1
|
Chen J, Fei S, Chan LWC, Gan X, Shao B, Jiang H, Li S, Kuang P, Liu X, Yang S. Inflammatory Signaling Pathways in Pancreatic β-cell: New Insights into Type 2 Diabetes Pathogenesis. Pharmacol Res 2025:107776. [PMID: 40378943 DOI: 10.1016/j.phrs.2025.107776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/27/2025] [Accepted: 05/10/2025] [Indexed: 05/19/2025]
Abstract
Type 2 diabetes (T2D) is a complex metabolic disorder with a growing global prevalence, and there is a linking between inflammation in pancreatic β-cell and impaired glucose homeostasis which has emerged as a key player in the pathogenesis of T2D. Recent advances in research have provided new insights into various inflammatory signaling cascades in β-cell among which we focus on Toll-like Receptor 4 (TLR4), Nuclear Factor kappa B (NF-κB), Janus Kinase-Signal Transducer and Activator of Transcription (JAK/STAT), Platelet-Derived Growth Factor Receptor α (PDGFR-α), Stimulator of Interferon Genes (STING), and the death receptor TMEM219. TLR4 activation by pathogen- or damage-associated molecular patterns initiates NF-κB and mitogen-activated protein kinase (MAPK) cascades, promoting pro-inflammatory cytokine release and β-cell apoptosis. NF-κB acts as a central hub, integrating metabolic stress signals (e.g., glucolipotoxicity, ER stress) and amplifying inflammatory responses through crosstalk with JAK/STAT and STING pathways. Meanwhile, JAK/STAT signaling exhibits dual roles in β-cell survival and inflammation, influenced by cytokine milieu and feedback regulation. PDGFR-α, traditionally linked to β-cell proliferation, paradoxically contributes to pathological hyperplasia in obesity, while STING activation by cytosolic DNA triggers β-cell senescence and ferroptosis via IRF3/NF-κB. In this review, we synthesize recent advancements of these inflammatory signaling pathways in β-cells, and current therapeutic strategies targeting TLR4/NF-κB inhibitors, JAK/STAT modulators, STING antagonists, and the death receptor TMEM219 are discussed, alongside challenges in pathway specificity and clinical translation. Understanding these inflammatory signaling pathways and their interactions in pancreatic β-cell is essential for the development of novel therapeutic strategies to prevent or treat T2D.
Collapse
Affiliation(s)
- Jie Chen
- Department of Respiratory Medicine, Huangshi Maternity and Children's Health Hospital, Affiliated Maternity and Children's Health Hospital of Hubei Polytechnic University, Huangshi Key Laboratory of Birth Defects Prevention, Huangshi, 435000, Hubei, PR China
| | - Shinuan Fei
- Pediatrics department, Huangshi maternal and Child Health Care Hospital, Affiliated Maternity and Children's Health Hospital of Hubei Polytechnic University, Huangshi Key Laboratory of Birth Defects Prevention, Huangshi, Hubei, 435003, PR China
| | - Lawrence W C Chan
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong 99077, Hong Kong
| | - Xueting Gan
- Department of Pathology, Huangshi maternal and Child Health Care Hospital, Affiliated Maternity and Children's Health Hospital of Hubei Polytechnic University, Huangshi Key Laboratory of Birth Defects Prevention, Huangshi, Hubei, 435003, PR China
| | - Bibo Shao
- Department of Intensive Care Unit, Huangshi Maternity and Children's Health Hospital, Affiliated Maternity and Children's Health Hospital of Hubei Polytechnic University, Huangshi Key Laboratory of Birth Defects Prevention, Huangshi, 435000, Hubei, PR China
| | - Hong Jiang
- Department of Laboratory Medicine, Huangshi Maternity and Children's Health Hospital, Affiliated Maternity and Children's Health Hospital of Hubei Polytechnic University, Huangshi Key Laboratory of Birth Defects Prevention, Huangshi, 435000, Hubei, PR China
| | - Sheng Li
- Department of Laboratory Medicine, Huangshi Maternity and Children's Health Hospital, Affiliated Maternity and Children's Health Hospital of Hubei Polytechnic University, Huangshi Key Laboratory of Birth Defects Prevention, Huangshi, 435000, Hubei, PR China
| | - Peng Kuang
- Huangshi Maternal and Child Health Hospital Huangshi Maternity and Children's Health Hospital, Affiliated Maternity and Children's Health Hospital of Hubei Polytechnic University, Huangshi Key Laboratory of Birth Defects Prevention, Huangshi, 435000, Hubei, PR China
| | - Xin Liu
- Department of Ultrasound Medicine Huangshi Maternity and Children's Health Hospital, Affiliated Maternity and Children's Health Hospital of Hubei Polytechnic University, Huangshi Key Laboratory of Birth Defects Prevention, Huangshi, 435000, Hubei, PR China
| | - Sijun Yang
- Department of Laboratory Medicine, Huangshi Maternity and Children's Health Hospital, Affiliated Maternity and Children's Health Hospital of Hubei Polytechnic University, Huangshi Key Laboratory of Birth Defects Prevention, Huangshi, 435000, Hubei, PR China.
| |
Collapse
|
2
|
Zhang Z, Wang X, Zhao C, Zhu H, Liao X, Tsai HI. STING and metabolism-related diseases: Roles, mechanisms, and applications. Cell Signal 2025; 132:111833. [PMID: 40294833 DOI: 10.1016/j.cellsig.2025.111833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/08/2025] [Accepted: 04/22/2025] [Indexed: 04/30/2025]
Abstract
The stimulator of interferon genes (STING) pathway plays a critical role in innate immunity, acting as a central mediator that links cytosolic DNA sensing to inflammatory signaling. STING not only responds to cellular metabolic states but also actively regulates key metabolic processes, including glycolysis, lipid metabolism, and redox balance. This bidirectional interaction underscores the existence of a dynamic feedback mechanism between STING signaling and metabolic pathways, which is essential for maintaining cellular homeostasis. This review provides a comprehensive analysis, beginning with an in-depth overview of the classical STING signaling pathway, followed by a detailed examination of its reciprocal regulation of various metabolic pathways. Additionally, it explores the role and mechanisms of STING signaling in metabolic disorders, including obesity, diabetes, and atherosclerosis. By integrating these insights into the mutual regulation between STING and its metabolism, novel therapeutic strategies targeting this pathway in metabolic diseases have been proposed.
Collapse
Affiliation(s)
- Zhengyang Zhang
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China; School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Xirui Wang
- Department of Biomedical Engineering, School of Medical Imaging, Xuzhou Medical University, Xuzhou 221000, China
| | - Chuangchuang Zhao
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China; School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Haitao Zhu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China; Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Xiang Liao
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China.
| | - Hsiang-I Tsai
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China; Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| |
Collapse
|
3
|
Wang S, Qin L, Liu F, Zhang Z. Unveiling the crossroads of STING signaling pathway and metabolic reprogramming: the multifaceted role of the STING in the TME and new prospects in cancer therapies. Cell Commun Signal 2025; 23:171. [PMID: 40197235 PMCID: PMC11977922 DOI: 10.1186/s12964-025-02169-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/23/2025] [Indexed: 04/10/2025] Open
Abstract
The cGAS-STING signaling pathway serves as a critical link between DNA sensing and innate immunity, and has tremendous potential to improve anti-tumor immunity by generating type I interferons. However, STING agonists have shown decreasing biotherapeutic efficacy in clinical trials. Tumor metabolism, characterized by aberrant nutrient utilization and energy production, is a fundamental hallmark of tumorigenesis. And modulating metabolic pathways in tumor cells has been discovered as a therapeutic strategy for tumors. As research concerning STING progressed, emerging evidence highlights its role in metabolic reprogramming, independent its immune function, indicating metabolic targets as a strategy for STING activation in cancers. In this review, we delve into the interplay between STING and multiple metabolic pathways. We also synthesize current knowledge on the antitumor functions of STING, and the metabolic targets within the tumor microenvironment (TME) that could be exploited for STING activation. This review highlights the necessity for future research to dissect the complex metabolic interactions with STING in various cancer types, emphasizing the potential for personalized therapeutic strategies based on metabolic profiling.
Collapse
Affiliation(s)
- Siwei Wang
- Hepatic Surgery Center, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Lu Qin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Ministry of Education, Huazhong University of Science and Technology), Wuhan, China
| | - Furong Liu
- Hepatic Surgery Center, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Zhanguo Zhang
- Hepatic Surgery Center, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
4
|
Feng W, Arvan P, Liu M. An Essential Role of IER3IP1 in β-Cell Development and Proinsulin Trafficking. Diabetes 2025; 74:455-457. [PMID: 40112159 DOI: 10.2337/dbi24-0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 12/30/2024] [Indexed: 03/22/2025]
Affiliation(s)
- Wenli Feng
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
5
|
Poddar S, Chauvin SD, Archer CH, Qian W, Castillo-Badillo JA, Yin X, Disbennett WM, Miner CA, Holley JA, Naismith TV, Stinson WA, Wei X, Ning Y, Fu J, Ochoa TA, Surve N, Zaver SA, Wodzanowski KA, Balka KR, Venkatraman R, Liu C, Rome K, Bailis W, Shiba Y, Cherry S, Shin S, Semenkovich CF, De Nardo D, Yoh S, Roberson EDO, Chanda SK, Kast DJ, Miner JJ. ArfGAP2 promotes STING proton channel activity, cytokine transit, and autoinflammation. Cell 2025; 188:1605-1622.e26. [PMID: 39947179 PMCID: PMC11928284 DOI: 10.1016/j.cell.2025.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 11/03/2024] [Accepted: 01/17/2025] [Indexed: 02/23/2025]
Abstract
Stimulator of interferon genes (STING) transmits signals downstream of the cytosolic DNA sensor cyclic guanosine monophosphate-AMP synthase (cGAS), leading to transcriptional upregulation of cytokines. However, components of the STING signaling pathway, such as IRF3 and IFNAR1, are not essential for autoinflammatory disease in STING gain-of-function (STING-associated vasculopathy with onset in infancy [SAVI]) mice. Recent discoveries revealed that STING also functions as a proton channel that deacidifies the Golgi apparatus. Because pH impacts Golgi enzyme activity, protein maturation, and trafficking, we hypothesized that STING proton channel activity influences multiple Golgi functions. Here, we show that STING-mediated proton efflux non-transcriptionally regulates Golgi trafficking of protein cargos. This process requires the Golgi-associated protein ArfGAP2, a cell-type-specific dual regulator of STING-mediated proton efflux and signaling. Deletion of ArfGAP2 in hematopoietic and endothelial cells markedly reduces STING-mediated cytokine and chemokine secretion, immune cell activation, and autoinflammatory pathology in SAVI mice. Thus, ArfGAP2 facilitates STING-mediated signaling and cytokine release in hematopoietic cells, significantly contributing to autoinflammatory disease pathogenesis.
Collapse
Affiliation(s)
- Subhajit Poddar
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Samuel D Chauvin
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Christopher H Archer
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Wei Qian
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Jean A Castillo-Badillo
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Xin Yin
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - W Miguel Disbennett
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Cathrine A Miner
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Joe A Holley
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Teresa V Naismith
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - W Alexander Stinson
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Xiaochao Wei
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Yue Ning
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jiayuan Fu
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Trini A Ochoa
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Nehalee Surve
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Shivam A Zaver
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kimberly A Wodzanowski
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Katherine R Balka
- Department of Biochemistry and Molecular Biology, Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Rajan Venkatraman
- Department of Biochemistry and Molecular Biology, Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Canyu Liu
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kelly Rome
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Will Bailis
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yoko Shiba
- Faculty of Science and Engineering, Iwate University, Morioka 020-8551, Japan
| | - Sara Cherry
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sunny Shin
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Clay F Semenkovich
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Dominic De Nardo
- Department of Biochemistry and Molecular Biology, Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Sunnie Yoh
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Elisha D O Roberson
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Sumit K Chanda
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - David J Kast
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110, USA.
| | - Jonathan J Miner
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA; Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Colton Center for Autoimmunity, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Chen Z, Behrendt R, Wild L, Schlee M, Bode C. Cytosolic nucleic acid sensing as driver of critical illness: mechanisms and advances in therapy. Signal Transduct Target Ther 2025; 10:90. [PMID: 40102400 PMCID: PMC11920230 DOI: 10.1038/s41392-025-02174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/14/2025] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
Nucleic acids from both self- and non-self-sources act as vital danger signals that trigger immune responses. Critical illnesses such as acute respiratory distress syndrome, sepsis, trauma and ischemia lead to the aberrant cytosolic accumulation and massive release of nucleic acids that are detected by antiviral innate immune receptors in the endosome or cytosol. Activation of receptors for deoxyribonucleic acids and ribonucleic acids triggers inflammation, a major contributor to morbidity and mortality in critically ill patients. In the past decade, there has been growing recognition of the therapeutic potential of targeting nucleic acid sensing in critical care. This review summarizes current knowledge of nucleic acid sensing in acute respiratory distress syndrome, sepsis, trauma and ischemia. Given the extensive research on nucleic acid sensing in common pathological conditions like cancer, autoimmune disorders, metabolic disorders and aging, we provide a comprehensive summary of nucleic acid sensing beyond critical illness to offer insights that may inform its role in critical conditions. Additionally, we discuss potential therapeutic strategies that specifically target nucleic acid sensing. By examining nucleic acid sources, sensor activation and function, as well as the impact of regulating these pathways across various acute diseases, we highlight the driving role of nucleic acid sensing in critical illness.
Collapse
Affiliation(s)
- Zhaorong Chen
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Rayk Behrendt
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Lennart Wild
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Martin Schlee
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Christian Bode
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany.
| |
Collapse
|
7
|
Xu Q, Hua X, Li B, Jiang B, Jin J, Wu R, Gu Y, Xu H, Cheng Q, Zhu S, Zhang F, Lv T, Song Y. Intrinsic STING of CD8 + T cells regulates self-metabolic reprogramming and memory to exert anti-tumor effects. Cell Commun Signal 2025; 23:99. [PMID: 39972350 PMCID: PMC11837649 DOI: 10.1186/s12964-025-02069-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/28/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Our team has previously found that the stimulator of interferon genes (STING) plays a more significant anti-tumor role in host immune cells than in tumor cells. Although STING is necessary for CD8 + T cells to exert immunological activity, its effect on CD8 + T cells remains debatable. In this study, we used both in vitro and in vivo models to explore the metabolic effects of STING on CD8 + T cells. METHODS Peripheral blood lymphocytes were procured from non-small cell lung cancer (NSCLC) patients receiving anti-PD-1 therapy to investigate the correlation between STING expression levels, CD8 + T-cell subsets, and immunotherapy efficacy. STING knockout (STING-KO) mice were used for in vivo studies. RNA-seq, seahorse, flow cytometry, electron microscopy, qPCR, immunofluorescence, western blotting, and immunoprecipitation were performed to explore the underlying mechanisms of STING in regulating CD8 + T cell function. RESULTS We discovered that the expression level of STING in immune cells exhibited a significant correlation with immunotherapy efficacy, as well as with the proportion of central memory CD8 + T cells. Moreover, we found that the loss of the STING gene results in a reduction in the number of mitochondria and a change in the metabolic pathway selection, thereby inducing excessive glycolysis in CD8 + T cells. This excessive glycolysis generates high levels of lactate, which further inhibits IFN-γ secretion and impacts memory T cell differentiation. Correcting the glycolysis disorder partially restored function and IFN-γ secretion, rescued the central memory CD8 + T subset, and improved immunotherapy in STING-KO mice. This provides a new treatment strategy for patients with low STING expression and a poor response to immunotherapy. CONCLUSION Intrinsic STING of CD8 + T cells affects their function through the HK2/Lactate/IFN-γ axis and affects memory differentiation by regulating glycolysis.
Collapse
Affiliation(s)
- Qiuli Xu
- School of Medicine, Southeast University, Nanjing, Jiangsu, 210002, China
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Nanjing, Jiangsu, 210002, China
| | - Xin Hua
- Department of Geriatric Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Bingbing Li
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, School of Medicine, Nanjing University of Traditional Chinese Medicine Southeast University, #305 East Zhongshan Road, Nanjing, Jiangsu, 210002, China
| | - Bei Jiang
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, School of Medicine, Nanjing University of Traditional Chinese Medicine Southeast University, #305 East Zhongshan Road, Nanjing, Jiangsu, 210002, China
| | - Jiajia Jin
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Nanjing, Jiangsu, 210002, China
| | - Ranpu Wu
- School of Medicine, Southeast University, Nanjing, Jiangsu, 210002, China
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Nanjing, Jiangsu, 210002, China
| | - Yanli Gu
- Department of Respiratory and Critical Care Medicine People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China
| | - Hao Xu
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Nanjing, Jiangsu, 210002, China
- Nanjing Medical University, Nanjing, Jiangsu, 210002, China
| | - Qinpei Cheng
- Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Suhua Zhu
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Nanjing, Jiangsu, 210002, China
| | - Fang Zhang
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Nanjing, Jiangsu, 210002, China
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, School of Medicine, Nanjing University of Traditional Chinese Medicine Southeast University, #305 East Zhongshan Road, Nanjing, Jiangsu, 210002, China
| | - Tangfeng Lv
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, School of Medicine, Nanjing University of Traditional Chinese Medicine Southeast University, #305 East Zhongshan Road, Nanjing, Jiangsu, 210002, China.
| | - Yong Song
- School of Medicine, Southeast University, Nanjing, Jiangsu, 210002, China.
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Nanjing, Jiangsu, 210002, China.
| |
Collapse
|
8
|
Wang JK, Zhang D, Wang JF, Lu WL, Wang JY, Liang SF, Liu R, Jiang JX, Li HT, Yang X. Clinical study on the effect of jejunoileal side-to-side anastomosis on metabolic parameters in patients with type 2 diabetes. World J Diabetes 2025; 16:99526. [PMID: 39817226 PMCID: PMC11718457 DOI: 10.4239/wjd.v16.i1.99526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/04/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND At present, the existing internal medicine drug treatment can alleviate the high glucose toxicity of patients to a certain extent, to explore the efficacy of laparoscopic jejunoileal side to side anastomosis in the treatment of type 2 diabetes, the report is as follows. AIM To investigate the effect of jejunoileal side-to-side anastomosis on metabolic parameters in patients with type 2 diabetes mellitus (T2DM). METHODS We retrospectively analyzed the clinical data of 78 patients with T2DM who were treated via jejunoileal lateral anastomosis. Metabolic indicators were collected preoperatively, as well as at 3 and 6 months postoperative. The metabolic indicators analyzed included body mass index (BMI), systolic blood pressure (SBP), diastolic blood pressure (DBP), fasting blood glucose (FBG), 2-hour blood glucose (PBG), glycated hemoglobin (HbA1c), fasting C-peptide, 2-hour C-peptide (PCP), fasting insulin (Fins), 2-hour insulin (Pins), insulin resistance index (HOMA-IR), β Cellular function index (HOMA-β), alanine aminotransferase, aspartate aminotransferase, serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), high-density lipoprotein, and uric acid (UA) levels. RESULTS SBP, DBP, PBG, HbA1c, LDL-C, and TG were all significantly lower 3 months postoperative vs preoperative values; body weight, BMI, SBP, DBP, FBG, PBG, HbA1c, TC, TG, UA, and HOMA-IR values were all significantly lower 6 months postoperative vs at 3 months; and PCP, Fins, Pins, and HOMA-β were all significantly higher 6 months postoperative vs at 3 months (all P < 0.05). CONCLUSION Side-to-side anastomosis of the jejunum and ileum can effectively treat T2DM and improve the metabolic index levels associated with it.
Collapse
Affiliation(s)
- Ji-Kui Wang
- Department of General Thoracic Surgery, Liaoning Electric Power Center Hospital, Shenyang 110000, Liaoning Province, China
| | - Di Zhang
- Department of Health Management Center, Liaoning Electric Power Center Hospital, Shenyang 110000, Liaoning Province, China
| | - Jin-Feng Wang
- Department of General Thoracic Surgery, Liaoning Electric Power Center Hospital, Shenyang 110000, Liaoning Province, China
| | - Wan-Lin Lu
- Department of General Thoracic Surgery, Liaoning Electric Power Center Hospital, Shenyang 110000, Liaoning Province, China
| | - Jing-Yuan Wang
- Department of General Thoracic Surgery, Liaoning Electric Power Center Hospital, Shenyang 110000, Liaoning Province, China
| | - Shi-Feng Liang
- Department of General Thoracic Surgery, Liaoning Electric Power Center Hospital, Shenyang 110000, Liaoning Province, China
| | - Ran Liu
- Department of General Thoracic Surgery, Liaoning Electric Power Center Hospital, Shenyang 110000, Liaoning Province, China
| | - Jing-Xin Jiang
- Department of General Thoracic Surgery, Liaoning Electric Power Center Hospital, Shenyang 110000, Liaoning Province, China
| | - Hong-Tao Li
- Department of General Thoracic Surgery, Liaoning Electric Power Center Hospital, Shenyang 110000, Liaoning Province, China
| | - Xuan Yang
- Department of General Thoracic Surgery, Liaoning Electric Power Center Hospital, Shenyang 110000, Liaoning Province, China
| |
Collapse
|
9
|
Zhang Z, Zhang C. Regulation of cGAS-STING signalling and its diversity of cellular outcomes. Nat Rev Immunol 2025:10.1038/s41577-024-01112-7. [PMID: 39774812 DOI: 10.1038/s41577-024-01112-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2024] [Indexed: 01/11/2025]
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signalling pathway, which recognizes both pathogen DNA and host-derived DNA, has emerged as a crucial component of the innate immune system, having important roles in antimicrobial defence, inflammatory disease, ageing, autoimmunity and cancer. Recent work suggests that the regulation of cGAS-STING signalling is complex and sophisticated. In this Review, we describe recent insights from structural studies that have helped to elucidate the molecular mechanisms of the cGAS-STING signalling cascade and we discuss how the cGAS-STING pathway is regulated by both activating and inhibitory factors. Furthermore, we summarize the newly emerging understanding of crosstalk between cGAS-STING signalling and other signalling pathways and provide examples to highlight the wide variety of cellular processes in which cGAS-STING signalling is involved, including autophagy, metabolism, ageing, inflammation and tumorigenesis.
Collapse
Affiliation(s)
- Zhengyin Zhang
- School of Pharmaceutical Sciences, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Conggang Zhang
- School of Pharmaceutical Sciences, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
10
|
Chen YY, Chen CS, Huang JF, Su WH, Li CY, Chen WS, Lin ES, Chuang WL, Yu ML, Wang SC. The obesity-related mutation gene on nonalcoholic fatty liver disease. Hum Genet 2025; 144:1-14. [PMID: 38985322 DOI: 10.1007/s00439-024-02686-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 06/30/2024] [Indexed: 07/11/2024]
Abstract
The prevalence of overweight and obesity is increasing, leading to metabolic-associated fatty liver disease (MAFLD) characterized by excessive accumulation of liver fat and a risk of developing hepatocellular carcinoma (HCC). The driver gene mutations may play the roles of passengers that occur in single 'hotspots' and can promote tumorigenesis from benign to malignant lesions. We investigated the impact of high body weight and BMI on HCC survival using The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) dataset. To explore the effects of obesity-related gene mutations on HCC, we collected driver mutation genes in 34 TCGA patients with BMI ≥ 27 and 23 TCGA patients with BMI < 27. The digital PCR performing the PBMC samples for the variant rate by clinical cohort of 96 NAFLD patients. Our analysis showed that obesity leads to significantly worse survival outcomes in HCC. Using cbioportal, we identified 414 driver mutation genes in patients with obesity and 127 driver mutation genes in non-obese patients. Functional analysis showed that obese-related genes significantly enriched the regulated lipid and insulin pathways in HCC. The insulin secretion pathway in patients with obesity HCC-specific survival identified ABCC8 and PRKCB as significant genes (p < 0.001). It revealed significant differences in gene mutation and gene expression profiles compared to non-obese patients. The digital PCR test ABCC8 variants were detected in PBMC samples and caused a 14.5% variant rate, significantly higher than that of non-obese NAFLD patients. The study findings showed that the gene ABCC8 was a patient with the obesity-related gene in NAFLD, which provides the probability that ABCC8 mutation contributes to the pre-cancer lesion biomarker for HCC.
Collapse
Affiliation(s)
- Yen-Yu Chen
- School of Medicine, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan
| | - Chi-Sheng Chen
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan
| | - Jee-Fu Huang
- Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan
- Faculty of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan
| | - Wen-Hsiu Su
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan
| | - Chia-Yang Li
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan
| | - Wei-Shiun Chen
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan
| | - En-Sheng Lin
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan
| | - Wan-Long Chuang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan
- Faculty of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan
| | - Ming-Lung Yu
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan
- Faculty of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, 80756, Taiwan
- Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung, 80756, Taiwan
| | - Shu-Chi Wang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan.
- Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan.
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan.
- Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung, 80756, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan.
| |
Collapse
|
11
|
Kwak H, Lee E, Karki R. DNA sensors in metabolic and cardiovascular diseases: Molecular mechanisms and therapeutic prospects. Immunol Rev 2025; 329:e13382. [PMID: 39158380 PMCID: PMC11744256 DOI: 10.1111/imr.13382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
DNA sensors generally initiate innate immune responses through the production of type I interferons. While extensively studied for host defense against invading pathogens, emerging evidence highlights the involvement of DNA sensors in metabolic and cardiovascular diseases. Elevated levels of modified, damaged, or ectopically localized self-DNA and non-self-DNA have been observed in patients and animal models with obesity, diabetes, fatty liver disease, and cardiovascular disease. The accumulation of cytosolic DNA aberrantly activates DNA signaling pathways, driving the pathological progression of these disorders. This review highlights the roles of specific DNA sensors, such as cyclic AMP-GMP synthase and stimulator of interferon genes (cGAS-STING), absent in melanoma 2 (AIM2), toll-like receptor 9 (TLR9), interferon gamma-inducible protein 16 (IFI16), DNA-dependent protein kinase (DNA-PK), and DEAD-box helicase 41 (DDX41) in various metabolic disorders. We explore how DNA signaling pathways in both immune and non-immune cells contribute to the development of these diseases. Furthermore, we discuss the intricate interplay between metabolic stress and immune responses, offering insights into potential therapeutic targets for managing metabolic and cardiovascular disorders. Understanding the mechanisms of DNA sensor signaling in these contexts provides a foundation for developing novel interventions aimed at mitigating the impact of these pervasive health issues.
Collapse
Affiliation(s)
- Hyosang Kwak
- Department of Biological Sciences, College of Natural ScienceSeoul National UniversitySeoulSouth Korea
| | - Ein Lee
- Department of Biomedical Sciences, College of MedicineSeoul National UniversitySeoulSouth Korea
| | - Rajendra Karki
- Department of Biological Sciences, College of Natural ScienceSeoul National UniversitySeoulSouth Korea
- Nexus Institute of Research and Innovation (NIRI)KathmanduNepal
| |
Collapse
|
12
|
Chen Y, Liang R, Li Y, Jiang L, Ma D, Luo Q, Song G. Chromatin accessibility: biological functions, molecular mechanisms and therapeutic application. Signal Transduct Target Ther 2024; 9:340. [PMID: 39627201 PMCID: PMC11615378 DOI: 10.1038/s41392-024-02030-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/04/2024] [Accepted: 10/17/2024] [Indexed: 12/06/2024] Open
Abstract
The dynamic regulation of chromatin accessibility is one of the prominent characteristics of eukaryotic genome. The inaccessible regions are mainly located in heterochromatin, which is multilevel compressed and access restricted. The remaining accessible loci are generally located in the euchromatin, which have less nucleosome occupancy and higher regulatory activity. The opening of chromatin is the most important prerequisite for DNA transcription, replication, and damage repair, which is regulated by genetic, epigenetic, environmental, and other factors, playing a vital role in multiple biological progresses. Currently, based on the susceptibility difference of occupied or free DNA to enzymatic cleavage, solubility, methylation, and transposition, there are many methods to detect chromatin accessibility both in bulk and single-cell level. Through combining with high-throughput sequencing, the genome-wide chromatin accessibility landscape of many tissues and cells types also have been constructed. The chromatin accessibility feature is distinct in different tissues and biological states. Research on the regulation network of chromatin accessibility is crucial for uncovering the secret of various biological processes. In this review, we comprehensively introduced the major functions and mechanisms of chromatin accessibility variation in different physiological and pathological processes, meanwhile, the targeted therapies based on chromatin dynamics regulation are also summarized.
Collapse
Affiliation(s)
- Yang Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Rui Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Yong Li
- Hepatobiliary Pancreatic Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Lingli Jiang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Di Ma
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China.
| |
Collapse
|
13
|
Fu Z, Jiang S, Sun Y, Zheng S, Zong L, Li P. Cut&tag: a powerful epigenetic tool for chromatin profiling. Epigenetics 2024; 19:2293411. [PMID: 38105608 PMCID: PMC10730171 DOI: 10.1080/15592294.2023.2293411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023] Open
Abstract
Analysis of transcription factors and chromatin modifications at the genome-wide level provides insights into gene regulatory processes, such as transcription, cell differentiation and cellular response. Chromatin immunoprecipitation is the most popular and powerful approach for mapping chromatin, and other enzyme-tethering techniques have recently become available for living cells. Among these, Cleavage Under Targets and Tagmentation (CUT&Tag) is a relatively novel chromatin profiling method that has rapidly gained popularity in the field of epigenetics since 2019. It has also been widely adapted to map chromatin modifications and TFs in different species, illustrating the association of these chromatin epitopes with various physiological and pathological processes. Scalable single-cell CUT&Tag can be combined with distinct platforms to distinguish cellular identity, epigenetic features and even spatial chromatin profiling. In addition, CUT&Tag has been developed as a strategy for joint profiling of the epigenome, transcriptome or proteome on the same sample. In this review, we will mainly consolidate the applications of CUT&Tag and its derivatives on different platforms, give a detailed explanation of the pros and cons of this technique as well as the potential development trends and applications in the future.
Collapse
Affiliation(s)
- Zhijun Fu
- BGI Tech Solutions Co, Ltd. BGI-Shenzhen, Shenzhen, China
| | - Sanjie Jiang
- BGI Tech Solutions Co, Ltd. BGI-Shenzhen, Shenzhen, China
| | - Yiwen Sun
- BGI Tech Solutions Co, Ltd. BGI-Shenzhen, Shenzhen, China
| | - Shanqiao Zheng
- BGI Tech Solutions Co, Ltd. BGI-Shenzhen, Shenzhen, China
| | - Liang Zong
- BGI Tech Solutions Co, Ltd. BGI-Wuhan, Wuhan, China
| | - Peipei Li
- BGI Tech Solutions Co, Ltd. BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
14
|
Pei Z, Tian M. The cGAS-STING pathway as a novel therapeutic strategy for pancreatic diseases. Cytokine 2024; 184:156801. [PMID: 39520833 DOI: 10.1016/j.cyto.2024.156801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The Cyclic GMP-AMP synthase (cGAS)-Stimulator of interferon genes [1] signaling pathway has emerged as a pivotal immune response mechanism, activating immune defenses upon detection of both exogenous and endogenous DNA within cells. Its activation is intricately linked to various diseases and inflammatory processes, spanning autoimmune disorders, infectious ailments, and malignancies. Among pancreatic diseases, encompassing acute pancreatitis, chronic pancreatitis, and pancreatic cancer, current clinical treatment efficacy remains suboptimal. Here, we elucidate the molecular intricacies of the cGAS-STING signaling pathway and delineate its therapeutic potential in acute pancreatitis, chronic pancreatitis, and pancreatic cancer. Additionally, we offer an overview of recent advancements in STING agonists and antagonists, assessing their therapeutic potential in pancreatic-related disorders. In summary, by exploring the multifaceted roles of the cGAS-STING signaling pathway and its implications in pancreatic diseases, we aim to shed light on potential avenues for therapeutic intervention and management in these challenging clinical contexts.
Collapse
Affiliation(s)
- Zhengda Pei
- Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Mengxiang Tian
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
15
|
Gao D, Zhao B, Yu J, Li X, Yang D, Luo Y, Xia Y, Cai X, Guo Y. Deletion of stimulator of interferons genes aggravated cardiac dysfunction in physiological aged mice. Mech Ageing Dev 2024; 222:111978. [PMID: 39233064 DOI: 10.1016/j.mad.2024.111978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/15/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Stimulator of interferons genes (STING) is crucial for innate immune response. It has been demonstrated that cGAS-STING pathway was the driver of aging-related inflammation. However, whether STING is involved in cardiac dysfunction during the physiological aging process remains unclear. METHODS Gene expression profiles were obtained from the Gene Expression Omnibus database, followed by weighted gene co-expression network analysis, gene ontology analysis and protein network interaction analysis to identify key pathway and genes associated with aging. The effects of STING on cardiac function, glucose homeostasis, inflammation, and autophagy in physiological aging were investigated with STING knockout mice. RESULTS Bioinformatics analysis revealed STING emerged as a hub gene of interest. Subsequent experiments demonstrated the activation of STING pathway in the heart of aged mice. Knockout of STING alleviated the inflammation in aged mice. However, Knockout of STING impaired glucose tolerance, inhibited autophagy, enhanced oxidative stress and aggravated cardiac dysfunction in aged mice. CONCLUSION Although reducing inflammation, long-term STING inhibition by genetic ablation exacerbated cardiac dysfunction in aged mice. Given the multifaceted nature of aging and the diverse cellular functions of STING beyond immune regulation, the negative effects of targeting STING as a strategy to mitigate aging phenotype should be fully considered.
Collapse
Affiliation(s)
- Diansa Gao
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Boying Zhao
- Division of Cardiothoracic Surgery, The Center Hospital of Chongqing University, Chongqing 400016, China
| | - Jiang Yu
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaorong Li
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ding Yang
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yuan Luo
- Division of Cardiothoracic Surgery, The Center Hospital of Chongqing University, Chongqing 400016, China
| | - Yong Xia
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiongwei Cai
- Department of Gynecology, Chongqing Health Center for Women and Children, Women and Children's Hospital of Chongqing Medical University, Chongqing 400037, China.
| | - Yongzheng Guo
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
16
|
Şancı E, Köksal Karayıldırım Ç, Dağdeviren M, Yiğittürk G, Buhur A, Erbaş O, Yavaşoğlu A, Karabay Yavaşoğlu NÜ. Oxidative stress and inflammatory markers in streptozotocin-induced acute and subacute toxicity response. Drug Chem Toxicol 2024; 47:933-948. [PMID: 38348650 DOI: 10.1080/01480545.2024.2315150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/01/2024] [Indexed: 11/21/2024]
Abstract
Streptozotocin (STZ) is used as a diabetes-inducing agent in experimental animal studies. However, it is known that STZ-induced diabetic animals show significant increases in oxidative stress parameters and neurodegeneration besides their blood glucose level. In this study, the acute and subacute toxic effects of STZ on the liver, sciatic nerve, and brain tissues were investigated in vivo rat model. Sprague-Dawley rats were divided into two groups; while 50 mg/kg STZ was administered ip to the STZ group, only saline was administered to the control group. After STZ administration, three units (100 U/mL) of subcutaneous insulin glargine were applied daily to prevent the formation of diabetes. At 24 h, 1,2, and 4 weeks after applications, rats from each group were sacrificed and tissues were removed under anesthesia. At the end of the study, compared to the control, a significant decrease in SOD and GST activity and an increase in lipid peroxidation were detected in the liver and sciatic tissues of rats in the STZ-treated group in the first 24h. Considering the TUNEL, NFκB, and NOS2 expressions, it was noted that while the effects of STZ on the liver were observed in the acute stage (24h), it had subacute effects on the brain. When apoptosis-related gene expression (Bcl-2, Bax, CASP3, CASP8, CASP9, TNF-α) and immunohistochemistry were evaluated, the apoptotic effect of STZ was observed mostly in sciatic nerve tissues. Within the scope of the study, it was revealed that STZ did not only show selective toxicity to pancreatic β cells but also very toxic to other tissues and organs.
Collapse
Affiliation(s)
- Ebru Şancı
- Center for Drug Development and Pharmacokinetic Applications, Ege University, Bornova Izmir, Turkey
| | | | | | - Gürkan Yiğittürk
- Department of Histology and Embryology, Muğla Sıtkı Koçman University, Mugla, Turkey
| | - Aylin Buhur
- Department of Histology and Embryology, Ege University, Bornova Izmir, Turkey
| | - Oytun Erbaş
- Department of Physiology, Demiroğlu Bilim University, Istanbul, Turkey
| | - Altuğ Yavaşoğlu
- Department of Histology and Embryology, Ege University, Bornova Izmir, Turkey
| | - Nefise Ülkü Karabay Yavaşoğlu
- Center for Drug Development and Pharmacokinetic Applications, Ege University, Bornova Izmir, Turkey
- Department of Biology, Ege University, Bornova Izmir, Turkey
| |
Collapse
|
17
|
Ahmad Z, Kahloan W, Rosen ED. Transcriptional control of metabolism by interferon regulatory factors. Nat Rev Endocrinol 2024; 20:573-587. [PMID: 38769435 PMCID: PMC11392651 DOI: 10.1038/s41574-024-00990-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 05/22/2024]
Abstract
Interferon regulatory factors (IRFs) comprise a family of nine transcription factors in mammals. IRFs exert broad effects on almost all aspects of immunity but are best known for their role in the antiviral response. Over the past two decades, IRFs have been implicated in metabolic physiology and pathophysiology, partly as a result of their known functions in immune cells, but also because of direct actions in adipocytes, hepatocytes, myocytes and neurons. This Review focuses predominantly on IRF3 and IRF4, which have been the subject of the most intense investigation in this area. IRF3 is located in the cytosol and undergoes activation and nuclear translocation in response to various signals, including stimulation of Toll-like receptors, RIG-I-like receptors and the cGAS-STING pathways. IRF3 promotes weight gain, primarily by inhibiting adipose thermogenesis, and also induces inflammation and insulin resistance using both weight-dependent and weight-independent mechanisms. IRF4, meanwhile, is generally pro-thermogenic and anti-inflammatory and has profound effects on lipogenesis and lipolysis. Finally, new data are emerging on the role of other IRF family members in metabolic homeostasis. Taken together, data indicate that IRFs serve as critical yet underappreciated integrators of metabolic and inflammatory stress.
Collapse
Affiliation(s)
- Zunair Ahmad
- School of Medicine, Royal College of Surgeons in Ireland, Medical University of Bahrain, Busaiteen, Bahrain
| | - Wahab Kahloan
- AdventHealth Orlando Family Medicine, Orlando, FL, USA
| | - Evan D Rosen
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Mohammadi S, Khorasani M. Implications of the cGAS-STING pathway in diabetes: Risk factors and therapeutic strategies. Int J Biol Macromol 2024; 278:134210. [PMID: 39069057 DOI: 10.1016/j.ijbiomac.2024.134210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/20/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Diabetes mellitus is an increasingly prevalent metabolic disorder characterized by chronic hyperglycemia and impaired insulin action. Although the pathogenesis of diabetes is multifactorial, emerging evidence suggests that chronic low-grade inflammation plays a significant role in the development and progression of the disease. The cyclic GMP-AMP synthase (cGAS) and its downstream signaling pathway, the stimulator of interferon genes (STING), have recently gained attention in the field of diabetes research. This article aims to provide an overview of the role of cGAS-STING in diabetes, focusing on its involvement in the regulation of immune responses, inflammation, insulin resistance, and β-cell dysfunction. Understanding the contribution of cGAS-STING signaling in diabetes may lead to the development of targeted therapeutic strategies for this prevalent metabolic disorder. The results section presents key findings from multiple studies on the impact of STING in diabetes. It discusses the influence of STING on inflammation levels within a diabetic environment, its effect on insulin resistance, and its implications for the development and progression of diabetes. The cGAS-STING signaling pathway plays a crucial role in the development and progression of diabetes.
Collapse
Affiliation(s)
- Saeed Mohammadi
- Natural and Medical Sciences Research Center, University of Nizwa, 611, Oman
| | - Milad Khorasani
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran; Department of Biochemistry and Nutrition, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
19
|
Cai Z, Yang Y, Zhong J, Ji Y, Li T, Luo J, Hu S, Luo H, Wu Y, Liu F, Zhang J. cGAS suppresses β-cell proliferation by a STING-independent but CEBPβ-dependent mechanism. Metabolism 2024; 157:155933. [PMID: 38729601 DOI: 10.1016/j.metabol.2024.155933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/21/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
AIMS/HYPOTHESIS cGAS (cyclic GMP-AMP synthase) has been implicated in various cellular processes, but its role in β-cell proliferation and diabetes is not fully understood. This study investigates the impact of cGAS on β-cell proliferation, particularly in the context of diabetes. METHODS Utilizing mouse models, including cGAS and STING (stimulator of interferon genes) knockout mice, we explored the role of cGAS in β-cell function. This involved β-cell-specific cGAS knockout (cGASβKO) mice, created by breeding cGAS floxed mice with transgenic mice expressing Cre recombinase under the insulin II promoter. We analyzed cGAS expression in diabetic mouse models, evaluated the effects of cGAS deficiency on glucose tolerance, and investigated the molecular mechanisms underlying these effects through RNA sequencing. RESULTS cGAS expression is upregulated in the islets of diabetic mice and by high glucose treatment in MIN6 cells. Both global cGAS deficiency and β-cell-specific cGAS knockout mice lead to improved glucose tolerance by promoting β-cell mass. Interestingly, STING knockout did not affect pancreatic β-cell mass, suggesting a STING-independent mechanism for cGAS's role in β-cells. Further analyses revealed that cGAS- but not STING-deficiency leads to reduced expression of CEBPβ, a known suppressor of β-cell proliferation, concurrently with increased β-cell proliferation. Moreover, overexpression of CEBPβ reverses the upregulation of Cyclin D1 and D2 induced by cGAS deficiency, thereby regulating β-cell proliferation. These results confirm that cGAS regulation of β-cell proliferation via a CEBPβ-dependent but STING-independent mechanism. CONCLUSIONS/INTERPRETATION Our findings highlight the pivotal role of cGAS in promoting β-cell proliferation and maintaining glucose homeostasis, potentially by regulating CEBPβ expression in a STING-independent manner. This study uncovers the significance of cGAS in controlling β-cell mass and identifies a potential therapeutic target for enhancing β-cell proliferation in the treatment of diabetes.
Collapse
Affiliation(s)
- Zixin Cai
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Cardiometabolic Medicine of Hunan Province, Metabolic Syndrome Research Center, Department of Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yan Yang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Cardiometabolic Medicine of Hunan Province, Metabolic Syndrome Research Center, Department of Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jiaxin Zhong
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Cardiometabolic Medicine of Hunan Province, Metabolic Syndrome Research Center, Department of Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yujiao Ji
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Cardiometabolic Medicine of Hunan Province, Metabolic Syndrome Research Center, Department of Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ting Li
- Departments of Liver Organ Transplantation, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Jing Luo
- Departments of Liver Organ Transplantation, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Shanbiao Hu
- Departments of Urological Organ Transplantation, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Hairong Luo
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Cardiometabolic Medicine of Hunan Province, Metabolic Syndrome Research Center, Department of Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yan Wu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Cardiometabolic Medicine of Hunan Province, Metabolic Syndrome Research Center, Department of Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Feng Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Cardiometabolic Medicine of Hunan Province, Metabolic Syndrome Research Center, Department of Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Jingjing Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Cardiometabolic Medicine of Hunan Province, Metabolic Syndrome Research Center, Department of Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
20
|
Ali HS, Al-Amodi HS, Hamady S, Roushdy MMS, Helmy Hasanin A, Ellithy G, Elmansy RA, Ahmed HHT, Ahmed EME, Elzoghby DMA, Kamel HFM, Hassan G, ELsawi HA, Farid LM, Abouelkhair MB, Habib EK, Elesawi M, Fikry H, Saleh LA, Matboli M. Rosavin improves insulin resistance and alleviates hepatic and kidney damage via modulating the cGAS-STING pathway and autophagy signaling in HFD/STZ-induced T2DM animals. RSC Med Chem 2024; 15:2098-2113. [PMID: 38911169 PMCID: PMC11187545 DOI: 10.1039/d4md00023d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/14/2024] [Indexed: 06/25/2024] Open
Abstract
Background: Inflammation-mediated insulin resistance in type 2 diabetes mellitus (T2DM) increases complications, necessitating investigation of its mechanism to find new safe therapies. This study investigated the effect of rosavin on the autophagy and the cGAS-STING pathway-related signatures (ZBP1, STING1, DDX58, LC3B, TNF-α) and on their epigenetic modifiers (miR-1976 and lncRNA AC074117.2) that were identified from in silico analysis in T2DM animals. Methods: A T2DM rat model was established by combining a high-fat diet (HFD) and streptozotocin (STZ). After four weeks from T2DM induction, HFD/STZ-induced T2DM rats were subdivided into an untreated group (T2DM group) and three treated groups which received 10, 20, or 30 mg per kg of R. rosea daily for 4 weeks. Results: The study found that rosavin can affect the cGAS-STING pathway-related RNA signatures by decreasing the expressions of ZBP1, STING1, DDX58, and miR-1976 while increasing the lncRNA AC074117.2 level in the liver, kidney, and adipose tissues. Rosavin prevented further weight loss, reduced serum insulin and glucose, improved insulin resistance and the lipid panel, and mitigated liver and kidney damage compared to the untreated T2DM group. The treatment also resulted in reduced inflammation levels and improved autophagy manifested by decreased immunostaining of TNF-α and increased immunostaining of LC3B in the liver and kidneys of the treated T2DM rats. Conclusion: Rosavin has shown potential in attenuating T2DM, inhibiting inflammation in the liver and kidneys, and improving metabolic disturbances in a T2DM animal model. The observed effect was linked to the activation of autophagy and suppression of the cGAS-STING pathway.
Collapse
Affiliation(s)
- Hebatallah S Ali
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University Cairo 11566 Egypt
| | - Hiba S Al-Amodi
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Shaimaa Hamady
- Biochemistry Department, Faculty of Science, Ain Shams University Cairo Egypt
| | - Marian M S Roushdy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University Cairo 11566 Egypt
| | - Amany Helmy Hasanin
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University Cairo Egypt
| | - Ghada Ellithy
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University Cairo Egypt
| | - Rasha A Elmansy
- Anatomy Unit, Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University Buraydah Saudi Arabia
- Department of Anatomy and Cell Biology, Faculty of Medicine, Ain Shams University Egypt
| | - Hagir H T Ahmed
- Anatomy Unit, Department of Basic Medical Sciences, College of Medicine and Medical Sciences, AlNeelain University Sudan
| | - Enshrah M E Ahmed
- Pathology unit, Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Gassim University Saudi Arabia
| | | | - Hala F M Kamel
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University Cairo 11566 Egypt
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Ghida Hassan
- Physiology Department, Faculty of Medicine, Ain Shams University Egypt
| | - Hind A ELsawi
- Department of Internal Medicine, Badr University in Cairo Badr City Egypt
| | - Laila M Farid
- Pathology Department Faculty of Medicine, Ain Shams University Egypt
| | | | - Eman K Habib
- Department of Anatomy and Cell Biology, Faculty of Medicine, Ain Shams University Egypt
- Department of Anatomy and Cell Biology, Faculty of Medicine, Galala University Egypt
| | - Mohamed Elesawi
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University Cairo 11566 Egypt
| | - Heba Fikry
- Department of Histology, Faculty of Medicine, Ain Shams University Cairo Egypt
| | - Lobna A Saleh
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University Cairo Egypt
| | - Marwa Matboli
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University Cairo 11566 Egypt
| |
Collapse
|
21
|
He L, Cai Y, Du H, Shu M, Zhu C. Adipose stem cell‑derived exosomes promote high glucose-induced wound healing by regulating the TRIM32/STING axis. Arch Dermatol Res 2024; 316:323. [PMID: 38822901 DOI: 10.1007/s00403-024-03065-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 01/16/2024] [Accepted: 04/26/2024] [Indexed: 06/03/2024]
Abstract
Refractory diabetic wounds are still a clinical challenge that can cause persistent inflammation and delayed healing. Exosomes of adipose stem cells (ADSC-exos) are the potential strategy for wound repair; however, underlying mechanisms remain mysterious. In this study, we isolated ADSC-exos and identified their characterization. High glucose (HG) stimulated human umbilical vein endothelial cells (HUVECs) to establish in vitro model. The biological behaviors were analyzed by Transwell, wound healing, and tube formation assays. The underlying mechanisms were analyzed using quantitative real-time PCR, co-immunoprecipitation (Co-IP), IP, and western blot. The results showed that ADSC-exos promoted HG-inhibited cell migration and angiogenesis. In addition, ADSC-exos increased the levels of TRIM32 in HG-treated HUVECs, which promoted the ubiquitination of STING and downregulated STING protein levels. Rescue experiments affirmed that ADSC-exos promoted migration and angiogenesis of HG-treated HUVECs by regulating the TRIM32/STING axis. In conclusion, ADSC-exos increased the levels of TRIM32, which interacted with STING and promoted its ubiquitination, downregulating STING levels, thus promoting migration and angiogenesis of HG-treated HUVECs. The findings suggested that ADSC-exos could promote diabetic wound healing and demonstrated a new mechanism of ADSC-exos.
Collapse
Affiliation(s)
- Lin He
- Department of Plastic, Aesthetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Ying Cai
- Department of Orthopedics, Huanggang Central Hospital of Yangtze University, Huanggang, 438000, P. R. China
| | - Huicong Du
- Department of Plastic, Aesthetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Maoguo Shu
- Department of Plastic, Aesthetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Chan Zhu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Changle West Road, 127#, Xi'an city, Shaanxi Province, 710032, P. R. China.
| |
Collapse
|
22
|
Matboli M, Al-Amodi HS, Khaled A, Khaled R, Roushdy MMS, Ali M, Diab GI, Elnagar MF, Elmansy RA, TAhmed HH, Ahmed EME, Elzoghby DMA, M.Kamel HF, Farag MF, ELsawi HA, Farid LM, Abouelkhair MB, Habib EK, Fikry H, Saleh LA, Aboughaleb IH. Comprehensive machine learning models for predicting therapeutic targets in type 2 diabetes utilizing molecular and biochemical features in rats. Front Endocrinol (Lausanne) 2024; 15:1384984. [PMID: 38854687 PMCID: PMC11157016 DOI: 10.3389/fendo.2024.1384984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/03/2024] [Indexed: 06/11/2024] Open
Abstract
Introduction With the increasing prevalence of type 2 diabetes mellitus (T2DM), there is an urgent need to discover effective therapeutic targets for this complex condition. Coding and non-coding RNAs, with traditional biochemical parameters, have shown promise as viable targets for therapy. Machine learning (ML) techniques have emerged as powerful tools for predicting drug responses. Method In this study, we developed an ML-based model to identify the most influential features for drug response in the treatment of type 2 diabetes using three medicinal plant-based drugs (Rosavin, Caffeic acid, and Isorhamnetin), and a probiotics drug (Z-biotic), at different doses. A hundred rats were randomly assigned to ten groups, including a normal group, a streptozotocin-induced diabetic group, and eight treated groups. Serum samples were collected for biochemical analysis, while liver tissues (L) and adipose tissues (A) underwent histopathological examination and molecular biomarker extraction using quantitative PCR. Utilizing five machine learning algorithms, we integrated 32 molecular features and 12 biochemical features to select the most predictive targets for each model and the combined model. Results and discussion Our results indicated that high doses of the selected drugs effectively mitigated liver inflammation, reduced insulin resistance, and improved lipid profiles and renal function biomarkers. The machine learning model identified 13 molecular features, 10 biochemical features, and 20 combined features with an accuracy of 80% and AUC (0.894, 0.93, and 0.896), respectively. This study presents an ML model that accurately identifies effective therapeutic targets implicated in the molecular pathways associated with T2DM pathogenesis.
Collapse
Affiliation(s)
- Marwa Matboli
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hiba S. Al-Amodi
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdelrahman Khaled
- Bioinformatics Group, Center of Informatics Sciences (CIS), School of Information Technology and Computer Sciences, Nile University, Giza, Egypt
| | - Radwa Khaled
- Biotechnology/Biomolecular Chemistry Department, Faculty of Science, Cairo University, Cairo, Egypt
- Medicinal Biochemistry and Molecular Biology Department, Modern University for Technology and Information, Cairo, Egypt
| | - Marian M. S. Roushdy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Marwa Ali
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | | | - Rasha A. Elmansy
- Anatomy Unit, Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, Buraydah, Saudi Arabia
- Department of Anatomy and Cell Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hagir H. TAhmed
- Anatomy Unit, Department of Basic Medical Sciences, College of Medicine and Medical Sciences, AlNeelain University, Khartoum, Sudan
| | - Enshrah M. E. Ahmed
- Pathology Unit, Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Gassim University, Buraydah, Saudi Arabia
| | | | - Hala F. M.Kamel
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohamed F. Farag
- Medical Physiology Department, Armed Forces College of Medicine, Cairo, Egypt
| | - Hind A. ELsawi
- Department of Internal Medicine, Badr University in Cairo, Badr, Egypt
| | - Laila M. Farid
- Pathology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Eman K. Habib
- Department of Anatomy and Cell Biology, Faculty of Medicine, Galala University, Attaka, Suez Governorate, Egypt
| | - Heba Fikry
- Department of Histology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Lobna A. Saleh
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
23
|
Zhang Q, Shen L, Ruan H, Huang Z. cGAS-STING signaling in cardiovascular diseases. Front Immunol 2024; 15:1402817. [PMID: 38803502 PMCID: PMC11128581 DOI: 10.3389/fimmu.2024.1402817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Sterile inflammation, characterized by a persistent chronic inflammatory state, significantly contributes to the progression of various diseases such as autoimmune, metabolic, neurodegenerative, and cardiovascular disorders. Recent evidence has increasingly highlighted the intricate connection between inflammatory responses and cardiovascular diseases, underscoring the pivotal role of the Stimulator of Interferon Genes (STING). STING is crucial for the secretion of type I interferon (IFN) and proinflammatory cytokines in response to cytosolic nucleic acids, playing a vital role in the innate immune system. Specifically, research has underscored the STING pathway involvement in unregulated inflammations, where its aberrant activation leads to a surge in inflammatory events, enhanced IFN I responses, and cell death. The primary pathway triggering STING activation is the cyclic GMP-AMP synthase (cGAS) pathway. This review delves into recent findings on STING and the cGAS-STING pathways, focusing on their regulatory mechanisms and impact on cardiovascular diseases. It also discusses the latest advancements in identifying antagonists targeting cGAS and STING, and concludes by assessing the potential of cGAS or STING inhibitors as treatments for cardiovascular diseases.
Collapse
Affiliation(s)
- Qianxin Zhang
- Department of Cardiology, The People’s Hospital of Yuhuan, Taizhou, Zhejiang, China
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lijuan Shen
- Department of Cardiology, The People’s Hospital of Yuhuan, Taizhou, Zhejiang, China
| | - Hongbiao Ruan
- Department of Cardiology, The People’s Hospital of Yuhuan, Taizhou, Zhejiang, China
| | - Zhouqing Huang
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
24
|
He X, Wedn A, Wang J, Gu Y, Liu H, Zhang J, Lin Z, Zhou R, Pang X, Cui Y. IUPHAR ECR review: The cGAS-STING pathway: Novel functions beyond innate immune and emerging therapeutic opportunities. Pharmacol Res 2024; 201:107063. [PMID: 38216006 DOI: 10.1016/j.phrs.2024.107063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/26/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Stimulator of interferon genes (STING) is a crucial innate immune sensor responsible for distinguishing pathogens and cytosolic DNA, mediating innate immune signaling pathways to defend the host. Recent studies have revealed additional regulatory functions of STING beyond its innate immune-related activities, including the regulation of cellular metabolism, DNA repair, cellular senescence, autophagy and various cell deaths. These findings highlight the broader implications of STING in cellular physiology beyond its role in innate immunity. Currently, approximately 10 STING agonists have entered the clinical stage. Unlike inhibitors, which have a maximum inhibition limit, agonists have the potential for infinite amplification. STING signaling is a complex process that requires precise regulation of STING to ensure balanced immune responses and prevent detrimental autoinflammation. Recent research on the structural mechanism of STING autoinhibition and its negative regulation by adaptor protein complex 1 (AP-1) provides valuable insights into its different effects under physiological and pathological conditions, offering a new perspective for developing immune regulatory drugs. Herein, we present a comprehensive overview of the regulatory functions and molecular mechanisms of STING beyond innate immune regulation, along with updated details of its structural mechanisms. We discuss the implications of these complex regulations in various diseases, emphasizing the importance and feasibility of targeting the immunity-dependent or immunity-independent functions of STING. Moreover, we highlight the current trend in drug development and key points for clinical research, basic research, and translational research related to STING.
Collapse
Affiliation(s)
- Xu He
- Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, Beijing 100191, China; Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, Beijing 100034, China
| | - Abdalla Wedn
- School of Medicine, University of Pittsburgh, 5051 Centre Avenue, Pittsburgh, PA, USA
| | - Jian Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yanlun Gu
- Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, Beijing 100191, China; Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Haidian District, Beijing 100191, China
| | - Hongjin Liu
- Department of General Surgery, Peking University First Hospital, Xishiku Street, Xicheng District, Beijing 100034, China
| | - Juqi Zhang
- Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, Beijing 100191, China; Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, Beijing 100034, China
| | - Zhiqiang Lin
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, China
| | - Renpeng Zhou
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Anhui 230601, China; Department of Orthopedics and Rehabilitation, Yale University School of Medicine, New Haven CT06519, USA.
| | - Xiaocong Pang
- Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, Beijing 100191, China; Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, Beijing 100034, China.
| | - Yimin Cui
- Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, Beijing 100191, China; Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, Beijing 100034, China.
| |
Collapse
|
25
|
Rivera Nieves AM, Wauford BM, Fu A. Mitochondrial bioenergetics, metabolism, and beyond in pancreatic β-cells and diabetes. Front Mol Biosci 2024; 11:1354199. [PMID: 38404962 PMCID: PMC10884328 DOI: 10.3389/fmolb.2024.1354199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/17/2024] [Indexed: 02/27/2024] Open
Abstract
In Type 1 and Type 2 diabetes, pancreatic β-cell survival and function are impaired. Additional etiologies of diabetes include dysfunction in insulin-sensing hepatic, muscle, and adipose tissues as well as immune cells. An important determinant of metabolic health across these various tissues is mitochondria function and structure. This review focuses on the role of mitochondria in diabetes pathogenesis, with a specific emphasis on pancreatic β-cells. These dynamic organelles are obligate for β-cell survival, function, replication, insulin production, and control over insulin release. Therefore, it is not surprising that mitochondria are severely defective in diabetic contexts. Mitochondrial dysfunction poses challenges to assess in cause-effect studies, prompting us to assemble and deliberate the evidence for mitochondria dysfunction as a cause or consequence of diabetes. Understanding the precise molecular mechanisms underlying mitochondrial dysfunction in diabetes and identifying therapeutic strategies to restore mitochondrial homeostasis and enhance β-cell function are active and expanding areas of research. In summary, this review examines the multidimensional role of mitochondria in diabetes, focusing on pancreatic β-cells and highlighting the significance of mitochondrial metabolism, bioenergetics, calcium, dynamics, and mitophagy in the pathophysiology of diabetes. We describe the effects of diabetes-related gluco/lipotoxic, oxidative and inflammation stress on β-cell mitochondria, as well as the role played by mitochondria on the pathologic outcomes of these stress paradigms. By examining these aspects, we provide updated insights and highlight areas where further research is required for a deeper molecular understanding of the role of mitochondria in β-cells and diabetes.
Collapse
Affiliation(s)
- Alejandra María Rivera Nieves
- Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, United States
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Brian Michael Wauford
- Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, United States
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Accalia Fu
- Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, United States
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
| |
Collapse
|
26
|
He W, Mu X, Wu X, Liu Y, Deng J, Liu Y, Han F, Nie X. The cGAS-STING pathway: a therapeutic target in diabetes and its complications. BURNS & TRAUMA 2024; 12:tkad050. [PMID: 38312740 PMCID: PMC10838060 DOI: 10.1093/burnst/tkad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/22/2023] [Accepted: 10/09/2023] [Indexed: 02/06/2024]
Abstract
Diabetic wound healing (DWH) represents a major complication of diabetes where inflammation is a key impediment to proper healing. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway has emerged as a central mediator of inflammatory responses to cell stress and damage. However, the contribution of cGAS-STING activation to impaired healing in DWH remains understudied. In this review, we examine the evidence that cGAS-STING-driven inflammation is a critical factor underlying defective DWH. We summarize studies revealing upregulation of the cGAS-STING pathway in diabetic wounds and discuss how this exacerbates inflammation and senescence and disrupts cellular metabolism to block healing. Partial pharmaceutical inhibition of cGAS-STING has shown promise in damping inflammation and improving DWH in preclinical models. We highlight key knowledge gaps regarding cGAS-STING in DWH, including its relationships with endoplasmic reticulum stress and metal-ion signaling. Elucidating these mechanisms may unveil new therapeutic targets within the cGAS-STING pathway to improve healing outcomes in DWH. This review synthesizes current understanding of how cGAS-STING activation contributes to DWH pathology and proposes future research directions to exploit modulation of this pathway for therapeutic benefit.
Collapse
Affiliation(s)
- Wenjie He
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Xingrui Mu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Xingqian Wu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Ye Liu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Junyu Deng
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Yiqiu Liu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Felicity Han
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xuqiang Nie
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| |
Collapse
|
27
|
Hong Z, Chen S, Sun J, Cheng D, Guo H, Mei J, Zhang X, Maimaiti M, Hao H, Cao P, Hu H, Wang C. STING signaling in islet macrophages impairs insulin secretion in obesity. SCIENCE CHINA. LIFE SCIENCES 2024; 67:345-359. [PMID: 37906411 DOI: 10.1007/s11427-022-2371-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/17/2023] [Indexed: 11/02/2023]
Abstract
The innate immune regulator stimulator of interferon genes (STING) mediates self-DNA sensing and leads to the induction of type I interferons and inflammatory cytokines, which promotes the progression of various inflammatory and autoimmune diseases. Innate immune system plays a critical role in regulating obesity-induced islet dysfunction, whereas the potential effect of STING signaling is not fully understood. Here, we demonstrate that STING is mainly expressed and activated in islet macrophages upon high-fat diet (HFD) feeding. Sting-/- alleviates HFD-induced islet inflammation by inhibiting the expression of pro-inflammatory cytokines and the infiltration of macrophages. Mechanically, palmitic acid incubation promotes mitochondrial DNA leakage into the cytosol and subsequently activates STING pathway in macrophages. Additionally, STING activation in macrophages impairs glucose-stimulated insulin secretion by mediating the engulfment of β cell insulin secretory granules. Pharmacologically inhibiting STING activation enhances insulin secretion to control hyperglycemia. Together, our results reveal a regulatory mechanism in controlling the islet inflammation and insulin secretion in diet--induced obesity and suggest that selective blocking of the STING activation may be a promising strategy for treating type 2 diabetes.
Collapse
Affiliation(s)
- Ze Hong
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Saihua Chen
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Jing Sun
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Dan Cheng
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Hanli Guo
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Jiahao Mei
- School of Life Sciences, Westlake University, Hangzhou, 310012, China
| | - Xiang Zhang
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Munire Maimaiti
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Peng Cao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Haiyang Hu
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China.
| | - Chen Wang
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
28
|
Zou S, Wang B, Yi K, Su D, Chen Y, Li N, Geng Q. The critical roles of STING in mitochondrial homeostasis. Biochem Pharmacol 2024; 220:115938. [PMID: 38086488 DOI: 10.1016/j.bcp.2023.115938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/20/2023]
Abstract
The stimulator of interferon genes (STING) is a crucial signaling hub in the immune system's antiviral and antimicrobial defense by detecting exogenous and endogenous DNA. The multifaceted functions of STING have been uncovered gradually during past decades, including homeostasis maintenance and overfull immunity or inflammation induction. However, the subcellular regulation of STING and mitochondria is poorly understood. The main functions of STING are outlined in this review. Moreover, we discuss how mitochondria and STING interact through multiple mechanisms, including the release of mitochondrial DNA (mtDNA), modulation of mitochondria-associated membrane (MAM) and mitochondrial dynamics, alterations in mitochondrial metabolism, regulation of reactive oxygen species (ROS) production, and mitochondria-related cell death. Finally, we discuss how STING is crucial to disease development, providing a novel perspective on its role in cellular physiology and pathology.
Collapse
Affiliation(s)
- Shishi Zou
- Department of Thoracic Surgery, Wuhan University Renmin Hospital, 430060, China
| | - Bo Wang
- Department of Thoracic Surgery, Wuhan University Renmin Hospital, 430060, China
| | - Ke Yi
- Department of Thoracic Surgery, Wuhan University Renmin Hospital, 430060, China
| | - Dandan Su
- Department of Neurology, Wuhan University Renmin Hospital, 430060, China
| | - Yukai Chen
- Department of Oncology, Wuhan University Renmin Hospital, 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Wuhan University Renmin Hospital, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Wuhan University Renmin Hospital, 430060, China.
| |
Collapse
|
29
|
Gong J, Gao X, Ge S, Li H, Wang R, Zhao L. The Role of cGAS-STING Signalling in Metabolic Diseases: from Signalling Networks to Targeted Intervention. Int J Biol Sci 2024; 20:152-174. [PMID: 38164186 PMCID: PMC10750282 DOI: 10.7150/ijbs.84890] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 10/17/2023] [Indexed: 01/03/2024] Open
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) is a crucial innate defence mechanism against viral infection in the innate immune system, as it principally induces the production of type I interferons. Immune responses and metabolic control are inextricably linked, and chronic low-grade inflammation promotes the development of metabolic diseases. The cGAS-STING pathway activated by double-stranded DNA (dsDNA), cyclic dinucleotides (CDNs), endoplasmic reticulum stress (ER stress), mitochondrial stress, and energy imbalance in metabolic cells and immune cells triggers proinflammatory responses and metabolic disorders. Abnormal overactivation of the pathway is closely associated with metabolic diseases such as obesity, nonalcoholic fatty liver disease (NAFLD), insulin resistance and cardiovascular diseases (CVDs). The interaction of cGAS-STING with other pathways, such as the nuclear factor-kappa B (NF-κB), Jun N-terminal kinase (JNK), AMP-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), autophagy, pyroptosis and insulin signalling pathways, is considered an important mechanism by which cGAS-STING regulates inflammation and metabolism. This review focuses on the link between immune responses related to the cGAS-STING pathway and metabolic diseases and cGAS-STING interaction with other pathways for mediating signal input and affecting output. Moreover, potential inhibitors of the cGAS-STING pathway and therapeutic prospects against metabolic diseases are discussed. This review provides a comprehensive perspective on the involvement of STING in immune-related metabolic diseases.
Collapse
Affiliation(s)
- Jiahui Gong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xilong Gao
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Shaoyang Ge
- Hebei Engineering Research Center of Animal Product, Sanhe 065200, China
| | - Hongliang Li
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot 011517, China
| | - Ran Wang
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
- Research Center for Probiotics, China Agricultural University, Sanhe 065200, China
| | - Liang Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| |
Collapse
|
30
|
Yan S, Liang H, Zhan P, Zheng H, Zhao Q, Zheng Z, Lu H, Shang G, Ji X. Stimulator of interferon genes promotes diabetic sarcopenia by targeting peroxisome proliferator activated receptors γ degradation and inhibiting fatty acid oxidation. J Cachexia Sarcopenia Muscle 2023; 14:2623-2641. [PMID: 37735940 PMCID: PMC10751429 DOI: 10.1002/jcsm.13336] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/20/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Declined skeletal muscle mass and function are inevitable consequences of long-term diabetes and bring about many adverse events. Muscle fibre atrophy and interstitial fibrosis are major pathological manifestations of diabetic sarcopenia. Stimulator of interferon genes (STING) participates in various metabolic diseases. We aimed to explore whether and how STING regulates the above pathological manifestations of diabetic sarcopenia. METHODS Wild-type and STINGgt/gt C57BL/6J mice and C2C12 myotubes were used to study the role of STING in the regulation of diabetic sarcopenia and the underlying mechanisms. RESULTS STING was abnormally activated in diabetic muscles and in PA-treated myotubes (P < 0.01 for all parameters). The diabetic mice demonstrated decreased forelimb grip strength, lean mass, muscle weight and hanging impulse, which were improved by STING deficiency due to alleviated muscle fibre atrophy and interstitial fibrosis (P < 0.05 for all parameters). STING deficiency alleviated muscle fibre atrophy through the following mechanisms. Firstly, STING deficiency or inhibition increased the contents of pDRP1Ser616 , PINK1, Parkin and LC3-II, decreased p62 content, and increased the amount of mito-Keima fluorescent dots at 578 nm in diabetic state (P < 0.05 for all parameters), suggesting improved mitofission and mitophagy. Secondly, STING deficiency or inhibition increased the expression of pAKTSer473 and GLUT4 post-insulin change in diabetic state (P < 0.05 for all), indicating alleviated insulin resistance (IR). Mechanically, STING deficiency or inhibition increased peroxisome proliferator activated receptors γ (PPARγ) protein content by reducing the degradation of ubiquitinated PPARγ through the proteasome pathway and thus increased the expression of fatty acid oxidation (FAO)-related proteins in diabetic state (P < 0.05 for all parameters). Decreased expression of FAO-related proteins caused by PPARγ inhibition abolished the improvements in mitofission, mitophagy and IR achieved by STING inhibition in PA-treated myotubes and thus promoted muscle fibre atrophy (P < 0.05 for all parameters). STING deficiency alleviated interstitial fibrosis by decreasing TGFβ1 expression in diabetic state and TGFβ1 promoted the fibrogenic differentiation of fibro-adipogenic progenitors (P < 0.05 for all parameters). PPARγ inhibition abolished the effect of STING inhibition on reducing TGFβ1 content in PA-treated myotubes (P < 0.01). CONCLUSIONS STING deficiency exerted protective effects in diabetic sarcopenia by inhibiting the degradation of ubiquitinated PPARγ through the proteasome pathway and enhancing PPARγ-mediated FAO, which alleviated muscle fibre atrophy by promoting mitophagy and ameliorating IR, and alleviated interstitial fibrosis by reducing TGFβ1 production and suppressing the fibrogenic differentiation of fibro-adipogenic progenitors.
Collapse
Affiliation(s)
- Sen‐bo Yan
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Huan Liang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Peng Zhan
- Department of Cardiology, Shandong Provincial HospitalShandong UniversityJinanChina
| | - Hui Zheng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Qin‐xiao Zhao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Zi‐jie Zheng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Hui‐xia Lu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Guo‐kai Shang
- Department of CardiologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Xiao‐ping Ji
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| |
Collapse
|
31
|
Elahi R, Hozhabri S, Moradi A, Siahmansouri A, Jahani Maleki A, Esmaeilzadeh A. Targeting the cGAS-STING pathway as an inflammatory crossroad in coronavirus disease 2019 (COVID-19). Immunopharmacol Immunotoxicol 2023; 45:639-649. [PMID: 37335770 DOI: 10.1080/08923973.2023.2215405] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 05/14/2023] [Indexed: 06/21/2023]
Abstract
CONTEXT AND OBJECTIVE The emerging pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has imposed significant mortality and morbidity on the world. An appropriate immune response is necessary to inhibit SARS-CoV-2 spread throughout the body. RESULTS During the early stages of infection, the pathway of stimulators of interferon genes (STING), known as the cGAS-STING pathway, has a significant role in the induction of the antiviral immune response by regulating nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and Interferon regulatory factor 3 (IRF3), two key pathways responsible for proinflammatory cytokines and type I IFN secretion, respectively. DISCUSSION During the late stages of COVID-19, the uncontrolled inflammatory responses, also known as cytokine storm, lead to the progression of the disease and poor prognosis. Hyperactivity of STING, leading to elevated titers of proinflammatory cytokines, including Interleukin-I (IL-1), IL-4, IL-6, IL-18, and tissue necrosis factor-α (TNF-α), is considered one of the primary mechanisms contributing to the cytokine storm in COVID-19. CONCLUSION Exploring the underlying molecular processes involved in dysregulated inflammation can bring up novel anti-COVID-19 therapeutic options. In this article, we aim to discuss the role and current studies targeting the cGAS/STING signaling pathway in both early and late stages of COVID-19 and COVID-19-related complications and the therapeutic potential of STING agonists/antagonists. Furthermore, STING agonists have been discussed as a vaccine adjuvant to induce a potent and persistent immune response.
Collapse
Affiliation(s)
- Reza Elahi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Salar Hozhabri
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Amirhosein Moradi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Amir Siahmansouri
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
32
|
Yang H, Su M, Liu M, Sheng Y, Zhu L, Yang L, Mu R, Zou J, Liu X, Liu L. Hepatic retinaldehyde deficiency is involved in diabetes deterioration by enhancing PCK1- and G6PC-mediated gluconeogenesis. Acta Pharm Sin B 2023; 13:3728-3743. [PMID: 37719384 PMCID: PMC10501888 DOI: 10.1016/j.apsb.2023.06.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/14/2023] [Accepted: 05/06/2023] [Indexed: 09/19/2023] Open
Abstract
Type 2 diabetes (T2D) is often accompanied with an induction of retinaldehyde dehydrogenase 1 (RALDH1 or ALDH1A1) expression and a consequent decrease in hepatic retinaldehyde (Rald) levels. However, the role of hepatic Rald deficiency in T2D progression remains unclear. In this study, we demonstrated that reversing T2D-mediated hepatic Rald deficiency by Rald or citral treatments, or liver-specific Raldh1 silencing substantially lowered fasting glycemia levels, inhibited hepatic glucogenesis, and downregulated phosphoenolpyruvate carboxykinase 1 (PCK1) and glucose-6-phosphatase (G6PC) expression in diabetic db/db mice. Fasting glycemia and Pck1/G6pc mRNA expression levels were strongly negatively correlated with hepatic Rald levels, indicating the involvement of hepatic Rald depletion in T2D deterioration. A similar result that liver-specific Raldh1 silencing improved glucose metabolism was also observed in high-fat diet-fed mice. In primary human hepatocytes and oleic acid-treated HepG2 cells, Rald or Rald + RALDH1 silencing resulted in decreased glucose production and downregulated PCK1/G6PC mRNA and protein expression. Mechanistically, Rald downregulated direct repeat 1-mediated PCK1 and G6PC expression by antagonizing retinoid X receptor α, as confirmed by luciferase reporter assays and molecular docking. These results highlight the link between hepatic Rald deficiency, glucose dyshomeostasis, and the progression of T2D, whilst also suggesting RALDH1 as a potential therapeutic target for T2D.
Collapse
Affiliation(s)
- Hanyu Yang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Mengxiang Su
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ming Liu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yun Sheng
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Liang Zhu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lu Yang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ruijing Mu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jianjun Zou
- Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Xiaodong Liu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Li Liu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
33
|
Tao XY, Guan XY, Hong GJ, He YQ, Li SJ, Feng SL, Wang J, Chen G, Xu F, Wang JW, Xu SC. Biotinylated Tn5 transposase-mediated CUT&Tag efficiently profiles transcription factor-DNA interactions in plants. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1191-1205. [PMID: 36786225 DOI: 10.1111/pbi.14029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/18/2023] [Accepted: 02/06/2023] [Indexed: 05/27/2023]
Abstract
In contrast to CUT&Tag approaches for profiling bulk histone modifications, current CUT&Tag methods for analysing specific transcription factor (TF)-DNA interactions remain technically challenging due to TFs having relatively low abundance. Moreover, an efficient CUT&Tag strategy for plant TFs is not yet available. Here, we first applied biotinylated Tn5 transposase-mediated CUT&Tag (B-CUT&Tag) to produce high-quality libraries for interrogating TF-DNA interactions. B-CUT&Tag combines streptavidin-biotin-based DNA purification with routine CUT&Tag, optimizing the removal of large amounts of intact chromatin not targeted by specific TFs. The biotinylated chromatin fragments are then purified for construction of deep sequencing libraries or qPCR analysis. We applied B-CUT&Tag to probe genome-wide DNA targets of Squamosa promoter-binding-like protein 9 (SPL9), a well-established TF in Arabidopsis; the resulting profiles were efficient and consistent in demonstrating its well-established target genes in juvenile-adult transition/flowering, trichome development, flavonoid biosynthesis, wax synthesis and branching. Interestingly, our results indicate functions of AtSPL9 in modulating growth-defence trade-offs. In addition, we established a method for applying qPCR after CUT&Tag (B-CUT&Tag-qPCR) and successfully validated the binding of SPL9 in Arabidopsis and PHR2 in rice. Our study thus provides a convenient and highly efficient CUT&Tag strategy for profiling TF-chromatin interactions that is widely applicable to the annotation of cis-regulatory elements for crop improvement.
Collapse
Affiliation(s)
- Xiao-Yuan Tao
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xue-Ying Guan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Gao-Jie Hong
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yu-Qing He
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Su-Juan Li
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shou-Li Feng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jian Wang
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guang Chen
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Fei Xu
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Sheng-Chun Xu
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Xianghu Laboratory, Hangzhou, China
| |
Collapse
|
34
|
Li J, Sun Y, Zhao X, Ma Y, Xie Y, Liu S, Hui B, Shi X, Sun X, Zhang X. Radiation induces IRAK1 expression to promote radioresistance by suppressing autophagic cell death via decreasing the ubiquitination of PRDX1 in glioma cells. Cell Death Dis 2023; 14:259. [PMID: 37031183 PMCID: PMC10082800 DOI: 10.1038/s41419-023-05732-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 03/03/2023] [Accepted: 03/13/2023] [Indexed: 04/10/2023]
Abstract
Radiotherapy is the standard adjuvant treatment for glioma patients; however, the efficacy is limited by radioresistance. The function of Interleukin-1 receptor associated kinase 1 (IRAK1) in tumorigenesis and radioresistance remains to be elucidated. IRAK1 expression and its correlation with prognosis were analyzed in glioma tissues. We found that glioma patients with overexpressed IRAK1 show a poor prognosis. Notably, ionizing radiation (IR) remarkably induces IRAK1 expression, which was decreased by STING antagonist H-151 treatment. JASPAR prediction, ChIP assays, and dual luciferase reporter assays indicated that transcription factor FOXA2, suppressed by STING inhibition, directly binds to the IRAK1 promoter region and activates its transcription. IRAK1 knockdown inhibits malignancy and enhances the radiosensitivity of glioma in vitro and in vivo. To explore the potential IRAK1 interacting targets mediating the radioresistance of glioma cells, IP/Co-IP, LC-MS/MS, GST pull-down, and ubiquitination analyses were conducted. Mechanistically, IRAK1 bound to PRDX1, a major member of antioxidant enzymes, and further prevents ubiquitination and degradation of PRDX1 mediated by E3 ubiquitin ligase HECTD3; Both the DOC and HECT domains of HECTD3 directly interacted with PRDX1 protein. Overexpression of PRDX1 reverses the radiotherapy sensitization effect of IRAK1 depletion by diminishing autophagic cell death. These results suggest the IRAK1-PRDX1 axis provides a potential therapeutic target for glioma patients.
Collapse
Affiliation(s)
- Jing Li
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yuchen Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xu Zhao
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yuan Ma
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yuchen Xie
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Siqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Beina Hui
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaobo Shi
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xuanzi Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaozhi Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
35
|
Zhang Z, Zhou H, Ouyang X, Dong Y, Sarapultsev A, Luo S, Hu D. Multifaceted functions of STING in human health and disease: from molecular mechanism to targeted strategy. Signal Transduct Target Ther 2022; 7:394. [PMID: 36550103 PMCID: PMC9780328 DOI: 10.1038/s41392-022-01252-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/25/2022] [Accepted: 11/09/2022] [Indexed: 12/24/2022] Open
Abstract
Since the discovery of Stimulator of Interferon Genes (STING) as an important pivot for cytosolic DNA sensation and interferon (IFN) induction, intensive efforts have been endeavored to clarify the molecular mechanism of its activation, its physiological function as a ubiquitously expressed protein, and to explore its potential as a therapeutic target in a wide range of immune-related diseases. With its orthodox ligand 2'3'-cyclic GMP-AMP (2'3'-cGAMP) and the upstream sensor 2'3'-cGAMP synthase (cGAS) to be found, STING acquires its central functionality in the best-studied signaling cascade, namely the cGAS-STING-IFN pathway. However, recently updated research through structural research, genetic screening, and biochemical assay greatly extends the current knowledge of STING biology. A second ligand pocket was recently discovered in the transmembrane domain for a synthetic agonist. On its downstream outputs, accumulating studies sketch primordial and multifaceted roles of STING beyond its cytokine-inducing function, such as autophagy, cell death, metabolic modulation, endoplasmic reticulum (ER) stress, and RNA virus restriction. Furthermore, with the expansion of the STING interactome, the details of STING trafficking also get clearer. After retrospecting the brief history of viral interference and the milestone events since the discovery of STING, we present a vivid panorama of STING biology taking into account the details of the biochemical assay and structural information, especially its versatile outputs and functions beyond IFN induction. We also summarize the roles of STING in the pathogenesis of various diseases and highlight the development of small-molecular compounds targeting STING for disease treatment in combination with the latest research. Finally, we discuss the open questions imperative to answer.
Collapse
Affiliation(s)
- Zili Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Haifeng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Xiaohu Ouyang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Yalan Dong
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Alexey Sarapultsev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, 430022, Wuhan, China.
- Clinical Research Center of Cancer Immunotherapy, 430022, Hubei, Wuhan, China.
| |
Collapse
|
36
|
Vila IK, Guha S, Kalucka J, Olagnier D, Laguette N. Alternative pathways driven by STING: From innate immunity to lipid metabolism. Cytokine Growth Factor Rev 2022; 68:54-68. [PMID: 36085258 DOI: 10.1016/j.cytogfr.2022.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 08/29/2022] [Indexed: 01/30/2023]
Abstract
The Stimulator of Interferon Genes (STING) is a major adaptor protein that is central to the initiation of type I interferon responses and proinflammatory signalling. STING-dependent signalling is triggered by the presence of cytosolic nucleic acids that are generated following pathogen infection or cellular stress. Beyond this central role in controlling immune responses through the production of cytokines and chemokines, recent reports have uncovered inflammation-independent STING functions. Amongst these, a rapidly growing body of evidence demonstrates a key role of STING in controlling metabolic pathways at several levels. Since immunity and metabolic homeostasis are tightly interconnected, these findings deepen our understanding of the involvement of STING in human pathologies. Here, we discuss these findings and reflect on their impact on our current understanding of how nucleic acid immunity controls homeostasis and promotes pathological outcomes.
Collapse
Affiliation(s)
- Isabelle K Vila
- Institut de Génétique Humaine, Univ Montpellier, CNRS, Montpellier, France.
| | - Soumyabrata Guha
- Institut de Génétique Humaine, Univ Montpellier, CNRS, Montpellier, France
| | - Joanna Kalucka
- Aarhus University, Department of Biomedicine, Aarhus, Denmark
| | - David Olagnier
- Aarhus University, Department of Biomedicine, Aarhus, Denmark
| | - Nadine Laguette
- Institut de Génétique Humaine, Univ Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
37
|
Yang J, Zhen J, Feng W, Fan Z, Ding L, Yang X, Huang Y, Shu H, Xie J, Li X, Qiao J, Fan Y, Sun J, Li N, Liu T, Wang S, Zhang X, Arvan P, Liu M. IER3IP1 is critical for maintaining glucose homeostasis through regulating the endoplasmic reticulum function and survival of β cells. Proc Natl Acad Sci U S A 2022; 119:e2204443119. [PMID: 36322741 PMCID: PMC9659391 DOI: 10.1073/pnas.2204443119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 10/06/2022] [Indexed: 05/04/2023] Open
Abstract
Recessive mutations in IER3IP1 (immediate early response 3 interacting protein 1) cause a syndrome of microcephaly, epilepsy, and permanent neonatal diabetes (MEDS). IER3IP1 encodes an endoplasmic reticulum (ER) membrane protein, which is crucial for brain development; however, the role of IER3IP1 in β cells remains unknown. We have generated two mouse models with either constitutive or inducible IER3IP1 deletion in β cells, named IER3IP1-βKO and IER3IP1-iβKO, respectively. We found that IER3IP1-βKO causes severe early-onset, insulin-deficient diabetes. Functional studies revealed a markedly dilated β-cell ER along with increased proinsulin misfolding and elevated expression of the ER chaperones, including PDI, ERO1, BiP, and P58IPK. Islet transcriptome analysis confirmed by qRT-PCR revealed decreased expression of genes associated with β-cell maturation, cell cycle, and antiapoptotic genes, accompanied by increased expression of antiproliferation genes. Indeed, multiple independent approaches further demonstrated that IER3IP1-βKO impaired β-cell maturation and proliferation, along with increased condensation of β-cell nuclear chromatin. Inducible β-cell IER3IP1 deletion in adult (8-wk-old) mice induced a similar diabetic phenotype, suggesting that IER3IP1 is also critical for function and survival even after β-cell early development. Importantly, IER3IP1 was decreased in β cells of patients with type 2 diabetes (T2D), suggesting an association of IER3IP1 deficiency with β-cell dysfunction in the more-common form of diabetes. These data not only uncover a critical role of IER3IP1 in β cells but also provide insight into molecular basis of diabetes caused by IER3IP1 mutations.
Collapse
Affiliation(s)
- Jing Yang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jinyang Zhen
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wenli Feng
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhenqian Fan
- Department of Endocrinology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Li Ding
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xiaoyun Yang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yumeng Huang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hua Shu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jing Xie
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xin Li
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jingting Qiao
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yuxin Fan
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jinhong Sun
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Na Li
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Tengli Liu
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
- NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300384, China
| | - Shusen Wang
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
- NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300384, China
- Human Islet Resource Center, Tianjin First Central Hospital, Tianjin 300384, China
| | - Xiaona Zhang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI 48105
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
38
|
Chen C, Xu P. Cellular functions of cGAS-STING signaling. Trends Cell Biol 2022:S0962-8924(22)00252-5. [DOI: 10.1016/j.tcb.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/27/2022]
|
39
|
Skovsø S, Overby P, Memar-Zadeh J, Lee JTC, Yang JCC, Shanina I, Sidarala V, Levi-D'Ancona E, Zhu J, Soleimanpour SA, Horwitz MS, Johnson JD. β-Cell Cre Expression and Reduced Ins1 Gene Dosage Protect Mice From Type 1 Diabetes. Endocrinology 2022; 163:6681115. [PMID: 36048448 DOI: 10.1210/endocr/bqac144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Indexed: 11/19/2022]
Abstract
A central goal of physiological research is the understanding of cell-specific roles of disease-associated genes. Cre-mediated recombineering is the tool of choice for cell type-specific analysis of gene function in preclinical models. In the type 1 diabetes (T1D) research field, multiple lines of nonobese diabetic (NOD) mice have been engineered to express Cre recombinase in pancreatic β cells using insulin promoter fragments, but tissue promiscuity remains a concern. Constitutive Ins1tm1.1(cre)Thor (Ins1Cre) mice on the C57/bl6-J background have high β-cell specificity with no reported off-target effects. We explored whether NOD:Ins1Cre mice could be used to investigate β-cell gene deletion in T1D disease modeling. We studied wild-type (Ins1WT/WT), Ins1 heterozygous (Ins1Cre/WT or Ins1Neo/WT), and Ins1 null (Ins1Cre/Neo) littermates on a NOD background. Female Ins1Neo/WT mice exhibited significant protection from diabetes, with further near-complete protection in Ins1Cre/WT mice. The effects of combined neomycin and Cre knockin in Ins1Neo/Cre mice were not additive to the Cre knockin alone. In Ins1Neo/Cre mice, protection from diabetes was associated with reduced insulitis at age 12 weeks. Collectively, these data confirm previous reports that loss of Ins1 alleles protects NOD mice from diabetes development and demonstrates, for the first time, that Cre itself may have additional protective effects. This has important implications for the experimental design and interpretation of preclinical T1D studies using β-cell-selective Cre in NOD mice.
Collapse
Affiliation(s)
- Søs Skovsø
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Peter Overby
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jasmine Memar-Zadeh
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jason T C Lee
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jenny C C Yang
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Iryna Shanina
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Vaibhav Sidarala
- Department of Molecular and Integrative Physiology, Division of Metabolism, Endocrinology, and Diabetes of the Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48105, USA
| | - Elena Levi-D'Ancona
- Department of Molecular and Integrative Physiology, Division of Metabolism, Endocrinology, and Diabetes of the Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48105, USA
| | - Jie Zhu
- Department of Molecular and Integrative Physiology, Division of Metabolism, Endocrinology, and Diabetes of the Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48105, USA
| | - Scott A Soleimanpour
- Department of Molecular and Integrative Physiology, Division of Metabolism, Endocrinology, and Diabetes of the Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48105, USA
| | - Marc S Horwitz
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - James D Johnson
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
40
|
Liu Y, Zhang Y, Zhu H, Shen W, Chen Z, Bai J, Shuang T, Chen Q. Aucubin administration suppresses STING signaling and mitigated high-fat diet-induced atherosclerosis and steatohepatosis in LDL receptor deficient mice. Food Chem Toxicol 2022; 169:113422. [PMID: 36108984 DOI: 10.1016/j.fct.2022.113422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022]
Abstract
The rising obesity epidemic in developed countries is associated with many chronic inflammatory diseases including atherosclerosis and nonalcoholic steatohepatitis (NASH). Consuming aucubin may benefit health by suppressing inflammation. Herein, we studied the effects of aucubin consumption on atherosclerosis and NASH progression induced by high-fat diet (HFD) in LDL receptor deficient (LDLr-/-) mice. Adult LDLr-/- mice were fed with HFD for 12 weeks and received oral administration of aucubin for the last 6 weeks. Aucubin did not alter body weight or dyslipidemia, but lowered hyperglycemia and mitigated HFD-induced atherosclerosis and hepatic impairments in LDLr-/- mice. Aucubin administration inhibited HFD-induced inflammation and downregulated mRNA and protein expression of stimulator of IFN genes (STING) in both aortas and livers of LDLr-/- mice. In vitro, aucubin suppressed mitochondrial DNA (mtDNA)-induced activation of STING/NFκB pathway and downregulated gene expression of pro-inflammatory cytokines in cultured bone marrow-derived macrophages (BMDM). Furthermore, aucubin enhanced microRNA-181a-5p (miR-181a-5p) levels in both aortas and livers of LDLr-/- mice. Importantly, miR-181a-5p mimicked the inhibitory effect of aucubin on STING/NFκB pathway and inflammation in BMDM. In conclusion, aucubin consumption attenuated HFD-induced atherosclerosis and NASH progression in LDLr-/- mice, possibly through modulating miR-181a-5p/STING and inhibiting inflammation.
Collapse
Affiliation(s)
- Yu Liu
- Department of Cardiology, Nanjing University Medical School Afliated Nanjing Drum Tower Hospital, Zhongshan Road 321, Nanjing, 210008, Jiangsu, China
| | - Yan Zhang
- Department of Clinical Laboratory, Nanjing University Medical School Afliated Nanjing Drum Tower Hospital, Zhongshan Road 321, Nanjing, 210008, Jiangsu, China
| | - Huanhuan Zhu
- Department of Geratology, Nanjing University Medical School Afliated Nanjing Drum Tower Hospital, Zhongshan Road 321, Nanjing, 210008, Jiangsu, China
| | - Wenzhi Shen
- Department of Cardiology, Nanjing University Medical School Afliated Nanjing Drum Tower Hospital, Zhongshan Road 321, Nanjing, 210008, Jiangsu, China
| | - Zheng Chen
- Department of Cardiology, Nanjing University Medical School Afliated Nanjing Drum Tower Hospital, Zhongshan Road 321, Nanjing, 210008, Jiangsu, China
| | - Jian Bai
- Department of Cardiology, Nanjing University Medical School Afliated Nanjing Drum Tower Hospital, Zhongshan Road 321, Nanjing, 210008, Jiangsu, China
| | - Tian Shuang
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Qi Chen
- Department of Cardiology, Zhejiang Provincial People's Hospital, Shangtang Road 158, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
41
|
Ali HS, Boshra MS, Agwa SHA, Hakeem MSA, Meteini MSE, Matboli M. Identification of a Multi-Messenger RNA Signature as Type 2 Diabetes Mellitus Candidate Genes Involved in Crosstalk between Inflammation and Insulin Resistance. Biomolecules 2022; 12:1230. [PMID: 36139069 PMCID: PMC9496026 DOI: 10.3390/biom12091230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Type 2 Diabetes Mellitus (T2DM) is a metabolic disease associated with inflammation widening the scope of immune-metabolism, linking the inflammation to insulin resistance and beta cell dysfunction. New potential and prognostic biomarkers are urgently required to identify individuals at high risk of β-cell dysfunction and pre-DM. The DNA-sensing stimulator of interferon genes (STING) is an important component of innate immune signaling that governs inflammation-mediated T2DM. NOD-like receptor (NLR) reduces STING-dependent innate immune activation in response to cyclic di-GMP and DNA viruses by impeding STING-TBK1 interaction. We proposed exploring novel blood-based mRNA signatures that are selective for components related to inflammatory, immune, and metabolic stress which may reveal the landscape of T2DM progression for diagnosing or treating patients in the pre-DM state. In this study, we used microarray data set to identify a group of differentially expressed mRNAs related to the cGAS/STING, NODlike receptor pathways (NLR) and T2DM. Then, we comparatively analyzed six mRNAs expression levels in healthy individuals, prediabetes (pre-DM) and T2DM patients by real-time PCR. The expressions of ZBP1, DDX58, NFKB1 and CHUK were significantly higher in the pre-DM group compared to either healthy control or T2DM patients. The expression of ZBP1 and NFKB1 mRNA could discriminate between good versus poor glycemic control groups. HSPA1B mRNA showed a significant difference in its expression regarding the insulin resistance. Linear regression analysis revealed that LDLc, HSPA1B and NFKB1 were significant variables for the prediction of pre-DM from the healthy control. Our study shed light on a new finding that addresses the role of ZBP1 and HSPA1B in the early prediction and progression of T2DM.
Collapse
Affiliation(s)
- Hebatalla Said Ali
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo P.O. Box 11381, Egypt
| | - Mariam Sameh Boshra
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo P.O. Box 11381, Egypt
| | - Sara H. A. Agwa
- Clinical Pathology, Medical Ain Shams Research Institute, Ain Shams University, Abbassia, Cairo P.O. Box 11381, Egypt
| | | | | | - Marwa Matboli
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo P.O. Box 11381, Egypt
| |
Collapse
|
42
|
Du Y, Zhang H, Nie X, Qi Y, Shi S, Han Y, Zhou W, He C, Wang L. Link between sterile inflammation and cardiovascular diseases: Focus on cGAS-STING pathway in the pathogenesis and therapeutic prospect. Front Cardiovasc Med 2022; 9:965726. [PMID: 36072862 PMCID: PMC9441773 DOI: 10.3389/fcvm.2022.965726] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Sterile inflammation characterized by unresolved chronic inflammation is well established to promote the progression of multiple autoimmune diseases, metabolic disorders, neurodegenerative diseases, and cardiovascular diseases, collectively termed as sterile inflammatory diseases. In recent years, substantial evidence has revealed that the inflammatory response is closely related to cardiovascular diseases. Cyclic guanosine monophosphate–adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) pathway which is activated by cytoplasmic DNA promotes the activation of interferon regulatory factor 3 (IRF3) or nuclear factor-κB (NF-κB), thus leading to upregulation of the levels of inflammatory factors and interferons (IFNs). Therefore, studying the role of inflammation caused by cGAS-STING pathway in cardiovascular diseases could provide a new therapeutic target for cardiovascular diseases. This review focuses on that cGAS-STING-mediated inflammatory response in the progression of cardiovascular diseases and the prospects of cGAS or STING inhibitors for treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Yao Du
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Hui Zhang
- Department of Stomatology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoyan Nie
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yajun Qi
- Department of Pharmacy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Shi Shi
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yingying Han
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wenchen Zhou
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chaoyong He
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
- *Correspondence: Chaoyong He
| | - Lintao Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
- Lintao Wang
| |
Collapse
|
43
|
Lv C, Sun Y, Zhang ZY, Aboelela Z, Qiu X, Meng ZX. β-cell dynamics in type 2 diabetes and in dietary and exercise interventions. J Mol Cell Biol 2022; 14:6656373. [PMID: 35929791 PMCID: PMC9710517 DOI: 10.1093/jmcb/mjac046] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/07/2022] [Accepted: 08/03/2022] [Indexed: 01/14/2023] Open
Abstract
Pancreatic β-cell dysfunction and insulin resistance are two of the major causes of type 2 diabetes (T2D). Recent clinical and experimental studies have suggested that the functional capacity of β-cells, particularly in the first phase of insulin secretion, is a primary contributor to the progression of T2D and its associated complications. Pancreatic β-cells undergo dynamic compensation and decompensation processes during the development of T2D, in which metabolic stresses such as endoplasmic reticulum stress, oxidative stress, and inflammatory signals are key regulators of β-cell dynamics. Dietary and exercise interventions have been shown to be effective approaches for the treatment of obesity and T2D, especially in the early stages. Whilst the targeted tissues and underlying mechanisms of dietary and exercise interventions remain somewhat vague, accumulating evidence has implicated the improvement of β-cell functional capacity. In this review, we summarize recent advances in the understanding of the dynamic adaptations of β-cell function in T2D progression and clarify the effects and mechanisms of dietary and exercise interventions on β-cell dysfunction in T2D. This review provides molecular insights into the therapeutic effects of dietary and exercise interventions on T2D, and more importantly, it paves the way for future research on the related underlying mechanisms for developing precision prevention and treatment of T2D.
Collapse
Affiliation(s)
- Chengan Lv
- Department of Pathology and Pathophysiology and Metabolic Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yuchen Sun
- Department of Pathology and Pathophysiology and Metabolic Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China,Zhejiang University–University of Edinburgh Institute (ZJE), Zhejiang University, Haining 314400, China
| | - Zhe Yu Zhang
- Department of Pathology and Pathophysiology and Metabolic Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zeyad Aboelela
- Department of Pathology and Pathophysiology and Metabolic Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China,Bachelors of Surgery, Bachelors of Medicine (MBBS), Zhejiang University School of Medicine, Hangzhou 310003, China
| | | | | |
Collapse
|
44
|
Transcriptional control of pancreatic β-cell identity and plasticity during the pathogenesis of type 2 diabetes. J Genet Genomics 2022; 49:316-328. [DOI: 10.1016/j.jgg.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/23/2022] [Accepted: 03/06/2022] [Indexed: 11/21/2022]
|