1
|
Tang J, Kang Y, Chen Q, Zhang B, Shang N, Lan J, Wu L, Peng Y. TIMP1 inhibits Rac1-mediated ROS production to ameliorate blood-spinal cord barrier disruption in amyotrophic lateral sclerosis. Neurobiol Dis 2025; 213:106987. [PMID: 40505784 DOI: 10.1016/j.nbd.2025.106987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 05/20/2025] [Accepted: 06/02/2025] [Indexed: 06/16/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the progressive degeneration of motor neurons, for which therapeutic strategies and pharmacological interventions remain limited. Disruption of the blood-spinal cord barrier (BSCB) has been identified as a significant factor that may exacerbate motor neuron damage. Tissue inhibitor of metalloproteinase-1 (TIMP1), a molecule known for its dual roles in inhibiting matrix metalloproteinase (MMP) activity and exerting cytokine-like effects via receptor interactions, has been demonstrated to ameliorate endothelial barrier damage in various diseases. Here, we explored the potential of TIMP1 to restore BSCB integrity as a strategy to slow the ALS progression. Specifically, the expression of TIMP1 or its mutant variant AlaTIMP1, which lacks MMP-inhibitory activity, in spinal cord microvascular endothelial cells (SCMECs) prior to disease onset significantly reduces BSCB leakage in mice with ALS, thereby alleviating motor function deficits and delaying disease progression. Additionally, TIMP1 expression restores the expression of junctional complexes in SCMECs, as demonstrated in both in vivo and in vitro ALS models. Mechanistic studies revealed that TIMP1 suppresses ALS injury-induced integrin β1 activation independent of MMP inhibition, blocking downstream Rac1 translocation to the membrane to form a complex with NOX2. The inhibition of NOX2 activity reduces ROS-induced cytoskeletal remodeling, consequently stabilizing overall junctional alignment and preserving the BSCB integrity. Overall, our findings elucidate an MMP-independent mechanism through which TIMP1 regulates BSCB integrity in ALS context, suggesting that TIMP1 could serve as a novel tool for the treatment of ALS, particularly for prophylactic treatment in patients with familial ALS.
Collapse
Affiliation(s)
- Jingshu Tang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yuying Kang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Qiuyu Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Baodan Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Nianying Shang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jiaqi Lan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lei Wu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ying Peng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
2
|
He LM, Borjigin S, Chen XQ, Yan ZL, Wang MJ. Therapeutic potential of integrins in diabetic retinopathy. World J Diabetes 2025; 16:101509. [DOI: 10.4239/wjd.v16.i5.101509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/17/2025] [Accepted: 02/20/2025] [Indexed: 04/25/2025] Open
Abstract
Diabetic retinopathy (DR), a leading cause of visual loss, is the result of microvascular damage induced by prolonged hyperglycemia. Numerous studies have revealed the pivotal role of integrins in the pathogenesis of DR, particularly in key processes such as inflammation, vascular leakage, microthrombus formation, and angiogenesis. Consequently, targeting integrins is considered a promising strategy for the treatment of DR. This review focuses on the function of integrins in DR and their potential as therapeutic targets. It describes the molecular mechanisms through which integrins influence DR progression and summarizes the latest outcomes of integrin antagonist-based therapeutic strategies in clinical studies, evaluating their efficacy and potential challenges, which offer promise as novel treatment options for DR.
Collapse
Affiliation(s)
- Li-Mei He
- Department of Internal Medicine, Inner Mongolia Medical University, Hohhot 010000, Inner Mongolia Autonomous Region, China
| | - Sarul Borjigin
- Department of Endocrinology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010000, Inner Mongolia Autonomous Region, China
| | - Xin-Qi Chen
- Department of Internal Medicine, Inner Mongolia Medical University, Hohhot 010000, Inner Mongolia Autonomous Region, China
| | - Zhao-Li Yan
- Department of Endocrinology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010000, Inner Mongolia Autonomous Region, China
| | - Ming-Jie Wang
- Department of Endocrinology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010000, Inner Mongolia Autonomous Region, China
| |
Collapse
|
3
|
Schoofs H, Daubel N, Schnabellehner S, Grönloh MLB, Palacios Martínez S, Halme A, Marks AM, Jeansson M, Barcos S, Brakebusch C, Benedito R, Engelhardt B, Vestweber D, Gaengel K, Linsenmeier F, Schürmann S, Saharinen P, van Buul JD, Friedrich O, Smith RS, Majda M, Mäkinen T. Dynamic cytoskeletal regulation of cell shape supports resilience of lymphatic endothelium. Nature 2025; 641:465-475. [PMID: 40108458 PMCID: PMC12058511 DOI: 10.1038/s41586-025-08724-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/31/2025] [Indexed: 03/22/2025]
Abstract
Lymphatic capillaries continuously take up interstitial fluid and adapt to resulting changes in vessel calibre1-3. The mechanisms by which the permeable monolayer of loosely connected lymphatic endothelial cells (LECs)4 maintains mechanical stability remain elusive. Here we identify dynamic cytoskeletal regulation of LEC shape, induced by isotropic stretch, as crucial for the integrity and function of dermal lymphatic capillaries. We found that the oak leaf-shaped LECs showed a spectrum of VE-cadherin-based junctional configurations at the lobular intercellular interface and a unique cytoskeletal organization, with microtubules at concave regions and F-actin at convex lobes. Multispectral and longitudinal intravital imaging of capillary LEC shape and actin revealed dynamic remodelling of cellular overlaps in vivo during homeostasis and in response to interstitial fluid volume increase. Akin to puzzle cells of the plant epidermis5,6, LEC shape was controlled by Rho GTPase CDC42-regulated cytoskeletal dynamics, enhancing monolayer stability. Moreover, cyclic isotropic stretch increased cellular overlaps and junction curvature in primary LECs. Our findings indicate that capillary LEC shape results from continuous remodelling of cellular overlaps that maintain vessel integrity while preserving permeable cell-cell contacts compatible with vessel expansion and fluid uptake. We propose a bellows-like fluid propulsion mechanism, in which fluid-induced lumen expansion and shrinkage of LEC overlaps are countered by actin-based lamellipodia-like overlap extension to aid vessel constriction.
Collapse
Affiliation(s)
- Hans Schoofs
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Nina Daubel
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Sarah Schnabellehner
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Max L B Grönloh
- Department of Medical Biochemistry at the Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Sebastián Palacios Martínez
- Department of Molecular Cytology, Leeuwenhoek Centre for Advanced Microscopy at Swammerdam Institute for Life Sciences at the University of Amsterdam, Amsterdam, The Netherlands
| | - Aleksi Halme
- Translational Cancer Medicine Program and Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland
| | - Amanda M Marks
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Marie Jeansson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Sara Barcos
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Cord Brakebusch
- Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Rui Benedito
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | | | - Konstantin Gaengel
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Fabian Linsenmeier
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian Schürmann
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Pipsa Saharinen
- Translational Cancer Medicine Program and Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland
- Wihuri Research Institute, Helsinki, Finland
| | - Jaap D van Buul
- Department of Medical Biochemistry at the Amsterdam UMC, location AMC, Amsterdam, The Netherlands
- Department of Molecular Cytology, Leeuwenhoek Centre for Advanced Microscopy at Swammerdam Institute for Life Sciences at the University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | | | - Mateusz Majda
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Taija Mäkinen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
- Translational Cancer Medicine Program and Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland.
- Wihuri Research Institute, Helsinki, Finland.
| |
Collapse
|
4
|
Rana K, Yadav P, Chakraborty R, Jha SK, Agrawal U, Bajaj A. Engineered Nanomicelles Delivering the Combination of Steroids and Antioxidants Can Mitigate Local and Systemic Inflammation, Including Sepsis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11595-11610. [PMID: 39946544 DOI: 10.1021/acsami.4c14159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Chronic inflammation is mainly characterized by the release of proinflammatory cytokines (cytokine storm) and reactive oxygen/nitrogen species. Sepsis is a life-threatening condition resulting from the successive chronic inflammatory responses toward infection, leading to multiple organ failure and, ultimately, death. As inflammation and oxidative stress are known to nourish each other and initiate an uncontrolled immune response, inhibiting the cross-talk between the inflammatory response using anti-inflammatory drugs and oxidative stress using antioxidants can be a promising strategy to target sepsis. Here, we present the engineering of chimeric nanomicelles (NMs) using an ester-linked polyethylene glycol-derived lithocholic acid-drug conjugate using dexamethasone (DEX), a potent glucocorticoid possessing anti-inflammatory properties, and vitamin E (VITE), an antioxidant to target oxidative stress. Interestingly, these chimeric DEX-VITE NMs show enhanced accumulation at the inflamed sites driven by enhanced permeation and retention effect and mitigate localized acute inflammation in paw, lung, and liver inflammation models. We further demonstrated the efficacy of these NMs in mitigating LPS-induced endotoxemia and CLP-induced microbial sepsis, conferring survival advantages. DEX-VITE NMs also modulate immune homeostasis by decreasing the infiltration of total immune cells, neutrophils, and overall macrophages. Finally, administration of DEX-VITE NMs also reduces the release of proinflammatory cytokines and prevents vascular damage, two critical factors of sepsis pathogenesis. Therefore, this therapeutic approach of chimeric NMs can effectively deliver steroids and antioxidants to mitigate uncontrolled localized and systemic inflammation.
Collapse
Affiliation(s)
- Kajal Rana
- NCR Biotech Science Cluster, Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Poonam Yadav
- NCR Biotech Science Cluster, Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Ruchira Chakraborty
- NCR Biotech Science Cluster, Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Somesh K Jha
- NCR Biotech Science Cluster, Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Usha Agrawal
- Asian Institute of Public Health University, Haridamada, Jatani, Bhubaneswar, Odisha 752054, India
| | - Avinash Bajaj
- NCR Biotech Science Cluster, Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| |
Collapse
|
5
|
Chen W, Epshtein Y, Vagts C, Cress AE, Jacobson JR. Increased Kindlin-2 via SMURF1 Inhibition Attenuates Endothelial Permeability and Acute Lung Injury. Int J Mol Sci 2025; 26:1880. [PMID: 40076507 PMCID: PMC11899570 DOI: 10.3390/ijms26051880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Integrin β4 (ITGB4) mediates lung endothelial cell (EC) inflammation attenuated by simvastatin, an HMG CoA-reductase inhibitor. The cytoplasmic domain of ITGB4 is predicted to bind kindlin-2. Kindlin-2 expression is mediated by SMURF1, an E3 ubiquitin ligase that promotes kindlin-2 ubiquitination and degradation. We hypothesized that increased kindlin-2 expression via the inhibition of SMURF1 mediates EC inflammatory responses relevant to acute lung injury (ALI). To investigate this, human lung ECs were treated with simvastatin (5 µM, 16 h) prior to the immunoprecipitation of kindlin-2 and Western blotting for ITGB4. Next, ECs were treated with a SMURF1 inhibitor, A01, and increased kindlin-2 expression was confirmed. In assays of barrier function, kindlin-2 was silenced (siRNA) in ECs prior to thrombin and measurements of transendothelial resistance (TER) and FITC-dextran transwell flux. Repeat assessments of barrier function were performed in A01-treated ECs. Finally, mice were pretreated with A01 prior to LPS; bronchoalveolar lavage (BAL) fluid was collected, and their lungs were used for histology. Simvastatin increased ITGB4:kindlin-2 association, while A01 increased kindlin-2 expression. Thrombin-induced EC barrier disruption was both increased after kindlin-2 silencing and decreased by A01. Finally, murine ALI was significantly attenuated by A01. Our findings suggest that the augmentation of kindlin-2 may serve as a novel ALI therapeutic strategy.
Collapse
Affiliation(s)
- Weiguo Chen
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep & Allergy, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Yulia Epshtein
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep & Allergy, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Christen Vagts
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep & Allergy, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Anne E. Cress
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Jeffrey R. Jacobson
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep & Allergy, University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
6
|
Wu M, Yan Y, Xie X, Bai J, Ma C, Du X. Effect of endothelial responses on sepsis-associated organ dysfunction. Chin Med J (Engl) 2024; 137:2782-2792. [PMID: 39501810 DOI: 10.1097/cm9.0000000000003342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Indexed: 12/17/2024] Open
Abstract
ABSTRACT Sepsis-related organ dysfunction is associated with increased morbidity and mortality. Previous studies have found that the endothelium plays crucial roles in maintaining the vascular permeability during sepsis, as well as in regulating inflammation and thrombosis. During sepsis, endothelial cells may release cytokines, chemokines, and pro-coagulant factors, as well as express adhesion molecules. In general, endothelial responses during sepsis typically inhibit bacterial transmission and coordinate leukocyte recruitment to promote bacterial clearance. However, excessive or prolonged endothelial activation can lead to impaired microcirculation, tissue hypoperfusion, and organ dysfunction. Given the structural and functional heterogeneity of endothelial cells in different organs, there are potential differences in endothelial responses by organ type, and the risk of organ damage may vary accordingly. This article reviews the endothelial response observed in sepsis and its effects on organ function, summarizes current progress in the development of therapeutic interventions targeting the endothelial response, and discusses future research directions to serve as a reference for researchers in the field.
Collapse
Affiliation(s)
- Miao Wu
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yan Yan
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Xinyu Xie
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Jiawei Bai
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Chengtai Ma
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Xianjin Du
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| |
Collapse
|
7
|
Santio NM, Ganesh K, Kaipainen PP, Halme A, Seyednasrollah F, Arbash E, Hänninen S, Kivelä R, Carpen O, Saharinen P. Endothelial Pim3 kinase protects the vascular barrier during lung metastasis. Nat Commun 2024; 15:10514. [PMID: 39627185 PMCID: PMC11615401 DOI: 10.1038/s41467-024-54445-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/07/2024] [Indexed: 12/06/2024] Open
Abstract
Endothelial cells (ECs) form a tissue-specific barrier for disseminating cancer cells in distant organs. However, the molecular regulation of the ECs in the metastatic niche remains unclear. Here, we analyze using scRNA-Seq, the transcriptional reprogramming of lung ECs six hours after the arrival of melanoma cells in mouse lungs. We discover a reactive capillary EC cluster (rCap) that increases from general capillary ECs in response to infiltrating cancer cells. rCap is enriched for angiogenic and inflammatory pathways and is also found in human lung datasets. The JAK-STAT activated oncogenic Pim3 kinase is a marker of rCap, being upregulated in spontaneous metastasis models. Notably, PIM inhibition increases vascular leakage and metastatic colonization and impairs the EC barrier by decreasing the junctional cadherin-5 and catenins α, β and δ. These results highlight the pulmonary endothelium's plasticity and its protection by PIM3, which may impair the efficacy of PIM inhibitors in cancer therapies.
Collapse
Affiliation(s)
- Niina M Santio
- Translational Cancer Medicine, Research Programs Unit, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Keerthana Ganesh
- Translational Cancer Medicine, Research Programs Unit, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Pihla P Kaipainen
- Translational Cancer Medicine, Research Programs Unit, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Aleksi Halme
- Translational Cancer Medicine, Research Programs Unit, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Fatemeh Seyednasrollah
- Translational Cancer Medicine, Research Programs Unit, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Emad Arbash
- Translational Cancer Medicine, Research Programs Unit, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Satu Hänninen
- Systems Oncology, Research Programs Unit University of Helsinki, Finland, Helsinki
| | - Riikka Kivelä
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Faculty of Sport and Health Sciences University of Jyväskylä, Jyväskylä, Finland
| | - Olli Carpen
- Systems Oncology, Research Programs Unit University of Helsinki, Finland, Helsinki
- Pathology/HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Pipsa Saharinen
- Translational Cancer Medicine, Research Programs Unit, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland.
- Department of Biochemistry and Developmental Biology, Faculty of Medicine University of Helsinki, Helsinki, Finland.
| |
Collapse
|
8
|
Luo AJ, Chang FC, Lin SL. Exploring Angiopoietin-2: Clinical Insights and Experimental Perspectives in Kidney Diseases. Kidney Int Rep 2024; 9:3375-3385. [PMID: 39698365 PMCID: PMC11652073 DOI: 10.1016/j.ekir.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 12/20/2024] Open
Abstract
Angiopoietin-2, an important contributor to angiogenesis and vascular remodeling, is increasingly recognized in kidney research. This review explores clinical insights and experimental perspectives on angiopoietin-2 in kidney diseases. Traditionally seen as an antagonist of the Tie-2, which is a receptor tyrosine kinase of endothelial cells and some hematopoietic stem cells, angiopoietin-2 exerts both proangiogenic and antiangiogenic effects, making it a versatile and context-dependent player in kidney pathophysiology. Elevated circulating angiopoietin-2 levels in clinical scenarios are associated with sepsis and acute kidney injury (AKI), emphasizing its role as a biomarker of disease severity. In diabetic kidney disease, circulating angiopoietin-2 correlates with albuminuria, a crucial indicator of disease progression, and may serve as a treatment target in protecting the endothelium. Angiopoietin-2 is implicated in chronic kidney diseases (CKDs), where its elevated circulating levels correlate with kidney outcomes and cardiovascular complications, suggesting its potential impact on kidney function and overall health. In experimental settings, angiopoietin-2 plays a pivotal role in angiogenesis and lymphangiogenesis, influencing vascular stability and endothelial integrity. The context-dependent agonist and antagonist role of angiopoietin-2 is regulated by a Tie-2 phosphatase, vascular endothelial protein tyrosine phosphatase (VEPTP), further underscoring its complexity. Angiopoietin-2 is also involved in regulating cellular integrity, inflammation, and endothelial permeability, making it a promising therapeutic target for conditions characterized by disrupted endothelial junctions and vascular dysfunction. This review provides a comprehensive overview of the diverse roles of angiopoietin-2 in kidney research, offering insights into potential therapeutic targets and advancements in managing kidney diseases.
Collapse
Affiliation(s)
- An-Jie Luo
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Fan-Chi Chang
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shuei-Liong Lin
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
9
|
English J, Dhanikonda S, Tanaka KE, Koba W, Eichenbaum G, Yang WL, Guha C. Thrombopoietin mimetic reduces mouse lung inflammation and fibrosis after radiation by attenuating activated endothelial phenotypes. JCI Insight 2024; 9:e181330. [PMID: 39513364 PMCID: PMC11601560 DOI: 10.1172/jci.insight.181330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/12/2024] [Indexed: 11/15/2024] Open
Abstract
Radiation-induced lung injury (RILI) initiates radiation pneumonitis and progresses to fibrosis as the main side effect experienced by patients with lung cancer treated with radiotherapy. There is no effective drug for RILI. Sustained vascular activation is a major contributor to the establishment of chronic disease. Here, using a whole thoracic irradiation (WTI) mouse model, we investigated the mechanisms and effectiveness of thrombopoietin mimetic (TPOm) for preventing RILI. We demonstrated that administering TPOm 24 hours before irradiation decreased histologic lung injury score, apoptosis, vascular permeability, expression of proinflammatory cytokines, and neutrophil infiltration in the lungs of mice 2 weeks after WTI. We described the expression of c-MPL, a TPO receptor, in mouse primary pulmonary microvascular endothelial cells, showing that TPOm reduced endothelial cell-neutrophil adhesion by inhibiting ICAM-1 expression. Seven months after WTI, TPOm-treated lung exhibited less collagen deposition and expression of MMP-9, TIMP-1, IL-6, TGF-β, and p21. Moreover, TPOm improved lung vascular structure, lung density, and respiration rate, leading to a prolonged survival time after WTI. Single-cell RNA sequencing analysis of lungs 2 weeks after WTI revealed that TPOm shifted populations of capillary endothelial cells toward a less activated and more homeostatic phenotype. Taken together, TPOm is protective for RILI by inhibiting endothelial cell activation.
Collapse
Affiliation(s)
- Jeb English
- Department of Radiation Oncology
- Department of Pathology, and
| | | | | | - Wade Koba
- Department of Radiology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Gary Eichenbaum
- Office of the Chief Medical Officer, Johnson & Johnson, New Brunswick, New Jersey, USA
| | | | - Chandan Guha
- Department of Radiation Oncology
- Department of Pathology, and
| |
Collapse
|
10
|
Xia T, Pan Z, Wan H, Li Y, Mao G, Zhao J, Zhang F, Pan S. Mechanisms of mechanical stimulation in the development of respiratory system diseases. Am J Physiol Lung Cell Mol Physiol 2024; 327:L724-L739. [PMID: 39316681 DOI: 10.1152/ajplung.00122.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024] Open
Abstract
During respiration, mechanical stress can initiate biological responses that impact the respiratory system. Mechanical stress plays a crucial role in the development of the respiratory system. However, pathological mechanical stress can impact the onset and progression of respiratory diseases by influencing the extracellular matrix and cell transduction processes. In this article, we explore the mechanisms by which mechanical forces communicate with and influence cells. We outline the basic knowledge of respiratory mechanics, elucidating the important role of mechanical stimulation in influencing respiratory system development and differentiation from a microscopic perspective. We also explore the potential mechanisms of mechanical transduction in the pathogenesis and development of respiratory diseases such as asthma, lung injury, pulmonary fibrosis, and lung cancer. Finally, we look forward to new research directions in cellular mechanotransduction, aiming to provide fresh insights for future therapeutic research on respiratory diseases.
Collapse
Affiliation(s)
- Tian Xia
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Ziyin Pan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, People's Republic of China
| | - Haoxin Wan
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yongsen Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Guocai Mao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jun Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Fangbiao Zhang
- Department of Cardiothoracic Surgery, Lishui Municipal Central Hospital, Lishui, People's Republic of China
| | - Shu Pan
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
11
|
Resnikoff HA, Schwarzbauer JE. Increased basal fibronectin is sufficient to promote excess endothelial cell matrix assembly causing localized barrier dysfunction. Mol Biol Cell 2024; 35:ar120. [PMID: 39046775 PMCID: PMC11449387 DOI: 10.1091/mbc.e24-02-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
Endothelial cell behavior is regulated by subendothelial extracellular matrix (ECM). The ECM protein fibronectin (FN) is rare in healthy blood vessels but accumulates in disease accompanied by endothelial dysfunctions. Here, we report that excess assembly of FN disrupts key endothelial functions. We mimicked increased FN expression as in diseased stroma by providing exogenous FN basally in a Transwell insert and found dose-dependent upregulation of subendothelial FN matrix assembly. Taking advantage of discontinuous matrix assembly by endothelial cells, we show correlations between regional increases in FN matrix and disruptions in endothelial cell morphology, VE-cadherin junctions, and the cell cycle, all of which were not changed in FN-deficient regions of the monolayer. These changes affected endothelial barrier function with increased monolayer permeability exposing basal regions of high FN matrix and permitting FN-dependent adhesion of MDA-MB-231 tumor cells from the apical side of the monolayer. FN matrix accumulation was quick and increases in FN matrix preceded all other changes in the endothelium. Therefore, subendothelial accumulation of FN matrix is a cause, not an effect, of endothelial monolayer disorganization and leakiness. Regulating FN accumulation in the subendothelial space could be an important target for controlling progression of fibrosis and related diseases.
Collapse
Affiliation(s)
- Henry A. Resnikoff
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | | |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Acute pancreatitis is a common acute inflammatory disorder of the pancreas, and its incidence has been increasing worldwide. Approximately 10% of acute pancreatitis progresses to severe acute pancreatitis (SAP), which carries significant morbidity and mortality. Disordered immune response to pancreatic injury is regarded as a key event that mediates systemic injury in SAP. In this article, we review recent developments in immune biomarkers of SAP and future directions for research. RECENT FINDINGS Given the importance of the NLRP3-inflammasome pathway in mediating systemic inflammatory response syndrome and systemic injury, recent studies have investigated associations of SAP with systemic levels of activators of NLRP3, such as the damage associated molecular patterns (DAMPs) for the first time in human SAP. For example, circulating levels of histones, mitochondrial DNAs, and cell free DNAs have been associated with SAP. A panel of mechanistically relevant immune markers (e.g., panel of Angiopoeitin-2, hepatocyte growth factor, interleukin-8 (IL-8), resistin and sTNF-α R1) carried higher predictive accuracies than existing clinical scores and individual immune markers. Of the cytokines with established relevance to SAP pathogenesis, phase 2 trials of immunotherapies, including tumor necrosis factor (TNF)-alpha inhibition and stimulation of IL-10 production, are underway to determine if altering the immunologic response can reduce the severity of acute pancreatitis (AP). SUMMARY Circulating systemic levels of various DAMPs and a panel of immune markers that possibly reflect activities of different pathways that drive SAP appear promising as predictive biomarkers for SAP. But larger multicenter studies are needed for external validation. Studies investigating immune cellular pathways driving SAP using immunophenotyping techniques are scarce. Interdisciplinary efforts are also needed to bring some of the promising biomarkers to the bedside for validation and testing for clinical utility. Studies investigating the role of and characterization of altered gut-lymph and gut-microbiota in severe AP are needed.
Collapse
Affiliation(s)
- Peter J Lee
- Division of Gastroenterology, Hepatology, and Nutrition. Ohio State University Wexner Medical Center, Columbus, OH
| | - Georgios I Papachristou
- Division of Gastroenterology, Hepatology, and Nutrition. Ohio State University Wexner Medical Center, Columbus, OH
| | - Cate Speake
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Adam Lacy-Hulbert
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| |
Collapse
|
13
|
Paik NY, Neethling J, Anwar M, Gupta P, Sanborn MA, Shen Z, Bandara T, Hyun J, Naiche LA, Kitajewski JK, Rehman J, Shin JW, Mehta D, Pajcini KV. Notch transcriptional target tmtc1 maintains vascular homeostasis. Cell Mol Life Sci 2024; 81:370. [PMID: 39190102 PMCID: PMC11349727 DOI: 10.1007/s00018-024-05407-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/31/2024] [Accepted: 08/11/2024] [Indexed: 08/28/2024]
Abstract
Proper lung function requires the maintenance of a tight endothelial barrier while simultaneously permitting the exchange of macromolecules and fluids to underlying tissue. Disruption of this barrier results in an increased vascular permeability in the lungs, leading to acute lung injury. In this study, we set out to determine whether transcriptional targets of Notch signaling function to preserve vascular integrity. We tested the in vivo requirement for Notch transcriptional signaling in maintaining the pulmonary endothelial barrier by using two complementary endothelial-specific Notch loss-of-function murine transgenic models. Notch signaling was blocked using endothelial-specific activation of an inhibitor of Notch transcriptional activation, Dominant Negative Mastermindlike (DNMAML; CDH5CreERT2), or endothelial-specific loss of Notch1 (Notch1f/f; CDH5CreERT2). Both Notch mutants increased vascular permeability with pan-Notch inhibition by DNMAML showing a more severe phenotype in the lungs and in purified endothelial cells. RNA sequencing of primary lung endothelial cells (ECs) identified novel Notch targets, one of which was transmembrane O-mannosyltransferase targeting cadherins 1 (tmtc1). We show that tmtc1 interacts with vascular endothelial cadherin (VE-cadherin) and regulates VE-cadherin egress from the endoplasmic reticulum through direct interaction. Our findings demonstrate that Notch signaling maintains endothelial adherens junctions and vascular homeostasis by a transcriptional mechanism that drives expression of critical factors important for processing and transport of VE-cadherin.
Collapse
Affiliation(s)
- Na Yoon Paik
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL, 60612, USA
| | - Jacob Neethling
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL, 60612, USA
| | - Mumtaz Anwar
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL, 60612, USA
| | - Prerak Gupta
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL, 60612, USA
| | - Mark A Sanborn
- Department of Biochemistry, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | - Zekun Shen
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL, 60612, USA
| | - Thilinie Bandara
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL, 60612, USA
| | - James Hyun
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL, 60612, USA
| | - L A Naiche
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Jan K Kitajewski
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Jalees Rehman
- Department of Biochemistry, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | - Jae-Won Shin
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL, 60612, USA
| | - Dolly Mehta
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL, 60612, USA
| | - Kostandin V Pajcini
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL, 60612, USA.
| |
Collapse
|
14
|
Sidibé A, Mykuliak VV, Zhang P, Hytönen VP, Wu J, Wehrle-Haller B. Acetyl-NPKY of integrin-β1 binds KINDLIN2 to control endothelial cell proliferation and junctional integrity. iScience 2024; 27:110129. [PMID: 38904068 PMCID: PMC11187247 DOI: 10.1016/j.isci.2024.110129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/09/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024] Open
Abstract
Integrin-dependent crosstalk between cell-matrix adhesions and cell-cell junctions is critical for controlling endothelial permeability and proliferation in cancer and inflammatory diseases but remains poorly understood. Here, we investigated how acetylation of the distal NPKY-motif of Integrin-β1 influences endothelial cell physiology and barrier function. Expression of an acetylation-mimetic β1-K794Q-GFP mutant led to the accumulation of immature cell-matrix adhesions accompanied by a transcriptomic reprograming of endothelial cells, involving genes associated with cell adhesion, proliferation, polarity, and barrier function. β1-K794Q-GFP induced constitutive MAPK signaling, junctional impairment, proliferation, and reduced contact inhibition at confluence. Structural analysis of Integrin-β1 interaction with KINDLIN2, biochemical pulldown assay, and binding energy determination by using molecular dynamics simulation showed that acetylation of K794 and the K794Q-mutant increased KINDLIN2 binding affinity to the Integrin-β1. Thus, enhanced recruitment of KINDLIN2 to Lysine-acetylated Integrin-β1 and resulting modulation of barrier function, offers new therapeutic possibilities for controlling vascular permeability and disease conditions.
Collapse
Affiliation(s)
- Adama Sidibé
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Vasyl V. Mykuliak
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland
| | - Pingfeng Zhang
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland
| | - Vesa P. Hytönen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland
- Fimlab Laboratories, Biokatu 4, FI-33520 Tampere, Finland
| | - Jinhua Wu
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| |
Collapse
|
15
|
Henrio Marcellin DF, Huang J. Exploring Zika Virus Impact on Endothelial Permeability: Insights into Transcytosis Mechanisms and Vascular Leakage. Viruses 2024; 16:629. [PMID: 38675970 PMCID: PMC11054372 DOI: 10.3390/v16040629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/03/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Treating brain disease is challenging, and the Zika virus (ZIKV) presents a unique obstacle due to its neuroinvasive nature. In this review, we discuss the immunopathogenesis of ZIKV and explore how the virus interacts with the body's immune responses and the role of the protein Mfsd2a in maintaining the integrity of the blood-brain barrier (BBB) during ZIKV neuroinvasion. ZIKV has emerged as a significant public health concern due to its association with severe neurological problems, including microcephaly and Gillain-Barré Syndrome (GBS). Understanding its journey through the brain-particularly its interaction with the placenta and BBB-is crucial. The placenta, which is designed to protect the fetus, becomes a pathway for ZIKV when infected. The BBB is composed of brain endothelial cells, acts as a second barrier, and protects the fetal brain. However, ZIKV finds ways to disrupt these barriers, leading to potential damage. This study explores the mechanisms by which ZIKV enters the CNS and highlights the role of transcytosis, which allows the virus to move through the cells without significantly disrupting the BBB. Although the exact mechanisms of transcytosis are unclear, research suggests that ZIKV may utilize this pathway.
Collapse
Affiliation(s)
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China;
| |
Collapse
|
16
|
Liu Y, Murazzi I, Fuller AM, Pan H, Irizarry-Negron VM, Devine A, Katti R, Skuli N, Ciotti GE, Pak K, Pack MA, Simon MC, Weber K, Cooper K, Eisinger-Mathason TK. Sarcoma Cells Secrete Hypoxia-Modified Collagen VI to Weaken the Lung Endothelial Barrier and Promote Metastasis. Cancer Res 2024; 84:977-993. [PMID: 38335278 PMCID: PMC10984776 DOI: 10.1158/0008-5472.can-23-0910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 12/21/2023] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Intratumoral hypoxia correlates with metastasis and poor survival in patients with sarcoma. Using an impedance sensing assay and a zebrafish intravital microinjection model, we demonstrated here that the hypoxia-inducible collagen-modifying enzyme lysyl hydroxylase PLOD2 and its substrate collagen type VI (COLVI) weaken the lung endothelial barrier and promote transendothelial migration. Mechanistically, hypoxia-induced PLOD2 in sarcoma cells modified COLVI, which was then secreted into the vasculature. Upon reaching the apical surface of lung endothelial cells, modified COLVI from tumor cells activated integrin β1 (ITGβ1). Furthermore, activated ITGβ1 colocalized with Kindlin2, initiating their interaction with F-actin and prompting its polymerization. Polymerized F-actin disrupted endothelial adherens junctions and induced barrier dysfunction. Consistently, modified and secreted COLVI was required for the late stages of lung metastasis in vivo. Analysis of patient gene expression and survival data from The Cancer Genome Atlas (TCGA) revealed an association between the expression of both PLOD2 and COLVI and patient survival. Furthermore, high levels of COLVI were detected in surgically resected sarcoma metastases from patient lungs and in the blood of tumor-bearing mice. Together, these data identify a mechanism of sarcoma lung metastasis, revealing opportunities for therapeutic intervention. SIGNIFICANCE Collagen type VI modified by hypoxia-induced PLOD2 is secreted by sarcoma cells and binds to integrin β1 on endothelial cells to induce barrier dysfunction, which promotes sarcoma vascular dissemination and metastasis.
Collapse
Affiliation(s)
- Ying Liu
- Department of Pathology & Laboratory Medicine
- Penn Sarcoma Program
- Abramson Family Cancer Research Institute
- Perelman School of Medicine
- University of Pennsylvania, Philadelphia, PA, USA
| | | | - Ashley M. Fuller
- Department of Pathology & Laboratory Medicine
- Penn Sarcoma Program
- Abramson Family Cancer Research Institute
- Perelman School of Medicine
- University of Pennsylvania, Philadelphia, PA, USA
| | - Hehai Pan
- Department of Pathology & Laboratory Medicine
- Penn Sarcoma Program
- Abramson Family Cancer Research Institute
- Perelman School of Medicine
- University of Pennsylvania, Philadelphia, PA, USA
| | - Valerie M Irizarry-Negron
- Department of Pathology & Laboratory Medicine
- Penn Sarcoma Program
- Abramson Family Cancer Research Institute
- Perelman School of Medicine
- University of Pennsylvania, Philadelphia, PA, USA
| | - Ann Devine
- Department of Pathology & Laboratory Medicine
- Penn Sarcoma Program
- Abramson Family Cancer Research Institute
- Perelman School of Medicine
- University of Pennsylvania, Philadelphia, PA, USA
| | - Rohan Katti
- Department of Pathology & Laboratory Medicine
- Penn Sarcoma Program
- Abramson Family Cancer Research Institute
- Perelman School of Medicine
- University of Pennsylvania, Philadelphia, PA, USA
| | - Nicolas Skuli
- Penn Sarcoma Program
- Abramson Family Cancer Research Institute
- Perelman School of Medicine
- Department of Cell and Developmental Biology
- University of Pennsylvania, Philadelphia, PA, USA
| | - Gabrielle E. Ciotti
- Department of Pathology & Laboratory Medicine
- Penn Sarcoma Program
- Abramson Family Cancer Research Institute
- Perelman School of Medicine
- University of Pennsylvania, Philadelphia, PA, USA
| | - Koreana Pak
- Department of Pathology & Laboratory Medicine
- Penn Sarcoma Program
- Abramson Family Cancer Research Institute
- Perelman School of Medicine
- University of Pennsylvania, Philadelphia, PA, USA
| | - Michael A. Pack
- Perelman School of Medicine
- Department of Medicine
- University of Pennsylvania, Philadelphia, PA, USA
| | - M. Celeste Simon
- Penn Sarcoma Program
- Abramson Family Cancer Research Institute
- Perelman School of Medicine
- Department of Cell and Developmental Biology
- University of Pennsylvania, Philadelphia, PA, USA
| | - Kristy Weber
- Penn Sarcoma Program
- Perelman School of Medicine
- Department of Orthopedic Surgery
- University of Pennsylvania, Philadelphia, PA, USA
| | - Kumarasen Cooper
- Department of Pathology & Laboratory Medicine
- Perelman School of Medicine
- University of Pennsylvania, Philadelphia, PA, USA
| | - T.S. Karin Eisinger-Mathason
- Department of Pathology & Laboratory Medicine
- Penn Sarcoma Program
- Abramson Family Cancer Research Institute
- Perelman School of Medicine
- University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
17
|
Zemtsovski JD, Tumpara S, Schmidt S, Vijayan V, Klos A, Laudeley R, Held J, Immenschuh S, Wurm FM, Welte T, Haller H, Janciauskiene S, Shushakova N. Alpha1-antitrypsin improves survival in murine abdominal sepsis model by decreasing inflammation and sequestration of free heme. Front Immunol 2024; 15:1368040. [PMID: 38562925 PMCID: PMC10982482 DOI: 10.3389/fimmu.2024.1368040] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
Background Excessive inflammation, hemolysis, and accumulation of labile heme play an essential role in the pathophysiology of multi-organ dysfunction syndrome (MODS) in sepsis. Alpha1-antitrypsin (AAT), an acute phase protein with heme binding capacity, is one of the essential modulators of host responses to inflammation. In this study, we evaluate the putative protective effect of AAT against MODS and mortality in a mouse model of polymicrobial abdominal sepsis. Methods Polymicrobial abdominal sepsis was induced in C57BL/6N mice by cecal ligation and puncture (CLP). Immediately after CLP surgery, mice were treated intraperitoneally with three different forms of human AAT-plasma-derived native (nAAT), oxidized nAAT (oxAAT), or recombinant AAT (recAAT)-or were injected with vehicle. Sham-operated mice served as controls. Mouse survival, bacterial load, kidney and liver function, immune cell profiles, cytokines/chemokines, and free (labile) heme levels were assessed. In parallel, in vitro experiments were carried out with resident peritoneal macrophages (MPMΦ) and mouse peritoneal mesothelial cells (MPMC). Results All AAT preparations used reduced mortality in septic mice. Treatment with AAT significantly reduced plasma lactate dehydrogenase and s-creatinine levels, vascular leakage, and systemic inflammation. Specifically, AAT reduced intraperitoneal accumulation of free heme, production of cytokines/chemokines, and neutrophil infiltration into the peritoneal cavity compared to septic mice not treated with AAT. In vitro experiments performed using MPMC and primary MPMΦ confirmed that AAT not only significantly decreases lipopolysaccharide (LPS)-induced pro-inflammatory cell activation but also prevents the enhancement of cellular responses to LPS by free heme. In addition, AAT inhibits cell death caused by free heme in vitro. Conclusion Data from the septic CLP mouse model suggest that intraperitoneal AAT treatment alone is sufficient to improve sepsis-associated organ dysfunctions, preserve endothelial barrier function, and reduce mortality, likely by preventing hyper-inflammatory responses and by neutralizing free heme.
Collapse
Affiliation(s)
- Jan D. Zemtsovski
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Srinu Tumpara
- Department of Respiratory Medicine, Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover Medical School, Hannover, Germany
| | | | - Vijith Vijayan
- Institute for Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Andreas Klos
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Robert Laudeley
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Julia Held
- Department of Respiratory Medicine, Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover Medical School, Hannover, Germany
| | - Stephan Immenschuh
- Institute for Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Florian M. Wurm
- Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Tobias Welte
- Department of Respiratory Medicine, Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover Medical School, Hannover, Germany
| | - Hermann Haller
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Sabina Janciauskiene
- Department of Respiratory Medicine, Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover Medical School, Hannover, Germany
| | - Nelli Shushakova
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| |
Collapse
|
18
|
Kunnathattil M, Rahul P, Skaria T. Soluble vascular endothelial glycocalyx proteoglycans as potential therapeutic targets in inflammatory diseases. Immunol Cell Biol 2024; 102:97-116. [PMID: 37982607 DOI: 10.1111/imcb.12712] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/21/2023]
Abstract
Reducing the activity of cytokines and leukocyte extravasation is an emerging therapeutic strategy to limit tissue-damaging inflammatory responses and restore immune homeostasis in inflammatory diseases. Proteoglycans embedded in the vascular endothelial glycocalyx, which regulate the activity of cytokines to restrict the inflammatory response in physiological conditions, are proteolytically cleaved in inflammatory diseases. Here we critically review the potential of proteolytically shed, soluble vascular endothelial glycocalyx proteoglycans to modulate pathological inflammatory responses. Soluble forms of the proteoglycans syndecan-1, syndecan-3 and biglycan exert beneficial anti-inflammatory effects by the removal of chemokines, suppression of proinflammatory cytokine expression and leukocyte migration, and induction of autophagy of proinflammatory M1 macrophages. By contrast, soluble versikine and decorin enhance proinflammatory responses by increasing inflammatory cytokine synthesis and leukocyte migration. Endogenous syndecan-2 and mimecan exert proinflammatory effects, syndecan-4 and perlecan mediate beneficial anti-inflammatory effects and glypican regulates Hh and Wnt signaling pathways involved in systemic inflammatory responses. Taken together, targeting the vascular endothelial glycocalyx-derived, soluble syndecan-1, syndecan-2, syndecan-3, syndecan-4, biglycan, versikine, mimecan, perlecan, glypican and decorin might be a potential therapeutic strategy to suppress overstimulated cytokine and leukocyte responses in inflammatory diseases.
Collapse
Affiliation(s)
- Maneesha Kunnathattil
- Department of Zoology, Government College Madappally, University of Calicut, Calicut, Kerala, India
| | - Pedapudi Rahul
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Tom Skaria
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| |
Collapse
|
19
|
Liu C, Xu J, Fan J, Liu C, Xie W, Kong H. DPP-4 exacerbates LPS-induced endothelial cells inflammation via integrin-α5β1/FAK/AKT signaling. Exp Cell Res 2024; 435:113909. [PMID: 38184221 DOI: 10.1016/j.yexcr.2023.113909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/18/2023] [Accepted: 12/30/2023] [Indexed: 01/08/2024]
Abstract
Endothelial dysfunction plays a pivotal role in the pathogenesis of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Dipeptidyl peptidase IV (DPP-4), a cell surface glycoprotein, has been implicated in endothelial inflammation and barrier dysfunction. In this study, the role of DPP-4 on lipopolysaccharide (LPS)-induced pulmonary microvascular endothelial cells (HPMECs) dysfunction and the underlying mechanism were investigated by siRNA-mediated knockdown of DPP-4. Our results indicated that LPS (1 μg/ml) challenge resulted in either the production and releasing of DPP-4, as well as the secretion of IL-6 and IL-8 in HPMECs. DPP-4 knockdown inhibited chemokine releasing and monolayer hyper-permeability in LPS challenged HPMECs. When cocultured with human polymorphonuclear neutrophils (PMNs), DPP4 knockdown suppressed LPS-induced neutrophil-endothelial adhesion, PMN chemotaxis and trans-endothelial migration. Western blotting showed that DPP-4 knockdown attenuated LPS-induced activation of TLR4/NF-κB pathway. Immunoprecipitation and liquid chromatography-tandem mass spectrometry revealed that DPP-4 mediated LPS-induced endothelial inflammation by interacting with integrin-α5β1. Moreover, exogenous soluble DPP-4 treatment sufficiently activated integrin-α5β1 downstream FAK/AKT/NF-κB signaling, thereafter inducing ICAM-1 upregulation in HPMECs. Collectively, our results suggest that endothelia synthesis and release DPP-4 under the stress of endotoxin, which interact with integrin-α5β1 complex in an autocrine or paracrine manner to exacerbate endothelial inflammation and enhance endothelial cell permeability. Therefore, blocking DDP-4 could be a potential therapeutic strategy to prevent endothelial dysfunction in ALI/ARDS.
Collapse
Affiliation(s)
- Chang Liu
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Jian Xu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, 200433, China
| | - Jiahao Fan
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Chenyang Liu
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Weiping Xie
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Hui Kong
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
20
|
Shi Y, Ji S, Xu Y, Ji J, Yang X, Ye B, Lou J, Tao T. Global trends in research on endothelial cells and sepsis between 2002 and 2022: A systematic bibliometric analysis. Heliyon 2024; 10:e23599. [PMID: 38173483 PMCID: PMC10761786 DOI: 10.1016/j.heliyon.2023.e23599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Sepsis is a systemic syndrome involving physiological, pathological, and biochemical abnormalities precipitated by infection and is a major global public health problem. Endothelial cells (ECs) dysfunction is a major contributor to sepsis-induced multiple organ failure. This bibliometric analysis aimed to identify and characterize the status, evolution of the field, and new research trends of ECs and sepsis over the past 20 years. For this analysis, the Web of Science Core Collection database was searched to identify relevant publications on ECs in sepsis published between January 1, 2002, and December 31, 2022. Microsoft Excel 2021, VOSviewer software, CiteSpace software, and the online analysis platform of literature metrology (http://bibliometric.com) were used to visualize the trends of publications' countries/regions, institutions, authors, journals, and keywords. In total, 4200 articles were identified and screened, primarily originating from 86 countries/regions and 3489 institutions. The USA was the leading contributor to this research field, providing 1501 articles (35.74 %). Harvard University's scientists were the most prolific, with 129 articles. Overall, 21,944 authors were identified, among whom Bae Jong Sup was the most prolific, contributing 129 publications. Additionally, Levi Marcel was the most frequently co-cited author, appearing 538 times. The journals that published the most articles were SHOCK, CRITICAL CARE MEDICINE, and PLOS ONE, accounting for 10.79 % of the total. The current emerging hotspots are concentrated on "endothelial glycocalyx," "NLRP3 inflammasome," "extracellular vesicle," "biomarkers," and "COVID-19," among others. In conclusion, this study provides a comprehensive overview of the scientific productivity and emerging research trends in the field of ECs in sepsis. The evidence supporting the significant role of ECs in both physiological and pathological responses to sepsis is continuously growing. More in-depth studies of the molecular mechanisms underlying sepsis-induced endothelial dysfunction and EC-targeted therapies are warranted in the future.
Collapse
Affiliation(s)
- Yue Shi
- Department of Anesthesiology, Air Force Medical Center, Beijing, China
- Graduate of China Medical University, Shenyang, China
| | - Shunpan Ji
- Department of Anesthesiology, Air Force Medical Center, Beijing, China
- Graduate of China Medical University, Shenyang, China
| | - Yuhai Xu
- Department of Anesthesiology, Air Force Medical Center, Beijing, China
| | - Jun Ji
- Department of Anesthesiology, Air Force Medical Center, Beijing, China
| | - Xiaoming Yang
- Department of Anesthesiology, Air Force Medical Center, Beijing, China
| | - Bo Ye
- Department of Anesthesiology, Air Force Medical Center, Beijing, China
- Graduate of China Medical University, Shenyang, China
| | - Jingsheng Lou
- Department of Anesthesiology, The General Hospital of the People's Liberation Army, Beijing, China
| | - Tianzhu Tao
- Department of Anesthesiology, Air Force Medical Center, Beijing, China
- Graduate of China Medical University, Shenyang, China
| |
Collapse
|
21
|
Cara-Fuentes G, Verma R, Venkatareddy M, Bauer C, Piani F, Aksoy ST, Vazzalwar N, Garcia GE, Banks M, Ordoñez FA, de Lucas-Collantes C, Bjornstad P, González Rodríguez JD, Johnson RJ, Garg P. β1-Integrin blockade prevents podocyte injury in experimental models of minimal change disease. Nefrologia 2024; 44:90-99. [PMID: 37150673 DOI: 10.1016/j.nefroe.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/10/2022] [Indexed: 05/09/2023] Open
Abstract
INTRODUCTION Activation of the focal adhesion kinase (FAK) in podocytes is involved in the pathogenesis of minimal change disease (MCD), but the pathway leading to its activation in this disease is unknown. Here, we tested whether podocyte β1 integrin is the upstream modulator of FAK activation and podocyte injury in experimental models of MCD-like injury. METHODS We used lipopolysaccharide (LPS) and MCD sera to induce MCD-like changes in vivo and in cultured human podocytes, respectively. We performed functional studies using specific β1 integrin inhibitors in vivo and in vitro, and integrated histological analysis, western blotting, and immunofluorescence to assess for morphological and molecular changes in podocytes. By ELISA, we measured serum LPS levels in 35 children with MCD or presumed MCD (idiopathic nephrotic syndrome [INS]) and in 18 healthy controls. RESULTS LPS-injected mice showed morphological (foot process effacement, and normal appearing glomeruli on light microscopy) and molecular features (synaptopodin loss, nephrin mislocalization, FAK phosphorylation) characteristic of human MCD. Administration of a β1 integrin inhibitor to mice abrogated FAK phosphorylation, and ameliorated proteinuria and podocyte injury following LPS. Children with MCD/INS in relapse had higher serum LPS levels than controls. In cultured human podocytes, β1 integrin blockade prevented cytoskeletal rearrangements following exposure to MCD sera in relapse. CONCLUSIONS Podocyte β1 integrin activation is an upstream mediator of FAK phosphorylation and podocyte injury in models of MCD-like injury.
Collapse
|
22
|
Mutgan AC, Jandl K, Radic N, Valzano F, Kolb D, Hoffmann J, Foris V, Wilhelm J, Boehm PM, Hoetzenecker K, Olschewski A, Olschewski H, Heinemann A, Wygrecka M, Marsh LM, Kwapiszewska G. Pentastatin, a matrikine of the collagen IVα5, is a novel endogenous mediator of pulmonary endothelial dysfunction. Am J Physiol Cell Physiol 2023; 325:C1294-C1312. [PMID: 37694286 PMCID: PMC11550886 DOI: 10.1152/ajpcell.00391.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
Deposition of basement membrane components, such as collagen IVα5, is associated with altered endothelial cell function in pulmonary hypertension. Collagen IVα5 harbors a functionally active fragment within its C-terminal noncollageneous (NC1) domain, called pentastatin, whose role in pulmonary endothelial cell behavior remains unknown. Here, we demonstrate that pentastatin serves as a mediator of pulmonary endothelial cell dysfunction, contributing to pulmonary hypertension. In vitro, treatment with pentastatin induced transcription of immediate early genes and proinflammatory cytokines and led to a functional loss of endothelial barrier integrity in pulmonary arterial endothelial cells. Mechanistically, pentastatin leads to β1-integrin subunit clustering and Rho/ROCK activation. Blockage of the β1-integrin subunit or the Rho/ROCK pathway partially attenuated the pentastatin-induced endothelial barrier disruption. Although pentastatin reduced the viability of endothelial cells, smooth muscle cell proliferation was induced. These effects on the pulmonary vascular cells were recapitulated ex vivo in the isolated-perfused lung model, where treatment with pentastatin-induced swelling of the endothelium accompanied by occasional endothelial cell apoptosis. This was reflected by increased vascular permeability and elevated pulmonary arterial pressure induced by pentastatin. This study identifies pentastatin as a mediator of endothelial cell dysfunction, which thus might contribute to the pathogenesis of pulmonary vascular disorders such as pulmonary hypertension.NEW & NOTEWORTHY This study is the first to show that pentastatin, the matrikine of the basement membrane (BM) collagen IVα5 polypeptide, triggers rapid pulmonary arterial endothelial cell barrier disruption, activation, and apoptosis in vitro and ex vivo. Mechanistically, pentastatin partially acts through binding to the β1-integrin subunit and the Rho/ROCK pathway. These findings are the first to link pentastatin to pulmonary endothelial dysfunction and, thus, suggest a major role for BM-matrikines in pulmonary vascular diseases such as pulmonary hypertension.
Collapse
Affiliation(s)
- Ayse Ceren Mutgan
- Division of Physiology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Katharina Jandl
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Nemanja Radic
- Division of Physiology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Francesco Valzano
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Dagmar Kolb
- Core Facility Ultrastructure Analysis, Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Julia Hoffmann
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Vasile Foris
- Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Jochen Wilhelm
- Institute for Lung Health, Member of the German Lung Center (DZL), Giessen, Germany
| | - Panja M Boehm
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Malgorzata Wygrecka
- Institute for Lung Health, Member of the German Lung Center (DZL), Giessen, Germany
- Center for Infection and Genomics of the Lung, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Leigh M Marsh
- Division of Physiology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Grazyna Kwapiszewska
- Division of Physiology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Institute for Lung Health, Member of the German Lung Center (DZL), Giessen, Germany
| |
Collapse
|
23
|
Chen Z, Tang L, Luo L, Luo W, Li Y, Wang X, Huang L, Hu Y, Mei H. Enhancing the Treatment of Uncontrolled Inflammation through the Targeted Delivery of TPCA-1-Loaded Nanoparticles. Pharmaceutics 2023; 15:2435. [PMID: 37896195 PMCID: PMC10609852 DOI: 10.3390/pharmaceutics15102435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Uncontrolled inflammation is a pathological state that underlies many diseases. Despite the development of numerous anti-inflammatory agents, the treatment of uncontrolled inflammation remains a challenging task. We developed a targeted delivery system for [5-(p-fluorophenyl)-2-ureido]thiophene-3-carboxamide (TPCA-1), a potent inhibitor of the NF-κB signaling pathway. The system comprises TPCA-1-loaded nanoparticles (NPs) functionalized with a monoclonal antibody (mAb) that specifically binds to the break point of the IgD6 region of the platelet/endothelial cell adhesion molecule-1 (PECAM-1) extracellular segment that is overexposed on the injured endothelium and activated macrophages during the pathogenesis of inflammation. In vitro binding and cellular uptake experiments revealed that the mAb modification on NPs could significantly enhance uptake by both Raw264.7 and HUVEC compared with unmodified NPs. In studies conducted at the cellular level focusing on anti-inflammatory and antioxidant effects, this formulation was found to effectively inhibit M1 polarization of macrophages, downregulate the secretion of pro-inflammatory cytokines, and reduce the production of reactive oxygen species (ROS) and nitric oxide (NO). In an animal model of vascular endothelial injury with acute inflammation, these NPs were capable of delivering TPCA-1 to inflammatory lesions in a targeted manner. Compared with the free agent-treated group, the NP-treated group exhibited reduced infiltration of inflammatory cells. In conclusion, our study demonstrates that this targeted delivery of TPCA-1-loaded NPs represents a promising strategy for improved mitigation of uncontrolled inflammation.
Collapse
Affiliation(s)
- Zhaozhao Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Z.C.); (L.T.); (L.L.); (W.L.); (Y.L.); (X.W.); (L.H.)
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy of Hubei Province, Wuhan 430022, China
| | - Lu Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Z.C.); (L.T.); (L.L.); (W.L.); (Y.L.); (X.W.); (L.H.)
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy of Hubei Province, Wuhan 430022, China
| | - Lili Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Z.C.); (L.T.); (L.L.); (W.L.); (Y.L.); (X.W.); (L.H.)
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy of Hubei Province, Wuhan 430022, China
| | - Wenjing Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Z.C.); (L.T.); (L.L.); (W.L.); (Y.L.); (X.W.); (L.H.)
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy of Hubei Province, Wuhan 430022, China
| | - Yingying Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Z.C.); (L.T.); (L.L.); (W.L.); (Y.L.); (X.W.); (L.H.)
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy of Hubei Province, Wuhan 430022, China
| | - Xindi Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Z.C.); (L.T.); (L.L.); (W.L.); (Y.L.); (X.W.); (L.H.)
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy of Hubei Province, Wuhan 430022, China
| | - Linlin Huang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Z.C.); (L.T.); (L.L.); (W.L.); (Y.L.); (X.W.); (L.H.)
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy of Hubei Province, Wuhan 430022, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Z.C.); (L.T.); (L.L.); (W.L.); (Y.L.); (X.W.); (L.H.)
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy of Hubei Province, Wuhan 430022, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Z.C.); (L.T.); (L.L.); (W.L.); (Y.L.); (X.W.); (L.H.)
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy of Hubei Province, Wuhan 430022, China
| |
Collapse
|
24
|
Halder SK, Delorme-Walker VD, Milner R. β1 integrin is essential for blood-brain barrier integrity under stable and vascular remodelling conditions; effects differ with age. Fluids Barriers CNS 2023; 20:52. [PMID: 37400852 DOI: 10.1186/s12987-023-00453-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/14/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Maintaining a tight blood-brain barrier (BBB) is an important prerequisite for the preservation of neurological health, though current evidence suggests it declines with age. While extracellular matrix-integrin interactions play critical roles in regulating the balance between vascular stability and remodeling, it remains to be established whether manipulation of integrin function weakens or strengthens vascular integrity. Indeed, recent reports have generated conflicting outcomes in this regard. METHODS Here, in young (8-10 weeks) and aged (20 months) mice, we examined the impact of intraperitoneal injection of a function-blocking β1 integrin antibody, both under normoxic conditions, when the BBB is stable, and during chronic mild hypoxic (CMH; 8% O2) conditions, when a vigorous vascular remodeling response is ongoing. Brain tissue was examined by immunofluorescence (IF) for markers of vascular remodeling and BBB disruption, and microglial activation and proliferation. Data were analyzed using one-way analysis of variance (ANOVA) followed by Tukey's multiple comparison post-hoc test. RESULTS In both young and aged mice, β1 integrin block greatly amplified hypoxia-induced vascular disruption, though it was much less under normoxic conditions. Interestingly, under both normoxic and hypoxic conditions, β1 integrin antibody-induced BBB disruption was greater in young mice. Enhanced BBB breakdown was associated with increased levels of the leaky BBB marker MECA-32 and with greater loss of endothelial tight junction proteins and the adherens protein VE-cadherin. Surprisingly, β1 integrin blockade did not reduce hypoxia-induced endothelial proliferation, nor did it prevent the hypoxia-associated increase in vascularity. Commensurate with the increased vascular disruption, β1 integrin blockade enhanced microglial activation both in young and aged brain, though the impact was much greater in young brain. In vitro studies revealed that β1 integrin blockade also reduced the integrity of a brain endothelial monolayer and triggered disruptions in tight junction proteins. CONCLUSIONS These data demonstrate that β1 integrin plays an essential role in maintaining BBB integrity, both under stable normoxic conditions and during hypoxia-induced vascular remodeling. As β1 integrin blockade had a greater disruptive effect in young brain, effectively shifting the BBB phenotype of young brain towards that of the aged, we speculate that enhancing β1 integrin function at the aged BBB may hold therapeutic potential by reverting the deteriorating BBB phenotype back towards that of the young.
Collapse
Affiliation(s)
- Sebok K Halder
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, Suite 200, San Diego, CA, 92121, USA
| | - Violaine D Delorme-Walker
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, Suite 200, San Diego, CA, 92121, USA
| | - Richard Milner
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, Suite 200, San Diego, CA, 92121, USA.
| |
Collapse
|
25
|
Stritt S, Nurden P, Nurden AT, Schved JF, Bordet JC, Roux M, Alessi MC, Trégouët DA, Mäkinen T, Giansily-Blaizot M. APOLD1 loss causes endothelial dysfunction involving cell junctions, cytoskeletal architecture, and Weibel-Palade bodies, while disrupting hemostasis. Haematologica 2023; 108:772-784. [PMID: 35638551 PMCID: PMC9973481 DOI: 10.3324/haematol.2022.280816] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Indexed: 11/09/2022] Open
Abstract
Vascular homeostasis is impaired in various diseases thereby contributing to the progression of their underlying pathologies. The endothelial immediate early gene Apolipoprotein L domain-containing 1 (APOLD1) helps to regulate endothelial function. However, its precise role in endothelial cell biology remains unclear. We have localized APOLD1 to endothelial cell contacts and to Weibel-Palade bodies (WPB) where it associates with von Willebrand factor (VWF) tubules. Silencing of APOLD1 in primary human endothelial cells disrupted the cell junction-cytoskeletal interface, thereby altering endothelial permeability accompanied by spontaneous release of WPB contents. This resulted in an increased presence of WPB cargoes, notably VWF and angiopoietin-2 in the extracellular medium. Autophagy flux, previously recognized as an essential mechanism for the regulated release of WPB, was impaired in the absence of APOLD1. In addition, we report APOLD1 as a candidate gene for a novel inherited bleeding disorder across three generations of a large family in which an atypical bleeding diathesis was associated with episodic impaired microcirculation. A dominant heterozygous nonsense APOLD1:p.R49* variant segregated to affected family members. Compromised vascular integrity resulting from an excess of plasma angiopoietin-2, and locally impaired availability of VWF may explain the unusual clinical profile of APOLD1:p.R49* patients. In summary, our findings identify APOLD1 as an important regulator of vascular homeostasis and raise the need to consider testing of endothelial cell function in patients with inherited bleeding disorders without apparent platelet or coagulation defects.
Collapse
Affiliation(s)
- Simon Stritt
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala
| | - Paquita Nurden
- Institut de Rythmologie et de Modélisation Cardiaque, Hôpital Xavier Arnozan, Pessac, France.
| | - Alan T Nurden
- Institut de Rythmologie et de Modélisation Cardiaque, Hôpital Xavier Arnozan, Pessac, France
| | - Jean-François Schved
- Department of Biological Hematology, CHU Montpellier, Université de Montpellier, Montpellier
| | - Jean-Claude Bordet
- Hematology, Hospices civils de Lyon, Bron biology center and Hemostasis- Thrombosis, Lyon-1 University, Lyon
| | | | | | - David-Alexandre Trégouët
- Laboratory of Excellence GENMED (Medical Genomics), Paris; University of Bordeaux, INSERM, Bordeaux Population Health Research Center, U1219, Bordeaux
| | - Taija Mäkinen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Muriel Giansily-Blaizot
- Department of Biological Hematology, CHU Montpellier, Université de Montpellier, Montpellier
| |
Collapse
|
26
|
Abstract
The endothelium is a dynamic, semipermeable layer lining all blood vessels, regulating blood vessel formation and barrier function. Proper composition and function of the endothelial barrier are required for fluid homeostasis, and clinical conditions characterized by barrier disruption are associated with severe morbidity and high mortality rates. Endothelial barrier properties are regulated by cell-cell junctions and intracellular signaling pathways governing the cytoskeleton, but recent insights indicate an increasingly important role for integrin-mediated cell-matrix adhesion and signaling in endothelial barrier regulation. Here, we discuss diseases characterized by endothelial barrier disruption, and provide an overview of the composition of endothelial cell-matrix adhesion complexes and associated signaling pathways, their crosstalk with cell-cell junctions, and with other receptors. We further present recent insights into the role of cell-matrix adhesions in the developing and mature/adult endothelium of various vascular beds, and discuss how the dynamic regulation and turnover of cell-matrix adhesions regulates endothelial barrier function in (patho)physiological conditions like angiogenesis, inflammation and in response to hemodynamic stress. Finally, as clinical conditions associated with vascular leak still lack direct treatment, we focus on how understanding of endothelial cell-matrix adhesion may provide novel targets for treatment, and discuss current translational challenges and future perspectives.
Collapse
Affiliation(s)
- Jurjan Aman
- Department of Pulmonology, Amsterdam University Medical Center, the Netherlands (J.A.)
| | - Coert Margadant
- Department of Medical Oncology, Amsterdam University Medical Center, the NetherlandsInstitute of Biology, Leiden University, the Netherlands (C.M.)
| |
Collapse
|
27
|
Stam W, Wachholz GE, de Pereda JM, Kapur R, van der Schoot E, Margadant C. Fetal and neonatal alloimmune thrombocytopenia: Current pathophysiological insights and perspectives for future diagnostics and treatment. Blood Rev 2022; 59:101038. [PMID: 36581513 DOI: 10.1016/j.blre.2022.101038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
FNAIT is a pregnancy-associated condition caused by maternal alloantibodies against paternally-inherited platelet antigens, most frequently HPA-1a on integrin β3. The clinical effects range from no symptoms to fatal intracranial hemorrhage, but underlying pathophysiological determinants are poorly understood. Accumulating evidence suggests that differential antibody-Fc-glycosylation, activation of complement/effector cells, and integrin function-blocking effects contribute to clinical outcome. Furthermore, some antibodies preferentially bind platelet integrin αIIbβ3, but others bind αvβ3 on endothelial cells and trophoblasts. Defects in endothelial cells and angiogenesis may therefore contribute to severe anti-HPA-1a associated FNAIT. Moreover, anti-HPA-1a antibodies may cause placental damage, leading to intrauterine growth restriction. We discuss current insights into diversity and actions of HPA-1a antibodies, gathered from clinical studies, in vitro studies, and mouse models. Assessment of all factors determining severity and progression of anti-HPA-1a-associated FNAIT may importantly improve risk stratification and potentially reveal novel treatment strategies, both for FNAIT and other immunohematological disorders.
Collapse
Affiliation(s)
- Wendy Stam
- Institute of Biology, Leiden University, Leiden, the Netherlands; Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands.
| | | | - Jose Maria de Pereda
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007 Salamanca, Spain.
| | - Rick Kapur
- Sanquin Research, Department of Experimental Immunohematology, Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - Ellen van der Schoot
- Sanquin Research, Department of Experimental Immunohematology, Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - Coert Margadant
- Institute of Biology, Leiden University, Leiden, the Netherlands; Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands.
| |
Collapse
|
28
|
Zhou W, Liu K, Zeng L, He J, Gao X, Gu X, Chen X, Jing Li J, Wang M, Wu D, Cai Z, Claesson-Welsh L, Ju R, Wang J, Zhang F, Chen Y. Targeting VEGF-A/VEGFR2 Y949 Signaling-Mediated Vascular Permeability Alleviates Hypoxic Pulmonary Hypertension. Circulation 2022; 146:1855-1881. [PMID: 36384284 DOI: 10.1161/circulationaha.122.061900] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Pulmonary hypertension (PH) is associated with increased expression of VEGF-A (vascular endothelial growth factor A) and its receptor, VEGFR2 (vascular endothelial growth factor 2), but whether and how activation of VEGF-A signal participates in the pathogenesis of PH is unclear. METHODS VEGF-A/VEGFR2 signal activation and VEGFR2 Y949-dependent vascular leak were investigated in lung samples from patients with PH and mice exposed to hypoxia. To study their mechanistic roles in hypoxic PH, we examined right ventricle systolic pressure, right ventricular hypertrophy, and pulmonary vasculopathy in mutant mice carrying knock-in of phenylalanine that replaced the tyrosine at residual 949 of VEGFR2 (Vefgr2Y949F) and mice with conditional endothelial deletion of Vegfr2 after chronic hypoxia exposure. RESULTS We show that PH leads to excessive pulmonary vascular leak in both patients and hypoxic mice, and this is because of an overactivated VEGF-A/VEGFR2 Y949 signaling axis. In the context of hypoxic PH, activation of Yes1 and c-Src and subsequent VE-cadherin phosphorylation in endothelial cells are involved in VEGFR2 Y949-induced vascular permeability. Abolishing VEGFR2 Y949 signaling by Vefgr2Y949F point mutation was sufficient to prevent pulmonary vascular permeability and inhibit macrophage infiltration and Rac1 activation in smooth muscle cells under hypoxia exposure, thereby leading to alleviated PH manifestations, including muscularization of distal pulmonary arterioles, elevated right ventricle systolic pressure, and right ventricular hypertrophy. It is important that we found that VEGFR2 Y949 signaling in myeloid cells including macrophages was trivial and dispensable for hypoxia-induced vascular abnormalities and PH. In contrast with selective blockage of VEGFR2 Y949 signaling, disruption of the entire VEGFR2 signaling by conditional endothelial deletion of Vegfr2 promotes the development of PH. CONCLUSIONS Our results support the notion that VEGF-A/VEGFR2 Y949-dependent vascular permeability is an important determinant in the pathogenesis of PH and might serve as an attractive therapeutic target pathway for this disease.
Collapse
Affiliation(s)
- Weibin Zhou
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (W.Z., J.H., M.W., D.W., J.W., Y.C.).,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China (W.Z., K.L., L.Z., X. Gao, X. Gu, X.C., J.J.L., R.J., F.Z.).,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China (W.Z., J.H., J.W., Y.C.)
| | - Keli Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China (W.Z., K.L., L.Z., X. Gao, X. Gu, X.C., J.J.L., R.J., F.Z.)
| | - Lei Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China (W.Z., K.L., L.Z., X. Gao, X. Gu, X.C., J.J.L., R.J., F.Z.)
| | - Jiaqi He
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (W.Z., J.H., M.W., D.W., J.W., Y.C.).,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China (W.Z., J.H., J.W., Y.C.)
| | - Xinbo Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China (W.Z., K.L., L.Z., X. Gao, X. Gu, X.C., J.J.L., R.J., F.Z.)
| | - Xinyu Gu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China (W.Z., K.L., L.Z., X. Gao, X. Gu, X.C., J.J.L., R.J., F.Z.)
| | - Xun Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China (W.Z., K.L., L.Z., X. Gao, X. Gu, X.C., J.J.L., R.J., F.Z.)
| | - Jing Jing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China (W.Z., K.L., L.Z., X. Gao, X. Gu, X.C., J.J.L., R.J., F.Z.)
| | - Minghui Wang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (W.Z., J.H., M.W., D.W., J.W., Y.C.)
| | - Duoguang Wu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (W.Z., J.H., M.W., D.W., J.W., Y.C.)
| | - Zhixiong Cai
- Department of Cardiology, Shantou Central Hospital, China (Z.C.)
| | - Lena Claesson-Welsh
- Rudbeck, SciLifeLab and Beijer Laboratories, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden (L.C.-W.)
| | - Rong Ju
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China (W.Z., K.L., L.Z., X. Gao, X. Gu, X.C., J.J.L., R.J., F.Z.)
| | - Jingfeng Wang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (W.Z., J.H., M.W., D.W., J.W., Y.C.).,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China (W.Z., J.H., J.W., Y.C.)
| | - Feng Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China (W.Z., K.L., L.Z., X. Gao, X. Gu, X.C., J.J.L., R.J., F.Z.)
| | - Yangxin Chen
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (W.Z., J.H., M.W., D.W., J.W., Y.C.).,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China (W.Z., J.H., J.W., Y.C.)
| |
Collapse
|
29
|
Blanchard N, Link PA, Farkas D, Harmon B, Hudson J, Bogamuwa S, Piper B, Authelet K, Cool CD, Heise RL, Freishtat R, Farkas L. Dichotomous role of integrin-β5 in lung endothelial cells. Pulm Circ 2022; 12:e12156. [PMID: 36438452 PMCID: PMC9684688 DOI: 10.1002/pul2.12156] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive, devastating disease, and its main histological manifestation is an occlusive pulmonary arteriopathy. One important functional component of PAH is aberrant endothelial cell (EC) function including apoptosis-resistance, unchecked proliferation, and impaired migration. The mechanisms leading to and maintaining physiologic and aberrant EC function are not fully understood. Here, we tested the hypothesis that in PAH, ECs have increased expression of the transmembrane protein integrin-β5, which contributes to migration and survival under physiologic and pathological conditions, but also to endothelial-to-mesenchymal transition (EnMT). We found that elevated integrin-β5 expression in pulmonary artery lesions and lung tissue from PAH patients and rats with PH induced by chronic hypoxia and injection of CD117+ rat lung EC clones. These EC clones exhibited elevated expression of integrin-β5 and its heterodimerization partner integrin-αν and showed accelerated barrier formation. Inhibition of integrin-ανβ5 in vitro partially blocked transforming growth factor (TGF)-β1-induced EnMT gene expression in rat lung control ECs and less in rat lung EC clones and human lung microvascular ECs. Inhibition of integrin-ανβ5 promoted endothelial dysfunction as shown by reduced migration in a scratch assay and increased apoptosis in synergism with TGF-β1. In vivo, blocking of integrin-ανβ5 exaggerated PH induced by chronic hypoxia and CD117+ EC clones in rats. In summary, we found a role for integrin-ανβ5 in lung endothelial survival and migration, but also a partial contribution to TGF-β1-induced EnMT gene expression. Our results suggest that integrin-ανβ5 is required for physiologic function of ECs and lung vascular homeostasis.
Collapse
Affiliation(s)
- Neil Blanchard
- Department of Orthopedic SurgeryUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Patrick A. Link
- Departments of Physiology and Biomedical EngineeringMayo ClinicRochesterMichiganUSA
- Department of Biomedical Engineering, School of EngineeringVirginia Commonwealth UniversityCharlottesvilleVirginiaUSA
| | - Daniela Farkas
- Division of Pulmonary Disease, College of Medicine, Department of Internal Medicine, Critical Care & Sleep Medicine, Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Brennan Harmon
- Department of Pediatrics, Division of Emergency MedicineChildren's National Health SystemWashingtonDistrict of ColumbiaUSA
| | - Jaylen Hudson
- Division of Pulmonary Disease, College of Medicine, Department of Internal Medicine, Critical Care & Sleep Medicine, Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Srimathi Bogamuwa
- Division of Pulmonary Disease, College of Medicine, Department of Internal Medicine, Critical Care & Sleep Medicine, Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Bryce Piper
- Division of Pulmonary Disease, College of Medicine, Department of Internal Medicine, Critical Care & Sleep Medicine, Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Kayla Authelet
- Department of Pediatrics, Division of Emergency MedicineChildren's National Health SystemWashingtonDistrict of ColumbiaUSA
| | - Carlyne D. Cool
- Department of PathologyUniversity of Colorado at DenverDenverColoradoUSA
| | - Rebecca L. Heise
- Department of Biomedical Engineering, School of EngineeringVirginia Commonwealth UniversityCharlottesvilleVirginiaUSA
| | - Robert Freishtat
- Department of Pediatrics, Division of Emergency MedicineChildren's National Health SystemWashingtonDistrict of ColumbiaUSA
| | - Laszlo Farkas
- Division of Pulmonary Disease, College of Medicine, Department of Internal Medicine, Critical Care & Sleep Medicine, Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
- Department of Physiology and BiophysicsVirginia Commonwealth UniversityRichmondVirginiaUSA
| |
Collapse
|
30
|
Ershov D, Phan MS, Pylvänäinen JW, Rigaud SU, Le Blanc L, Charles-Orszag A, Conway JRW, Laine RF, Roy NH, Bonazzi D, Duménil G, Jacquemet G, Tinevez JY. TrackMate 7: integrating state-of-the-art segmentation algorithms into tracking pipelines. Nat Methods 2022; 19:829-832. [PMID: 35654950 DOI: 10.1038/s41592-022-01507-1] [Citation(s) in RCA: 441] [Impact Index Per Article: 147.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 04/25/2022] [Indexed: 11/09/2022]
Abstract
TrackMate is an automated tracking software used to analyze bioimages and is distributed as a Fiji plugin. Here, we introduce a new version of TrackMate. TrackMate 7 is built to address the broad spectrum of modern challenges researchers face by integrating state-of-the-art segmentation algorithms into tracking pipelines. We illustrate qualitatively and quantitatively that these new capabilities function effectively across a wide range of bio-imaging experiments.
Collapse
Affiliation(s)
- Dmitry Ershov
- Institut Pasteur, Université de Paris Cité, Image Analysis Hub, Paris, France.,Institut Pasteur, Université de Paris Cité, Biostatistics and Bioinformatic Hub, Paris, France
| | - Minh-Son Phan
- Institut Pasteur, Université de Paris Cité, Image Analysis Hub, Paris, France
| | - Joanna W Pylvänäinen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Åbo Akademi University, Faculty of Science and Engineering, Biosciences, Turku, Finland.,Turku Bioimaging, University of Turku and Åbo Akademi University, Turku, Finland
| | - Stéphane U Rigaud
- Institut Pasteur, Université de Paris Cité, Image Analysis Hub, Paris, France
| | - Laure Le Blanc
- Institut Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis of Vascular Infections unit, Paris, France
| | - Arthur Charles-Orszag
- Institut Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis of Vascular Infections unit, Paris, France
| | - James R W Conway
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Romain F Laine
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK.,The Francis Crick Institute, London, UK.,Micrographia Bio, Translation and Innovation Hub, London, UK
| | - Nathan H Roy
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Daria Bonazzi
- Institut Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis of Vascular Infections unit, Paris, France
| | - Guillaume Duménil
- Institut Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis of Vascular Infections unit, Paris, France
| | - Guillaume Jacquemet
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland. .,Åbo Akademi University, Faculty of Science and Engineering, Biosciences, Turku, Finland. .,Turku Bioimaging, University of Turku and Åbo Akademi University, Turku, Finland.
| | - Jean-Yves Tinevez
- Institut Pasteur, Université de Paris Cité, Image Analysis Hub, Paris, France.
| |
Collapse
|
31
|
Khamissi FZ, Ning L, Kefaloyianni E, Dun H, Arthanarisami A, Keller A, Atkinson JJ, Li W, Wong B, Dietmann S, Lavine K, Kreisel D, Herrlich A. Identification of kidney injury released circulating osteopontin as causal agent of respiratory failure. SCIENCE ADVANCES 2022; 8:eabm5900. [PMID: 35213222 PMCID: PMC8880785 DOI: 10.1126/sciadv.abm5900] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/30/2021] [Indexed: 05/08/2023]
Abstract
Tissue injury can drive secondary organ injury; however, mechanisms and mediators are not well understood. To identify interorgan cross-talk mediators, we used acute kidney injury (AKI)-induced acute lung injury (ALI) as a clinically important example. Using kidney and lung single-cell RNA sequencing after AKI in mice followed by ligand-receptor pairing analysis across organs, kidney ligands to lung receptors, we identify kidney-released circulating osteopontin (OPN) as a novel AKI-ALI mediator. OPN release from kidney tubule cells triggered lung endothelial leakage, inflammation, and respiratory failure. Pharmacological or genetic OPN inhibition prevented AKI-ALI. Transplantation of ischemic wt kidneys caused AKI-ALI, but not of ischemic OPN-global knockout kidneys, identifying kidney-released OPN as necessary interorgan signal to cause AKI-ALI. We show that OPN serum levels are elevated in patients with AKI and correlate with kidney injury. Our results demonstrate feasibility of using ligand-receptor analysis across organs to identify interorgan cross-talk mediators and may have important therapeutic implications in human AKI-ALI and multiorgan failure.
Collapse
Affiliation(s)
| | | | | | - Hao Dun
- Washington University School in St. Louis School of Medicine, 660 S Euclid Avenue, St. Louis, MO 63110, USA
| | | | - Amy Keller
- Washington University School in St. Louis School of Medicine, 660 S Euclid Avenue, St. Louis, MO 63110, USA
| | - Jeffrey J. Atkinson
- Washington University School in St. Louis School of Medicine, 660 S Euclid Avenue, St. Louis, MO 63110, USA
| | - Wenjun Li
- Washington University School in St. Louis School of Medicine, 660 S Euclid Avenue, St. Louis, MO 63110, USA
| | - Brian Wong
- Washington University School in St. Louis School of Medicine, 660 S Euclid Avenue, St. Louis, MO 63110, USA
| | - Sabine Dietmann
- Washington University School in St. Louis School of Medicine, 660 S Euclid Avenue, St. Louis, MO 63110, USA
| | - Kory Lavine
- Washington University School in St. Louis School of Medicine, 660 S Euclid Avenue, St. Louis, MO 63110, USA
| | - Daniel Kreisel
- Washington University School in St. Louis School of Medicine, 660 S Euclid Avenue, St. Louis, MO 63110, USA
| | | |
Collapse
|
32
|
Robles JP, Zamora M, Adan-Castro E, Siqueiros-Marquez L, Martinez de la Escalera G, Clapp C. The spike protein of SARS-CoV-2 induces endothelial inflammation through integrin α5β1 and NF-κB signaling. J Biol Chem 2022; 298:101695. [PMID: 35143839 PMCID: PMC8820157 DOI: 10.1016/j.jbc.2022.101695] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 12/14/2022] Open
Abstract
Vascular endothelial cells (ECs) form a critical interface between blood and tissues that maintains whole-body homeostasis. In COVID-19, disruption of the EC barrier results in edema, vascular inflammation, and coagulation, hallmarks of this severe disease. However, the mechanisms by which ECs are dysregulated in COVID-19 are unclear. Here, we show that the spike protein of SARS-CoV-2 alone activates the EC inflammatory phenotype in a manner dependent on integrin ⍺5β1 signaling. Incubation of human umbilical vein ECs with whole spike protein, its receptor-binding domain, or the integrin-binding tripeptide RGD induced the nuclear translocation of NF-κB and subsequent expression of leukocyte adhesion molecules (VCAM1 and ICAM1), coagulation factors (TF and FVIII), proinflammatory cytokines (TNF⍺, IL-1β, and IL-6), and ACE2, as well as the adhesion of peripheral blood leukocytes and hyperpermeability of the EC monolayer. In addition, inhibitors of integrin ⍺5β1 activation prevented these effects. Furthermore, these vascular effects occur in vivo, as revealed by the intravenous administration of spike, which increased expression of ICAM1, VCAM1, CD45, TNFα, IL-1β, and IL-6 in the lung, liver, kidney, and eye, and the intravitreal injection of spike, which disrupted the barrier function of retinal capillaries. We suggest that the spike protein, through its RGD motif in the receptor-binding domain, binds to integrin ⍺5β1 in ECs to activate the NF-κB target gene expression programs responsible for vascular leakage and leukocyte adhesion. These findings uncover a new direct action of SARS-CoV-2 on EC dysfunction and introduce integrin ⍺5β1 as a promising target for treating vascular inflammation in COVID-19.
Collapse
Affiliation(s)
- Juan Pablo Robles
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, México.
| | - Magdalena Zamora
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
| | - Elva Adan-Castro
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
| | | | | | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
| |
Collapse
|
33
|
Sun W, Gao X, Lei H, Wang W, Cao Y. Biophysical Approaches for Applying and Measuring Biological Forces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105254. [PMID: 34923777 PMCID: PMC8844594 DOI: 10.1002/advs.202105254] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 05/13/2023]
Abstract
Over the past decades, increasing evidence has indicated that mechanical loads can regulate the morphogenesis, proliferation, migration, and apoptosis of living cells. Investigations of how cells sense mechanical stimuli or the mechanotransduction mechanism is an active field of biomaterials and biophysics. Gaining a further understanding of mechanical regulation and depicting the mechanotransduction network inside cells require advanced experimental techniques and new theories. In this review, the fundamental principles of various experimental approaches that have been developed to characterize various types and magnitudes of forces experienced at the cellular and subcellular levels are summarized. The broad applications of these techniques are introduced with an emphasis on the difficulties in implementing these techniques in special biological systems. The advantages and disadvantages of each technique are discussed, which can guide readers to choose the most suitable technique for their questions. A perspective on future directions in this field is also provided. It is anticipated that technical advancement can be a driving force for the development of mechanobiology.
Collapse
Affiliation(s)
- Wenxu Sun
- School of SciencesNantong UniversityNantong226019P. R. China
| | - Xiang Gao
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
| | - Hai Lei
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
- Chemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210023P. R. China
| | - Wei Wang
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
| | - Yi Cao
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
- MOE Key Laboratory of High Performance Polymer Materials and TechnologyDepartment of Polymer Science & EngineeringCollege of Chemistry & Chemical EngineeringNanjing UniversityNanjing210023P. R. China
- Chemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210023P. R. China
| |
Collapse
|
34
|
Shaker ME, Hamed MF, Shaaban AA. Digoxin mitigates diethylnitrosamine-induced acute liver injury in mice via limiting production of inflammatory mediators. Saudi Pharm J 2022; 30:291-299. [PMID: 35498227 PMCID: PMC9051977 DOI: 10.1016/j.jsps.2022.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/12/2022] [Indexed: 01/21/2023] Open
Abstract
The cardiotonic digoxin has been recently shown to possess an anti-inflammatory potential in numerous metabolic and inflammatory disorders. However, data about digoxin’s impact in the setting of acute liver injury and sterile inflammation are still limited. Here, we investigated the potential effect of digoxin pretreatments (0.25 and 0.5 mg/kg, oral) on the severity of acute hepatotoxicity in mice challenged with a single dose of diethylnitrosamine (DN; 150 mg/kg, intraperitoneal) for 24 h. Our results indicated that digoxin pretreatments dose-dependently mitigated DN-induced rise of hepatocellular injury parameters and necroinflammation scores. Digoxin, particularly at dose of 0.5 mg/kg, boosted the number of PCNA positive hepatocytes, leading to improvement of the reparative potential in hepatocytes of DN-intoxicated livers. Digoxin’s ameliorative effect on DN-hepatotoxicity coincided with (i) lowering the increased hepatic production and release of the proinflammatory mediators IL-17A, IL-1β and TNF-α, and (ii) impeding the attraction and infiltration of monocytes to the liver, as denoted by decreasing serum MCP-1 and F4/80 immunohistochemical expression. These effects were attributed to reducing DN-induced activation of NF-κB and overexpression of CD98 in the liver. Meanwhile, DN elicited a decline in the hepatic production and release of the anti-inflammatory cytokines IL-22 and IL-6, which was intensified by digoxin, especially at a dose 0.5 mg/kg. In conclusion, digoxin conferred liver protection against DN-insult by impairing the overproduction of proinflammatory cytokines and infiltration of inflammatory cells to the liver.
Collapse
Affiliation(s)
- Mohamed E. Shaker
- Pharmacology Department, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Corresponding author at: Pharmacology Department, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia.
| | - Mohamed F. Hamed
- Pathology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed A. Shaaban
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| |
Collapse
|
35
|
Kinase signaling as a drug target modality for regulation of vascular hyperpermeability: a case for ARDS therapy development. Drug Discov Today 2022; 27:1448-1456. [DOI: 10.1016/j.drudis.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/06/2021] [Accepted: 01/20/2022] [Indexed: 12/15/2022]
|
36
|
Aberrant stromal tissue factor localisation and mycolactone-driven vascular dysfunction, exacerbated by IL-1β, are linked to fibrin formation in Buruli ulcer lesions. PLoS Pathog 2022; 18:e1010280. [PMID: 35100311 PMCID: PMC8846541 DOI: 10.1371/journal.ppat.1010280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 02/15/2022] [Accepted: 01/13/2022] [Indexed: 12/23/2022] Open
Abstract
Buruli ulcer (BU) is a neglected tropical disease caused by subcutaneous infection with Mycobacterium ulcerans and its exotoxin mycolactone. BU displays coagulative necrosis and widespread fibrin deposition in affected skin tissues. Despite this, the role of the vasculature in BU pathogenesis remains almost completely unexplored. We hypothesise that fibrin-driven ischemia can be an ‘indirect’ route to mycolactone-dependent tissue necrosis by a mechanism involving vascular dysfunction. Here, we tracked >900 vessels within contiguous tissue sections from eight BU patient biopsies. Our aim was to evaluate their vascular and coagulation biomarker phenotype and explore potential links to fibrin deposition. We also integrated this with our understanding of mycolactone’s mechanism of action at Sec61 and its impact on proteins involved in maintaining normal vascular function. Our findings showed that endothelial cell dysfunction is common in skin tissue adjacent to necrotic regions. There was little evidence of primary haemostasis, perhaps due to mycolactone-dependent depletion of endothelial von Willebrand factor. Instead, fibrin staining appeared to be linked to the extrinsic pathway activator, tissue factor (TF). There was significantly greater than expected fibrin staining around vessels that had TF staining within the stroma, and this correlated with the distance it extended from the vessel basement membrane. TF-induced fibrin deposition in these locations would require plasma proteins outside of vessels, therefore we investigated whether mycolactone could increase vascular permeability in vitro. This was indeed the case, and leakage was further exacerbated by IL-1β. Mycolactone caused the loss of endothelial adherens and tight junctions by the depletion of VE-cadherin, TIE-1, TIE-2 and JAM-C; all Sec61-dependent proteins. Taken together, our findings suggest that both vascular and lymphatic vessels in BU lesions become “leaky” during infection, due to the unique action of mycolactone, allowing TF-containing structures and plasma proteins into skin tissue, ultimately leading to local coagulopathy and tissue ischemia. To date, the debilitating skin disease Buruli ulcer remains a public health concern and financial burden in low or middle-income countries, especially in tropical regions. Late diagnosis is frequent in remote areas, perhaps due to the painlessness of the disease. Hence patients often present with large, destructive opened ulcers leading to delayed wound closure or even lifelong disability. The infectious agent produces a toxin called mycolactone that drives the disease. We previously found evidence that the vascular system is disrupted by mycolactone in these lesions, and now we have further explored potential explanations for these findings by looking at the expression of vascular markers in BU. In a detailed analysis of patient skin punch biopsies, we identified distinct expression patterns of certain proteins and found that tissue factor, which initiates the so-called extrinsic pathway of blood clotting, is particularly important. Mycolactone is able to disrupt the barrier function of the endothelium, further aggravating the diseased phenotype, which may explain how clotting factors access the tissue. Altogether, such localised hypercoagulation in Buruli ulcer skin lesions may contribute to the development of the lesion.
Collapse
|
37
|
Swamy H, Glading AJ. Contribution of protein-protein interactions to the endothelial barrier-stabilizing function of KRIT1. J Cell Sci 2021; 135:274104. [PMID: 34918736 PMCID: PMC8917353 DOI: 10.1242/jcs.258816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 12/08/2021] [Indexed: 11/20/2022] Open
Abstract
Krev-interaction trapped 1 (KRIT1) is an endothelial scaffold protein that promotes adherens junction (AJ) stability. The precise mechanism by which KRIT1 promotes barrier stabilization is unclear. We tested the ability of a panel of KRIT1 constructs containing mutations that inhibit Rap1 binding, ICAP1 binding, disrupt KRIT1's protein tyrosine binding domain (PTB), or direct KRIT1 to the plasma membrane, either alone or in combination, to restore barrier function in KRIT1-deficient endothelial cells. We found that ablating the 192NPAY195 motif or disrupting the PTB domain was sufficient to restore AJ protein localization and barrier function to control levels, irrespective of the junctional localization of KRIT1 or Rap1 binding. The ability of our KRIT1 constructs to rescue AJ/barrier function in KRIT1 depleted endothelial cells correlated with decreased 1 integrin activity and maintenance of cortical actin fibers. Together, our findings indicate that Rap1 binding, ICAP1 binding, and junctional localization are not required for the ability of KRIT1 to stabilize endothelial contacts, and suggest that the ability of KRIT1 to limit integrin activity may be involved in barrier stabilization.
Collapse
Affiliation(s)
- Harsha Swamy
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, USA
| | - Angela J Glading
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
38
|
HIV-1 Tat and Heparan Sulfate Proteoglycans Orchestrate the Setup of in Cis and in Trans Cell-Surface Interactions Functional to Lymphocyte Trans-Endothelial Migration. Molecules 2021; 26:molecules26247488. [PMID: 34946571 PMCID: PMC8705413 DOI: 10.3390/molecules26247488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/26/2022] Open
Abstract
HIV-1 transactivating factor Tat is released by infected cells. Extracellular Tat homodimerizes and engages several receptors, including integrins, vascular endothelial growth factor receptor 2 (VEGFR2) and heparan sulfate proteoglycan (HSPG) syndecan-1 expressed on various cells. By means of experimental cell models recapitulating the processes of lymphocyte trans-endothelial migration, here, we demonstrate that upon association with syndecan-1 expressed on lymphocytes, Tat triggers simultaneously the in cis activation of lymphocytes themselves and the in trans activation of endothelial cells (ECs). This "two-way" activation eventually induces lymphocyte adhesion and spreading onto the substrate and vascular endothelial (VE)-cadherin reorganization at the EC junctions, with consequent endothelial permeabilization, leading to an increased extravasation of Tat-presenting lymphocytes. By means of a panel of biochemical activation assays and specific synthetic inhibitors, we demonstrate that during the above-mentioned processes, syndecan-1, integrins, FAK, src and ERK1/2 engagement and activation are needed in the lymphocytes, while VEGFR2, integrin, src and ERK1/2 are needed in the endothelium. In conclusion, the Tat/syndecan-1 complex plays a central role in orchestrating the setup of the various in cis and in trans multimeric complexes at the EC/lymphocyte interface. Thus, by means of computational molecular modelling, docking and dynamics, we also provide a characterization at an atomic level of the binding modes of the Tat/heparin interaction, with heparin herein used as a structural analogue of the heparan sulfate chains of syndecan-1.
Collapse
|
39
|
Lau S, Gossen M, Lendlein A. Designing Cardiovascular Implants Taking in View the Endothelial Basement Membrane. Int J Mol Sci 2021; 22:ijms222313120. [PMID: 34884923 PMCID: PMC8658568 DOI: 10.3390/ijms222313120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 12/28/2022] Open
Abstract
Insufficient endothelialization of cardiovascular grafts is a major hurdle in vascular surgery and regenerative medicine, bearing a risk for early graft thrombosis. Neither of the numerous strategies pursued to solve these problems were conclusive. Endothelialization is regulated by the endothelial basement membrane (EBM), a highly specialized part of the vascular extracellular matrix. Thus, a detailed understanding of the structure–function interrelations of the EBM components is fundamental for designing biomimetic materials aiming to mimic EBM functions. In this review, a detailed description of the structure and functions of the EBM are provided, including the luminal and abluminal interactions with adjacent cell types, such as vascular smooth muscle cells. Moreover, in vivo as well as in vitro strategies to build or renew EBM are summarized and critically discussed. The spectrum of methods includes vessel decellularization and implant biofunctionalization strategies as well as tissue engineering-based approaches and bioprinting. Finally, the limitations of these methods are highlighted, and future directions are suggested to help improve future design strategies for EBM-inspired materials in the cardiovascular field.
Collapse
Affiliation(s)
- Skadi Lau
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany; (S.L.); (M.G.)
| | - Manfred Gossen
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany; (S.L.); (M.G.)
| | - Andreas Lendlein
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany; (S.L.); (M.G.)
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 25, 14476 Potsdam, Germany
- Correspondence:
| |
Collapse
|
40
|
Yu H, He J, Su G, Wang Y, Fang F, Yang W, Gu K, Fu N, Wang Y, Shen Y, Liu X. Fluid shear stress activates YAP to promote epithelial-mesenchymal transition in hepatocellular carcinoma. Mol Oncol 2021; 15:3164-3183. [PMID: 34260811 PMCID: PMC8564657 DOI: 10.1002/1878-0261.13061] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/22/2021] [Accepted: 07/13/2021] [Indexed: 02/05/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) mediated by fluid shear stress (FSS) in the tumor microenvironment plays an important role in driving metastasis of the malignant tumor. As a mechanotransducer, Yes-associated protein (YAP) is known to translocate into the nucleus to initiate transcription of genes involved in cell proliferation upon extracellular biophysical stimuli. Here, we showed that FSS facilitated cytoskeleton rearrangement in hepatocellular carcinoma cells, which led to the release of YAP from its binding partner, integrin β subunit, in the cytomembrane. Moreover, we found that upregulation of guanine nucleotide exchange factor (GEF)-H1, a microtubule-associated Rho GEF, is a critical step in the FSS-induced translocation of YAP. Nuclear YAP activated the expression of the EMT-regulating transcription factor SNAI1, but suppressed the expression of N6-methyladenosine (m6 A) modulators; together, this promoted the expression of EMT-related genes. We also observed that FSS-treated HepG2 cells showed markedly increased tumorigenesis and metastasis in vivo. Collectively, our findings unravel the underlying molecular processes by which FSS induces translocation of YAP from the cytomembrane to the nucleus, contributes to EMT and enhances metastasis in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Hongchi Yu
- Institute of Biomedical EngineeringWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
- National Engineering Research Center for BiomaterialsChengduChina
| | - Jia He
- Institute of Biomedical EngineeringWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
| | - Guanyue Su
- Institute of Biomedical EngineeringWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
| | - Yuelong Wang
- West China HospitalSichuan UniversityChengduChina
| | - Fei Fang
- Institute of Biomedical EngineeringWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
| | - Wenxing Yang
- Department of PhysiologyWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
| | - Kaiyun Gu
- National Clinical Research Center for Child HealthZhejiang UniversityHangzhouChina
| | - Naiyang Fu
- Cancer and Stem Cell Biology ProgramDuke‐NUS Medical SchoolSingapore
| | - Yunbing Wang
- National Engineering Research Center for BiomaterialsChengduChina
| | - Yang Shen
- Institute of Biomedical EngineeringWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
| | - Xiaoheng Liu
- Institute of Biomedical EngineeringWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
| |
Collapse
|
41
|
Lai Y, Huang Y. Mechanisms of Mechanical Force Induced Pulmonary Vascular Endothelial Hyperpermeability. Front Physiol 2021; 12:714064. [PMID: 34671268 PMCID: PMC8521004 DOI: 10.3389/fphys.2021.714064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/30/2021] [Indexed: 12/27/2022] Open
Abstract
Mechanical ventilation is a supportive therapy for patients with acute respiratory distress syndrome (ARDS). However, it also inevitably produces or aggravates the original lung injury with pathophysiological changes of pulmonary edema caused by increased permeability of alveolar capillaries which composed of microvascular endothelium, alveolar epithelium, and basement membrane. Vascular endothelium forms a semi-selective barrier to regulate body fluid balance. Mechanical ventilation in critically ill patients produces a mechanical force on lung vascular endothelium when the endothelial barrier was destructed. This review aims to provide a comprehensive overview of molecular and signaling mechanisms underlying the endothelial barrier permeability in ventilator-induced lung jury (VILI).
Collapse
Affiliation(s)
- Yan Lai
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Critical Care Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yongbo Huang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Critical Care Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
42
|
Zanardi A, Barbariga M, Conti A, Vegliani F, Curnis F, Alessio M. Oxidized/deamidated-ceruloplasmin dysregulates choroid plexus epithelial cells functionality and barrier properties via RGD-recognizing integrin binding. Neurobiol Dis 2021; 158:105474. [PMID: 34384868 DOI: 10.1016/j.nbd.2021.105474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/19/2022] Open
Abstract
Choroid plexus epithelial cells (CPEpiCs) determine the composition of cerebrospinal fluid (CSF) and constitute the blood-CSF barrier (BCSFB), functions that are altered in neurodegenerative diseases. In Parkinson's disease (PD) the pathological environment oxidizes and deamidates the ceruloplasmin, a CSF-resident ferroxidase, which undergoes a gain of RGD-recognizing integrin binding property, that may result in signal transduction. We investigated the effects that oxidized/deamidated ceruloplasmin (Cp-ox/de) may exert on CPEpiCs functions. Through RGD-recognizing integrins binding, Cp-ox/de mediates CPEpiCs adhesion and intracellular signaling, resulting in cell proliferation inhibition and alteration of the secretome profile in terms of proteins related to cell-extracellular matrix interaction. Oxidative conditions, comparable to those found in the CSF of PD patients, induced CPEpiCs barrier leakage, allowing Cp-ox/de to cross it, transducing integrins-mediated signal that further worsens BCSFB integrity. This mechanism might contribute to PD pathological processes altering CSF composition and aggravating the already compromised BCSFB function.
Collapse
Affiliation(s)
- Alan Zanardi
- Proteome Biochemistry, IRCCS-Ospedale San Raffaele, 20132 Milan, Italy.
| | - Marco Barbariga
- Proteome Biochemistry, IRCCS-Ospedale San Raffaele, 20132 Milan, Italy
| | - Antonio Conti
- Proteome Biochemistry, IRCCS-Ospedale San Raffaele, 20132 Milan, Italy.
| | - Franco Vegliani
- Proteome Biochemistry, IRCCS-Ospedale San Raffaele, 20132 Milan, Italy
| | - Flavio Curnis
- Tumor Biology and Vascular Targeting, IRCCS-Ospedale San Raffaele, 20132 Milan, Italy.
| | - Massimo Alessio
- Proteome Biochemistry, IRCCS-Ospedale San Raffaele, 20132 Milan, Italy.
| |
Collapse
|
43
|
COVID-19 is a systemic vascular hemopathy: insight for mechanistic and clinical aspects. Angiogenesis 2021; 24:755-788. [PMID: 34184164 PMCID: PMC8238037 DOI: 10.1007/s10456-021-09805-6] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023]
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is presenting as a systemic disease associated with vascular inflammation and endothelial injury. Severe forms of SARS-CoV-2 infection induce acute respiratory distress syndrome (ARDS) and there is still an ongoing debate on whether COVID-19 ARDS and its perfusion defect differs from ARDS induced by other causes. Beside pro-inflammatory cytokines (such as interleukin-1 β [IL-1β] or IL-6), several main pathological phenomena have been seen because of endothelial cell (EC) dysfunction: hypercoagulation reflected by fibrin degradation products called D-dimers, micro- and macrothrombosis and pathological angiogenesis. Direct endothelial infection by SARS-CoV-2 is not likely to occur and ACE-2 expression by EC is a matter of debate. Indeed, endothelial damage reported in severely ill patients with COVID-19 could be more likely secondary to infection of neighboring cells and/or a consequence of inflammation. Endotheliopathy could give rise to hypercoagulation by alteration in the levels of different factors such as von Willebrand factor. Other than thrombotic events, pathological angiogenesis is among the recent findings. Overexpression of different proangiogenic factors such as vascular endothelial growth factor (VEGF), basic fibroblast growth factor (FGF-2) or placental growth factors (PlGF) have been found in plasma or lung biopsies of COVID-19 patients. Finally, SARS-CoV-2 infection induces an emergency myelopoiesis associated to deregulated immunity and mobilization of endothelial progenitor cells, leading to features of acquired hematological malignancies or cardiovascular disease, which are discussed in this review. Altogether, this review will try to elucidate the pathophysiology of thrombotic complications, pathological angiogenesis and EC dysfunction, allowing better insight in new targets and antithrombotic protocols to better address vascular system dysfunction. Since treating SARS-CoV-2 infection and its potential long-term effects involves targeting the vascular compartment and/or mobilization of immature immune cells, we propose to define COVID-19 and its complications as a systemic vascular acquired hemopathy.
Collapse
|
44
|
Richards M, Pal S, Sjöberg E, Martinsson P, Venkatraman L, Claesson-Welsh L. Intra-vessel heterogeneity establishes enhanced sites of macromolecular leakage downstream of laminin α5. Cell Rep 2021; 35:109268. [PMID: 34161758 DOI: 10.1016/j.celrep.2021.109268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/16/2021] [Accepted: 05/26/2021] [Indexed: 11/25/2022] Open
Abstract
Endothelial cells display heterogeneous properties based on location and function. How this heterogeneity influences endothelial barrier stability both between and within vessel subtypes is unexplored. In this study, we find that endothelial cells exhibit heterogeneous barrier properties on inter-organ and intra-vessel levels. Using intravital microscopy and sequential stimulation of the ear dermis with vascular endothelial growth factor-A (VEGFA) and/or histamine, we observe distinct, reappearing sites, common for both agonists, where leakage preferentially takes place. Through repetitive stimulation of the diaphragm and trachea, we find inter-organ conservation of such predetermined leakage sites. Qualitatively, predetermined sites display distinct leakage properties and enhanced barrier breakdown compared to less susceptible regions. Mechanistically, laminin α5 is reduced at predetermined sites, which is linked to reduced junctional vascular endothelial (VE)-cadherin and enhanced VEGFA-induced VE-cadherin phosphorylation. These data highlight functional intra-vessel heterogeneity that defines predetermined sites with distinct leakage properties and that may disproportionately impact pathological vascular leakage.
Collapse
Affiliation(s)
- Mark Richards
- Beijer and Science for Life Laboratories, Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjöldsv 20, 751 85 Uppsala, Sweden.
| | - Sagnik Pal
- Beijer and Science for Life Laboratories, Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjöldsv 20, 751 85 Uppsala, Sweden
| | - Elin Sjöberg
- Beijer and Science for Life Laboratories, Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjöldsv 20, 751 85 Uppsala, Sweden
| | - Pernilla Martinsson
- Beijer and Science for Life Laboratories, Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjöldsv 20, 751 85 Uppsala, Sweden
| | - Lakshmi Venkatraman
- Beijer and Science for Life Laboratories, Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjöldsv 20, 751 85 Uppsala, Sweden
| | - Lena Claesson-Welsh
- Beijer and Science for Life Laboratories, Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjöldsv 20, 751 85 Uppsala, Sweden.
| |
Collapse
|
45
|
Henning C, Branopolski A, Follert P, Lewandowska O, Ayhan A, Benkhoff M, Flögel U, Kelm M, Heiss C, Lammert E. Endothelial β1 Integrin-Mediated Adaptation to Myocardial Ischemia. Thromb Haemost 2021; 121:741-754. [PMID: 33469904 PMCID: PMC8180378 DOI: 10.1055/s-0040-1721505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Short episodes of myocardial ischemia can protect from myocardial infarction. However, the role of endothelial β1 integrin in these cardioprotective ischemic events is largely unknown. OBJECTIVE In this study we investigated whether endothelial β1 integrin is required for cardiac adaptation to ischemia and protection from myocardial infarction. METHODS Here we introduced transient and permanent left anterior descending artery (LAD) occlusions in mice. We inhibited β1 integrin by intravenous injection of function-blocking antibodies and tamoxifen-induced endothelial cell (EC)-specific deletion of Itgb1. Furthermore, human ITGB1 was silenced in primary human coronary artery ECs using small interfering RNA. We analyzed the numbers of proliferating ECs and arterioles by immunohistochemistry, determined infarct size by magnetic resonance imaging (MRI) and triphenyl tetrazolium chloride staining, and analyzed cardiac function by MRI and echocardiography. RESULTS Transient LAD occlusions were found to increase EC proliferation and arteriole formation in the entire myocardium. These effects required β1 integrin on ECs, except for arteriole formation in the ischemic part of the myocardium. Furthermore, this integrin subunit was also relevant for basal and mechanically induced proliferation of human coronary artery ECs. Notably, β1 integrin was needed for cardioprotection induced by transient LAD occlusions, and the absence of endothelial β1 integrin resulted in impaired growth of blood vessels into the infarcted myocardium and reduced cardiac function after permanent LAD occlusion. CONCLUSION We showed that endothelial β1 integrin is required for adaptation of the heart to cardiac ischemia and protection from myocardial infarction.
Collapse
Affiliation(s)
- Carina Henning
- Institute of Metabolic Physiology, Department of Biology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Anna Branopolski
- Institute of Metabolic Physiology, Department of Biology, Heinrich-Heine-University, Düsseldorf, Germany
- Division of Cardiology, Pulmonology, and Vascular Medicine, Heinrich-Heine-University, Düsseldorf, Germany
| | - Paula Follert
- Institute of Metabolic Physiology, Department of Biology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Oksana Lewandowska
- Institute of Metabolic Physiology, Department of Biology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Aysel Ayhan
- Division of Cardiology, Pulmonology, and Vascular Medicine, Heinrich-Heine-University, Düsseldorf, Germany
| | - Marcel Benkhoff
- Division of Cardiology, Pulmonology, and Vascular Medicine, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ulrich Flögel
- Institute for Molecular Cardiology, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Malte Kelm
- Division of Cardiology, Pulmonology, and Vascular Medicine, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christian Heiss
- Division of Cardiology, Pulmonology, and Vascular Medicine, Heinrich-Heine-University, Düsseldorf, Germany
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- Surrey and Sussex Healthcare NHS Trust, Redhill, Surrey, United Kingdom
| | - Eckhard Lammert
- Institute of Metabolic Physiology, Department of Biology, Heinrich-Heine-University, Düsseldorf, Germany
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ)—Leibniz Center for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| |
Collapse
|
46
|
De Rossi G, Vähätupa M, Cristante E, Arokiasamy S, Liyanage SE, May U, Pellinen L, Uusitalo-Järvinen H, Bainbridge JW, Järvinen TA, Whiteford JR. Pathological Angiogenesis Requires Syndecan-4 for Efficient VEGFA-Induced VE-Cadherin Internalization. Arterioscler Thromb Vasc Biol 2021; 41:1374-1389. [PMID: 33596666 PMCID: PMC7613699 DOI: 10.1161/atvbaha.121.315941] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Giulia De Rossi
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
- UCL Institute of Ophthalmology, Department of Cell Biology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Maria Vähätupa
- Faculty of Medicine & Health Technology, Tampere University, 33014 Tampere, Finland & Departments of Orthopedics & Traumatology and Tampere Eye Centre, Tampere University Hospital, 33521 Tampere, Finland
| | - Enrico Cristante
- UCL Institute of Ophthalmology, Genetics department, 11-43 Bath Street, London EC1V 9EL, UK
| | - Samantha Arokiasamy
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Sidath E. Liyanage
- UCL Institute of Ophthalmology, Genetics department, 11-43 Bath Street, London EC1V 9EL, UK
| | - Ulrike May
- Faculty of Medicine & Health Technology, Tampere University, 33014 Tampere, Finland & Departments of Orthopedics & Traumatology and Tampere Eye Centre, Tampere University Hospital, 33521 Tampere, Finland
| | - Laura Pellinen
- Faculty of Medicine & Health Technology, Tampere University, 33014 Tampere, Finland & Departments of Orthopedics & Traumatology and Tampere Eye Centre, Tampere University Hospital, 33521 Tampere, Finland
| | - Hannele Uusitalo-Järvinen
- Faculty of Medicine & Health Technology, Tampere University, 33014 Tampere, Finland & Departments of Orthopedics & Traumatology and Tampere Eye Centre, Tampere University Hospital, 33521 Tampere, Finland
| | - James W. Bainbridge
- UCL Institute of Ophthalmology, Genetics department, 11-43 Bath Street, London EC1V 9EL, UK
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, City Road, London EC1V 2PD, UK
| | - Tero A.H. Järvinen
- Faculty of Medicine & Health Technology, Tampere University, 33014 Tampere, Finland & Departments of Orthopedics & Traumatology and Tampere Eye Centre, Tampere University Hospital, 33521 Tampere, Finland
| | - James R. Whiteford
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| |
Collapse
|
47
|
Sun G, Chen J, Ding Y, Wren JD, Xu F, Lu L, Wang Y, Wang DW, Zhang XA. A Bioinformatics Perspective on the Links Between Tetraspanin-Enriched Microdomains and Cardiovascular Pathophysiology. Front Cardiovasc Med 2021; 8:630471. [PMID: 33860000 PMCID: PMC8042132 DOI: 10.3389/fcvm.2021.630471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/15/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Tetraspanins and integrins are integral membrane proteins. Tetraspanins interact with integrins to modulate the dynamics of adhesion, migration, proliferation, and signaling in the form of membrane domains called tetraspanin-enriched microdomains (TEMs). TEMs also contain other cell adhesion proteins like immunoglobulin superfamily (IgSF) proteins and claudins. Cardiovascular functions of these TEM proteins have emerged and remain to be further revealed. Objectives: The aims of this study are to explore the roles of these TEM proteins in the cardiovascular system using bioinformatics tools and databases and to highlight the TEM proteins that may functionally associate with cardiovascular physiology and pathology. Methods: For human samples, three databases-GTEx, NCBI-dbGaP, and NCBI-GEO-were used for the analyses. The dbGaP database was used for GWAS analysis to determine the association between target genes and human phenotypes. GEO is an NCBI public repository that archives genomics data. GTEx was used for the analyses of tissue-specific mRNA expression levels and eQTL. For murine samples, GeneNetwork was used to find gene-phenotype correlations and gene-gene correlations of expression levels in mice. The analysis of cardiovascular data was the focus of this study. Results: Some integrins and tetraspanins, such as ITGA8 and Cd151, are highly expressed in the human cardiovascular system. TEM components are associated with multiple cardiovascular pathophysiological events in humans. GWAS and GEO analyses showed that human Cd82 and ITGA9 are associated with blood pressure. Data from mice also suggest that various cardiovascular phenotypes are correlated with integrins and tetraspanins. For instance, Cd82 and ITGA9, again, have correlations with blood pressure in mice. Conclusion: ITGA9 is related to blood pressure in both species. KEGG analysis also linked ITGA9 to metabolism and MAPK signaling pathway. This work provides an example of using integrated bioinformatics approaches across different species to identify the connections of structurally and/or functionally related molecules to certain categories of diseases.
Collapse
Affiliation(s)
- Ge Sun
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Junxiong Chen
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Yingjun Ding
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jonathan D. Wren
- Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Fuyi Xu
- University of Tennessee Health Science Center, Memphis, TN, United States
| | - Lu Lu
- University of Tennessee Health Science Center, Memphis, TN, United States
| | - Yan Wang
- Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Dao-wen Wang
- Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xin A. Zhang
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
48
|
Amado-Azevedo J, van Stalborch AMD, Valent ET, Nawaz K, van Bezu J, Eringa EC, Hoevenaars FPM, De Cuyper IM, Hordijk PL, van Hinsbergh VWM, van Nieuw Amerongen GP, Aman J, Margadant C. Depletion of Arg/Abl2 improves endothelial cell adhesion and prevents vascular leak during inflammation. Angiogenesis 2021; 24:677-693. [PMID: 33770321 PMCID: PMC7996118 DOI: 10.1007/s10456-021-09781-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/06/2021] [Indexed: 02/06/2023]
Abstract
Endothelial barrier disruption and vascular leak importantly contribute to organ dysfunction and mortality during inflammatory conditions like sepsis and acute respiratory distress syndrome. We identified the kinase Arg/Abl2 as a mediator of endothelial barrier disruption, but the role of Arg in endothelial monolayer regulation and its relevance in vivo remain poorly understood. Here we show that depletion of Arg in endothelial cells results in the activation of both RhoA and Rac1, increased cell spreading and elongation, redistribution of integrin-dependent cell-matrix adhesions to the cell periphery, and improved adhesion to the extracellular matrix. We further show that Arg is activated in the endothelium during inflammation, both in murine lungs exposed to barrier-disruptive agents, and in pulmonary microvessels of septic patients. Importantly, Arg-depleted endothelial cells were less sensitive to barrier-disruptive agents. Despite the formation of F-actin stress fibers and myosin light chain phosphorylation, Arg depletion diminished adherens junction disruption and intercellular gap formation, by reducing the disassembly of cell-matrix adhesions and cell retraction. In vivo, genetic deletion of Arg diminished vascular leak in the skin and lungs, in the presence of a normal immune response. Together, our data indicate that Arg is a central and non-redundant regulator of endothelial barrier integrity, which contributes to cell retraction and gap formation by increasing the dynamics of adherens junctions and cell-matrix adhesions in a Rho GTPase-dependent fashion. Therapeutic inhibition of Arg may provide a suitable strategy for the treatment of a variety of clinical conditions characterized by vascular leak.
Collapse
Affiliation(s)
- Joana Amado-Azevedo
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | | | - Erik T Valent
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Kalim Nawaz
- Sanquin Research, Amsterdam, The Netherlands
| | - Jan van Bezu
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Etto C Eringa
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Femke P M Hoevenaars
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | | | - Peter L Hordijk
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Victor W M van Hinsbergh
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Geerten P van Nieuw Amerongen
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Jurjan Aman
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, The Netherlands. .,Department of Pulmonology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, The Netherlands.
| | - Coert Margadant
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
49
|
Targeting RGD-binding integrins as an integrative therapy for diabetic retinopathy and neovascular age-related macular degeneration. Prog Retin Eye Res 2021; 85:100966. [PMID: 33775825 DOI: 10.1016/j.preteyeres.2021.100966] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022]
Abstract
Integrins are a class of transmembrane receptors that are involved in a wide range of biological functions. Dysregulation of integrins has been implicated in many pathological processes and consequently, they are attractive therapeutic targets. In the ophthalmology arena, there is extensive evidence suggesting that integrins play an important role in diabetic retinopathy (DR), age-related macular degeneration (AMD), glaucoma, dry eye disease and retinal vein occlusion. For example, there is extensive evidence that arginyl-glycyl-aspartic acid (Arg-Gly-Asp; RGD)-binding integrins are involved in key disease hallmarks of DR and neovascular AMD (nvAMD), specifically inflammation, vascular leakage, angiogenesis and fibrosis. Based on such evidence, drugs that engage integrin-linked pathways have received attention for their potential to block all these vision-threatening pathways. This review focuses on the pathophysiological role that RGD-binding integrins can have in complex multifactorial retinal disorders like DR, diabetic macular edema (DME) and nvAMD, which are leading causes of blindness in developed countries. Special emphasis will be given on how RGD-binding integrins can modulate the intricate molecular pathways and regulate the underlying pathological mechanisms. For instance, the interplay between integrins and key molecular players such as growth factors, cytokines and enzymes will be summarized. In addition, recent clinical advances linked to targeting RGD-binding integrins in the context of DME and nvAMD will be discussed alongside future potential for limiting progression of these diseases.
Collapse
|
50
|
Maiuolo J, Gliozzi M, Musolino V, Carresi C, Scarano F, Nucera S, Scicchitano M, Bosco F, Ruga S, Zito MC, Macri R, Bulotta R, Muscoli C, Mollace V. From Metabolic Syndrome to Neurological Diseases: Role of Autophagy. Front Cell Dev Biol 2021; 9:651021. [PMID: 33816502 PMCID: PMC8017166 DOI: 10.3389/fcell.2021.651021] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/26/2021] [Indexed: 12/17/2022] Open
Abstract
Metabolic syndrome is not a single pathology, but a constellation of cardiovascular disease risk factors including: central and abdominal obesity, systemic hypertension, insulin resistance (or type 2 diabetes mellitus), and atherogenic dyslipidemia. The global incidence of Metabolic syndrome is estimated to be about one quarter of the world population; for this reason, it would be desirable to better understand the underlying mechanisms involved in order to develop treatments that can reduce or eliminate the damage caused. The effects of Metabolic syndrome are multiple and wide ranging; some of which have an impact on the central nervous system and cause neurological and neurodegenerative diseases. Autophagy is a catabolic intracellular process, essential for the recycling of cytoplasmic materials and for the degradation of damaged cellular organelle. Therefore, autophagy is primarily a cytoprotective mechanism; even if excessive cellular degradation can be detrimental. To date, it is known that systemic autophagic insufficiency is able to cause metabolic balance deterioration and facilitate the onset of metabolic syndrome. This review aims to highlight the current state of knowledge regarding the connection between metabolic syndrome and the onset of several neurological diseases related to it. Furthermore, since autophagy has been found to be of particular importance in metabolic disorders, the probable involvement of this degradative process is assumed to be responsible for the attenuation of neurological disorders resulting from metabolic syndrome.
Collapse
Affiliation(s)
- Jessica Maiuolo
- IRC-FSH Department of Health Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Micaela Gliozzi
- IRC-FSH Department of Health Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Vincenzo Musolino
- IRC-FSH Department of Health Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Cristina Carresi
- IRC-FSH Department of Health Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Federica Scarano
- IRC-FSH Department of Health Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Saverio Nucera
- IRC-FSH Department of Health Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Miriam Scicchitano
- IRC-FSH Department of Health Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Francesca Bosco
- IRC-FSH Department of Health Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Stefano Ruga
- IRC-FSH Department of Health Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Maria Caterina Zito
- IRC-FSH Department of Health Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Roberta Macri
- IRC-FSH Department of Health Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Rosamaria Bulotta
- IRC-FSH Department of Health Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Carolina Muscoli
- IRC-FSH Department of Health Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- IRCCS San Raffaele, Rome, Italy
| | - Vincenzo Mollace
- IRC-FSH Department of Health Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- IRCCS San Raffaele, Rome, Italy
| |
Collapse
|