathieu Ardyna
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefanche, LOV, 06230 Villefranche-sur-mer, France
| | - Ksenia Arkhipova
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, the Netherlands
| | - Margaux Carmichael
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M ECOMAP, 29680 Roscoff, France; Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France
| | - Corinne Cruaud
- CEA-Institut de Biologie François Jacob, Genoscope, Evry 91057, France; Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France
| | - Céline Dimier
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefanche, LOV, 06230 Villefranche-sur-mer, France; Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France; Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France
| | | | - Joannie Ferland
- Département de biologie, Québec Océan and Takuvik Joint International Laboratory (UMI 3376), Université Laval (Canada)-CNRS (France), Université Laval, Québec, QC G1V 0A6, Canada
| | - Stefanie Kandels
- Structural and Computational Biology, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; Directors' Research, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Yunxiao Liu
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Claudie Marec
- Département de biologie, Québec Océan and Takuvik Joint International Laboratory (UMI 3376), Université Laval (Canada)-CNRS (France), Université Laval, Québec, QC G1V 0A6, Canada
| | - Stéphane Pesant
- PANGAEA, Data Publisher for Earth and Environmental Science, University of Bremen, 28359 Bremen, Germany; MARUM, Bremen University, 28359 Bremen, Germany
| | - Marc Picheral
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefanche, LOV, 06230 Villefranche-sur-mer, France; Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France
| | - Sergey Pisarev
- Shirshov Institute of Oceanology of Russian Academy of Sciences, 36 Nakhimovsky prosp, 117997 Moscow, Russia
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France; Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France
| | - Jean-Éric Tremblay
- Département de biologie, Québec Océan and Takuvik Joint International Laboratory (UMI 3376), Université Laval (Canada)-CNRS (France), Université Laval, Québec, QC G1V 0A6, Canada
| | - Dean Vik
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Marcel Babin
- Département de biologie, Québec Océan and Takuvik Joint International Laboratory (UMI 3376), Université Laval (Canada)-CNRS (France), Université Laval, Québec, QC G1V 0A6, Canada
| | - Chris Bowler
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France; Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France
| | - Alexander I Culley
- Département de biochimie, microbiologie et bio-informatique, Université Laval, Québec, QC G1V 0A6, Canada
| | - Colomban de Vargas
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M ECOMAP, 29680 Roscoff, France; Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France
| | - Bas E Dutilh
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, the Netherlands; Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Daniele Iudicone
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Lee Karp-Boss
- School of Marine Sciences, University of Maine, Orono, ME, USA
| | - Simon Roux
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, 8093 Zurich, Switzerland
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France; Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA; Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
50
|
Bin Jang H, Bolduc B, Zablocki O, Kuhn JH, Roux S, Adriaenssens EM, Brister JR, Kropinski AM, Krupovic M, Lavigne R, Turner D, Sullivan MB. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat Biotechnol 2019; 37:632-639. [PMID: 31061483 DOI: 10.1038/s41587-019-0100-8] [Citation(s) in RCA: 520] [Impact Index Per Article: 86.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 03/11/2019] [Indexed: 01/03/2023]
Abstract
Microbiomes from every environment contain a myriad of uncultivated archaeal and bacterial viruses, but studying these viruses is hampered by the lack of a universal, scalable taxonomic framework. We present vConTACT v.2.0, a network-based application utilizing whole genome gene-sharing profiles for virus taxonomy that integrates distance-based hierarchical clustering and confidence scores for all taxonomic predictions. We report near-identical (96%) replication of existing genus-level viral taxonomy assignments from the International Committee on Taxonomy of Viruses for National Center for Biotechnology Information virus RefSeq. Application of vConTACT v.2.0 to 1,364 previously unclassified viruses deposited in virus RefSeq as reference genomes produced automatic, high-confidence genus assignments for 820 of the 1,364. We applied vConTACT v.2.0 to analyze 15,280 Global Ocean Virome genome fragments and were able to provide taxonomic assignments for 31% of these data, which shows that our algorithm is scalable to very large metagenomic datasets. Our taxonomy tool can be automated and applied to metagenomes from any environment for virus classification.
Collapse
Affiliation(s)
- Ho Bin Jang
- Department of Microbiology, Ohio State University, Columbus, OH, USA
| | - Benjamin Bolduc
- Department of Microbiology, Ohio State University, Columbus, OH, USA
| | - Olivier Zablocki
- Department of Microbiology, Ohio State University, Columbus, OH, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Simon Roux
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Evelien M Adriaenssens
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK.,Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - J Rodney Brister
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Andrew M Kropinski
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.,Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Mart Krupovic
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur, Paris, France
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, Faculty of BioScience Engineering, KU Leuven, Leuven, Belgium
| | - Dann Turner
- Centre for Research in Biosciences, Department of Applied Sciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, UK
| | - Matthew B Sullivan
- Department of Microbiology, Ohio State University, Columbus, OH, USA. .,Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH, USA.
| |
Collapse
|