1
|
Rothfuß C, Baumann T, Donakonda S, Brauchle B, Marcinek A, Urban C, Mergner J, Pedde AM, Hirschberger A, Krupka C, Neumann AS, Hänel G, Merten C, Öllinger R, Hecker JS, Bauer T, Schmid C, Götze KS, Altomonte J, Bücklein V, Jacobs R, Rad R, Dawid C, Simeoni L, Schraven B, Pichlmair A, Subklewe M, Knolle PA, Böttcher JP, Höchst B. Two-layered immune escape in AML is overcome by Fcγ receptor activation and inhibition of PGE2 signaling in NK cells. Blood 2025; 145:1395-1406. [PMID: 39840945 DOI: 10.1182/blood.2024025706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/13/2024] [Accepted: 11/29/2024] [Indexed: 01/23/2025] Open
Abstract
ABSTRACT Loss of anticancer natural killer (NK) cell function in patients with acute myeloid leukemia (AML) is associated with fatal disease progression and remains poorly understood. Here, we demonstrate that AML blasts isolated from patients rapidly inhibit NK cell function and escape NK cell-mediated killing. Transcriptome analysis of NK cells exposed to AML blasts revealed increased CREM expression and transcriptional activity, indicating enhanced cyclic adenosine monophosphate (cAMP) signaling, confirmed by uniform production of the cAMP-inducing prostanoid prostaglandin E2 (PGE2) by all AML-blast isolates from patients. Phosphoproteome analysis disclosed that PGE2 induced a blockade of lymphocyte-specific protein tyrosine kinase (LCK)-extracellular signal-regulated kinase signaling that is crucial for NK cell activation, indicating a 2-layered escape of AML blasts with low expression of NK cell-activating ligands and inhibition of NK cell signaling. To evaluate the therapeutic potential to target PGE2 inhibition, we combined Fcγ-receptor-mediated activation with the prevention of inhibitory PGE2 signaling. This rescued NK cell function and restored the killing of AML blasts. Thus, we identify the PGE2-LCK signaling axis as the key barrier for NK cell activation in 2-layered immune escape of AML blasts that can be targeted for immune therapy to reconstitute anticancer NK cell immunity in patients with AML.
Collapse
MESH Headings
- Humans
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/pathology
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Dinoprostone/immunology
- Dinoprostone/metabolism
- Signal Transduction/immunology
- Receptors, IgG/immunology
- Receptors, IgG/metabolism
- Tumor Escape/immunology
- Lymphocyte Activation/immunology
Collapse
Affiliation(s)
- Charlotte Rothfuß
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Tobias Baumann
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Sainitin Donakonda
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Bettina Brauchle
- Gene Center, Laboratory for Translational Cancer Immunology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anetta Marcinek
- Gene Center, Laboratory for Translational Cancer Immunology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christian Urban
- Institute of Virology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Julia Mergner
- Bavarian Center for Biomolecular Mass Spectrometry at Munich Institute of Robotics and Machine Intelligence, Technical University of Munich, Munich, Germany
| | - Anna-Marie Pedde
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Anna Hirschberger
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Christina Krupka
- Gene Center, Laboratory for Translational Cancer Immunology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anne-Sophie Neumann
- Gene Center, Laboratory for Translational Cancer Immunology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gerulf Hänel
- Gene Center, Laboratory for Translational Cancer Immunology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Camilla Merten
- Institut of Molecular and Clinical Immunology, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Judith S Hecker
- Department of Medicine III, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Tanja Bauer
- Institute of Virology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Christian Schmid
- Food Chemistry and Molecular Sensory Science, Technical University of Munich, Munich, Germany
| | - Katharina S Götze
- Department of Medicine III, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Jennifer Altomonte
- Department of Internal Medicine II, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Veit Bücklein
- Gene Center, Laboratory for Translational Cancer Immunology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Roland Jacobs
- Department of Rheumatology and Clinical Immunology, Hannover Medical School, Hannover, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Corina Dawid
- Food Chemistry and Molecular Sensory Science, Technical University of Munich, Munich, Germany
| | - Luca Simeoni
- Institut of Molecular and Clinical Immunology, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
| | - Burkhart Schraven
- Institut of Molecular and Clinical Immunology, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
| | - Andreas Pichlmair
- Institute of Virology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Marion Subklewe
- Gene Center, Laboratory for Translational Cancer Immunology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Percy A Knolle
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Institute of Molecular Immunology, School of Life Science, Technical University of Munich, Munich, Germany
| | - Jan P Böttcher
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Department of Experimental Immunology, Institute of Immunology, University of Tübingen, Tübingen, Germany
| | - Bastian Höchst
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| |
Collapse
|
2
|
Li M, Ye J, Chang M, Feng L, Liu T, Zhang D, Wu Y, Ma Y, Meng G, Ji C, Sun T. Polymorphisms in immunosuppression-related genes are associated with AML. Front Immunol 2025; 16:1530510. [PMID: 39975548 PMCID: PMC11835863 DOI: 10.3389/fimmu.2025.1530510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/20/2025] [Indexed: 02/21/2025] Open
Abstract
Background Acute myeloid leukemia (AML) is a hematologic malignancy with poor overall survival (OS). The immunosuppressive microenvironment significantly impacts AML development and chemoresistance. Despite new immunotherapeutic strategies entering standard clinical care for various tumors, progress in AML remains poor. Multi-omics analyses, such as single-cell transcriptomics, have revealed many potential new targets to improve AML prognosis from an immunological perspective. Methods DNA from 307 AML patients and 316 healthy individuals were extracted. We detected nine single nucleotide polymorphisms (SNPs) in five immunosuppression-related genes (CIITA, CD200, CD163, MRC1 and LILRB4) in these samples. SNP genotyping was performed on the MassARRAY platform. We then analyzed the relationship between these SNPs and AML susceptibility, treatment response, and prognosis. Results Our findings indicated that rs4883263 in the CD163 gene is a protective factor for AML susceptibility and chromosomal karyotype abnormalities. Additionally, rs4883263 in CD163 was related to low PLT count at diagnosis, while rs2272022 in CD200 was protective against low PLT count. rs4780335 in CIITA was associated with high WBC count at diagnosis and worse OS. Furthermore, rs1048801 in LILRB4 was linked to worse AML treatment response, lower OS, and may be an independent prognostic risk factor for AML. Lastly, expressions of CD163, CIITA, LILRB4, and CD200 were higher in AML patients than that in normal controls. Conclusions Our findings on SNP associations in AML immunosuppression-related genes provide important reference points for predicting treatment outcomes in AML patients.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/mortality
- Polymorphism, Single Nucleotide
- Female
- Male
- Middle Aged
- Adult
- Antigens, CD/genetics
- Genetic Predisposition to Disease
- Aged
- Receptors, Cell Surface/genetics
- CD163 Antigen
- Antigens, Differentiation, Myelomonocytic/genetics
- Receptors, Immunologic/genetics
- Immune Tolerance/genetics
- Prognosis
- Young Adult
- Case-Control Studies
- Genotype
- Adolescent
- Membrane Glycoproteins/genetics
Collapse
Affiliation(s)
- Mingying Li
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Hematological Diseases and Immune Microenvironment, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jingjing Ye
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Hematological Diseases and Immune Microenvironment, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Mengyuan Chang
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Hematological Diseases and Immune Microenvironment, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lei Feng
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Hematological Diseases and Immune Microenvironment, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Tingting Liu
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Hematological Diseases and Immune Microenvironment, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Di Zhang
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Hematological Diseases and Immune Microenvironment, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yuyan Wu
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Hematological Diseases and Immune Microenvironment, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yuechan Ma
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Hematological Diseases and Immune Microenvironment, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Guangqiang Meng
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Hematological Diseases and Immune Microenvironment, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Hematological Diseases and Immune Microenvironment, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Tao Sun
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Hematological Diseases and Immune Microenvironment, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
3
|
Rishabh K, Matosevic S. The diversity of natural killer cell functional and phenotypic states in cancer. Cancer Metastasis Rev 2025; 44:26. [PMID: 39853430 DOI: 10.1007/s10555-025-10242-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/08/2025] [Indexed: 01/26/2025]
Abstract
The role of natural killer (NK) cells as immune effectors is well established, as is their utility as immunotherapeutic agents against various cancers. However, NK cells' anti-cancer roles are suppressed in cancer patients by various immunomodulatory mechanisms which alter these cells' identity, function, and potential for immunosurveillance. This manifests in abnormal NK cell responses accompanied by changes in phenotypic or genotypic identity, giving rise to specific NK cell subsets that are either hypofunctional or, more broadly, defective in their responses. Anergy, senescence, and exhaustion are some of the terms that have been used to define and characterize these NK cell functional states. These responses vary not only with cancer type but also NK cell location within tissues. Collectively, these phenomena suggest a highly plastic nature of NK cell biology in tumors. In this review, we present and discuss a summary of these functionally distinct states and provide an overview of how NK cells behave at different locations within the context of cancer.
Collapse
Affiliation(s)
- Kumar Rishabh
- Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, IN, USA
| | - Sandro Matosevic
- Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, IN, USA.
- Institute for Cancer Research, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
4
|
Ehlers FAI, Blise KE, Betts CB, Sivagnanam S, Kooreman LFS, Hwang ES, Bos GMJ, Wieten L, Coussens LM. Natural killer cells occupy unique spatial neighborhoods in HER2 - and HER2 + human breast cancers. Breast Cancer Res 2025; 27:14. [PMID: 39856748 PMCID: PMC11762118 DOI: 10.1186/s13058-025-01964-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Tumor-infiltrating lymphocytes are considered clinically beneficial in breast cancer, but the significance of natural killer (NK) cells is less well characterized. As increasing evidence has demonstrated that the spatial organization of immune cells in tumor microenvironments is a significant parameter for impacting disease progression as well as therapeutic responses, an improved understanding of tumor-infiltrating NK cells and their location within tumor contextures is needed to improve the design of effective NK cell-based therapies. In this study, we developed a multiplex immunohistochemistry (mIHC) antibody panel designed to quantitatively interrogate leukocyte lineages, focusing on NK cells and their phenotypes, in two independent breast cancer patient cohorts (n = 26 and n = 30). Owing to the clinical evidence supporting a significant role for NK cells in HER2+ breast cancer in mediating responses to Trastuzumab, we further evaluated HER2- and HER2+ specimens separately. Consistent with literature, we found that CD3+ T cells were the dominant leukocyte subset across breast cancer specimens. In comparison, NK cells, identified by CD56 or NKp46 expression, were scarce in all specimens with low granzyme B expression indicating reduced cytotoxic functionality. Whereas NK cell density and phenotype did not appear to be influenced by HER2 status, spatial analysis revealed distinct NK cells phenotypes regarding their proximity to neoplastic tumor cells that associated with HER2 status. Spatial cellular neighborhood analysis revealed multiple unique neighborhood compositions surrounding NK cells, where NK cells from HER2- tumors were more frequently found proximal to neoplastic tumor cells, whereas NK cells from HER2+ tumors were instead more frequently found proximal to CD3+ T cells. This study establishes the utility of quantitative mIHC to evaluate NK cells at the single-cell spatial proteomics level and illustrates how spatial characteristics of NK cell neighborhoods vary within the context of HER2- and HER2+ breast cancers.
Collapse
Affiliation(s)
- Femke A I Ehlers
- Department of Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Center+, Maastricht, 6229, HX, The Netherlands
- Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center+, Maastricht, 6229 HX, The Netherlands
- GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, 6229 GT, The Netherlands
| | - Katie E Blise
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Courtney B Betts
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Shamilene Sivagnanam
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Loes F S Kooreman
- GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, 6229 GT, The Netherlands
- Department of Pathology, Maastricht University Medical Center+, Maastricht, 6229 HX, The Netherlands
| | - E Shelley Hwang
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Gerard M J Bos
- Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center+, Maastricht, 6229 HX, The Netherlands
- GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, 6229 GT, The Netherlands
| | - Lotte Wieten
- Department of Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Center+, Maastricht, 6229, HX, The Netherlands.
- GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, 6229 GT, The Netherlands.
| | - Lisa M Coussens
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, 97239, USA.
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA.
- , 2720 S Moody Ave, #KC-CDCB, Portland, OR, 97201 - 5012, USA.
| |
Collapse
|
5
|
Wlosik J, Orlanducci F, Richaud M, Demerle C, Amara AB, Rouviere MS, Livrati P, Gorvel L, Hospital MA, Dulphy N, Devillier R, Vey N, Olive D, Chretien AS. CD56 neg CD16 + cells represent a distinct mature NK cell subset with altered phenotype and are associated with adverse clinical outcome upon expansion in AML. Front Immunol 2025; 15:1487792. [PMID: 39867888 PMCID: PMC11760599 DOI: 10.3389/fimmu.2024.1487792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/02/2024] [Indexed: 01/28/2025] Open
Abstract
Introduction Acute myeloid leukemia (AML) is a rare haematological cancer with poor 5-years overall survival (OS) and high relapse rate. Leukemic cells are sensitive to Natural Killer (NK) cell mediated killing. However, NK cells are highly impaired in AML, which promote AML immune escape from NK cell immune surveillance. We made the first report of CD56neg CD16+ NK cells expansion in AML. This unconventional subset has been reported to expand in some chronic viral infections. Although it is unclear whether CD56neg NK cells expansion mechanism is common across diseases, it seems more relevant than ever to further investigate this subset, representing a potential therapeutic target. Methods We used PBMCs from AML patients and HV to perform mass cytometry, spectral flow cytometry, bulk RNA-seq and in vitro assays in order to better characterize CD56neg CD16+ NK cells that expand in AML. Results We confirmed that CD56neg CD16+ NK cells represent a unique NK cell subset coexpressing Eomes and T-bet. CD56neg CD16+ NK cells could recover CD56 expression in vitro where they displayed unaltered NK cell functions. We previously demonstrated that CD56neg CD16+ NK cells expansion at diagnosis was associated with adverse clinical outcome in AML. Here, we validated our findings in a validation cohort of N=38 AML patients. AML patients with CD56neg CD16+ NK cells expansion at diagnosis had decreased overall survival (HR[CI95]=5.5[1.2-24.5], p=0.0251) and relapse-free survival (HR[CI95]=13.1[1.9-87.5], p=0.0079) compared to AML patients without expansion after 36 months follow-up. RNA-seq unveiled that CD56neg CD16+ NK cells were mature circulating NK cells with functional capacities. Upon expansion, CD56neg CD16+ NK cells from AML patients showed altered proteomic phenotype, with increased frequency of terminally mature CD56neg CD16+ NK cells expressing TIGIT along with decreased frequency of Siglec-7+ CD56neg CD16+ NK cells. Discussion Taken together, our results suggest that we could harness CD56neg CD16+ NK cells cytotoxic potential in vitro to restore NK cell anti-tumor response in AML patients with CD56neg CD16+ NK cells expansion and improve patients' prognosis. To conclude, CD56neg CD16+ NK cells represent a relevant target for future NK-cell-based immunotherapies in AML.
Collapse
Affiliation(s)
- Julia Wlosik
- Team Immunity and Cancer, Cancer Research Center of Marseille (CRCM), Inserm U1068, CNRS UMR7258, Paoli-Calmettes Institute, University of Aix-Marseille UM105, Marseille, France
- Immunomonitoring Department, Paoli-Calmettes Institute, Marseille, France
| | - Florence Orlanducci
- Team Immunity and Cancer, Cancer Research Center of Marseille (CRCM), Inserm U1068, CNRS UMR7258, Paoli-Calmettes Institute, University of Aix-Marseille UM105, Marseille, France
- Immunomonitoring Department, Paoli-Calmettes Institute, Marseille, France
| | - Manon Richaud
- Cytometry Platform, Cancer Research Center of Marseille (CRCM), Inserm U1068, CNRS UMR7258, Paoli-Calmettes Institute, University of Aix-Marseille UM105, Marseille, France
| | - Clemence Demerle
- Centre for Clinical Investigation in Biotherapy, Paoli-Calmettes Institute, University of Aix-Marseille, Inserm CBT 1409, Marseille, France
| | - Amira Ben Amara
- Team Immunity and Cancer, Cancer Research Center of Marseille (CRCM), Inserm U1068, CNRS UMR7258, Paoli-Calmettes Institute, University of Aix-Marseille UM105, Marseille, France
- Immunomonitoring Department, Paoli-Calmettes Institute, Marseille, France
| | - Marie-Sarah Rouviere
- Team Immunity and Cancer, Cancer Research Center of Marseille (CRCM), Inserm U1068, CNRS UMR7258, Paoli-Calmettes Institute, University of Aix-Marseille UM105, Marseille, France
- Immunomonitoring Department, Paoli-Calmettes Institute, Marseille, France
| | - Philippe Livrati
- Team Immunity and Cancer, Cancer Research Center of Marseille (CRCM), Inserm U1068, CNRS UMR7258, Paoli-Calmettes Institute, University of Aix-Marseille UM105, Marseille, France
- Immunomonitoring Department, Paoli-Calmettes Institute, Marseille, France
| | - Laurent Gorvel
- Team Immunity and Cancer, Cancer Research Center of Marseille (CRCM), Inserm U1068, CNRS UMR7258, Paoli-Calmettes Institute, University of Aix-Marseille UM105, Marseille, France
- Immunomonitoring Department, Paoli-Calmettes Institute, Marseille, France
| | - Marie-Anne Hospital
- Hematology Department, CRCM, Inserm U1068, CNRS UMR7258, Paoli-Calmettes Institute, Marseille, France
| | - Nicolas Dulphy
- Paris Cité University, Saint-Louis Research Institute, Inserm UMRS1160, Paris, France
- Immunology and Histocompatibility Laboratory, Assistance Publique-Hôpitaux de Paris, Saint-Louis Hospital, Paris, France
| | - Raynier Devillier
- Hematology Department, CRCM, Inserm U1068, CNRS UMR7258, Paoli-Calmettes Institute, Marseille, France
| | - Norbert Vey
- Hematology Department, CRCM, Inserm U1068, CNRS UMR7258, Paoli-Calmettes Institute, Marseille, France
| | - Daniel Olive
- Team Immunity and Cancer, Cancer Research Center of Marseille (CRCM), Inserm U1068, CNRS UMR7258, Paoli-Calmettes Institute, University of Aix-Marseille UM105, Marseille, France
- Immunomonitoring Department, Paoli-Calmettes Institute, Marseille, France
| | - Anne-Sophie Chretien
- Team Immunity and Cancer, Cancer Research Center of Marseille (CRCM), Inserm U1068, CNRS UMR7258, Paoli-Calmettes Institute, University of Aix-Marseille UM105, Marseille, France
- Immunomonitoring Department, Paoli-Calmettes Institute, Marseille, France
| |
Collapse
|
6
|
Xie Y, Ning K, Sun W, Feng L, Chen Y, Sun W, Li Y, Yu L. A pump-free microfluidic co-culture system for investigating NK cell-tumor spheroid interactions in flow conditions. J Biotechnol 2025; 397:11-21. [PMID: 39549923 DOI: 10.1016/j.jbiotec.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/29/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
Natural killer (NK) cells are pivotal in immunotherapy due to their potent tumor-targeting capabilities. However, accessible in vitro 3D dynamic models for evaluating Tumor Infiltrating Natural Killer Cells (TINKs) remain scarce. This study addresses this gap by developing a novel pump-free microfluidic chip to investigate the interactions between NK-92 cells and prostate DU 145 tumor spheroids. The platform facilitates the separation of free NKs and TINKs for subtype characterization. The design integrates multiple planes with a multi-layer paper scaffold to accommodate tumor spheroids, allowing NK-92 cells to traverse Matrigel-coated barriers that mimic the extracellular matrix. The dual-channel pump-free device enables unidirectional circulation of NK-92 cells, allowing analysis of tumor spheroid movement and NK-92 cell interactions under flow conditions. Results demonstrate continuous fluid circulation in the dual-channel device by rocking the platform at tilt angles of 21° and 15°. Tumor spheroids show- enhanced migration under flow conditions compared to static culture. Although spheroids recruit slightly more NK-92 cells under flow conditions, CD56 and CD16 receptor expression on IL-2-activated free NK-92 cells and tumor-infiltrating NK-92 cells matches in vivo patterns in dynamic cultures. These findings suggest that tumor cells and fluid dynamics significantly influence NK cell subtypes. This pump-free microfluidic platform is a functional tool for simulating and studying immune cell-tumor interactions, providing valuable insights into NK cell dynamics with tumor spheroids in physiologically relevant environments.
Collapse
Affiliation(s)
- Yuanyuan Xie
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Ke Ning
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Wen Sun
- Key Laboratory of Animal Biological Products & Genetic Engineering, Ministry of Agriculture and Rural, Sinopharm Animal Health Corporation Ltd., Wuhan 430023, China; State Key Laboratory of Novel Vaccines for Emerging Infectious Diseases, China National Biotec Group Company Limited, Beijing 100024, China
| | - Lingke Feng
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Yirong Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Wei Sun
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Yan Li
- Key Laboratory of Animal Biological Products & Genetic Engineering, Ministry of Agriculture and Rural, Sinopharm Animal Health Corporation Ltd., Wuhan 430023, China; State Key Laboratory of Novel Vaccines for Emerging Infectious Diseases, China National Biotec Group Company Limited, Beijing 100024, China.
| | - Ling Yu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China.
| |
Collapse
|
7
|
Zhang Q, Huang T, Li X, Liu G, Xian L, Mao X, Lin T, Fu C, Chen X, Liang W, Zheng Y, Zhao Y, Lin Q, Xu X, Lin Y, Bu J, Wu C, Zhou M, Shen E. Prognostic impact of enhanced CD96 expression on NK cells by TGF-β1 in AML. Int Immunopharmacol 2024; 141:112958. [PMID: 39159564 DOI: 10.1016/j.intimp.2024.112958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 07/30/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024]
Abstract
Acute myeloid leukemia (AML) is one of the most common types of blood cancer in adults and is associated with a poor survival rate. NK cells play a crucial role in combating AML, and alterations in immune checkpoint expression can impair NK cell function against AML. Targeting certain checkpoints may restore this function. CD96, an inhibitory immune checkpoint, has unclear expression and roles on NK cells in AML patients. In this study, we initially evaluated CD96 expression and compared CD96+ NK with the inhibitory receptor and stimulatory receptors on NK cells from AML patients at initial diagnosis. We observed increased CD96 expression on NK cells with dysfunctional phenotype. Further analysis revealed that CD96+ NK cells had lower IFN-γ production than CD96- NK cells. Blocking CD96 enhanced the cytotoxicity of primary NK and cord blood-derived NK (CB-NK) cells against leukemia cells. Notably, patients with a high frequency of CD96+ NK cells at initial diagnosis exhibited poorer clinical outcomes. Additionally, TGF-β1 was found to enhance CD96 expression on NK cells via SMAD3 signaling. These findings suggest that CD96 is invovled in NK dysfunction against AML blast, and might be a potential target for restoring NK cell function in the fight against AML.
Collapse
Affiliation(s)
- Qi Zhang
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou 510260, China; The 903 RD Hospital of PLA, 14 Lingyin Road, Hangzhou 310017,China
| | - Ting Huang
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou 510260, China
| | - Xiaomin Li
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou 510260, China
| | - Guanfang Liu
- Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Luhua Xian
- Department of Laboratory Medicine, Guangdong Provincial People's Hospital, (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xueying Mao
- Clifford Hospital Clinical Research Center, Guangzhou, Guangdong, China
| | - Ting Lin
- Department of Laboratory Medicine, Guangdong Provincial People's Hospital, (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Cheng Fu
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou 510260, China
| | - Xiangming Chen
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou 510260, China
| | - Wenting Liang
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou 510260, China
| | - Yanling Zheng
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou 510260, China
| | - Yuyang Zhao
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou 510260, China
| | - Qiwen Lin
- Guangzhou Blood Center, Guangzhou, China
| | | | - Yu Lin
- Shenzhen Withsum Technology Limited, Shenzhen, China
| | - Jin Bu
- National Center for STD Control, Hospital for Skin Disease (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Changyou Wu
- Clifford Hospital Clinical Research Center, Guangzhou, Guangdong, China
| | - Maohua Zhou
- Department of Laboratory Medicine, Guangdong Provincial People's Hospital, (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Department of Clinical Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Erxia Shen
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou 510260, China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
8
|
Li Y, Li Z, Tang Y, Zhuang X, Feng W, Boor PPC, Buschow S, Sprengers D, Zhou G. Unlocking the therapeutic potential of the NKG2A-HLA-E immune checkpoint pathway in T cells and NK cells for cancer immunotherapy. J Immunother Cancer 2024; 12:e009934. [PMID: 39486805 PMCID: PMC11529472 DOI: 10.1136/jitc-2024-009934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/29/2024] [Indexed: 11/04/2024] Open
Abstract
Immune checkpoint blockade, which enhances the reactivity of T cells to eliminate cancer cells, has emerged as a potent strategy in cancer therapy. Besides T cells, natural killer (NK) cells also play an indispensable role in tumor surveillance and destruction. NK Group 2 family of receptor A (NKG2A), an emerging co-inhibitory immune checkpoint expressed on both NK cells and T cells, mediates inhibitory signal via interaction with its ligand human leukocyte antigen-E (HLA-E), thereby attenuating the effector and cytotoxic functions of NK cells and T cells. Developing antibodies to block NKG2A, holds promise in restoring the antitumor cytotoxicity of NK cells and T cells. In this review, we delve into the expression and functional significance of NKG2A and HLA-E, elucidating how the NKG2A-HLA-E axis contributes to tumor immune escape via signal transduction mechanisms. Furthermore, we provide an overview of clinical trials investigating NKG2A blockade, either as monotherapy or in combination with other therapeutic antibodies, highlighting the responses of the immune system and the clinical benefits for patients. We pay special attention to additional immune co-signaling molecules that serve as potential targets on both NK cells and T cells, aiming to evoke more robust immune responses against cancer. This review offers an in-depth exploration of the NKG2A-HLA-E pathway as a pivotal checkpoint in the anti-tumor responses, paving the way for new immunotherapeutic strategies to improve cancer patient outcomes.
Collapse
Affiliation(s)
- Yan Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhu Li
- Department of Dermatology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yisen Tang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiaomei Zhuang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Wanhua Feng
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Patrick P C Boor
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Sonja Buschow
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Dave Sprengers
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Guoying Zhou
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
9
|
Syrimi E, Khan N, Murray P, Willcox C, Haigh T, Willcox B, Masand N, Bowen C, Dimakou DB, Zuo J, Barone SM, Irish JM, Kearns P, Taylor GS. Defects in NK cell immunity of pediatric cancer patients revealed by deep immune profiling. iScience 2024; 27:110837. [PMID: 39310750 PMCID: PMC11416690 DOI: 10.1016/j.isci.2024.110837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/21/2023] [Accepted: 08/24/2024] [Indexed: 09/25/2024] Open
Abstract
Systemic immunity plays an important role in cancer immune surveillance and response to therapy, but little is known about the immune status of children with solid cancers. We performed a high-dimensional single-cell analysis of systemic immunity in 50 treatment-naive pediatric cancer patients, comparing them to age-matched healthy children. Children with cancer had a lower frequency of peripheral NK cells, which was not due to tumor sequestration, had lower surface levels of activating receptors and increased levels of the inhibitory NKG2A receptor. Furthermore, the natural killer (NK) cells of pediatric cancer patients were less mature and less cytotoxic when tested in vitro. Culture of these NK cells with interleukin-2 restored their cytotoxicity. Collectively, our data show that NK cells in pediatric cancer patients are impaired through multiple mechanisms and identify rational strategies to restore their functionality.
Collapse
Affiliation(s)
- Eleni Syrimi
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Naeem Khan
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Clinical Immunology Service, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Paul Murray
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Health research Institute, University of Limerick, Limerick, Ireland
| | - Carrie Willcox
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Tracey Haigh
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Benjamin Willcox
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Navta Masand
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Claire Bowen
- Pathology department, Birmingham Children’s Hospital, Birmingham, UK
| | - Danai B. Dimakou
- Clinical Immunology Service, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Jianmin Zuo
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Sierra M. Barone
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonathan M. Irish
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pamela Kearns
- Cancer Research UK Clinical Trials Unit, National Institute for Health Research Birmingham Biomedical Research Centre, Birmingham, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Graham S. Taylor
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| |
Collapse
|
10
|
Le Floch AC, Orlanducci F, Béné MC, Ben Amara A, Rouviere MS, Salem N, Le Roy A, Cordier C, Demerlé C, Granjeaud S, Hamel JF, Ifrah N, Cornillet-Lefebvre P, Delaunay J, Récher C, Delabesse E, Pigneux A, Vey N, Chretien AS, Olive D. Low frequency of Vγ9Vδ2 T cells predicts poor survival in newly diagnosed acute myeloid leukemia. Blood Adv 2024; 8:4262-4275. [PMID: 38788176 PMCID: PMC11372596 DOI: 10.1182/bloodadvances.2023011594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 04/04/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
ABSTRACT In several tumor subtypes, an increased infiltration of Vγ9Vδ2 T cells has been shown to have the highest prognostic value compared with other immune subsets. In acute myeloid leukemia (AML), similar findings have been based solely on the inference of transcriptomic data and have not been assessed with respect to confounding factors. This study aimed at determining, by immunophenotypic analysis (flow or mass cytometry) of peripheral blood from patients with AML at diagnosis, the prognostic impact of Vγ9Vδ2 T-cell frequency. This was adjusted for potential confounders (age at diagnosis, disease status, European LeukemiaNet classification, leukocytosis, and allogeneic hematopoietic stem cell transplantation as a time-dependent covariate). The cohort was composed of 198 patients with newly diagnosed (ND) AML. By univariate analysis, patients with lower Vγ9Vδ2 T cells at diagnosis had significantly lower 5-year overall and relapse-free survivals. These results were confirmed in multivariate analysis (hazard ratio [HR], 1.55 [95% confidence interval (CI), 1.04-2.30]; P = .030 and HR, 1.64 [95% CI, 1.06-2.53]; P = .025). Immunophenotypic alterations observed in patients with lower Vγ9Vδ2 T cells included a loss of some cytotoxic Vγ9Vδ2 T-cell subsets and a decreased expression of butyrophilin 3A on the surface of blasts. Samples expanded regardless of their Vγ9Vδ2 T-cell levels and displayed similar effector functions in vitro. This study confirms the prognostic value of elevated Vγ9Vδ2 T cells among lymphocytes in patients with ND AML. These results provide a strong rationale to consider consolidation protocols aiming at enhancing Vγ9Vδ2 T-cell responses.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Middle Aged
- Female
- Male
- Adult
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Aged
- Prognosis
- Immunophenotyping
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Young Adult
- Aged, 80 and over
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- Anne-Charlotte Le Floch
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, Marseille, France
- Plateforme d’immunomonitoring, Institut Paoli-Calmettes, Marseille, France
| | - Florence Orlanducci
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, Marseille, France
- Plateforme d’immunomonitoring, Institut Paoli-Calmettes, Marseille, France
| | | | - Amira Ben Amara
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, Marseille, France
- Plateforme d’immunomonitoring, Institut Paoli-Calmettes, Marseille, France
| | - Marie-Sarah Rouviere
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, Marseille, France
- Plateforme d’immunomonitoring, Institut Paoli-Calmettes, Marseille, France
| | - Nassim Salem
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, Marseille, France
- Plateforme d’immunomonitoring, Institut Paoli-Calmettes, Marseille, France
| | - Aude Le Roy
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, Marseille, France
- Plateforme d’immunomonitoring, Institut Paoli-Calmettes, Marseille, France
| | - Charlotte Cordier
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, Marseille, France
- Plateforme d’immunomonitoring, Institut Paoli-Calmettes, Marseille, France
| | - Clémence Demerlé
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, Marseille, France
- Plateforme d’immunomonitoring, Institut Paoli-Calmettes, Marseille, France
| | - Samuel Granjeaud
- Systems Biology Platform, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille University UM105, Marseille, France
| | - Jean-François Hamel
- Département de Biostatistiques, Centre Hospitalier Universitaire d'Angers, Université d'Angers, Angers, France
| | - Norbert Ifrah
- Département d'Hématologie, Centre Hospitalier Universitaire d'Angers, Université d'Angers, INSERM, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes Angers, Angers, France
| | | | - Jacques Delaunay
- Département d'Hématologie, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Christian Récher
- Département d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopôle, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Eric Delabesse
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopôle, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Arnaud Pigneux
- Département d'Hématologie et Thérapie Cellulaire, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Norbert Vey
- Département d’hématologie, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France
| | - Anne-Sophie Chretien
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, Marseille, France
- Plateforme d’immunomonitoring, Institut Paoli-Calmettes, Marseille, France
| | - Daniel Olive
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, Marseille, France
- Plateforme d’immunomonitoring, Institut Paoli-Calmettes, Marseille, France
| |
Collapse
|
11
|
Gan SY, Tye GJ, Chew AL, Lai NS. Current development of Fc gamma receptors (FcγRs) in diagnostics: a review. Mol Biol Rep 2024; 51:937. [PMID: 39190190 DOI: 10.1007/s11033-024-09877-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
The ability of the immune system to fight against pathogens relies on the intricate collaboration between antibodies and Fc gamma receptors (FcγRs). These receptors are a group of transmembrane glycoprotein molecules, which can specifically detect and bind to the Fc portion of immunoglobulin G (IgG) molecules. They are distributed on a diverse array of immune cells, forming a strong defence system to eliminate invading threats. FcγRs have gained increasing attention as potential biomarkers for various diseases in recent years due to their ability to reflect immune dysregulation and disease pathogenesis. Increasing lines of evidence have shed new light on the remarkable association of FcγRs polymorphisms with the susceptibility of autoimmune diseases such as systemic lupus erythematosus (SLE) and lupus nephritis. Several studies have also reported the application of FcγR as a novel biomarker for the diagnosis of infection and cancer. Due to the surge in interest and concern regarding the potential of FcγRs as promising diagnostic biomarkers, this review, thereby, serves to provide a comprehensive overview of the structural characteristics, functional roles, and expression patterns of FcγRs, with a particular focus on their evolving role as diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Shin Yi Gan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology Malaysia, Halaman Bukit Gambir, Gelugor, Penang, 11700, Malaysia
| | - Ai Lan Chew
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Ngit Shin Lai
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia.
| |
Collapse
|
12
|
Sefland Ø, Gullaksen SE, Omsland M, Reikvam H, Galteland E, Tran HTT, Spetalen S, Singh SK, Van Zeeburg HJT, Van De Loosdrecht AA, Gjertsen BT. Mass cytometric single cell immune profiles of peripheral blood from acute myeloid leukemia patients in complete remission with measurable residual disease. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2024. [PMID: 39078053 DOI: 10.1002/cyto.b.22197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/08/2024] [Accepted: 07/09/2024] [Indexed: 07/31/2024]
Abstract
Measurable residual disease (MRD) is detected in approximately a quarter of AML chemotherapy responders, serving as a predictor for relapse and shorter survival. Immunological control of residual disease is suggested to prevent relapse, but the mechanisms involved are not fully understood. We present a peripheral blood single cell immune profiling by mass cytometry using a 42-antibody panel with particular emphasis on markers of cellular immune response. Six healthy donors were compared with four AML patients with MRD (MRD+) in first complete remission (CR1MRD+). Three of four patients demonstrated a favorable genetic risk profile, while the fourth patient had an unfavorable risk profile (complex karyotype, TP53-mutation) and a high level of MRD. Unsupervised clustering using self-organizing maps and dimensional reduction analysis was performed for visualization and analysis of immune cell subsets. CD57+ natural killer (NK)-cell subsets were found to be less abundant in patients than in healthy donors. Both T and NK cells demonstrated elevated expression of activity and maturation markers (CD44, granzyme B, and phosho-STAT5 Y694) in patients. Although mass cytometry remains an expensive method with limited scalability, our data suggest the utility for employing a 42-plex profiling for cellular immune surveillance in whole blood, and possibly as a biomarker platform in future clinical trials. The findings encourage further investigations of single cell immune profiling in CR1MRD+ AML-patients.
Collapse
Affiliation(s)
- Øystein Sefland
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Section of Hematology, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Centre for Myeloid Blood Cancer, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Stein-Erik Gullaksen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Section of Hematology, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Centre for Myeloid Blood Cancer, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Maria Omsland
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
- K.G. Jebsen Centre for Myeloid Blood Cancer, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Safety, Chemistry, and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Håkon Reikvam
- Department of Medicine, Section of Hematology, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Centre for Myeloid Blood Cancer, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Eivind Galteland
- Department of Haematology, Oslo University Hospital, Oslo, Norway
| | - Hoa Thi Tuyet Tran
- Department of Haematology, Akershus University Hospital, Lørenskog, Norway
| | - Signe Spetalen
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | | | | | - Arjan A Van De Loosdrecht
- Department of Hematology, Amsterdam University Medical Center, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Bjørn Tore Gjertsen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Section of Hematology, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Centre for Myeloid Blood Cancer, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
13
|
Chandra DJ, Alber B, Saultz JN. The Immune Resistance Signature of Acute Myeloid Leukemia and Current Immunotherapy Strategies. Cancers (Basel) 2024; 16:2615. [PMID: 39123343 PMCID: PMC11311077 DOI: 10.3390/cancers16152615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/29/2024] [Accepted: 07/11/2024] [Indexed: 08/12/2024] Open
Abstract
Acute myeloid leukemia (AML) is a complex hematopoietic clonal disorder with limited curative options beyond stem cell transplantation. The success of transplant is intimately linked with the graft versus leukemia effect from the alloreactive donor immune cells including, T and NK cells. The immune system plays a dynamic role in leukemia survival and resistance. Despite our growing understanding of the immune microenvironment, responses to immune-based therapies differ greatly between patients. Herein, we review the biology of immune evasion mechanisms in AML, discuss the current landscape of immunotherapeutic strategies, and discuss the implications of therapeutic targets. This review focuses on T and NK cell-based therapy, including modified and non-modified NK cells, CAR-T and CAR-NK cells, antibodies, and checkpoint blockades. Understanding the complex interchange between immune tolerance and the emergence of tumor resistance will improve patient outcomes.
Collapse
Affiliation(s)
- Daniel J. Chandra
- Division of Hematology/Medical Oncology, Oregon Health & Science University, Portland, OR 97239, USA;
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA;
| | - Bernhard Alber
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA;
| | - Jennifer N. Saultz
- Division of Hematology/Medical Oncology, Oregon Health & Science University, Portland, OR 97239, USA;
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA;
| |
Collapse
|
14
|
Gallardo-Zapata J, Pérez-Figueroa E, Olivar-López V, Medina-Sansón A, Jiménez-Hernández E, Ortega E, Maldonado-Bernal C. TLR Agonists Modify NK Cell Activation and Increase Its Cytotoxicity in Acute Lymphoblastic Leukemia. Int J Mol Sci 2024; 25:7500. [PMID: 39000607 PMCID: PMC11242025 DOI: 10.3390/ijms25137500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 07/16/2024] Open
Abstract
Natural killer (NK) cells play a crucial role in innate immunity, particularly in combating infections and tumors. However, in hematological cancers, NK cells often exhibit impaired functions. Therefore, it is very important to activate its endosomal Toll-like receptors (TLRs) as a potential strategy to restore its antitumor activity. We stimulated NK cells from the peripheral blood mononuclear cells from children with acute lymphoblastic leukemia and NK cells isolated, and the NK cells were stimulated with specific TLR ligands (Poly I:C, Imiquimod, R848, and ODN2006) and we evaluated changes in IFN-γ, CD107a, NKG2D, NKp44 expression, Granzyme B secretion, cytokine/chemokine release, and cytotoxic activity. Results revealed that Poly I:C and Imiquimod enhanced the activation of both immunoregulatory and cytotoxic NK cells, increasing IFN-γ, CD107a, NKG2D, and NKp44 expression. R848 activated immunoregulatory NK cells, while ODN2006 boosted CD107a, NKp44, NKG2D, and IFN-γ secretion in cytotoxic NK cells. R848 also increased the secretion of seven cytokines/chemokines. Importantly, R848 and ODN 2006 significantly improved cytotoxicity against leukemic cells. Overall, TLR stimulation enhances NK cell activation, suggesting TLR8 (R848) and TLR9 (ODN 2006) ligands as promising candidates for antitumor immunotherapy.
Collapse
Affiliation(s)
- Janet Gallardo-Zapata
- Immunology and Proteomics Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
- Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City 04360, Mexico
| | - Erandi Pérez-Figueroa
- Immunology and Proteomics Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Víctor Olivar-López
- Emergency Service, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Aurora Medina-Sansón
- Hemato-Oncology Department, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | | | - Enrique Ortega
- Department of Immunology, Institute of Biomedical Research, Universidad Nacional Autónoma de México, Mexico City 4510, Mexico
| | - Carmen Maldonado-Bernal
- Immunology and Proteomics Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| |
Collapse
|
15
|
Zhou J, Chng WJ. Unveiling novel insights in acute myeloid leukemia through single-cell RNA sequencing. Front Oncol 2024; 14:1365330. [PMID: 38711849 PMCID: PMC11070491 DOI: 10.3389/fonc.2024.1365330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/09/2024] [Indexed: 05/08/2024] Open
Abstract
Acute myeloid leukemia (AML) is a complex and heterogeneous group of aggressive hematopoietic stem cell disease. The presence of diverse and functionally distinct populations of leukemia cells within the same patient's bone marrow or blood poses a significant challenge in diagnosing and treating AML. A substantial proportion of AML patients demonstrate resistance to induction chemotherapy and a grim prognosis upon relapse. The rapid advance in next generation sequencing technologies, such as single-cell RNA-sequencing (scRNA-seq), has revolutionized our understanding of AML pathogenesis by enabling high-resolution interrogation of the cellular heterogeneity in the AML ecosystem, and their transcriptional signatures at a single-cell level. New studies have successfully characterized the inextricably intertwined interactions among AML cells, immune cells and bone marrow microenvironment and their contributions to the AML development, therapeutic resistance and relapse. These findings have deepened and broadened our understanding the complexity and heterogeneity of AML, which are difficult to detect with bulk RNA-seq. This review encapsulates the burgeoning body of knowledge generated through scRNA-seq, providing the novel insights and discoveries it has unveiled in AML biology. Furthermore, we discuss the potential implications of scRNA-seq in therapeutic opportunities, focusing on immunotherapy. Finally, we highlight the current limitations and future direction of scRNA-seq in the field.
Collapse
Affiliation(s)
- Jianbiao Zhou
- Cancer Science Institute of Singapore, Center for Translational Medicine, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research, Center for Translational Medicine, Singapore, Singapore
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, Center for Translational Medicine, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research, Center for Translational Medicine, Singapore, Singapore
- Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), The National University Health System (NUHS), Singapore, Singapore
| |
Collapse
|
16
|
Kaito Y, Sugimoto E, Nakamura F, Tsukune Y, Sasaki M, Yui S, Yamaguchi H, Goyama S, Nannya Y, Mitani K, Tamura H, Imai Y. Immune checkpoint molecule DNAM-1/CD112 axis is a novel target for natural killer-cell therapy in acute myeloid leukemia. Haematologica 2024; 109:1107-1120. [PMID: 37731380 PMCID: PMC10985452 DOI: 10.3324/haematol.2023.282915] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023] Open
Abstract
Acute myeloid leukemia (AML) is a hematologic malignancy that frequently relapses, even if remission can be achieved with intensive chemotherapy. One known relapse mechanism is the escape of leukemic cells from immune surveillance. Currently, there is no effective immunotherapy for AML because of the lack of specific antigens. Here, we aimed to elucidate the association between CD155 and CD112 in AML cell lines and primary AML samples and determine the therapeutic response. Briefly, we generated NK-92 cell lines (NK-92) with modified DNAX-associated molecule 1 (DNAM-1) and T-cell immunoglobulin and ITIM domain (TIGIT), which are receptors of CD155 and CD112, respectively. Analysis of 200 cases of AML indicated that the survival of patients with high expression of CD112 was shorter than that of patients with low expression. NK-92 DNAM-1 exhibited enhanced cytotoxic activity against AML cell lines and primary cells derived from patients with AML. DNAM-1 induction in NK-92 cells enhanced the expression of cytotoxicity-related genes, thus overcoming the inhibitory activity of TIGIT. Between CD155 and CD112, CD112 is an especially important target for natural killer (NK)-cell therapy of AML. Using a xenograft model, we confirmed the enhanced antitumor effect of NK-92 DNAM-1 compared with that of NK-92 alone. We also discovered that CD112 (Nectin-2), an immune checkpoint molecule belonging to the Nectin/Nectin-like family, functions as a novel target of immunotherapy. In conclusion, modification of the DNAM-1/CD112 axis in NK cells may be an effective novel immunotherapy for AML. Furthermore, our findings suggest that the levels of expression of these molecules are potential prognostic markers in AML.
Collapse
MESH Headings
- Humans
- Nectins
- Immune Checkpoint Proteins/metabolism
- Killer Cells, Natural
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/metabolism
- Receptors, Immunologic
- Cell- and Tissue-Based Therapy
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/metabolism
Collapse
Affiliation(s)
- Yuta Kaito
- Division of Hematopoietic Disease Control, Institute of Medical Science, The University of Tokyo, Tokyo
| | - Emi Sugimoto
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo
| | - Fumi Nakamura
- Department of Hematology and Oncology, Dokkyo Medical University, Tochigi
| | - Yutaka Tsukune
- Department of Hematology, Juntendo University School of Medicine, Tokyo
| | - Makoto Sasaki
- Department of Hematology, Juntendo University School of Medicine, Tokyo
| | - Shunsuke Yui
- Department of Hematology, Nippon Medical School, Tokyo
| | | | - Susumu Goyama
- Division of Molecular Oncology, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo
| | - Yasuhito Nannya
- Division of Hematopoietic Disease Control, Institute of Medical Science, The University of Tokyo, Tokyo
| | - Kinuko Mitani
- Department of Hematology and Oncology, Dokkyo Medical University, Tochigi
| | - Hideto Tamura
- Division of Diabetes, Endocrinology and Hematology, Department of Internal Medicine, Dokkyo Medical University Saitama Medical Center, Saitama
| | - Yoichi Imai
- Department of Hematology and Oncology, Dokkyo Medical University, Tochigi.
| |
Collapse
|
17
|
Tu C, Buckle I, Leal Rojas I, Rossi GR, Sester DP, Moore AS, Radford K, Guillerey C, Souza‐Fonseca‐Guimaraes F. Exploring NK cell receptor dynamics in paediatric leukaemias: implications for immunotherapy and prognosis. Clin Transl Immunology 2024; 13:e1501. [PMID: 38525380 PMCID: PMC10960520 DOI: 10.1002/cti2.1501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/11/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024] Open
Abstract
Objectives Immunotherapies targeting natural killer (NK) cell receptors have shown promise against leukaemia. Unfortunately, cancer immunosuppressive mechanisms that alter NK cell phenotype prevent such approaches from being successful. The study utilises advanced cytometry to examine how cancer immunosuppressive pathways affect NK cell phenotypic changes in clinical samples. Methods In this study, we conducted a high-dimensional examination of the cell surface expression of 16 NK cell receptors in paediatric patients with acute myeloid leukaemia and acute lymphoblastic leukaemia, as well as in samples of non-age matched adult peripheral blood (APB) and umbilical cord blood (UCB). An unsupervised analysis was carried out in order to identify NK cell populations present in paediatric leukaemias. Results We observed that leukaemia NK cells clustered together with UCB NK cells and expressed relatively higher levels of the NKG2A receptor compared to APB NK cells. In addition, CD56dimCD16+CD57- NK cells lacking NKG2A expression were mainly absent in paediatric leukaemia patients. However, CD56br NK cell populations expressing high levels of NKG2A were highly represented in paediatric leukaemia patients. NKG2A expression on leukaemia NK cells was found to be positively correlated with the expression of its ligand, suggesting that the NKG2A-HLA-E interaction may play a role in modifying NK cell responses to leukaemia cells. Conclusion We provide an in-depth analysis of NK cell populations in paediatric leukaemia patients. These results support the development of immunotherapies targeting immunosuppressive receptors, such as NKG2A, to enhance innate immunity against paediatric leukaemia.
Collapse
Affiliation(s)
- Cui Tu
- Cancer Immunotherapies Laboratory, Mater Research Institute, Translational Research InstituteUniversity of QueenslandBrisbaneQLDAustralia
- Frazer Institute, The University of QueenslandWoolloongabbaQLDAustralia
| | - Irina Buckle
- Cancer Immunotherapies Laboratory, Mater Research Institute, Translational Research InstituteUniversity of QueenslandBrisbaneQLDAustralia
| | - Ingrid Leal Rojas
- Cancer Immunotherapies Laboratory, Mater Research Institute, Translational Research InstituteUniversity of QueenslandBrisbaneQLDAustralia
| | | | - David P Sester
- TRI Flow Cytometry SuiteTranslational Research InstituteWoolloongabbaQLDAustralia
- Translational Research InstituteQueensland University of TechnologyBrisbaneQLDAustralia
| | - Andrew S Moore
- Oncology ServiceChildren's Health Queensland Hospital & Health ServiceSouth BrisbaneQLDAustralia
- Child Health Research CentreThe University of QueenslandSouth BrisbaneQLDAustralia
| | - Kristen Radford
- Cancer Immunotherapies Laboratory, Mater Research Institute, Translational Research InstituteUniversity of QueenslandBrisbaneQLDAustralia
| | - Camille Guillerey
- Cancer Immunotherapies Laboratory, Mater Research Institute, Translational Research InstituteUniversity of QueenslandBrisbaneQLDAustralia
| | | |
Collapse
|
18
|
van der Ploeg K, Sottile R, Kontopoulos T, Shaffer BC, Papanicolaou GA, Maloy MA, Cho C, Robinson KS, Perales MA, Le Luduec JB, Hsu KC. Emergence of human CMV-induced NKG2C+ NK cells is associated with CD8+ T-cell recovery after allogeneic HCT. Blood Adv 2023; 7:5784-5798. [PMID: 37196646 PMCID: PMC10561005 DOI: 10.1182/bloodadvances.2022008952] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/19/2023] Open
Abstract
Cytomegalovirus (CMV) infection is associated with the expansion of a mature NKG2C+FcεR1γ- natural killer (NK) cell population. The exact mechanism underlying the emergence of NKG2C+ NK cells, however, remains unknown. Allogeneic hematopoietic cell transplantation (HCT) provides an opportunity to longitudinally study lymphocyte recovery in the setting of CMV reactivation, particularly in patients receiving T-cell-depleted (TCD) allografts. We analyzed peripheral blood lymphocytes from 119 patients at serial time points after infusion of their TCD allograft and compared immune recovery with that in samples obtained from recipients of T-cell-replete (T-replete) (n = 96) or double umbilical cord blood (DUCB) (n = 52) allografts. NKG2C+ NK cells were detected in 92% (45 of 49) of recipients of TCD HCT who experienced CMV reactivation. Although NKG2A+ cells were routinely identifiable early after HCT, NKG2C+ NK cells were identified only after T cells could be detected. T-cell reconstitution occurred at variable times after HCT among patients and predominantly comprised CD8+ T cells. In patients with CMV reactivation, recipients of TCD HCT expressed significantly higher frequencies of NKG2C+ and CD56neg NK cells compared with patients who received T-replete HCT or DUCB transplantation. NKG2C+ NK cells after TCD HCT were CD57+FcεR1γ+ and degranulated significantly more in response to target cells compared with the adaptive the NKG2C+CD57+FcεR1γ- NK cell population. We conclude that the presence of circulating T cells is associated with the expansion of a CMV-induced NKG2C+ NK cell population, a potentially novel example of developmental cooperation between lymphocyte populations in response to viral infection.
Collapse
Affiliation(s)
- Kattria van der Ploeg
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Rosa Sottile
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Theodota Kontopoulos
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Brian C. Shaffer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Genovefa A. Papanicolaou
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Molly A. Maloy
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Christina Cho
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Kevin S. Robinson
- Department of Medicine, Weill Cornell Medical College, New York, NY
- Adult BMT Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Miguel-Angel Perales
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Jean-Benoît Le Luduec
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Katharine C. Hsu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
19
|
Bakhtiyari M, Liaghat M, Aziziyan F, Shapourian H, Yahyazadeh S, Alipour M, Shahveh S, Maleki-Sheikhabadi F, Halimi H, Forghaniesfidvajani R, Zalpoor H, Nabi-Afjadi M, Pornour M. The role of bone marrow microenvironment (BMM) cells in acute myeloid leukemia (AML) progression: immune checkpoints, metabolic checkpoints, and signaling pathways. Cell Commun Signal 2023; 21:252. [PMID: 37735675 PMCID: PMC10512514 DOI: 10.1186/s12964-023-01282-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/17/2023] [Indexed: 09/23/2023] Open
Abstract
Acute myeloid leukemia (AML) comprises a multifarious and heterogeneous array of illnesses characterized by the anomalous proliferation of myeloid cells in the bone marrow microenvironment (BMM). The BMM plays a pivotal role in promoting AML progression, angiogenesis, and metastasis. The immune checkpoints (ICs) and metabolic processes are the key players in this process. In this review, we delineate the metabolic and immune checkpoint characteristics of the AML BMM, with a focus on the roles of BMM cells e.g. tumor-associated macrophages, natural killer cells, dendritic cells, metabolic profiles and related signaling pathways. We also discuss the signaling pathways stimulated in AML cells by BMM factors that lead to AML progression. We then delve into the roles of immune checkpoints in AML angiogenesis, metastasis, and cell proliferation, including co-stimulatory and inhibitory ICs. Lastly, we discuss the potential therapeutic approaches and future directions for AML treatment, emphasizing the potential of targeting metabolic and immune checkpoints in AML BMM as prognostic and therapeutic targets. In conclusion, the modulation of these processes through the use of directed drugs opens up new promising avenues in combating AML. Thereby, a comprehensive elucidation of the significance of these AML BMM cells' metabolic and immune checkpoints and signaling pathways on leukemic cells can be undertaken in the future investigations. Additionally, these checkpoints and cells should be considered plausible multi-targeted therapies for AML in combination with other conventional treatments in AML. Video Abstract.
Collapse
Affiliation(s)
- Maryam Bakhtiyari
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Mahsa Liaghat
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Fatemeh Aziziyan
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hooriyeh Shapourian
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sheida Yahyazadeh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maedeh Alipour
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Shaghayegh Shahveh
- American Association of Naturopath Physician (AANP), Washington, DC, USA
| | - Fahimeh Maleki-Sheikhabadi
- Department of Hematology and Blood Banking, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Halimi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Razieh Forghaniesfidvajani
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Majid Pornour
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD, USA.
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA.
| |
Collapse
|
20
|
Fattori S, Le Roy A, Houacine J, Robert L, Abes R, Gorvel L, Granjeaud S, Rouvière MS, Ben Amara A, Boucherit N, Tarpin C, Pakradouni J, Charafe-Jauffret E, Houvenaeghel G, Lambaudie E, Bertucci F, Rochigneux P, Gonçalves A, Foussat A, Chrétien AS, Olive D. CD25high Effector Regulatory T Cells Hamper Responses to PD-1 Blockade in Triple-Negative Breast Cancer. Cancer Res 2023; 83:3026-3044. [PMID: 37379438 PMCID: PMC10502453 DOI: 10.1158/0008-5472.can-23-0613] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/19/2023] [Accepted: 06/26/2023] [Indexed: 06/30/2023]
Abstract
Regulatory T cells (Treg) impede effective antitumor immunity. However, the role of Tregs in the clinical outcomes of patients with triple-negative breast cancer (TNBC) remains controversial. Here, we found that an immunosuppressive TNBC microenvironment is marked by an imbalance between effector αβCD8+ T cells and Tregs harboring hallmarks of highly suppressive effector Tregs (eTreg). Intratumoral eTregs strongly expressed PD-1 and persisted in patients with TNBC resistant to PD-1 blockade. Importantly, CD25 was the most selective surface marker of eTregs in primary TNBC and metastases compared with other candidate targets for eTreg depletion currently being evaluated in trials for patients with advanced TNBC. In a syngeneic TNBC model, the use of Fc-optimized, IL2 sparing, anti-CD25 antibodies synergized with PD-1 blockade to promote systemic antitumor immunity and durable tumor growth control by increasing effector αβCD8+ T-cell/Treg ratios in tumors and in the periphery. Together, this study provides the rationale for the clinical translation of anti-CD25 therapy to improve PD-1 blockade responses in patients with TNBC. SIGNIFICANCE An imbalance between effector CD8+ T cells and CD25high effector Tregs marks immunosuppressive microenvironments in αPD-1-resistant TNBC and can be reversed through effector Treg depletion to increase αPD-1 efficacy.
Collapse
Affiliation(s)
- Stéphane Fattori
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM105, Marseille, France
- Cancer Immunomonitoring Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Marseille, France
| | | | | | - Lucie Robert
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM105, Marseille, France
| | - Riad Abes
- Alderaan Biotechnology, Paris, France
| | - Laurent Gorvel
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM105, Marseille, France
- Cancer Immunomonitoring Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Marseille, France
| | - Samuel Granjeaud
- Systems Biology Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM105, Marseille, France
| | - Marie-Sarah Rouvière
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM105, Marseille, France
- Cancer Immunomonitoring Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Marseille, France
| | - Amira Ben Amara
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM105, Marseille, France
- Cancer Immunomonitoring Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Marseille, France
| | - Nicolas Boucherit
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM105, Marseille, France
- Cancer Immunomonitoring Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Marseille, France
| | - Carole Tarpin
- Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Jihane Pakradouni
- Department of Clinical Research and Innovations, Institut Paoli-Calmettes, Marseille, France
| | - Emmanuelle Charafe-Jauffret
- Department of Pathology, Institut Paoli-Calmettes, Marseille, France
- Faculty of Medical and Paramedic Sciences, Aix-Marseille University, UM105, Marseille, France
| | - Gilles Houvenaeghel
- Faculty of Medical and Paramedic Sciences, Aix-Marseille University, UM105, Marseille, France
- Department of Surgical Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Eric Lambaudie
- Department of Pathology, Institut Paoli-Calmettes, Marseille, France
- Faculty of Medical and Paramedic Sciences, Aix-Marseille University, UM105, Marseille, France
| | - François Bertucci
- Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France
- Faculty of Medical and Paramedic Sciences, Aix-Marseille University, UM105, Marseille, France
| | - Philippe Rochigneux
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM105, Marseille, France
- Cancer Immunomonitoring Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Marseille, France
- Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Anthony Gonçalves
- Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France
- Faculty of Medical and Paramedic Sciences, Aix-Marseille University, UM105, Marseille, France
| | | | - Anne-Sophie Chrétien
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM105, Marseille, France
- Cancer Immunomonitoring Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Marseille, France
- Faculty of Medical and Paramedic Sciences, Aix-Marseille University, UM105, Marseille, France
| | - Daniel Olive
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM105, Marseille, France
- Cancer Immunomonitoring Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Marseille, France
- Alderaan Biotechnology, Paris, France
- Faculty of Medical and Paramedic Sciences, Aix-Marseille University, UM105, Marseille, France
| |
Collapse
|
21
|
Ma W, Wei S, Long S, Tian EC, McLaughlin B, Jaimes M, Montoya DJ, Viswanath VR, Chien J, Zhang Q, Van Dyke JE, Chen S, Li T. Dynamic evaluation of blood immune cells predictive of response to immune checkpoint inhibitors in NSCLC by multicolor spectrum flow cytometry. Front Immunol 2023; 14:1206631. [PMID: 37638022 PMCID: PMC10449448 DOI: 10.3389/fimmu.2023.1206631] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/20/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Immune checkpoint inhibitors (ICIs) only benefit a subset of cancer patients, underlining the need for predictive biomarkers for patient selection. Given the limitations of tumor tissue availability, flow cytometry of peripheral blood mononuclear cells (PBMCs) is considered a noninvasive method for immune monitoring. This study explores the use of spectrum flow cytometry, which allows a more comprehensive analysis of a greater number of markers using fewer immune cells, to identify potential blood immune biomarkers and monitor ICI treatment in non-small-cell lung cancer (NSCLC) patients. Methods PBMCs were collected from 14 non-small-cell lung cancer (NSCLC) patients before and after ICI treatment and 4 healthy human donors. Using spectrum flow cytometry, 24 immune cell markers were simultaneously monitored using only 1 million PBMCs. The results were also compared with those from clinical flow cytometry and bulk RNA sequencing analysis. Results Our findings showed that the measurement of CD4+ and CD8+ T cells by spectrum flow cytometry matched well with those by clinical flow cytometry (Pearson R ranging from 0.75 to 0.95) and bulk RNA sequencing analysis (R=0.80, P=1.3 x 10-4). A lower frequency of CD4+ central memory cells before treatment was associated with a longer median progression-free survival (PFS) [Not reached (NR) vs. 5 months; hazard ratio (HR)=8.1, 95% confidence interval (CI) 1.5-42, P=0.01]. A higher frequency of CD4-CD8- double-negative (DN) T cells was associated with a longer PFS (NR vs. 4.45 months; HR=11.1, 95% CI 2.2-55.0, P=0.003). ICIs significantly changed the frequency of cytotoxic CD8+PD1+ T cells, DN T cells, CD16+CD56dim and CD16+CD56- natural killer (NK) cells, and CD14+HLDRhigh and CD11c+HLADR + monocytes. Of these immune cell subtypes, an increase in the frequency of CD16+CD56dim NK cells and CD14+HLADRhigh monocytes after treatment compared to before treatment were associated with a longer PFS (NR vs. 5 months, HR=5.4, 95% CI 1.1-25.7, P=0.03; 7.8 vs. 3.8 months, HR=5.7, 95% CI 169 1.0-31.7, P=0.04), respectively. Conclusion Our preliminary findings suggest that the use of multicolor spectrum flow cytometry helps identify potential blood immune biomarkers for ICI treatment, which warrants further validation.
Collapse
Affiliation(s)
- Weijie Ma
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, United States
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine, Dartmouth, NH, United States
| | - Sixi Wei
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Siqi Long
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Eddie C. Tian
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Bridget McLaughlin
- University of California Davis, Flow cytometry Shared Resource, Davis, CA, United States
| | | | - Dennis J. Montoya
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, United States
| | - Varun R. Viswanath
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Jeremy Chien
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, United States
| | - Qianjun Zhang
- Beckman Coulter Life Sciences, San Jose, CA, United States
| | - Jonathan E. Van Dyke
- University of California Davis, Flow cytometry Shared Resource, Davis, CA, United States
| | - Shuai Chen
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, Davis, CA, United States
| | - Tianhong Li
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, United States
- Medical Service, Hematology and Oncology, Veterans Affairs Northern California Health Care System, Mather, CA, United States
| |
Collapse
|
22
|
Abstract
Advances in single-cell proteomics technologies have resulted in high-dimensional datasets comprising millions of cells that are capable of answering key questions about biology and disease. The advent of these technologies has prompted the development of computational tools to process and visualize the complex data. In this review, we outline the steps of single-cell and spatial proteomics analysis pipelines. In addition to describing available methods, we highlight benchmarking studies that have identified advantages and pitfalls of the currently available computational toolkits. As these technologies continue to advance, robust analysis tools should be developed in tandem to take full advantage of the potential biological insights provided by these data.
Collapse
Affiliation(s)
- Sophia M Guldberg
- Department of Otolaryngology-Head and Neck Surgery and Department of Microbiology and Immunology, University of California, San Francisco, California, USA;
- Biomedical Sciences Graduate Program, University of California, San Francisco, California, USA
- Gladstone-UCSF Institute for Genomic Immunology, San Francisco, California, USA
| | - Trine Line Hauge Okholm
- Department of Otolaryngology-Head and Neck Surgery and Department of Microbiology and Immunology, University of California, San Francisco, California, USA;
- Gladstone-UCSF Institute for Genomic Immunology, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
| | - Elizabeth E McCarthy
- Department of Otolaryngology-Head and Neck Surgery and Department of Microbiology and Immunology, University of California, San Francisco, California, USA;
- Biomedical Sciences Graduate Program, University of California, San Francisco, California, USA
- Institute for Human Genetics; Division of Rheumatology, Department of Medicine; Medical Scientist Training Program; and Biological and Medical Informatics Graduate Program, University of California, San Francisco, California, USA
| | - Matthew H Spitzer
- Department of Otolaryngology-Head and Neck Surgery and Department of Microbiology and Immunology, University of California, San Francisco, California, USA;
- Gladstone-UCSF Institute for Genomic Immunology, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
23
|
Park SH, Bae MH, Park CJ, Cho YU, Jang S, Lee JH, Lee KH. Effect of changes in lymphocyte subsets at diagnosis in acute myeloid leukemia on prognosis: association with complete remission rates and relapse free survivals. J Hematop 2023; 16:73-84. [PMID: 38175440 DOI: 10.1007/s12308-023-00536-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/26/2023] [Indexed: 03/09/2023] Open
Abstract
We prospectively investigated whether the characteristics of lymphocyte subsets at diagnosis in acute myeloid leukemia (AML) patients are different from healthy controls and affect treatment outcomes. A total of 91 AML patients classified into 3 genetic risk subgroups (favorable/intermediate/poor) according to 2022 NCCN guidelines were enrolled. We measured lymphocyte subsets by flow cytometry with peripheral blood samples at diagnosis and compared results with healthy controls. Influences of lymphocyte subsets on complete remission (CR) rates and survivals were also evaluated. AML patients had significantly lower numbers and proportions of CD56dimCD16+ natural killer (NK) cells, central memory T cells, and regulatory T cells than healthy controls. Higher proportion of helper/inducer T cells, CD4+CD31+ naïve T cells, and decreased proportion of NK cells significantly increased CR rates in 65 non-promyelocytic leukemia patients (P = 0.034, 0.027, and 0.019, respectively), and it was also significant in multivariable analysis with age/risk adjusted (P = 0.014, 0.016, and 0.045, respectively). NK cells < 4.8% of lymphocytes demonstrated significantly shorter relapse free survivals (RFS) in both univariate and multivariate analyses with risk adjusted (P = 0.006 and 0.037, respectively). AML patients showed significant lower numbers of CD56dimCD16+ NK cells, central memory T cells, and regulatory T cells than healthy controls at diagnosis. Higher proportion of helper/inducer T cells and CD4+CD31+ naïve T cells and decreased proportion of NK cells at diagnosis were independent factor of increasing probability of CR, and proportion of NK cells < 4.8% at diagnosis had adverse impact in RFS.
Collapse
Affiliation(s)
- Sang Hyuk Park
- Department of Laboratory Medicine, University of Ulsan College of Medicine, Ulsan University Hospital, 877, Bangeojin Sunhwando-ro, Dong-gu, Ulsan, South Korea.
| | - Mi-Hyun Bae
- Department of Laboratory Medicine, Hanyang University College of Medicine, Hanyang University Guri Hospital, 153, Gyeongchun-ro, Guri, Gyeonggi-do, South Korea
| | - Chan-Jeoung Park
- Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea.
| | - Young-Uk Cho
- Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Seongsoo Jang
- Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Je-Hwan Lee
- Department of Hematology, University of Ulsan College of Medicine and Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, South Korea
| | - Kyoo-Hyung Lee
- Department of Hematology, University of Ulsan College of Medicine and Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, South Korea
| |
Collapse
|
24
|
Cocker ATH, Guethlein LA, Parham P. The CD56-CD16+ NK cell subset in chronic infections. Biochem Soc Trans 2023:233017. [PMID: 37140380 DOI: 10.1042/bst20221374] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023]
Abstract
Long-term human diseases can shape the immune system, and natural killer (NK) cells have been documented to differentiate into distinct subsets specifically associated with chronic virus infections. One of these subsets found in large frequencies in HIV-1 are the CD56-CD16+ NK cells, and this population's association with chronic virus infections is the subject of this review. Human NK cells are classically defined by CD56 expression, yet increasing evidence supports the NK cell status of the CD56-CD16+ subset which we discuss herein. We then discuss the evidence linking CD56-CD16+ NK cells to chronic virus infections, and the potential immunological pathways that are altered by long-term infection that could be inducing the population's differentiation. An important aspect of NK cell regulation is their interaction with human leukocyte antigen (HLA) class-I molecules, and we highlight work that indicates both virus and genetic-mediated variations in HLA expression that have been linked to CD56-CD16+ NK cell frequencies. Finally, we offer a perspective on CD56-CD16+ NK cell function, taking into account recent work that implies the subset is comparable to CD56+CD16+ NK cell functionality in antibody-dependent cell cytotoxicity response, and the definition of CD56-CD16+ NK cell subpopulations with varying degranulation capacity against target cells.
Collapse
Affiliation(s)
- Alexander T H Cocker
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, U.S.A
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, U.S.A
| | - Lisbeth A Guethlein
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, U.S.A
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, U.S.A
| | - Peter Parham
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, U.S.A
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, U.S.A
| |
Collapse
|
25
|
Ty M, Sun S, Callaway PC, Rek J, Press KD, van der Ploeg K, Nideffer J, Hu Z, Klemm S, Greenleaf W, Donato M, Tukwasibwe S, Arinaitwe E, Nankya F, Musinguzi K, Andrew D, de la Parte L, Mori DM, Lewis SN, Takahashi S, Rodriguez-Barraquer I, Greenhouse B, Blish C, Utz PJ, Khatri P, Dorsey G, Kamya M, Boyle M, Feeney M, Ssewanyana I, Jagannathan P. Malaria-driven expansion of adaptive-like functional CD56-negative NK cells correlates with clinical immunity to malaria. Sci Transl Med 2023; 15:eadd9012. [PMID: 36696483 PMCID: PMC9976268 DOI: 10.1126/scitranslmed.add9012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023]
Abstract
Natural killer (NK) cells likely play an important role in immunity to malaria, but the effect of repeated malaria on NK cell responses remains unclear. Here, we comprehensively profiled the NK cell response in a cohort of 264 Ugandan children. Repeated malaria exposure was associated with expansion of an atypical, CD56neg population of NK cells that differed transcriptionally, epigenetically, and phenotypically from CD56dim NK cells, including decreased expression of PLZF and the Fc receptor γ-chain, increased histone methylation, and increased protein expression of LAG-3, KIR, and LILRB1. CD56neg NK cells were highly functional and displayed greater antibody-dependent cellular cytotoxicity than CD56dim NK cells. Higher frequencies of CD56neg NK cells were associated with protection against symptomatic malaria and high parasite densities. After marked reductions in malaria transmission, frequencies of these cells rapidly declined, suggesting that continuous exposure to Plasmodium falciparum is required to maintain this modified, adaptive-like NK cell subset.
Collapse
Affiliation(s)
- Maureen Ty
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Shenghuan Sun
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Perri C Callaway
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - John Rek
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | | | - Jason Nideffer
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Zicheng Hu
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Sandy Klemm
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Michele Donato
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA, USA
| | | | | | | | | | - Dean Andrew
- Queensland Institute for Medical Research, Queensland, Australia
| | | | | | | | - Saki Takahashi
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | | | - Bryan Greenhouse
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Catherine Blish
- Department of Medicine, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - P J Utz
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Purvesh Khatri
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA, USA
| | - Grant Dorsey
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Moses Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University, Kampala, Uganda
| | - Michelle Boyle
- Queensland Institute for Medical Research, Queensland, Australia
| | - Margaret Feeney
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | | | - Prasanna Jagannathan
- Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| |
Collapse
|
26
|
Pereira MSF, Sorathia K, Sezgin Y, Thakkar A, Maguire C, Collins PL, Mundy-Bosse BL, Lee DA, Naeimi Kararoudi M. Deletion of Glycogen Synthase Kinase 3 Beta Reprograms NK Cell Metabolism. Cancers (Basel) 2023; 15:705. [PMID: 36765663 PMCID: PMC9913837 DOI: 10.3390/cancers15030705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/13/2023] [Indexed: 01/27/2023] Open
Abstract
Loss of cytotoxicity and defective metabolism are linked to glycogen synthase kinase 3 beta (GSK3β) overexpression in natural killer (NK) cells from patients with acute myeloid leukemia or from healthy donors after expansion ex vivo with IL-15. Drug inhibition of GSK3β in these NK cells improves their maturation and cytotoxic activity, but the mechanisms of GSK3β-mediated dysfunction have not been well studied. Here, we show that expansion of NK cells with feeder cells expressing membrane-bound IL-21 maintained normal GSK3β levels, allowing us to study GSK3β function using CRISPR gene editing. We deleted GSK3B and expanded paired-donor knockout and wild-type (WT) NK cells and then assessed transcriptional and functional alterations induced by loss of GSK3β. Surprisingly, our data showed that deletion of GSK3B did not alter cytotoxicity, cytokine production, or maturation (as determined by CD57 expression). However, GSK3B-KO cells demonstrated significant changes in expression of genes related to rRNA processing, cell proliferation, and metabolic function, suggesting possible metabolic reprogramming. Next, we found that key genes downregulated in GSK3B-KO NK cells were upregulated in GSK3β-overexpressing NK cells from AML patients, confirming this correlation in a clinical setting. Lastly, we measured cellular energetics and observed that GSK3B-KO NK cells exhibited 150% higher spare respiratory capacity, a marker of metabolic fitness. These findings suggest a role for GSK3β in regulating NK cell metabolism.
Collapse
Affiliation(s)
- Marcelo S. F. Pereira
- Center for Childhood Cancer and Blood Disease, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Kinnari Sorathia
- Center for Childhood Cancer and Blood Disease, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Yasemin Sezgin
- Center for Childhood Cancer and Blood Disease, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Aarohi Thakkar
- Center for Childhood Cancer and Blood Disease, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Colin Maguire
- Center for Childhood Cancer and Blood Disease, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Patrick L. Collins
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Bethany L. Mundy-Bosse
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH 43210, USA
| | - Dean A. Lee
- Center for Childhood Cancer and Blood Disease, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Meisam Naeimi Kararoudi
- Center for Childhood Cancer and Blood Disease, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
27
|
Silla L. Peripheral blood persistence and expansion of transferred non-genetically modified Natural Killer cells might not be necessary for clinical activity. IMMUNOTHERAPY ADVANCES 2023; 3:ltac024. [PMID: 36726770 PMCID: PMC9885937 DOI: 10.1093/immadv/ltac024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that react without previous exposition to virus infected or malignant cells and stimulate adaptive immune response to build a long-lasting immunity against it. To that end, tissue resident NK cells are predominantly regulatory as opposed to cytotoxic. In the hematopoietic stem cell transplant (HSCT) setting, which curative potential relies on the graft versus leukemia effect, NK cells are known to play a significant role. This knowledge has paved the way to the active investigation on its anti-tumor effect outside the stem cell transplant scenario. Based on the relevant literature on the adoptive transfer of non-genetically modified NK cells for the treatment of relapsed/refractory acute leukemia and on our own experience, we discuss the role of donor cell peripheral blood persistence and expansion and its lack of correlation with anti-leukemia activity.
Collapse
Affiliation(s)
- Lucia Silla
- Correspondence: Rua Ramiro, Barcelos #2350, Universidade Federal do Rio, Grande do Sul, Porto Alegre, RS 90035-903, Brazil;
| |
Collapse
|
28
|
Serroukh Y, Hébert J, Busque L, Mercier F, Rudd CE, Assouline S, Lachance S, Delisle JS. Blasts in context: the impact of the immune environment on acute myeloid leukemia prognosis and treatment. Blood Rev 2023; 57:100991. [PMID: 35941029 DOI: 10.1016/j.blre.2022.100991] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/22/2022] [Accepted: 07/13/2022] [Indexed: 01/28/2023]
Abstract
Acute myeloid leukemia (AML) is a cancer that originates from the bone marrow (BM). Under physiological conditions, the bone marrow supports the homeostasis of immune cells and hosts memory lymphoid cells. In this review, we summarize our present understanding of the role of the immune microenvironment on healthy bone marrow and on the development of AML, with a focus on T cells and other lymphoid cells. The types and function of different immune cells involved in the AML microenvironment as well as their putative role in the onset of disease and response to treatment are presented. We also describe how the immune context predicts the response to immunotherapy in AML and how these therapies modulate the immune status of the bone marrow. Finally, we focus on allogeneic stem cell transplantation and summarize the current understanding of the immune environment in the post-transplant bone marrow, the factors associated with immune escape and relevant strategies to prevent and treat relapse.
Collapse
Affiliation(s)
- Yasmina Serroukh
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, Canada; Erasmus Medical center Cancer Institute, University Medical Center Rotterdam, Department of Hematology, Rotterdam, the Netherlands; Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada.
| | - Josée Hébert
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, Canada; Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada; The Quebec Leukemia Cell Bank, Canada
| | - Lambert Busque
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, Canada; Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada
| | - François Mercier
- Division of Hematology and Experimental Medicine, Department of Medicine, McGill University, 3755 Côte-Sainte-Catherine Road, Montreal, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte-Sainte-Catherine Road, Montreal, Canada
| | - Christopher E Rudd
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, Canada; Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada
| | - Sarit Assouline
- Division of Hematology and Experimental Medicine, Department of Medicine, McGill University, 3755 Côte-Sainte-Catherine Road, Montreal, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte-Sainte-Catherine Road, Montreal, Canada
| | - Silvy Lachance
- Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada
| | - Jean-Sébastien Delisle
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, Canada; Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada
| |
Collapse
|
29
|
Cianga VA, Rusu C, Pavel-Tanasa M, Dascalescu A, Danaila C, Harnau S, Aanei CM, Cianga P. Combined flow cytometry natural killer immunophenotyping and KIR/HLA-C genotyping reveal remarkable differences in acute myeloid leukemia patients, but suggest an overall impairment of the natural killer response. Front Med (Lausanne) 2023; 10:1148748. [PMID: 36960339 PMCID: PMC10028202 DOI: 10.3389/fmed.2023.1148748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/13/2023] [Indexed: 03/09/2023] Open
Abstract
Introduction Natural killer (NK) cells are key anti-tumor effectors of the innate immunity. Phenotypic differences allow us to discriminate in between three functional stages of maturation, named immature, mature and hypermature that are distinctive in terms of receptor expression, cytokine secretion, cytotoxic properties and organ trafficking. NKs display an impressive repertoire of highly polymorphic germline encoded receptors that can be either activating, triggering the effector's function, or inhibitory, limiting the immune response. In our study, we have investigated peripheral blood NK cells of acute myeloid leukemia (AML) patients. Methods The Killer Immunoglobulin-like receptors (KIRs) and the HLA-C genotypes were assessed, as HLA-C molecules are cognate antigens for inhibitory KIRs. Results The AA mainly inhibitory KIR haplotype was found in a higher proportion in AML, while a striking low frequency of the 2DS3 characterized the mainly activating Bx haplotype. Flow cytometry immunophenotyping evidenced a lower overall count of NK cells in AML versus healthy controls, with lower percentages of the immature and mature subpopulations, but with a markedly increase of the hypermature NKs. The analysis of the KIR2DL1, KIR2DL2, KIR2DL3, KIR3DL1, and NKG2A inhibitory receptors surface expression revealed a remarkable heterogeneity. However, an overall trend for a higher expression in AML patients could be noticed in all maturation subpopulations. Some of the AML patients with complex karyotypes or displaying a FLT3 gene mutation proved to be extreme outliers in terms of NK cells percentages or inhibitory receptors expression. Discussion We conclude that while the genetic background investigation in AML offers important pieces of information regarding susceptibility to disease or prognosis, it is flow cytometry that is able to offer details of finesse in terms of NK numbers and phenotypes, necessary for an adequate individual evaluation of these patients.
Collapse
Affiliation(s)
- Vlad Andrei Cianga
- Department of Hematology, University of Medicine and Pharmacy “Grigore T. Popa”, Iasi, Romania
- Department of Clinical Hematology, Regional Institute of Oncology, Iasi, Romania
| | - Cristina Rusu
- Department of Genetics, University of Medicine and Pharmacy “Grigore T. Popa”, Iasi, Romania
- *Correspondence: Cristina Rusu,
| | - Mariana Pavel-Tanasa
- Department of Immunology, University of Medicine and Pharmacy “Grigore T. Popa”, Iasi, Romania
| | - Angela Dascalescu
- Department of Hematology, University of Medicine and Pharmacy “Grigore T. Popa”, Iasi, Romania
- Department of Clinical Hematology, Regional Institute of Oncology, Iasi, Romania
| | - Catalin Danaila
- Department of Hematology, University of Medicine and Pharmacy “Grigore T. Popa”, Iasi, Romania
- Department of Clinical Hematology, Regional Institute of Oncology, Iasi, Romania
| | - Sebastian Harnau
- Department of Immunology, University of Medicine and Pharmacy “Grigore T. Popa”, Iasi, Romania
| | - Carmen-Mariana Aanei
- Laboratory of Hematology, Nord Hospital, CHU Saint Etienne, Cedex2, Saint-Étienne, France
- INSERM U1059-SAINBIOSE, Université de Lyon, Saint-Étienne, France
| | - Petru Cianga
- Department of Immunology, University of Medicine and Pharmacy “Grigore T. Popa”, Iasi, Romania
- Petru Cianga,
| |
Collapse
|
30
|
A blinded multicenter investigation: Accentuated NK lymphocyte CD335 (NKp46) expression predicts reproductive failures after IVF. Immunol Lett 2022; 251-252:47-55. [PMID: 36265608 DOI: 10.1016/j.imlet.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/22/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
Abstract
The peripheral blood NK cell diversity is highly complex. Recent studies have described more than a thousand phenotypes sharing NK cell receptors (NKRs), across the leukocyte lineages. Previously, we have found that accentuated NK p46 phenotype has prognostic value for NK cytotoxicity status, and is characteristic for patients with recurrent implantation failure (RIF). In a blinded investigation we studied blood samples from IVF women before embryo transfer (pre-implantation genetic tested [PGT] embryos n = 116; not tested embryos n = 219). We studied NKp46 expression by flow cytometry and anti-cardiolipin antibody (aCL) levels. aCL results were transmitted to the clinic but NKp46 expression was blinded (for us and for the clinic) and not analyzed before termination of the study (end of last pregnancy). Association of NKp46 phenotype with clinical pregnancy rate (CPR), pregnancy failure (PF) rate and life birth rate (LBR) were analyzed. aCL positive and IvIg treated cases were excluded. IVF success was dependent on p46 NK phenotype in patients with PGT embryos. Elevated p46 expression on NK (>93%) as well as decreased (<66%) significantly reduce CPR (OR 12.7 and 3.8) without affecting pregnancy failure frequency. Both accentuations (taken together) resulted in a significant reduction of LBR (OR 3.9 p = 0.019) compared with non-accentuated phenotypes (p46 levels 66-93%). Elevated NK cell levels (>14.5% weakly) were associated with PF (OR 3.1 p = 0.069), but not significantly with reduced LBR. In contrast, numbers of NKCD335+ lymphocytes (>11.5%) were a significant predictor of PF (OR-4.0 p<0.05) and decreased LBR (OR 2.1 p = 0.06). At the same time, accentuated numbers of NKCD335neg lymphocytes (<0.7 and >4%) were also associated with decreased LBR (OR 2,65 p = 0.05). In patients with NKCD335++ numbers (<5 and >21%), we found a weakly association with IVF failure. We found similar associations in IVF patients without PGT -A but at lower significance levels regardless the higher number of patients. Impact of NKp46 phenotype for IVF success was significant in patients with donor's ET and almost imperceptible in patients > 35y.o. with own embryo transfer. Accentuated increased or decreased CD335 expression on NK was associated with embryo implantation failure. Balanced CD335 levels form a condition favorable for implantation. Elevated numbers of p46+NK (CD3-CD56+CD335+) predicts pregnancy failures at higher significance levels than elevated NK cell numbers. Elevated numbers of p46negNK (CD3-CD56+CD335-) indicate reduced LBR. Accentuation of p46 expression on NK cells is associated with reproductive failures. In combination with PGD it provides a powerful prediction algorithm and treatment option.
Collapse
|
31
|
Ben Amara A, Rouviere MS, Fattori S, Wlosik J, Gregori E, Boucherit N, Bernard PL, Nunès JA, Vey N, Luche H, Gorvel L, Olive D, Chretien AS. High-throughput mass cytometry staining for deep phenotyping of human natural killer cells. STAR Protoc 2022; 3:101768. [PMID: 36269638 PMCID: PMC9589031 DOI: 10.1016/j.xpro.2022.101768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/29/2022] [Accepted: 09/15/2022] [Indexed: 11/06/2022] Open
Abstract
This protocol details the step-by-step procedure for in-depth immune phenotyping of peripheral blood natural killer (NK) cells from clinical samples by mass cytometry. The protocol consists of three main steps: PBMC incubation with a mix of metal-conjugated antibodies for extracellular phenotyping followed by fixation, permeabilization and incubation with a mix of metal-conjugated antibodies for staining of intracellular proteins, and sample acquisition on a mass cytometer. High-dimensional analysis enables the visualization of NK cell subsets and their phenotypical characteristics. For complete details on the use and execution of this protocol, please refer to Chretien et al. (2021).
Collapse
Affiliation(s)
- Amira Ben Amara
- Immunomonitoring Department, Institut Paoli-Calmettes, 13009 Marseille, France,Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM105, 13009 Marseille, France
| | - Marie-Sarah Rouviere
- Immunomonitoring Department, Institut Paoli-Calmettes, 13009 Marseille, France,Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM105, 13009 Marseille, France
| | - Stéphane Fattori
- Immunomonitoring Department, Institut Paoli-Calmettes, 13009 Marseille, France,Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM105, 13009 Marseille, France
| | - Julia Wlosik
- Immunomonitoring Department, Institut Paoli-Calmettes, 13009 Marseille, France,Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM105, 13009 Marseille, France
| | - Emilie Gregori
- Centre d'Immunophénomique–Luminy (Ciphe), Inserm US012, CNRS UMS3367, Aix-Marseille University, 13009 Marseille, France
| | - Nicolas Boucherit
- Immunomonitoring Department, Institut Paoli-Calmettes, 13009 Marseille, France,Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM105, 13009 Marseille, France
| | - Pierre-Louis Bernard
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM105, 13009 Marseille, France
| | - Jacques A. Nunès
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM105, 13009 Marseille, France
| | - Norbert Vey
- Hematology Department, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, 13009 Marseille, France
| | - Herve Luche
- Centre d'Immunophénomique–Luminy (Ciphe), Inserm US012, CNRS UMS3367, Aix-Marseille University, 13009 Marseille, France
| | - Laurent Gorvel
- Immunomonitoring Department, Institut Paoli-Calmettes, 13009 Marseille, France,Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM105, 13009 Marseille, France,Corresponding author
| | - Daniel Olive
- Immunomonitoring Department, Institut Paoli-Calmettes, 13009 Marseille, France,Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM105, 13009 Marseille, France,Corresponding author
| | - Anne-Sophie Chretien
- Immunomonitoring Department, Institut Paoli-Calmettes, 13009 Marseille, France,Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM105, 13009 Marseille, France,Corresponding author
| |
Collapse
|
32
|
Caprioli C, Nazari I, Milovanovic S, Pelicci PG. Single-Cell Technologies to Decipher the Immune Microenvironment in Myeloid Neoplasms: Perspectives and Opportunities. Front Oncol 2022; 11:796477. [PMID: 35186713 PMCID: PMC8847379 DOI: 10.3389/fonc.2021.796477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/31/2021] [Indexed: 11/26/2022] Open
Abstract
Myeloid neoplasms (MN) are heterogeneous clonal disorders arising from the expansion of hematopoietic stem and progenitor cells. In parallel with genetic and epigenetic dynamics, the immune system plays a critical role in modulating tumorigenesis, evolution and therapeutic resistance at the various stages of disease progression. Single-cell technologies represent powerful tools to assess the cellular composition of the complex tumor ecosystem and its immune environment, to dissect interactions between neoplastic and non-neoplastic components, and to decipher their functional heterogeneity and plasticity. In addition, recent progress in multi-omics approaches provide an unprecedented opportunity to study multiple molecular layers (DNA, RNA, proteins) at the level of single-cell or single cellular clones during disease evolution or in response to therapy. Applying single-cell technologies to MN holds the promise to uncover novel cell subsets or phenotypic states and highlight the connections between clonal evolution and immune escape, which is crucial to fully understand disease progression and therapeutic resistance. This review provides a perspective on the various opportunities and challenges in the field, focusing on key questions in MN research and discussing their translational value, particularly for the development of more efficient immunotherapies.
Collapse
Affiliation(s)
- Chiara Caprioli
- Department of Experimental Oncology, IRCCS Istituto Europeo di Oncologia, Milan, Italy
- Scuola Europea di Medicina Molecolare (SEMM) European School of Molecular Medicine, Milan, Italy
- Hematology and Bone Marrow Transplant Unit, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Iman Nazari
- Department of Experimental Oncology, IRCCS Istituto Europeo di Oncologia, Milan, Italy
- Scuola Europea di Medicina Molecolare (SEMM) European School of Molecular Medicine, Milan, Italy
| | - Sara Milovanovic
- Department of Experimental Oncology, IRCCS Istituto Europeo di Oncologia, Milan, Italy
- Scuola Europea di Medicina Molecolare (SEMM) European School of Molecular Medicine, Milan, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, IRCCS Istituto Europeo di Oncologia, Milan, Italy
- Scuola Europea di Medicina Molecolare (SEMM) European School of Molecular Medicine, Milan, Italy
| |
Collapse
|
33
|
Cao WJ, Zhang XC, Wan LY, Li QY, Mu XY, Guo AL, Zhou MJ, Shen LL, Zhang C, Fan X, Jiao YM, Xu RN, Zhou CB, Yuan JH, Wang SQ, Wang FS, Song JW. Immune Dysfunctions of CD56 neg NK Cells Are Associated With HIV-1 Disease Progression. Front Immunol 2022; 12:811091. [PMID: 35069597 PMCID: PMC8777256 DOI: 10.3389/fimmu.2021.811091] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/14/2021] [Indexed: 12/25/2022] Open
Abstract
Background Populations of natural killer cells lacking CD56 expression [CD56neg natural killer (NK) cells] have been demonstrated to expand during human immunodeficiency virus (HIV)-1 infection. However, their phenotypic and functional characteristics have not been systematically analyzed, and their roles during disease progression remain poorly understood. Methods In this study, 84 donors, namely 34 treatment-naïve HIV-1-infected patients (TNs), 29 HIV-1-infected patients with successful antiretroviral therapy (ARTs), and 21 healthy controls (HCs), were enrolled. The phenotypic and functional characteristics of CD56neg NK cells were analyzed using single-cell RNA-sequencing (scRNA-seq) and flow cytometry. A potential link between the characteristics of CD56neg NK cells and the clinical parameters associated with HIV-1 disease progression was examined. Results The frequency of the CD56neg NK cell population was significantly increased in TNs, which could be partially rescued by ART. Flow cytometry analyses revealed that CD56neg NK cells were characterized by high expression of CD39, TIGIT, CD95, and Ki67 compared to CD56dim NK cells. In vitro assays revealed reduced IFN-γ and TNF-α secretion, as well as decreased expression of granzyme B and perforin in CD56neg NK cells. In line with the data obtained by flow cytometry, scRNA-seq analysis further demonstrated impaired cytotoxic activities of CD56neg NK cells. Notably, a negative correlation was observed between CD39, CD95, and Ki67 expression levels in CD56neg NK cells and CD4+ T cell counts. Conclusions The results presented in this study indicate that the CD56neg NK cell population expanded in HIV-1-infected individuals is dysfunctional and closely correlates with HIV-1 disease progression.
Collapse
Affiliation(s)
- Wen-Jing Cao
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | | | - Lin-Yu Wan
- Department of Clinical Medicine, Bengbu Medical College, Bengbu, China.,Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Qing-Yu Li
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiu-Ying Mu
- Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - An-Liang Guo
- Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ming-Ju Zhou
- Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Li-Li Shen
- Department of Clinical Medicine, Bengbu Medical College, Bengbu, China.,Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Chao Zhang
- Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xing Fan
- Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Yan-Mei Jiao
- Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ruo-Nan Xu
- Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Chun-Bao Zhou
- Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jin-Hong Yuan
- Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Sheng-Qi Wang
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Fu-Sheng Wang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jin-Wen Song
- Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| |
Collapse
|
34
|
Tettamanti S, Pievani A, Biondi A, Dotti G, Serafini M. Catch me if you can: how AML and its niche escape immunotherapy. Leukemia 2022; 36:13-22. [PMID: 34302116 PMCID: PMC8727297 DOI: 10.1038/s41375-021-01350-x] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023]
Abstract
In spite of the remarkable progress in basic and preclinical studies of acute myeloid leukemia (AML), the five-year survival rate of AML patients remains poor, highlighting the urgent need for novel and synergistic therapies. Over the past decade, increased attention has been focused on identifying suitable immunotherapeutic strategies for AML, and in particular on targeting leukemic cells and their progenitors. However, recent studies have also underlined the important contribution of the leukemic microenvironment in facilitating tumor escape mechanisms leading to disease recurrence. Here, we describe the immunological features of the AML niche, with particular attention to the crosstalk between the AML blasts and the cellular components of the altered tumor microenvironment (TME) and the mechanisms of immune escape that hamper the therapeutic effects of the most advanced treatments. Considering the AML complexity, immunotherapy approaches may benefit from a rational combination of complementary strategies aimed at preventing escape mechanisms without increasing toxicity.
Collapse
Affiliation(s)
- Sarah Tettamanti
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, Monza, Italy
| | - Alice Pievani
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, Monza, Italy
| | - Andrea Biondi
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, Monza, Italy.
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Marta Serafini
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, Monza, Italy
| |
Collapse
|
35
|
Bou-Tayeh B, Laletin V, Salem N, Just-Landi S, Fares J, Leblanc R, Balzano M, Kerdiles YM, Bidaut G, Hérault O, Olive D, Aurrand-Lions M, Walzer T, Nunès JA, Fauriat C. Chronic IL-15 Stimulation and Impaired mTOR Signaling and Metabolism in Natural Killer Cells During Acute Myeloid Leukemia. Front Immunol 2021; 12:730970. [PMID: 34975835 PMCID: PMC8718679 DOI: 10.3389/fimmu.2021.730970] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/24/2021] [Indexed: 11/28/2022] Open
Abstract
Natural Killer (NK) cells are potent anti-leukemic immune effectors. However, they display multiple defects in acute myeloid leukemia (AML) patients leading to reduced anti-tumor potential. Our limited understanding of the mechanisms underlying these defects hampers the development of strategies to restore NK cell potential. Here, we have used a mouse model of AML to gain insight into these mechanisms. We found that leukemia progression resulted in NK cell maturation defects and functional alterations. Next, we assessed NK cell cytokine signaling governing their behavior. We showed that NK cells from leukemic mice exhibit constitutive IL-15/mTOR signaling and type I IFN signaling. However, these cells failed to respond to IL-15 stimulation in vitro as illustrated by reduced activation of the mTOR pathway. Moreover, our data suggest that mTOR-mediated metabolic responses were reduced in NK cells from AML-bearing mice. Noteworthy, the reduction of mTOR-mediated activation of NK cells during AML development partially rescued NK cell metabolic and functional defects. Altogether, our data strongly suggest that NK cells from leukemic mice are metabolically and functionally exhausted as a result of a chronic cytokine activation, at least partially IL-15/mTOR signaling. NK cells from AML patients also displayed reduced IL-2/15Rβ expression and showed cues of reduced metabolic response to IL-15 stimulation in vitro, suggesting that a similar mechanism might occur in AML patients. Our study pinpoints the dysregulation of cytokine stimulation pathways as a new mechanism leading to NK cell defects in AML.
Collapse
Affiliation(s)
- Berna Bou-Tayeh
- Aix-Marseille Université UM105, Centre National de la Recherche Scientifique (CNRS) UMR7258, Inserm UMR1068, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
| | - Vladimir Laletin
- Aix-Marseille Université UM105, Centre National de la Recherche Scientifique (CNRS) UMR7258, Inserm UMR1068, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
| | - Nassim Salem
- Aix-Marseille Université UM105, Centre National de la Recherche Scientifique (CNRS) UMR7258, Inserm UMR1068, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
| | - Sylvaine Just-Landi
- Aix-Marseille Université UM105, Centre National de la Recherche Scientifique (CNRS) UMR7258, Inserm UMR1068, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
- IBiSA Immunomonitoring Platform, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
| | - Joanna Fares
- Aix-Marseille Université UM105, Centre National de la Recherche Scientifique (CNRS) UMR7258, Inserm UMR1068, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
| | - Raphael Leblanc
- Aix-Marseille Université UM105, Centre National de la Recherche Scientifique (CNRS) UMR7258, Inserm UMR1068, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
| | - Marielle Balzano
- Aix-Marseille Université UM105, Centre National de la Recherche Scientifique (CNRS) UMR7258, Inserm UMR1068, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
| | - Yann M. Kerdiles
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France
| | - Ghislain Bidaut
- Aix-Marseille Université UM105, Centre National de la Recherche Scientifique (CNRS) UMR7258, Inserm UMR1068, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
- Cibi Technological Platform, Cancer Research Center of Marseille (CRCM), Marseille, France
| | - Olivier Hérault
- Centre National de la Recherche Scientifique (CNRS) UMR 7292, LNOx Team, François Rabelais University, Tours, France
| | - Daniel Olive
- Aix-Marseille Université UM105, Centre National de la Recherche Scientifique (CNRS) UMR7258, Inserm UMR1068, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
- IBiSA Immunomonitoring Platform, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
| | - Michel Aurrand-Lions
- Aix-Marseille Université UM105, Centre National de la Recherche Scientifique (CNRS) UMR7258, Inserm UMR1068, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
| | - Thierry Walzer
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon, France
| | - Jacques A. Nunès
- Aix-Marseille Université UM105, Centre National de la Recherche Scientifique (CNRS) UMR7258, Inserm UMR1068, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
| | - Cyril Fauriat
- Aix-Marseille Université UM105, Centre National de la Recherche Scientifique (CNRS) UMR7258, Inserm UMR1068, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
- *Correspondence: Cyril Fauriat,
| |
Collapse
|
36
|
Brauneck F, Seubert E, Wellbrock J, Schulze zur Wiesch J, Duan Y, Magnus T, Bokemeyer C, Koch-Nolte F, Menzel S, Fiedler W. Combined Blockade of TIGIT and CD39 or A2AR Enhances NK-92 Cell-Mediated Cytotoxicity in AML. Int J Mol Sci 2021; 22:ijms222312919. [PMID: 34884723 PMCID: PMC8657570 DOI: 10.3390/ijms222312919] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 01/17/2023] Open
Abstract
This study aimed to characterize different natural killer (NK) cell phenotypes on bone marrow and peripheral blood cells from acute myeloid leukemia (AML) patients and healthy donors (HDs). Our data show that CD56dimCD16− and CD56brightCD16− NK cells represent the predominant NK cell subpopulations in AML, while the CD56dimCD16+ NK cells are significantly reduced compared to HDs. Moreover, TIGIT+ and PVRIG+ cells cluster on the CD56dimCD16+ subset whereas CD39+ and CD38+ cells do so on CD56brightCD16− NK cells in AML. Furthermore, functional effects of (co-)blockade of TIGIT and CD39 or A2AR on NK cell functionality were analyzed. These experiments revealed that the single blockade of the TIGIT receptor results in an increased NK-92 cell-mediated killing of AML cells in vitro. Combined targeting of CD39 or A2AR significantly augments the anti-TIGIT-mediated lysis of AML cells. Our data indicate that distinct NK cell subsets in AML exhibit different immunosuppressive patterns (via the TIGIT/PVRIG receptors and the purinergic pathway). In summary, we conclude that TIGIT, CD39, and A2AR constitute relevant inhibitory checkpoints of NK cells in AML patients. A combinatorial blockade synergistically strengthens NK-92 cell-mediated cytotoxicity. As inhibitors of TIGIT, CD39, and A2AR are clinically available, studies on their combined use could be conducted in the near future.
Collapse
Affiliation(s)
- Franziska Brauneck
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.B.); (E.S.); (J.W.); (C.B.)
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany;
| | - Elisa Seubert
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.B.); (E.S.); (J.W.); (C.B.)
| | - Jasmin Wellbrock
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.B.); (E.S.); (J.W.); (C.B.)
| | - Julian Schulze zur Wiesch
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany;
| | - Yinghui Duan
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (Y.D.); (T.M.)
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (Y.D.); (T.M.)
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.B.); (E.S.); (J.W.); (C.B.)
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany;
| | - Stephan Menzel
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany;
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany;
| | - Walter Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.B.); (E.S.); (J.W.); (C.B.)
- Correspondence:
| |
Collapse
|
37
|
Zeng X, Yao D, Liu L, Zhang Y, Lai J, Zhong J, Zha X, Lu Y, Jin Z, Chen S, Li Y, Xu L. Terminal differentiation of bone marrow NK cells and increased circulation of TIGIT + NK cells may be related to poor outcome in acute myeloid leukemia. Asia Pac J Clin Oncol 2021; 18:456-464. [PMID: 34811925 DOI: 10.1111/ajco.13723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/11/2021] [Indexed: 11/30/2022]
Abstract
AIM In order to further understand the feature of natural killer cell (NK) dysfunction in acute myeloid leukemia (AML), The distribution of NK cell subset the expression of the inhibitory receptors immunoglobulin and ITIM domain (TIGIT), killer cell lectin-like receptor (KLRG1), and the expression of maturation marker CD57 in NK cell subsets and their correlation with patient outcomes were analyzed in this study. METHODS We collected peripheral blood (PB) and bone marrow (BM) samples from de novo AML (AML-DN) patients, patients who achieved complete remission after chemotherapy (AML-CR), and healthy individuals. An eight-color flow cytometry panel was used to identify different NK subsets and their expression of TIGIT, CD57 and KLRG1. RESULTS Decreased percentage of CD56dim CD16+ NK cells was found only in the PB of AML-DN and AML-CR patients but not in the BM. The expression frequency of TIGIT and KLRG1 was elevated on NK cells from the PB of AML-DN patients, while it was recovered in AML-CR patients. Moreover, a higher percentage of CD57+ CD56dim CD16+ NK cells, representing a terminally differentiated NK subset with strong cytotoxic capacity but defective replication potential, was detected in the BM of AML-DN patients and predicted sub-optimal survival for patients. CONCLUSION The results indicated that the NK cell subsets in the PB of AML patients had an exhaustion phenotype, while the BM NK cells had a terminally differentiated phenotype, which correlated with short survival for AML patients.
Collapse
Affiliation(s)
- Xiangbo Zeng
- Key Laboratory for Regenerative Medicine of Ministry of Education; Institute of Hematology, School of Medicine; Jinan University, Guangzhou, 510632, China.,Department of Hematology; First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510632, China
| | - Danlin Yao
- Key Laboratory for Regenerative Medicine of Ministry of Education; Institute of Hematology, School of Medicine; Jinan University, Guangzhou, 510632, China.,Department of Hematology; First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510632, China
| | - Lian Liu
- Key Laboratory for Regenerative Medicine of Ministry of Education; Institute of Hematology, School of Medicine; Jinan University, Guangzhou, 510632, China.,Department of Hematology; First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510632, China
| | - Yikai Zhang
- Key Laboratory for Regenerative Medicine of Ministry of Education; Institute of Hematology, School of Medicine; Jinan University, Guangzhou, 510632, China.,Department of Hematology; First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510632, China
| | - Jing Lai
- Department of Hematology; First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510632, China
| | - Jun Zhong
- Department of Hematology; First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510632, China
| | - Xianfeng Zha
- Department of clinical laboratory, First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Yuhong Lu
- Department of Hematology; First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510632, China
| | - Zhenyi Jin
- Key Laboratory for Regenerative Medicine of Ministry of Education; Institute of Hematology, School of Medicine; Jinan University, Guangzhou, 510632, China
| | - Shaohua Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education; Institute of Hematology, School of Medicine; Jinan University, Guangzhou, 510632, China
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education; Institute of Hematology, School of Medicine; Jinan University, Guangzhou, 510632, China.,Department of Hematology; First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510632, China
| | - Ling Xu
- Key Laboratory for Regenerative Medicine of Ministry of Education; Institute of Hematology, School of Medicine; Jinan University, Guangzhou, 510632, China.,Department of Hematology; First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510632, China
| |
Collapse
|
38
|
Inflammaging, an Imbalanced Immune Response That Needs to Be Restored for Cancer Prevention and Treatment in the Elderly. Cells 2021; 10:cells10102562. [PMID: 34685542 PMCID: PMC8533838 DOI: 10.3390/cells10102562] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/03/2021] [Accepted: 09/24/2021] [Indexed: 12/21/2022] Open
Abstract
Nowadays, new advances in society and health have brought an increased life expectancy. However, at the same time, aging comes with complications that impact the development of autoimmunity, neurodegenerative diseases and cancer. These complications affect the quality of life and impact the public health system. Specifically, with aging, a low-grade chronic sterile systemic inflammation with self-reactivity in the absence of acute infection occurs termed inflammaging. Inflammaging is related to an imbalanced immune response that can be either naturally acquired with aging or accelerated due to external triggers. Different molecules, metabolites and inflammatory forms of cell death are highly involved in these processes. Importantly, adoptive cellular immunotherapy is a modality of treatment for cancer patients that administers ex vivo expanded immune cells in the patient. The manipulation of these cells confers them enhanced proinflammatory properties. A general consequence of proinflammatory events is the development of autoimmune diseases and cancer. Herein, we review subsets of immune cells with a pertinent role in inflammaging, relevant proteins involved in these inflammatory events and external triggers that enhance and accelerate these processes. Moreover, we mention relevant preclinical studies that demonstrate associations of chronic inflammation with cancer development.
Collapse
|