1
|
Wang Z, Shang X, Wu Z, Wei J, Tian X, Zhang G. Identification of Behaviorally Active Odorants for Adult Chilo sacchariphagus Based on the Binding Properties of Odorant-Binding Proteins toward Host Volatiles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7669-7684. [PMID: 40110702 DOI: 10.1021/acs.jafc.4c13219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Chilo sacchariphagus is the key pest of sugar cane. Due to the difficulty associated with pesticide application in middle and late growth stages of sugar cane, the use of odorant attractants is a beneficial alternative to pesticides. Odorant-binding proteins (OBPs) in the insect olfactory system represent excellent targets for screening odorant attractants. Here, we identified 12 OBPs from the head transcriptome of C. sacchariphagus adults, with four OBPs (CsacOBP1/2/5/12) highly enriched in adult antennae. Ligand-binding assays for the four CsacOBPs showed that they can bind with 10 of the 30 host volatiles tested. Behavioral assays revealed that (+)-cedrol and 1-hexadecanol from the 10 compounds can attract the moths of both sexes. Protein-ligand interaction analyses identified five key amino acid residues involved in CsacOBPs' binding to (+)-cedrol and 1-hexadecanol. These findings have enhanced our molecular understanding of the host plant selection in C. sacchariphagus and have facilitated the development of attractants for C. sacchariphagus.
Collapse
Affiliation(s)
- Zhixiong Wang
- College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Xiankun Shang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Zixuan Wu
- College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Jili Wei
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Xiaoli Tian
- College of Life Science, Yangtze University, Jingzhou 434025, Hubei, China
| | - Guohui Zhang
- College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| |
Collapse
|
2
|
Chen M, Xu Z, Chen G, Chen P, Tian C, Qian J, Song T, Jin Y, Zhu G, Yan R. Functional Characterization of an Antenna-Biased Odorant Receptor AaOr96 Involved in Tea Tree Oil Repellency Against Aedes aegypti. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5829-5838. [PMID: 40014302 DOI: 10.1021/acs.jafc.4c12301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Numerous essential oils have been well acknowledged as eco-friendly alternatives to combat insect pests due to synthetic insecticide-induced pest resistance and environment pollution. As a highly commercial essential oil, tea tree oil exhibits excellent insecticidal and repellent activities. However, the molecular mechanism of the olfactory system mediating the tea tree oil-induced repellency against insect pests remains unknown. In our study, mosquito was used as a suitable model to examine the molecular mechanism of tea tree oil-induced repellency against insect pests. The results showed that tea tree oil exhibited excellent spatial and oviposition repellency against Aedes aegypti adults and outstanding repellency against larvae, which were conferred by the main constituent terpinen-4-ol. The reduced repellency in the Orco-/- mutant strain revealed that tea tree oil-induced repellency against mosquitoes was dependent on odorant receptor(s). Moreover, we identified one antenna-biased odorant receptor, AaOr96, that was involved in detecting constituents of tea tree oil to elicit repellency, and the predicted protein-ligand complex indicated that AaOr96 interacted with terpinen-4-ol via van der Waals forces from five key residues. Finally, knocking out AaOr96 resulted in a reduced spatial repellency against A. aegypti by tea tree oil and terpinen-4-ol, and a reduced oviposition repellency by terpinen-4-ol, but not by tea tree oil. Our study not only reveals that tea tree oil has great potential in pest management but also provides more insights into the molecular basis of repellency of essential oils.
Collapse
Affiliation(s)
- Mengli Chen
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhanyi Xu
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Guoxing Chen
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Peitong Chen
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Chunxia Tian
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Jiali Qian
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Tiefeng Song
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yongfeng Jin
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Guonian Zhu
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Ru Yan
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Feng HY, Zhao YQ, Yang T, Zhou YY, Gong LL, Zhang MQ, Ma YF, Hull JJ, Dewer Y, Zhang F, Smagghe G, He M, He P. Female contact sex pheromone recognition in the German cockroach (Blattella germanica) is mediated by two male antennae-enriched sensory neuron membrane proteins. PEST MANAGEMENT SCIENCE 2025; 81:572-584. [PMID: 39506909 DOI: 10.1002/ps.8530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/06/2024] [Accepted: 09/15/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND The German cockroach Blattella germanica is a notorious urban health pest that has developed resistance to multiple pesticides. Thus, novel non-lethal pest control agents are urgently needed. Olfaction interference via disruption of sex pheromone recognition-related genes offers a promising approach. The German cockroach has a unique courtship behavior in which female adults emit contact sex pheromones (CSPs) in response to antennal touching, which subsequently triggers distinctive male sex behavioral responses. Due to the limited volatility of CSPs, the molecular mechanisms underlying their recognition and the specific olfactory pathways activated remain poorly defined. Although the odorant receptor coreceptor (Orco) is critical for most insect olfaction, sensory neuron membrane proteins (SNMPs), in particular SNMP1, also play crucial roles in sex pheromone recognition in moths and flies. While multiple SNMP1 homologs have been identified in multiple insect species, they have yet to be fully functionally characterized in cockroaches. RESULTS In this study, RNA-interference (RNAi)-mediated knockdown of BgerOrco reduced both the electrophysiology responses and courtship behaviors of males, indicating CSP perception proceeds via an olfaction pathway. Similar RNAi knockdown of BgerSNMP1e and BgerSNMP1d, which are predominantly expressed in male antennae, revealed critical roles in perceiving the major component of the Blattella germanica CSP blend. Unlike BgerSNMP1e, BgerSNMP1d was also found to function in the perception of the minor CSP component. Molecular docking analyses revealed no differences in the binding affinities of BgerSNMP1d for the major and minor CSP components, whereas the binding affinities of BgerSNMP1e displayed clear selectivity for the major component. CONCLUSION Our results show that the olfactory pathway is critical for CSP recognition and that two male-enriched SNMP genes, BgerSNMP1e and BgerSNMP1d, are crucial factors mediating the male response to CSP stimulation in German cockroaches. This study lays a foundation for studying the mechanisms of CSP recognition and provides novel molecular targets with potential to be exploited as disruptors of courtship behavior. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hong-Yan Feng
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, P. R. China
| | - Ya-Qin Zhao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, P. R. China
| | - Tao Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, P. R. China
| | - Yang-Yuntao Zhou
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, P. R. China
| | - Lang-Lang Gong
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, P. R. China
| | - Meng-Qi Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, P. R. China
| | - Yun-Feng Ma
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, P. R. China
| | - J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ, USA
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Giza, Egypt
| | - Fan Zhang
- College of Life Science, Shandong Normal University, Jinan, P. R. China
| | - Guy Smagghe
- Institute Entomology, Guizhou University, Guiyang, P. R. China
- Department of Plants and Crops, Ghent University, Ghent, Belgium
- Department of Biology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Ming He
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, P. R. China
| | - Peng He
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, P. R. China
| |
Collapse
|
4
|
Xiao Y, Lei CM, Yin F, Peng ZK, Zhang YJ, Zalucki MP, Li ZY. Molecular evidence for the role of the ovipositor of the fall armyworm: Where to lay or not to lay? INSECT SCIENCE 2025. [PMID: 39835427 DOI: 10.1111/1744-7917.13491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/08/2024] [Accepted: 10/27/2024] [Indexed: 01/22/2025]
Abstract
Oviposition behavior in insects has received considerable attention, but studies have mainly focused on the antennae, neglecting the role of the ovipositor. In this study, we investigated the functional characteristics of the ovipositor in oviposition site selection by the fall armyworm (FAW) Spodoptera frugiperda, a destructive invasive pest of maize and other cereals. In oviposition choice assays females exhibited significant repellency to isothiocyanate (ITC), volatiles specific to non-preferred cruciferous plants. Females retained repellency to ITC or attraction to maize volatiles even after antennae removal. Scanning electron microscopy indicated the presence of olfactory-associated sensilla on the ovipositor. Comparative transcriptome analysis and in vitro functional studies showed that S. frugiperda odorant binding protein 30 (SfruOBP30), exclusively expressed in the ovipositor, displayed a broad sensitivity toward 18 maize volatiles and 10 ITC compounds. Site-directed mutant assay revealed that Ser71 and Ser85 were the key binding sites for SfruOBP30 interacting with ITCs and key maize volatiles, respectively. Silencing the expression of SfruOBP30 resulted in the loss of bias in oviposition of FAW, significantly inhibiting their ability to avoid ITCs and locate the maize substrate. Overall, we propose that the ovipositor does not just seek out advantageous conditions for immature stages but more importantly, avoids potential risks during the oviposition process. Apparently, the involvement of SfruOBP30 plays a critical role in detecting both beneficial and harmful substances during this intricate process.
Collapse
Affiliation(s)
- Yong Xiao
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Chun-Mei Lei
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
- Institute of Biological Control, Jilin Agricultural University, Engineering Research Center of Biological Control in Jilin province, Changchun, China
| | - Fei Yin
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Zheng-Ke Peng
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Yong-Jun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Myron P Zalucki
- School of the Environment, The University of Queensland, St Lucia, Queensland, Australia
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Zhen-Yu Li
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| |
Collapse
|
5
|
Zhang XT, Luan XP, Wei JH, Zhang PP, Guo JM, Keesey IW, Gao Y, Yan Q, Zhang J, Dong SL. Identification of a Soybean Volatile Attractive for Riptortus pedestris Using Reverse Chemical Ecology Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27084-27093. [PMID: 39601774 DOI: 10.1021/acs.jafc.4c07789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The bean bug Riptortus pedestris is a major soybean pest and a cause of the stay-green symptoms. However, the molecular mechanisms underlying its olfaction-mediated host-seeking behavior remain unclear. In this study, we compared the antennae transcriptomes of starved and nonstarved adult R. pedestris, identifying four differentially expressed odorant receptor (OR) genes. Among these, RpedOR13 showed a strong response to the host volatile 2-phenylethanol (2-PE) in Xenopus oocyte assays, while electroantennography and behavioral tests confirmed 2-PE as an effective attractant. Next, phylogenetic analysis identified RpedOR72b as a paralog of RpedOR13, with subsequent Xenopus oocyte assays confirming its specific response to 2-PE. Additionally, RNA interference experiments highlighted the crucial role of RpedOR72b in detecting 2-PE. Taken together, these findings provide new insights into the molecular mechanisms of host-seeking behavior in R. pedestris and highlight the successful application of reverse chemical ecology in OR-based screening of bioactive compounds.
Collapse
Affiliation(s)
- Xiao-Tong Zhang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuan-Pu Luan
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jia-Hang Wei
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Pan-Pan Zhang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin-Meng Guo
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Ian W Keesey
- School of Biological Sciences, University of Nebraska-Lincoln (UNL), Lincoln, Nebraska 68588, United States
| | - Yu Gao
- College of Plant Protection, Jilin Agricultural University, Changchun 130062, China
| | - Qi Yan
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin Zhang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
| | - Shuang-Lin Dong
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
6
|
Huang C, Ou X, Wang Y, Zhou Y, Zhang G, Liu W, Wan F, Jiang H, Zhang Y. Genome-Wide Identification, Evolution, and Female-Biased Expression Analysis of Odorant Receptors in Tuta absoluta (Lepidoptera: Gelechiidae). Life (Basel) 2024; 14:872. [PMID: 39063624 PMCID: PMC11277591 DOI: 10.3390/life14070872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae), is a highly destructive invasive pest targeting Solanaceae crops. Its olfactory system plays a crucial role in host location, mate finding, and other behavioral activities. However, there is a notable gap in the literature regarding the characterization of its chemosensory genes. In this study, we conducted a genome-wide identification of 58 odorant receptors (ORs) of T. absoluta. The identified ORs exhibit coding sequence (CDS) lengths ranging from 1062 bp to 1419 bp, encoding proteins of 354 to 473 amino acids. Gene structure analysis showed that the majority of these ORs consist of five, seven, eight, or nine exons, collectively representing 67% of the total ORs identified. Through chromosomal mapping, we identified several tandemly duplicate genes, including TabsOR12a, TabsOR12b, TabsOR12c, TabsOR21a, TabsOR21b, TabsOR34a, TabsOR34b, TabsOR34c, TabsOR62a, and TabsOR62b. The phylogenetic analysis indicated that six TabsORs were clustered within the lepidopteran sex pheromone receptor clade, while an expansion clade containing ten TabsORs resulted from tandem duplication events. Additionally, five TabsORs were classified into a specific OR clade in T. absoluta. Furthermore, through RNA-Seq and RT-qPCR analyses, we identified five TabsORs (TabsOR21a, TabsOR26a, TabsOR34a, TabsOR34c, and TabsOR36) exhibiting female-antennae-biased expression. Our study provides a valuable foundation to further investigations into the molecular and ecological functions of TabsORs, particularly in relation to oviposition behavior. These findings provide foundational data for the future exploration of the functions of female-biased expression OR genes in T. absoluta, thereby facilitating the further development of eco-friendly attract-and-kill techniques for the prevention and control of T. absoluta.
Collapse
Affiliation(s)
- Cong Huang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; (C.H.); (X.O.)
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.W.); (Y.Z.); (G.Z.); (W.L.); (F.W.)
| | - Xiaolan Ou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; (C.H.); (X.O.)
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.W.); (Y.Z.); (G.Z.); (W.L.); (F.W.)
| | - Yusheng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.W.); (Y.Z.); (G.Z.); (W.L.); (F.W.)
| | - Yanan Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.W.); (Y.Z.); (G.Z.); (W.L.); (F.W.)
| | - Guifen Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.W.); (Y.Z.); (G.Z.); (W.L.); (F.W.)
| | - Wanxue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.W.); (Y.Z.); (G.Z.); (W.L.); (F.W.)
| | - Fanghao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.W.); (Y.Z.); (G.Z.); (W.L.); (F.W.)
| | - Hongbo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; (C.H.); (X.O.)
| | - Yibo Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.W.); (Y.Z.); (G.Z.); (W.L.); (F.W.)
| |
Collapse
|
7
|
Yan R, Chen P, Xu Z, Qian J, Zhu G, Jin Y, Chen B, Chen M. A potential link between aromatics-induced oviposition repellency behaviors and specific odorant receptor of Aedes albopictus. PEST MANAGEMENT SCIENCE 2024; 80:3603-3611. [PMID: 38458148 DOI: 10.1002/ps.8064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/21/2024] [Accepted: 03/07/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND The Asian tiger mosquito, Aedes albopictus, is a competent vector for the spread of several viral arboviruses including dengue, chikungunya, and Zika. Several vital mosquito behaviors linked to survival and reproduction are primarily dependent on a sophisticated olfactory system for semiochemical perception. However, a limited number of studies has hampered our understanding of the relationship between the A. albopictus acute olfactory system and the complex chemical world. RESULTS Here, we performed a qRT-PCR assay on antennae from A. albopictus of differing sex, age and physiological states, and found that AalbOr10 was enriched in blood-fed female mosquitoes. We then undertook single sensillum recording to de-orphan AalbOr10 using a panel of physiologically and behaviorally relevant odorants in a Drosophila 'empty neuron' system. The results indicated that AalbOr10 was activated by seven aromatic compounds, all of which hampered egg-laying in blood-fed mosquitoes. Furthermore, using a post-RNA interference oviposition assay, we found that reducing the transcript level of AalbOr10 affected repellent activity mediated by 2-ethylphenol at low concentrations (10-4 vol/vol). Computational modeling and molecular docking studies suggested that hydrogen bonds to Y68 and Y150 mediated the interaction of 2-ethylphenol with AalbOr10. CONCLUSION We reveal a potential link between aromatics-induced oviposition repellency behaviors and a specific odorant receptor in A. albopictus. Our findings provide a foundation for identifying active semiochemicals for the monitoring or controlling of mosquito populations. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ru Yan
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Peitong Chen
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Zhanyi Xu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Jiali Qian
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Yongfeng Jin
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Bosheng Chen
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Mengli Chen
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
8
|
Antony B, Montagné N, Comte A, Mfarrej S, Jakše J, Capoduro R, Shelke R, Cali K, AlSaleh MA, Persaud K, Pain A, Jacquin-Joly E. Deorphanizing an odorant receptor tuned to palm tree volatile esters in the Asian palm weevil sheds light on the mechanisms of palm tree selection. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 169:104129. [PMID: 38704126 DOI: 10.1016/j.ibmb.2024.104129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/06/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
The Asian palm weevil, Rhynchophorus ferrugineus, is a tremendously important agricultural pest primarily adapted to palm trees and causes severe destruction, threatening sustainable palm cultivation worldwide. The host plant selection of this weevil is mainly attributed to the functional specialization of odorant receptors (ORs) that detect palm-derived volatiles. Yet, ligands are known for only two ORs of R. ferrugineus, and we still lack information on the mechanisms of palm tree detection. This study identified a highly expressed antennal R. ferrugineus OR, RferOR2, thanks to newly generated transcriptomic data. The phylogenetic analysis revealed that RferOR2 belongs to the major coleopteran OR group 2A and is closely related to a sister clade containing an R. ferrugineus OR (RferOR41) tuned to the non-host plant volatile and antagonist, α-pinene. Functional characterization of RferOR2 via heterologous expression in Drosophila olfactory neurons revealed that this receptor is tuned to several ecologically relevant palm-emitted odors, most notably ethyl and methyl ester compounds, but not to any of the pheromone compounds tested, including the R. ferrugineus aggregation pheromone. We did not evidence any differential expression of RferOR2 in the antennae of both sexes, suggesting males and females detect these compounds equally. Next, we used the newly identified RferOR2 ligands to demonstrate that including synthetic palm ester volatiles as single compounds and in combinations in pheromone-based mass trapping has a synergistic attractiveness effect to R. ferrugineus aggregation pheromone, resulting in significantly increased weevil catches. Our study identified a key OR from a palm weevil species tuned to several ecologically relevant palm volatiles and represents a significant step forward in understanding the chemosensory mechanisms of host detection in palm weevils. Our study also defines RferOR2 as an essential model for exploring the molecular basis of host detection in other palm weevil species. Finally, our work showed that insect OR deorphanization could aid in identifying novel behaviorally active volatiles that can interfere with weevil host-searching behavior in sustainable pest management applications.
Collapse
Affiliation(s)
- Binu Antony
- King Saud University, Chair of Date Palm Research, Center for Chemical Ecology and Functional Genomics, Department of Plant Protection, College of Food and Agricultural Sciences, Riyadh, 11451, Saudi Arabia.
| | - Nicolas Montagné
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, 78000, Versailles, France
| | - Arthur Comte
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, 78000, Versailles, France
| | - Sara Mfarrej
- King Abdullah University of Science and Technology (KAUST), Bioscience Programme, BESE Division, Thuwal, Jeddah, 23955-6900, Saudi Arabia
| | - Jernej Jakše
- University of Ljubljana, Biotechnical Faculty, Agronomy Department, SI-1000, Ljubljana, Slovenia
| | - Rémi Capoduro
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, 78000, Versailles, France
| | - Rajan Shelke
- Don Bosco College of Agriculture, Agricultural Entomology Department, Sulcorna, Goa, 403705, India
| | - Khasim Cali
- The University of Manchester, Department of Chemical Engineering, Manchester, M13 9PL, UK
| | - Mohammed Ali AlSaleh
- King Saud University, Chair of Date Palm Research, Center for Chemical Ecology and Functional Genomics, Department of Plant Protection, College of Food and Agricultural Sciences, Riyadh, 11451, Saudi Arabia
| | - Krishna Persaud
- The University of Manchester, Department of Chemical Engineering, Manchester, M13 9PL, UK
| | - Arnab Pain
- King Abdullah University of Science and Technology (KAUST), Bioscience Programme, BESE Division, Thuwal, Jeddah, 23955-6900, Saudi Arabia
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, 78000, Versailles, France
| |
Collapse
|
9
|
Chen Q, Liu Q, Chen Y, Du L, Zhu X, Yang Y, Zhao J, Wang Z, Song L, Li J, Ren B. Functional Characterization of the Niemann-Pick C2 Protein BdioNPC2b in the Parasitic Wasp Baryscapus dioryctriae (Chalcidodea: Eulophidae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7735-7748. [PMID: 38546111 DOI: 10.1021/acs.jafc.3c09095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Reverse chemical ecology has been widely applied for the functional characterization of olfactory proteins in various arthropods, but few related studies have focused on parasitic wasps. Here, the odorant carrier Niemann-Pick C2 protein of Baryscapus dioryctriae (BdioNPC2b) was studied in vitro and in vivo. Ligand binding analysis revealed that BdioNPC2b most strongly bound to 2-butyl-2-octenal and which compound could elicit an EAG response and attracted B. dioryctriae adults. Moreover, this odorant attractant significantly improved the reproductive efficiency of B. dioryctriae compared to that of the control. Then, the relationship between BdioNPC2b and 2-butyl-2-octenal was validated by RNAi, and site-directed mutagenesis revealed the involvement of three key residues of BdioNPC2b in binding to 2-butyl-2-octenal through hydrogen bonding. Our findings provide not only a deeper understanding of the olfactory function of NPC2 in wasps but also useful information for improving the performance of the parasitoid B. dioryctriae as a biological control agent.
Collapse
Affiliation(s)
- Qi Chen
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun 130024, China
| | - Qingxin Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun 130024, China
| | - Yuanxu Chen
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun 130024, China
| | - Lin Du
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun 130024, China
| | - Xiaoyan Zhu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun 130024, China
| | - Yi Yang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun 130024, China
| | - Jingyi Zhao
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun 130024, China
| | - Zizhuo Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun 130024, China
| | - Liwen Song
- Research Institute of Forest Protection, Jilin Provincial Academy of Forestry Sciences, Changchun 130033, China
| | - Jing Li
- Research Institute of Forest Protection, Jilin Provincial Academy of Forestry Sciences, Changchun 130033, China
| | - Bingzhong Ren
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
10
|
Xu L, Jiang HB, Yu JL, Lei Q, Pan D, Chen Y, Dong B, Liu Z, Wang JJ. An Odorant Receptor Expressed in Both Antennae and Ovipositors Regulates Benzothiazole-Induced Oviposition Behavior in Bactrocera dorsalis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6954-6963. [PMID: 38512330 DOI: 10.1021/acs.jafc.3c09557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The oriental fruit fly,Bactrocera dorsalis (Hendel), is a notorious pest of fruit crops, causing severe damage to fleshy fruits during oviposition and larval feeding. Gravid females locate suitable oviposition sites by detecting the host volatiles. Here, the oviposition preference of antenna-removed females and the electrophysiological response of ovipositors to benzothiazole indicated that both antennae and ovipositors are involved in perceiving benzothiazole. Subsequently, odorant receptors (ORs) expressed in both antennae and ovipositors were screened, and BdorOR43a-1 was further identified to respond to benzothiazole using voltage-clamp recording. Furthermore, BdorOR43a-1-/- mutants were obtained using the CRISPR/Cas9 system and their oviposition preference to benzothiazole was found to be significantly altered compared to WT females, suggesting that BdorOR43a-1 is one of the important ORs for benzothiazole perception. Our results not only demonstrate the important role of antennae and ovipositors in benzothiazole-induced oviposition but also elucidate on the OR responsible for benzothiazole perception in B. dorsalis.
Collapse
Affiliation(s)
- Li Xu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Hong-Bo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jie-Ling Yu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Quan Lei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Deng Pan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Yang Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Bao Dong
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Zhao Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
11
|
Wang P, Liu M, Lv C, Tian Z, Li R, Li Y, Zhang Y, Liu J. Identifying the Key Role of Plutella xylostella General Odorant Binding Protein 2 in Perceiving a Larval Attractant, ( E, E)-2,6-Farnesol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5690-5698. [PMID: 38447177 DOI: 10.1021/acs.jafc.4c00621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
There is currently a lack of effective olfaction-based techniques to control diamondback moth (DBM) larvae. Identifying behaviorally active odorants for DBM larvae and exploring their recognition mechanisms can provide insights into olfaction-based larval control strategies. Through the two-choice assay, (E,E)-2,6-farnesol (farnesol) was identified as a compound exhibiting significant attractant activity toward DBM larvae, achieving an attraction index of 0.48 ± 0.13. PxylGOBP1 and PxylGOBP2, highly expressed in the antennae of DBM larvae, both showed high affinity toward farnesol. RNAi technology was used to knock down PxylGOBP1 and PxylGOBP2, revealing that the attraction of DBM larvae to farnesol nearly vanished following the knockdown of PxylGOBP2, indicating its critical role in recognizing farnesol. Further investigation into the PxylGOBP2-farnesol interaction revealed the importance of residues like Thr9, Trp37, and Phe118 in PxylGOBP2's binding to farnesol. This research is significant for unveiling the olfactory mechanisms of DBM larvae and developing larval behavior regulation techniques.
Collapse
Affiliation(s)
- Pei Wang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Miao Liu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Changhong Lv
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhen Tian
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruichi Li
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yifan Li
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yalin Zhang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiyuan Liu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
12
|
Liu Y, Zhang S, Cao S, Jacquin-Joly E, Zhou Q, Liu Y, Wang G. An odorant receptor mediates the avoidance of Plutella xylostella against parasitoid. BMC Biol 2024; 22:61. [PMID: 38475722 DOI: 10.1186/s12915-024-01862-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 03/06/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Ecosystems are brimming with myriad compounds, including some at very low concentrations that are indispensable for insect survival and reproduction. Screening strategies for identifying active compounds are typically based on bioassay-guided approaches. RESULTS Here, we selected two candidate odorant receptors from a major pest of cruciferous plants-the diamondback moth Plutella xylostella-as targets to screen for active semiochemicals. One of these ORs, PxylOR16, exhibited a specific, sensitive response to heptanal, with both larvae and adult P. xylostella displaying heptanal avoidance behavior. Gene knockout studies based on CRISPR/Cas9 experimentally confirmed that PxylOR16 mediates this avoidance. Intriguingly, rather than being involved in P. xylostella-host plant interaction, we discovered that P. xylostella recognizes heptanal from the cuticular volatiles of the parasitoid wasp Cotesia vestalis, possibly to avoid parasitization. CONCLUSIONS Our study thus showcases how the deorphanization of odorant receptors can drive discoveries about their complex functions in mediating insect survival. We also demonstrate that the use of odorant receptors as a screening platform could be efficient in identifying new behavioral regulators for application in pest management.
Collapse
Affiliation(s)
- Yipeng Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Sai Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Song Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Emmanuelle Jacquin-Joly
- Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, UPEC, UniversitéParis Cité, 78026, Versailles, IRD, France
| | - Qiong Zhou
- College of Life Sciences, Hunan Normal University, Changsha, 410006, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| |
Collapse
|
13
|
Chen ZL, Li XS, Wei S, Yu TH, Zhao HY, Xu Q, Li XF, Peng H, Tang R. Inundative practice for screening siRNA management candidates against a notorious predatory beetle using olfactory silencing. Int J Biol Macromol 2024; 254:127505. [PMID: 37863136 DOI: 10.1016/j.ijbiomac.2023.127505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023]
Abstract
Calosoma maximoviczi, a predatory pest beetle, poses a significant threat to wild silk farm production due to its predation on wild silkworms. Given the coexistence of this species with beneficial silkworms in the farm orchards, chemical pesticides are not an ideal solution for controlling its population. In this study, we employed a comprehensive multi-target RNA interference (RNAi) approach to disrupt the olfactory perception of C. maximoviczi through independently silencing 16 odorant receptors (ORs) in the respective genders. Specifically, gene-specific siRNAs were designed to target a panel of ORs, allowing us to investigate the specific interactions between odorant receptors and ligands within this species. Our investigation led to identifying four candidate siOR groups that effectively disrupted the beetle's olfactory tracking of various odorant ligands associated with different trophic levels. Furthermore, we observed sex-specific differences in innate RNAi responses reflected by subsequent gene expression, physiological and behavioral consequences, underscoring the complexity of olfactory signaling and emphasizing the significance of considering species/sex-specific traits when implementing pest control measures. These findings advance our understanding of olfactory coding patterns in C. maximoviczi beetles and establish a foundation for future research in the field of pest management strategies.
Collapse
Affiliation(s)
- Zeng-Liang Chen
- Sericultural Institute of Liaoning Province, 108 Fengshan Road, Fengcheng 118100, China
| | - Xi-Sheng Li
- Sericultural Institute of Liaoning Province, 108 Fengshan Road, Fengcheng 118100, China
| | - Shuang Wei
- Guangzhou Customs Technology Center, Guangzhou 510632, China
| | - Ting-Hong Yu
- Sericultural Institute of Liaoning Province, 108 Fengshan Road, Fengcheng 118100, China
| | - Hong-Yu Zhao
- Sericultural Institute of Liaoning Province, 108 Fengshan Road, Fengcheng 118100, China
| | - Qiang Xu
- Guangzhou Customs Technology Center, Guangzhou 510632, China
| | - Xian-Feng Li
- Guangzhou Customs Technology Center, Guangzhou 510632, China
| | - Hui Peng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Rui Tang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China.
| |
Collapse
|
14
|
Li XM, Liu Q, Ma S, Yin MZ, Gu N, Qian LF, Zhang YN. Screening of behaviorally active compounds based on the interaction between two chemosensory proteins and mung bean volatiles in Callosobruchus chinensis. Int J Biol Macromol 2023; 250:126137. [PMID: 37544560 DOI: 10.1016/j.ijbiomac.2023.126137] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/09/2023] [Accepted: 08/02/2023] [Indexed: 08/08/2023]
Abstract
Chemosensory proteins (CSPs) are involved in the earliest steps of the olfactory process by binding and transporting odorants and play a crucial role in the insect's search for food and egg-laying sites. In the present study, the tissue expression profiles showed that both CchiCSP3 and CchiCSP5 of Callosobruchus chinensis were highly expressed in the adult antennae. Subsequently, the recombinant CchiCSP3 and CchiCSP5 proteins were analysed using fluorescence competitive binding assays, and both showed binding affinities for the three mung bean volatiles. Molecular docking and site-directed mutagenesis revealed four key amino acid residues in CchiCSP3 (L47, W80, Y81, and L84) and CchiCSP5 (Y28, K46, L49, and I72). Electroantennogram (EAG) and dual-choice biobehavioral assays showed that the antennae of adult C. chinensis were electrophysiologically active in response to stimulation with all three behaviorally active compounds and that octyl 4-methoxycinnamate and β-ionone had a significant luring effect on adult C. chinensis, whereas vanillin had a significant avoidance effect. Our study screened three effective behaviorally active compounds based on the involvement of two CchiCSPs in the recognition of mung bean volatiles, providing an opportunity to develop an alternative control strategy using behavioral disruptors to limit the impact of pests.
Collapse
Affiliation(s)
- Xiao-Ming Li
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Qiang Liu
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Sai Ma
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Mao-Zhu Yin
- Institute of Plant Protection, Suzhou Academy of Agricultural Sciences, Suzhou 234000, China
| | - Nan Gu
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Li-Fu Qian
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Ya-Nan Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| |
Collapse
|
15
|
Tian Z, Li R, Cheng S, Zhou T, Liu J. The Mythimna separata general odorant binding protein 2 (MsepGOBP2) is involved in the larval detection of the sex pheromone (Z)-11-hexadecenal. PEST MANAGEMENT SCIENCE 2023; 79:2005-2016. [PMID: 36680502 DOI: 10.1002/ps.7373] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/15/2023] [Accepted: 01/21/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Mythimna separata is a notorious pest causing crop damages at the larval stage. Gaining insight into larval olfaction mechanisms would provide knowledge for olfaction-based management of M. separata larvae. RESULTS In the present research, (Z)-11-hexadecenal (Z11-16: Ald), a major component of M. separata sex pheromone, was found to attract early-instar larvae of M. separata in a food context. Using a fluorescent binding assay, we found that M. separata general odorant binding protein 2 (MsepGOBP2) exhibited high binding affinity to Z11-16: Ald. Further, silencing of MsepGOBP2 resulted in a sharp reduction of the response to Z11-16: Ald, which could not be mitigated by increasing the concentration of Z11-16: Ald. Additionally, we employed molecular dynamics-based approaches to unravel the interaction details between MsepGOBP2 and Z11-16: Ald, specifically the binding of Z11-16: Ald to MsepGOBP2. CONCLUSION Z11-16: Ald is attractive to early-instar larvae of M. separata, and MsepGOBP2 is identified to be indispensable in the larval detection of Z11-16: Ald. These results could aid in the development of olfaction-based methods for controlling M. separata in the larval stage. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhen Tian
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Ruichi Li
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Shichang Cheng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Tong Zhou
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Jiyuan Liu
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
16
|
Wu C, Zhang F, Dewer Y, Zhang J, Li F. Exploration of Candidate Genes Involved in the Biosynthesis, Regulation and Recognition of the Male-Produced Aggregation Pheromone of Halyomorpha halys. INSECTS 2023; 14:163. [PMID: 36835732 PMCID: PMC9960045 DOI: 10.3390/insects14020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The aggregation pheromone of the brown marmorated stink bug, Halyomorpha halys (Stål), is produced by adult males, and plays an important role in the behavioral regulation of H. halys. However, information on the molecular mechanisms underlying this pheromone's biosynthesis is limited. In this study, HhTPS1, a key candidate synthase gene in the aggregation pheromone biosynthesis pathway of H. halys, was identified. Then, through weighted gene co-expression network analysis, the candidate P450 enzyme genes in the biosynthetic downstream of this pheromone and the related candidate transcription factor in this pathway were also identified. In addition, two olfactory-related genes, HhCSP5 and HhOr85b, involved in the recognition of the aggregation pheromone of H. halys, were detected. We further identified the key amino acid sites of HhTPS1 and HhCSP5 that interact with substrates by using molecular docking analysis. This study provides basic information for further investigations into the biosynthesis pathways and recognition mechanisms of aggregation pheromones in H. halys. It also provides key candidate genes for bioengineering bioactive aggregation pheromones necessary for the development of technologies for the monitoring and control of H. halys.
Collapse
Affiliation(s)
- Chunyan Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Feng Zhang
- MARA-CABI Joint Laboratory for Bio-Safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Youssef Dewer
- Central Agricultural Pesticide Laboratory, Agricultural Research Center, Phytotoxicity Research Department, Dokki, Giza 12618, Egypt
| | - Jinping Zhang
- MARA-CABI Joint Laboratory for Bio-Safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengqi Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
17
|
Abstract
Among the many wonders of nature, the sense of smell of the fly Drosophila melanogaster might seem, at first glance, of esoteric interest. Nevertheless, for over a century, the 'nose' of this insect has been an extraordinary system to explore questions in animal behaviour, ecology and evolution, neuroscience, physiology and molecular genetics. The insights gained are relevant for our understanding of the sensory biology of vertebrates, including humans, and other insect species, encompassing those detrimental to human health. Here, I present an overview of our current knowledge of D. melanogaster olfaction, from molecules to behaviours, with an emphasis on the historical motivations of studies and illustration of how technical innovations have enabled advances. I also highlight some of the pressing and long-term questions.
Collapse
Affiliation(s)
- Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
18
|
Zaremska V, Chidhambaram M, Archunan G, Knoll W, Pelosi P. Reverse chemical ecology indicates long-chain aldehydes as new potential semiochemicals for the African elephant Loxodonta africana. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1061278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chemical communication between sexes in the elephants has been well studied at the chemical and behavioural levels, but little is known about the proteins mediating the exchange of chemical signals. Two sex pheromones have been identified in Asian elephants: (Z)-7-dodecenyl acetate and frontalin, and their effects on the elephants’ behaviour have been described in detail. The genomes of both the Asian (Elephas maximus) and the African elephant (Loxodonta africana) have been poorly annotated. In particular, the complete sequences of two odorant-binding proteins and a VEG protein are available for the African elephant, together with isoforms and other members of the same families, which however are incomplete or unreliable. In a previous study, we have expressed the OBP1 of both elephant species, and investigated their binding properties. We showed that OBP1 is tuned to the pheromone (Z)-7-dodecenyl acetate and few structurally related linear esters, but also binds (E)-β-farnesene and farnesol with good affinity. In this work we have explored the characteristics of the second OBP of the African elephant (LafrOBP2). This protein, which was not found in the trunk wash, does not bind any of the above listed semiochemicals. Instead, it shows selected affinity to unsaturated linear aldehydes of 16 carbon atoms, specifically (Z)-9-hexadecenal, (Z)-11-hexadecenal and (10E,12Z)-hexadecadienal (bombykal). Fourteen and 18 carbon orthologues show only much reduced binding affinity. Some linear alcohols, fatty acids and esters also weakly bind this protein with dissociation constants about one order of magnitude higher.
Collapse
|
19
|
Franco FP, Xu P, Harris BJ, Yarov-Yarovoy V, Leal WS. Single amino acid residue mediates reciprocal specificity in two mosquito odorant receptors. eLife 2022; 11:e82922. [PMID: 36511779 PMCID: PMC9799979 DOI: 10.7554/elife.82922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
The southern house mosquito, Culex quinquefasciatus, utilizes two odorant receptors, CquiOR10 and CquiOR2, narrowly tuned to oviposition attractants and well conserved among mosquito species. They detect skatole and indole, respectively, with reciprocal specificity. We swapped the transmembrane (TM) domains of CquiOR10 and CquiOR2 and identified TM2 as a specificity determinant. With additional mutations, we showed that CquiOR10A73L behaved like CquiOR2. Conversely, CquiOR2L74A recapitulated CquiOR10 specificity. Next, we generated structural models of CquiOR10 and CquiOR10A73L using RoseTTAFold and AlphaFold and docked skatole and indole using RosettaLigand. These modeling studies suggested space-filling constraints around A73. Consistent with this hypothesis, CquiOR10 mutants with a bulkier residue (Ile, Val) were insensitive to skatole and indole, whereas CquiOR10A73G retained the specificity to skatole and showed a more robust response than the wildtype receptor CquiOR10. On the other hand, Leu to Gly mutation of the indole receptor CquiOR2 reverted the specificity to skatole. Lastly, CquiOR10A73L, CquiOR2, and CquiOR2L74I were insensitive to 3-ethylindole, whereas CquiOR2L74A and CquiOR2L74G gained activity. Additionally, CquiOR10A73G gave more robust responses to 3-ethylindole than CquiOR10. Thus, we suggest the specificity of these receptors is mediated by a single amino acid substitution, leading to finely tuned volumetric space to accommodate specific oviposition attractants.
Collapse
Affiliation(s)
- Flavia P Franco
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Pingxi Xu
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Brandon J Harris
- Department of Physiology and Membrane Biology, University of California, DavisDavisUnited States
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California, DavisDavisUnited States
- Department of Anesthesiology and Pain Medicine, University of California, DavisDavisUnited States
| | - Walter S Leal
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| |
Collapse
|
20
|
Abstract
Sex pheromones are pivotal for insect reproduction. However, the mechanism of sex pheromone communication remains enigmatic in hymenopteran parasitoids. Here we have identified the sex pheromone and elucidated the olfactory basis of sex pheromone communication in Campoletis chlorideae (Ichneumonidae), a solitary larval endoparasitoid of over 30 lepidopteran pests. Using coupled gas chromatography-electroantennogram detection, we identified two female-derived pheromone components, tetradecanal (14:Ald) and 2-heptadecanone (2-Hep) (1:4.6), eliciting strong antennal responses from males but weak responses from females. We observed that males but not females were attracted to both single components and the blend. The hexane-washed female cadavers failed to arouse males, and replenishing 14:Ald and 2-Hep could partially restore the sexual attraction of males. We further expressed six C. chlorideae male-biased odorant receptors in Drosophila T1 neurons and found that CchlOR18 and CchlOR47 were selectively tuned to 14:Ald and 2-Hep, respectively. To verify the biological significance of this data, we knocked down CchlOR18 and CchlOR47 individually or together in vivo and show that the attraction of C. chlorideae to their respective ligands was abolished. Moreover, the parasitoids defective in either of the receptors were less likely to court and copulate. Finally, we show that the sex pheromone and (Z)-jasmone, a potent female attractant, can synergistically affect behaviors of virgin males and virgin females and ultimately increase the parasitic efficiency of C. chlorideae. Our study provides new insights into the molecular mechanism of sex pheromone communication in C. chlorideae that may permit manipulation of parasitoid behavior for pest control.
Collapse
|
21
|
Lu W, Leal WS, Brisco KK, An S, Cornel AJ. A highly expressed odorant receptor from the yellow fever mosquito, AaegOR11, responds to (+)- and (-)-fenchone and a phenolic repellent. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 151:103866. [PMID: 36347453 PMCID: PMC10540613 DOI: 10.1016/j.ibmb.2022.103866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/25/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
The cornerstone of the reverse chemical ecology approach is the identification of odorant receptors (OR) sensitive to compounds in a large panel of odorants. In this approach, we de-orphanize ORs and, subsequently, measure behaviors elicited by these semiochemicals. After that, we evaluate behaviorally active compounds for applications in insect vector management. Intriguingly, multiple ORs encoded by genes highly expressed in mosquito antennae do not respond to any test odorant. One such case is CquiOR125 from the southern house mosquito, Culex quinquefasciatus Say. To better understand CquiOR125's role in Culex mosquito olfaction, we have cloned a CquiOR125 orthologue in the genome of the yellow fever mosquito, Aedes aegypti (L.), AaegOR11. Unlike the unresponsive nature of the orthologue in Cx. quinquefasciatus, oocytes co-expressing AaegOR11 and AaegOrco elicited robust responses when challenged with fenchone, 2,3-dimethylphenol, 3,4-dimethylphenol, 4-methycyclohexanol, and acetophenone. Interestingly, AaegOR11 responded strongly and equally to (+)- and (-)-fenchone, with no chiral discrimination. Contrary to reports in the literature, fenchone did not show any repellency activity against Ae. aegypti or Cx. quinquefasciatus. Laboratory and field tests did not show significant increases in egg captures in cups filled with fenchone solutions compared to control cups. The second most potent ligand, 2,3-dimethylphenol, showed repellency activity stronger than that elicited by DEET at the same dose. We, therefore, concluded that AaegOR11 is a mosquito repellent sensor. It is feasible that CquiOR125 responds to repellents that remain elusive.
Collapse
Affiliation(s)
- WeiYu Lu
- Department of Molecular and Cellular Biology, University of California-Davis, Davis, CA, 95616, USA
| | - Walter S Leal
- Department of Molecular and Cellular Biology, University of California-Davis, Davis, CA, 95616, USA.
| | - Katherine K Brisco
- Department of Entomology and Nematology, Mosquito Control Research Laboratory, University of California-Davis, 9240 S Riverbend Ave., Parlier, CA, 93648, USA
| | - Sunny An
- Department of Molecular and Cellular Biology, University of California-Davis, Davis, CA, 95616, USA
| | - Anthony J Cornel
- Department of Entomology and Nematology, Mosquito Control Research Laboratory, University of California-Davis, 9240 S Riverbend Ave., Parlier, CA, 93648, USA
| |
Collapse
|
22
|
Portilla Pulido JS, Urbina Duitama DL, Velasquez-Martinez MC, Mendez-Sanchez SC, Duque JE. Differentiation of action mechanisms between natural and synthetic repellents through neuronal electroantennogram and proteomic in Aedes aegypti (Diptera: Culicidae). Sci Rep 2022; 12:20397. [PMID: 36437275 PMCID: PMC9701785 DOI: 10.1038/s41598-022-24923-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Natural-based compounds with repellent activity arise nowadays with the possibility to replace commercial synthetic repellents wholly or partially, such as N,N-Diethyl-m-toluamide (DEET). It is due to DEET's demonstrated toxicity and cutaneous irritation for human beings. Besides, research recommends avoiding using it with kids and pregnant women. The search for a repellent product implies early stages of detailed research that resolve the modes of action against the target insect. Therefore the objective of the current study was to analyze neuronal electrophysiological signals and olfactory system protein expression when the Aedes aegypti mosquito with exposition to natural-based repellents. Adult females of Ae. aegypti of Rockefeller strain were exposed to specific concentrations of repellent compounds like geranyl acetate, α-bisabolol, nerolidol, and DEET. The neuronal effect was measured by electroantennography technique, and the effect of exposure to either DEET or a mixture of natural molecules on protein expression was determined with 2D-PAGE followed by MALDI-TOF-mass spectrometry (MS). This approach revealed that DEET affected proteins related to synapses and ATP production, whereas natural-based repellents increased transport, signaling, and detoxification proteins. The proteomic and electrophysiology experiments demonstrated that repellent exposure disrupts ionic channel activity and modifies neuronal synapse and energy production processes.
Collapse
Affiliation(s)
- Johan Sebastián Portilla Pulido
- grid.411595.d0000 0001 2105 7207Grupo de Investigación en Bioquímica y Microbiología (GIBIM), Facultad de ciencias, Escuela de Química, Universidad Industrial de Santander, Bucaramanga, Colombia ,grid.411595.d0000 0001 2105 7207Departamento de Ciencias Básicas, Centro de Investigaciones en Enfermedades Tropicales-CINTROP, Facultad de Salud, Escuela de Medicina, Universidad Industrial de Santander, Bucaramanga, Santander Colombia
| | - Diana Lizeth Urbina Duitama
- grid.411595.d0000 0001 2105 7207Grupo de Investigación en Bioquímica y Microbiología (GIBIM), Facultad de ciencias, Escuela de Química, Universidad Industrial de Santander, Bucaramanga, Colombia ,grid.411595.d0000 0001 2105 7207Departamento de Ciencias Básicas, Centro de Investigaciones en Enfermedades Tropicales-CINTROP, Facultad de Salud, Escuela de Medicina, Universidad Industrial de Santander, Bucaramanga, Santander Colombia
| | - María Carolina Velasquez-Martinez
- grid.411595.d0000 0001 2105 7207Departamento de Ciencias Básicas, Grupo de investigación en Neurociencias y Comportamiento UIS-UPB, Facultad de Salud, Escuela de Medicina, Universidad Industrial de Santander, Bucaramanga, Santander Colombia
| | - Stelia Carolina Mendez-Sanchez
- grid.411595.d0000 0001 2105 7207Grupo de Investigación en Bioquímica y Microbiología (GIBIM), Facultad de ciencias, Escuela de Química, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Jonny Edward Duque
- grid.411595.d0000 0001 2105 7207Departamento de Ciencias Básicas, Centro de Investigaciones en Enfermedades Tropicales-CINTROP, Facultad de Salud, Escuela de Medicina, Universidad Industrial de Santander, Bucaramanga, Santander Colombia
| |
Collapse
|
23
|
Liu H, Sun X, Shi Z, An X, Khashaveh A, Li Y, Gu S, Zhang Y. Identification and functional analysis of odorant-binding proteins provide new control strategies for Apolygus lucorum. Int J Biol Macromol 2022; 224:1129-1141. [DOI: 10.1016/j.ijbiomac.2022.10.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/05/2022]
|
24
|
Lizana P, Mutis A, Quiroz A, Venthur H. Insights Into Chemosensory Proteins From Non-Model Insects: Advances and Perspectives in the Context of Pest Management. Front Physiol 2022; 13:924750. [PMID: 36072856 PMCID: PMC9441497 DOI: 10.3389/fphys.2022.924750] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/13/2022] [Indexed: 12/04/2022] Open
Abstract
Nowadays, insect chemosensation represents a key aspect of integrated pest management in the Anthropocene epoch. Olfaction-related proteins have been the focus of studies due to their function in vital processes, such ashost finding and reproduction behavior. Hence, most research has been based on the study of model insects, namely Drosophila melanogaster, Bombyx mori or Tribolium castaneum. Over the passage of time and the advance of new molecular techniques, insects considered non-models have been studied, contributing greatly to the knowledge of insect olfactory systems and enhanced pest control methods. In this review, a reference point for non-model insects is proposed and the concept of model and non-model insects is discussed. Likewise, it summarizes and discusses the progress and contribution in the olfaction field of both model and non-model insects considered pests in agriculture.
Collapse
Affiliation(s)
- Paula Lizana
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Ana Mutis
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Andrés Quiroz
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Herbert Venthur
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
25
|
Yang HH, Xu JW, Zhang XQ, Huang JR, Li LL, Yao WC, Zhao PP, Zhang D, Liu JY, Dewer Y, Zhu XY, Li XM, Zhang YN. AlepPBP2, but not AlepPBP3, may involve in the recognition of sex pheromones and maize volatiles in Athetis lepigone. BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:536-545. [PMID: 35199636 DOI: 10.1017/s0007485321001127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Athetis lepigone Möschler (Lepidoptera, Noctuidae) is a common maize pest in Europe and Asia. However, there is no long-term effective management strategy is available yet to suppress its population. Adults rely heavily on olfactory cues to locate their optimal host plants and oviposition sites. Pheromone-binding proteins (PBPs) are believed to be responsible for recognizing and transporting different odorant molecules to interact with receptor membrane proteins. In this study, the ligand-binding specificities of two AlepPBPs (AlepPBP2 and AlepPBP3) for sex pheromone components and host plant (maize) volatiles were measured by fluorescence ligand-binding assay. The results demonstrated that AlepPBP2 had a high affinity with two pheromones [(Z)-7-dodecenyl acetate, Ki = 1.11 ± 0.1 μM, (Z)-9-tetradecenyl acetate, Ki = 1.32 ± 0.15 μM] and ten plant volatiles, including (-)-limonene, α-pinene, myrcene, linalool, benzaldehyde, nonanal, 2-hexanone, 3-hexanone, 2-heptanone and 6-methyl-5-hepten-2-one. In contrast, we found that none of these chemicals could bind to AlepPBP3. Our results clearly show no significant differences in the functional characterization of the binding properties between AlepPBP2 and AlepPBP3 to sex pheromones and host plant volatiles. Furthermore, molecular docking was employed for further detail on some crucial amino acid residues involved in the ligand-binding of AlepPBP2. These findings will provide valuable information about the potential protein binding sites necessary for protein-ligand interactions which appear as attractive targets for the development of novel technologies and management strategies for insect pests.
Collapse
Affiliation(s)
- Hui-Hui Yang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Ji-Wei Xu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Xiao-Qing Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jian-Rong Huang
- Henan Key Laboratory of Crop Pest Control, MOA's Regional Key Lab of Crop IPM in Southern Part of Northern China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Lu-Lu Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Wei-Chen Yao
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Pan-Pan Zhao
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Dong Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Jia-Yi Liu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, China
- College of Information, Huaibei Normal University, Huaibei, China
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, 7 Nadi El-Seid Street, Dokki 12618, Giza, Egypt
| | - Xiu-Yun Zhu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Xiao-Ming Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Ya-Nan Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, China
| |
Collapse
|
26
|
Liu Y, Zhang S, Liu Y, Wang G. Odorant Receptor PxylOR11 Mediates Repellency of Plutella xylostella to Aromatic Volatiles. Front Physiol 2022; 13:938555. [PMID: 35910574 PMCID: PMC9326099 DOI: 10.3389/fphys.2022.938555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Insects can use plant volatiles to guide certain behaviors, such as courtship, mating, host positioning, and habitat selection. Plutella xylostella is a global agricultural pest and has always been closely studied, but relatively few studies assess the molecular mechanism of P. xylostella exposed to plant volatiles. In this study, we analyzed the role of the odorant receptor PxylOR11 when P. xylostella is exposed to plant volatiles. Our analysis of tissue expression demonstrated that PxylOR11 is expressed in the antennae and that expression levels in female moths were significantly higher than in male moths. Functional analyses using the Xenopus oocyte expression system demonstrated that PxylOR11 was tuned to three aromatic compounds: benzyl alcohol, salicylaldehyde, and phenylacetaldehyde. Electroantennogram analyses revealed that these three aromatic compounds can induce electrophysiological responses in the antennae of P. xylostella, and that the electroantennograms response value of female moths was significantly higher than that of male moths. Dual-choice bioassays demonstrated that the three aromatic compounds have a repellent effect on female P. xylostella. These results suggest that PxylOR11 has a role in mediating the repellent effect of aromatic volatiles on P. xylostella and can be used as a potential target to design novel olfactory regulators controlling P. xylostella.
Collapse
Affiliation(s)
- Yipeng Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sai Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Yang Liu, yangliu@ippcaas; Guirong Wang,
| | - Guirong Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Yang Liu, yangliu@ippcaas; Guirong Wang,
| |
Collapse
|
27
|
Xu P, Choo YM, Leal WS. Odorant inhibition in mosquito olfaction mediated by inverse agonists. Biochem Biophys Res Commun 2022; 609:156-162. [PMID: 35430419 PMCID: PMC10540603 DOI: 10.1016/j.bbrc.2022.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/05/2022] [Indexed: 11/02/2022]
Abstract
The insect repellent methyl salicylate elicits excitatory responses upon interaction with CquiOR32, an odorant receptor (OR) from the southern house mosquito, Culex quinquefasciatus. By contrast, eucalyptol binds to CquiOR32 to generate electrophysiological and behavioral inhibitory responses. In an attempt to identify CquiOR32 variants displaying more robust inhibitory responses for more accurate current-voltage analysis, we sequenced 31 CquiOR32 clones. In the Xenopus oocyte recording system, CquiOR32V2/CquiOrco-expressing oocytes yielded eucalyptol-elicited outward (inhibitory) currents relatively larger than methyl salicylate-generated inward (excitatory) currents. Rescuing experiments showed that two of the amino acid substitutions in CquiOR32V2 located in a predicted transmembrane helix of the receptor are determinants of the outward/inward ratios. These findings, along with co-stimulus assays, suggest that odorant and inhibitor may bind to the same binding pocket. Current-voltage relationships obtained with standard perfusion buffer and those devoid of Na+ or Cl- indicated that both excitatory and inhibitory currents are mediated, at least in part, by cation. We then concluded that eucalyptol is an inverse agonist, which shifts the open ⇔ closed equilibrium of the receptor toward the closed conformation, thus reducing the spontaneous activity. By contrast, the binding of methyl salicylate shifts the equilibrium towards the open conformation and, consequently, leads to an increase in cation influx.
Collapse
Affiliation(s)
- Pingxi Xu
- Department of Molecular and Cellular Biology, University of California-Davis, Davis, CA, 95616, USA
| | - Young-Moo Choo
- Department of Molecular and Cellular Biology, University of California-Davis, Davis, CA, 95616, USA
| | - Walter S Leal
- Department of Molecular and Cellular Biology, University of California-Davis, Davis, CA, 95616, USA.
| |
Collapse
|
28
|
Liu J, Zhou T, Li C, Li R, Ye X, Tian Z. Reverse chemical ecology guides the screening for Grapholita molesta pheromone synergists. PEST MANAGEMENT SCIENCE 2022; 78:643-652. [PMID: 34658157 DOI: 10.1002/ps.6674] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/28/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Pheromone-based management is a leading nonpesticidal strategy among integrated pest management options. Improving the potency of pheromone products by adding synergists would be a practical way to popularize pheromone-based management as well as to reduce pesticide use. RESULTS Using reverse chemical ecology, synergists for Grapholita molesta sex pheromone were screened. Combined molecular docking and in vitro binding assay led to the determination of four potentially active odorants showing high affinity to G. molesta pheromone binding protein 2 (GmolPBP2). Thereafter, the high affinity between Codlemone and GmolPBP2 was further verified by exploration of GmolPBP2-Codlemone interactions. As the only sex pheromone synergist validated by both laboratory behavioral tests and field trapping, Codlemone was used to optimize commercial sex attractants currently used in G. molesta control. The recommended formulation [(Z)-8-dodecenyl acetate:(E)-8-dodecenyl acetate:Codlemone = 95:4:10] was found to trap about five to six times more G. molesta adults than the commercial sex attractant [(Z)-8-dodecenyl acetate:(E)-8-dodecenyl acetate: (Z)-8-dodecenol = 95:4:1]. CONCLUSION Codlemone is an excellent pheromone synergist that can be potentially sensed by GmolPBP2, which can remarkably improve the potency of G. molesta sex attractants. It is believed that the introduction of reverse chemical ecology would increase the chance of discovering pheromone synergists, promoting the development of more efficacious pheromone products that can be used in controlling G. molesta and beyond. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiyuan Liu
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Tong Zhou
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Chaoxia Li
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Ruichi Li
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xuan Ye
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zhen Tian
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
29
|
Genome-wide identification and expression pattern analysis of novel chemosensory genes in the German cockroach Blattella germanica. Genomics 2022; 114:110310. [DOI: 10.1016/j.ygeno.2022.110310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 11/21/2022]
|
30
|
Zaremska V, Fischer IM, Renzone G, Arena S, Scaloni A, Knoll W, Pelosi P. Reverse Chemical Ecology Suggests Putative Primate Pheromones. Mol Biol Evol 2022; 39:msab338. [PMID: 34897488 PMCID: PMC8789041 DOI: 10.1093/molbev/msab338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Pheromonal communication is widespread among living organisms, but in apes and particularly in humans there is currently no strong evidence for such phenomenon. Among primates, lemurs use pheromones to communicate within members of the same species, whereas in some monkeys such capabilities seem to be lost. Chemical communication in humans appears to be impaired by the lack or malfunctioning of biochemical tools and anatomical structures mediating detection of pheromones. Here, we report on a pheromone-carrier protein (SAL) adopting a "reverse chemical ecology" approach to get insights on the structures of potential pheromones in a representative species of lemurs (Microcebus murinus) known to use pheromones, Old-World monkeys (Cercocebus atys) for which chemical communication has been observed, and humans (Homo sapiens), where pheromones and chemical communication are still questioned. We have expressed the SAL orthologous proteins of these primate species, after reconstructing the gene encoding the human SAL, which is disrupted due to a single base mutation preventing its translation into RNA. Ligand-binding experiments with the recombinant SALs revealed macrocyclic ketones and lactones as the best ligands for all three proteins, suggesting cyclopentadecanone, pentadecanolide, and closely related compounds as the best candidates for potential pheromones. Such hypothesis agrees with the presence of a chemical very similar to hexadecanolide in the gland secretions of Mandrillus sphinx, a species closely related to C. atys. Our results indicate that the function of this carrier protein has not changed much during evolution from lemurs to humans, although its physiological role has been certainly impaired in humans.
Collapse
Affiliation(s)
- Valeriia Zaremska
- Austrian Institute of Technology GmbH, Biosensor Technologies, Tulln, Austria
| | | | - Giovanni Renzone
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Napoli, Italy
| | - Simona Arena
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Napoli, Italy
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Napoli, Italy
| | - Wolfgang Knoll
- Austrian Institute of Technology GmbH, Biosensor Technologies, Tulln, Austria
- Department of Physics and Chemistry of Materials, Faculty of Medicine/Dental Medicine, Danube Private University, Krems, Austria
| | - Paolo Pelosi
- Austrian Institute of Technology GmbH, Biosensor Technologies, Tulln, Austria
| |
Collapse
|
31
|
Caballero-Vidal G, Bouysset C, Gévar J, Mbouzid H, Nara C, Delaroche J, Golebiowski J, Montagné N, Fiorucci S, Jacquin-Joly E. Reverse chemical ecology in a moth: machine learning on odorant receptors identifies new behaviorally active agonists. Cell Mol Life Sci 2021; 78:6593-6603. [PMID: 34448011 PMCID: PMC8558168 DOI: 10.1007/s00018-021-03919-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/23/2021] [Accepted: 08/11/2021] [Indexed: 12/03/2022]
Abstract
The concept of reverse chemical ecology (exploitation of molecular knowledge for chemical ecology) has recently emerged in conservation biology and human health. Here, we extend this concept to crop protection. Targeting odorant receptors from a crop pest insect, the noctuid moth Spodoptera littoralis, we demonstrate that reverse chemical ecology has the potential to accelerate the discovery of novel crop pest insect attractants and repellents. Using machine learning, we first predicted novel natural ligands for two odorant receptors, SlitOR24 and 25. Then, electrophysiological validation proved in silico predictions to be highly sensitive, as 93% and 67% of predicted agonists triggered a response in Drosophila olfactory neurons expressing SlitOR24 and SlitOR25, respectively, despite a lack of specificity. Last, when tested in Y-maze behavioral assays, the most active novel ligands of the receptors were attractive to caterpillars. This work provides a template for rational design of new eco-friendly semiochemicals to manage crop pest populations.
Collapse
Affiliation(s)
- Gabriela Caballero-Vidal
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, 78000, Versailles, France.,Disease Vector Group, Chemical Ecology Unit, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden.,Max Planck Centre Next Generation Chemical Ecology, Uppsala, Sweden
| | - Cédric Bouysset
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR7272, 28 avenue Valrose, 06108, Nice, France
| | - Jérémy Gévar
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, 78000, Versailles, France
| | - Hayat Mbouzid
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, 78000, Versailles, France
| | - Céline Nara
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, 78000, Versailles, France
| | - Julie Delaroche
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, 78000, Versailles, France
| | - Jérôme Golebiowski
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR7272, 28 avenue Valrose, 06108, Nice, France.,Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, South Korea
| | - Nicolas Montagné
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, 78000, Versailles, France.
| | - Sébastien Fiorucci
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR7272, 28 avenue Valrose, 06108, Nice, France.
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, 78000, Versailles, France.
| |
Collapse
|
32
|
Liu F, Chen Z, Ye Z, Liu N. The Olfactory Chemosensation of Hematophagous Hemipteran Insects. Front Physiol 2021; 12:703768. [PMID: 34434117 PMCID: PMC8382127 DOI: 10.3389/fphys.2021.703768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/09/2021] [Indexed: 11/13/2022] Open
Abstract
As one of the most abundant insect orders on earth, most Hemipteran insects are phytophagous, with the few hematophagous exceptions falling into two families: Cimicidae, such as bed bugs, and Reduviidae, such as kissing bugs. Many of these blood-feeding hemipteran insects are known to be realistic or potential disease vectors, presenting both physical and psychological risks for public health. Considerable researches into the interactions between hemipteran insects such as kissing bugs and bed bugs and their human hosts have revealed important information that deepens our understanding of their chemical ecology and olfactory physiology. Sensory mechanisms in the peripheral olfactory system of both insects have now been characterized, with a particular emphasis on their olfactory sensory neurons and odorant receptors. This review summarizes the findings of recent studies of both kissing bugs (including Rhodnius prolixus and Triatoma infestans) and bed bugs (Cimex lectularius), focusing on their chemical ecology and peripheral olfactory systems. Potential chemosensation-based applications for the management of these Hemipteran insect vectors are also discussed.
Collapse
Affiliation(s)
- Feng Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States.,Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Zhou Chen
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States.,Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Zi Ye
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States.,Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Nannan Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| |
Collapse
|
33
|
Wu L, Zhai X, Li L, Li Q, Liu F, Zhao H. Identification and Expression Profile of Chemosensory Genes in the Small Hive Beetle Aethina tumida. INSECTS 2021; 12:insects12080661. [PMID: 34442228 PMCID: PMC8396569 DOI: 10.3390/insects12080661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 11/16/2022]
Abstract
Aethina tumida is a parasite and predator of honeybee causing severe loss to the bee industry. No effective and environmentally friendly methods are available to control this pest at present. Chemosensory genes play key roles in insect behavior which can potentially be used as targets for developing environmentally friendly pest control agents. In this study, the putative chemosensory genes in antennae and forelegs of A. tumida involved in olfaction or contact chemical communication of adults were investigated using RNA transcriptome sequencing and PCR methods. Based on transcriptomic data, unigenes encoding 38 odorant receptors (ORs), 24 ionotropic receptors (IRs), 14 gustatory receptors (GRs), 3 sensory neuron membrane proteins (SNMPs), 29 odorant binding proteins (OBPs), and 22 chemosensory proteins (CSPs) were identified. The analyses of tissue expression profiles revealed that genes encoding 38 ORs, 13 antennal IRs, 11 GRs, 1 SNMP, 24 OBPs, and 12 CSPs were predominately expressed in antennae. No significant differences in expression levels of these genes were found between males and females. Genes encoding 5 non-NMDA iGluRs, 3 GRs, 2 SNMPs, 5 OBPs, and 12 CSPs were predominately expressed in forelegs. RT-PCR assays for SNMPs, OBPs and CSPs further revealed that 3 OBPs (AtumOBP3, 26 and 28) and 3 CSPs (AtumCSP7, 8 and 21) were highly expressed in antennae. Our results enrich the gene inventory of A. tumida and facilitate the discovery of potential novel targets for developing new pest control measures.
Collapse
Affiliation(s)
- Lixian Wu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (L.W.); (X.Z.); (L.L.); (Q.L.)
| | - Xin Zhai
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (L.W.); (X.Z.); (L.L.); (Q.L.)
| | - Liangbin Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (L.W.); (X.Z.); (L.L.); (Q.L.)
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Qiang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (L.W.); (X.Z.); (L.L.); (Q.L.)
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Fang Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (L.W.); (X.Z.); (L.L.); (Q.L.)
- Correspondence: (F.L.); (H.Z.)
| | - Hongxia Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (L.W.); (X.Z.); (L.L.); (Q.L.)
- Correspondence: (F.L.); (H.Z.)
| |
Collapse
|
34
|
Jiang XC, Liu S, Jiang XY, Wang ZW, Xiao JJ, Gao Q, Sheng CW, Shi TF, Zeng HR, Yu LS, Cao HQ. Identification of Olfactory Genes From the Greater Wax Moth by Antennal Transcriptome Analysis. Front Physiol 2021; 12:663040. [PMID: 34093226 PMCID: PMC8172125 DOI: 10.3389/fphys.2021.663040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/22/2021] [Indexed: 11/23/2022] Open
Abstract
The olfactory system is used by insects to find hosts, mates, and oviposition sites. Insects have different types of olfactory proteins, including odorant-binding proteins (OBPs), chemosensory proteins (CSPs), odorant receptors (ORs), ionotropic receptors (IRs), and sensory neuron membrane proteins (SNMPs) to perceive chemical cues from the environment. The greater wax moth, Galleria mellonella, is an important lepidopteran pest of apiculture. However, the molecular mechanism underlying odorant perception in this species is unclear. In this study, we performed transcriptome sequencing of G. mellonella antennae to identify genes involved in olfaction. A total of 42,544 unigenes were obtained by assembling the transcriptome. Functional classification of these unigenes was determined by searching against the Gene Ontology (GO), eukaryotic orthologous groups (KOG), and the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. We identified a total of 102 olfactory-related genes: 21 OBPs, 18 CSPs, 43 ORs, 18 IRs, and 2 SNMPs. Results from BLASTX best hit and phylogenetic analyses showed that most of the genes had a close relationship with orthologs from other Lepidoptera species. A large number of OBPs and CSPs were tandemly arrayed in the genomic scaffolds and formed gene clusters. Reverse transcription-quantitative PCR results showed that GmelOBP19 and GmelOR47 are mainly expressed in male antennae. This work provides a transcriptome resource for olfactory genes in G. mellonella, and the findings pave the way for studying the function of these genes.
Collapse
Affiliation(s)
- Xing-Chuan Jiang
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Su Liu
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Xiu-Yun Jiang
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Zheng-Wei Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Jin-Jing Xiao
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Quan Gao
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Cheng-Wang Sheng
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Teng-Fei Shi
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Hua-Rui Zeng
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Lin-Sheng Yu
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Hai-Qun Cao
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|
35
|
Dormont L, Mulatier M, Carrasco D, Cohuet A. Mosquito Attractants. J Chem Ecol 2021; 47:351-393. [PMID: 33725235 DOI: 10.1007/s10886-021-01261-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/18/2021] [Accepted: 03/02/2021] [Indexed: 01/01/2023]
Abstract
Vector control and personal protection against anthropophilic mosquitoes mainly rely on the use of insecticides and repellents. The search for mosquito-attractive semiochemicals has been the subject of intense studies for decades, and new compounds or odor blends are regularly proposed as lures for odor-baited traps. We present a comprehensive and up-to-date review of all the studies that have evaluated the attractiveness of volatiles to mosquitoes, including individual chemical compounds, synthetic blends of compounds, or natural host or plant odors. A total of 388 studies were analysed, and our survey highlights the existence of 105 attractants (77 volatile compounds, 17 organism odors, and 11 synthetic blends) that have been proved effective in attracting one or several mosquito species. The exhaustive list of these attractants is presented in various tables, while the most common mosquito attractants - for which effective attractiveness has been demonstrated in numerous studies - are discussed throughout the text. The increasing knowledge on compounds attractive to mosquitoes may now serve as the basis for complementary vector control strategies, such as those involving lure-and-kill traps, or the development of mass trapping. This review also points out the necessity of further improving the search for new volatile attractants, such as new compound blends in specific ratios, considering that mosquito attraction to odors may vary over the life of the mosquito or among species. Finally, the use of mosquito attractants will undoubtedly have an increasingly important role to play in future integrated vector management programs.
Collapse
Affiliation(s)
- Laurent Dormont
- CEFE, Univ Paul Valéry Montpellier 3, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France.
| | - Margaux Mulatier
- Institut Pasteur de Guadeloupe, Laboratoire d'étude sur le contrôle des vecteurs (LeCOV), Lieu-Dit Morne Jolivièrex, 97139, Les Abymes, Guadeloupe, France
| | - David Carrasco
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
| | - Anna Cohuet
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
| |
Collapse
|
36
|
Xiao Y, Sun L, Wang Q, An XK, Huang XZ, Khashaveh A, Li ZY, Zhang YJ. Host plants transfer induced regulation of the chemosensory genes repertoire in the alfalfa plant bug Adelphocoris lineolatus (Goeze). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 38:100798. [PMID: 33581507 DOI: 10.1016/j.cbd.2021.100798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 10/22/2022]
Abstract
The alfalfa plant bug Adelphocoris lineolatus, an economically important pest, has representative behavioral characteristics with host plants transfer. Olfactory system is essential for insects to perceive ever-changing chemical signals in the external environment, and chemosensory genes play crucial roles in signals reception and transduction. In this work, we compared the differences in chemosensory genes expression before and after host plants transfer by constructing 12 antennal transcriptomes of male and female bugs, respectively. The results showed that the expression levels of most chemosensory genes in A. lineolatus changed to adapt to the transformation of the hosts plant. More remarkable, female bugs had more up-regulated chemosensory genes than males. Differentially expressed genes (DEGs) analysis revealed three odorant binding proteins (OBPs), three chemosensory proteins (CSPs), eight odorant receptors (ORs) and one ionotropic receptor (IR) showed significant differences when the host plant transferred. There were complex characteristics of up- and down- regulated genes in male and female adults, among which OBP19 showed higher expression in females exposing to the new host plant alfalfa, suggesting this OBP may be associated with the localization of the oviposition site. The OR54 and OR82 were up-regulated in both genders, indicating their possible roles in recognizing some alfalfa-specific volatiles. These findings will provide valuable insights in biological functions of chemosensory genes in A. lineolatus and facilitate the development of new targets for novel strategies to control the alfalfa plant bug and other herbivores.
Collapse
Affiliation(s)
- Yong Xiao
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liang Sun
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Tea Quality and Safety Control, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Qi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xing-Kui An
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xin-Zheng Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhen-Yu Li
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Yong-Jun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
37
|
Sun H, Liu F, Ye Z, Baker A, Zwiebel LJ. Mutagenesis of the orco odorant receptor co-receptor impairs olfactory function in the malaria vector Anopheles coluzzii. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 127:103497. [PMID: 33188923 PMCID: PMC7718783 DOI: 10.1016/j.ibmb.2020.103497] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/25/2020] [Accepted: 10/30/2020] [Indexed: 05/04/2023]
Abstract
Mosquitoes rely heavily on their olfactory systems for host seeking, selection of oviposition sites, and avoiding predators and other environmental dangers. Of these behaviors, the preferential selection of a human blood-meal host drives the vectorial capacity of anthropophilic female Anopheles coluzzii mosquitoes. Olfactory receptor neurons (ORNs) are dispersed across several appendages on the head and express an obligate odorant receptor co-receptor (Orco) coupled with a "tuning" odorant receptor (OR) to form heteromeric, odor-gated ion channels in the membrane of these neurons. To examine the mechanistic and functional contributions of Orco/OR complexes to the chemosensory processes of An. coluzzii, we utilized CRISPR/Cas9 gene editing to create a line of homozygous, Orco-knockout, mutant mosquitoes. As expected, orco-/- ORNs across both adult and larval stages of An. coluzzii display significantly lower background activity and lack nearly all odor-evoked responses. In addition, blood-meal-seeking, adult female, orco-/- mutant mosquitoes exhibit severely reduced attraction to human- and non-human-derived odors while gravid females are significantly less responsive to established oviposition attractants. These results reinforce observations in other insects that Orco is crucial in maintaining the activity of ORNs. In that light, it significantly influences a range of olfactory-driven behaviors central to the anthropophilic host preference that is critical to the vectorial capacity of An. coluzzii as a primary vector for human malaria.
Collapse
Affiliation(s)
- Huahua Sun
- Department of Biological Sciences, Vanderbilt University, 465 21st Avenue South, Nashville, TN, 37235, USA
| | - Feng Liu
- Department of Biological Sciences, Vanderbilt University, 465 21st Avenue South, Nashville, TN, 37235, USA
| | - Zi Ye
- Department of Biological Sciences, Vanderbilt University, 465 21st Avenue South, Nashville, TN, 37235, USA
| | - Adam Baker
- Department of Biological Sciences, Vanderbilt University, 465 21st Avenue South, Nashville, TN, 37235, USA
| | - Laurence J Zwiebel
- Department of Biological Sciences, Vanderbilt University, 465 21st Avenue South, Nashville, TN, 37235, USA.
| |
Collapse
|
38
|
Barbier M, Perrot T, Salzet G, Amusant N, Dumarçay S, Gérardin P, Morel-Rouhier M, Sormani R, Gelhaye E. Glutathione Transferases: Surrogate Targets for Discovering Biologically Active Compounds. JOURNAL OF NATURAL PRODUCTS 2020; 83:2960-2966. [PMID: 33001642 DOI: 10.1021/acs.jnatprod.0c00480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Glutathione transferases comprise a large class of multifunctional enzymes, some involved in detoxification pathways. Since these enzymes are able to interact with potentially toxic molecules, they could be used as targets to screen for compounds with biological activity. To test this hypothesis, glutathione transferases (GSTs) from the white-rot fungus Trametes versicolor have been used to screen for antifungal molecules from a library of tropical wood extracts. The interactions between a set of six GSTs from the omega class and 116 extracts from 21 tropical species were quantified using a high-throughput thermal shift assay. A correlation between these interactions and the antifungal properties of the tested extracts was demonstrated. This approach has been extended to the fractionation of an Andira coriacea extract and led to the detection of maackiain and lapachol in this wood. Altogether, the present results supported the hypothesis that such detoxification enzymes could be used to detect biologically active molecules.
Collapse
Affiliation(s)
- Muriel Barbier
- Faculté des sciences, Université de Lorraine, INRAE, IAM, F-54000 Nancy, France
| | - Thomas Perrot
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Guillaume Salzet
- Faculté des sciences, Université de Lorraine, INRAE, IAM, F-54000 Nancy, France
| | - Nadine Amusant
- UMR8172, Ecologie des forêts de Guyane, CIRAD/INRA/AgroParisTec, Laboratoire Xylosciences, 2091 Route de Baduel, F-97300 Cayenne, France
| | | | | | | | - Rodnay Sormani
- Faculté des sciences, Université de Lorraine, INRAE, IAM, F-54000 Nancy, France
| | - Eric Gelhaye
- Faculté des sciences, Université de Lorraine, INRAE, IAM, F-54000 Nancy, France
| |
Collapse
|
39
|
Thomas P, Guillaume S, Nadine A, Jacques B, Philippe G, Stéphane D, Rodnay S, Mélanie M, Eric G. A reverse chemical ecology approach to explore wood natural durability. Microb Biotechnol 2020; 13:1673-1677. [PMID: 32212309 PMCID: PMC7415366 DOI: 10.1111/1751-7915.13540] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/12/2019] [Accepted: 01/14/2020] [Indexed: 01/01/2023] Open
Abstract
The natural durability of wood species, defined as their inherent resistance to wood-destroying agents, is a complex phenomenon depending on many biotic and abiotic factors. Besides the presence of recalcitrant polymers, the presence of compounds with antimicrobial properties is known to be important to explain wood durability. Based on the advancement in our understanding of fungal detoxification systems, a reverse chemical ecology approach was proposed to explore wood natural durability using fungal glutathione transferases. A set of six glutathione transferases from the white-rot Trametes versicolor were used as targets to test wood extracts from seventeen French Guiana neotropical species. Fluorescent thermal shift assays quantified interactions between fungal glutathione transferases and these extracts. From these data, a model combining this approach and wood density significantly predicts the wood natural durability of the species tested previously using long-term soil bed tests. Overall, our findings confirm that detoxification systems could be used to explore the chemical environment encountered by wood-decaying fungi and also wood natural durability.
Collapse
Affiliation(s)
| | | | - Amusant Nadine
- UA, AgroParisTechUMR EcofogCIRADCNRSINRAEBF701KourouFrance
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
AbstractReliance on broad-spectrum insecticides and chemotherapeutic agents to control hematophagous insect vectors, and their related diseases is threatened by increasing insecticide and drug resistance, respectively. Thus, development of novel, alternative, complementary and effective technologies for surveillance and control of such insects is strongly encouraged. Semiochemicals are increasingly developed for monitoring and intervention of insect crop pests, but this has not been adequately addressed for hematophagous insects of medical and veterinary importance. This review provides an insight in the application of semiochemicals for control of hematophagous insects. Here, we provide specific information regarding the isolation and identification of semiochemical compounds, optimization approaches, detection, perception and discrimination by the insect olfactory system. Navigation of insects along wind-borne odor plumes is discussed and methods of odor application in field situations are reviewed. Finally, we discuss prospects and future challenges for the application of semiochemical-based tools with emphasis on mosquitoes. The acquired knowledge can guide development of more effective components of integrated vector management, safeguard against emerging resistance of insects to existing insecticides and reduce the burden of vector-borne diseases.
Collapse
|
41
|
Zhu J, Zaremska V, D'Onofrio C, Knoll W, Pelosi P. Site-directed mutagenesis of odorant-binding proteins. Methods Enzymol 2020; 642:301-324. [PMID: 32828258 DOI: 10.1016/bs.mie.2020.05.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Modifying the affinity of odorant-binding proteins (OBPs) to small ligands by replacement of specific residues in the binding pocket may lead to several technological applications. Thanks to their compact and stable structures, OBPs are currently regarded as the best candidates to be used in biosensing elements for odorants and volatiles detection. The wide and rich information on the structure of these proteins both in their apo-forms and in complexes with specific ligands provides guidelines to design reliable mutants to monitor specific targets. The same engineered proteins may also find applications in the slow release of pheromones and other chemicals in the environment, as well as in the fine purification of drugs, including the resolution of racemates. Apart from such useful applications, site-directed mutagenesis represents an interesting approach to dissect the specific interactions between small chemicals and amino acid residues in the binding pocket. These studies can lead to design of better ligands, such as pheromone analogues with desired physico-chemical characteristics. In this chapter we examine the different uses of mutagenesis applied to OBPs and report a couple of protocols that have been successful in our hands.
Collapse
Affiliation(s)
- Jiao Zhu
- AIT Austrian Institute of Technology GmbH, Biosensor Technologies, Tulln, Austria; Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-Universität, Mainz, Germany
| | - Valeriia Zaremska
- AIT Austrian Institute of Technology GmbH, Biosensor Technologies, Tulln, Austria; Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Chiara D'Onofrio
- AIT Austrian Institute of Technology GmbH, Biosensor Technologies, Tulln, Austria; Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Wolfgang Knoll
- AIT Austrian Institute of Technology GmbH, Biosensor Technologies, Tulln, Austria; CEST Competence Center for Electrochemical Surface Technology, Tulln, Austria
| | - Paolo Pelosi
- AIT Austrian Institute of Technology GmbH, Biosensor Technologies, Tulln, Austria.
| |
Collapse
|
42
|
D'Onofrio C, Zaremska V, Zhu J, Knoll W, Pelosi P. Ligand-binding assays with OBPs and CSPs. Methods Enzymol 2020; 642:229-258. [PMID: 32828255 DOI: 10.1016/bs.mie.2020.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Assessing the ligand-binding properties of OBPs and CSPs is essential for understanding their physiological function. It also provides basic information when these proteins are used as biosensing elements for instrumental measurement of odors. Although different approaches have been applied in the past to evaluate the affinity of receptors and soluble binding proteins to their ligands, using a fluorescent reporter represents the method of choice for OBPs and CSPs. It offers the advantages of working at the equilibrium, being simple, fast and inexpensive, without requiring the use of radioactive tracers. However, as an indirect method, the fluorescence competitive binding approach presents drawbacks and sometimes requires an elaborate analysis to explain unexpected results. Here, after a brief survey of the different approaches to evaluate affinity constants, we focus on the fluorescence binding assay as applied to OBPs and CSPs, discussing situations that may require closer inspection of the results.
Collapse
Affiliation(s)
- Chiara D'Onofrio
- AIT Austrian Institute of Technology GmbH, Biosensor Technologies, Tulln, Austria
| | - Valeriia Zaremska
- AIT Austrian Institute of Technology GmbH, Biosensor Technologies, Tulln, Austria
| | - Jiao Zhu
- AIT Austrian Institute of Technology GmbH, Biosensor Technologies, Tulln, Austria; Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-Universität, Mainz, Germany
| | - Wolfgang Knoll
- AIT Austrian Institute of Technology GmbH, Biosensor Technologies, Tulln, Austria; CEST Competence Center for Electrochemical Surface Technology, Tulln, Austria
| | - Paolo Pelosi
- AIT Austrian Institute of Technology GmbH, Biosensor Technologies, Tulln, Austria.
| |
Collapse
|
43
|
Bai PH, Wang HM, Liu BS, Li M, Liu BM, Gu XS, Tang R. Botanical Volatiles Selection in Mediating Electrophysiological Responses and Reproductive Behaviors for the Fall Webworm Moth Hyphantria cunea. Front Physiol 2020; 11:486. [PMID: 32547409 PMCID: PMC7273966 DOI: 10.3389/fphys.2020.00486] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
Host-plant volatiles play vital roles for insects to locate foraging, mating, and oviposition sites in the environment. As one of the devastating invasive forestry pests, Hyphantria cunea causes a great annual loss in China, and understanding its chemical ecology is an important task. The current research was done in terms of chemical analysis, electrophysiology, and behavioral assays on H. cunea to assess its olfactory reception toward host-plant volatiles. A screen of possible common host volatiles was done, targeting on five favored hosts of H. cunea, harvesting six potential bioactive compounds from a total of 78 odorant components. Six types of antennal sensilla were investigated on their distributions on the antennae, and sexual dimorphism was described. H. cunea showed responses to all selected host-related volatiles in electroantennogram tests, and linalyl butyrate elicited the strongest responses. Furthermore, mating rates in adult pairs that are exposed to dibutyl phthalate and phytol have been significantly increased, while oviposition rates and female fecundity were not influenced. The results of the current study provide initial evidence showing that universal host-derived volatile cues are essential for H. cunea moth in terms of mating, which can also provide insights into the development of botanical attractants.
Collapse
Affiliation(s)
- Peng-Hua Bai
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hong-Min Wang
- College of Economics and Management, Shanxi Agricultural University, Taigu, China
| | - Bao-Sheng Liu
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Min Li
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Bai-Ming Liu
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Xi-Shu Gu
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Rui Tang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
44
|
Abstract
The technique of two-electrode voltage-clamp (TEVC) recording from the heterologous expression system of olfactory receptors (ORs) in Xenopus laevis oocytes has been widely used to deorphanize insect ORs, that is to identify specific ligands for each of them. However, there is a controversial issue on whether ORs are activated by the odorant/OBP complex or the odorant alone. The mechanism of interaction among odorants, odorant-binding proteins (OBPs) and ORs remains largely unknown, due to the limitations in the use of scientific and innovative methods. In this chapter, the modified Xenopus oocytes expression system combined with TEVC technique is used to approach this issue. We describe the experimental strategies and provide detailed protocols for recording the signals generated by ORs in response to odorant/OBP complex at different concentrations. Results obtained by this approach have revealed that the presence of OBPs in the system affects the selectivity and sensitivity responses of ORs. Such studies help understanding the molecular mechanism of odorant detection in peripheral nervous system.
Collapse
Affiliation(s)
- Bing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Song Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen, China; Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
45
|
Khashaveh A, An X, Shan S, Xiao Y, Wang Q, Wang S, Li Z, Geng T, Gu S, Zhang Y. Deorphanization of an odorant receptor revealed new bioactive components for green mirid bug Apolygus lucorum (Hemiptera: Miridae). PEST MANAGEMENT SCIENCE 2020; 76:1626-1638. [PMID: 31714013 DOI: 10.1002/ps.5682] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 10/30/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The Apolygus lucorum is one of the most destructive insect pests in China with a wide range of host plants. Interaction of A. lucorum with surrounding environment heavily relies on chemical communication. Deorphanization of receptors involved in odors detection elevates our understanding of the olfactory system of this pest and may help to develop a chemical ecology-based control strategy. RESULTS AlucOR80, an odorant receptor (OR) in A. lucorum was newly cloned. Gene expression analysis showed that this receptor was mainly expressed in the antennae and head of both sexes but with a male bias. The Xenopus oocytes heterologous expression system coupled with the two-electrode voltage-clamp (TEVC) recording revealed that AlucOR80 was tuned to 21 selected compounds. Furthermore, electroantennogram (EAG) tests confirmed that all 21 ligands of AlucOR80 were electrophysiologically active in antennae of both sexes. Behavioral trials in a three-cage olfactometer indicated that 16 compounds were behaviorally active, amongst which, 12 components were attractants and four components were repellents for adults of both sexes. Butyl butyrate and Dimethyl disulfide (DMDS) were the strongest attractive and repellant compounds, respectively. Importantly, we found the repellency of 1, 8-Cineole, S-(-)-cis-Verbenol and (1S)-(1)-beta-Pinene against adults of A. lucorum. CONCLUSION Although AlucOR80 is a general OR, may play important role in the olfactory perception of A. lucorum. Screening of AlucOR80 ligands by behavioral assay provided valuable insights by which olfactory-based management approaches could be developed by utilizing the behaviorally active components as attractants or repellents. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xingkui An
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuang Shan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Yong Xiao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shanning Wang
- Institute of Plant and Environment Protection, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Zibo Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ting Geng
- Langfang Scientific Research Trial Station, Chinese Academy of Agricultural Sciences, Langfang, China
| | - Shaohua Gu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
46
|
Liu Z, Liang XF, Xu L, Keesey IW, Lei ZR, Smagghe G, Wang JJ. An Antennae-Specific Odorant-Binding Protein Is Involved in Bactrocera dorsalis Olfaction. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00063] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
47
|
Tang R, Jiang NJ, Ning C, Li GC, Huang LQ, Wang CZ. The olfactory reception of acetic acid and ionotropic receptors in the Oriental armyworm, Mythimna separata Walker. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 118:103312. [PMID: 31904488 DOI: 10.1016/j.ibmb.2019.103312] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 12/25/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Various insect species including moths have shown significant foraging preference to acetic acid. However, the olfactory reception and behavioral outputs of acetic acid in moths remain unsolved. The female adults of Oriental armyworm, Mythimna separata, exhibit high preference to acetic acid enriched sweet vinegar solutions, making them good targets for exploration of acid reception and performance. We first proved that acetic acid is an essential component which elicited electrophysiological responses from volatiles of the sweet vinegar solution. Successive single sensillum recording tests showed that at least 4 types (as1, as2, as3, and as4) of sensilla were involved in acetic acid reception in the antennae. The low dosages of acetic acid elicited upwind flight and close search, and pre-contact proboscis extension responses of the fasted females, indicating it serves as a food related olfactory cue. In vivo optical imaging data showed that low dosages of acetic acid activated one ordinary glomerulus (DC3), and high dosages evoked additional two glomeruli (DC1 and AC1) in the antennal lobe. A systematic survey on olfaction related receptors in three related transcriptomes has yielded 67 olfactory receptors (ORs) and 19 ionotropic receptors (IRs). Among, MsepIR8a, MsepIR64a, MsepIR75q1, and MsepIR75q2 were chosen as putative acid receptors by blasting against known acid IRs in Drosophila and comparing essential amino acid residues which related to acid sensing. Later in situ hybridization revealed that MsepIr8a was co-expressed with each of the other 3 Irs, suggesting its putative co-receptor role. This study reveals olfactory reception of acetic acid as an attractant in M. separata, and it provides the solid basis for later deorphanization of relevant receptors.
Collapse
Affiliation(s)
- Rui Tang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China
| | - Nan-Ji Jiang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, PR China
| | - Chao Ning
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, PR China
| | - Guo-Cheng Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, PR China
| | - Ling-Qiao Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China
| | - Chen-Zhu Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, PR China.
| |
Collapse
|
48
|
Anton S, Gadenne C, Marion-Poll F. Frontiers in Invertebrate Physiology-An Update to the Grand Challenge. Front Physiol 2020; 11:186. [PMID: 32184737 PMCID: PMC7058698 DOI: 10.3389/fphys.2020.00186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 02/18/2020] [Indexed: 11/21/2022] Open
Affiliation(s)
- Sylvia Anton
- UMR IGEPP INRA, Agrocampus Ouest, Université Rennes 1, Angers, France
| | | | - Frédéric Marion-Poll
- Evolution, Génomes, Comportement, Ecologie, CNRS, IRD, Univ Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France.,AgroParisTech, Université Paris-Saclay, Paris, France
| |
Collapse
|
49
|
Wooding M, Naudé Y, Rohwer E, Bouwer M. Controlling mosquitoes with semiochemicals: a review. Parasit Vectors 2020; 13:80. [PMID: 32066499 PMCID: PMC7027039 DOI: 10.1186/s13071-020-3960-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 02/11/2020] [Indexed: 12/20/2022] Open
Abstract
The use of semiochemicals in odour-based traps for surveillance and control of vector mosquitoes is deemed a new and viable component for integrated vector management programmes. Over 114 semiochemicals have been identified, yet implementation of these for management of infectious diseases such as malaria, dengue, chikungunya and Rift Valley fever is still a major challenge. The difficulties arise due to variation in how different mosquito species respond to not only single chemical compounds but also complex chemical blends. Additionally, mosquitoes respond to different volatile blends when they are looking for a mating partner, oviposition sites or a meal. Analytically the challenge lies not only in correctly identifying these semiochemical signals and cues but also in developing formulations that effectively mimic blend ratios that different mosquito species respond to. Only then can the formulations be used to enhance the selectivity and efficacy of odour-based traps. Understanding how mosquitoes use semiochemical cues and signals to survive may be key to unravelling these complex interactions. An overview of the current studies of these chemical messages and the chemical ecology involved in complex behavioural patterns is given. This includes an updated list of the semiochemicals which can be used for integrated vector control management programmes. A thorough understanding of these semiochemical cues is of importance for the development of new vector control methods that can be integrated into established control strategies.
Collapse
Affiliation(s)
- Madelien Wooding
- Department of Chemistry, University of Pretoria, Hatfield, Pretoria, South Africa
| | - Yvette Naudé
- Department of Chemistry, University of Pretoria, Hatfield, Pretoria, South Africa
| | - Egmont Rohwer
- Department of Chemistry, University of Pretoria, Hatfield, Pretoria, South Africa
| | - Marc Bouwer
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Hatfield, Pretoria, South Africa
| |
Collapse
|
50
|
Yang Y, Li W, Tao J, Zong S. Antennal transcriptome analyses and olfactory protein identification in an important wood-boring moth pest, Streltzoviella insularis (Lepidoptera: Cossidae). Sci Rep 2019; 9:17951. [PMID: 31784624 PMCID: PMC6884542 DOI: 10.1038/s41598-019-54455-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/14/2019] [Indexed: 02/06/2023] Open
Abstract
Olfaction plays key roles in insect survival and reproduction, such as feeding, courtship, mating, and oviposition. The olfactory-based control strategies have been developed an important means for pest management. Streltzoviella insularis is a destructive insect pest of many street tree species, and characterization of its olfactory proteins could provide targets for the disruption of their odour recognition processes and for urban forestry protection. In this study, we assembled the antennal transcriptome of S. insularis by next-generation sequencing and annotated the main olfactory multi-gene families, including 28 odorant-binding proteins (OBPs), 12 chemosensory proteins (CSPs), 56 odorant receptors (ORs), 11 ionotropic receptors (IRs), two sensory neuron membrane proteins (SNMPs), and 101 odorant-degrading enzymes (ODEs). Sequence and phylogenetic analyses confirmed the characteristics of these proteins. We further detected tissue- and sex-specific expression patterns of OBPs, CSPs and SNMPs by quantitative real time-PCR. Most OBPs were highly and differentially expressed in the antennae of both sexes. SinsCSP10 was expressed more highly in male antennae than in other tissues. Two SNMPs were highly expressed in the antennae, with no significant difference in expression between the sexes. Our results lay a solid foundation for understanding the precise molecular mechanisms underlying S. insularis odour recognition.
Collapse
Affiliation(s)
- Yuchao Yang
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, 100083, China
| | - Wenbo Li
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, 100083, China
| | - Jing Tao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, 100083, China.
| | - Shixiang Zong
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|