1
|
Wei D, Cao C, Karambelas A, Mak J, Reinmann A, Commane R. High-Resolution Modeling of Summertime Biogenic Isoprene Emissions in New York City. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13783-13794. [PMID: 39042817 PMCID: PMC11308517 DOI: 10.1021/acs.est.4c00495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/25/2024]
Abstract
As cities strive for ambitious increases in tree canopy cover and reductions in anthropogenic volatile organic compound (AVOC) emissions, accurate assessments of the impacts of biogenic VOCs (BVOCs) on air quality become more important. In this study, we aim to quantify the impact of future urban greening on ozone production. BVOC emissions in dense urban areas are often coarsely represented in regional models. We set up a high-resolution (30 m) MEGAN (The Model of Emissions of Gases and Aerosols from Nature version 3.2) to estimate summertime biogenic isoprene emissions in the New York City metro area (NYC-MEGAN). Coupling an observation-constrained box model with NYC-MEGAN isoprene emissions successfully reproduced the observed isoprene concentrations in the city core. We then estimated future isoprene emissions from likely urban greening scenarios and evaluated the potential impact on future ozone production. NYC-MEGAN predicts up to twice as much isoprene emissions in NYC as the coarse-resolution (1.33 km) Biogenic Emission Inventory System version 3.61 (BEIS) on hot summer days. We find that BVOCs drive ozone production on hot summer days, even in the city core, despite large AVOC emissions. If high isoprene emitting species (e.g., oak trees) are planted, future isoprene emissions could increase by 1.4-2.2 times in the city core, which would result in 8-19 ppbv increases in peak ozone on ozone exceedance days with current NOx concentrations. We recommend planting non- or low-isoprene emitting trees in cities with high NOx concentrations to avoid an increase in the frequency and severity of future ozone exceedance events.
Collapse
Affiliation(s)
- Dandan Wei
- Lamont-Doherty
Earth Observatory, Columbia University, Palisades, New York 10027-6902, United
States
- Environmental
Sciences Initiative, City University of
New York, Advanced Science Research Center, New York, New York 10031-1246, United
States
- School
of Marine and Atmospheric Science, Stony
Brook University, Stony
Brook, New York 11794-0701, United States
| | - Cong Cao
- School
of Marine and Atmospheric Science, Stony
Brook University, Stony
Brook, New York 11794-0701, United States
| | - Alexandra Karambelas
- Northeast
States for Coordinated Air Use Management, Boston, Massachusetts 02114-2014, United States
| | - John Mak
- School
of Marine and Atmospheric Science, Stony
Brook University, Stony
Brook, New York 11794-0701, United States
| | - Andrew Reinmann
- Environmental
Sciences Initiative, City University of
New York, Advanced Science Research Center, New York, New York 10031-1246, United
States
- Graduate
Programs in Earth and Environmental Sciences and Biology, City University of New York Graduate Center, New York, New York 10016, United States
- Department
of Geography and Environmental Science, Hunter College, New York, New York 10065, United States
| | - Róisín Commane
- Lamont-Doherty
Earth Observatory, Columbia University, Palisades, New York 10027-6902, United
States
- Department
of Earth & Environmental Sciences, Columbia
University, New York, New York 10027, United States
| |
Collapse
|
2
|
Yu K, Li M, Harkins C, He J, Zhu Q, Verreyken B, Schwantes RH, Cohen RC, McDonald BC, Harley RA. Improved Spatial Resolution in Modeling of Nitrogen Oxide Concentrations in the Los Angeles Basin. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20689-20698. [PMID: 38033264 PMCID: PMC10720381 DOI: 10.1021/acs.est.3c06158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023]
Abstract
The extent to which emission control technologies and policies have reduced anthropogenic NOx emissions from motor vehicles is large but uncertain. We evaluate a fuel-based emission inventory for southern California during the June 2021 period, coinciding with the Re-Evaluating the Chemistry of Air Pollutants in CAlifornia (RECAP-CA) field campaign. A modified version of the Fuel-based Inventory of Vehicle Emissions (FIVE) is presented, incorporating 1.3 km resolution gridding and a new light-/medium-duty diesel vehicle category. NOx concentrations and weekday-weekend differences were predicted using the WRF-Chem model and evaluated using satellite and aircraft observations. Model performance was similar on weekdays and weekends, indicating appropriate day-of-week scaling of NOx emissions and a reasonable distribution of emissions by sector. Large observed weekend decreases in NOx are mainly due to changes in on-road vehicle emissions. The inventory presented in this study suggests that on-road vehicles were responsible for 55-72% of the NOx emissions in the South Coast Air Basin, compared to the corresponding fraction (43%) in the planning inventory from the South Coast Air Quality Management District. This fuel-based inventory suggests on-road NOx emissions that are 1.5 ± 0.4, 2.8 ± 0.6, and 1.3 ± 0.7 times the reference EMFAC model estimates for on-road gasoline, light- and medium-duty diesel, and heavy-duty diesel, respectively.
Collapse
Affiliation(s)
- Katelyn
A. Yu
- Department
of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical
Sciences Laboratory, NOAA Earth System Research Laboratories, Boulder, Colorado 80305, United States
| | - Meng Li
- Chemical
Sciences Laboratory, NOAA Earth System Research Laboratories, Boulder, Colorado 80305, United States
- Cooperative
Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, United States
| | - Colin Harkins
- Chemical
Sciences Laboratory, NOAA Earth System Research Laboratories, Boulder, Colorado 80305, United States
- Cooperative
Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, United States
| | - Jian He
- Chemical
Sciences Laboratory, NOAA Earth System Research Laboratories, Boulder, Colorado 80305, United States
- Cooperative
Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, United States
| | - Qindan Zhu
- Chemical
Sciences Laboratory, NOAA Earth System Research Laboratories, Boulder, Colorado 80305, United States
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Bert Verreyken
- Chemical
Sciences Laboratory, NOAA Earth System Research Laboratories, Boulder, Colorado 80305, United States
| | - Rebecca H. Schwantes
- Chemical
Sciences Laboratory, NOAA Earth System Research Laboratories, Boulder, Colorado 80305, United States
| | - Ronald C. Cohen
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Brian C. McDonald
- Chemical
Sciences Laboratory, NOAA Earth System Research Laboratories, Boulder, Colorado 80305, United States
| | - Robert A. Harley
- Department
of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Qu W, Fang X, Ren Z, Chen J, Liu X, Ma Z, Tang X. NO Selective Catalytic Reduction over Atom-Pair Active Sites Accelerated via In Situ NO Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7858-7866. [PMID: 37161886 DOI: 10.1021/acs.est.3c00461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Selective catalytic reduction (SCR) of NOx with NH3 is the most efficient technology for NOx emissions control, but the activity of catalysts decreases exponentially with the decrease in reaction temperature, hindering the application of the technology in low-temperature SCR to treat industrial stack gases. Here, we present an industrially practicable technology to significantly enhance the SCR activity at low temperatures (<250 °C). By introducing an appropriate amount of O3 into the simulated stack gas, we find that O3 can stoichiometrically oxidize NO to generate NO2, which enables NO reduction to follow the fast SCR mechanism so as to accelerate SCR at low temperatures, and, in particular, an increase in SCR rate by more than four times is observed over atom-pair V1-W1 active sites supported on TiO2(001) at 200 °C. Using operando SCR tests and in situ diffuse reflectance infrared Fourier transform spectra, we reveal that the introduction of O3 allows SCR to proceed along a NH4NO3-mediated Langmuir-Hinshelwood model, in which the adsorbed nitrate species speed up the re-oxidation of the catalytic sites that is the rate-limiting step of SCR, thus leading to the enhancement of activity at low temperatures. This technology could be applicable in the real stack gas conditions because O3 exclusively oxidizes NO even in the co-presence of SO2 and H2O, which provides a general strategy to improve low-temperature SCR efficacy from another perspective beyond designing catalysts.
Collapse
Affiliation(s)
- Weiye Qu
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Xue Fang
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Zhouhong Ren
- School of Chemistry and Chemical Engineering, In-situ Center for Physical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junxiao Chen
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Xi Liu
- School of Chemistry and Chemical Engineering, In-situ Center for Physical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhen Ma
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xingfu Tang
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
- Jiangsu Collaborative Innovation Center of Atmospheric Environment & Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
4
|
Sharma S, Kumar T, Foulkes MJ, Orford S, Singh AM, Wingen LU, Karnam V, Nair LS, Mandal PK, Griffiths S, Hawkesford MJ, Shewry PR, Bentley AR, Pandey R. Nitrogen uptake and remobilization from pre- and post-anthesis stages contribute towards grain yield and grain protein concentration in wheat grown in limited nitrogen conditions. CABI AGRICULTURE AND BIOSCIENCE 2023; 4:12. [PMID: 38800116 PMCID: PMC11116178 DOI: 10.1186/s43170-023-00153-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 04/24/2023] [Indexed: 05/29/2024]
Abstract
Background In wheat, nitrogen (N) remobilization from vegetative tissues to developing grains largely depends on genetic and environmental factors. The evaluation of genetic potential of crops under limited resource inputs such as limited N supply would provide an opportunity to identify N-efficient lines with improved N utilisation efficiency and yield potential. We assessed the genetic variation in wheat recombinant inbred lines (RILs) for uptake, partitioning, and remobilization of N towards grain, its association with grain protein concentration (GPC) and grain yield. Methods We used the nested association mapping (NAM) population (195 lines) derived by crossing Paragon (P) with CIMMYT core germplasm (P × Cim), Baj (P × Baj), Watkins (P × Wat), and Wyalkatchem (P × Wya). These lines were evaluated in the field for two seasons under limited N supply. The plant sampling was done at anthesis and physiological maturity stages. Various physiological traits were recorded and total N uptake and other N related indices were calculated. The grain protein deviation (GPD) was calculated from the regression of grain yield on GPC. These lines were grouped into different clusters by hierarchical cluster analysis based on grain yield and N-remobilization efficiency (NRE). Results The genetic variation in accumulation of biomass at both pre- and post-anthesis stages were correlated with grain-yield. The NRE significantly correlated with aboveground N uptake at anthesis (AGNa) and grain yield but negatively associated with AGN at post-anthesis (AGNpa) suggesting higher N uptake till anthesis favours high N remobilization during grain filling. Hierarchical cluster analysis of these RILs based on NRE and yield resulted in four clusters, efficient (31), moderately efficient (59), moderately inefficient (58), and inefficient (47). In the N-efficient lines, AGNa contributed to 77% of total N accumulated in grains, while it was 63% in N-inefficient lines. Several N-efficient lines also exhibited positive grain protein deviation (GPD), combining high grain yield and GPC. Among crosses, the P × Cim were superior and N-efficient, while P × Wya responded poorly to low N input. Conclusions We propose that traits favouring pre- or post-anthesis biomass accumulation and pre-anthesis N uptake may be targeted for breeding to improve grain-yield under limited N. The lines with positive GPD, a first report of genotype-dependent GPD associated with both AGNpa and AGNa in wheat, may be used as varieties or genetic resources to improve grain yield with high GPC for sustainable development under limited N conditions. Supplementary Information The online version contains supplementary material available at 10.1186/s43170-023-00153-7.
Collapse
Affiliation(s)
- Sandeep Sharma
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Tarun Kumar
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - M. John Foulkes
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire, LE12 5RD UK
| | - Simon Orford
- Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Anju Mahendru Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Luzie U. Wingen
- Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Venkatesh Karnam
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana India
| | - Lekshmy S. Nair
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Pranab Kumar Mandal
- National Institute of Plant Biotechnology, Pusa Campus, New Delhi, 110012 India
| | - Simon Griffiths
- Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | | | - Peter R. Shewry
- Plant Sciences Department, Rothamsted Research, Harpenden, AL5 2JQ UK
| | - Alison R. Bentley
- National Institute for Agricultural Botany, Cambridge, CB3 0LE UK
- Present Address: International Maize and Wheat Improvement Center (CIMMYT), El Batán, Texcoco, Mexico
| | - Renu Pandey
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| |
Collapse
|
5
|
Miyazaki K, Bowman K. Predictability of fossil fuel CO 2 from air quality emissions. Nat Commun 2023; 14:1604. [PMID: 36959192 PMCID: PMC10034258 DOI: 10.1038/s41467-023-37264-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/06/2023] [Indexed: 03/25/2023] Open
Abstract
Quantifying the coevolution of greenhouse gases and air quality pollutants can provide insight into underlying anthropogenic processes enabling predictions of their emission trajectories. Here, we classify the dynamics of historic emissions in terms of a modified Environmental Kuznets Curve (MEKC), which postulates the coevolution of fossil fuel CO2 (FFCO2) and NOx emissions as a function of macroeconomic development. The MEKC broadly captures the historic FFCO2-NOx dynamical regimes for countries including the US, China, and India as well as IPCC scenarios. Given these dynamics, we find the predictive skill of FFCO2 given NOx emissions constrained by satellite data is less than 2% error at one-year lags for many countries and less than 10% for 4-year lags. The proposed framework in conjunction with an increasing satellite constellation provides valuable guidance to near-term emission scenario development and evaluation at time-scales relevant to international assessments such as the Global Stocktake.
Collapse
Affiliation(s)
- Kazuyuki Miyazaki
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
| | - Kevin Bowman
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
6
|
Pan Y, Duan L, Li M, Song P, Xv N, Liu J, Le Y, Li M, Wang C, Yu S, Rosenfeld D, Seinfeld JH, Li P. Widespread missing super-emitters of nitrogen oxides across China inferred from year-round satellite observations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161157. [PMID: 36574850 DOI: 10.1016/j.scitotenv.2022.161157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Nitrogen oxides (NOx ≡ NO + NO2) play a central role in air pollution and are targeted for emission mitigation by environmental protection agencies globally. Unique challenges for mitigation are presented by super-emitters, typically with the potential to dominate localized NOx budgets. Nevertheless, identifying super-emitters still challenges emission mitigation, while the spatial resolution of emission monitoring rises continuously. Here we develop an efficient, super-resolution (1 × 1 km2) inverse model based on year-round TROPOMI satellite observations over China. Consequently, we resolve hundreds of super-emitters in virtually every corner of China, even in remote and mountainous areas. They are attributed to individual plants or parks, mostly associated with industrial sectors, like energy, petrochemical, and iron and steel industries. State-of-the-art bottom-up emission estimates (i.e., MEICv1.3 and HTAPv2), as well as classic top-down inverse methods (e.g., a CTM coupled with the Ensemble Kalman Filter), do not adequately identify these super-emitters. Remarkably, more than one hundred super-emitters are unambiguously missed, while the establishments or discontinuations of the super-emitters potentially lead to under- or over-estimates, respectively. Moreover, evidence shows that these super-emitters generally dominate the NOx budget in a localized area (e.g., equivalent to a spatial scale of a medium-sized county). Although our dataset is incomplete nationwide due to the undetectable super-emitters on top of high pollution, our results imply that super-emitters contribute significantly to national NOx budgets and thus suggest the necessity to address the NOx budget by revisiting super-emitters on a large scale. Integrating the results we obtain here with a multi-tiered observation system can lead to identification and mitigation of anomalous NOx emissions.
Collapse
Affiliation(s)
- Yuqing Pan
- College of Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, PR China
| | - Lei Duan
- College of Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, PR China
| | - Mingqi Li
- College of Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, PR China
| | - Pinqing Song
- College of Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, PR China
| | - Nan Xv
- College of Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, PR China
| | - Jing Liu
- College of Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, PR China
| | - Yifei Le
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, PR China
| | - Mengying Li
- Research Center for Air Pollution and Health, Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environment and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Cui Wang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, PR China.
| | - Shaocai Yu
- Research Center for Air Pollution and Health, Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environment and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Daniel Rosenfeld
- Institute of Earth Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - John H Seinfeld
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pengfei Li
- College of Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, PR China.
| |
Collapse
|
7
|
Karl T, Lamprecht C, Graus M, Cede A, Tiefengraber M, Vila-Guerau de Arellano J, Gurarie D, Lenschow D. High urban NO x triggers a substantial chemical downward flux of ozone. SCIENCE ADVANCES 2023; 9:eadd2365. [PMID: 36652521 PMCID: PMC9848777 DOI: 10.1126/sciadv.add2365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Nitrogen oxides (NOx) play a central role in catalyzing tropospheric ozone formation. Nitrogen dioxide (NO2) has recently reemerged as a key target for air pollution control measures, and observational evidence points toward a limited understanding of ozone in high-NOx environments. A complete understanding of the mechanisms controlling the rapid atmospheric cycling between ozone (O3)-nitric oxide (NO)-NO2 in high-NOx regimes at the surface is therefore paramount but remains challenging because of competing dynamical and chemical effects. Here, we present long-term eddy covariance measurements of O3, NO, and NO2, over an urban area, that allow disentangling important physical and chemical processes. When generalized, our findings suggest that the depositional O3 flux near the surface in urban environments is negligible compared to the flux caused by chemical conversion of O3. This leads to an underestimation of the Leighton ratio and is a key process for modulating urban NO2 mixing ratios. As a consequence, primary NO2 emissions have been significantly overestimated.
Collapse
Affiliation(s)
- Thomas Karl
- Department of Atmospheric and Cryospheric Sciences, University of Innsbruck, Innsbruck, Austria
| | - Christian Lamprecht
- Department of Atmospheric and Cryospheric Sciences, University of Innsbruck, Innsbruck, Austria
| | - Martin Graus
- Department of Atmospheric and Cryospheric Sciences, University of Innsbruck, Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
8
|
Dressel I, Demetillo MA, Judd LM, Janz SJ, Fields KP, Sun K, Fiore AM, McDonald BC, Pusede SE. Daily Satellite Observations of Nitrogen Dioxide Air Pollution Inequality in New York City, New York and Newark, New Jersey: Evaluation and Application. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15298-15311. [PMID: 36224708 PMCID: PMC9670852 DOI: 10.1021/acs.est.2c02828] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Urban air pollution disproportionately harms communities of color and low-income communities in the U.S. Intraurban nitrogen dioxide (NO2) inequalities can be observed from space using the TROPOspheric Monitoring Instrument (TROPOMI). Past research has relied on time-averaged measurements, limiting our understanding of how neighborhood-level NO2 inequalities co-vary with urban air quality and climate. Here, we use fine-scale (250 m × 250 m) airborne NO2 remote sensing to demonstrate that daily TROPOMI observations resolve a major portion of census tract-scale NO2 inequalities in the New York City-Newark urbanized area. Spatiotemporally coincident TROPOMI and airborne inequalities are well correlated (r = 0.82-0.97), with slopes of 0.82-1.05 for relative and 0.76-0.96 for absolute inequalities for different groups. We calculate daily TROPOMI NO2 inequalities over May 2018-September 2021, reporting disparities of 25-38% with race, ethnicity, and/or household income. Mean daily inequalities agree with results based on TROPOMI measurements oversampled to 0.01° × 0.01° to within associated uncertainties. Individual and mean daily TROPOMI NO2 inequalities are largely insensitive to pixel size, at least when pixels are smaller than ∼60 km2, but are sensitive to low observational coverage. We statistically analyze daily NO2 inequalities, presenting empirical evidence of the systematic overburdening of communities of color and low-income neighborhoods with polluting sources, regulatory ozone co-benefits, and worsened NO2 inequalities and cumulative NO2 and urban heat burdens with climate change.
Collapse
Affiliation(s)
- Isabella
M. Dressel
- Department
of Environmental Sciences, University of
Virginia, Charlottesville, Virginia 22904, United States
| | - Mary Angelique
G. Demetillo
- Department
of Environmental Sciences, University of
Virginia, Charlottesville, Virginia 22904, United States
| | - Laura M. Judd
- NASA
Langley Research Center, Hampton, Virginia 23681, United States
| | - Scott J. Janz
- NASA
Goddard Space Flight Center, Greenbelt, Maryland 20771, United States
| | - Kimberly P. Fields
- Carter
G. Woodson Institute for African American and African Studies, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Kang Sun
- Department
of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, New York 14260, United States
- Research
and Education in eNergy, Environment and Water (RENEW) Institute, University at Buffalo, Buffalo, New York 14260, United States
| | - Arlene M. Fiore
- Department
of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Brian C. McDonald
- Chemical
Sciences Laboratory, NOAA Earth System Research
Laboratories, Boulder, Colorado 80305, United
States
| | - Sally E. Pusede
- Department
of Environmental Sciences, University of
Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
9
|
Wang Y, Yao Z, Zheng X, Subramaniam L, Butterbach-Bahl K. A synthesis of nitric oxide emissions across global fertilized croplands from crop-specific emission factors. GLOBAL CHANGE BIOLOGY 2022; 28:4395-4408. [PMID: 35403777 DOI: 10.1111/gcb.16193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) fertilizer application to agricultural soils results in substantial emissions of nitric oxide (NO), a key substance in tropospheric chemistry involved in climate forcing and air pollution. However, the estimates of global cropland NO emissions remain uncertain due to a lack of information on direct NO emission factors (EFd s) of applied N for various cropping systems at seasonal or annual scales. Here we quantified the crop-specific seasonal and annual-scale NO EFd s through synthesizing 1094 measurements from 125 field-based studies worldwide. The global mean crop-specific seasonal EFd was 0.53%, with the highest for vegetables (0.75%). Among cereal crops, the EFd of maize (0.45%) or wheat (0.47%) was about three times higher than for rice (0.12%). At annual scale, the mean EFd across all cropping systems was 0.58%, with tea plantations having the highest (1.54%). For other cropping systems, the annual-scale EFd s ranged from 0.02% to 1.07%. Besides crop type, also soil organic carbon, total N, and pH as well as N fertilizer type were the main factors explaining the variations of NO EFd s. Based on obtained specific EFd s for each crop type, we estimated that NO emissions due to the use of synthetic fertilizers from global croplands are about 0.42-0.62 Tg N year-1 . Our budgets are relatively lower if compared to estimates derived by the use of IPCC defaults for NO emissions (0.72-1.66 Tg N year-1 ) or reported elsewhere (0.67-1.04 Tg N year-1 ). In our estimates, cash crops (vegetable, tea and orchard), which cover only 9% of the world cropland area, contributed about 31% to total NO emissions from global fertilized croplands. Overall, our meta-analysis provides improved crop-specific NO EFd s reflecting current stage of knowledge. The work also highlights the relative importance of cash crop production as sources for atmospheric NO, that is, agricultural systems on which mitigation efforts may focus.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, PR China
- College of Earth and Planetary Science, University of Chinese Academy of Sciences, Beijing, PR China
| | - Zhisheng Yao
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, PR China
| | - Xunhua Zheng
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, PR China
- College of Earth and Planetary Science, University of Chinese Academy of Sciences, Beijing, PR China
| | - Logapragasan Subramaniam
- Institute for Meteorology and Climate Research, Atmospheric Environmental Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany
| | - Klaus Butterbach-Bahl
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, PR China
- Institute for Meteorology and Climate Research, Atmospheric Environmental Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany
- Land-CRAFT, Department of Agroecology, Aarhus University, Tjele, Denmark
| |
Collapse
|
10
|
Chen R, Li J, Li X, Wang J, Huang T, Liu W, Dong F. Unraveling the Unique Role of Methyl Position on the Ring-Opening Barrier in Photocatalytic Decomposition of Xylene Isomers. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Ruimin Chen
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jieyuan Li
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xiaofang Li
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, P. R. China
| | - Jielin Wang
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Taobo Huang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Fan Dong
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
- State Centre for International Cooperation on Designer Low-carbon and Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
11
|
Jung J, Choi Y, Mousavinezhad S, Kang D, Park J, Pouyaei A, Ghahremanloo M, Momeni M, Kim H. Changes in the ozone chemical regime over the contiguous United States inferred by the inversion of NO x and VOC emissions using satellite observation. ATMOSPHERIC RESEARCH 2022; 270:1-14. [PMID: 35370333 PMCID: PMC8972085 DOI: 10.1016/j.atmosres.2022.106076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
To investigate changes in the ozone (O3) chemical production regime over the contiguous United States (CONUS) with accurate knowledge of concentrations of its precursors, we applied an inverse modeling technique with Ozone Monitoring Instrument (OMI) tropospheric nitrogen dioxide (NO2) and total formaldehyde (HCHO) retrieval products in the summers of 2011, 2014, and 2017, years in which United States National Emission Inventory were based. The inclusion of dynamic chemical lateral boundary conditions and lightning-induced nitric oxide emissions significantly account for the contribution of background sources in the free troposphere. Satellite-constrained nitrogen oxide (NOx) and non-methane volatile organic compounds (NMVOCs) emissions mitigate the discrepancy between satellite and modeled columns: the inversion suggested 2.33-2.84 (1.07-1.34) times higher NOx over the CONUS (over urban regions) and 0.28-0.81 times fewer NMVOCs emissions over the southeastern United States. The model-derived HCHO/NO2 column ratio shows gradual spatial changes in the O3 production regime near urban cores relative to previously defined threshold values representing NOx and VOC sensitive conditions. We also found apparent shifts from the NOx-saturated regime to the transition regime (or the transition regime to the NOx-limited regime) over the major cities in the western United States. In contrast, rural areas, especially in the east-southeastern United States, exhibit a decreased HCHO/NO2 column ratio by -1.30 ± 1.71 with a reduction in HCHO column primarily driven by meteorology, becoming sensitive to VOC emissions. Results show that incorporating satellite observations into numerical modeling could help policymakers implement appropriate emission control policies for O3 pollution.
Collapse
Affiliation(s)
- Jia Jung
- Department of Earth and Atmospheric Sciences, University of Houston, TX, USA
| | - Yunsoo Choi
- Department of Earth and Atmospheric Sciences, University of Houston, TX, USA
| | | | - Daiwen Kang
- Center for Environmental Measurement and Modeling, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Jincheol Park
- Department of Earth and Atmospheric Sciences, University of Houston, TX, USA
| | - Arman Pouyaei
- Department of Earth and Atmospheric Sciences, University of Houston, TX, USA
| | - Masoud Ghahremanloo
- Department of Earth and Atmospheric Sciences, University of Houston, TX, USA
| | - Mahmoudreza Momeni
- Department of Earth and Atmospheric Sciences, University of Houston, TX, USA
| | - Hyuncheol Kim
- Air Resources Laboratory, National Oceanic and Atmospheric Administration, College Park, MD, USA
- Cooperative Institute for Satellite Earth System Studies, University of Maryland, College Park, MD, USA
| |
Collapse
|
12
|
CO Fluxes in Western Europe during 2017–2020 Winter Seasons Inverted by WRF-Chem/Data Assimilation Research Testbed with MOPITT Observations. REMOTE SENSING 2022. [DOI: 10.3390/rs14051133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The study of anthropogenic carbon monoxide (CO) emissions is crucial to investigate anthropogenic activities. Assuming the anthropogenic CO emissions accounted for the super majority of the winter CO fluxes in western Europe, they could be roughly estimated by the inversion approach. The CO fluxes and concentrations of four consecutive winter seasons (i.e., December–February) in western Europe since 2017 were estimated by a regional CO flux inversion system based on the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) and the Data Assimilation Research Testbed (DART). The CO retrievals from the Measurements Of Pollution In The Troposphere instrument (MOPITT) version 8 level 2 multi-spectral Thermal InfraRed (TIR)/Near-InfraRed (NIR) CO retrieval data products were assimilated by the inversion system. The analyses of the MOPITT data used by the inversion system indicated that the mean averaging kernel row sums of the surface level was about 0.25, and the difference percentage of the surface-level retrievals relative to a priori CO-mixing ratios was 14.79%, which was similar to that of the other levels. These results suggested the MOPITT’s surface-level observations contained roughly the same amount of information as the other levels. The inverted CO fluxes of the four winter seasons were 6198.15 kilotons, 4939.72 kilotons, 4697.80 kilotons, and 5456.19 kilotons, respectively. Based on the assumption, the United Nations Framework Convention on Climate Change (UNFCCC) inventories were used to evaluate the accuracy of the inverted CO fluxes. The evaluation results indicated that the differences between the inverted CO fluxes and UNFCCC inventories of the three winter seasons of 2017–2019 were 13.36%, −4.59%, and −4.76%, respectively. Detailed surface-CO concentrations and XCO comparative analyses between the experimental results and the external Community Atmosphere Model with Chemistry (CAM-Chem) results and the MOPITT data were conducted. The comparative analysis results indicated that the experimental results of the winter season of 2017 were obviously affected by high boundary conditions. The CO concentrations results of the experiments were also evaluated by the CO observation data from Integrated Carbon Observation System (ICOS), the average Mean Bias Error (MBE), and the Root Mean Square Error (RMSE) between the CO concentrations results of the inversion system, and the ICOS observations were −22.43 ppb and 57.59 ppb, respectively. The MBE and RMSE of the inversion system were 17.53-ppb and 4.17-ppb better than those of the simulation-only parallel experiments, respectively.
Collapse
|
13
|
Lopez-Coto I, Ren X, Karion A, McKain K, Sweeney C, Dickerson RR, McDonald BC, Ahn DY, Salawitch RJ, He H, Shepson PB, Whetstone JR. Carbon Monoxide Emissions from the Washington, DC, and Baltimore Metropolitan Area: Recent Trend and COVID-19 Anomaly. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2172-2180. [PMID: 35080873 DOI: 10.1021/acs.est.1c06288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We analyze airborne measurements of atmospheric CO concentration from 70 flights conducted over six years (2015-2020) using an inverse model to quantify the CO emissions from the Washington, DC, and Baltimore metropolitan areas. We found that CO emissions have been declining in the area at a rate of ≈-4.5 % a-1 since 2015 or ≈-3.1 % a-1 since 2016. In addition, we found that CO emissions show a "Sunday" effect, with emissions being lower, on average, than for the rest of the week and that the seasonal cycle is no larger than 16 %. Our results also show that the trend derived from the NEI agrees well with the observed trend, but that NEI daytime-adjusted emissions are ≈50 % larger than our estimated emissions. In 2020, measurements collected during the shutdown in activity related to the COVID-19 pandemic indicate a significant drop in CO emissions of 16 % relative to the expected emissions trend from the previous years, or 23 % relative to the mean of 2016 to February 2020. Our results also indicate a larger reduction in April than in May. Last, we show that this reduction in CO emissions was driven mainly by a reduction in traffic.
Collapse
Affiliation(s)
- Israel Lopez-Coto
- National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
- School of Marine and Atmospheric Sciences, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Xinrong Ren
- Department of Atmospheric and Oceanic Science, University of Maryland, 4254 Stadium Drive, College Park, Maryland 20742, United States
- Air Resources Laboratory, NOAA, 5830 University Research Court, College Park, Maryland 20740, United States
| | - Anna Karion
- National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Kathryn McKain
- NOAA Earth System Research Laboratory, Global Monitoring Laboratory, 325 Broadway, Boulder, Colorado 80305, United States
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, United States
| | - Colm Sweeney
- NOAA Earth System Research Laboratory, Global Monitoring Laboratory, 325 Broadway, Boulder, Colorado 80305, United States
| | - Russell R Dickerson
- Department of Atmospheric and Oceanic Science, University of Maryland, 4254 Stadium Drive, College Park, Maryland 20742, United States
| | - Brian C McDonald
- NOAA Earth System Research Laboratory, Chemical Sciences Laboratory, 325 Broadway, Boulder, Colorado 80305, United States
| | - Doyeon Y Ahn
- Department of Atmospheric and Oceanic Science, University of Maryland, 4254 Stadium Drive, College Park, Maryland 20742, United States
| | - Ross J Salawitch
- Department of Atmospheric and Oceanic Science, University of Maryland, 4254 Stadium Drive, College Park, Maryland 20742, United States
| | - Hao He
- Department of Atmospheric and Oceanic Science, University of Maryland, 4254 Stadium Drive, College Park, Maryland 20742, United States
| | - Paul B Shepson
- School of Marine and Atmospheric Sciences, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
- Department of Chemistry, Purdue University, 610 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - James R Whetstone
- National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
14
|
Dey T, Tyagi P, Sabath MB, Kamareddine L, Henneman L, Braun D, Dominici F. Counterfactual time series analysis of short-term change in air pollution following the COVID-19 state of emergency in the United States. Sci Rep 2021; 11:23517. [PMID: 34876601 PMCID: PMC8651777 DOI: 10.1038/s41598-021-02776-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 11/19/2021] [Indexed: 12/23/2022] Open
Abstract
Lockdown measures implemented in response to the COVID-19 pandemic produced sudden behavioral changes. We implement counterfactual time series analysis based on seasonal autoregressive integrated moving average models (SARIMA), to examine the extent of air pollution reduction attained following state-level emergency declarations. We also investigate whether these reductions occurred everywhere in the US, and the local factors (geography, population density, and sources of emission) that drove them. Following state-level emergency declarations, we found evidence of a statistically significant decrease in nitrogen dioxide (NO2) levels in 34 of the 36 states and in fine particulate matter (PM2.5) levels in 16 of the 48 states that were investigated. The lockdown produced a decrease of up to 3.4 µg/m3 in PM2.5 (observed in California) with range (- 2.3, 3.4) and up to 11.6 ppb in NO2 (observed in Nevada) with range (- 0.6, 11.6). The state of emergency was declared at different dates for different states, therefore the period "before" the state of emergency in our analysis ranged from 8 to 10 weeks and the corresponding "after" period ranged from 8 to 6 weeks. These changes in PM2.5 and NO2 represent a substantial fraction of the annual mean National Ambient Air Quality Standards (NAAQS) of 12 µg/m3 and 53 ppb, respectively. As expected, we also found evidence that states with a higher percentage of mobile source emissions (obtained from 2014) experienced a greater decline in NO2 levels after the lockdown. Although the socioeconomic restrictions are not sustainable, our results provide a benchmark to estimate the extent of achievable air pollution reductions. Identification of factors contributing to pollutant reduction can help guide state-level policies to sustainably reduce air pollution.
Collapse
Affiliation(s)
- Tanujit Dey
- Center for Surgery and Public Health, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Pooja Tyagi
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, 02115, USA
| | - M Benjamin Sabath
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, 02115, USA
- Faculty of Arts and Sciences, Research Computing, Harvard University, 38 Oxford Street, Cambridge, MA, 02138, USA
| | - Leila Kamareddine
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, 02115, USA
| | - Lucas Henneman
- Department of Civil, Environmental, and Infrastructure Engineering, George Mason University, 4400 University Drive, Fairfax, VA, 22030, USA
| | - Danielle Braun
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, 02115, USA
- Department of Data Science, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA
| | - Francesca Dominici
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, 02115, USA.
| |
Collapse
|
15
|
Laughner JL, Neu JL, Schimel D, Wennberg PO, Barsanti K, Bowman KW, Chatterjee A, Croes BE, Fitzmaurice HL, Henze DK, Kim J, Kort EA, Liu Z, Miyazaki K, Turner AJ, Anenberg S, Avise J, Cao H, Crisp D, de Gouw J, Eldering A, Fyfe JC, Goldberg DL, Gurney KR, Hasheminassab S, Hopkins F, Ivey CE, Jones DBA, Liu J, Lovenduski NS, Martin RV, McKinley GA, Ott L, Poulter B, Ru M, Sander SP, Swart N, Yung YL, Zeng ZC. Societal shifts due to COVID-19 reveal large-scale complexities and feedbacks between atmospheric chemistry and climate change. Proc Natl Acad Sci U S A 2021; 118:e2109481118. [PMID: 34753820 PMCID: PMC8609622 DOI: 10.1073/pnas.2109481118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2021] [Indexed: 11/21/2022] Open
Abstract
The COVID-19 global pandemic and associated government lockdowns dramatically altered human activity, providing a window into how changes in individual behavior, enacted en masse, impact atmospheric composition. The resulting reductions in anthropogenic activity represent an unprecedented event that yields a glimpse into a future where emissions to the atmosphere are reduced. Furthermore, the abrupt reduction in emissions during the lockdown periods led to clearly observable changes in atmospheric composition, which provide direct insight into feedbacks between the Earth system and human activity. While air pollutants and greenhouse gases share many common anthropogenic sources, there is a sharp difference in the response of their atmospheric concentrations to COVID-19 emissions changes, due in large part to their different lifetimes. Here, we discuss several key takeaways from modeling and observational studies. First, despite dramatic declines in mobility and associated vehicular emissions, the atmospheric growth rates of greenhouse gases were not slowed, in part due to decreased ocean uptake of CO2 and a likely increase in CH4 lifetime from reduced NO x emissions. Second, the response of O3 to decreased NO x emissions showed significant spatial and temporal variability, due to differing chemical regimes around the world. Finally, the overall response of atmospheric composition to emissions changes is heavily modulated by factors including carbon-cycle feedbacks to CH4 and CO2, background pollutant levels, the timing and location of emissions changes, and climate feedbacks on air quality, such as wildfires and the ozone climate penalty.
Collapse
Affiliation(s)
- Joshua L Laughner
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125;
| | - Jessica L Neu
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109;
| | - David Schimel
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109;
| | - Paul O Wennberg
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125;
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125
| | - Kelley Barsanti
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521
- Center for Environmental Research and Technology, Riverside, CA 92507
| | - Kevin W Bowman
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
| | - Abhishek Chatterjee
- Goddard Earth Sciences Technology and Research, Universities Space Research Association, Columbia, MD 21046
- Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, MD 20771
| | - Bart E Croes
- Energy Research and Development Division, California Energy Commission, Sacramento, CA 95814
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309
| | - Helen L Fitzmaurice
- Department of Earth and Planetary Science, University of California, Berkeley, CA 94720
| | - Daven K Henze
- Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309
| | - Jinsol Kim
- Department of Earth and Planetary Science, University of California, Berkeley, CA 94720
| | - Eric A Kort
- Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Zhu Liu
- Department of Earth System Science, Tsinghua University, Beijing 100084, China
| | - Kazuyuki Miyazaki
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
| | - Alexander J Turner
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
- Department of Earth and Planetary Science, University of California, Berkeley, CA 94720
- Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195
| | - Susan Anenberg
- Milken Institute School of Public Health, George Washington University, Washington, DC 20052
| | - Jeremy Avise
- Modeling and Meteorology Branch, California Air Resources Board, Sacramento, CA 95814
| | - Hansen Cao
- Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309
| | - David Crisp
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
| | - Joost de Gouw
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309
- Department of Chemistry, University of Colorado, Boulder, CO 80309
| | - Annmarie Eldering
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
| | - John C Fyfe
- Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada, Victoria, BC, V8W 2Y2 Canada
| | - Daniel L Goldberg
- Milken Institute School of Public Health, George Washington University, Washington, DC 20052
| | - Kevin R Gurney
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011
| | - Sina Hasheminassab
- Science and Technology Advancement Division, South Coast Air Quality Management District, Diamond Bar, CA, 91765
| | - Francesca Hopkins
- Department of Environmental Sciences, University of California, Riverside, CA 92521
| | - Cesunica E Ivey
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521
- Center for Environmental Research and Technology, Riverside, CA 92507
| | - Dylan B A Jones
- Department of Physics, University of Toronto, Toronto, ON, M5S 1A1 Canada
| | - Junjie Liu
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
| | - Nicole S Lovenduski
- Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, CO 80309
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO 80309
| | - Randall V Martin
- McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130
| | - Galen A McKinley
- Department of Earth and Environmental Sciences, Lamont Doherty Earth Observatory, Columbia University, Palisades, NY 10964
| | - Lesley Ott
- Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, MD 20771
| | - Benjamin Poulter
- Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771
| | - Muye Ru
- The Earth Institute, Columbia University, New York, NY 10025
- Nicholas School of the Environment, Duke University, Durham, NC 27707
| | - Stanley P Sander
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
| | - Neil Swart
- Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada, Victoria, BC, V8W 2Y2 Canada
| | - Yuk L Yung
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
| | - Zhao-Cheng Zeng
- Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, CA 90095
| |
Collapse
|
16
|
COVID-19 lockdowns drive decline in active fires in southeastern United States. Proc Natl Acad Sci U S A 2021; 118:2105666118. [PMID: 34663728 PMCID: PMC8639348 DOI: 10.1073/pnas.2105666118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2021] [Indexed: 12/26/2022] Open
Abstract
The coronavirus pandemic, COVID-19, led to strict social-distancing guidelines that severely impacted human livelihood and economic activity. Workplace closures reduced travel, and early in spring 2020, improvements in air and water quality, reduced seismic activity, and reductions in greenhouse gas emissions were observed. COVID-19–related shutdowns emerged at the beginning of the prescribed fire season in the southeastern United States, where 80% of fires are human caused. Using active fire satellite observations and fuel treatment statistics, we estimated a 21% reduction in active fires from March to December 2020 (up to 40% on federal lands). This reduction in active fire may increase fire risk in the future and is detrimental to biodiversity and other ecosystem services inherent to fire-dependent ecosystems. Fire is a common ecosystem process in forests and grasslands worldwide. Increasingly, ignitions are controlled by human activities either through suppression of wildfires or intentional ignition of prescribed fires. The southeastern United States leads the nation in prescribed fire, burning ca. 80% of the country’s extent annually. The COVID-19 pandemic radically changed human behavior as workplaces implemented social-distancing guidelines and provided an opportunity to evaluate relationships between humans and fire as fire management plans were postponed or cancelled. Using active fire data from satellite-based observations, we found that in the southeastern United States, COVID-19 led to a 21% reduction in fire activity compared to the 2003 to 2019 average. The reduction was more pronounced for federally managed lands, up to 41% below average compared to the past 20 y (38% below average compared to the past decade). Declines in fire activity were partly affected by an unusually wet February before the COVID-19 shutdown began in mid-March 2020. Despite the wet spring, the predicted number of active fire detections was still lower than expected, confirming a COVID-19 signal on ignitions. In addition, prescribed fire management statistics reported by US federal agencies confirmed the satellite observations and showed that, following the wet February and before the mid-March COVID-19 shutdown, cumulative burned area was approaching record highs across the region. With fire return intervals in the southeastern United States as frequent as 1 to 2 y, COVID-19 fire impacts will contribute to an increasing backlog in necessary fire management activities, affecting biodiversity and future fire danger.
Collapse
|
17
|
Volatile chemical product emissions enhance ozone and modulate urban chemistry. Proc Natl Acad Sci U S A 2021; 118:2026653118. [PMID: 34341119 DOI: 10.1073/pnas.2026653118] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Decades of air quality improvements have substantially reduced the motor vehicle emissions of volatile organic compounds (VOCs). Today, volatile chemical products (VCPs) are responsible for half of the petrochemical VOCs emitted in major urban areas. We show that VCP emissions are ubiquitous in US and European cities and scale with population density. We report significant VCP emissions for New York City (NYC), including a monoterpene flux of 14.7 to 24.4 kg ⋅ d-1 ⋅ km-2 from fragranced VCPs and other anthropogenic sources, which is comparable to that of a summertime forest. Photochemical modeling of an extreme heat event, with ozone well in excess of US standards, illustrates the significant impact of VCPs on air quality. In the most populated regions of NYC, ozone was sensitive to anthropogenic VOCs (AVOCs), even in the presence of biogenic sources. Within this VOC-sensitive regime, AVOCs contributed upwards of ∼20 ppb to maximum 8-h average ozone. VCPs accounted for more than 50% of this total AVOC contribution. Emissions from fragranced VCPs, including personal care and cleaning products, account for at least 50% of the ozone attributed to VCPs. We show that model simulations of ozone depend foremost on the magnitude of VCP emissions and that the addition of oxygenated VCP chemistry impacts simulations of key atmospheric oxidation products. NYC is a case study for developed megacities, and the impacts of VCPs on local ozone are likely similar for other major urban regions across North America or Europe.
Collapse
|
18
|
Francoeur CB, McDonald BC, Gilman JB, Zarzana KJ, Dix B, Brown SS, de Gouw JA, Frost GJ, Li M, McKeen SA, Peischl J, Pollack IB, Ryerson TB, Thompson C, Warneke C, Trainer M. Quantifying Methane and Ozone Precursor Emissions from Oil and Gas Production Regions across the Contiguous US. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9129-9139. [PMID: 34161066 DOI: 10.1021/acs.est.0c07352] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We present an updated fuel-based oil and gas (FOG) inventory with estimates of nitrogen oxide (NOx) emissions from oil and natural gas production in the contiguous US (CONUS). We compare the FOG inventory with aircraft-derived ("top-down") emissions for NOx over footprints that account for ∼25% of US oil and natural gas production. Across CONUS, we find that the bottom-up FOG inventory combined with other anthropogenic emissions is on average within ∼10% of top-down aircraft-derived NOx emissions. We also find good agreement in the trends of NOx from drilling- and production-phase activities, as inferred by satellites and in the bottom-up inventory. Leveraging tracer-tracer relationships derived from aircraft observations, methane (CH4) and non-methane volatile organic compound (NMVOC) emissions have been added to the inventory. Our total CONUS emission estimates for 2015 of oil and natural gas are 0.45 ± 0.14 Tg NOx/yr, 15.2 ± 3.0 Tg CH4/yr, and 5.7 ± 1.7 Tg NMVOC/yr. Compared to the US National Emissions Inventory and Greenhouse Gas Inventory, FOG NOx emissions are ∼40% lower, while inferred CH4 and NMVOC emissions are up to a factor of ∼2 higher. This suggests that NMVOC/NOx emissions from oil and gas basins are ∼3 times higher than current estimates and will likely affect how air quality models represent ozone formation downwind of oil and gas fields.
Collapse
Affiliation(s)
- Colby B Francoeur
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
| | - Brian C McDonald
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
| | - Jessica B Gilman
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
| | - Kyle J Zarzana
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
| | - Barbara Dix
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Steven S Brown
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
| | - Joost A de Gouw
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Gregory J Frost
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
| | - Meng Li
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
| | - Stuart A McKeen
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
| | - Jeff Peischl
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
| | - Ilana B Pollack
- Department of Atmospheric Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Thomas B Ryerson
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
| | - Chelsea Thompson
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
| | - Carsten Warneke
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
| | - Michael Trainer
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
| |
Collapse
|
19
|
Hallar AG, Brown SS, Crosman E, Barsanti K, Cappa CD, Faloona I, Fast J, Holmes HA, Horel J, Lin J, Middlebrook A, Mitchell L, Murphy J, Womack CC, Aneja V, Baasandorj M, Bahreini R, Banta R, Bray C, Brewer A, Caulton D, de Gouw J, De Wekker SF, Farmer DK, Gaston CJ, Hoch S, Hopkins F, Karle NN, Kelly JT, Kelly K, Lareau N, Lu K, Mauldin RL, Mallia DV, Martin R, Mendoza D, Oldroyd HJ, Pichugina Y, Pratt KA, Saide P, Silva PJ, Simpson W, Stephens BB, Stutz J, Sullivan A. Coupled Air Quality and Boundary-Layer Meteorology in Western U.S. Basins during Winter: Design and Rationale for a Comprehensive Study. BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY 2021; 0:1-94. [PMID: 34446943 PMCID: PMC8384125 DOI: 10.1175/bams-d-20-0017.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Wintertime episodes of high aerosol concentrations occur frequently in urban and agricultural basins and valleys worldwide. These episodes often arise following development of persistent cold-air pools (PCAPs) that limit mixing and modify chemistry. While field campaigns targeting either basin meteorology or wintertime pollution chemistry have been conducted, coupling between interconnected chemical and meteorological processes remains an insufficiently studied research area. Gaps in understanding the coupled chemical-meteorological interactions that drive high pollution events make identification of the most effective air-basin specific emission control strategies challenging. To address this, a September 2019 workshop occurred with the goal of planning a future research campaign to investigate air quality in Western U.S. basins. Approximately 120 people participated, representing 50 institutions and 5 countries. Workshop participants outlined the rationale and design for a comprehensive wintertime study that would couple atmospheric chemistry and boundary-layer and complex-terrain meteorology within western U.S. basins. Participants concluded the study should focus on two regions with contrasting aerosol chemistry: three populated valleys within Utah (Salt Lake, Utah, and Cache Valleys) and the San Joaquin Valley in California. This paper describes the scientific rationale for a campaign that will acquire chemical and meteorological datasets using airborne platforms with extensive range, coupled to surface-based measurements focusing on sampling within the near-surface boundary layer, and transport and mixing processes within this layer, with high vertical resolution at a number of representative sites. No prior wintertime basin-focused campaign has provided the breadth of observations necessary to characterize the meteorological-chemical linkages outlined here, nor to validate complex processes within coupled atmosphere-chemistry models.
Collapse
Affiliation(s)
| | | | - Erik Crosman
- Department of Life, Earth, and Environmental Sciences, West Texas A&M University
| | - Kelley Barsanti
- Department of Chemical and Environmental Engineering, Center for Environmental Research and Technology, University of California, Riverside
| | - Christopher D. Cappa
- Department of Civil and Environmental Engineering, University of California, Davis 95616 USA
| | - Ian Faloona
- Department of Land, Air and Water Resources, University of California, Davis
| | - Jerome Fast
- Atmospheric Science and Global Change Division, Pacific Northwest, National Laboratory, Richland, Washington, USA
| | - Heather A. Holmes
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT
| | - John Horel
- Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT
| | - John Lin
- Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT
| | | | - Logan Mitchell
- Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT
| | - Jennifer Murphy
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Caroline C. Womack
- Cooperative Institute for Research in Environmental Sciences, University of Colorado/ NOAA Chemical Sciences Laboratory, Boulder, CO
| | - Viney Aneja
- Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University
| | | | - Roya Bahreini
- Environmental Sciences, University of California, Riverside, CA
| | | | - Casey Bray
- Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University
| | - Alan Brewer
- NOAA Chemical Sciences Laboratory, Boulder, CO
| | - Dana Caulton
- Department of Atmospheric Science, University of Wyoming
| | - Joost de Gouw
- Cooperative Institute for Research in Environmental Sciences & Department of Chemistry, University of Colorado, Boulder, CO
| | | | | | - Cassandra J. Gaston
- Department of Atmospheric Science - Rosenstiel School of Marine and Atmospheric Science, University of Miami
| | - Sebastian Hoch
- Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT
| | | | - Nakul N. Karle
- Environmental Science and Engineering, The University of Texas at El Paso, TX
| | - James T. Kelly
- Office of Air Quality Planning and Standards, US Environmental Protection Agency, Research Triangle Park, NC
| | - Kerry Kelly
- Chemical Engineering, University of Utah, Salt Lake City, UT
| | - Neil Lareau
- Atmospheric Sciences and Environmental Sciences and Health, University of Nevada, Reno, NV
| | - Keding Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Science and Engineering, Peking University, Beijing, China, 100871
| | - Roy L. Mauldin
- National Center for Atmospheric Research, Boulder, CO 80307, USA
| | - Derek V. Mallia
- Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT
| | - Randal Martin
- Civil and Environmental Engineering, Utah State University, Utah Water Research Laboratory, Logan, UT
| | - Daniel Mendoza
- Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT
| | - Holly J. Oldroyd
- Department of Civil and Environmental Engineering, University of California, Davis
| | | | | | - Pablo Saide
- Department of Atmospheric and Oceanic Sciences, and Institute of the Environment and Sustainability, University of California, Los Angeles
| | - Phillip J. Silva
- Food Animal Environmental Systems Research Unit, USDA-ARS, Bowling Green, KY
| | - William Simpson
- Department of Chemistry, Biochemistry, and Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK 99775-6160
| | - Britton B. Stephens
- Earth Observing Laboratory, National Center for Atmospheric Research, Boulder, CO
| | - Jochen Stutz
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles
| | - Amy Sullivan
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO
| |
Collapse
|
20
|
Miyazaki K, Bowman K, Sekiya T, Takigawa M, Neu JL, Sudo K, Osterman G, Eskes H. Global tropospheric ozone responses to reduced NO x emissions linked to the COVID-19 worldwide lockdowns. SCIENCE ADVANCES 2021; 7:eabf7460. [PMID: 34108210 PMCID: PMC8189586 DOI: 10.1126/sciadv.abf7460] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/21/2021] [Indexed: 05/04/2023]
Abstract
Efforts to stem the transmission of coronavirus disease 2019 (COVID-19) led to rapid, global ancillary reductions in air pollutant emissions. Here, we quantify the impact on tropospheric ozone using a multiconstituent chemical data assimilation system. Anthropogenic NO x emissions dropped by at least 15% globally and 18 to 25% regionally in April and May 2020, which decreased free tropospheric ozone by up to 5 parts per billion, consistent with independent satellite observations. The global total tropospheric ozone burden declined by 6TgO3 (∼2%) in May and June 2020, largely due to emission reductions in Asia and the Americas that were amplified by regionally high ozone production efficiencies (up to 4 TgO3/TgN). Our results show that COVID-19 mitigation left a global atmospheric imprint that altered atmospheric oxidative capacity and climate radiative forcing, providing a test of the efficacy of NO x emissions controls for co-benefiting air quality and climate.
Collapse
Affiliation(s)
- Kazuyuki Miyazaki
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
| | - Kevin Bowman
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
- Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, 4242 Young Hall, 607 Charles E. Young Drive East, Los Angeles, CA 90095-7228, USA
| | - Takashi Sekiya
- Japan Agency for Marine-Earth Science and Technology, Yokohama 236-0001, Japan
| | - Masayuki Takigawa
- Japan Agency for Marine-Earth Science and Technology, Yokohama 236-0001, Japan
| | - Jessica L Neu
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Kengo Sudo
- Japan Agency for Marine-Earth Science and Technology, Yokohama 236-0001, Japan
- Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan
| | - Greg Osterman
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Henk Eskes
- Royal Netherlands Meteorological Institute, De Bilt, Netherlands
| |
Collapse
|
21
|
Qu Z, Jacob DJ, Silvern RF, Shah V, Campbell PC, Valin LC, Murray LT. US COVID-19 Shutdown Demonstrates Importance of Background NO 2 in Inferring NO x Emissions From Satellite NO 2 Observations. GEOPHYSICAL RESEARCH LETTERS 2021; 48:e2021GL092783. [PMID: 34149109 PMCID: PMC8206743 DOI: 10.1029/2021gl092783] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/14/2021] [Accepted: 04/24/2021] [Indexed: 05/08/2023]
Abstract
Satellite nitrogen dioxide (NO2) measurements are used extensively to infer nitrogen oxide emissions and their trends, but interpretation can be complicated by background contributions to the NO2 column sensed from space. We use the step decrease of US anthropogenic emissions from the COVID-19 shutdown to compare the responses of NO2 concentrations observed at surface network sites and from satellites (Ozone Monitoring Instrument [OMI], Tropospheric Ozone Monitoring Instrument [TROPOMI]). After correcting for differences in meteorology, surface NO2 measurements for 2020 show decreases of 20% in March-April and 10% in May-August compared to 2019. The satellites show much weaker responses in March-June and no decrease in July-August, consistent with a large background contribution to the NO2 column. Inspection of the long-term OMI trend over remote US regions shows a rising summertime NO2 background from 2010 to 2019 potentially attributable to wildfires.
Collapse
Affiliation(s)
- Zhen Qu
- School of Engineering and Applied ScienceHarvard UniversityCambridgeMAUSA
| | - Daniel J. Jacob
- School of Engineering and Applied ScienceHarvard UniversityCambridgeMAUSA
| | - Rachel F. Silvern
- Department of Earth and Planetary SciencesHarvard UniversityCambridgeMAUSA
- Now at The National Academies of Sciences, Engineering, and MedicineWashingtonDCUSA
| | - Viral Shah
- School of Engineering and Applied ScienceHarvard UniversityCambridgeMAUSA
| | - Patrick C. Campbell
- Center for Spatial Information Science and Systems/Cooperative Institute for Satellite Earth System StudiesGeorge Mason UniversityFairfaxVAUSA
- Office of Air and Radiation, Air Resources LaboratoryNational Oceanic and Atmospheric AdministrationCollege ParkMDUSA
| | - Lukas C. Valin
- Office of Research and DevelopmentUnited States Environmental Protection Agency, Triangle Research ParkDurhamNCUSA
| | - Lee T. Murray
- Department of Earth and Environmental SciencesUniversity of RochesterRochesterNYUSA
| |
Collapse
|
22
|
Yu KA, McDonald BC, Harley RA. Evaluation of Nitrogen Oxide Emission Inventories and Trends for On-Road Gasoline and Diesel Vehicles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6655-6664. [PMID: 33951912 DOI: 10.1021/acs.est.1c00586] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
On-road vehicles continue to be a major source of nitrogen oxide (NOx) emissions in the United States and in other countries around the world. The goal of this study is to compare and evaluate emission inventories and long-term trends in vehicular NOx emissions. Taxable fuel sales data and in-use measurements of emission factors are combined to generate fuel-based NOx emission inventories for California and the US over the period 1990-2020. While gasoline and diesel fuel sales increased over the last three decades, total on-road NOx emissions declined by approximately 70% since 1990, with a steeper rate of decrease after 2004 when heavy-duty diesel NOx emission controls finally started to gain traction. In California, additional steps have been taken to accelerate the introduction of new heavy-duty engines equipped with selective catalytic reduction systems, resulting in a 48% decrease in diesel NOx emissions in California compared to a 32% decrease nationally since 2010. California EMFAC model predictions are in good agreement with fuel-based inventory results for gasoline engines and are higher than fuel-based estimates for diesel engines prior to the mid-2010s. Similar to the findings of recent observational and modeling studies, there are discrepancies between the fuel-based inventory and national MOVES model estimates. MOVES predicts a steeper decrease in NOx emissions and predicts higher NOx emissions from gasoline engines over the entire period from 1990 to 2020.
Collapse
Affiliation(s)
- Katelyn A Yu
- Department of Civil and Environmental Engineering, University of California, Berkeley 94720-1710, California, United States
| | - Brian C McDonald
- Chemical Sciences Laboratory, NOAA Earth System Research Laboratories, Boulder 80305-3328, Colorado, United States
| | - Robert A Harley
- Department of Civil and Environmental Engineering, University of California, Berkeley 94720-1710, California, United States
| |
Collapse
|
23
|
Sha T, Ma X, Zhang H, Janechek N, Wang Y, Wang Y, Castro García L, Jenerette GD, Wang J. Impacts of Soil NO x Emission on O 3 Air Quality in Rural California. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7113-7122. [PMID: 33576617 DOI: 10.1021/acs.est.0c06834] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nitrogen oxides (NOx) are a key precursor in O3 formation. Although stringent anthropogenic NOx emission controls have been implemented since the early 2000s in the United States, several rural regions of California still suffer from O3 pollution. Previous findings suggest that soils are a dominant source of NOx emissions in California; however, a statewide assessment of the impacts of soil NOx emission (SNOx) on air quality is still lacking. Here we quantified the contribution of SNOx to the NOx budget and the effects of SNOx on surface O3 in California during summer by using WRF-Chem with an updated SNOx scheme, the Berkeley Dalhousie Iowa Soil NO Parameterization (BDISNP). The model with BDISNP shows a better agreement with TROPOMI NO2 columns, giving confidence in the SNOx estimates. We estimate that 40.1% of the state's total NOx emissions in July 2018 are from soils, and SNOx could exceed anthropogenic sources over croplands, which accounts for 50.7% of NOx emissions. Such considerable amounts of SNOx enhance the monthly mean NO2 columns by 34.7% (53.3%) and surface NO2 concentrations by 176.5% (114.0%), leading to an additional 23.0% (23.2%) of surface O3 concentration in California (cropland). Our results highlight the cobenefits of limiting SNOx to help improve air quality and human health in rural California.
Collapse
Affiliation(s)
- Tong Sha
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, People's Republic of China
- Department of Chemical and Biochemical Engineering, Center for Global and Regional Environmental Research, and Iowa Technology Institute, University of Iowa, Iowa City, Iowa 52242, United States
| | - Xiaoyan Ma
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, People's Republic of China
| | - Huanxin Zhang
- Department of Chemical and Biochemical Engineering, Center for Global and Regional Environmental Research, and Iowa Technology Institute, University of Iowa, Iowa City, Iowa 52242, United States
| | - Nathan Janechek
- Department of Chemical and Biochemical Engineering, Center for Global and Regional Environmental Research, and Iowa Technology Institute, University of Iowa, Iowa City, Iowa 52242, United States
| | - Yanyu Wang
- Department of Chemical and Biochemical Engineering, Center for Global and Regional Environmental Research, and Iowa Technology Institute, University of Iowa, Iowa City, Iowa 52242, United States
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, People's Republic of China
| | - Yi Wang
- Department of Chemical and Biochemical Engineering, Center for Global and Regional Environmental Research, and Iowa Technology Institute, University of Iowa, Iowa City, Iowa 52242, United States
| | - Lorena Castro García
- Department of Chemical and Biochemical Engineering, Center for Global and Regional Environmental Research, and Iowa Technology Institute, University of Iowa, Iowa City, Iowa 52242, United States
| | - G Darrel Jenerette
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, United States
| | - Jun Wang
- Department of Chemical and Biochemical Engineering, Center for Global and Regional Environmental Research, and Iowa Technology Institute, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
24
|
Henneman LRF, Shen H, Hogrefe C, Russell AG, Zigler CM. Four Decades of United States Mobile Source Pollutants: Spatial-Temporal Trends Assessed by Ground-Based Monitors, Air Quality Models, and Satellites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:882-892. [PMID: 33400508 PMCID: PMC7983042 DOI: 10.1021/acs.est.0c07128] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
On-road emissions sources degrade air quality, and these sources have been highly regulated. Epidemiological and environmental justice studies often use road proximity as a proxy for traffic-related air pollution (TRAP) exposure, and other studies employ air quality models or satellite observations. To assess these metrics' abilities to reproduce observed near-road concentration gradients and changes over time, we apply a hierarchical linear regression to ground-based observations, long-term air quality model simulations using Community Multiscale Air Quality (CMAQ), and satellite products. Across 1980-2019, observed TRAP concentrations decreased, and road proximity was positively correlated with TRAP. For all pollutants, concentrations decreased fastest at locations with higher road proximity, resulting in "flatter" concentration fields in recent years. This flattening unfolded at a relatively constant rate for NOx, whereas the flattening of CO concentration fields has slowed. CMAQ largely captures observed spatial-temporal NO2 trends across 2002-2010 but overstates the relationships between CO and elemental carbon fine particulate matter (EC) road proximity. Satellite NOx measures overstate concentration reductions near roads. We show how this perspective provides evidence that California's on-road vehicle regulations led to substantial decreases in NO2, NOx, and EC in California, with other states that adopted California's light-duty automobile standards showing mixed benefits over states that did not adopt these standards.
Collapse
Affiliation(s)
- Lucas RF Henneman
- George Mason University Department of Civil, Environmental, and Infrastructure Engineering, Fairfax, VA
| | - Huizhong Shen
- Georgia Institute of Technology School of Civil and Environmental Engineering, Atlanta, GA
| | - Christian Hogrefe
- Atmospheric Dynamics and Meteorology Branch; Atmospheric and Environmental Systems Modeling Division; CEMM, ORD, U.S. EPA; Research Triangle Park, NC
| | - Armistead G Russell
- Georgia Institute of Technology School of Civil and Environmental Engineering, Atlanta, GA
| | - Corwin M Zigler
- University of Texas Department of Statistics and Data Sciences and Department of Women’s Health, Austin, TX
| |
Collapse
|
25
|
Qu Z, Wu D, Henze DK, Li Y, Sonenberg M, Mao F. Transboundary transport of ozone pollution to a US border region: A case study of Yuma. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116421. [PMID: 33460873 DOI: 10.1016/j.envpol.2020.116421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/16/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
High concentrations of ground-level ozone affect human health, plants, and animals. Reducing ozone pollution in rural regions, where local emissions are already low, poses challenge. We use meteorological back-trajectories, air quality model sensitivity analysis, and satellite remote sensing data to investigate the ozone sources in Yuma, Arizona and find strong international influences from Northern Mexico on 12 out of 16 ozone exceedance days. We find that such exceedances could not be mitigated by reducing emissions in Arizona; complete removal of state emissions would reduce the maximum daily 8-h average (MDA8) ozone in Yuma by only 0.7% on exceeding days. In contrast, emissions in Mexico are estimated to contribute to 11% of the ozone during these exceedances, and their reduction would reduce MDA8 ozone in Yuma to below the standard. Using satellite-based remote sensing measurements, we find that emissions of nitrogen oxides (NOx, a key photochemical precursor of ozone) increase slightly in Mexico from 2005 to 2016, opposite to decreases shown in the bottom-up inventory. In comparison, a decrease of NOx emissions in the US and meteorological factors lead to an overall of summer mean and annual MDA8 ozone in Yuma (by ∼1-4% and ∼3%, respectively). Analysis of meteorological back-trajectories also shows similar transboundary transport of ozone at the US-Mexico border in California and New Mexico, where strong influences from Northern Mexico coincide with 11 out of 17 and 6 out of 8 ozone exceedances. 2020 is the final year of the U.S.-Mexico Border 2020 Program, which aimed to reduce pollution at border regions of the US and Mexico. Our results indicate the importance of sustaining a substantial cooperative program to improve air quality at the border area.
Collapse
Affiliation(s)
- Zhen Qu
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA; School of Engineering and Applied Science, Harvard University, Cambridge, MA, 02138, USA.
| | - Dien Wu
- Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Daven K Henze
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Yi Li
- Arizona Department of Environmental Quality, Phoenix, AZ, 85007, USA.
| | - Mike Sonenberg
- Arizona Department of Environmental Quality, Phoenix, AZ, 85007, USA
| | - Feng Mao
- Arizona Department of Environmental Quality, Phoenix, AZ, 85007, USA
| |
Collapse
|
26
|
Parker HA, Hasheminassab S, Crounse JD, Roehl CM, Wennberg PO. Impacts of Traffic Reductions Associated With COVID-19 on Southern California Air Quality. GEOPHYSICAL RESEARCH LETTERS 2020; 47:e2020GL090164. [PMID: 33349735 PMCID: PMC7744837 DOI: 10.1029/2020gl090164] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 05/23/2023]
Abstract
On 19 March 2020, California put in place Stay-At-Home orders to reduce the spread of SARS-CoV-2. As a result, decreases up to 50% in traffic occurred across the South Coast Air Basin (SoCAB). We report that, compared to the 19 March to 30 June period of the last 5 years, the 2020 concentrations of PM2.5 and NO x showed an overall reduction across the basin. O3 concentrations decreased in the western part of the basin and generally increased in the downwind areas. The NO x decline in 2020 (approximately 27% basin-wide) is in addition to ongoing declines over the last two decades (on average 4% less than the -6.8% per year afternoon NO2 concentration decrease) and provides insight into how air quality may respond over the next few years of continued vehicular reductions. The modest changes in O3 suggests additional mitigation will be necessary to comply with air quality standards.
Collapse
Affiliation(s)
- H. A. Parker
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | | | - J. D. Crounse
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - C. M. Roehl
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - P. O. Wennberg
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
- Division of Engineering and Applied ScienceCalifornia Institute of TechnologyPasadenaCAUSA
| |
Collapse
|
27
|
Mushinski RM, Payne ZC, Raff JD, Craig ME, Pusede SE, Rusch DB, White JR, Phillips RP. Nitrogen cycling microbiomes are structured by plant mycorrhizal associations with consequences for nitrogen oxide fluxes in forests. GLOBAL CHANGE BIOLOGY 2020; 27:1068-1082. [PMID: 33319480 PMCID: PMC7898693 DOI: 10.1111/gcb.15439] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 05/02/2023]
Abstract
Volatile nitrogen oxides (N2 O, NO, NO2 , HONO, …) can negatively impact climate, air quality, and human health. Using soils collected from temperate forests across the eastern United States, we show microbial communities involved in nitrogen (N) cycling are structured, in large part, by the composition of overstory trees, leading to predictable N-cycling syndromes, with consequences for emissions of volatile nitrogen oxides to air. Trees associating with arbuscular mycorrhizal (AM) fungi promote soil microbial communities with higher N-cycle potential and activity, relative to microbial communities in soils dominated by trees associating with ectomycorrhizal (ECM) fungi. Metagenomic analysis and gene expression studies reveal a 5 and 3.5 times greater estimated N-cycle gene and transcript copy numbers, respectively, in AM relative to ECM soil. Furthermore, we observe a 60% linear decrease in volatile reactive nitrogen gas flux (NOy ≡ NO, NO2 , HONO) as ECM tree abundance increases. Compared to oxic conditions, gas flux potential of N2 O and NO increase significantly under anoxic conditions for AM soil (30- and 120-fold increase), but not ECM soil-likely owing to small concentrations of available substrate ( NO 3 - ) in ECM soil. Linear mixed effects modeling shows that ECM tree abundance, microbial process rates, and geographic location are primarily responsible for variation in peak potential NOy flux. Given that nearly all tree species associate with either AM or ECM fungi, our results indicate that the consequences of tree species shifts associated with global change may have predictable consequences for soil N cycling.
Collapse
Affiliation(s)
- Ryan M. Mushinski
- School of Life SciencesUniversity of WarwickCoventryUK
- O'Neill School of Public and Environmental AffairsIndiana UniversityBloomingtonINUSA
| | - Zachary C. Payne
- O'Neill School of Public and Environmental AffairsIndiana UniversityBloomingtonINUSA
- Department of ChemistryIndiana UniversityBloomingtonINUSA
| | - Jonathan D. Raff
- O'Neill School of Public and Environmental AffairsIndiana UniversityBloomingtonINUSA
- Department of ChemistryIndiana UniversityBloomingtonINUSA
| | - Matthew E. Craig
- Department of BiologyIndiana UniversityBloomingtonINUSA
- Environmental Sciences Division and Climate Change Science InstituteOak Ridge National LaboratoryOak RidgeTNUSA
| | - Sally E. Pusede
- Department of Environmental SciencesUniversity of VirginiaCharlottesvilleVAUSA
| | - Douglas B. Rusch
- Center for Genomics and BioinformaticsIndiana UniversityBloomingtonINUSA
| | - Jeffrey R. White
- O'Neill School of Public and Environmental AffairsIndiana UniversityBloomingtonINUSA
- Department of Earth and Atmospheric SciencesIndiana UniversityBloomingtonINUSA
| | | |
Collapse
|
28
|
Huber DE, Steiner AL, Kort EA. Daily Cropland Soil NO x Emissions Identified by TROPOMI and SMAP. GEOPHYSICAL RESEARCH LETTERS 2020; 47:e2020GL089949. [PMID: 33380760 PMCID: PMC7757188 DOI: 10.1029/2020gl089949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/15/2020] [Accepted: 10/25/2020] [Indexed: 06/12/2023]
Abstract
We use TROPOMI (TROPOspheric Monitoring Instrument) tropospheric nitrogen dioxide (NO2) measurements to identify cropland soil nitrogen oxide (NOx = NO + NO2) emissions at daily to seasonal scales in the U.S. Southern Mississippi River Valley. Evaluating 1.5 years of TROPOMI observations with a box model, we observe seasonality in local NOx enhancements and estimate maximum cropland soil NOx emissions (15-34 ng N m-2 s-1) early in growing season (May-June). We observe soil NOx pulsing in response to daily decreases in volumetric soil moisture (VSM) as measured by the Soil Moisture Active Passive (SMAP) satellite. Daily NO2 enhancements reach up to 0.8 × 1015 molecules cm-2 4-8 days after precipitation when VSM decreases to ~30%, reflecting emissions behavior distinct from previously defined soil NOx pulse events. This demonstrates that TROPOMI NO2 observations, combined with observations of underlying process controls (e.g., soil moisture), can constrain soil NOx processes from space.
Collapse
Affiliation(s)
- Daniel E. Huber
- Department of Climate and Space Sciences and EngineeringUniversity of MichiganAnn ArborMIUSA
| | - Allison L. Steiner
- Department of Climate and Space Sciences and EngineeringUniversity of MichiganAnn ArborMIUSA
| | - Eric A. Kort
- Department of Climate and Space Sciences and EngineeringUniversity of MichiganAnn ArborMIUSA
| |
Collapse
|
29
|
Archer CL, Cervone G, Golbazi M, Al Fahel N, Hultquist C. Changes in air quality and human mobility in the USA during the COVID-19 pandemic. BULLETIN OF ATMOSPHERIC SCIENCE AND TECHNOLOGY 2020; 1:491-514. [PMID: 38624442 PMCID: PMC7586872 DOI: 10.1007/s42865-020-00019-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/10/2020] [Indexed: 01/26/2023]
Abstract
The first goal of this study is to quantify the magnitude and spatial variability of air quality changes in the USA during the COVID-19 pandemic. We focus on two pollutants that are federally regulated, nitrogen dioxide (NO2) and fine particulate matter (PM2.5). NO2 and PM2.5 are both primary and secondary pollutants, meaning that they can be emitted either directly into the atmosphere or indirectly from chemical reactions of emitted precursors. NO2 is emitted during fuel combustion by all motor vehicles and airplanes. PM2.5 is emitted by airplanes and, among motor vehicles, mostly by diesel vehicles, such as commercial heavy-duty diesel trucks. Both PM2.5 and NO2 are also emitted by fossil-fuel power plants, although PM2.5 almost exclusively by coal power plants. Observed concentrations at all available ground monitoring sites (240 and 480 for NO2 and PM2.5, respectively) were compared between April 2020, the month during which the majority of US states had introduced some measure of social distancing (e.g., business and school closures, shelter-in-place, quarantine), and April of the prior 5 years, 2015-2019, as the baseline. Large, statistically significant decreases in NO2 concentrations were found at more than 65% of the monitoring sites, with an average drop of 2 parts per billion (ppb) when compared to the mean of the previous 5 years. The same patterns are confirmed by satellite-derived NO2 column totals from NASA OMI, which showed an average drop in 2020 by 13% over the entire country when compared to the mean of the previous 5 years. PM2.5 concentrations from the ground monitoring sites, however, were not significantly lower in 2020 than those in the past 5 years and were more likely to be higher than lower in April 2020 when compared with those in the previous 5 years. After correcting for the decreasing multi-annual concentration trends, the net effect of COVID-19 at the ground stations in April 2020 was a reduction in NO2 concentrations by - 1.3ppb and a slight increase in PM2.5 concentrations by + 0.28 μg/m3. The second goal of this study is to explain the different responses of these two pollutants, i.e., NO2 was significantly reduced but PM2.5 was nearly unaffected, during the COVID-19 pandemic. The hypothesis put forward is that the shelter-in-place measures affected people's driving patterns most dramatically, thus passenger vehicle NO2 emissions were reduced. Commercial vehicles (generally diesel) and electricity demand for all purposes remained relatively unchanged, thus PM2.5 concentrations did not drop significantly. To establish a correlation between the observed NO2 changes and the extent to which people were actually sheltering in place, thus driving less, we used a mobility index, which was produced and made public by Descartes Labs. This mobility index aggregates cell phone usage at the county level to capture changes in human movement over time. We found a strong correlation between the observed decreases in NO2 concentrations and decreases in human mobility, with over 4 ppb decreases in the monthly average where mobility was reduced to near 0 and around 1 ppb decrease where mobility was reduced to 20% of normal or less. By contrast, no discernible pattern was detected between mobility and PM2.5 concentrations changes, suggesting that decreases in personal-vehicle traffic alone may not be effective at reducing PM2.5 pollution.
Collapse
Affiliation(s)
- Cristina L. Archer
- College of Earth, Ocean, and Environment, University of Delaware, Newark, Delaware 19716 USA
| | - Guido Cervone
- Institute for Computational and Data Science, The Pennsylvania State University, University Park, Pennsylvania, 16802 USA
| | - Maryam Golbazi
- College of Earth, Ocean, and Environment, University of Delaware, Newark, Delaware 19716 USA
| | - Nicolas Al Fahel
- Biden School of Public Policy and Administration, University of Delaware, Newark, 19716 Delaware USA
| | - Carolynne Hultquist
- Center for International Earth Science Information Network (CIESiN), The Earth Institute at Columbia University, Palisades, New York, 10964 USA
| |
Collapse
|
30
|
Zheng H, Kong S, Chen N, Yan Y, Liu D, Zhu B, Xu K, Cao W, Ding Q, Lan B, Zhang Z, Zheng M, Fan Z, Cheng Y, Zheng S, Yao L, Bai Y, Zhao T, Qi S. Significant changes in the chemical compositions and sources of PM 2.5 in Wuhan since the city lockdown as COVID-19. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:140000. [PMID: 32540668 PMCID: PMC7274103 DOI: 10.1016/j.scitotenv.2020.140000] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 04/14/2023]
Abstract
Wuhan was the first city to adopt the lockdown measures to prevent COVID-19 spreading, which improved the air quality accordingly. This study investigated the variations in chemical compositions, source contributions, and regional transport of fine particles (PM2.5) during January 23-February 22 of 2020, compared with the same period in 2019. The average mass concentration of PM2.5 decreased from 72.9 μg m-3 (2019) to 45.9 μg m-3 (2020), by 27.0 μg m-3. It was predominantly contributed by the emission reduction (92.0%), retrieved from a random forest tree approach. The main chemical species of PM2.5 all decreased with the reductions ranging from 0.85 μg m-3 (chloride) to 9.86 μg m-3 (nitrate) (p < 0.01). Positive matrix factorization model indicated that the mass contributions of seven PM2.5 sources all decreased. However, their contribution percentages varied from -11.0% (industrial processes) to 8.70% (secondary inorganic aerosol). Source contributions of PM2.5 transported from potential geographical regions showed reductions with mean values ranging from 0.22 to 4.36 μg m-3. However, increased contributions of firework burning, secondary inorganic aerosol, road dust, and vehicle emissions from transboundary transport were observed. This study highlighted the complex and nonlinear response of chemical compositions and sources of PM2.5 to air pollution control measures, suggesting the importance of regional-joint control.
Collapse
Affiliation(s)
- Huang Zheng
- Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; Department of Environmental Science and Engineering, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Shaofei Kong
- Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; Research Centre for Complex Air Pollution of Hubei Province, Wuhan, China.
| | - Nan Chen
- Eco-Environmental Monitoring Centre of Hubei Province, Wuhan 430072, China; Research Centre for Complex Air Pollution of Hubei Province, Wuhan, China
| | - Yingying Yan
- Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; Research Centre for Complex Air Pollution of Hubei Province, Wuhan, China
| | - Dantong Liu
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Zhu
- Eco-Environmental Monitoring Centre of Hubei Province, Wuhan 430072, China; Research Centre for Complex Air Pollution of Hubei Province, Wuhan, China
| | - Ke Xu
- Eco-Environmental Monitoring Centre of Hubei Province, Wuhan 430072, China; Research Centre for Complex Air Pollution of Hubei Province, Wuhan, China
| | - Wenxiang Cao
- Eco-Environmental Monitoring Centre of Hubei Province, Wuhan 430072, China; Research Centre for Complex Air Pollution of Hubei Province, Wuhan, China
| | - Qingqing Ding
- Eco-Environmental Monitoring Centre of Hubei Province, Wuhan 430072, China; Research Centre for Complex Air Pollution of Hubei Province, Wuhan, China
| | - Bo Lan
- Eco-Environmental Monitoring Centre of Hubei Province, Wuhan 430072, China; Research Centre for Complex Air Pollution of Hubei Province, Wuhan, China
| | - Zhouxiang Zhang
- Eco-Environmental Monitoring Centre of Hubei Province, Wuhan 430072, China; Research Centre for Complex Air Pollution of Hubei Province, Wuhan, China
| | - Mingming Zheng
- Department of Environmental Science and Engineering, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; Eco-Environmental Monitoring Centre of Hubei Province, Wuhan 430072, China
| | - Zewei Fan
- Department of Environmental Science and Engineering, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yi Cheng
- Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Shurui Zheng
- Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; Department of Environmental Science and Engineering, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Liquan Yao
- Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; Department of Environmental Science and Engineering, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yongqing Bai
- Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research, Institute of Heavy Rain, China Meteorological Administration, Wuhan 430205, China
| | - Tianliang Zhao
- School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Shihua Qi
- Department of Environmental Science and Engineering, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; Research Centre for Complex Air Pollution of Hubei Province, Wuhan, China
| |
Collapse
|
31
|
Demetillo MAG, Navarro A, Knowles KK, Fields KP, Geddes JA, Nowlan CR, Janz SJ, Judd LM, Al-Saadi J, Sun K, McDonald BC, Diskin GS, Pusede SE. Observing Nitrogen Dioxide Air Pollution Inequality Using High-Spatial-Resolution Remote Sensing Measurements in Houston, Texas. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9882-9895. [PMID: 32806912 DOI: 10.1021/acs.est.0c01864] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Houston, Texas is a major U.S. urban and industrial area where poor air quality is unevenly distributed and a disproportionate share is located in low-income, non-white, and Hispanic neighborhoods. We have traditionally lacked city-wide observations to fully describe these spatial heterogeneities in Houston and in cities globally, especially for reactive gases like nitrogen dioxide (NO2). Here, we analyze novel high-spatial-resolution (250 m × 500 m) NO2 vertical columns measured by the NASA GCAS airborne spectrometer as part of the September-2013 NASA DISCOVER-AQ mission and discuss differences in population-weighted NO2 at the census-tract level. Based on the average of 35 repeated flight circuits, we find 37 ± 6% higher NO2 for non-whites and Hispanics living in low-income tracts (LIN) compared to whites living in high-income tracts (HIW) and report NO2 disparities separately by race ethnicity (11-32%) and poverty status (15-28%). We observe substantial time-of-day and day-to-day variability in LIN-HIW NO2 differences (and in other metrics) driven by the greater prevalence of NOx (≡NO + NO2) emission sources in low-income, non-white, and Hispanic neighborhoods. We evaluate measurements from the recently launched satellite sensor TROPOMI (3.5 km × 7 km at nadir), averaged to 0.01° × 0.01° using physics-based oversampling, and demonstrate that TROPOMI resolves similar relative, but not absolute, tract-level differences compared to GCAS. We utilize the high-resolution FIVE and NEI NOx inventories, plus one year of TROPOMI weekday-weekend variability, to attribute tract-level NO2 disparities to industrial sources and heavy-duty diesel trucking. We show that GCAS and TROPOMI spatial patterns correspond to the surface patterns measured using aircraft profiling and surface monitors. We discuss opportunities for satellite remote sensing to inform decision making in cities generally.
Collapse
Affiliation(s)
- Mary Angelique G Demetillo
- Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Aracely Navarro
- Department of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Katherine K Knowles
- Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Kimberly P Fields
- Carter G. Woodson Institute for African-American and African Studies, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Jeffrey A Geddes
- Department of Earth and Environment, Boston University, Boston, Massachusetts 02215, United States
| | - Caroline R Nowlan
- Atomic and Molecular Physics Division, Harvard Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, United States
| | - Scott J Janz
- NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, United States
| | - Laura M Judd
- NASA Langley Research Center, Hampton, Virginia 23681, United States
| | - Jassim Al-Saadi
- NASA Langley Research Center, Hampton, Virginia 23681, United States
| | - Kang Sun
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, New York 14260, United States
- Research and Education in eNergy, Environment and Water (RENEW) Institute, University at Buffalo, Buffalo, New York 14260, United States
| | - Brian C McDonald
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80305, United States
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, Colorado 80305, United States
| | - Glenn S Diskin
- NASA Langley Research Center, Hampton, Virginia 23681, United States
| | - Sally E Pusede
- Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
32
|
Jin X, Fiore A, Boersma KF, Smedt ID, Valin L. Inferring Changes in Summertime Surface Ozone-NO x-VOC Chemistry over U.S. Urban Areas from Two Decades of Satellite and Ground-Based Observations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6518-6529. [PMID: 32348127 PMCID: PMC7996126 DOI: 10.1021/acs.est.9b07785] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Urban ozone (O3) formation can be limited by NOx, VOCs, or both, complicating the design of effective O3 abatement plans. A satellite-retrieved ratio of formaldehyde to NO2 (HCHO/NO2), developed from theory and modeling, has previously been used to indicate O3 formation chemistry. Here, we connect this space-based indicator to spatiotemporal variations in O3 recorded by on-the-ground monitors over major U.S. cities. High-O3 events vary nonlinearly with OMI HCHO and NO2, and the transition from VOC-limited to NOx-limited O3 formation regimes occurs at higher HCHO/NO2 value (3 to 4) than previously determined from models, with slight intercity variations. To extend satellite records back to 1996, we develop an approach to harmonize observations from GOME and SCIAMACHY that accounts for differences in spatial resolution and overpass time. Two-decade (1996-2016) multisatellite HCHO/NO2 captures the timing and location of the transition from VOC-limited to NOx-limited O3 production regimes in major U.S. cities, which aligns with the observed long-term changes in urban-rural gradient of O3 and the reversal of O3 weekend effect. Our findings suggest promise for applying space-based HCHO/NO2 to interpret local O3 chemistry, particularly with the new-generation satellite instruments that offer finer spatial and temporal resolution.
Collapse
Affiliation(s)
- Xiaomeng Jin
- Department of Earth and Environmental Sciences, Columbia University, New York, NY, USA
- Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
| | - Arlene Fiore
- Department of Earth and Environmental Sciences, Columbia University, New York, NY, USA
- Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
| | - K Folkert Boersma
- Royal Netherlands Meteorological Institute, De Bilt, The Netherlands
- Wageningen University, Environmental Sciences Group, Wageningen, The Netherlands
| | | | - Lukas Valin
- U.S. EPA Office of Research and Development, Research Triangle Park, NC, USA
| |
Collapse
|
33
|
Laughner JL, Cohen RC. Direct observation of changing NO x lifetime in North American cities. Science 2020; 366:723-727. [PMID: 31699933 DOI: 10.1126/science.aax6832] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 10/09/2019] [Indexed: 12/27/2022]
Abstract
NO x lifetime relates nonlinearly to its own concentration; therefore, by observing how NO x lifetime changes with changes in its concentration, inferences can be made about the dominant chemistry occurring in an urban plume. We used satellite observations of NO2 from a new high-resolution product to show that NO x lifetime in approximately 30 North American cities has changed between 2005 and 2014 in a manner consistent with our understanding of NO x chemistry.
Collapse
Affiliation(s)
- Joshua L Laughner
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ronald C Cohen
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA. .,Department of Earth and Planetary Sciences, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
34
|
Premature mortality related to United States cross-state air pollution. Nature 2020; 578:261-265. [PMID: 32051602 DOI: 10.1038/s41586-020-1983-8] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 11/01/2019] [Indexed: 01/31/2023]
Abstract
Outdoor air pollution adversely affects human health and is estimated to be responsible for five to ten per cent of the total annual premature mortality in the contiguous United States1-3. Combustion emissions from a variety of sources, such as power generation or road traffic, make a large contribution to harmful air pollutants such as ozone and fine particulate matter (PM2.5)4. Efforts to mitigate air pollution have focused mainly on the relationship between local emission sources and local air quality2. Air quality can also be affected by distant emission sources, however, including emissions from neighbouring federal states5,6. This cross-state exchange of pollution poses additional regulatory challenges. Here we quantify the exchange of air pollution among the contiguous United States, and assess its impact on premature mortality that is linked to increased human exposure to PM2.5 and ozone from seven emission sectors for 2005 to 2018. On average, we find that 41 to 53 per cent of air-quality-related premature mortality resulting from a state's emissions occurs outside that state. We also find variations in the cross-state contributions of different emission sectors and chemical species to premature mortality, and changes in these variations over time. Emissions from electric power generation have the greatest cross-state impacts as a fraction of their total impacts, whereas commercial/residential emissions have the smallest. However, reductions in emissions from electric power generation since 2005 have meant that, by 2018, cross-state premature mortality associated with the commercial/residential sector was twice that associated with power generation. In terms of the chemical species emitted, nitrogen oxides and sulfur dioxide emissions caused the most cross-state premature deaths in 2005, but by 2018 primary PM2.5 emissions led to cross-state premature deaths equal to three times those associated with sulfur dioxide emissions. These reported shifts in emission sectors and emission species that contribute to premature mortality may help to guide improvements to air quality in the contiguous United States.
Collapse
|
35
|
Loughner CP, Follette-Cook MB, Duncan BN, Hains J, Pickering KE, Moy J, Tzortziou M. The benefits of lower ozone due to air pollution emission reductions (2002-2011) in the Eastern United States during extreme heat. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2020; 70:193-205. [PMID: 31769734 DOI: 10.1080/10962247.2019.1694089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/27/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
Using the Community Multiscale Air Quality (CMAQ) model and the Benefits Mapping and Analysis Program - Community Edition (BenMAP-CE) tool, we estimate the benefits of anthropogenic emission reductions between 2002 and 2011 in the Eastern United States (US) with respect to surface ozone concentrations and ozone-related health and economic impacts, during a month of extreme heat, July 2011. Based on CMAQ simulations using emissions appropriate for 2002 and 2011, we estimate that emission reductions since 2002 likely prevented 10- 15 ozone exceedance days (using the 2011 maximum 8-hr average ozone standard of 75 ppbv) throughout the Ohio River Valley and 5- 10 ozone exceedance days throughout the Washington, DC - Baltimore, MD metropolitan area during this extremely hot month. CMAQ results were fed into the BenMAP-CE tool to determine the health and health-related economic benefits of anthropogenic emission reductions between 2002 and 2011. We estimate that the concomitant health benefits from the ozone reductions were significant for this anomalous month: 160-800 mortalities (95% confidence interval (CI): 70-1,010) were avoided in July 2011 in the Eastern U.S, saving an estimated $1.3-$6.6 billion (CI: $174 million-$15.5 billion). Additionally, we estimate that emission reductions resulted in 950 (CI: 90-2,350) less hospital admissions from respiratory symptoms, 370 (CI: 180-580) less hospital admissions for pneumonia, 570 (CI: 0-1650) less Emergency Room (ER) visits from asthma symptoms, 922,020 (CI: 469,960-1,370,050) less minor restricted activity days (MRADs), and 430,240 (CI: -280,350-963,190) less symptoms of asthma exacerbation during July 2011.Implications: We estimate the benefits of air pollution emission reductions on surface ozone concentrations and ozone-related impacts on human health and the economy between 2002 and 2011 during an extremely hot month, July 2011, in the eastern United States (US) using the CMAQ and BenMAP-CE models. Results suggest that, during July 2011, emission reductions prevented 10-15 ozone exceedance days in the Ohio River Valley and 5-10 ozone exceedance days in the Mid Atlantic; saved 160-800 lives in the Eastern US, saving $1.3 - $6.5 billion; and resulted in 950 less hospital admissions for respiratory symptoms, 370 less hospital admissions for pneumonia, 570 less Emergency Room visits for asthma symptoms, 922,020 less minor restricted activity days, and 430,240 less symptoms of asthma exacerbation.
Collapse
Affiliation(s)
- Christopher P Loughner
- Cooperative Institute for Satellite Earth System Studies (CISESS)/Earth System Science Interdisciplinary Center (ESSIC), University of Maryland, College Park, MD, USA
- Atmospheric Sciences Modeling Division, Air Resources Laboratory, NOAA Air Resources Laboratory, College Park, MD, USA
| | - Melanie B Follette-Cook
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
- Goddard Earth Science Technology and Research, Morgan State University, Baltimore, MD, USA
| | - Bryan N Duncan
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Jennifer Hains
- Family Home Visiting, Minnesota Department of Health, St. Paul, MN, USA
| | - Kenneth E Pickering
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
- Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, USA
| | - Justin Moy
- Department of Neurosciences, University of Maryland Medical System, Baltimore, MD, USA
| | - Maria Tzortziou
- Earth and Atmospheric Sciences, City College of New York, New York, NY, USA
| |
Collapse
|
36
|
Fine-Scale Columnar and Surface NOx Concentrations over South Korea: Comparison of Surface Monitors, TROPOMI, CMAQ and CAPSS Inventory. ATMOSPHERE 2020. [DOI: 10.3390/atmos11010101] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fine-scale nitrogen oxide (NOx) concentrations over South Korea are examined using surface observations, satellite data and high-resolution model simulations based on the latest emission inventory. While accurate information on NOx emissions in South Korea is crucial to understanding regional air quality in the region, consensus on the validation of NOx emissions is lacking. We investigate the spatial and temporal variation in fine-scale NOx emission sources over South Korea. Surface observations and newly available fine-scale satellite data (TROPOspheric Monitoring Instrument; TROPOMI; 3.5 × 7 km2) are compared with the community multiscale air quality (CMAQ) model based on the clean air policy support system (CAPSS) 2016 emission inventory. The results show that the TROPOMI NO2 column densities agree well with the CMAQ simulations based on CAPSS emissions (e.g., R = 0.96 for June 2018). The surface observations, satellite data and model are consistent in terms of their spatial distribution, the overestimation over the Seoul Metropolitan Area and major point sources; however, the model tends to underestimate the surface concentrations during the cold season.
Collapse
|
37
|
Thompson AM, Stauffer RM, Boyle TP, Kollonige DE, Miyazaki K, Tzortziou M, Herman JR, Abuhassan N, Jordan CE, Lamb BT. Comparison of Near-surface NO 2 Pollution with Pandora Total Column NO 2 during the Korea-United States Ocean Color (KORUS OC) Campaign. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2019; 124:13560-13575. [PMID: 32913698 PMCID: PMC7477803 DOI: 10.1029/2019jd030765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 10/12/2019] [Indexed: 05/22/2023]
Abstract
Near-surface air quality (AQ) observations over coastal waters are scarce, a situation that limits our capacity to monitor pollution events at land-water interfaces. Satellite measurements of total column (TC) nitrogen dioxide (NO2) observations are a useful proxy for combustion sources but the once daily snapshots available from most sensors are insufficient for tracking the diurnal evolution and transport of pollution. Ground-based remote sensors like the Pandora Spectrometer Instrument (PSI) that have been developed to verify space-based total column NO2 and other trace gases are being tested for routine use as certified AQ monitors. The KORUS-OC (Korea-United States Ocean Color) cruise aboard the R/V Onnuri in May-June 2016 represented an opportunity to study AQ near the South Korean coast, a region affected by both local/regional and long-distance pollution sources. Using PSI data in direct-sun mode and in situ sensors for shipboard ozone, CO and NO2, we explore, for the first time, relationships between TC NO2 and surface AQ in this coastal region. Three case studies illustrate the value of the PSI as well as complexities in the surface-column NO2 relationship caused by varying meteorological conditions. Case Study 1 (25-26 May 2016) exhibited a high correlation of surface NO2 to TC NO2 measured by both PSI and Aura's Ozone Monitoring Instrument (OMI) but two other cases displayed poor relationships between in situ and TC NO2 due to decoupling of pollution layers from the surface. With suitable interpretation the PSI TC NO2 measurement demonstrates good potential for working with upcoming geostationary satellites to advance diurnal tracking of pollution.
Collapse
Affiliation(s)
- Anne M Thompson
- Earth Sciences Division, NASA/Goddard Space Flight Center, Greenbelt, Maryland 20771
- Dept. of Atmospheric and Ocean Sciences, Univ. Maryland-College Park, College Park, MD 20742
| | - Ryan M Stauffer
- Earth Sciences Division, NASA/Goddard Space Flight Center, Greenbelt, Maryland 20771
- USRA, Columbia, Maryland 21046
| | - Tyler P Boyle
- Dept. of Atmospheric and Ocean Sciences, Univ. Maryland-College Park, College Park, MD 20742
| | - Debra E Kollonige
- Earth Sciences Division, NASA/Goddard Space Flight Center, Greenbelt, Maryland 20771
- SSAI, Lanham, MD 20706
| | | | - Maria Tzortziou
- Earth Sciences Dept., CCNY, City Univ. New York, New York, NY 10031
| | - Jay R Herman
- Earth Sciences Division, NASA/Goddard Space Flight Center, Greenbelt, Maryland 20771
- JCET, Univ. Maryland-Baltimore County, Baltimore, Maryland 20218
| | - Nader Abuhassan
- Earth Sciences Division, NASA/Goddard Space Flight Center, Greenbelt, Maryland 20771
- JCET, Univ. Maryland-Baltimore County, Baltimore, Maryland 20218
| | | | - Brian T Lamb
- Earth Sciences Dept., CCNY, City Univ. New York, New York, NY 10031
| |
Collapse
|
38
|
Goldberg DL, Lu Z, Oda T, Lamsal LN, Liu F, Griffin D, McLinden CA, Krotkov NA, Duncan BN, Streets DG. Exploiting OMI NO 2 satellite observations to infer fossil-fuel CO 2 emissions from U.S. megacities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133805. [PMID: 31419680 DOI: 10.1016/j.scitotenv.2019.133805] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/15/2019] [Accepted: 08/05/2019] [Indexed: 05/28/2023]
Abstract
Fossil-fuel CO2 emissions and their trends in eight U.S. megacities during 2006-2017 are inferred by combining satellite-derived NOX emissions with bottom-up city-specific NOX-to-CO2 emission ratios. A statistical model is fit to a collection NO2 plumes observed from the Ozone Monitoring Instrument (OMI), and is used to calculate top-down NOX emissions. Decreases in OMI-derived NOX emissions are observed across the eight cities from 2006 to 2017 (-17% in Miami to -58% in Los Angeles), and are generally consistent with long-term trends of bottom-up inventories (-25% in Miami to -49% in Los Angeles), but there are some interannual discrepancies. City-specific NOX-to-CO2 emission ratios, used to calculate inferred CO2, are estimated through annual bottom-up inventories of NOX and CO2 emissions disaggregated to 1 × 1 km2 resolution. Over the study period, NOX-to-CO2 emission ratios have decreased by ~40% nationwide (-24% to -51% for our studied cities), which is attributed to a faster reduction in NOX when compared to CO2 due to policy regulations and fuel type shifts. Combining top-down NOX emissions and bottom-up NOX-to-CO2 emission ratios, annual fossil-fuel CO2 emissions are derived. Inferred OMI-based top-down CO2 emissions trends vary between +7% in Dallas to -31% in Phoenix. For 2017, we report annual fossil-fuel CO2 emissions to be: Los Angeles 113 ± 49 Tg/yr; New York City 144 ± 62 Tg/yr; and Chicago 55 ± 24 Tg/yr. A study in the Los Angeles area, using independent methods, reported a 2013-2016 average CO2 emissions rate of 104 Tg/yr and 120 Tg/yr, which suggests that the CO2 emissions from our method are in good agreement with other studies' top-down estimates. We anticipate future remote sensing instruments - with better spatial and temporal resolution - will better constrain the NOX-to-CO2 ratio and reduce the uncertainty in our method.
Collapse
Affiliation(s)
- Daniel L Goldberg
- Energy Systems Division, Argonne National Laboratory, Lemont, IL, USA; Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA.
| | - Zifeng Lu
- Energy Systems Division, Argonne National Laboratory, Lemont, IL, USA; Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA
| | - Tomohiro Oda
- Goddard Earth Sciences Technology and Research (GESTAR), University Space Research Association, Columbia, MD, USA; Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Lok N Lamsal
- Goddard Earth Sciences Technology and Research (GESTAR), University Space Research Association, Columbia, MD, USA; Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Fei Liu
- Goddard Earth Sciences Technology and Research (GESTAR), University Space Research Association, Columbia, MD, USA; Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Debora Griffin
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada
| | - Chris A McLinden
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada
| | - Nickolay A Krotkov
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Bryan N Duncan
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - David G Streets
- Energy Systems Division, Argonne National Laboratory, Lemont, IL, USA; Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA
| |
Collapse
|
39
|
Choquette NE, Ogut F, Wertin TM, Montes CM, Sorgini CA, Morse AM, Brown PJ, Leakey ADB, McIntyre LM, Ainsworth EA. Uncovering hidden genetic variation in photosynthesis of field-grown maize under ozone pollution. GLOBAL CHANGE BIOLOGY 2019; 25:4327-4338. [PMID: 31571358 PMCID: PMC6899704 DOI: 10.1111/gcb.14794] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/14/2019] [Accepted: 07/31/2019] [Indexed: 05/20/2023]
Abstract
Ozone is the most damaging air pollutant to crops, currently reducing Midwest US maize production by up to 10%, yet there has been very little effort to adapt germplasm for ozone tolerance. Ozone enters plants through stomata, reacts to form reactive oxygen species in the apoplast and ultimately decreases photosynthetic C gain. In this study, 10 diverse inbred parents were crossed in a half-diallel design to create 45 F1 hybrids, which were tested for ozone response in the field using free air concentration enrichment (FACE). Ozone stress increased the heritability of photosynthetic traits and altered genetic correlations among traits. Hybrids from parents Hp301 and NC338 showed greater sensitivity to ozone stress, and disrupted relationships among photosynthetic traits. The physiological responses underlying sensitivity to ozone differed in hybrids from the two parents, suggesting multiple mechanisms of response to oxidative stress. FACE technology was essential to this evaluation because genetic variation in photosynthesis under elevated ozone was not predictable based on performance at ambient ozone. These findings suggest that selection under elevated ozone is needed to identify deleterious alleles in the world's largest commodity crop.
Collapse
Affiliation(s)
- Nicole E. Choquette
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
| | - Funda Ogut
- Department of Molecular Genetics and MicrobiologyUniversity of FloridaGainesvilleFlorida
- Genetics InstituteUniversity of FloridaGainesvilleFlorida
- Present address:
Department of Forest EngineeringArtvin Coruh UniversityArtvinTurkey
| | - Timothy M. Wertin
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
| | - Christopher M. Montes
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
| | - Crystal A. Sorgini
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
| | - Alison M. Morse
- Department of Molecular Genetics and MicrobiologyUniversity of FloridaGainesvilleFlorida
- Genetics InstituteUniversity of FloridaGainesvilleFlorida
| | - Patrick J. Brown
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
| | - Andrew D. B. Leakey
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
| | - Lauren M. McIntyre
- Department of Molecular Genetics and MicrobiologyUniversity of FloridaGainesvilleFlorida
- Genetics InstituteUniversity of FloridaGainesvilleFlorida
| | - Elizabeth A. Ainsworth
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
- USDA ARS Global Change and Photosynthesis Research UnitUrbanaIllinois
| |
Collapse
|
40
|
Temporal Analysis of OMI-Observed Tropospheric NO2 Columns over East Asia during 2006–2015. ATMOSPHERE 2019. [DOI: 10.3390/atmos10110658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The study analyzed temporal variations of Ozone Monitoring Instrument (OMI)-observed NO2 columns, interregional correlation, and comparison between NO2 columns and NOx emissions during the period from 2006 to 2015. Regarding the trend of the NO2 columns, the linear lines were classified into four groups: (1) ‘upward and downward’ over six defined geographic regions in central-east Asia; (2) ‘downward’ over Guangzhou, Japan, and Taiwan; (3) ‘stagnant’ over South Korea; and (4) ‘upward’ over North Korea, Mongolia, Qinghai, and Northwestern Pacific ocean. In particular, the levels of NO2 columns in 2015 returned to those in 2006 over most of the polluted regions in China. Quantitatively, their relative changes in 2015 compared to 2006 were approximately 10%. From the interregional correlation analysis, it was found that unlike positive relationships between the polluted areas, the different variations of monthly NO2 columns led to negative relationships in Mongolia and Qinghai. Regarding the comparison between NO2 columns and NOx emission, the NOx emissions from the Copernicus Atmosphere Monitoring Service (CAMS) and Clean Air Policy Support System (CAPSS) inventories did not follow the year-to-year variations of NO2 columns over the polluted regions. In addition, the weekly effect was only clearly shown in South Korea, Japan, and Taiwan, indicating that the amounts of NOx emissions are significantly contributed to by the transportation sector.
Collapse
|
41
|
Foster KR, Davidson C, Tanna RN, Spink D. Introduction to the virtual special issue monitoring ecological responses to air quality and atmospheric deposition in the Athabasca Oil Sands region the wood Buffalo environmental Association's Forest health monitoring program. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 686:345-359. [PMID: 31181521 DOI: 10.1016/j.scitotenv.2019.05.353] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/30/2019] [Accepted: 05/23/2019] [Indexed: 05/22/2023]
Abstract
The expansion of oil sands resource development in the Athabasca Oil Sands Region in the early 1990's led to concerns regarding the potential ecological and health effects of increased emissions and deposition of acidic substances. Conditions attached to a 1994 approval for an oil sands facility expansion led to the creation of the Wood Buffalo Environmental Association, and its Terrestrial Environmental Effects Monitoring committee. This multi-stakeholder body was tasked with development and operation of an environmental (forest health) monitoring program for the detection of ecological responses to atmospheric emissions and deposition. Initially focused on acid deposition monitoring, jack pine forest, growing on sandy soils with limited acid buffering capacity, was selected as the receptor system. An initial set of 10 monitoring locations was established using the Canadian Acid Rain Network Early Warning System methodology (since increased to 27, with three lost to development). Ecological monitoring is on a 6-year cycle, with concurrent measures of soil, needle and lichen chemistry, and tree and understory condition, together with ongoing measurements of air quality and atmospheric deposition. Because jack pine forest edges facing the emissions sources were expected to be more exposed to acidic emissions, evaluation of stand edge monitoring locations began in 2008. Monitoring of a targeted suite of indicators began in 2012 at 25 jack pine stand edge monitoring sites. This special issue presents the results derived from biophysical sampling campaigns (1998 to 2013), coupled with ongoing ambient atmospheric, deposition and epiphytic lichen monitoring (data through 2017) and source apportionment studies, as well as papers contributed by others engaged in regional research and monitoring programs. The Forest Health Monitoring Program provides data supportive of regulatory and stakeholder evaluations of environmental quality, and is adaptive to new needs, extreme environmental events and technological development while providing continuity of monitoring.
Collapse
Affiliation(s)
| | | | - Rajiv Neal Tanna
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - David Spink
- Pravid Environmental Inc., St. Albert, Alberta, Canada
| |
Collapse
|
42
|
Hoffman AS, Albeke SE, McMurray JA, Evans RD, Williams DG. Nitrogen deposition sources and patterns in the Greater Yellowstone Ecosystem determined from ion exchange resin collectors, lichens, and isotopes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 683:709-718. [PMID: 31150891 DOI: 10.1016/j.scitotenv.2019.05.323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 05/16/2023]
Abstract
Over the past century, atmospheric nitrogen deposition (Ndep) has increased across the western United States due to agricultural and urban development, resulting in degraded ecosystem quality. Regional patterns of Ndep are often estimated by coupling direct measurements from large-scale monitoring networks and atmospheric chemistry models, but such efforts can be problematic in the western US because of complex terrain and sparse sampling. This study aimed not only to understand Ndep patterns in mountainous ecosystems but also to investigate whether isotope values of lichens and throughfall deposition can be used to determine Ndep sources, and serve as an additional tool in ecosystem health assessments. We measured Ndep amounts and δ15N in montane conifer forests of the Greater Yellowstone Ecosystem using canopy throughfall and bulk monitors and lichens. In addition, we examined patterns of C:N ratios in lichens as a possible indicator of lichen physiological condition. The isotopic signature of δ15N of Ndep helps to discern emission sources, because δ15N of NOx from combustion tends to be high (-5 to +25‰) while NHx from agricultural sources tends to be comparatively low (-40 to -10‰). Summertime Ndep increased with elevation and ranged from 0.26 to 1.66 kg ha-1. Ndep was higher than expected in remote areas. The δ15N values of lichens were typically -15.3 to -10‰ suggesting agriculture as a primary emission source of deposition. Lichen %N, δ15N and C:N ratios can provide important information about Ndep sources and patterns over small spatial scales in complex terrain.
Collapse
Affiliation(s)
| | - Shannon E Albeke
- University of Wyoming, Laramie, WY 82071, United States of America
| | - Jill A McMurray
- Bridger Teton National Forest, United States Forest Service, Pinedale, WY 82941, United States of America
| | - R David Evans
- School of Biological Sciences, Washington State University, Pullman, WA 99164, United States of America
| | - David G Williams
- University of Wyoming, Laramie, WY 82071, United States of America
| |
Collapse
|
43
|
Lin N, Wang Y, Zhang Y, Yang K. A large decline of tropospheric NO 2 in China observed from space by SNPP OMPS. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 675:337-342. [PMID: 31030140 DOI: 10.1016/j.scitotenv.2019.04.090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/06/2019] [Accepted: 04/07/2019] [Indexed: 05/08/2023]
Abstract
Nitrogen oxides (NOx) are important constituents of air pollution. Here we use retrievals of tropospheric NO2 column from the Ozone Mapping Profiler Suite (OMPS) Nadir Mapper (NM) onboard the Suomi National Polar Partnership (SNPP) spacecraft to analyze global changes of NO2 from 2012 to 2017. The largest decline of NO2 is detected in eastern China, at a rate of -7.3 ± 1.5% per year, and almost entirely driven by wintertime decreases, indicative of decreasing anthropogenic NOx emissions. During the same period, NO2 over other regions around the globe was either stabilizing or changing at a rate only a fraction of that in China. In the case of the US, OMPS reports a statistically insignificant decreasing trend in NO2, consistent with recent work based on the Ozone Monitoring Instrument (OMI), which can be almost entirely attributed to meteorology. OMPS thus offers a continuation of satellite NO2 products from OMI to future JPSS satellites.
Collapse
Affiliation(s)
- Nan Lin
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China
| | - Yuxuan Wang
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China; Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX, USA.
| | - Ying Zhang
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China
| | - Kai Yang
- Department of Atmospheric and Oceanic Science, University of Maryland College Park, College Park, MD, USA
| |
Collapse
|
44
|
Trends in Excess Morbidity and Mortality Associated with Air Pollution above American Thoracic Society–Recommended Standards, 2008–2017. Ann Am Thorac Soc 2019; 16:836-845. [DOI: 10.1513/annalsats.201812-914oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
45
|
Tan Y, Henderick P, Yoon S, Herner J, Montes T, Boriboonsomsin K, Johnson K, Scora G, Sandez D, Durbin TD. On-Board Sensor-Based NO x Emissions from Heavy-Duty Diesel Vehicles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:5504-5511. [PMID: 30995015 DOI: 10.1021/acs.est.8b07048] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Real-world nitrogen oxides (NO x) emissions were estimated using on-board sensor readings from 72 heavy-duty diesel vehicles (HDDVs) equipped with a Selective Catalytic Reduction (SCR) system in California. The results showed that there were large differences between in-use and certification NO x emissions, with 12 HDDVs emitting more than three times the standard during hot-running and idling operations in the real world. The overall NO x conversion efficiencies of the SCR system on many vehicles were well below the 90% threshold that is expected for an efficient SCR system, even when the SCR system was above the optimum operating temperature threshold of 250 °C. This could potentially be associated with SCR catalyst deterioration on some engines. The Not-to-Exceed (NTE) requirements currently used by the heavy-duty in-use compliance program were evaluated using on-board NO x sensor data. Valid NTE events covered only 4.2-16.4% of the engine operation and 6.6-34.6% of the estimated NO x emissions. This work shows that low cost on-board NO x sensors are a convenient tool to monitor in-use NO x emissions in real-time, evaluate the SCR system performance, and identify vehicle operating modes with high NO x emissions. This information can inform certification and compliance programs to ensure low in-use NO x emissions.
Collapse
Affiliation(s)
- Yi Tan
- California Air Resources Board, 1001 I Street , Sacramento , California 95814 , United States
| | - Paul Henderick
- California Air Resources Board, 9500 Telstar Avenue, Ste. #2 , El Monte , California 91731 , United States
| | - Seungju Yoon
- California Air Resources Board, 1001 I Street , Sacramento , California 95814 , United States
| | - Jorn Herner
- California Air Resources Board, 1001 I Street , Sacramento , California 95814 , United States
| | - Thomas Montes
- California Air Resources Board, 9500 Telstar Avenue, Ste. #2 , El Monte , California 91731 , United States
| | - Kanok Boriboonsomsin
- College of Engineering - Center for Environmental Research and Technology , University of California at Riverside , 1084 Columbia Avenue , Riverside , California 92507 , United States
| | - Kent Johnson
- College of Engineering - Center for Environmental Research and Technology , University of California at Riverside , 1084 Columbia Avenue , Riverside , California 92507 , United States
| | - George Scora
- College of Engineering - Center for Environmental Research and Technology , University of California at Riverside , 1084 Columbia Avenue , Riverside , California 92507 , United States
| | - Daniel Sandez
- College of Engineering - Center for Environmental Research and Technology , University of California at Riverside , 1084 Columbia Avenue , Riverside , California 92507 , United States
| | - Thomas D Durbin
- College of Engineering - Center for Environmental Research and Technology , University of California at Riverside , 1084 Columbia Avenue , Riverside , California 92507 , United States
| |
Collapse
|
46
|
Demetillo MAG, Anderson JF, Geddes JA, Yang X, Najacht EY, Herrera SA, Kabasares KM, Kotsakis AE, Lerdau MT, Pusede SE. Observing Severe Drought Influences on Ozone Air Pollution in California. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4695-4706. [PMID: 30968688 DOI: 10.1021/acs.est.8b04852] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Drought conditions affect ozone air quality, potentially altering multiple terms in the O3 mass balance equation. Here, we present a multiyear observational analysis using data collected before, during, and after the record-breaking California drought (2011-2015) at the O3-polluted locations of Fresno and Bakersfield near the Sierra Nevada foothills. We separately assess drought influences on O3 chemical production ( PO3) from O3 concentration. We show that isoprene concentrations, which are a source of O3-forming organic reactivity, were relatively insensitive to early drought conditions but decreased by more than 50% during the most severe drought years (2014-2015), with recovery a function of location. We find drought-isoprene effects are temperature-dependent, even after accounting for changes in leaf area, consistent with laboratory studies but not previously observed at landscape scales with atmospheric observations. Drought-driven decreases in organic reactivity are contemporaneous with a change in dominant oxidation mechanism, with PO3 becoming more NO x-suppressed, leading to a decrease in PO3 of ∼20%. We infer reductions in atmospheric O3 loss of ∼15% during the most severe drought period, consistent with past observations of decreases in O3 uptake by plants. We consider drought-related trends in O3 variability on synoptic time scales by analyzing statistics of multiday high-O3 events. We discuss implications for regulating O3 air pollution in California and other locations under more prevalent drought conditions.
Collapse
Affiliation(s)
- Mary Angelique G Demetillo
- Department of Environmental Sciences , University of Virginia , Charlottesville , Virginia 22904 , United States
| | - Jaime F Anderson
- Department of Environmental Sciences , University of Virginia , Charlottesville , Virginia 22904 , United States
| | - Jeffrey A Geddes
- Department of Earth and Environment , Boston University , Boston , Massachusetts 02215 , United States
| | - Xi Yang
- Department of Environmental Sciences , University of Virginia , Charlottesville , Virginia 22904 , United States
| | - Emily Y Najacht
- Department of Chemistry , Saint Mary's College , Notre Dame , Indiana 46556 , United States
| | - Solianna A Herrera
- Department of Environmental Sciences , University of Virginia , Charlottesville , Virginia 22904 , United States
| | - Kyle M Kabasares
- Department of Physics , University of California Irvine , Irvine , California 92697 , United States
| | - Alexander E Kotsakis
- Department of Earth and Atmospheric Sciences , University of Houston , Houston , Texas 77204 , United States
| | - Manuel T Lerdau
- Department of Environmental Sciences , University of Virginia , Charlottesville , Virginia 22904 , United States
- Department of Biology , University of Virginia , Charlottesville , Virginia 22904 , United States
| | - Sally E Pusede
- Department of Environmental Sciences , University of Virginia , Charlottesville , Virginia 22904 , United States
| |
Collapse
|
47
|
Henneman LRF, Liu C, Chang H, Mulholland J, Tolbert P, Russell A. Air quality accountability: Developing long-term daily time series of pollutant changes and uncertainties in Atlanta, Georgia resulting from the 1990 Clean Air Act Amendments. ENVIRONMENT INTERNATIONAL 2019; 123:522-534. [PMID: 30622077 DOI: 10.1016/j.envint.2018.12.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/11/2018] [Indexed: 06/09/2023]
Abstract
The 1990 Clean Air Act Amendments codified major institutional changes relating to the management of air pollutants in the United States. Recent research years has attributed reduced emissions over the past two decades to regulations enacted under these Amendments, but none have separated long-term daily impacts of individual regulatory programs on multiple source categories under a consistent framework. Using daily emissions and air quality measurements along with a detailed review of national and local regulations promulgated after the Amendments, we quantify daily changes in emissions and air quality attributable to regulations on electricity generating units and on-road mobile sources. To quantify daily changes, we develop nine sets of counterfactual emissions and ambient air pollution concentration time series for 10 pollutants that assume individual regulatory programs and combinations thereof were not implemented. In addition to daily impacts, we estimate uncertainties in these results. These counterfactual daily ambient concentrations reveal high seasonality and increasing effectiveness of most regulations between 1999 and 2013. Monthly average counterfactual concentrations in scenarios that assume no new regulations on electricity generating units and mobile sources are greater than observed concentrations for all pollutants except ozone, which has seen increased wintertime concentrations accompany summertime decreases. By the end of the period, electricity generating unit emissions reductions under the Acid Rain Program and Clean Air Interstate Rule and their respective related local programs led to similar PM2.5 concentration decreases. Of the mobile source regulations, rules on gasoline and diesel vehicles led to similar reductions in annual PM2.5, and gasoline programs led to double the summertime ozone reductions as diesel programs. The nine sets of daily time series and their uncertainties were designed for use in air pollution accountability health studies.
Collapse
Affiliation(s)
- Lucas R F Henneman
- Georgia Institute of Technology School of Civil and Environmental Engineering, United States of America; Harvard T.H. Chan School of Public Health, United States of America.
| | - Cong Liu
- Georgia Institute of Technology School of Civil and Environmental Engineering, United States of America; Southeast University School of Energy and Environment, Nanjing, China
| | - Howard Chang
- Emory University Rollins School of Public Health, United States of America
| | - James Mulholland
- Georgia Institute of Technology School of Civil and Environmental Engineering, United States of America
| | - Paige Tolbert
- Emory University Rollins School of Public Health, United States of America
| | - Armistead Russell
- Georgia Institute of Technology School of Civil and Environmental Engineering, United States of America
| |
Collapse
|
48
|
Miyazaki K, Sekiya T, Fu D, Bowman KW, Kulawik SS, Sudo K, Walker T, Kanaya Y, Takigawa M, Ogochi K, Eskes H, Boersma KF, Thompson AM, Gaubert B, Barre J, Emmons LK. Balance of Emission and Dynamical Controls on Ozone During the Korea-United States Air Quality Campaign From Multiconstituent Satellite Data Assimilation. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2019; 124:387-413. [PMID: 31007989 PMCID: PMC6472638 DOI: 10.1029/2018jd028912] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 10/29/2018] [Accepted: 11/06/2018] [Indexed: 05/05/2023]
Abstract
Global multiconstituent concentration and emission fields obtained from the assimilation of the satellite retrievals of ozone, CO, NO2, HNO3, and SO2 from the Ozone Monitoring Instrument (OMI), Global Ozone Monitoring Experiment 2, Measurements of Pollution in the Troposphere, Microwave Limb Sounder, and Atmospheric Infrared Sounder (AIRS)/OMI are used to understand the processes controlling air pollution during the Korea-United States Air Quality (KORUS-AQ) campaign. Estimated emissions in South Korea were 0.42 Tg N for NO x and 1.1 Tg CO for CO, which were 40% and 83% higher, respectively, than the a priori bottom-up inventories, and increased mean ozone concentration by up to 7.5 ± 1.6 ppbv. The observed boundary layer ozone exceeded 90 ppbv over Seoul under stagnant phases, whereas it was approximately 60 ppbv during dynamical conditions given equivalent emissions. Chemical reanalysis showed that mean ozone concentration was persistently higher over Seoul (75.10 ± 7.6 ppbv) than the broader KORUS-AQ domain (70.5 ± 9.2 ppbv) at 700 hPa. Large bias reductions (>75%) in the free tropospheric OH show that multiple-species assimilation is critical for balanced tropospheric chemistry analysis and emissions. The assimilation performance was dependent on the particular phase. While the evaluation of data assimilation fields shows an improved agreement with aircraft measurements in ozone (to less than 5 ppbv biases), CO, NO2, SO2, PAN, and OH profiles, lower tropospheric ozone analysis error was largest at stagnant conditions, whereas the model errors were mostly removed by data assimilation under dynamic weather conditions. Assimilation of new AIRS/OMI ozone profiles allowed for additional error reductions, especially under dynamic weather conditions. Our results show the important balance of dynamics and emissions both on pollution and the chemical assimilation system performance.
Collapse
Affiliation(s)
- K. Miyazaki
- Japan Agency for Marine‐Earth Science and TechnologyYokohamaJapan
| | - T. Sekiya
- Japan Agency for Marine‐Earth Science and TechnologyYokohamaJapan
| | - D. Fu
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - K. W. Bowman
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - S. S. Kulawik
- Bay Area Environmental Research InstituteSonomaCAUSA
| | - K. Sudo
- Japan Agency for Marine‐Earth Science and TechnologyYokohamaJapan
- Graduate School of Environmental StudiesNagoya UniversityNagoyaJapan
| | - T. Walker
- Department of Civil and Environmental EngineeringCarleton UniversityOttawaOntarioCanada
| | - Y. Kanaya
- Japan Agency for Marine‐Earth Science and TechnologyYokohamaJapan
| | - M. Takigawa
- Japan Agency for Marine‐Earth Science and TechnologyYokohamaJapan
| | - K. Ogochi
- Japan Agency for Marine‐Earth Science and TechnologyYokohamaJapan
| | - H. Eskes
- Royal Netherlands Meteorological Institute (KNMI)De BiltNetherlands
| | - K. F. Boersma
- Royal Netherlands Meteorological Institute (KNMI)De BiltNetherlands
- Meteorological and Air Quality DepartmentWageningen UniversityWageningenNetherlands
| | | | - B. Gaubert
- Atmospheric Chemistry Observations and& Modeling (ACOM) LaboratoryNational Center for Atmospheric ResearchBoulderCOUSA
| | - J. Barre
- European Centre for Medium‐Range Weather ForecastsReadingUK
| | - L. K. Emmons
- Atmospheric Chemistry Observations and& Modeling (ACOM) LaboratoryNational Center for Atmospheric ResearchBoulderCOUSA
| |
Collapse
|
49
|
Schwede DB, Simpson D, Tan J, Fu JS, Dentener F, Du E, deVries W. Spatial variation of modelled total, dry and wet nitrogen deposition to forests at global scale. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1287-1301. [PMID: 30267923 PMCID: PMC7050289 DOI: 10.1016/j.envpol.2018.09.084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/12/2018] [Accepted: 09/17/2018] [Indexed: 05/18/2023]
Abstract
Forests are an important biome that covers about one third of the global land surface and provides important ecosystem services. Since atmospheric deposition of nitrogen (N) can have both beneficial and deleterious effects, it is important to quantify the amount of N deposition to forest ecosystems. Measurements of N deposition to the numerous forest biomes across the globe are scarce, so chemical transport models are often used to provide estimates of atmospheric N inputs to these ecosystems. We provide an overview of approaches used to calculate N deposition in commonly used chemical transport models. The Task Force on Hemispheric Transport of Air Pollution (HTAP2) study intercompared N deposition values from a number of global chemical transport models. Using a multi-model mean calculated from the HTAP2 deposition values, we map N deposition to global forests to examine spatial variations in total, dry and wet deposition. Highest total N deposition occurs in eastern and southern China, Japan, Eastern U.S. and Europe while the highest dry deposition occurs in tropical forests. The European Monitoring and Evaluation Program (EMEP) model predicts grid-average deposition, but also produces deposition by land use type allowing us to compare deposition specifically to forests with the grid-average value. We found that, for this study, differences between the grid-average and forest specific could be as much as a factor of two and up to more than a factor of five in extreme cases. This suggests that consideration should be given to using forest-specific deposition for input to ecosystem assessments such as critical loads determinations.
Collapse
Affiliation(s)
- Donna B Schwede
- National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, United States.
| | - David Simpson
- EMEP MSC-W, Norwegian Meteorological Institute, Oslo, Norway; Dept. Space, Earth and Environment, Chalmers University of Technology, Gothenburg, Sweden
| | - Jiani Tan
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Joshua S Fu
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Frank Dentener
- European Commission, Joint Research Centre, Ispra, Italy
| | - Enzai Du
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China; School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Wim deVries
- Wageningen University and Research, Environmental Research, PO Box 47, NL-6700 AA, Wageningen, the Netherlands; Wageningen University and Research, Environmental Systems Analysis Group, PO Box 47, NL-6700 AA, Wageningen, the Netherlands
| |
Collapse
|
50
|
Haugen MJ, Bishop GA, Thiruvengadam A, Carder DK. Evaluation of Heavy- and Medium-Duty On-Road Vehicle Emissions in California's South Coast Air Basin. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13298-13305. [PMID: 30406648 DOI: 10.1021/acs.est.8b03994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Emission measurements were collected from heavy-duty (HDVs) and medium-duty vehicles (MDVs) at the Peralta weigh station long-term measurement site near Anaheim, CA, in 2017. Two Fuel Efficiency Automobile Test units sampled elevated and ground-level exhaust vehicles totaling 2 315 measurements. HDVs (1844 measurements) exhibited historical reductions in fuel specific oxides of nitrogen (NOx) from the 2008 measurements (55%) with increased use of exhaust gas recirculation and selective catalytic reduction systems. However, as these technologies have aged, the in-use benefits have declined. Infrared % opacity measurements of tailpipe soot decreased 14% since 2012 with increased diesel particulate filter (DPF) use, DPF longevity, and fleet turnover. Sixty-three percent of the HDV fleet in 2017 was chassis model year 2011+ compared to only 12% in 2012. The observed MDV fleet (471 measurements) was 1.4 years older than the HDV fleet with average NOx 14% higher. A significant reduction in MDV NOx occurred ∼2 model years prior to similar HDV reductions (2014 versus 2016 chassis model year). MDV chassis model years 2014+ were able to meet their corresponding NOx laboratory certification standards in-use, whereas HDVs remain slightly above this threshold. Similar MDV NOx emission trends were also observed in data previously collected in Chicago, IL.
Collapse
Affiliation(s)
- Molly J Haugen
- Department of Chemistry and Biochemistry , University of Denver , Denver , Colorado 80208 , United States of America
- Department of Engineering , University of Cambridge , Cambridge , United Kingdom CB2 1PZ
| | - Gary A Bishop
- Department of Chemistry and Biochemistry , University of Denver , Denver , Colorado 80208 , United States of America
| | - Arvind Thiruvengadam
- Mechanical and Aerospace Department , West Virginia University , Morgantown , West Virginia 26505 , United States of America
| | - Daniel K Carder
- Mechanical and Aerospace Department , West Virginia University , Morgantown , West Virginia 26505 , United States of America
| |
Collapse
|