1
|
Chidiac R, Yang A, Kubarakos E, Mikolajewicz N, Han H, Almeida MP, Thibeault PE, Lin S, MacLeod G, Gratton JP, Moffat J, Angers S. Selective activation of FZD2 and FZD7 reveals non-redundant function during mesoderm differentiation. Stem Cell Reports 2025; 20:102391. [PMID: 39824186 PMCID: PMC11864152 DOI: 10.1016/j.stemcr.2024.102391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/20/2025] Open
Abstract
During gastrulation, Wnt-β-catenin signaling dictates lineage bifurcation generating different mesoderm cell types. However, the specific role of Wnt receptors in mesoderm specification remains elusive. Using selective Frizzled (FZD) and LRP5/6 antibody-based agonists, we examined FZD receptors' function during directed mesoderm differentiation of human pluripotent stem cells (hPSCs). We found that FZD2 and FZD7 receptors are expressed at the membrane of hPSCs and that their activation triggers β-catenin signaling with different kinetics, thereby influencing mesoderm patterning choices. Specifically, FZD7 activation enhances both paraxial and lateral mesoderm differentiation, whereas FZD2 activation favors paraxial mesoderm. Mechanistically, FZD2 activation promotes sustained Wnt-β-catenin levels, guiding hPSCs differentiation toward paraxial mesoderm, while blocking lateral mesoderm. In contrast, FZD7 activation kinetics display similar initial activation but more dampening of β-catenin signaling, permitting lateral mesoderm induction in addition to paraxial mesoderm specification. Our findings reveal non-redundant roles for FZD2 and FZD7 in mesoderm specification, offering leverage for precise directed differentiation outcomes.
Collapse
Affiliation(s)
- Rony Chidiac
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Andy Yang
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Elli Kubarakos
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Nicholas Mikolajewicz
- Program in Genetics and Genome Biology, The Hospital for Sick Kids, Toronto, ON, Canada
| | - Hong Han
- Program in Genetics and Genome Biology, The Hospital for Sick Kids, Toronto, ON, Canada
| | - Maira P Almeida
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Pierre E Thibeault
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Sichun Lin
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Graham MacLeod
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Jean-Philippe Gratton
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Jason Moffat
- Program in Genetics and Genome Biology, The Hospital for Sick Kids, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Stephane Angers
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
McNamara HM, Solley SC, Adamson B, Chan MM, Toettcher JE. Recording morphogen signals reveals mechanisms underlying gastruloid symmetry breaking. Nat Cell Biol 2024; 26:1832-1844. [PMID: 39358450 PMCID: PMC11806519 DOI: 10.1038/s41556-024-01521-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 09/05/2024] [Indexed: 10/04/2024]
Abstract
Aggregates of stem cells can break symmetry and self-organize into embryo-like structures with complex morphologies and gene expression patterns. Mechanisms including reaction-diffusion Turing patterns and cell sorting have been proposed to explain symmetry breaking but distinguishing between these candidate mechanisms of self-organization requires identifying which early asymmetries evolve into subsequent tissue patterns and cell fates. Here we use synthetic 'signal-recording' gene circuits to trace the evolution of signalling patterns in gastruloids, three-dimensional stem cell aggregates that form an anterior-posterior axis and structures resembling the mammalian primitive streak and tailbud. We find that cell sorting rearranges patchy domains of Wnt activity into a single pole that defines the gastruloid anterior-posterior axis. We also trace the emergence of Wnt domains to earlier heterogeneity in Nodal activity even before Wnt activity is detectable. Our study defines a mechanism through which aggregates of stem cells can form a patterning axis even in the absence of external spatial cues.
Collapse
Affiliation(s)
- Harold M McNamara
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| | - Sabrina C Solley
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Britt Adamson
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Michelle M Chan
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
3
|
Simpson L, Strange A, Klisch D, Kraunsoe S, Azami T, Goszczynski D, Le Minh T, Planells B, Holmes N, Sang F, Henson S, Loose M, Nichols J, Alberio R. A single-cell atlas of pig gastrulation as a resource for comparative embryology. Nat Commun 2024; 15:5210. [PMID: 38890321 PMCID: PMC11189408 DOI: 10.1038/s41467-024-49407-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Cell-fate decisions during mammalian gastrulation are poorly understood outside of rodent embryos. The embryonic disc of pig embryos mirrors humans, making them a useful proxy for studying gastrulation. Here we present a single-cell transcriptomic atlas of pig gastrulation, revealing cell-fate emergence dynamics, as well as conserved and divergent gene programs governing early porcine, primate, and murine development. We highlight heterochronicity in extraembryonic cell-types, despite the broad conservation of cell-type-specific transcriptional programs. We apply these findings in combination with functional investigations, to outline conserved spatial, molecular, and temporal events during definitive endoderm specification. We find early FOXA2 + /TBXT- embryonic disc cells directly form definitive endoderm, contrasting later-emerging FOXA2/TBXT+ node/notochord progenitors. Unlike mesoderm, none of these progenitors undergo epithelial-to-mesenchymal transition. Endoderm/Node fate hinges on balanced WNT and hypoblast-derived NODAL, which is extinguished upon endodermal differentiation. These findings emphasise the interplay between temporal and topological signalling in fate determination during gastrulation.
Collapse
Affiliation(s)
- Luke Simpson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK
| | - Andrew Strange
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK
| | - Doris Klisch
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK
| | - Sophie Kraunsoe
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Takuya Azami
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XU, UK
| | - Daniel Goszczynski
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK
| | - Triet Le Minh
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK
| | - Benjamin Planells
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK
| | - Nadine Holmes
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Fei Sang
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Sonal Henson
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Matthew Loose
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Jennifer Nichols
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XU, UK
| | - Ramiro Alberio
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK.
| |
Collapse
|
4
|
Camacho-Aguilar E, Yoon ST, Ortiz-Salazar MA, Du S, Guerra MC, Warmflash A. Combinatorial interpretation of BMP and WNT controls the decision between primitive streak and extraembryonic fates. Cell Syst 2024; 15:445-461.e4. [PMID: 38692274 PMCID: PMC11231731 DOI: 10.1016/j.cels.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 10/10/2023] [Accepted: 04/10/2024] [Indexed: 05/03/2024]
Abstract
BMP signaling is essential for mammalian gastrulation, as it initiates a cascade of signals that control self-organized patterning. As development is highly dynamic, it is crucial to understand how time-dependent combinatorial signaling affects cellular differentiation. Here, we show that BMP signaling duration is a crucial control parameter that determines cell fates upon the exit from pluripotency through its interplay with the induced secondary signal WNT. BMP signaling directly converts cells from pluripotent to extraembryonic fates while simultaneously upregulating Wnt signaling, which promotes primitive streak and mesodermal specification. Using live-cell imaging of signaling and cell fate reporters together with a simple mathematical model, we show that this circuit produces a temporal morphogen effect where, once BMP signal duration is above a threshold for differentiation, intermediate and long pulses of BMP signaling produce specification of mesoderm and extraembryonic fates, respectively. Our results provide a systems-level picture of how these signaling pathways control the landscape of early human development.
Collapse
Affiliation(s)
| | - Sumin T Yoon
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | | | - Siqi Du
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - M Cecilia Guerra
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Aryeh Warmflash
- Department of Biosciences, Rice University, Houston, TX 77005, USA; Department of Bioengineering, Rice University, Houston, TX 77005, USA.
| |
Collapse
|
5
|
Ortiz-Salazar MA, Camacho-Aguilar E, Warmflash A. Endogenous Nodal switches Wnt interpretation from posteriorization to germ layer differentiation in geometrically constrained human pluripotent cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584912. [PMID: 38559061 PMCID: PMC10979992 DOI: 10.1101/2024.03.13.584912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The Wnt pathway is essential for inducing the primitive streak, the precursor of the mesendoderm, as well as setting anterior-posterior coordinates. How Wnt coordinates these diverse activities remains incompletely understood. Here, we show that in Wnt-treated human pluripotent cells, endogenous Nodal signaling is a crucial switch between posteriorizing and primitive streak-including activities. While treatment with Wnt posteriorizes cells in standard culture, in micropatterned colonies, higher levels of endogenously induced Nodal signaling combine with exogenous Wnt to drive endoderm differentiation. Inhibition of Nodal signaling restores dose-dependent posteriorization by Wnt. In the absence of Nodal inhibition, micropatterned colonies undergo spontaneous, elaborate morphogenesis concomitant with endoderm differentiation even in the absence of added extracellular matrix proteins like Matrigel. Our study shows how Wnt and Nodal combinatorially coordinate germ layer differentiation with AP patterning and establishes a system to study a natural self-organizing morphogenetic event in in vitro culture.
Collapse
Affiliation(s)
| | - Elena Camacho-Aguilar
- Department of Biosciences, Rice University, Houston, TX, USA 77005
- Present address: Department of Gene Regulation and Morphogenesis, Andalusian Center for Developmental Biology (CSIC-UPO-JA), Seville, Spain, 41013
| | - Aryeh Warmflash
- Department of Biosciences, Rice University, Houston, TX, USA 77005
- Department of Bioengineering, Rice University, Houston, TX, USA 77005
| |
Collapse
|
6
|
Yang A, Chidiac R, Russo E, Steenland H, Pauli Q, Bonin R, Blazer LL, Adams JJ, Sidhu SS, Goeva A, Salahpour A, Angers S. Exploiting spatiotemporal regulation of FZD5 during neural patterning for efficient ventral midbrain specification. Development 2024; 151:dev202545. [PMID: 38358799 PMCID: PMC10946437 DOI: 10.1242/dev.202545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
The Wnt/β-catenin signaling governs anterior-posterior neural patterning during development. Current human pluripotent stem cell (hPSC) differentiation protocols use a GSK3 inhibitor to activate Wnt signaling to promote posterior neural fate specification. However, GSK3 is a pleiotropic kinase involved in multiple signaling pathways and, as GSK3 inhibition occurs downstream in the signaling cascade, it bypasses potential opportunities for achieving specificity or regulation at the receptor level. Additionally, the specific roles of individual FZD receptors in anterior-posterior patterning are poorly understood. Here, we have characterized the cell surface expression of FZD receptors in neural progenitor cells with different regional identity. Our data reveal unique upregulation of FZD5 expression in anterior neural progenitors, and this expression is downregulated as cells adopt a posterior fate. This spatial regulation of FZD expression constitutes a previously unreported regulatory mechanism that adjusts the levels of β-catenin signaling along the anterior-posterior axis and possibly contributes to midbrain-hindbrain boundary formation. Stimulation of Wnt/β-catenin signaling in hPSCs, using a tetravalent antibody that selectively triggers FZD5 and LRP6 clustering, leads to midbrain progenitor differentiation and gives rise to functional dopaminergic neurons in vitro and in vivo.
Collapse
Affiliation(s)
- Andy Yang
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Rony Chidiac
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Emma Russo
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hendrik Steenland
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- NeuroTek Innovative Technology, Toronto, ON M6C 3A2, Canada
| | - Quinn Pauli
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Robert Bonin
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Levi L. Blazer
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Jarrett J. Adams
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Sachdev S. Sidhu
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Aleksandrina Goeva
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Ali Salahpour
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Stephane Angers
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
7
|
Warin J, Vedrenne N, Tam V, Zhu M, Yin D, Lin X, Guidoux-D’halluin B, Humeau A, Roseiro L, Paillat L, Chédeville C, Chariau C, Riemers F, Templin M, Guicheux J, Tryfonidou MA, Ho JW, David L, Chan D, Camus A. In vitro and in vivo models define a molecular signature reference for human embryonic notochordal cells. iScience 2024; 27:109018. [PMID: 38357665 PMCID: PMC10865399 DOI: 10.1016/j.isci.2024.109018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/13/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
Understanding the emergence of human notochordal cells (NC) is essential for the development of regenerative approaches. We present a comprehensive investigation into the specification and generation of bona fide NC using a straightforward pluripotent stem cell (PSC)-based system benchmarked with human fetal notochord. By integrating in vitro and in vivo transcriptomic data at single-cell resolution, we establish an extended molecular signature and overcome the limitations associated with studying human notochordal lineage at early developmental stages. We show that TGF-β inhibition enhances the yield and homogeneity of notochordal lineage commitment in vitro. Furthermore, this study characterizes regulators of cell-fate decision and matrisome enriched in the notochordal niche. Importantly, we identify specific cell-surface markers opening avenues for differentiation refinement, NC purification, and functional studies. Altogether, this study provides a human notochord transcriptomic reference that will serve as a resource for notochord identification in human systems, diseased-tissues modeling, and facilitating future biomedical research.
Collapse
Affiliation(s)
- Julie Warin
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, 44000 Nantes, France
| | - Nicolas Vedrenne
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, 44000 Nantes, France
- Inserm, Univ. Limoges, Pharmacology & Transplantation, U1248, CHU Limoges, Service de Pharmacologie, toxicologie et pharmacovigilance, FHU SUPORT, 87000 Limoges, France
| | - Vivian Tam
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Mengxia Zhu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Danqing Yin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong SAR, China
| | - Xinyi Lin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong SAR, China
| | - Bluwen Guidoux-D’halluin
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, 44000 Nantes, France
| | - Antoine Humeau
- Inserm, Univ. Limoges, Pharmacology & Transplantation, U1248, CHU Limoges, Service de Pharmacologie, toxicologie et pharmacovigilance, FHU SUPORT, 87000 Limoges, France
| | - Luce Roseiro
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, 44000 Nantes, France
| | - Lily Paillat
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, 44000 Nantes, France
| | - Claire Chédeville
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, 44000 Nantes, France
| | - Caroline Chariau
- Nantes Université, CHU Nantes, Inserm, CNRS, BioCore, 44000 Nantes, France
| | - Frank Riemers
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Markus Templin
- NMI Natural and Medical Sciences Institute, Markwiesenstraße 55, 72770 Reutlingen, Germany
| | - Jérôme Guicheux
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, 44000 Nantes, France
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Joshua W.K. Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong SAR, China
| | - Laurent David
- Nantes Université, CHU Nantes, Inserm, CNRS, BioCore, 44000 Nantes, France
- Nantes Université, CHU Nantes, Inserm, CR2TI, 44000 Nantes, France
| | - Danny Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Anne Camus
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, 44000 Nantes, France
| |
Collapse
|
8
|
Xu T, Su P, Wu L, Li D, Qin W, Li Q, Zhou J, Miao YL. OCT4 regulates WNT/β-catenin signaling and prevents mesoendoderm differentiation by repressing EOMES in porcine pluripotent stem cells. J Cell Physiol 2023; 238:2855-2866. [PMID: 37942811 DOI: 10.1002/jcp.31135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 11/10/2023]
Abstract
The regulatory network between signaling pathways and transcription factors (TFs) is crucial for the maintenance of pluripotent stem cells. However, little is known about how the key TF OCT4 coordinates signaling pathways to regulate self-renewal and lineage differentiation of porcine pluripotent stem cells (pPSCs). Here, we explored the function of OCT4 in pPSCs by transcriptome and chromatin accessibility analysis. The TFs motif enrichment analysis revealed that, following OCT4 knockdown, the regions of increased chromatin accessibility were enriched with EOMES, GATA6, and FOXA1, indicating that pPSCs differentiated toward the mesoendoderm (ME) lineage. Besides, pPSCs rapidly differentiated into ME when the WNT/β-catenin inhibitor XAV939 was removed. However, the ME differentiation of pPSCs caused by OCT4 knockdown did not rely on the activation of WNT/β-catenin signaling because the target gene of WNT/β-catenin signaling, AXIN2 was not upregulated after OCT4 knockdown, despite significant upregulation of WLS and some WNT ligands. Importantly, OCT4 is directly bound to the promoter and enhancers of EOMES and repressed its transcription. Overexpression of EOMES was sufficient to induce ME differentiation in the presence of XAV939. These results demonstrate that OCT4 can regulate WNT/β-catenin signaling and prevent ME differentiation of pPSCs by repressing EOMES transcription.
Collapse
Affiliation(s)
- Tian Xu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
| | - Peng Su
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
| | - Linhui Wu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
| | - Delong Li
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
| | - Wei Qin
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
| | - Qiao Li
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
| | - Jilong Zhou
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Yi-Liang Miao
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production (Huazhong Agricultural University), Ministry of Education, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
9
|
Koo Y, Han W, Keum BR, Lutz L, Yun SH, Kim GH, Han JK. RNF2 regulates Wnt/ß-catenin signaling via TCF7L1 destabilization. Sci Rep 2023; 13:19750. [PMID: 37957244 PMCID: PMC10643375 DOI: 10.1038/s41598-023-47111-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/09/2023] [Indexed: 11/15/2023] Open
Abstract
The Wnt signaling pathway is a crucial regulator of various biological processes, such as development and cancer. The downstream transcription factors in this pathway play a vital role in determining the threshold for signaling induction and the length of the response, which vary depending on the biological context. Among the four transcription factors involved in canonical Wnt/ß-catenin signaling, TCF7L1 is known to possess an inhibitory function; however, the underlying regulatory mechanism remains unclear. In this study, we identified the E3 ligase, RNF2, as a novel positive regulator of the Wnt pathway. Here, we demonstrate that RNF2 promotes the degradation of TCF7L1 through its ubiquitination upon activation of Wnt signaling. Loss-of-function studies have shown that RNF2 consistently destabilizes nuclear TCF7L1 and is required for proper Wnt target gene transcription in response to Wnt activation. Furthermore, our results revealed that RNF2 controls the threshold, persistence, and termination of Wnt signaling by regulating TCF7L1. Overall, our study sheds light on the previously unknown degradation mechanism of TCF7L1 by a specific E3 ligase, RNF2, and provides new insights into the variability in cellular responses to Wnt activation.
Collapse
Affiliation(s)
- Youngmu Koo
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Wonhee Han
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Byeong-Rak Keum
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Leila Lutz
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Sung Ho Yun
- Center for Research Equipment, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Gun-Hwa Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Jin-Kwan Han
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea.
| |
Collapse
|
10
|
Liu L, Oura S, Markham Z, Hamilton JN, Skory RM, Li L, Sakurai M, Wang L, Pinzon-Arteaga CA, Plachta N, Hon GC, Wu J. Modeling post-implantation stages of human development into early organogenesis with stem-cell-derived peri-gastruloids. Cell 2023; 186:3776-3792.e16. [PMID: 37478861 DOI: 10.1016/j.cell.2023.07.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
In vitro stem cell models that replicate human gastrulation have been generated, but they lack the essential extraembryonic cells needed for embryonic development, morphogenesis, and patterning. Here, we describe a robust and efficient method that prompts human extended pluripotent stem cells to self-organize into embryo-like structures, termed peri-gastruloids, which encompass both embryonic (epiblast) and extraembryonic (hypoblast) tissues. Although peri-gastruloids are not viable due to the exclusion of trophoblasts, they recapitulate critical stages of human peri-gastrulation development, such as forming amniotic and yolk sac cavities, developing bilaminar and trilaminar embryonic discs, specifying primordial germ cells, initiating gastrulation, and undergoing early neurulation and organogenesis. Single-cell RNA-sequencing unveiled transcriptomic similarities between advanced human peri-gastruloids and primary peri-gastrulation cell types found in humans and non-human primates. This peri-gastruloid platform allows for further exploration beyond gastrulation and may potentially aid in the development of human fetal tissues for use in regenerative medicine.
Collapse
Affiliation(s)
- Lizhong Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Seiya Oura
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zachary Markham
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - James N Hamilton
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Robin M Skory
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Leijie Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Masahiro Sakurai
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lei Wang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Carlos A Pinzon-Arteaga
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nicolas Plachta
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gary C Hon
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
11
|
Rodgers SJ, Mitchell CA, Ooms LM. The mechanisms of class 1A PI3K and Wnt/β-catenin coupled signaling in breast cancer. Biochem Soc Trans 2023; 51:1459-1472. [PMID: 37471270 PMCID: PMC10586779 DOI: 10.1042/bst20220866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/08/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023]
Abstract
The class IA PI3K signaling pathway is activated by growth factor stimulation and regulates a signaling cascade that promotes diverse events including cell growth, proliferation, migration and metabolism. PI3K signaling is one of the most commonly hyperactivated pathways in breast cancer, leading to increased tumor growth and progression. PI3K hyperactivation occurs via a number of genetic and epigenetic mechanisms including mutation or amplification of PIK3CA, the gene encoding the p110α subunit of PI3Kα, as well as via dysregulation of the upstream growth factor receptors or downstream signaling effectors. Over the past decade, extensive efforts to develop therapeutics that suppress oncogenic PI3K signaling have been undertaken. Although FDA-approved PI3K inhibitors are now emerging, their clinical success remains limited due to adverse effects and negative feedback mechanisms which contribute to their reduced efficacy. There is an emerging body of evidence demonstrating crosstalk between the PI3K and Wnt/β-catenin pathways in breast cancer. However, PI3K exhibits opposing effects on Wnt/β-catenin signaling in distinct tumor subsets, whereby PI3K promotes Wnt/β-catenin activation in ER+ cancers, but paradoxically suppresses this pathway in ER- breast cancers. This review discusses the molecular mechanisms for PI3K-Wnt crosstalk in breast cancer, and how Wnt-targeted therapies have the potential to contribute to treatment regimens for breast cancers with PI3K dysregulation.
Collapse
Affiliation(s)
- Samuel J. Rodgers
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Christina A. Mitchell
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Lisa M. Ooms
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
12
|
Repina NA, Johnson HJ, Bao X, Zimmermann JA, Joy DA, Bi SZ, Kane RS, Schaffer DV. Optogenetic control of Wnt signaling models cell-intrinsic embryogenic patterning using 2D human pluripotent stem cell culture. Development 2023; 150:dev201386. [PMID: 37401411 PMCID: PMC10399980 DOI: 10.1242/dev.201386] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 06/21/2023] [Indexed: 07/05/2023]
Abstract
In embryonic stem cell (ESC) models for early development, spatially and temporally varying patterns of signaling and cell types emerge spontaneously. However, mechanistic insight into this dynamic self-organization is limited by a lack of methods for spatiotemporal control of signaling, and the relevance of signal dynamics and cell-to-cell variability to pattern emergence remains unknown. Here, we combine optogenetic stimulation, imaging and transcriptomic approaches to study self-organization of human ESCs (hESC) in two-dimensional (2D) culture. Morphogen dynamics were controlled via optogenetic activation of canonical Wnt/β-catenin signaling (optoWnt), which drove broad transcriptional changes and mesendoderm differentiation at high efficiency (>99% cells). When activated within cell subpopulations, optoWnt induced cell self-organization into distinct epithelial and mesenchymal domains, mediated by changes in cell migration, an epithelial to mesenchymal-like transition and TGFβ signaling. Furthermore, we demonstrate that such optogenetic control of cell subpopulations can be used to uncover signaling feedback mechanisms between neighboring cell types. These findings reveal that cell-to-cell variability in Wnt signaling is sufficient to generate tissue-scale patterning and establish a hESC model system for investigating feedback mechanisms relevant to early human embryogenesis.
Collapse
Affiliation(s)
- Nicole A. Repina
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
- Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, CA 94720, USA
| | - Hunter J. Johnson
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
- Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, CA 94720, USA
| | - Xiaoping Bao
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Joshua A. Zimmermann
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - David A. Joy
- Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, CA 94720, USA
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Shirley Z. Bi
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
| | - Ravi S. Kane
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - David V. Schaffer
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
13
|
McNamara HM, Solley SC, Adamson B, Chan MM, Toettcher JE. Recording morphogen signals reveals origins of gastruloid symmetry breaking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543474. [PMID: 37333235 PMCID: PMC10274695 DOI: 10.1101/2023.06.02.543474] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
When cultured in three dimensional spheroids, mammalian stem cells can reproducibly self-organize a single anterior-posterior axis and sequentially differentiate into structures resembling the primitive streak and tailbud. Whereas the embryo's body axes are instructed by spatially patterned extra-embryonic cues, it is unknown how these stem cell gastruloids break symmetry to reproducibly define a single anterior-posterior (A-P) axis. Here, we use synthetic gene circuits to trace how early intracellular signals predict cells' future anterior-posterior position in the gastruloid. We show that Wnt signaling evolves from a homogeneous state to a polarized state, and identify a critical 6-hour time period when single-cell Wnt activity predicts future cellular position, prior to the appearance of polarized signaling patterns or morphology. Single-cell RNA sequencing and live-imaging reveal that early Wnt-high and Wnt-low cells contribute to distinct cell types and suggest that axial symmetry breaking is driven by sorting rearrangements involving differential cell adhesion. We further extend our approach to other canonical embryonic signaling pathways, revealing that even earlier heterogeneity in TGFβ signaling predicts A-P position and modulates Wnt signaling during the critical time period. Our study reveals a sequence of dynamic cellular processes that transform a uniform cell aggregate into a polarized structure and demonstrates that a morphological axis can emerge out of signaling heterogeneity and cell movements even in the absence of exogenous patterning cues.
Collapse
Affiliation(s)
- Harold M. McNamara
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton NJ 08544
| | - Sabrina C. Solley
- Department of Molecular Biology, Princeton University, Princeton NJ 08544
| | - Britt Adamson
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton NJ 08544
- Department of Molecular Biology, Princeton University, Princeton NJ 08544
| | - Michelle M. Chan
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton NJ 08544
- Department of Molecular Biology, Princeton University, Princeton NJ 08544
| | - Jared E. Toettcher
- Department of Molecular Biology, Princeton University, Princeton NJ 08544
| |
Collapse
|
14
|
Tang PC, Chen L, Singh S, Groves AK, Koehler KR, Liu XZ, Nelson RF. Early Wnt Signaling Activation Promotes Inner Ear Differentiation via Cell Caudalization in Mouse Stem Cell-Derived Organoids. Stem Cells 2023; 41:26-38. [PMID: 36153788 PMCID: PMC9887082 DOI: 10.1093/stmcls/sxac071] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/14/2022] [Indexed: 02/02/2023]
Abstract
The inner ear is derived from the otic placode, one of the numerous cranial sensory placodes that emerges from the pre-placodal ectoderm (PPE) along its anterior-posterior axis. However, the molecular dynamics underlying how the PPE is regionalized are poorly resolved. We used stem cell-derived organoids to investigate the effects of Wnt signaling on early PPE differentiation and found that modulating Wnt signaling significantly increased inner ear organoid induction efficiency and reproducibility. Alongside single-cell RNA sequencing, our data reveal that the canonical Wnt signaling pathway leads to PPE regionalization and, more specifically, medium Wnt levels during the early stage induce (1) expansion of the caudal neural plate border (NPB), which serves as a precursor for the posterior PPE, and (2) a caudal microenvironment that is required for otic specification. Our data further demonstrate Wnt-mediated induction of rostral and caudal cells in organoids and more broadly suggest that Wnt signaling is critical for anterior-posterior patterning in the PPE.
Collapse
Affiliation(s)
- Pei-Ciao Tang
- Department of Otolaryngology—Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Otolaryngology—Head and Neck Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Li Chen
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Sunita Singh
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Andrew K Groves
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Karl R Koehler
- Department of Otolaryngology, Boston Children’s Hospital, Boston, MA, USA
- Department of Otolaryngology– Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Xue Zhong Liu
- Department of Otolaryngology—Head and Neck Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rick F Nelson
- Department of Otolaryngology—Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
15
|
Roy A, Patra SK. Lipid Raft Facilitated Receptor Organization and Signaling: A Functional Rheostat in Embryonic Development, Stem Cell Biology and Cancer. Stem Cell Rev Rep 2023; 19:2-25. [PMID: 35997871 DOI: 10.1007/s12015-022-10448-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2022] [Indexed: 01/29/2023]
Abstract
Molecular views of plasma membrane organization and dynamics are gradually changing over the past fifty years. Dynamics of plasma membrane instigate several signaling nexuses in eukaryotic cells. The striking feature of plasma membrane dynamics is that, it is internally transfigured into various subdomains of clustered macromolecules. Lipid rafts are nanoscale subdomains, enriched with cholesterol and sphingolipids, reside as floating entity mostly on the exoplasmic leaflet of the lipid bilayer. In terms of functionality, lipid rafts are unique among other membrane subdomains. Herein, advances on the roles of lipid rafts in cellular physiology and homeostasis are discussed, precisely, on how rafts dynamically harbor signaling proteins, including GPCRs, catalytic receptors, and ionotropic receptors within it and orchestrate multiple signaling pathways. In the developmental proceedings signaling are designed for patterning of overall organism and they differ from the somatic cell physiology and signaling of fully developed organisms. Some of the developmental signals are characteristic in maintenance of stemness and activated during several types of tumor development and cancer progression. The harmony between extracellular signaling and lineage specific transcriptional programs are extremely important for embryonic development. The roles of plasma membrane lipid rafts mediated signaling in lineage specificity, early embryonic development, stem cell maintenance are emerging. In view of this, we have highlighted and analyzed the roles of lipid rafts in receptor organization, cell signaling, and gene expression during embryonic development; from pre-implantation through the post-implantation phase, in stem cell and cancer biology.
Collapse
Affiliation(s)
- Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
16
|
Abstract
WNT/CTNNB1 signaling plays a critical role in the development of all multicellular animals. Here, we include both the embryonic stages, during which tissue morphogenesis takes place, and the postnatal stages of development, during which tissue homeostasis occurs. Thus, embryonic development concerns lineage development and cell fate specification, while postnatal development involves tissue maintenance and regeneration. Multiple tools are available to researchers who want to investigate, and ideally visualize, the dynamic and pleiotropic involvement of WNT/CTNNB1 signaling in these processes. Here, we discuss and evaluate the decisions that researchers need to make in identifying the experimental system and appropriate tools for the specific question they want to address, covering different types of WNT/CTNNB1 reporters in cells and mice. At a molecular level, advanced quantitative imaging techniques can provide spatio-temporal information that cannot be provided by traditional biochemical assays. We therefore also highlight some recent studies to show their potential in deciphering the complex and dynamic mechanisms that drive WNT/CTNNB1 signaling.
Collapse
|
17
|
Yoney A, Bai L, Brivanlou AH, Siggia ED. Mechanisms underlying WNT-mediated priming of human embryonic stem cells. Development 2022; 149:dev200335. [PMID: 35815787 PMCID: PMC9357376 DOI: 10.1242/dev.200335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 06/23/2022] [Indexed: 11/10/2023]
Abstract
Embryogenesis is guided by a limited set of signaling pathways dynamically expressed in different places. How a context-dependent signaling response is generated has been a central question of developmental biology, which can now be addressed with in vitro models of human embryos that are derived from embryonic stem cells (hESCs). Our previous work demonstrated that during early stages of hESC differentiation, cells chronicle signaling hierarchy. Only cells that have been exposed (primed) by WNT signaling can respond to subsequent activin exposure and differentiate to mesendodermal (ME) fates. Here, we show that WNT priming does not alter SMAD2 binding nor its chromatin opening but, instead, acts by inducing the expression of the SMAD2 co-factor EOMES. Expression of EOMES is sufficient to replace WNT upstream of activin-mediated ME differentiation, thus unveiling the mechanistic basis for priming and cellular memory in early development.
Collapse
Affiliation(s)
- Anna Yoney
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY 10065, USA
- Laboratory of Synthetic Embryology, The Rockefeller University, New York, NY 10065, USA
| | - Lu Bai
- Department of Biochemistry and Molecular Biology, Department of Physics, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ali H. Brivanlou
- Laboratory of Synthetic Embryology, The Rockefeller University, New York, NY 10065, USA
| | - Eric D. Siggia
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
18
|
Patino CA, Pathak N, Mukherjee P, Park SH, Bao G, Espinosa HD. Multiplexed high-throughput localized electroporation workflow with deep learning-based analysis for cell engineering. SCIENCE ADVANCES 2022; 8:eabn7637. [PMID: 35867793 PMCID: PMC9307252 DOI: 10.1126/sciadv.abn7637] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/07/2022] [Indexed: 05/06/2023]
Abstract
Manipulation of cells for applications such as biomanufacturing and cell-based therapeutics involves introducing biomolecular cargoes into cells. However, successful delivery is a function of multiple experimental factors requiring several rounds of optimization. Here, we present a high-throughput multiwell-format localized electroporation device (LEPD) assisted by deep learning image analysis that enables quick optimization of experimental factors for efficient delivery. We showcase the versatility of the LEPD platform by successfully delivering biomolecules into different types of adherent and suspension cells. We also demonstrate multicargo delivery with tight dosage distribution and precise ratiometric control. Furthermore, we used the platform to achieve functional gene knockdown in human induced pluripotent stem cells and used the deep learning framework to analyze protein expression along with changes in cell morphology. Overall, we present a workflow that enables combinatorial experiments and rapid analysis for the optimization of intracellular delivery protocols required for genetic manipulation.
Collapse
Affiliation(s)
- Cesar A. Patino
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Nibir Pathak
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL 60208, USA
| | - Prithvijit Mukherjee
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL 60208, USA
| | - So Hyun Park
- Department of Bioengineering, Rice University, 6500 Main St, Houston, TX 77030, USA
| | - Gang Bao
- Department of Bioengineering, Rice University, 6500 Main St, Houston, TX 77030, USA
| | - Horacio D. Espinosa
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
19
|
Liu L, Nemashkalo A, Rezende L, Jung JY, Chhabra S, Guerra MC, Heemskerk I, Warmflash A. Nodal is a short-range morphogen with activity that spreads through a relay mechanism in human gastruloids. Nat Commun 2022; 13:497. [PMID: 35079017 PMCID: PMC8789905 DOI: 10.1038/s41467-022-28149-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 01/10/2022] [Indexed: 12/17/2022] Open
Abstract
Morphogens are signaling molecules that convey positional information and dictate cell fates during development. Although ectopic expression in model organisms suggests that morphogen gradients form through diffusion, little is known about how morphogen gradients are created and interpreted during mammalian embryogenesis due to the combined difficulties of measuring endogenous morphogen levels and observing development in utero. Here we take advantage of a human gastruloid model to visualize endogenous Nodal protein in living cells, during specification of germ layers. We show that Nodal is extremely short range so that Nodal protein is limited to the immediate neighborhood of source cells. Nodal activity spreads through a relay mechanism in which Nodal production induces neighboring cells to transcribe Nodal. We further show that the Nodal inhibitor Lefty, while biochemically capable of long-range diffusion, also acts locally to control the timing of Nodal spread and therefore of mesoderm differentiation during patterning. Our study establishes a paradigm for tissue patterning by an activator-inhibitor pair.
Collapse
Affiliation(s)
- Lizhong Liu
- Department of Biosciences, Rice University, Houston, TX, USA
| | | | - Luisa Rezende
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Ji Yoon Jung
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Sapna Chhabra
- Department of Biosciences, Rice University, Houston, TX, USA
- Developmental Biology Unit, EMBL Heidelberg, Heidelberg, Germany
| | | | - Idse Heemskerk
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Physics, University of Michigan, Ann Arbor, MI, USA
| | - Aryeh Warmflash
- Department of Biosciences, Rice University, Houston, TX, USA.
- Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
20
|
Signalling dynamics in embryonic development. Biochem J 2021; 478:4045-4070. [PMID: 34871368 PMCID: PMC8718268 DOI: 10.1042/bcj20210043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 02/08/2023]
Abstract
In multicellular organisms, cellular behaviour is tightly regulated to allow proper embryonic development and maintenance of adult tissue. A critical component in this control is the communication between cells via signalling pathways, as errors in intercellular communication can induce developmental defects or diseases such as cancer. It has become clear over the last years that signalling is not static but varies in activity over time. Feedback mechanisms present in every signalling pathway lead to diverse dynamic phenotypes, such as transient activation, signal ramping or oscillations, occurring in a cell type- and stage-dependent manner. In cells, such dynamics can exert various functions that allow organisms to develop in a robust and reproducible way. Here, we focus on Erk, Wnt and Notch signalling pathways, which are dynamic in several tissue types and organisms, including the periodic segmentation of vertebrate embryos, and are often dysregulated in cancer. We will discuss how biochemical processes influence their dynamics and how these impact on cellular behaviour within multicellular systems.
Collapse
|
21
|
Sozen B, Jorgensen V, Weatherbee BAT, Chen S, Zhu M, Zernicka-Goetz M. Reconstructing aspects of human embryogenesis with pluripotent stem cells. Nat Commun 2021; 12:5550. [PMID: 34548496 PMCID: PMC8455697 DOI: 10.1038/s41467-021-25853-4] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/24/2021] [Indexed: 02/01/2023] Open
Abstract
Understanding human development is of fundamental biological and clinical importance. Despite its significance, mechanisms behind human embryogenesis remain largely unknown. Here, we attempt to model human early embryo development with expanded pluripotent stem cells (EPSCs) in 3-dimensions. We define a protocol that allows us to generate self-organizing cystic structures from human EPSCs that display some hallmarks of human early embryogenesis. These structures mimic polarization and cavitation characteristic of pre-implantation development leading to blastocyst morphology formation and the transition to post-implantation-like organization upon extended culture. Single-cell RNA sequencing of these structures reveals subsets of cells bearing some resemblance to epiblast, hypoblast and trophectoderm lineages. Nevertheless, significant divergences from natural blastocysts persist in some key markers, and signalling pathways point towards ways in which morphology and transcriptional-level cell identities may diverge in stem cell models of the embryo. Thus, this stem cell platform provides insights into the design of stem cell models of embryogenesis.
Collapse
Affiliation(s)
- Berna Sozen
- Plasticity and Self-Organization Group, Division of Biology and Biological Engineering, Caltech, Pasadena, CA, 91125, USA
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, 06520, USA
| | - Victoria Jorgensen
- Plasticity and Self-Organization Group, Division of Biology and Biological Engineering, Caltech, Pasadena, CA, 91125, USA
| | - Bailey A T Weatherbee
- Mammalian Development and Stem Cell Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Sisi Chen
- Plasticity and Self-Organization Group, Division of Biology and Biological Engineering, Caltech, Pasadena, CA, 91125, USA
| | - Meng Zhu
- Mammalian Development and Stem Cell Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
- Blavatnik Institute, Harvard Medical School, Department of Genetics, Boston, MA, 02115, USA
| | - Magdalena Zernicka-Goetz
- Plasticity and Self-Organization Group, Division of Biology and Biological Engineering, Caltech, Pasadena, CA, 91125, USA.
- Mammalian Development and Stem Cell Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK.
| |
Collapse
|
22
|
Abstract
Micropatterning encompasses a set of methods aimed at precisely controlling the spatial distribution of molecules onto the surface of materials. Biologists have borrowed the idea and adapted these methods, originally developed for electronics, to impose physical constraints on biological systems with the aim of addressing fundamental questions across biological scales from molecules to multicellular systems. Here, I approach this topic from a developmental biologist's perspective focusing specifically on how and why micropatterning has gained in popularity within the developmental biology community in recent years. Overall, this Primer provides a concise overview of how micropatterns are used to study developmental processes and emphasises how micropatterns are a useful addition to the developmental biologist's toolbox.
Collapse
Affiliation(s)
- Guillaume Blin
- Institute for Regeneration and Repair, Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, 5 Little France Drive, Edinburgh BioQuarter, Edinburgh EH16 4UU, UK
| |
Collapse
|
23
|
de Man SMA, Zwanenburg G, van der Wal T, Hink MA, van Amerongen R. Quantitative live-cell imaging and computational modeling shed new light on endogenous WNT/CTNNB1 signaling dynamics. eLife 2021; 10:e66440. [PMID: 34190040 PMCID: PMC8341982 DOI: 10.7554/elife.66440] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/29/2021] [Indexed: 12/16/2022] Open
Abstract
WNT/CTNNB1 signaling regulates tissue development and homeostasis in all multicellular animals, but the underlying molecular mechanism remains incompletely understood. Specifically, quantitative insight into endogenous protein behavior is missing. Here, we combine CRISPR/Cas9-mediated genome editing and quantitative live-cell microscopy to measure the dynamics, diffusion characteristics and absolute concentrations of fluorescently tagged, endogenous CTNNB1 in human cells under both physiological and oncogenic conditions. State-of-the-art imaging reveals that a substantial fraction of CTNNB1 resides in slow-diffusing cytoplasmic complexes, irrespective of the activation status of the pathway. This cytoplasmic CTNNB1 complex undergoes a major reduction in size when WNT/CTNNB1 is (hyper)activated. Based on our biophysical measurements, we build a computational model of WNT/CTNNB1 signaling. Our integrated experimental and computational approach reveals that WNT pathway activation regulates the dynamic distribution of free and complexed CTNNB1 across different subcellular compartments through three regulatory nodes: the destruction complex, nucleocytoplasmic shuttling, and nuclear retention.
Collapse
Affiliation(s)
- Saskia MA de Man
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdamNetherlands
| | - Gooitzen Zwanenburg
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdamNetherlands
| | - Tanne van der Wal
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdamNetherlands
| | - Mark A Hink
- Molecular Cytology, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdamNetherlands
- van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdamNetherlands
| | - Renée van Amerongen
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdamNetherlands
| |
Collapse
|
24
|
Betjes MA, Zheng X, Kok RNU, van Zon JS, Tans SJ. Cell Tracking for Organoids: Lessons From Developmental Biology. Front Cell Dev Biol 2021; 9:675013. [PMID: 34150770 PMCID: PMC8209328 DOI: 10.3389/fcell.2021.675013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/03/2021] [Indexed: 12/20/2022] Open
Abstract
Organoids have emerged as powerful model systems to study organ development and regeneration at the cellular level. Recently developed microscopy techniques that track individual cells through space and time hold great promise to elucidate the organizational principles of organs and organoids. Applied extensively in the past decade to embryo development and 2D cell cultures, cell tracking can reveal the cellular lineage trees, proliferation rates, and their spatial distributions, while fluorescent markers indicate differentiation events and other cellular processes. Here, we review a number of recent studies that exemplify the power of this approach, and illustrate its potential to organoid research. We will discuss promising future routes, and the key technical challenges that need to be overcome to apply cell tracking techniques to organoid biology.
Collapse
Affiliation(s)
| | | | | | | | - Sander J Tans
- AMOLF, Amsterdam, Netherlands.,Bionanoscience Department, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
25
|
Reassembling gastrulation. Dev Biol 2021; 474:71-81. [DOI: 10.1016/j.ydbio.2020.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 12/18/2022]
|
26
|
Repina NA, McClave T, Johnson HJ, Bao X, Kane RS, Schaffer DV. Engineered Illumination Devices for Optogenetic Control of Cellular Signaling Dynamics. Cell Rep 2021; 31:107737. [PMID: 32521262 PMCID: PMC9357365 DOI: 10.1016/j.celrep.2020.107737] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 03/09/2020] [Accepted: 05/14/2020] [Indexed: 10/31/2022] Open
Abstract
Spatially and temporally varying patterns of morphogen signals during development drive cell fate specification at the proper location and time. However, current in vitro methods typically do not allow for precise, dynamic spatiotemporal control of morphogen signaling and are thus insufficient to readily study how morphogen dynamics affect cell behavior. Here, we show that optogenetic Wnt/β-catenin pathway activation can be controlled at user-defined intensities, temporal sequences, and spatial patterns using engineered illumination devices for optogenetic photostimulation and light activation at variable amplitudes (LAVA). By patterning human embryonic stem cell (hESC) cultures with varying light intensities, LAVA devices enabled dose-responsive control of optoWnt activation and Brachyury expression. Furthermore, time-varying and spatially localized patterns of light revealed tissue patterning that models the embryonic presentation of Wnt signals in vitro. LAVA devices thus provide a low-cost, user-friendly method for high-throughput and spatiotemporal optogenetic control of cell signaling for applications in developmental and cell biology.
Collapse
Affiliation(s)
- Nicole A Repina
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA, USA; Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Thomas McClave
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hunter J Johnson
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA, USA; Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xiaoping Bao
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ravi S Kane
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - David V Schaffer
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
27
|
Siman-Tov R, Zelikson N, Caspi M, Levi Y, Perry C, Khair F, Stauber H, Sznitman J, Rosin-Arbesfeld R. Circulating Wnt Ligands Activate the Wnt Signaling Pathway in Mature Erythrocytes. Arterioscler Thromb Vasc Biol 2021; 41:e243-e264. [PMID: 33626913 DOI: 10.1161/atvbaha.120.315413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Ronen Siman-Tov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Israel (R.S.-T., N.Z., M.C., Y.L., C.P., F.K., R.R.-A.)
| | - Natalie Zelikson
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Israel (R.S.-T., N.Z., M.C., Y.L., C.P., F.K., R.R.-A.)
| | - Michal Caspi
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Israel (R.S.-T., N.Z., M.C., Y.L., C.P., F.K., R.R.-A.)
| | - Yakir Levi
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Israel (R.S.-T., N.Z., M.C., Y.L., C.P., F.K., R.R.-A.)
| | - Chava Perry
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Israel (R.S.-T., N.Z., M.C., Y.L., C.P., F.K., R.R.-A.)
- BMT Unit, Institute of Hematology, Tel-Aviv Sourasky Medical Center, Israel (C.P.)
| | - Fayhaa Khair
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Israel (R.S.-T., N.Z., M.C., Y.L., C.P., F.K., R.R.-A.)
| | - Hagit Stauber
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa (H.S., J.S.)
| | - Josué Sznitman
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa (H.S., J.S.)
| | - Rina Rosin-Arbesfeld
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Israel (R.S.-T., N.Z., M.C., Y.L., C.P., F.K., R.R.-A.)
| |
Collapse
|
28
|
Liu L, Warmflash A. Self-organized signaling in stem cell models of embryos. Stem Cell Reports 2021; 16:1065-1077. [PMID: 33979594 PMCID: PMC8185436 DOI: 10.1016/j.stemcr.2021.03.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Mammalian embryonic development is a complex process driven by self-organization. Understanding how a fertilized egg develops into an embryo composed of more than 200 cell types in precise spatial patterns remains one of the fundamental challenges in biology. Pluripotent stem cells have been used as in vitro models for investigating mammalian development, and represent promising building blocks for regenerative therapies. Recently, sophisticated stem cell-based models that recapitulate early embryonic fate patterning and morphogenesis have been developed. In this article, we review recent advances in stem cell models of embryos in particular focusing on signaling activities underpinning cell fate decisions in space and time.
Collapse
Affiliation(s)
- Lizhong Liu
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Aryeh Warmflash
- Department of Biosciences, Rice University, Houston, TX 77005, USA; Department of Bioengineering, Rice University, Houston, TX 77005, USA.
| |
Collapse
|
29
|
de Man SMA, van Amerongen R. Zooming in on the WNT/CTNNB1 Destruction Complex: Functional Mechanistic Details with Implications for Therapeutic Targeting. Handb Exp Pharmacol 2021; 269:137-173. [PMID: 34486095 DOI: 10.1007/164_2021_522] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
WNT/CTNNB1 signaling is crucial for balancing cell proliferation and differentiation in all multicellular animals. CTNNB1 accumulation is the hallmark of WNT/CTNNB1 pathway activation and the key downstream event in both a physiological and an oncogenic context. In the absence of WNT stimulation, the cytoplasmic and nuclear levels of CTNNB1 are kept low because of its sequestration and phosphorylation by the so-called destruction complex, which targets CTNNB1 for proteasomal degradation. In the presence of WNT proteins, or as a result of oncogenic mutations, this process is impaired and CTNNB1 levels become elevated.Here we discuss recent advances in our understanding of destruction complex activity and inactivation, focusing on the individual components and interactions that ultimately control CTNNB1 turnover (in the "WNT off" situation) and stabilization (in the "WNT on" situation). We especially highlight the insights gleaned from recent quantitative, image-based studies, which paint an unprecedentedly detailed picture of the dynamic events that control destruction protein complex composition and function. We argue that these mechanistic details may reveal new opportunities for therapeutic intervention and could result in the destruction complex re-emerging as a target for therapy in cancer.
Collapse
Affiliation(s)
- Saskia Madelon Ada de Man
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Renée van Amerongen
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
30
|
An in vitro model of early anteroposterior organization during human development. Nature 2020; 582:410-415. [PMID: 32528178 DOI: 10.1038/s41586-020-2383-9] [Citation(s) in RCA: 278] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/24/2020] [Indexed: 01/19/2023]
Abstract
The body plan of the mammalian embryo is shaped through the process of gastrulation, an early developmental event that transforms an isotropic group of cells into an ensemble of tissues that is ordered with reference to three orthogonal axes1. Although model organisms have provided much insight into this process, we know very little about gastrulation in humans, owing to the difficulty of obtaining embryos at such early stages of development and the ethical and technical restrictions that limit the feasibility of observing gastrulation ex vivo2. Here we show that human embryonic stem cells can be used to generate gastruloids-three-dimensional multicellular aggregates that differentiate to form derivatives of the three germ layers organized spatiotemporally, without additional extra-embryonic tissues. Human gastruloids undergo elongation along an anteroposterior axis, and we use spatial transcriptomics to show that they exhibit patterned gene expression. This includes a signature of somitogenesis that suggests that 72-h human gastruloids show some features of Carnegie-stage-9 embryos3. Our study represents an experimentally tractable model system to reveal and examine human-specific regulatory processes that occur during axial organization in early development.
Collapse
|
31
|
Synthetic human embryology: towards a quantitative future. Curr Opin Genet Dev 2020; 63:30-35. [PMID: 32172182 DOI: 10.1016/j.gde.2020.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/15/2022]
Abstract
Study of early human embryo development is essential for advancing reproductive and regenerative medicine. Traditional human embryological studies rely on embryonic tissue specimens, which are difficult to acquire due to technical challenges and ethical restrictions. The availability of human stem cells with developmental potentials comparable to pre-implantation and peri-implantation human embryonic and extraembryonic cells, together with properly engineered in vitro culture environments, allow for the first time researchers to generate self-organized multicellular structures in vitro that mimic the structural and molecular features of their in vivo counterparts. The development of these stem cell-based, synthetic human embryo models offers a paradigm-shifting experimental system for quantitative measurements and perturbations of multicellular development, critical for advancing human embryology and reproductive and regenerative medicine without using intact human embryos.
Collapse
|
32
|
Hadjantonakis AK, Siggia ED, Simunovic M. In vitro modeling of early mammalian embryogenesis. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020; 13:134-143. [PMID: 32440574 DOI: 10.1016/j.cobme.2020.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Synthetic embryology endeavors to use stem cells to recapitulate the first steps of mammalian development that define the body axes and first stages of fate assignment. Well-engineered synthetic systems provide an unparalleled assay to disentangle and quantify the contributions of individual tissues as well as the molecular components driving embryogenesis. Experiments using a mixture of mouse embryonic and extra-embryonic stem cell lines show a surprising degree of self-organization akin to certain milestones in the development of intact mouse embryos. To further advance the field and extend the mouse results to human, it is crucial to develop a better control of the assembly process as well as to establish a deeper understanding of the developmental state and potency of cells used in experiments at each step of the process. We review recent advances in the derivation of embryonic and extraembryonic stem cells, and we highlight recent efforts in reconstructing the structural and signaling aspects of embryogenesis in three-dimensional tissue cultures.
Collapse
Affiliation(s)
- Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eric D Siggia
- Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Mijo Simunovic
- Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.,Department of Chemical Engineering, Columbia Univerisity, 116 and Broadway, New York, NY 10025
| |
Collapse
|
33
|
|
34
|
Camacho-Aguilar E, Warmflash A. Insights into mammalian morphogen dynamics from embryonic stem cell systems. Curr Top Dev Biol 2020; 137:279-305. [PMID: 32143746 PMCID: PMC7713707 DOI: 10.1016/bs.ctdb.2019.11.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Morphogens play an essential role in cell fate specification and patterning including in laying out the mammalian body plan during gastrulation. In vivo studies have shed light on the signaling pathways involved in this process and the phenotypes associated with their disruption, however, several important open questions remain regarding how morphogens function in space and time. Self-organized patterning systems based on embryonic stem cells have emerged as a powerful platform for beginning to address these questions that is complementary to in vivo approaches. Here we review recent progress in understanding morphogen signaling dynamics and patterning in early mammalian development by taking advantage of cutting-edge embryonic stem cell technology.
Collapse
Affiliation(s)
| | - Aryeh Warmflash
- Department of Biosciences, Rice University, Houston, TX, United States; Department of Bioengineering, Rice University, Houston, TX, United States.
| |
Collapse
|
35
|
Akhlaghpour A, Parvaneh Tafreshi A, Roussa E, Bernard C, Zeynali B. TGFβ and Wnt Signaling Pathways Cooperatively Enhance Early Dopaminergic Differentiation of the Unrestricted Somatic Stem Cells. J Mol Neurosci 2020; 70:769-777. [PMID: 32043204 DOI: 10.1007/s12031-020-01487-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 01/17/2020] [Indexed: 02/06/2023]
Abstract
So far no evidence is available as to whether TGFβ and Wnt signaling pathways cooperatively modulate dopaminergic differentiation of the adult stem cells. To investigate the interaction between the two pathways in early dopaminergic differentiation, we cultured the newly introduced unrestricted somatic stem cells (USSCs) in neuron differentiation media followed by treatments with inducers and inhibitors of Wnt and TGF beta pathways either alone or in combinations. Our results showed that the level of Nurr-1 as a marker for dopaminergic neuron precursors and that of the nuclear β-catenin as the key effector of the active Wnt pathway were significantly elevated following the treatment with either TGFβ or BIO (the Wnt pathway inducer). Conversely, Nurr-1 expression was significantly reduced following the combined treatments with SB431542 (the TGFβ inhibitor) plus BIO or with TGFβ plus Dkk1 (the specific Wnt inhibitor). Nuclear β-catenin was also significantly reduced following combined treatments with SB431542 plus either BIO or TGFβ. Altogether, our results imply that Wnt and TGFβ signaling pathways cooperatively ensure the early dopaminergic differentiation of the USSC adult stem cells.
Collapse
Affiliation(s)
- Azimeh Akhlaghpour
- Developmental Biology Lab, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Azita Parvaneh Tafreshi
- Department of Molecular Medicine, Faculty of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, 14965-161, Iran.
| | - Eleni Roussa
- Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany
| | - Claude Bernard
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
| | - Bahman Zeynali
- Developmental Biology Lab, School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
36
|
Abstract
Specificity in signal transduction is determined by the ability of cells to "encode" and subsequently "decode" different environmental signals. Akin to computer software, this "signaling code" governs context-dependent execution of cellular programs through modulation of signaling dynamics and can be corrupted by disease-causing mutations. Class IA phosphoinositide 3-kinase (PI3K) signaling is critical for normal growth and development and is dysregulated in human disorders such as benign overgrowth syndromes, cancer, primary immune deficiency, and metabolic syndrome. Despite decades of PI3K research, understanding of context-dependent regulation of the PI3K pathway and of the underlying signaling code remains rudimentary. Here, we review current knowledge on context-specific PI3K signaling and how technological advances now make it possible to move from a qualitative to quantitative understanding of this pathway. Insight into how cellular PI3K signaling is encoded or decoded may open new avenues for rational pharmacological targeting of PI3K-associated diseases. The principles of PI3K context-dependent signal encoding and decoding described here are likely applicable to most, if not all, major cell signaling pathways.
Collapse
Affiliation(s)
- Ralitsa R Madsen
- UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London WC1E 6DD, UK.
| | - Bart Vanhaesebroeck
- UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London WC1E 6DD, UK.
| |
Collapse
|
37
|
Morgani SM, Hadjantonakis AK. Signaling regulation during gastrulation: Insights from mouse embryos and in vitro systems. Curr Top Dev Biol 2019; 137:391-431. [PMID: 32143751 DOI: 10.1016/bs.ctdb.2019.11.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gastrulation is the process whereby cells exit pluripotency and concomitantly acquire and pattern distinct cell fates. This is driven by the convergence of WNT, BMP, Nodal and FGF signals, which are tightly spatially and temporally controlled, resulting in regional and stage-specific signaling environments. The combination, level and duration of signals that a cell is exposed to, according its position within the embryo and the developmental time window, dictates the fate it will adopt. The key pathways driving gastrulation exhibit complex interactions, which are difficult to disentangle in vivo due to the complexity of manipulating multiple signals in parallel with high spatiotemporal resolution. Thus, our current understanding of the signaling dynamics regulating gastrulation is limited. In vitro stem cell models have been established, which undergo organized cellular differentiation and patterning. These provide amenable, simplified, deconstructed and scalable models of gastrulation. While the foundation of our understanding of gastrulation stems from experiments in embryos, in vitro systems are now beginning to reveal the intricate details of signaling regulation. Here we discuss the current state of knowledge of the role, regulation and dynamic interaction of signaling pathways that drive mouse gastrulation.
Collapse
Affiliation(s)
- Sophie M Morgani
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre Cambridge Biomedical Campus, Cambridge, United Kingdom.
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
| |
Collapse
|
38
|
Zhou Q, Song Y, Zheng Q, Han R, Cheng H. Expression profile analysis of dermal papilla cells mRNA in response to WNT10B treatment. Exp Ther Med 2019; 19:1017-1023. [PMID: 32010264 PMCID: PMC6966109 DOI: 10.3892/etm.2019.8287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 10/10/2019] [Indexed: 02/07/2023] Open
Abstract
Dermal papilla cells (DPCs) are associated with the development of hair follicles (HFs) and the regulation of the hair growth cycle. Previous studies have shown that Wnt family member 10B (WNT10B) plays an important role in the proliferation and survival of DPCs in vitro, and promotes the growth of HFs. However, the underlying mechanisms have not been fully elucidated. The present study evaluated the role of WNT10B in regulating HF morphogenesis by characterizing the differential gene expression profiles between WNT10B-treated DPCs and control DPCs using RNA-sequencing (RNA-seq). A total of 1,073 and 451 genes were upregulated and downregulated, respectively. The RNA-seq data was subsequently validated by reverse-transcription quantitative PCR. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that 442 GO terms and 21 KEGG pathways were significantly enriched. Further functional analysis revealed that WNT10B decreased translation initiation, elongation and termination, and RNA metabolic processes in cultured DPCs compared with controls in vitro. Human signaling networks were compared using pathway analysis, and treatment of DPCs with WNT10B was revealed to downregulate the ribosome biogenesis pathway and decrease protein synthesis in vitro. KEGG pathway analysis showed that WNT10B upregulated the phosphoinositide 3-kinase/protein kinase B signaling pathway. The present study analyzed the expression of mRNA in WNT10B-treated DPCs using next-generation sequencing and uncovered mechanisms regulating the induction of HFs.
Collapse
Affiliation(s)
- Qiang Zhou
- Department of Dermatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Yinjing Song
- Department of Dermatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Qiaoli Zheng
- Department of Dermatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Rui Han
- Department of Dermatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Hao Cheng
- Department of Dermatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
39
|
Britton G, Heemskerk I, Hodge R, Qutub AA, Warmflash A. A novel self-organizing embryonic stem cell system reveals signaling logic underlying the patterning of human ectoderm. Development 2019; 146:dev.179093. [PMID: 31519692 DOI: 10.1242/dev.179093] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/06/2019] [Indexed: 12/20/2022]
Abstract
During development, the ectoderm is patterned by a combination of BMP and WNT signaling. Research in model organisms has provided substantial insight into this process; however, there are currently no systems in which to study ectodermal patterning in humans. Further, the complexity of neural plate border specification has made it difficult to transition from discovering the genes involved to deeper mechanistic understanding. Here, we develop an in vitro model of human ectodermal patterning, in which human embryonic stem cells self-organize to form robust and quantitatively reproducible patterns corresponding to the complete medial-lateral axis of the embryonic ectoderm. Using this platform, we show that the duration of endogenous WNT signaling is a crucial control parameter, and that cells sense relative levels of BMP and WNT signaling in making fate decisions. These insights allowed us to develop an improved protocol for placodal differentiation. Thus, our platform is a powerful tool for studying human ectoderm patterning and for improving directed differentiation protocols.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- George Britton
- Systems Synthetic and Physical Biology Program, Rice University Houston, Houston, TX 77005, USA
| | - Idse Heemskerk
- Department of Biosciences, Rice University Houston, Houston, TX 77005, USA
| | - Rachel Hodge
- Department of Biosciences, Rice University Houston, Houston, TX 77005, USA
| | - Amina A Qutub
- Department of Bioengineering, Rice University Houston, Houston, TX 77005, USA
| | - Aryeh Warmflash
- Department of Biosciences, Rice University Houston, Houston, TX 77005, USA .,Department of Bioengineering, Rice University Houston, Houston, TX 77005, USA
| |
Collapse
|
40
|
Chhabra S, Liu L, Goh R, Kong X, Warmflash A. Dissecting the dynamics of signaling events in the BMP, WNT, and NODAL cascade during self-organized fate patterning in human gastruloids. PLoS Biol 2019; 17:e3000498. [PMID: 31613879 PMCID: PMC6814242 DOI: 10.1371/journal.pbio.3000498] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 10/25/2019] [Accepted: 09/23/2019] [Indexed: 12/22/2022] Open
Abstract
During gastrulation, the pluripotent epiblast self-organizes into the 3 germ layers-endoderm, mesoderm and ectoderm, which eventually form the entire embryo. Decades of research in the mouse embryo have revealed that a signaling cascade involving the Bone Morphogenic Protein (BMP), WNT, and NODAL pathways is necessary for gastrulation. In vivo, WNT and NODAL ligands are expressed near the site of gastrulation in the posterior of the embryo, and knockout of these ligands leads to a failure to gastrulate. These data have led to the prevailing view that a signaling gradient in WNT and NODAL underlies patterning during gastrulation; however, the activities of these pathways in space and time have never been directly observed. In this study, we quantify BMP, WNT, and NODAL signaling dynamics in an in vitro model of human gastrulation. Our data suggest that BMP signaling initiates waves of WNT and NODAL signaling activity that move toward the colony center at a constant rate. Using a simple mathematical model, we show that this wave-like behavior is inconsistent with a reaction-diffusion-based Turing system, indicating that there is no stable signaling gradient of WNT/NODAL. Instead, the final signaling state is homogeneous, and spatial differences arise only from boundary effects. We further show that the durations of WNT and NODAL signaling control mesoderm differentiation, while the duration of BMP signaling controls differentiation of CDX2-positive extra-embryonic cells. The identity of these extra-embryonic cells has been controversial, and we use RNA sequencing (RNA-seq) to obtain their transcriptomes and show that they closely resemble human trophoblast cells in vivo. The domain of BMP signaling is identical to the domain of differentiation of these trophoblast-like cells; however, neither WNT nor NODAL forms a spatial pattern that maps directly to the mesodermal region, suggesting that mesoderm differentiation is controlled dynamically by the combinatorial effect of multiple signals. We synthesize our data into a mathematical model that accurately recapitulates signaling dynamics and predicts cell fate patterning upon chemical and physical perturbations. Taken together, our study shows that the dynamics of signaling events in the BMP, WNT, and NODAL cascade in the absence of a stable signaling gradient control fate patterning of human gastruloids.
Collapse
Affiliation(s)
- Sapna Chhabra
- Systems, Synthetic and Physical Biology, Rice University, Houston, Texas, United States of America
| | - Lizhong Liu
- Department of Biosciences, Rice University, Houston, Texas, United States of America
| | - Ryan Goh
- Department of Mathematics, Boston University, Boston, Massachusetts, United States of America
| | - Xiangyu Kong
- Department of Biosciences, Rice University, Houston, Texas, United States of America
| | - Aryeh Warmflash
- Department of Biosciences, Rice University, Houston, Texas, United States of America
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
41
|
Shahbazi MN, Siggia ED, Zernicka-Goetz M. Self-organization of stem cells into embryos: A window on early mammalian development. Science 2019; 364:948-951. [PMID: 31171690 PMCID: PMC8300856 DOI: 10.1126/science.aax0164] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Embryonic development is orchestrated by robust and complex regulatory mechanisms acting at different scales of organization. In vivo studies are particularly challenging for mammals after implantation, owing to the small size and inaccessibility of the embryo. The generation of stem cell models of the embryo represents a powerful system with which to dissect this complexity. Control of geometry, modulation of the physical environment, and priming with chemical signals reveal the intrinsic capacity of embryonic stem cells to make patterns. Adding the stem cells for the extraembryonic lineages generates three-dimensional models that are more autonomous from the environment and recapitulate many features of the pre- and postimplantation mouse embryo, including gastrulation. Here, we review the principles of self-organization and how they set cells in motion to create an embryo.
Collapse
Affiliation(s)
- Marta N Shahbazi
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.
| | - Eric D Siggia
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY 10065, USA.
| | - Magdalena Zernicka-Goetz
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.
| |
Collapse
|
42
|
Heemskerk I, Burt K, Miller M, Chhabra S, Guerra MC, Liu L, Warmflash A. Rapid changes in morphogen concentration control self-organized patterning in human embryonic stem cells. eLife 2019; 8:e40526. [PMID: 30829572 PMCID: PMC6398983 DOI: 10.7554/elife.40526] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/14/2019] [Indexed: 12/31/2022] Open
Abstract
During embryonic development, diffusible signaling molecules called morphogens are thought to determine cell fates in a concentration-dependent way. Yet, in mammalian embryos, concentrations change rapidly compared to the time for making cell fate decisions. Here, we use human embryonic stem cells (hESCs) to address how changing morphogen levels influence differentiation, focusing on how BMP4 and Nodal signaling govern the cell-fate decisions associated with gastrulation. We show that BMP4 response is concentration dependent, but that expression of many Nodal targets depends on rate of concentration change. Moreover, in a self-organized stem cell model for human gastrulation, expression of these genes follows rapid changes in endogenous Nodal signaling. Our study shows a striking contrast between the specific ways ligand dynamics are interpreted by two closely related signaling pathways, highlighting both the subtlety and importance of morphogen dynamics for understanding mammalian embryogenesis and designing optimized protocols for directed stem cell differentiation. Editorial note This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Idse Heemskerk
- Department of BiosciencesRice UniversityHoustonUnited States
| | - Kari Burt
- Department of BiosciencesRice UniversityHoustonUnited States
| | - Matthew Miller
- Department of BiosciencesRice UniversityHoustonUnited States
| | - Sapna Chhabra
- Systems, Synthetic and Physical Biology ProgramRice UniversityHoustonUnited States
| | | | - Lizhong Liu
- Department of BiosciencesRice UniversityHoustonUnited States
| | - Aryeh Warmflash
- Department of BiosciencesRice UniversityHoustonUnited States
- Department of BioengineeringRice UniversityHoustonUnited States
| |
Collapse
|