1
|
Cabarcas-Petroski S, Olshefsky G, Schramm L. MAF1 is a predictive biomarker in HER2 positive breast cancer. PLoS One 2023; 18:e0291549. [PMID: 37801436 PMCID: PMC10558074 DOI: 10.1371/journal.pone.0291549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/01/2023] [Indexed: 10/08/2023] Open
Abstract
RNA polymerase III transcription is pivotal in regulating cellular growth and frequently deregulated in various cancers. MAF1 negatively regulates RNA polymerase III transcription. Currently, it is unclear if MAF1 is universally deregulated in human cancers. Recently, MAF1 expression has been demonstrated to be altered in colorectal and liver carcinomas and Luminal B breast cancers. In this study, we analyzed clinical breast cancer datasets to determine if MAF1 alterations correlate with clinical outcomes in HER2-positive breast cancer. Using various bioinformatics tools, we screened breast cancer datasets for alterations in MAF1 expression. We report that MAF1 is amplified in 39% of all breast cancer sub-types, and the observed amplification co-occurs with MYC. MAF1 amplification correlated with increased methylation of the MAF1 promoter and MAF1 protein expression is significantly decreased in luminal, HER2-positive, and TNBC breast cancer subtypes. MAF1 protein expression is also significantly reduced in stage 2 and 3 breast cancer compared to normal and significantly decreased in all breast cancer patients, regardless of race and age. In SKBR3 and BT474 breast cancer cell lines treated with anti-HER2 therapies, MAF1 mRNA expression is significantly increased. In HER2-positive breast cancer patients, MAF1 expression significantly increases and correlates with five years of relapse-free survival in response to trastuzumab treatment, suggesting MAF1 is a predictive biomarker in breast cancer. These data suggest a role for MAF1 alterations in HER2-positive breast cancer. More extensive studies are warranted to determine if MAF1 serves as a predictive and prognostic biomarker in breast cancer.
Collapse
Affiliation(s)
| | | | - Laura Schramm
- Department of Biology, St. John’s University, Queens, NY, United States of America
| |
Collapse
|
2
|
Dremel SE, Jimenez AR, Tucker JM. "Transfer" of power: The intersection of DNA virus infection and tRNA biology. Semin Cell Dev Biol 2023; 146:31-39. [PMID: 36682929 PMCID: PMC10101907 DOI: 10.1016/j.semcdb.2023.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
Transfer RNAs (tRNAs) are at the heart of the molecular biology central dogma, functioning to decode messenger RNAs into proteins. As obligate intracellular parasites, viruses depend on the host translation machinery, including host tRNAs. Thus, the ability of a virus to fine-tune tRNA expression elicits the power to impact the outcome of infection. DNA viruses commonly upregulate the output of RNA polymerase III (Pol III)-dependent transcripts, including tRNAs. Decades after these initial discoveries we know very little about how mature tRNA pools change during viral infection, as tRNA sequencing methodology has only recently reached proficiency. Here, we review perturbation of tRNA biogenesis by DNA virus infection, including an emerging player called tRNA-derived fragments (tRFs). We discuss how tRNA dysregulation shifts the power landscape between the host and virus, highlighting the potential for tRNA-based antivirals as a future therapeutic.
Collapse
Affiliation(s)
- Sarah E Dremel
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ariana R Jimenez
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
| | - Jessica M Tucker
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
3
|
Sachs P, Bergmaier P, Treutwein K, Mermoud JE. The Conserved Chromatin Remodeler SMARCAD1 Interacts with TFIIIC and Architectural Proteins in Human and Mouse. Genes (Basel) 2023; 14:1793. [PMID: 37761933 PMCID: PMC10530723 DOI: 10.3390/genes14091793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
In vertebrates, SMARCAD1 participates in transcriptional regulation, heterochromatin maintenance, DNA repair, and replication. The molecular basis underlying its involvement in these processes is not well understood. We identified the RNA polymerase III general transcription factor TFIIIC as an interaction partner of native SMARCAD1 in mouse and human models using endogenous co-immunoprecipitations. TFIIIC has dual functionality, acting as a general transcription factor and as a genome organizer separating chromatin domains. We found that its partnership with SMARCAD1 is conserved across different mammalian cell types, from somatic to pluripotent cells. Using purified proteins, we confirmed that their interaction is direct. A gene expression analysis suggested that SMARCAD1 is dispensable for TFIIIC function as an RNA polymerase III transcription factor in mouse ESCs. The distribution of TFIIIC and SMARCAD1 in the ESC genome is distinct, and unlike in yeast, SMARCAD1 is not enriched at active tRNA genes. Further analysis of SMARCAD1-binding partners in pluripotent and differentiated mammalian cells reveals that SMARCAD1 associates with several factors that have key regulatory roles in chromatin organization, such as cohesin, laminB, and DDX5. Together, our work suggests for the first time that the SMARCAD1 enzyme participates in genome organization in mammalian nuclei through interactions with architectural proteins.
Collapse
Affiliation(s)
- Parysatis Sachs
- Institute of Molecular Biology and Tumor Research, Philipps University Marburg, 35043 Marburg, Germany
- CMC Development, R&D, Sanofi, 65926 Frankfurt, Germany
| | - Philipp Bergmaier
- Institute of Molecular Biology and Tumor Research, Philipps University Marburg, 35043 Marburg, Germany
- Global Development Operations, R&D, Merck Healthcare, 64293 Darmstadt, Germany
| | - Katrin Treutwein
- Institute of Molecular Biology and Tumor Research, Philipps University Marburg, 35043 Marburg, Germany
| | - Jacqueline E. Mermoud
- Institute of Molecular Biology and Tumor Research, Philipps University Marburg, 35043 Marburg, Germany
| |
Collapse
|
4
|
Talyzina A, Han Y, Banerjee C, Fishbain S, Reyes A, Vafabakhsh R, He Y. Structural basis of TFIIIC-dependent RNA polymerase III transcription initiation. Mol Cell 2023; 83:2641-2652.e7. [PMID: 37402369 PMCID: PMC10528418 DOI: 10.1016/j.molcel.2023.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/02/2023] [Accepted: 06/08/2023] [Indexed: 07/06/2023]
Abstract
RNA polymerase III (Pol III) is responsible for transcribing 5S ribosomal RNA (5S rRNA), tRNAs, and other short non-coding RNAs. Its recruitment to the 5S rRNA promoter requires transcription factors TFIIIA, TFIIIC, and TFIIIB. Here, we use cryoelectron microscopy (cryo-EM) to visualize the S. cerevisiae complex of TFIIIA and TFIIIC bound to the promoter. Gene-specific factor TFIIIA interacts with DNA and acts as an adaptor for TFIIIC-promoter interactions. We also visualize DNA binding of TFIIIB subunits, Brf1 and TBP (TATA-box binding protein), which results in the full-length 5S rRNA gene wrapping around the complex. Our smFRET study reveals that the DNA within the complex undergoes both sharp bending and partial dissociation on a slow timescale, consistent with the model predicted from our cryo-EM results. Our findings provide new insights into the transcription initiation complex assembly on the 5S rRNA promoter and allow us to directly compare Pol III and Pol II transcription adaptations.
Collapse
Affiliation(s)
- Anna Talyzina
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA; Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA
| | - Yan Han
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Chiranjib Banerjee
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Susan Fishbain
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Alexis Reyes
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA; Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA
| | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA; Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA
| | - Yuan He
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA; Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA; Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
5
|
Seifert-Davila W, Girbig M, Hauptmann L, Hoffmann T, Eustermann S, Müller CW. Structural insights into human TFIIIC promoter recognition. SCIENCE ADVANCES 2023; 9:eadh2019. [PMID: 37418517 PMCID: PMC11811891 DOI: 10.1126/sciadv.adh2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/02/2023] [Indexed: 07/09/2023]
Abstract
Transcription factor (TF) IIIC recruits RNA polymerase (Pol) III to most of its target genes. Recognition of intragenic A- and B-box motifs in transfer RNA (tRNA) genes by TFIIIC modules τA and τB is the first critical step for tRNA synthesis but is mechanistically poorly understood. Here, we report cryo-electron microscopy structures of the six-subunit human TFIIIC complex unbound and bound to a tRNA gene. The τB module recognizes the B-box via DNA shape and sequence readout through the assembly of multiple winged-helix domains. TFIIIC220 forms an integral part of both τA and τB connecting the two subcomplexes via a ~550-amino acid residue flexible linker. Our data provide a structural mechanism by which high-affinity B-box recognition anchors TFIIIC to promoter DNA and permits scanning for low-affinity A-boxes and TFIIIB for Pol III activation.
Collapse
Affiliation(s)
- Wolfram Seifert-Davila
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Candidate for joint PhD degree from EMBL and Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Mathias Girbig
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Luis Hauptmann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Thomas Hoffmann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Sebastian Eustermann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Christoph W. Müller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| |
Collapse
|
6
|
Talyzina A, Han Y, Banerjee C, Fishbain S, Reyes A, Vafabakhsh R, He Y. Structural basis of TFIIIC-dependent RNA Polymerase III transcription initiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.16.540967. [PMID: 37292922 PMCID: PMC10245719 DOI: 10.1101/2023.05.16.540967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
RNA Polymerase III (Pol III) is responsible for transcribing 5S ribosomal RNA (5S rRNA), tRNAs, and other short non-coding RNAs. Its recruitment to the 5S rRNA promoter requires transcription factors TFIIIA, TFIIIC, and TFIIIB. Here we use cryo-electron microscopy to visualize the S. cerevisiae complex of TFIIIA and TFIIIC bound to the promoter. Brf1-TBP binding further stabilizes the DNA, resulting in the full-length 5S rRNA gene wrapping around the complex. Our smFRET study reveals that the DNA undergoes both sharp bending and partial dissociation on a slow timescale, consistent with the model predicted from our cryo-EM results. Our findings provide new insights into the mechanism of how the transcription initiation complex assembles on the 5S rRNA promoter, a crucial step in Pol III transcription regulation.
Collapse
Affiliation(s)
- Anna Talyzina
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, United States
| | - Yan Han
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States
| | - Chiranjib Banerjee
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States
| | - Susan Fishbain
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States
| | - Alexis Reyes
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, United States
| | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, United States
| | - Yuan He
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, United States
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Northwestern University, Chicago, IL, United States
- Lead contact
| |
Collapse
|
7
|
Cabarcas-Petroski S, Olshefsky G, Schramm L. BDP1 as a biomarker in serous ovarian cancer. Cancer Med 2023; 12:6401-6418. [PMID: 36305848 PMCID: PMC10028122 DOI: 10.1002/cam4.5388] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/19/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND TFIIIB, an RNA polymerase III specific transcription factor has been found to be deregulated in human cancers with much of the research focused on the TBP, BRF1, and BRF2 subunits. To date, the TFIIIB specific subunit BDP1 has not been investigated in ovarian cancer but has previously been shown to be deregulated in neuroblastoma, breast cancer, and Non-Hodgkins lymphoma. RESULTS Using in silico analysis of clinically derived platforms, we report a decreased BDP1 expression as a result of deletion in serous ovarian cancer and a correlation with higher and advanced ovarian stages. Further analysis in the context of TP53 mutations, a major contributor to ovarian tumorigenesis, suggests that high BDP1 expression is unfavorable for overall survival and high BDP1 expression occurs in stages 2, 3 and 4 serous ovarian cancer. Additionally, high BDP1 expression is disadvantageous and unfavorable for progression-free survival. Lastly, BDP1 expression significantly decreased in patients treated with first-line chemotherapy, platin and taxane, at twelve-month relapse-free survival. CONCLUSIONS Taken together with a ROC analysis, the data suggest BDP1 could be of clinical relevance as a predictive biomarker in serous ovarian cancer. Lastly, this study further demonstrates that both the over- and under expression of BDP1 warrants further investigation and suggests BDP1 may exhibit dual function in the context of tumorigenesis.
Collapse
Affiliation(s)
| | | | - Laura Schramm
- Biology Department, St. John's University, Queens, New York, USA
| |
Collapse
|
8
|
Jacobs RQ, Fuller KB, Cooper SL, Carter ZI, Laiho M, Lucius AL, Schneider DA. RNA Polymerase I Is Uniquely Vulnerable to the Small-Molecule Inhibitor BMH-21. Cancers (Basel) 2022; 14:5544. [PMID: 36428638 PMCID: PMC9688676 DOI: 10.3390/cancers14225544] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer cells require robust ribosome biogenesis to maintain rapid cell growth during tumorigenesis. Because RNA polymerase I (Pol I) transcription of the ribosomal DNA (rDNA) is the first and rate-limiting step of ribosome biogenesis, it has emerged as a promising anti-cancer target. Over the last decade, novel cancer therapeutics targeting Pol I have progressed to clinical trials. BMH-21 is a first-in-class small molecule that inhibits Pol I transcription and represses cancer cell growth. Several recent studies have uncovered key mechanisms by which BMH-21 inhibits ribosome biosynthesis but the selectivity of BMH-21 for Pol I has not been directly measured. Here, we quantify the effects of BMH-21 on Pol I, RNA polymerase II (Pol II), and RNA polymerase III (Pol III) in vitro using purified components. We found that BMH-21 directly impairs nucleotide addition by Pol I, with no or modest effect on Pols II and III, respectively. Additionally, we found that BMH-21 does not affect the stability of any of the Pols' elongation complexes. These data demonstrate that BMH-21 directly exploits unique vulnerabilities of Pol I.
Collapse
Affiliation(s)
- Ruth Q. Jacobs
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kaila B. Fuller
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Stephanie L. Cooper
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - Marikki Laiho
- Department of Radiation Oncology and Molecular Radiation Sciences and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Aaron L. Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David A. Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
9
|
Malcolm JR, Leese NK, Lamond-Warner PI, Brackenbury WJ, White RJ. Widespread association of ERα with RMRP and tRNA genes in MCF-7 cells and breast cancers. Gene X 2022; 821:146280. [PMID: 35143945 PMCID: PMC8942118 DOI: 10.1016/j.gene.2022.146280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/21/2022] [Accepted: 02/03/2022] [Indexed: 12/04/2022] Open
Abstract
Estrogen receptor (ER) interacts with hundreds of tRNA genes (tDNAs) in MCF-7 cells. Hundreds of tDNAs are also targeted in primary breast tumours and metastases. Canonical estrogen response element is not found near top tDNA targets of ER. ER also targets non-coding breast cancer driver gene RMRP. ER also targets RN7SL1 gene that promotes breast cancer progression.
tRNA gene transcription by RNA polymerase III (Pol III) is a tightly regulated process, but dysregulated Pol III transcription is widely observed in cancers. Approximately 75% of all breast cancers are positive for expression of Estrogen Receptor alpha (ERα), which acts as a key driver of disease. MCF-7 cells rapidly upregulate tRNA gene transcription in response to estrogen and ChIP-PCR demonstrated ERα enrichment at tRNALeu and 5S rRNA genes in this breast cancer cell line. While these data implicate the ERα as a Pol III transcriptional regulator, how widespread this regulation is across the 631 tRNA genes has yet to be revealed. Through analyses of ERα ChIP-seq datasets, we show that ERα interacts with hundreds of tRNA genes, not only in MCF-7 cells, but also in primary human breast tumours and distant metastases. The extent of ERα association with tRNA genes varies between breast cancer cell lines and does not correlate with levels of ERα binding to its canonical target gene GREB1. Amongst other Pol III-transcribed genes, ERα is consistently enriched at the long non-coding RNA gene RMRP, a positive regulator of cell cycle progression that is subject to focal amplification in tumours. Another Pol III template targeted by ERα is the RN7SL1 gene, which is strongly implicated in breast cancer pathology by inducing inflammatory responses in tumours. Our data indicate that Pol III-transcribed non-coding genes should be added to the list of ERα targets in breast cancer.
Collapse
Affiliation(s)
- Jodie R Malcolm
- Department of Biology, The University of York, Heslington Road, YO10 5DD, United Kingdom
| | - Natasha K Leese
- Department of Biology, The University of York, Heslington Road, YO10 5DD, United Kingdom
| | | | - William J Brackenbury
- Department of Biology, The University of York, Heslington Road, YO10 5DD, United Kingdom
| | - Robert J White
- Department of Biology, The University of York, Heslington Road, YO10 5DD, United Kingdom.
| |
Collapse
|
10
|
Zhang C, Zhao H, Song X, Wang J, Zhao S, Deng H, He L, Zhou X, Yin X, Zhang K, Zhang Y, Wu Z, Chen Q, Du J, Yu D, Zhang S, Deng W. Transcription factor GATA4 drives RNA polymerase III-directed transcription and transformed cell proliferation through a filamin A/GATA4/SP1 pathway. J Biol Chem 2022; 298:101581. [PMID: 35038452 PMCID: PMC8857480 DOI: 10.1016/j.jbc.2022.101581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 11/27/2022] Open
Abstract
RNA polymerase III (pol III) products play fundamental roles in a variety of cellular processes, including protein synthesis and cancer cell proliferation. In addition, dysregulation of pol III-directed transcription closely correlates with tumorigenesis. It is therefore of interest to identify novel pathways or factors governing pol III-directed transcription. Here, we show that transcription factor (TF) GATA binding protein 4 (GATA4) expression in SaOS2 cells was stimulated by the silencing of filamin A (FLNA), a repressor of pol III-directed transcription, suggesting that GATA4 is potentially associated with the regulation of pol III-directed transcription. Indeed, we show that GATA4 expression positively correlates with pol III-mediated transcription and tumor cell proliferation. Mechanistically, we found that GATA4 depletion inhibits the occupancies of the pol III transcription machinery factors at the loci of pol III target genes by reducing expression of both TFIIIB subunit TFIIB-related factor 1 and TFIIIC subunit general transcription factor 3C subunit 2 (GTF3C2). GATA4 has been shown to activate specificity factor 1 (Sp1) gene transcription by binding to the Sp1 gene promoter, and Sp1 has been confirmed to activate pol III gene transcription by directly binding to both Brf1 and Gtf3c2 gene promoters. Thus, the findings from this study suggest that GATA4 links FLNA and Sp1 signaling to form an FLNA/GATA4/Sp1 axis to modulate pol III-directed transcription and transformed cell proliferation. Taken together, these results provide novel insights into the regulatory mechanism of pol III-directed transcription.
Collapse
Affiliation(s)
- Cheng Zhang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Houliang Zhao
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaoye Song
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Juan Wang
- School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan, China
| | - Shasha Zhao
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Huan Deng
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Liu He
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xiangyu Zhou
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaomei Yin
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Kewei Zhang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Yue Zhang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Zhongyu Wu
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Qiyue Chen
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Jiannan Du
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Deen Yu
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Shihua Zhang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China.
| | - Wensheng Deng
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China.
| |
Collapse
|
11
|
Guan L, Grigoriev A. Computational meta-analysis of ribosomal RNA fragments: potential targets and interaction mechanisms. Nucleic Acids Res 2021; 49:4085-4103. [PMID: 33772581 PMCID: PMC8053083 DOI: 10.1093/nar/gkab190] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/18/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
The most abundant cellular RNA species, ribosomal RNA (rRNA), appears to be a source of massive amounts of non-randomly generated fragments. We found rRNA fragments (rRFs) in immunoprecipitated Argonaute (Ago-IP) complexes in human and mouse cells and in small RNA sequencing datasets. In human Ago1-IP, guanine-rich rRFs were preferentially cut in single-stranded regions of mature rRNAs between pyrimidines and adenosine, and non-randomly paired with cellular transcripts in crosslinked chimeras. Numerous identical rRFs were found in the cytoplasm and nucleus in mouse Ago2-IP. We report specific interaction motifs enriched in rRF-target pairs. Locations of such motifs on rRFs were compatible with the Ago structural features and patterns of the Ago-RNA crosslinking in both species. Strikingly, many of these motifs may bind to double-stranded regions on target RNAs, suggesting a potential pathway for regulating translation by unwinding mRNAs. Occurring on either end of rRFs and matching intronic, untranslated or coding regions in targets, such interaction sites extend the concept of microRNA seed regions. Targeting both borders of certain short introns, rRFs may be involved in their biogenesis or function, facilitated by Ago. Frequently dismissed as noise, rRFs are poised to greatly enrich the known functional spectrum of small RNA regulation.
Collapse
Affiliation(s)
- Lingyu Guan
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA
| | - Andrey Grigoriev
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA
| |
Collapse
|
12
|
Abstract
In this review, Yeganeh et al. summarize different human diseases that have been linked to defects in the Pol III transcription apparatus or to Pol III products imbalance and discuss the possible underlying mechanisms. RNA polymerase (Pol) III is responsible for transcription of different noncoding genes in eukaryotic cells, whose RNA products have well-defined functions in translation and other biological processes for some, and functions that remain to be defined for others. For all of them, however, new functions are being described. For example, Pol III products have been reported to regulate certain proteins such as protein kinase R (PKR) by direct association, to constitute the source of very short RNAs with regulatory roles in gene expression, or to control microRNA levels by sequestration. Consistent with these many functions, deregulation of Pol III transcribed genes is associated with a large variety of human disorders. Here we review different human diseases that have been linked to defects in the Pol III transcription apparatus or to Pol III products imbalance and discuss the possible underlying mechanisms.
Collapse
Affiliation(s)
- Meghdad Yeganeh
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Nouria Hernandez
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
13
|
Dhindsa RS, Copeland BR, Mustoe AM, Goldstein DB. Natural Selection Shapes Codon Usage in the Human Genome. Am J Hum Genet 2020; 107:83-95. [PMID: 32516569 PMCID: PMC7332603 DOI: 10.1016/j.ajhg.2020.05.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/12/2020] [Indexed: 01/06/2023] Open
Abstract
Synonymous codon usage has been identified as a determinant of translational efficiency and mRNA stability in model organisms and human cell lines. However, whether natural selection shapes human codon content to optimize translation efficiency is unclear. Furthermore, aside from those that affect splicing, synonymous mutations are typically ignored as potential contributors to disease. Using genetic sequencing data from nearly 200,000 individuals, we uncover clear evidence that natural selection optimizes codon content in the human genome. In deriving intolerance metrics to quantify gene-level constraint on synonymous variation, we discover that dosage-sensitive genes, DNA-damage-response genes, and cell-cycle-regulated genes are particularly intolerant to synonymous variation. Notably, we illustrate that reductions in codon optimality in BRCA1 can attenuate its function. Our results reveal that synonymous mutations most likely play an underappreciated role in human variation.
Collapse
Affiliation(s)
- Ryan S Dhindsa
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Brett R Copeland
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Anthony M Mustoe
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
14
|
Peng F, Zhou Y, Wang J, Guo B, Wei Y, Deng H, Wu Z, Zhang C, Shi K, Li Y, Wang X, Shore P, Zhao S, Deng W. The transcription factor Sp1 modulates RNA polymerase III gene transcription by controlling BRF1 and GTF3C2 expression in human cells. J Biol Chem 2020; 295:4617-4630. [PMID: 32115405 DOI: 10.1074/jbc.ra119.011555] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/16/2020] [Indexed: 01/10/2023] Open
Abstract
Specificity protein 1 (Sp1) is an important transcription factor implicated in numerous cellular processes. However, whether Sp1 is involved in the regulation of RNA polymerase III (Pol III)-directed gene transcription in human cells remains unknown. Here, we first show that filamin A (FLNA) represses Sp1 expression as well as expression of TFIIB-related factor 1 (BRF1) and general transcription factor III C subunit 2 (GTF3C2) in HeLa, 293T, and SaOS2 cell lines stably expressing FLNA-silencing shRNAs. Both BRF1 promoter 4 (BRF1P4) and GTF3C2 promoter 2 (GTF3C2P2) contain putative Sp1-binding sites, suggesting that Sp1 affects Pol III gene transcription by regulating BRF1 and GTF3C2 expression. We demonstrate that Sp1 knockdown inhibits Pol III gene transcription, BRF1 and GTF3C2 expression, and the proliferation of 293T and HeLa cells, whereas Sp1 overexpression enhances these activities. We obtained a comparable result in a cell line in which both FLNA and Sp1 were depleted. These results indicate that Sp1 is involved in the regulation of Pol III gene transcription independently of FLNA expression. Reporter gene assays showed that alteration of Sp1 expression affects BRF1P4 and GTF3C2P2 activation, suggesting that Sp1 modulates Pol III-mediated gene transcription by controlling BRF1 and GTF3C2 gene expression. Further analysis revealed that Sp1 interacts with and thereby promotes the occupancies of TATA box-binding protein, TFIIAα, and p300 at both BRF1P4 and GTF3C2P2. These findings indicate that Sp1 controls Pol III-directed transcription and shed light on how Sp1 regulates cancer cell proliferation.
Collapse
Affiliation(s)
- Feixia Peng
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Ying Zhou
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Juan Wang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Baoqiang Guo
- Centre for Bioscience, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, United Kingdom
| | - Yun Wei
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Huan Deng
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zihui Wu
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Cheng Zhang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Kaituo Shi
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yuan Li
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xin Wang
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Paul Shore
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Shasha Zhao
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Wensheng Deng
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
15
|
Cheng Y, He C, Wang M, Ma X, Mo F, Yang S, Han J, Wei X. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther 2019; 4:62. [PMID: 31871779 PMCID: PMC6915746 DOI: 10.1038/s41392-019-0095-0] [Citation(s) in RCA: 679] [Impact Index Per Article: 113.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 02/05/2023] Open
Abstract
Epigenetic alternations concern heritable yet reversible changes in histone or DNA modifications that regulate gene activity beyond the underlying sequence. Epigenetic dysregulation is often linked to human disease, notably cancer. With the development of various drugs targeting epigenetic regulators, epigenetic-targeted therapy has been applied in the treatment of hematological malignancies and has exhibited viable therapeutic potential for solid tumors in preclinical and clinical trials. In this review, we summarize the aberrant functions of enzymes in DNA methylation, histone acetylation and histone methylation during tumor progression and highlight the development of inhibitors of or drugs targeted at epigenetic enzymes.
Collapse
Affiliation(s)
- Yuan Cheng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Cai He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Mo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Shengyong Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Junhong Han
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Liko D, Mitchell L, Campbell KJ, Ridgway RA, Jones C, Dudek K, King A, Bryson S, Stevenson D, Blyth K, Strathdee D, Morton JP, Bird TG, Knight JRP, Willis AE, Sansom OJ. Brf1 loss and not overexpression disrupts tissues homeostasis in the intestine, liver and pancreas. Cell Death Differ 2019; 26:2535-2550. [PMID: 30858608 PMCID: PMC6861133 DOI: 10.1038/s41418-019-0316-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 01/18/2019] [Accepted: 02/13/2019] [Indexed: 12/22/2022] Open
Abstract
RNA polymerase III (Pol-III) transcribes tRNAs and other small RNAs essential for protein synthesis and cell growth. Pol-III is deregulated during carcinogenesis; however, its role in vivo has not been studied. To address this issue, we manipulated levels of Brf1, a Pol-III transcription factor that is essential for recruitment of Pol-III holoenzyme at tRNA genes in vivo. Knockout of Brf1 led to embryonic lethality at blastocyst stage. In contrast, heterozygous Brf1 mice were viable, fertile and of a normal size. Conditional deletion of Brf1 in gastrointestinal epithelial tissues, intestine, liver and pancreas, was incompatible with organ homeostasis. Deletion of Brf1 in adult intestine and liver induced apoptosis. However, Brf1 heterozygosity neither had gross effects in these epithelia nor did it modify tumorigenesis in the intestine or pancreas. Overexpression of BRF1 rescued the phenotypes of Brf1 deletion in intestine and liver but was unable to initiate tumorigenesis. Thus, Brf1 and Pol-III activity are absolutely essential for normal homeostasis during development and in adult epithelia. However, Brf1 overexpression or heterozygosity are unable to modify tumorigenesis, suggesting a permissive, but not driving role for Brf1 in the development of epithelial cancers of the pancreas and gut.
Collapse
Affiliation(s)
- Dritan Liko
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Louise Mitchell
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Kirsteen J Campbell
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Rachel A Ridgway
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Carolyn Jones
- MRC Toxicology Unit, Hodgkin Building Lancaster Road, Leicester, LE1 9HN, UK
| | - Kate Dudek
- MRC Toxicology Unit, Hodgkin Building Lancaster Road, Leicester, LE1 9HN, UK
| | - Ayala King
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Sheila Bryson
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - David Stevenson
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Karen Blyth
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Douglas Strathdee
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Jennifer P Morton
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Thomas G Bird
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - John R P Knight
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
| | - Anne E Willis
- MRC Toxicology Unit, Hodgkin Building Lancaster Road, Leicester, LE1 9HN, UK
| | - Owen J Sansom
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK.
| |
Collapse
|
17
|
Petrie JL, Swan C, Ingram RM, Frame FM, Collins AT, Dumay-Odelot H, Teichmann M, Maitland NJ, White RJ. Effects on prostate cancer cells of targeting RNA polymerase III. Nucleic Acids Res 2019; 47:3937-3956. [PMID: 30820548 PMCID: PMC6486637 DOI: 10.1093/nar/gkz128] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/13/2019] [Accepted: 02/19/2019] [Indexed: 12/12/2022] Open
Abstract
RNA polymerase (pol) III occurs in two forms, containing either the POLR3G subunit or the related paralogue POLR3GL. Whereas POLR3GL is ubiquitous, POLR3G is enriched in undifferentiated cells. Depletion of POLR3G selectively triggers proliferative arrest and differentiation of prostate cancer cells, responses not elicited when POLR3GL is depleted. A small molecule pol III inhibitor can cause POLR3G depletion, induce similar differentiation and suppress proliferation and viability of cancer cells. This response involves control of the fate-determining factor NANOG by small RNAs derived from Alu short interspersed nuclear elements. Tumour initiating activity in vivo can be reduced by transient exposure to the pol III inhibitor. Untransformed prostate cells appear less sensitive than cancer cells to pol III depletion or inhibition, raising the possibility of a therapeutic window.
Collapse
Affiliation(s)
- John L Petrie
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Caroline Swan
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Richard M Ingram
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Fiona M Frame
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Anne T Collins
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Hélène Dumay-Odelot
- Université de Bordeaux, ARNA Laboratory, F-33076 Bordeaux, France INSERM, U1212 - CNRS UMR 5320, ARNA Laboratory, F-33000 Bordeaux, France
| | - Martin Teichmann
- Université de Bordeaux, ARNA Laboratory, F-33076 Bordeaux, France INSERM, U1212 - CNRS UMR 5320, ARNA Laboratory, F-33000 Bordeaux, France
| | - Norman J Maitland
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Robert J White
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| |
Collapse
|
18
|
Liang X, Xie R, Su J, Ye B, Wei S, Liang Z, Bai R, Chen Z, Li Z, Gao X. Inhibition of RNA polymerase III transcription by Triptolide attenuates colorectal tumorigenesis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:217. [PMID: 31122284 PMCID: PMC6533717 DOI: 10.1186/s13046-019-1232-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/15/2019] [Indexed: 12/31/2022]
Abstract
Background Upregulation of RNA polymerase (Pol) III products, including tRNAs and 5S rRNA, in tumor cells leads to enhanced protein synthesis and tumor formation, making it a potential target for cancer treatment. In this study, we evaluated the inhibition of Pol III transcription by triptolide and the anti-cancer effect of this drug in colorectal tumorigenesis. Methods The effect of triptolide on colorectal cancer development was assessed in colorectal cancer mouse models, 3D organoids, and cultured cells. Colorectal cancer cells were treated with triptolide. Pol III transcription was measured by real-time quantitative polymerase chain reaction (PCR). The formation of TFIIIB, a multi-subunit transcription factor for Pol III, was determined by chromatin immunoprecipitation (ChIP), co-immunoprecipitation (Co-IP), and fluorescence resonance energy transfer (FRET). Results Triptolide reduced both tumor number and tumor size in adenomatous polyposis coli (Apc) mutated (ApcMin/+) mice as well as AOM/DSS-induced mice. Moreover, triptolide effectively inhibited colorectal cancer cell proliferation, colony formation, and organoid growth in vitro, which was associated with decreased Pol III target genes. Mechanistically, triptolide treatment blocked TBP/Brf1interaction, leading to the reduced formation of TFIIIB at the promoters of tRNAs and 5S rRNA. Conclusions Together, our data suggest that inhibition of Pol III transcription with existing drugs such as triptolide provides a new avenue for developing novel therapies for colorectal cancer. Electronic supplementary material The online version of this article (10.1186/s13046-019-1232-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xia Liang
- Medical Research Institute, & Guangdong Women and Children's Disease Precision Diagnosis and Treatment Engineering Technology Research Center, Baoan Maternal and Child Health Hospital, Jinan University, Shenzhen, 518102, China
| | - Renxiang Xie
- Department of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jinfeng Su
- Medical Research Institute, & Guangdong Women and Children's Disease Precision Diagnosis and Treatment Engineering Technology Research Center, Baoan Maternal and Child Health Hospital, Jinan University, Shenzhen, 518102, China
| | - Bingqi Ye
- Department of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Saisai Wei
- Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zhibing Liang
- Medical Research Institute, & Guangdong Women and Children's Disease Precision Diagnosis and Treatment Engineering Technology Research Center, Baoan Maternal and Child Health Hospital, Jinan University, Shenzhen, 518102, China
| | - Rongpan Bai
- Department of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zhanghui Chen
- Affiliated Central People's Hospital of Zhanjiang, Guangdong Medical University, Zhanjiang, 524045, China
| | - Zhongxiang Li
- Medical Research Institute, & Guangdong Women and Children's Disease Precision Diagnosis and Treatment Engineering Technology Research Center, Baoan Maternal and Child Health Hospital, Jinan University, Shenzhen, 518102, China.
| | - Xiangwei Gao
- Department of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
19
|
Benna C, Rajendran S, Rastrelli M, Mocellin S. miRNA deregulation targets specific pathways in leiomyosarcoma development: an in silico analysis. J Transl Med 2019; 17:153. [PMID: 31088504 PMCID: PMC6515658 DOI: 10.1186/s12967-019-1907-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/07/2019] [Indexed: 12/16/2022] Open
Abstract
Background MicroRNA (miRNA) mediate post-transcriptional gene repression and are involved in a variety of human diseases, including cancer. Soft tissue sarcomas are rare malignancies with a variety of histological subtypes which may occur virtually anywhere in the human body. Leiomyosarcoma is one of the most common subtypes, shows a smooth muscle phenotype and its cancerogenesis is still unclear. The aim of our study was to investigate the potential role of miRNA differential expression in leiomyosarcoma development. Methods We first employed the Sarcoma microRNA Expression Database, a repository that describes the patterns of over 1000 miRNA expression in various human sarcoma types, to identify differentially expressed miRNA comparing leiomyosarcoma and smooth muscle samples. Subsequently, we identified putative target genes of those miRNAs with the TargetScan prediction tool. Finally, we evaluated whether the retrieved pool of putative targets was enriched in genes belonging to specific molecular pathways by means of the Enrichr analysis tool. Protein–protein network analysis was analyzed by means of the STRING web tool. Results Out of 1120 miRNAs tested, the expression of 301 miRNAs was statistically significantly different between leiomyosarcoma and smooth muscle samples. The hypothetical targets could be predicted for 172 miRNAs. 438 genes were predicted to be the targets with high confidence (cumulative weighted context score cut-off level less than − 1.0) and analyzed for belonging to specific molecular pathways. Pathway analysis suggested that RNA Polymerase III, tRNA functions and synaptic neurotransmission (with special regard to dopamine mediated signaling) could be involved in leiomyosarcoma development. Conclusions Our results demonstrate that data mining of publicly available repositories can be useful to suggest molecular pathways underlying the pathogenesis of rare tumors such as leiomyosarcoma. Electronic supplementary material The online version of this article (10.1186/s12967-019-1907-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Clara Benna
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padua, Italy. .,Clinica Chirurgica I, Azienda Ospedaliera Padova, Padua, Italy.
| | | | - Marco Rastrelli
- Surgical Oncology Unit, Istituto Oncologico Veneto (IOV-IRCCS), Padua, Italy
| | - Simone Mocellin
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padua, Italy.,Surgical Oncology Unit, Istituto Oncologico Veneto (IOV-IRCCS), Padua, Italy
| |
Collapse
|
20
|
Huang C, Zhang Y, Zhong S. Alcohol Intake and Abnormal Expression of Brf1 in Breast Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4818106. [PMID: 31781337 PMCID: PMC6874981 DOI: 10.1155/2019/4818106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 09/28/2019] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most common malignant disease of females. Overall, one woman in every nine will get breast cancer at some time in her life. Epidemiological studies have indicated that alcohol consumption has most consistently been associated with breast cancer risk. However, the mechanism of alcohol-associated breast cancer remains to be addressed. Little is known about the effects of alcohol consumption on Brf1 (TFIIIB-related factor 1) expression and RNA Pol III gene (RNA polymerase III-dependent gene) transcription, which are responsible for protein synthesis and tightly linked to cell proliferation, cell transformation, and tumor development. Emerging evidences have indicated that alcohol induces deregulation of Brf1 and Pol III genes to cause the alterations of cell phenotypes and tumor formation. In this paper, we summarize the progresses regarding alcohol-caused increase in the expression of Brf1 and Pol III genes and analysis of its molecular mechanism of breast cancer. As the earlier and accurate diagnosis approach of breast cancer is not available yet, exploring the molecular mechanism and identifying the biomarker of alcohol-associated breast cancer are especially important. Recent studies have demonstrated that Brf1 is overexpressed in most ER+ (estrogen receptor positive) cases of breast cancer and the change in cellular levels of Brf1 reflects the therapeutic efficacy and prognosis of this disease. It suggests that Brf1 may be a potential diagnosis biomarker and a therapeutic target of alcohol-associated breast cancer.
Collapse
Affiliation(s)
- Chenghao Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, China
| | - Yanmei Zhang
- Department of Pharmacology of Shantou University Medical College, China
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shuping Zhong
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
21
|
Wang F, Zhao K, Yu S, Xu A, Han W, Mei Y. RNF12 catalyzes BRF1 ubiquitination and regulates RNA polymerase III-dependent transcription. J Biol Chem 2018; 294:130-141. [PMID: 30413534 DOI: 10.1074/jbc.ra118.004524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/24/2018] [Indexed: 01/07/2023] Open
Abstract
RNA polymerase III (Pol III) is responsible for the production of small noncoding RNA species, including tRNAs and 5S rRNA. Pol III-dependent transcription is generally enhanced in transformed cells and tumors, but the underlying mechanisms remain not well-understood. It has been demonstrated that the BRF1 subunit of TFIIIB is essential for the accurate initiation of Pol III-dependent transcription. However, it is not known whether BRF1 undergoes ubiquitin modification and whether BRF1 ubiquitination regulates Pol III-dependent transcription. Here, we show that RNF12, a RING domain-containing ubiquitin E3 ligase, physically interacts with BRF1. Via direct interaction, RNF12 catalyzes Lys27- and Lys33-linked polyubiquitination of BRF1. Furthermore, RNF12 is able to negatively regulate Pol III-dependent transcription and cell proliferation via BRF1. These findings uncover a novel mechanism for the regulation of BRF1 and reveal RNF12 as an important regulator of Pol III-dependent transcription.
Collapse
Affiliation(s)
- Fang Wang
- Anhui Province Key Laboratory of Medical Physics and Technology/Center of Medical Physics and Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, Anhui, China; Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Kailiang Zhao
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Sixiang Yu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - An Xu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Wei Han
- Anhui Province Key Laboratory of Medical Physics and Technology/Center of Medical Physics and Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, Anhui, China.
| | - Yide Mei
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, Anhui, China.
| |
Collapse
|
22
|
Graczyk D, Cieśla M, Boguta M. Regulation of tRNA synthesis by the general transcription factors of RNA polymerase III - TFIIIB and TFIIIC, and by the MAF1 protein. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:320-329. [DOI: 10.1016/j.bbagrm.2018.01.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 01/20/2018] [Accepted: 01/21/2018] [Indexed: 01/03/2023]
|
23
|
Target-Cell-Directed Bioengineering Approaches for Gene Therapy of Hemophilia A. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 9:57-69. [PMID: 29552578 PMCID: PMC5852392 DOI: 10.1016/j.omtm.2018.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/09/2018] [Indexed: 01/08/2023]
Abstract
Potency is a key optimization parameter for hemophilia A gene therapy product candidates. Optimization strategies include promoter engineering to increase transcription, codon optimization of mRNA to improve translation, and amino-acid substitution to promote secretion. Herein, we describe both rational and empirical design approaches to the development of a minimally sized, highly potent AAV-fVIII vector that incorporates three unique elements: a liver-directed 146-nt transcription regulatory module, a target-cell-specific codon optimization algorithm, and a high-expression bioengineered fVIII variant. The minimal synthetic promoter allows for the smallest AAV-fVIII vector genome known at 4,832 nt, while the tissue-directed codon optimization strategy facilitates increased fVIII transgene product expression in target cell types, e.g., hepatocytes, over traditional genome-level codon optimization strategies. As a tertiary approach, we incorporated ancient and orthologous fVIII sequence elements previously shown to facilitate improved biosynthesis through post-translational mechanisms. Together, these technologies contribute to an AAV-fVIII vector that confers sustained, curative levels of fVIII at a minimal dose in hemophilia A mice. Moreover, the first two technologies should be generalizable to all liver-directed gene therapy vector designs.
Collapse
|
24
|
Park JL, Lee YS, Song MJ, Hong SH, Ahn JH, Seo EH, Shin SP, Lee SJ, Johnson BH, Stampfer MR, Kim HP, Kim SY, Lee YS. Epigenetic regulation of RNA polymerase III transcription in early breast tumorigenesis. Oncogene 2017; 36:6793-6804. [PMID: 28846112 DOI: 10.1038/onc.2017.285] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 06/13/2017] [Accepted: 07/03/2017] [Indexed: 02/07/2023]
Abstract
RNA polymerase III (Pol III) transcribes medium-sized non-coding RNAs (collectively termed Pol III genes). Emerging diverse roles of Pol III genes suggest that individual Pol III genes are exquisitely regulated by transcription and epigenetic factors. Here we report global Pol III expression/methylation profiles and molecular mechanisms of Pol III regulation that have not been as extensively studied, using nc886 as a representative Pol III gene. In a human mammary epithelial cell system that recapitulates early breast tumorigenesis, the fraction of actively transcribed Pol III genes increases reaching a plateau during immortalization. Hyper-methylation of Pol III genes inhibits Pol III binding to DNA via inducing repressed chromatin and is a determinant for the Pol III repertoire. When Pol III genes are hypo-methylated, MYC amplifies their transcription, regardless of its recognition DNA motif. Thus, Pol III expression during tumorigenesis is delineated by methylation and magnified by MYC.
Collapse
Affiliation(s)
- J-L Park
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, Korea
| | - Y-S Lee
- Rare Cancer Branch, Research Institute, National Cancer Center, Goyang-si, Korea
| | - M-J Song
- Department of Environmental Medical Biology, Yonsei University College of Medicine, Seoul, Korea
| | - S-H Hong
- Rare Cancer Branch, Research Institute, National Cancer Center, Goyang-si, Korea
| | - J-H Ahn
- Department of Life and Nanopharmaceutical Sciences and Department of Oriental Pharmacy, Kyung Hee University, Seoul, Korea
| | - E-H Seo
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, Korea
| | - S-P Shin
- Immunotherapeutics Branch, Research Institute, National Cancer Center, Goyang-si, Korea
| | - S-J Lee
- Immunotherapeutics Branch, Research Institute, National Cancer Center, Goyang-si, Korea
| | - B H Johnson
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, USA
| | - M R Stampfer
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - H-P Kim
- Department of Environmental Medical Biology, Yonsei University College of Medicine, Seoul, Korea
- Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - S-Y Kim
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, Korea
| | - Y S Lee
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, USA
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| |
Collapse
|
25
|
WITHDRAWN: Abnormal expression of TFIIIB subunits and RNA Pol III genes is associated with hepatocellular carcinoma. LIVER RESEARCH 2017. [DOI: 10.1016/j.livres.2017.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Park JL, Lee YS, Kunkeaw N, Kim SY, Kim IH, Lee YS. Epigenetic regulation of noncoding RNA transcription by mammalian RNA polymerase III. Epigenomics 2017; 9:171-187. [PMID: 28112569 DOI: 10.2217/epi-2016-0108] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
RNA polymerase III (Pol III) synthesizes a range of medium-sized noncoding RNAs (collectively 'Pol III genes') whose early established biological roles were so essential that they were considered 'housekeeping genes'. Besides these fundamental functions, diverse unconventional roles of mammalian Pol III genes have recently been recognized and their expression must be exquisitely controlled. In this review, we summarize the epigenetic regulation of Pol III genes by chromatin structure, histone modification and CpG DNA methylation. We also recapitulate the association between dysregulation of Pol III genes and diseases such as cancer and neurological disorders. Additionally, we will discuss why in-depth molecular studies of Pol III genes have not been attempted and how nc886, a Pol III gene, may resolve this issue.
Collapse
Affiliation(s)
- Jong-Lyul Park
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon 305-806, Korea.,Department of Functional Genomics, University of Science & Technology, Daejeon 305-806, Korea
| | - Yeon-Su Lee
- Cancer Genomics Branch, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Nawapol Kunkeaw
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-1072, USA.,Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Seon-Young Kim
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon 305-806, Korea.,Department of Functional Genomics, University of Science & Technology, Daejeon 305-806, Korea
| | - In-Hoo Kim
- Graduate School of Cancer Science & Policy, National Cancer Center, Goyang 10408, Korea
| | - Yong Sun Lee
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-1072, USA.,Graduate School of Cancer Science & Policy, National Cancer Center, Goyang 10408, Korea
| |
Collapse
|
27
|
Lei J, Chen S, Zhong S. Abnormal expression of TFIIIB subunits and RNA Pol III genes is associated with hepatocellular carcinoma. LIVER RESEARCH 2017; 1:112-120. [PMID: 29276645 PMCID: PMC5739085 DOI: 10.1016/j.livres.2017.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The levels of the products of RNA polymerase III-dependent genes (Pol III genes), including tRNAs and 5S rRNA, are elevated in transformed and tumor cells, which potentiate tumorigenesis. TFIIB-related factor 1 (Brf1) is a key transcription factor and specifically regulates the transcription of Pol III genes. In vivo and in vitro studies have demonstrated that a decrease in Brf1 reduces Pol III gene transcription and is sufficient for inhibiting cell transformation and tumor formation. Emerging evidence indicates that dysregulation of Brf1 and Pol III genes is linked to the development of hepatocellular carcinoma (HCC) in humans and animals. We have reported that Brf1 is overexpressed in human liver cancer patients and that those with high Brf1 levels have shorter survivals. This review summarizes the effects of dysregulation of these genes on HCC and their regulation by signaling pathways and epigenetics. These novel data should help us determine the molecular mechanisms of HCC from a different perspective and guide the development of therapeutic approaches for HCC patients.
Collapse
Affiliation(s)
- Junxia Lei
- School of medicine, South china university of technology, China
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Songlin Chen
- Department of Cardiothoracic Surgery, Xiamen University Affiliated Southeast Hospital, China
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shuping Zhong
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Corresponding author. Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA. (S. Zhong)
| |
Collapse
|
28
|
Yi Y, Huang C, Zhang Y, Tian S, Lei J, Chen S, Shi G, Wu Z, Xia N, Zhong S. Exploring a common mechanism of alcohol-induced deregulation of RNA Pol III genes in liver and breast cells. Gene 2017; 626:309-318. [PMID: 28552569 PMCID: PMC5521807 DOI: 10.1016/j.gene.2017.05.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/10/2017] [Accepted: 05/24/2017] [Indexed: 02/07/2023]
Abstract
Alcohol intake is associated with numbers of different human cancers, such as hepatocellular carcinoma (HCC) and breast cancer. However, the molecular mechanism remains to be elucidated. RNA polymerase III-dependent genes (Pol III genes) deregulation elevates cellular production of tRNAs and 5S rRNA, resulting in an increase in translational capacity, which promote cell transformation and tumor formation. To explore a common mechanism of alcohol-associated human cancers, we have comparably analyzed that alcohol causes deregulation of Pol III genes in liver and breast cells. Our results reveal that alcohol enhances RNA Pol III gene transcription in both liver and breast cells. The induction of Pol III genes caused by alcohol in ER+ breast cancer lines or liver tumor lines are significantly higher than in their non-tumor cell lines. Alcohol increases cellular levels of Brf1 mRNA and protein, (which depeted) Brf1 is a key transcription factor and specifically regulate Pol III gene activity. Alcohol activates JNK1 to upregulate transcription of Brf1 and Pol III genes, whereas inhibition of JNK1 by SP600125 or its siRNA significantly decreases the induction of these genes. Furthermore, alcohol increases the rates of transformation of liver and breast cells, repressed JNK1 and Brf1 expression decrease transcription of Pol III genes and reduce the rates of colony formation of AML-12 and MCF-10 cells. Together, these studies support the idea that alcohol induces deregulation of Brf1 and RNA Pol III genes in liver and breast cells, which share a common signaling pathway to promote cell transformation. Through the common mechanism, alcohol-induced deregulation of RNA Pol III genes brings about greater phenotypic changes.
Collapse
Affiliation(s)
- Yunfeng Yi
- Department of Cardiothoracic Surgery, Xiamen University Affiliated Southeast Hospital, China
| | - Chenghao Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, China
| | - Yanmei Zhang
- Department of Pharmacology, Shantou University Medical College, China
| | - Suke Tian
- Department of Cardiothoracic Surgery, Xiamen University Affiliated Southeast Hospital, China
| | - Junxia Lei
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, China
| | - Songlin Chen
- Department of Cardiothoracic Surgery, Xiamen University Affiliated Southeast Hospital, China
| | - Ganggang Shi
- Department of Pharmacology, Shantou University Medical College, China
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, China
| | - Shuping Zhong
- Department of Pharmacology, Shantou University Medical College, China; Cancer Center of Guangzhou Medical University, China; Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
29
|
Kim Y, Lee J, Shin H, Jang S, Kim SC, Lee Y. Biosynthesis of brain cytoplasmic 200 RNA. Sci Rep 2017; 7:6884. [PMID: 28761139 PMCID: PMC5537265 DOI: 10.1038/s41598-017-05097-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/10/2017] [Indexed: 12/13/2022] Open
Abstract
Brain cytoplasmic 200 RNA (BC200 RNA), a neuron-specific non-coding RNA, is also highly expressed in a number of tumors of non-neuronal origin. However, the biosynthesis of BC200 RNA remains poorly understood. In this study, we show that the efficient transcription of BC200 RNA requires both internal and upstream promoter elements in cancer cells. The transcription complex seems to interact with a broad range of sequences within the upstream 100-bp region. The cellular levels and half-lives of BC200 RNA were found to differ across various cancer cell types, but there was no significant correlation between these parameters. Exogenously expressed BC200 RNA had a shorter half-life than that observed for the endogenous version in cancer cells, suggesting that BC200 RNA might be protected by some limiting factor(s) in cancer cells. Transient transfection experiments showed that the transcriptional activity of the exogenous BC200 RNA promoter element varied depending on the cancer cell type. However, the promoter activities together with the half-life data could not explain the differences in the levels of BC200 RNA among different cell types, suggesting that there is another level of transcriptional regulation beyond that detected by our transient transfection experiments.
Collapse
Affiliation(s)
- Youngmi Kim
- Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Jungmin Lee
- Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Heegwon Shin
- Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Seonghui Jang
- Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Sun Chang Kim
- Department of Biological Sciences, KAIST, Daejeon, 34141, Korea
| | - Younghoon Lee
- Department of Chemistry, KAIST, Daejeon, 34141, Korea.
| |
Collapse
|
30
|
Transcription by RNA polymerase III: insights into mechanism and regulation. Biochem Soc Trans 2017; 44:1367-1375. [PMID: 27911719 PMCID: PMC5095917 DOI: 10.1042/bst20160062] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 07/07/2016] [Accepted: 07/13/2016] [Indexed: 12/13/2022]
Abstract
The highly abundant, small stable RNAs that are synthesized by RNA polymerase III (RNAPIII) have key functional roles, particularly in the protein synthesis apparatus. Their expression is metabolically demanding, and is therefore coupled to changing demands for protein synthesis during cell growth and division. Here, we review the regulatory mechanisms that control the levels of RNAPIII transcripts and discuss their potential physiological relevance. Recent analyses have revealed differential regulation of tRNA expression at all steps on its biogenesis, with significant deregulation of mature tRNAs in cancer cells.
Collapse
|
31
|
Khattar E, Kumar P, Liu CY, Akıncılar SC, Raju A, Lakshmanan M, Maury JJP, Qiang Y, Li S, Tan EY, Hui KM, Shi M, Loh YH, Tergaonkar V. Telomerase reverse transcriptase promotes cancer cell proliferation by augmenting tRNA expression. J Clin Invest 2016; 126:4045-4060. [PMID: 27643433 DOI: 10.1172/jci86042] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 08/11/2016] [Indexed: 12/13/2022] Open
Abstract
Transcriptional reactivation of telomerase reverse transcriptase (TERT) reconstitutes telomerase activity in the majority of human cancers. Here, we found that ectopic TERT expression increases cell proliferation, while acute reductions in TERT levels lead to a dramatic loss of proliferation without any change in telomere length, suggesting that the effects of TERT could be telomere independent. We observed that TERT determines the growth rate of cancer cells by directly regulating global protein synthesis independently of its catalytic activity. Genome-wide TERT binding across 5 cancer cell lines and 2 embryonic stem cell lines revealed that endogenous TERT, driven by mutant promoters or oncogenes, directly associates with the RNA polymerase III (pol III) subunit RPC32 and enhances its recruitment to chromatin, resulting in increased RNA pol III occupancy and tRNA expression in cancers. TERT-deficient mice displayed marked delays in polyomavirus middle T oncogene-induced (PyMT-induced) mammary tumorigenesis, increased survival, and reductions in tRNA levels. Ectopic expression of either RPC32 or TERT restored tRNA levels and proliferation defects in TERT-depleted cells. Finally, we determined that levels of TERT and tRNA correlated in breast and liver cancer samples. Together, these data suggest the existence of a unifying mechanism by which TERT enhances translation in cells to regulate cancer cell proliferation.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Cell Proliferation
- Cell Transformation, Neoplastic/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- HEK293 Cells
- Humans
- Mammary Neoplasms, Experimental/enzymology
- Mammary Neoplasms, Experimental/pathology
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Neoplasm Transplantation
- Promoter Regions, Genetic
- Protein Binding
- Protein Biosynthesis
- Protein Interaction Domains and Motifs
- RNA Polymerase III/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Telomerase/physiology
Collapse
|
32
|
Genome-wide profiling of transfer RNAs and their role as novel prognostic markers for breast cancer. Sci Rep 2016; 6:32843. [PMID: 27604545 PMCID: PMC5015097 DOI: 10.1038/srep32843] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/11/2016] [Indexed: 11/25/2022] Open
Abstract
Transfer RNAs (tRNAs, key molecules in protein synthesis) have not been investigated as potential prognostic markers in breast cancer (BC), despite early findings of their dysregulation and diagnostic potential. We aim to comprehensively profile tRNAs from breast tissues and to evaluate their role as prognostic markers (Overall Survival, OS and Recurrence Free Survival, RFS). tRNAs were profiled from 11 normal breast and 104 breast tumor tissues using next generation sequencing. We adopted a Case-control (CC) and Case-Only (CO) association study designs. Risk scores constructed from tRNAs were subjected to univariate and multivariate Cox-proportional hazards regression to investigate their prognostic value. Of the 571 tRNAs profiled, 76 were differentially expressed (DE) and three were significant for OS in the CC approach. We identified an additional 11 tRNAs associated with OS and 14 tRNAs as significant for RFS in the CO approach, indicating that CC alone may not capture all discriminatory tRNAs in prognoses. In both the approaches, the risk scores were significant in the multivariate analysis as independent prognostic factors, and patients belonging to high-risk group were associated with poor prognosis. Our results confirmed global up-regulation of tRNAs in BC and identified tRNAs as potential novel prognostic markers for BC.
Collapse
|
33
|
Kieckhaefer JE, Lukovac S, Ye DZ, Lee D, Beetler DJ, Pack M, Kaestner KH. The RNA polymerase III subunit Polr3b is required for the maintenance of small intestinal crypts in mice. Cell Mol Gastroenterol Hepatol 2016; 2:783-795. [PMID: 28090567 PMCID: PMC5235342 DOI: 10.1016/j.jcmgh.2016.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND & AIMS The continuously self-renewing mammalian intestinal epithelium, with high cellular turnover, depends on adequate protein synthesis for its proliferative capacity. RNA polymerase III activity is closely related to cellular growth and proliferation. Here, we studied the role of Polr3b, a large RNA polymerase III subunit, in the mammalian intestinal epithelium. METHODS We derived mice with an intestinal epithelium-specific hypomorphic mutation of the Polr3b gene, using VillinCre-mediated gene ablation. Phenotypic consequences of the Polr3b mutation on the intestinal epithelium in mice were assessed using histological and molecular methodologies, including genetic lineage tracing. RESULTS The Polr3b mutation severely reduced survival and growth in mice during the first postnatal week, the period when the expansion of the intestinal epithelium, and thus the requirement for protein synthesis, are highest. The neonatal intestinal epithelium of Polr3bloxP/loxP;VillinCre mice was characterized by areas with reduced proliferation, abnormal epithelial architecture, loss of Wnt signaling and a dramatic increase in apoptotic cells in crypts. Genetic lineage tracing using Polr3bLoxP/LoxP;Rosa26-lox-stop-lox-YFP;VillinCre mice demonstrated that in surviving mutant mice, Polr3b-deficient dying crypts were progressively replaced by 'Cre-escaper' cells that had retained wild type Polr3b function. In addition, enteroids cultured from Polr3bloxP/loxP;VillinCre mice show reduced proliferative activity and increased apoptosis. CONCLUSIONS We provide evidence for an essential role of the Pol III subunit Polr3b in orchestrating the maintenance of the intestinal crypt during early postnatal development in mice.
Collapse
Affiliation(s)
- Julia E. Kieckhaefer
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania,Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Sabina Lukovac
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania,Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Diana Z. Ye
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania,Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Dolim Lee
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania,Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Danielle J. Beetler
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Michael Pack
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania,Michael Pack, MD, University of Pennsylvania, Perelman School of Medicine, 1212 Biomedical Research Building II/III, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104. fax: (215) 898-9871.University of PennsylvaniaPerelman School of Medicine1212 Biomedical Research Building II/III421 Curie BoulevardPhiladelphiaPennsylvania 19104
| | - Klaus H. Kaestner
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania,Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania,Correspondence Address correspondence to: Klaus H. Kaestner, PhD, 12-126 Smilow Center for Translational Research, University of Pennsylvania, Perelman School of Medicine, 3400 Civic Center Boulevard, Philadelphia, Pennsylvania 19104. fax: (215) 573-5892.12-126 Smilow Center for Translational ResearchUniversity of PennsylvaniaPerelman School of Medicine3400 Civic Center BoulevardPhiladelphiaPennsylvania 19104
| |
Collapse
|
34
|
Heyns M, Kovalchuk O. Non-coding RNAs including miRNAs, piRNAs, and tRNAs in human cancer. Oncotarget 2016; 6:23055-7. [PMID: 26405161 PMCID: PMC4695107 DOI: 10.18632/oncotarget.5048] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 07/17/2015] [Indexed: 12/18/2022] Open
Abstract
Over 98% of our genes code for RNA transcripts that will never become translated into protein. Numerous non-coding RNA (ncRNA) transcripts are structurally and functionally diverse. In particular, micro RNAs (miRNAs), piwi-interacting RNAs (piRNAs), and, more recently, transfer RNAs (tRNAs) are implicated as regulators of key genes and processes that are involved in various human diseases, including cancer. Here, we summarize the recent findings and perspectives in the small RNA and cancer research.
Collapse
Affiliation(s)
- Mieke Heyns
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada
| |
Collapse
|
35
|
Abstract
The past several years have seen dramatic leaps in our understanding of how gene expression is rewired at the translation level during tumorigenesis to support the transformed phenotype. This work has been driven by an explosion in technological advances and is revealing previously unimagined regulatory mechanisms that dictate functional expression of the cancer genome. In this Review we discuss emerging trends and exciting new discoveries that reveal how this translational circuitry contributes to specific aspects of tumorigenesis and cancer cell function, with a particular focus on recent insights into the role of translational control in the adaptive response to oncogenic stress conditions.
Collapse
Affiliation(s)
- Morgan L Truitt
- Department of Urology, University of California, San Francisco
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94158, USA
| | - Davide Ruggero
- Department of Urology, University of California, San Francisco
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
36
|
Zhong Q, Xi S, Liang J, Shi G, Huang Y, Zhang Y, Levy D, Zhong S. The significance of Brf1 overexpression in human hepatocellular carcinoma. Oncotarget 2016; 7:6243-54. [PMID: 26701855 PMCID: PMC4868753 DOI: 10.18632/oncotarget.6668] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/07/2015] [Indexed: 02/05/2023] Open
Abstract
Brf1 (TFIIB-related factor 1) plays a crucial role in cell transformation and tumorigenesis. However, the significance of Brf1 expression in human HCC (hepatocellular carcinoma) cases remains to be addressed. In this study, biopsies of human HCC, liver tumor samples of mice and cell lines of normal and tumor liver were utilized to determine the alteration of Brf1 expression using cytological and molecular biological approaches. Brf1 expression is increased in human HCC cases, which is correlated with shorter survival times. Levels of Brf1 and Pol III (RNA polymerase III-dependent) gene transcription in HCC patients with alcohol consumption are higher than the cases of non-HCC with or without alcohol intake. Induction of Brf1 and Pol III genes by ethanol in hepatoma cells is higher than in non-tumor cells. Ethanol increases the rate of cell transformation. Repression of Brf1 inhibits alcohol-promoted cell transformation. Alcohol consumption enhances Brf1 expression to promote cell transformation. These studies demonstrate that Brf1 is a new biomarker of HCC.
Collapse
Affiliation(s)
- Qian Zhong
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shaoyan Xi
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jianzhong Liang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ganggang Shi
- Shantou University Medical College, Shantou, Guangdong, China
| | - Yi Huang
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yanmei Zhang
- Shantou University Medical College, Shantou, Guangdong, China
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Daniel Levy
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shuping Zhong
- Shantou University Medical College, Shantou, Guangdong, China
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
37
|
Down-regulation of 5S rRNA by miR-150 and miR-383 enhances c-Myc-rpL11 interaction and inhibits proliferation of esophageal squamous carcinoma cells. FEBS Lett 2015; 589:3989-97. [DOI: 10.1016/j.febslet.2015.11.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/29/2015] [Accepted: 11/10/2015] [Indexed: 01/05/2023]
|
38
|
Chung YA, Chen YH, Chang PL. Strategies of fluorescence staining for trace total ribonucleic acid analysis by capillary electrophoresis with argon ion laser-induced fluorescence. Electrophoresis 2015; 36:1781-4. [DOI: 10.1002/elps.201500117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 04/06/2015] [Accepted: 04/08/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Yi-An Chung
- Department of Chemistry; Tunghai University; Taichung Taiwan
| | - Yi-Hsin Chen
- Department of Chemistry; Tunghai University; Taichung Taiwan
| | - Po-Ling Chang
- Department of Chemistry; Tunghai University; Taichung Taiwan
| |
Collapse
|
39
|
Liu C, Li S, Dai X, Ma J, Wan J, Jiang H, Wang P, Liu Z, Zhang H. PRC2 regulates RNA polymerase III transcribed non-translated RNA gene transcription through EZH2 and SUZ12 interaction with TFIIIC complex. Nucleic Acids Res 2015; 43:6270-84. [PMID: 26038315 PMCID: PMC4513857 DOI: 10.1093/nar/gkv574] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 05/20/2015] [Indexed: 11/12/2022] Open
Abstract
Polycomb repression complex 2 (PRC2) component EZH2 tri-methylates H3K27 and exerts epigenetic repression on target gene expression. EZH2-mediated epigenetic control of RNA polymerase II (Pol II) transcribed coding gene transcription has been well established. However, little is known about EZH2-mediated epigenetic regulation of RNA polymerase III (Pol III) transcription. Here we present a paradigm that EZH2 is involved in the repression of Pol III transcription via interaction with transcriptional factor complex IIIC (TFIIIC). EZH2 and H3K27me3 co-occupy the promoter of tRNATyr, 5S rRNA and 7SL RNA genes. Depletion of EZH2 or inhibition of EZH2 methyltransferase activity led to upregulation of Pol III target gene transcription. EZH2-mediated repression of Pol III transcribed gene expression requires presence of SUZ12. SUZ12 was able to interact with TFIIIC complex and knockdown of SUZ12 decreased occupancy of EZH2 and H3K27me3 at the promoter of Pol III target genes. Our findings pointed out a previously unidentified role of PRC2 complex in suppressing transcription of Pol III transcribed non-translated RNA genes, putting Pol III on a new layer of epigenetic regulation.
Collapse
Affiliation(s)
- Chang Liu
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, #38 Xue Yuan Road, Beijing 100191, China Laboratory of Molecular Cell Biology and Tumor Biology, Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, #38 Xue Yuan Road, Beijing 100191, China
| | - Shuai Li
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, #38 Xue Yuan Road, Beijing 100191, China Laboratory of Molecular Cell Biology and Tumor Biology, Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, #38 Xue Yuan Road, Beijing 100191, China
| | - Xiaoyan Dai
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, #38 Xue Yuan Road, Beijing 100191, China Laboratory of Molecular Cell Biology and Tumor Biology, Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, #38 Xue Yuan Road, Beijing 100191, China
| | - Ji Ma
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, #38 Xue Yuan Road, Beijing 100191, China Laboratory of Molecular Cell Biology and Tumor Biology, Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, #38 Xue Yuan Road, Beijing 100191, China
| | - Junhu Wan
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, #38 Xue Yuan Road, Beijing 100191, China Laboratory of Molecular Cell Biology and Tumor Biology, Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, #38 Xue Yuan Road, Beijing 100191, China
| | - Hao Jiang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, #38 Xue Yuan Road, Beijing 100191, China Laboratory of Molecular Cell Biology and Tumor Biology, Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, #38 Xue Yuan Road, Beijing 100191, China
| | - Peng Wang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, #38 Xue Yuan Road, Beijing 100191, China Laboratory of Molecular Cell Biology and Tumor Biology, Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, #38 Xue Yuan Road, Beijing 100191, China
| | - Zhaoli Liu
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, #38 Xue Yuan Road, Beijing 100191, China Laboratory of Molecular Cell Biology and Tumor Biology, Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, #38 Xue Yuan Road, Beijing 100191, China
| | - Hongquan Zhang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, #38 Xue Yuan Road, Beijing 100191, China Laboratory of Molecular Cell Biology and Tumor Biology, Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, #38 Xue Yuan Road, Beijing 100191, China
| |
Collapse
|
40
|
Zhong Q, Shi G, Zhang Y, Lu L, Levy D, Zhong S. Alteration of BRCA1 expression affects alcohol-induced transcription of RNA Pol III-dependent genes. Gene 2015; 556:74-9. [PMID: 25447904 PMCID: PMC4272617 DOI: 10.1016/j.gene.2014.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/04/2014] [Accepted: 11/06/2014] [Indexed: 02/05/2023]
Abstract
Emerging evidence has indicated that alcohol consumption is an established risk factor for breast cancer. Deregulation of RNA polymerase III (Pol III) transcription enhances cellular Pol III gene production, leading to an increase in translational capacity to promote cell transformation and tumor formation. We have reported that alcohol intake increases Pol III gene transcription to promote cell transformation and tumor formation in vitro and in vivo. Studies revealed that tumor suppressors, pRb, p53, PTEN and Maf1 repress the transcription of Pol III genes. BRCA1 is a tumor suppressor and its mutation is tightly related to breast cancer development. However, it is not clear whether BRCA1 expression affects alcohol-induced transcription of Pol III genes. At the present studies, we report that restoring BRCA1 in HCC 1937 cells, which is a BRCA1 deficient cell line, represses Pol III gene transcription. Expressing mutant or truncated BRCA1 in these cells does not affect the ability of repression on Pol III genes. Our analysis has demonstrated that alcohol induces Pol III gene transcription. More importantly, overexpression of BRCA1 in estrogen receptor positive (ER+) breast cancer cells (MCF-7) decreases the induction of tRNA(Leu) and 5S rRNA genes by alcohol, whereas reduction of BRCA1 by its siRNA slightly increases the transcription of the class of genes. This suggests that BRCA1 is associated with alcohol-induced deregulation of Pol III genes. These studies for the first time demonstrate the role of BRCA1 in induction of Pol III genes by alcohol and uncover a novel mechanism of alcohol-associated breast cancer.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, China
| | - Ganggang Shi
- Shantou University Medical College, Shantou, Guangdong, China
| | - Yanmei Zhang
- Shantou University Medical College, Shantou, Guangdong, China
| | - Lei Lu
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Daniel Levy
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shuping Zhong
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Shantou University Medical College, Shantou, Guangdong, China.
| |
Collapse
|
41
|
Schmitt BM, Rudolph KLM, Karagianni P, Fonseca NA, White RJ, Talianidis I, Odom DT, Marioni JC, Kutter C. High-resolution mapping of transcriptional dynamics across tissue development reveals a stable mRNA-tRNA interface. Genome Res 2014; 24:1797-807. [PMID: 25122613 PMCID: PMC4216921 DOI: 10.1101/gr.176784.114] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The genetic code is an abstraction of how mRNA codons and tRNA anticodons molecularly interact during protein synthesis; the stability and regulation of this interaction remains largely unexplored. Here, we characterized the expression of mRNA and tRNA genes quantitatively at multiple time points in two developing mouse tissues. We discovered that mRNA codon pools are highly stable over development and simply reflect the genomic background; in contrast, precise regulation of tRNA gene families is required to create the corresponding tRNA transcriptomes. The dynamic regulation of tRNA genes during development is controlled in order to generate an anticodon pool that closely corresponds to messenger RNAs. Thus, across development, the pools of mRNA codons and tRNA anticodons are invariant and highly correlated, revealing a stable molecular interaction interlocking transcription and translation.
Collapse
Affiliation(s)
- Bianca M Schmitt
- University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge, CB2 0RE, United Kingdom
| | - Konrad L M Rudolph
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | | | - Nuno A Fonseca
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Robert J White
- University of York, Department of Biology, Heslington, York, YO10 5DD, United Kingdom
| | | | - Duncan T Odom
- University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge, CB2 0RE, United Kingdom;
| | - John C Marioni
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom;
| | - Claudia Kutter
- University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge, CB2 0RE, United Kingdom;
| |
Collapse
|
42
|
Shih YC, Liao CR, Chung IC, Chang YS, Chang PL. Simultaneous separation of five major ribonucleic acids by capillary electrophoresis with laser-induced fluorescence in the presence of electroosmotic flow: application to the rapid screening of 5S rRNA from ovarian cancer cells. Anal Chim Acta 2014; 847:73-9. [PMID: 25261903 DOI: 10.1016/j.aca.2014.07.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 07/28/2014] [Accepted: 07/31/2014] [Indexed: 11/19/2022]
Abstract
RNA integrity is important in RNA studies because poor RNA quality may impact downstream methodologies. This study proposes a rapid and cost-effective method for the determination of RNA integrity based on CE-LIF in the presence of electroosmotic flow. The proposed method uses poly(ethylene) oxide (Mavg=4,000,000 Da) as a sieving matrix for total RNA separation. Ethidium bromide (μg mL(-1)) was dissolved in a polymer solution as an interchelating dye for on-column fluorescent labeling. The 28S rRNA, 18S rRNA, 5.8S rRNA, 5S rRNA and tRNA from the total human RNA extracted from the cells were fully separated using the proposed method. The lowest detectable concentration of total RNA achieved was 100 pg μL(-1) with a 6 min sample injection followed by on-column concentration. In addition, the temperature-induced degradation of total RNA was observed by CE-LIF. The electropherograms revealed more fragmentation of 28S and 18S rRNAs by temperature-induced hydrolysis compared with the 5.8S rRNA, 5S rRNA and tRNA. Therefore, the results indicated that RNA degradation should be considered for long-term, high-temperature incubations in RNA-related experiments involving RNA hybridization. The proposed method is furthermore, applied to the determination of 5S rRNA overexpressed in ovarian cancer cells as compared to the cervical cancer cells. Overall, CE-LIF is highly promising for rapid screening of ovarian cancers without tedious pre-amplification steps.
Collapse
Affiliation(s)
- Ya-Chu Shih
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| | - Ching-Ru Liao
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| | - I-Che Chung
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yu-Sun Chang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan
| | - Po-Ling Chang
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan.
| |
Collapse
|
43
|
Abstract
Transfer RNAs (tRNA) are best known for their role as adaptors during translation of the genetic code. Beyond their canonical role during protein biosynthesis, tRNAs also perform additional functions in both prokaryotes and eukaryotes for example in regulating gene expression. Aminoacylated tRNAs have also been implicated as substrates for non-ribosomal peptide bond formation, post-translational protein labeling, modification of phospholipids in the cell membrane, and antibiotic biosyntheses. Most recently tRNA fragments, or tRFs, have also been recognized to play regulatory roles. Here, we examine in more detail some of the new functions emerging for tRNA in a variety of cellular processes outside of protein synthesis.
Collapse
Affiliation(s)
- Medha Raina
- Department of Microbiology, The Ohio State Biochemistry Program, The Ohio State University Columbus, OH, USA ; Center for RNA Biology, The Ohio State University Columbus, OH, USA
| | - Michael Ibba
- Department of Microbiology, The Ohio State Biochemistry Program, The Ohio State University Columbus, OH, USA ; Center for RNA Biology, The Ohio State University Columbus, OH, USA
| |
Collapse
|
44
|
Cieśla M, Mierzejewska J, Adamczyk M, Farrants AKÖ, Boguta M. Fructose bisphosphate aldolase is involved in the control of RNA polymerase III-directed transcription. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1103-10. [DOI: 10.1016/j.bbamcr.2014.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 01/28/2014] [Accepted: 02/13/2014] [Indexed: 10/25/2022]
|
45
|
Geslain R, Eriani G. Regulation of translation dynamic and neoplastic conversion by tRNA and their pieces. ACTA ACUST UNITED AC 2014; 2:e28586. [PMID: 26779404 PMCID: PMC4705824 DOI: 10.4161/trla.28586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 02/14/2014] [Accepted: 03/18/2014] [Indexed: 11/21/2022]
Abstract
Research on transfer RNA (tRNA) has gone a long way since the existence of this essential adapter of the genetic code was first hypothesized five decades ago. With the new and fascinating discovering of connections between tRNAs and cellular pathways beyond genetic translation, the field of tRNA research has reached a new era. Here, we review some aspects of the emerging variety of tasks performed by full length tRNAs as well as their fragments generated by specific nuclease cleavage. Topics of special focus include the effect of differential expression of tRNAs in healthy tissues as well as their frequent deregulation observed in cancer cells. We also discuss the central role played by tRNAMet in cell metabolism, proliferation, and response to oxidative stress. Finally we review evidences suggesting that tRNAs are critical sources of short RNAs regulating an ever growing variety of cellular processes including translation initiation, control of genomic retroviral sequences, or RNA interference.
Collapse
Affiliation(s)
- Renaud Geslain
- Laboratory of tRNA Biology; Department of Biology; College of Charleston; Charleston, SC USA
| | - Gilbert Eriani
- Architecture et Réactivité de l'ARN, Université de Strasbourg; CNRS; Institut de Biologie Moléculaire et Cellulaire; Strasbourg CEDEX, France
| |
Collapse
|
46
|
Abstract
SIGNIFICANCE Both transfer RNA (tRNA) and cytochrome c are essential molecules for the survival of cells. tRNA decodes mRNA codons into amino-acid-building blocks in protein in all organisms, whereas cytochrome c functions in the electron transport chain that powers ATP synthesis in mitochondrion-containing eukaryotes. Additionally, in vertebrates, cytochrome c that is released from mitochondria is a potent inducer of apoptosis, activating apoptotic proteins (caspases) in the cytoplasm to dismantle cells. A better understanding of both tRNA and cytochrome c is essential for an insight into the regulation of cell life and death. RECENT ADVANCES A recent study showed that the mitochondrion-released cytochrome c can be removed from the cell-death pathway by tRNA molecules. The direct binding of cytochrome c by tRNA provides a mechanism for tRNA to regulate cell death, beyond its role in gene expression. CRITICAL ISSUES The nature of the tRNA-cytochrome c binding interaction remains unknown. The questions of how this interaction affects tRNA function, cellular metabolism, and apoptotic sensitivity are unanswered. FUTURE DIRECTIONS Investigations into the critical issues raised above will improve the understanding of tRNA in the fundamental processes of cell death and metabolism. Such knowledge will inform therapies in cell death-related diseases.
Collapse
Affiliation(s)
- Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | |
Collapse
|
47
|
Donati G, Peddigari S, Mercer CA, Thomas G. 5S ribosomal RNA is an essential component of a nascent ribosomal precursor complex that regulates the Hdm2-p53 checkpoint. Cell Rep 2013; 4:87-98. [PMID: 23831031 DOI: 10.1016/j.celrep.2013.05.045] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/08/2013] [Accepted: 05/31/2013] [Indexed: 12/14/2022] Open
Abstract
Recently, we demonstrated that RPL5 and RPL11 act in a mutually dependent manner to inhibit Hdm2 and stabilize p53 following impaired ribosome biogenesis. Given that RPL5 and RPL11 form a preribosomal complex with noncoding 5S ribosomal RNA (rRNA) and the three have been implicated in the p53 response, we reasoned they may be part of an Hdm2-inhibitory complex. Here, we show that small interfering RNAs directed against 5S rRNA have no effect on total or nascent levels of the noncoding rRNA, though they prevent the reported Hdm4 inhibition of p53. To achieve efficient inhibition of 5S rRNA synthesis, we targeted TFIIIA, a specific RNA polymerase III cofactor, which, like depletion of either RPL5 or RPL11, did not induce p53. Instead, 5S rRNA acts in a dependent manner with RPL5 and RPL11 to inhibit Hdm2 and stabilize p53. Moreover, depletion of any one of the three components abolished the binding of the other two to Hdm2, explaining their common dependence. Finally, we demonstrate that the RPL5/RPL11/5S rRNA preribosomal complex is redirected from assembly into nascent 60S ribosomes to Hdm2 inhibition as a consequence of impaired ribosome biogenesis. Thus, the activation of the Hdm2-inhibitory complex is not a passive but a regulated event, whose potential role in tumor suppression has been recently noted.
Collapse
Affiliation(s)
- Giulio Donati
- Laboratory of Cancer Metabolism, ICO/IDIBELL, Hospital Duran i Reynals, Gran Via de l'Hospitalet, 199-08908 Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | |
Collapse
|
48
|
Zhong Q, Shi G, Zhang Q, Zhang Y, Levy D, Zhong S. Role of phosphorylated histone H3 serine 10 in DEN-induced deregulation of Pol III genes and cell proliferation and transformation. Carcinogenesis 2013; 34:2460-9. [PMID: 23774401 DOI: 10.1093/carcin/bgt219] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The products of Pol III genes (RNA polymerase III-dependent genes), such as tRNAs and 5S rRNA, are elevated in both transformed and tumor cells suggesting that they play a crucial role in tumorigenesis. An increase in Brf1 (TFIIIB-related factor 1), a subunit of TFIIIB, augments Pol III gene transcription and is sufficient for cell transformation and tumor formation. We have demonstrated that enhancement of Brf1 and Pol III gene expression is associated with the occurrences of hepatocellular carcinoma (HCC) in mice. This suggests that Brf1 may be a key molecule during HCC development. Diethylnitrosamine (DEN), a chemical carcinogen, has been used to induce HCC in rodents. To determine the role of Brf1 and the epigenetic-regulating events in cell proliferation and transformation, hepatocytes were treated with DEN. The results indicate that DEN increases proliferation and transformation of AML-12 cells. DEN enhanced Brf1 expression and tRNA(Leu) and 5S rRNA transcription, as well as H3S10ph (phosphorylation of histone H3 serine 10). Interestingly, DEN-induced Pol III gene transcription and H3S10ph in tumor cells of liver are significantly higher than in non-tumor cells. Inhibition of H3S10ph by H3S10A attenuates the induction of Brf1 and Pol III genes. Further analysis indicates that H3S10ph occupies the promoters of Brf1 and Pol III genes to modulate their expression. Blocking H3S10ph represses cell proliferation and transformation. These results demonstrate that DEN induces H3S10ph, which mediate Brf1 expression, including but not limited Brf1-dependent genes, to upregulate Pol III gene transcription, resulting in an increase in cell proliferation and transformation.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR 605, Los Angeles, CA 90033, USA
| | | | | | | | | | | |
Collapse
|
49
|
Bywater MJ, Pearson RB, McArthur GA, Hannan RD. Dysregulation of the basal RNA polymerase transcription apparatus in cancer. Nat Rev Cancer 2013; 13:299-314. [PMID: 23612459 DOI: 10.1038/nrc3496] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mutations that directly affect transcription by RNA polymerases rank among the most central mediators of malignant transformation, but the frequency of new anticancer drugs that selectively target defective transcription apparatus entering the clinic has been limited. This is because targeting the large protein-protein and protein-DNA interfaces that control both generic and selective aspects of RNA polymerase transcription has proved extremely difficult. However, recent technological advances have led to a 'quantum leap' in our comprehension of the structure and function of the core RNA polymerase components, how they are dysregulated in a broad range of cancers and how they may be targeted for 'transcription therapy'.
Collapse
Affiliation(s)
- Megan J Bywater
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne 8006, Victoria, Australia
| | | | | | | |
Collapse
|
50
|
Pavon-Eternod M, Gomes S, Rosner MR, Pan T. Overexpression of initiator methionine tRNA leads to global reprogramming of tRNA expression and increased proliferation in human epithelial cells. RNA (NEW YORK, N.Y.) 2013; 19:461-6. [PMID: 23431330 PMCID: PMC3677255 DOI: 10.1261/rna.037507.112] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Transfer RNAs (tRNAs) are typically considered housekeeping products with little regulatory function. However, several studies over the past 10 years have linked tRNA misregulation to cancer. We have previously reported that tRNA levels are significantly elevated in breast cancer and multiple myeloma cells. To further investigate the cellular and physiological effects of tRNA overexpression, we overexpressed tRNAi(Met) in two human breast epithelial cell lines. We then determined tRNA abundance changes and performed phenotypic characterization. Overexpression of tRNAi(Met) significantly altered the global tRNA expression profile and resulted in increased cell metabolic activity and cell proliferation. Our results extend the relevance of tRNA overexpression in human cells and underscore the complexity of cellular regulation of tRNA expression.
Collapse
Affiliation(s)
- Mariana Pavon-Eternod
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA
| | - Suzana Gomes
- Ben May Department of Cancer Research, University of Chicago, Chicago, Illinois 60637, USA
| | - Marsha R. Rosner
- Ben May Department of Cancer Research, University of Chicago, Chicago, Illinois 60637, USA
- Corresponding authorsE-mail E-mail
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA
- Corresponding authorsE-mail E-mail
| |
Collapse
|