1
|
Bell NA, Chen X, Giovannucci DR, Anantharam A. Cellular mechanisms underlying pituitary adenylate cyclase activating polypeptide-stimulated secretion in the adrenal medulla. Biochem Soc Trans 2024; 52:2373-2383. [PMID: 39656194 PMCID: PMC11668280 DOI: 10.1042/bst20231326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/12/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
The adrenal medulla is a key effector of the sympathetic nervous system in the periphery. Its primary function is to translate variations in sympathetic activity into hormone outputs that modify end organ function throughout the body. These hormones include epinephrine, norepinephrine, and a variety of vasoactive peptides. Hormone secretion occurs when neurotransmitters, delivered by sympathetic nerves, bind to, and activate receptors on adrenomedullary chromaffin cells. In this context, two neurotransmitters of particular importance are acetylcholine (ACh) and pituitary adenylate cyclase activating polypeptide (PACAP). PACAP, discovered initially as a secretagogue in the hypothalamus, is now appreciated to provoke a strong secretory response from chromaffin cells in vitro and in situ. However, the cellular mechanisms underlying PACAP-stimulated secretion are still poorly understood. In the sections below, we will summarize what is known about the actions of PACAP in the adrenal medulla, discuss recent advances that pertain to the PACAP signaling pathway, and highlight areas for future investigation.
Collapse
Affiliation(s)
- Nicole A. Bell
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, U.S.A
| | - Xiaohuan Chen
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, U.S.A
| | | | - Arun Anantharam
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, U.S.A
| |
Collapse
|
2
|
Chen X, Bell NA, Coffman BL, Giovannucci DR, Anantharam A. Roles for PKC signaling in chromaffin cell exocytosis. Biophys J 2024:S0006-3495(24)04066-9. [PMID: 39639770 DOI: 10.1016/j.bpj.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/23/2024] [Accepted: 12/03/2024] [Indexed: 12/07/2024] Open
Abstract
Chromaffin cells of the adrenal medulla have an important role in the sympathetic stress response. They secrete catecholamines and other hormones into the bloodstream upon stimulation by the neurotransmitter pituitary adenylate cyclase-activating polypeptide (PACAP). PACAP causes a long-lasting and robust secretory response from chromaffin cells. However, the cellular mechanisms by which PACAP causes secretion remain unclear. Our previous work showed that the secretory response to PACAP relies on signaling through phospholipase C epsilon (PLCε). The objective of this study was to clarify the role of signaling events downstream of PLCε. Here, it is demonstrated that a brief exposure of chromaffin cells to PACAP caused diacylglycerol (DAG) production-a process that was dependent on PLCε activity. DAG then activated protein kinase C (PKC), prompting its redistribution to the plasma membrane. PKC activation was important for the increases in cytosolic Ca2+ and exocytosis that were evoked by PACAP. Indeed, pharmacological inhibition of PKC with NPC 15437, a competitive inhibitor of DAG binding, significantly disrupted the secretory response. NPC 15437 application also eliminated PACAP-stimulated effects on the readily releasable pool size, the Ca2+ sensitivity of granule fusion, and the voltage dependence of Ca2+ channel activation. Quantitative PCR revealed PKCβ, PKCε, and PKCμ to be highly expressed in the mouse chromaffin cell. Genetic knockdown of PKCβ and PKCε disrupted PACAP-evoked secretion, while knockdown of PKCμ had no measurable effect. This study highlights important roles for PKC signaling in a highly regulated pathway for exocytosis that is stimulated by PACAP.
Collapse
Affiliation(s)
- Xiaohuan Chen
- Department of Neurosciences, University of Toledo, Toledo, Ohio
| | - Nicole A Bell
- Department of Neurosciences, University of Toledo, Toledo, Ohio
| | | | | | - Arun Anantharam
- Department of Neurosciences, University of Toledo, Toledo, Ohio.
| |
Collapse
|
3
|
Jia Q, Sieburth D. Mitochondrial hydrogen peroxide positively regulates neuropeptide secretion during diet-induced activation of the oxidative stress response. Nat Commun 2021; 12:2304. [PMID: 33863916 PMCID: PMC8052458 DOI: 10.1038/s41467-021-22561-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/17/2021] [Indexed: 12/17/2022] Open
Abstract
Mitochondria play a pivotal role in the generation of signals coupling metabolism with neurotransmitter release, but a role for mitochondrial-produced ROS in regulating neurosecretion has not been described. Here we show that endogenously produced hydrogen peroxide originating from axonal mitochondria (mtH2O2) functions as a signaling cue to selectively regulate the secretion of a FMRFamide-related neuropeptide (FLP-1) from a pair of interneurons (AIY) in C. elegans. We show that pharmacological or genetic manipulations that increase mtH2O2 levels lead to increased FLP-1 secretion that is dependent upon ROS dismutation, mitochondrial calcium influx, and cysteine sulfenylation of the calcium-independent PKC family member PKC-1. mtH2O2-induced FLP-1 secretion activates the oxidative stress response transcription factor SKN-1/Nrf2 in distal tissues and protects animals from ROS-mediated toxicity. mtH2O2 levels in AIY neurons, FLP-1 secretion and SKN-1 activity are rapidly and reversibly regulated by exposing animals to different bacterial food sources. These results reveal a previously unreported role for mtH2O2 in linking diet-induced changes in mitochondrial homeostasis with neuropeptide secretion.
Collapse
Affiliation(s)
- Qi Jia
- PIBBS program, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Derek Sieburth
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Moya‐Díaz J, Bayonés L, Montenegro M, Cárdenas AM, Koch H, Doi A, Marengo FD. Ca 2+ -independent and voltage-dependent exocytosis in mouse chromaffin cells. Acta Physiol (Oxf) 2020; 228:e13417. [PMID: 31769918 DOI: 10.1111/apha.13417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022]
Abstract
AIM It is widely accepted that the exocytosis of synaptic and secretory vesicles is triggered by Ca2+ entry through voltage-dependent Ca2+ channels. However, there is evidence of an alternative mode of exocytosis induced by membrane depolarization but lacking Ca2+ current and intracellular Ca2+ increase. In this work we investigated if such a mechanism contributes to secretory vesicle exocytosis in mouse chromaffin cells. METHODS Exocytosis was evaluated by patch-clamp membrane capacitance measurements, carbon fibre amperometry and TIRF. Cytosolic Ca2+ was estimated using epifluorescence microscopy and fluo-8 (salt form). RESULTS Cells stimulated by brief depolatizations in absence of extracellular Ca+2 show moderate but consistent exocytosis, even in presence of high cytosolic BAPTA concentration and pharmacological inhibition of Ca+2 release from intracellular stores. This exocytosis is tightly dependent on membrane potential, is inhibited by neurotoxin Bont-B (cleaves the v-SNARE synaptobrevin), is very fast (saturates with time constant <10 ms), it is followed by a fast endocytosis sensitive to the application of an anti-dynamin monoclonal antibody, and recovers after depletion in <5 s. Finally, this exocytosis was inhibited by: (i) ω-agatoxin IVA (blocks P/Q-type Ca2+ channel gating), (ii) in cells from knock-out P/Q-type Ca2+ channel mice, and (iii) transfection of free synprint peptide (interferes in P/Q channel-exocytic proteins association). CONCLUSION We demonstrated that Ca2+ -independent and voltage-dependent exocytosis is present in chromaffin cells. This process is tightly coupled to membrane depolarization, and is able to support secretion during action potentials at low basal rates. P/Q-type Ca2+ channels can operate as voltage sensors of this process.
Collapse
Affiliation(s)
- José Moya‐Díaz
- Instituto de Fisiología, Biología Molecular y Neurociencias Departamento de Fisiología y Biología Molecular y Celular Facultad de Ciencias Exactas y Naturales Universidad de Buenos AiresConsejo Nacional de Investigaciones Científicas y Técnicas Buenos Aires Argentina
| | - Lucas Bayonés
- Instituto de Fisiología, Biología Molecular y Neurociencias Departamento de Fisiología y Biología Molecular y Celular Facultad de Ciencias Exactas y Naturales Universidad de Buenos AiresConsejo Nacional de Investigaciones Científicas y Técnicas Buenos Aires Argentina
| | - Mauricio Montenegro
- Instituto de Fisiología, Biología Molecular y Neurociencias Departamento de Fisiología y Biología Molecular y Celular Facultad de Ciencias Exactas y Naturales Universidad de Buenos AiresConsejo Nacional de Investigaciones Científicas y Técnicas Buenos Aires Argentina
| | - Ana M. Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso Facultad de Ciencias Universidad de Valparaíso Valparaíso Chile
| | - Henner Koch
- Center for Integrative Brain Research Seattle Children's Research Institute Seattle WA USA
- Department of Neurology and Epileptology Hertie‐Institute for Clinical Brain ResearchUniversity of Tübingen Tübingen Germany
| | - Atsushi Doi
- Department of Rehabilitation Graduate School of Health Science Kumamoto Health Science University Kumamoto Japan
| | - Fernando D. Marengo
- Instituto de Fisiología, Biología Molecular y Neurociencias Departamento de Fisiología y Biología Molecular y Celular Facultad de Ciencias Exactas y Naturales Universidad de Buenos AiresConsejo Nacional de Investigaciones Científicas y Técnicas Buenos Aires Argentina
| |
Collapse
|
5
|
Liang T, Qin T, Kang F, Kang Y, Xie L, Zhu D, Dolai S, Greitzer-Antes D, Baker RK, Feng D, Tuduri E, Ostenson CG, Kieffer TJ, Banks K, Pessin JE, Gaisano HY. SNAP23 depletion enables more SNAP25/calcium channel excitosome formation to increase insulin exocytosis in type 2 diabetes. JCI Insight 2020; 5:129694. [PMID: 32051343 PMCID: PMC7098801 DOI: 10.1172/jci.insight.129694] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 01/15/2020] [Indexed: 01/05/2023] Open
Abstract
SNAP23 is the ubiquitous SNAP25 isoform that mediates secretion in non-neuronal cells, similar to SNAP25 in neurons. However, some secretory cells like pancreatic islet β cells contain an abundance of both SNAP25 and SNAP23, where SNAP23 is believed to play a redundant role to SNAP25. We show that SNAP23, when depleted in mouse β cells in vivo and human β cells (normal and type 2 diabetes [T2D] patients) in vitro, paradoxically increased biphasic glucose-stimulated insulin secretion corresponding to increased exocytosis of predocked and newcomer insulin granules. Such effects on T2D Goto-Kakizaki rats improved glucose homeostasis that was superior to conventional treatment with sulfonylurea glybenclamide. SNAP23, although fusion competent in slower secretory cells, in the context of β cells acts as a weak partial fusion agonist or inhibitory SNARE. Here, SNAP23 depletion promotes SNAP25 to bind calcium channels more quickly and longer where granule fusion occurs to increase exocytosis efficiency. β Cell SNAP23 antagonism is a strategy to treat diabetes.
Collapse
Affiliation(s)
- Tao Liang
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Tairan Qin
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Fei Kang
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Youhou Kang
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Li Xie
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Dan Zhu
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Subhankar Dolai
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Dafna Greitzer-Antes
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Robert K. Baker
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daorong Feng
- Michael F. Price Center for Genetic and Translational Medicine, Department of Medicine and Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Eva Tuduri
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Claes-Goran Ostenson
- Department of Molecular Medicine and,Department of Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Timothy J. Kieffer
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kate Banks
- Division of Comparative Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey E. Pessin
- Michael F. Price Center for Genetic and Translational Medicine, Department of Medicine and Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Herbert Y. Gaisano
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
de Pascual R, Álvarez-Ortego N, de Los Ríos C, Jacob-Mazariego G, García AG. Tetrabenazine Facilitates Exocytosis by Enhancing Calcium-Induced Calcium Release through Ryanodine Receptors. J Pharmacol Exp Ther 2019; 371:219-230. [PMID: 31209099 DOI: 10.1124/jpet.119.256560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/04/2019] [Indexed: 11/22/2022] Open
Abstract
Vesicular monoamine transporter-2 is expressed in the presynaptic secretory vesicles membrane in the brain. Its blockade by tetrabenazine (TBZ) causes depletion of dopamine at striatal basal ganglia; this is the mechanism underlying its long-standing use in the treatment of Huntington's disease. In the frame of a project aimed at investigating the kinetics of exocytosis from vesicles with partial emptying of their neurotransmitter, we unexpectedly found that TBZ facilitates exocytosis; thus, we decided to characterize such effect. We used bovine chromaffin cells (BCCs) challenged with repeated pulses of high K+ Upon repeated K+ pulsing, the exocytotic catecholamine release responses were gradually decaying. However, when cells were exposed to TBZ, responses were mildly augmented and decay rate delayed. Facilitation of exocytosis was not due to Ca2+ entry blockade through voltage-activated calcium channels (VACCs) because, in fact, TBZ mildly blocked the whole-cell Ca2+ current. However, TBZ mimicked the facilitatory effects of exocytosis elicited by BayK8644 (L-subtype VACC agonist), an effect blocked by nifedipine (VACC antagonist). On the basis that TBZ augmented the secretory responses to caffeine (but not those of histamine), we monitored its effects on cytosolic Ca2+ elevations ([Ca2+]c) triggered by caffeine or histamine. While the responses to caffeine were augmented twice by TBZ, those of histamine were unaffected; the same happened in rat cortical neurons. Hence, we hypothesize that TBZ facilitates exocytosis by increasing Ca2+ release through the endoplasmic reticulum ryanodine receptor channel (RyR). Confirming this hypothesis are docking results, showing an interaction of TBZ with RyRs. This is consonant with the existence of a healthy Ca2+-induced-Ca2+-release mechanism in BCCs. SIGNIFICANCE STATEMENT: A novel mechanism of action for tetrabenazine (TBZ), a drug used in the therapy of Huntington's disease (HD), is described here. Such mechanism consists of facilitation by combining TBZ with the ryanodine receptor of the endoplasmic reticulum, thereby increasing Ca2+-induced Ca2+ release. This novel mechanism should be taken into account when considering the efficacy and/or safety of TBZ in the treatment of chorea associated with HD and other disorders. Additionally, it could be of interest in the development of novel medicines to treat these pathological conditions.
Collapse
Affiliation(s)
- Ricardo de Pascual
- Instituto Teófilo Hernando, Madrid, Spain (R.d.P., N.Á.-O., C.d.l.R., G.J.-M., A.G.G.); and Departamento de Farmacología y Terapéutica (R.d.P., N.Á.-O., G.J.-M., A.G.G.) and Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa (C.d.l.R., A.G.G.), Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Nuria Álvarez-Ortego
- Instituto Teófilo Hernando, Madrid, Spain (R.d.P., N.Á.-O., C.d.l.R., G.J.-M., A.G.G.); and Departamento de Farmacología y Terapéutica (R.d.P., N.Á.-O., G.J.-M., A.G.G.) and Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa (C.d.l.R., A.G.G.), Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Cristóbal de Los Ríos
- Instituto Teófilo Hernando, Madrid, Spain (R.d.P., N.Á.-O., C.d.l.R., G.J.-M., A.G.G.); and Departamento de Farmacología y Terapéutica (R.d.P., N.Á.-O., G.J.-M., A.G.G.) and Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa (C.d.l.R., A.G.G.), Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Gema Jacob-Mazariego
- Instituto Teófilo Hernando, Madrid, Spain (R.d.P., N.Á.-O., C.d.l.R., G.J.-M., A.G.G.); and Departamento de Farmacología y Terapéutica (R.d.P., N.Á.-O., G.J.-M., A.G.G.) and Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa (C.d.l.R., A.G.G.), Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio G García
- Instituto Teófilo Hernando, Madrid, Spain (R.d.P., N.Á.-O., C.d.l.R., G.J.-M., A.G.G.); and Departamento de Farmacología y Terapéutica (R.d.P., N.Á.-O., G.J.-M., A.G.G.) and Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa (C.d.l.R., A.G.G.), Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
7
|
Williams CL, Smith SM. Calcium dependence of spontaneous neurotransmitter release. J Neurosci Res 2018; 96:335-347. [PMID: 28699241 PMCID: PMC5766384 DOI: 10.1002/jnr.24116] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/16/2017] [Accepted: 06/19/2017] [Indexed: 01/14/2023]
Abstract
Spontaneous release of neurotransmitters is regulated by extracellular [Ca2+ ] and intracellular [Ca2+ ]. Curiously, some of the mechanisms of Ca2+ signaling at central synapses are different at excitatory and inhibitory synapses. While the stochastic activity of voltage-activated Ca2+ channels triggers a majority of spontaneous release at inhibitory synapses, this is not the case at excitatory nerve terminals. Ca2+ release from intracellular stores regulates spontaneous release at excitatory and inhibitory terminals, as do agonists of the Ca2+ -sensing receptor. Molecular machinery triggering spontaneous vesicle fusion may differ from that underlying evoked release and may be one of the sources of heterogeneity in release mechanisms.
Collapse
Affiliation(s)
- Courtney L. Williams
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, 97239, USA
- Section of Pulmonary & Critical Care Medicine, VA Portland Health Care System, Portland, Oregon, USA
| | - Stephen M. Smith
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, 97239, USA
- Section of Pulmonary & Critical Care Medicine, VA Portland Health Care System, Portland, Oregon, USA
| |
Collapse
|
8
|
Walter AM, Müller R, Tawfik B, Wierda KD, Pinheiro PS, Nadler A, McCarthy AW, Ziomkiewicz I, Kruse M, Reither G, Rettig J, Lehmann M, Haucke V, Hille B, Schultz C, Sørensen JB. Phosphatidylinositol 4,5-bisphosphate optical uncaging potentiates exocytosis. eLife 2017; 6:30203. [PMID: 29068313 PMCID: PMC5711374 DOI: 10.7554/elife.30203] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/24/2017] [Indexed: 12/14/2022] Open
Abstract
Phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] is essential for exocytosis. Classical ways of manipulating PI(4,5)P2 levels are slower than its metabolism, making it difficult to distinguish effects of PI(4,5)P2 from those of its metabolites. We developed a membrane-permeant, photoactivatable PI(4,5)P2, which is loaded into cells in an inactive form and activated by light, allowing sub-second increases in PI(4,5)P2 levels. By combining this compound with electrophysiological measurements in mouse adrenal chromaffin cells, we show that PI(4,5)P2 uncaging potentiates exocytosis and identify synaptotagmin-1 (the Ca2+ sensor for exocytosis) and Munc13-2 (a vesicle priming protein) as the relevant effector proteins. PI(4,5)P2 activation of exocytosis did not depend on the PI(4,5)P2-binding CAPS-proteins, suggesting that PI(4,5)P2 uncaging may bypass CAPS-function. Finally, PI(4,5)P2 uncaging triggered the rapid fusion of a subset of readily-releasable vesicles, revealing a rapid role of PI(4,5)P2 in fusion triggering. Thus, optical uncaging of signaling lipids can uncover their rapid effects on cellular processes and identify lipid effectors. Cells in our body communicate by releasing compounds called transmitters that carry signals from one cell to the next. Packages called vesicles store transmitters within the signaling cell. When the cell needs to send a signal, the vesicles fuse with the cell's membrane and release their cargo. For many signaling processes, such as those used by neurons, this fusion is regulated, fast, and coupled to the signal that the cell receives to activate release. Specialized molecular machines made up of proteins and fatty acid molecules called signaling lipids enable this to happen. One signaling lipid called PI(4,5)P2 (short for phosphatidylinositol 4,5-bisphosphate) is essential for vesicle fusion as well as for other processes in cells. It interacts with several proteins that help it control fusion and the release of transmitter. While it is possible to study the role of these proteins using genetic tools to inactivate them, the signaling lipids are more difficult to manipulate. Existing methods result in slow changes in PI(4,5)P2 levels, making it hard to directly attribute later changes to PI(4,5)P2. Walter, Müller, Tawfik et al. developed a new method to measure how PI(4,5)P2 affects transmitter release in living mammalian cells, which causes a rapid increase in PI(4,5)P2 levels. The method uses a chemical compound called “caged PI(4,5)P2” that can be loaded into cells but remains undetected until ultraviolet light is shone on it. The ultraviolet light uncages the compound, generating active PI(4,5)P2 in less than one second. Walter et al. found that when they uncaged PI(4,5)P2 in this way, the amount of transmitter released by cells increased. Combining this with genetic tools, it was possible to investigate which proteins of the release machinery were required for this effect. The results suggest that two different types of proteins that interact with PI(4,5)P2 are needed: one must bind PI(4,5)P2 to carry out its role and the other helps PI(4,5)P2 accumulate at the site of vesicle fusion. The new method also allowed Walter et al. to show that a fast increase in PI(4,5)P2 triggers a subset of vesicles to fuse very rapidly. This shows that PI(4,5)P2 rapidly regulates the release of transmitter. Caged PI(4,5)P2 will be useful to study other processes in cells that need PI(4,5)P2, helping scientists understand more about how signaling lipids control many different events at cellular membranes.
Collapse
Affiliation(s)
- Alexander M Walter
- Neurosecretion group, Center for Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Rainer Müller
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Bassam Tawfik
- Neurosecretion group, Center for Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Keimpe Db Wierda
- Neurosecretion group, Center for Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Paulo S Pinheiro
- Neurosecretion group, Center for Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - André Nadler
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Anthony W McCarthy
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Iwona Ziomkiewicz
- Neurosecretion group, Center for Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Discovery Sciences, AstraZeneca, Cambridge, United Kingdom
| | - Martin Kruse
- Department of Physiology and Biophysics, School of Medicine, University of Washington, Seattle, United States
| | - Gregor Reither
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jens Rettig
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Bertil Hille
- Department of Physiology and Biophysics, School of Medicine, University of Washington, Seattle, United States
| | - Carsten Schultz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jakob Balslev Sørensen
- Neurosecretion group, Center for Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Trexler AJ, Taraska JW. Regulation of insulin exocytosis by calcium-dependent protein kinase C in beta cells. Cell Calcium 2017; 67:1-10. [PMID: 29029784 DOI: 10.1016/j.ceca.2017.07.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 12/27/2022]
Abstract
The control of insulin release from pancreatic beta cells helps ensure proper blood glucose level, which is critical for human health. Protein kinase C has been shown to be one key control mechanism for this process. After glucose stimulation, calcium influx into beta cells triggers exocytosis of insulin-containing dense-core granules and activates protein kinase C via calcium-dependent phospholipase C-mediated generation of diacylglycerol. Activated protein kinase C potentiates insulin release by enhancing the calcium sensitivity of exocytosis, likely by affecting two main pathways that could be linked: (1) the reorganization of the cortical actin network, and (2) the direct phosphorylation of critical exocytotic proteins such as munc18, SNAP25, and synaptotagmin. Here, we review what is currently known about the molecular mechanisms of protein kinase C action on each of these pathways and how these effects relate to the control of insulin release by exocytosis. We identify remaining challenges in the field and suggest how these challenges might be addressed to advance our understanding of the regulation of insulin release in health and disease.
Collapse
Affiliation(s)
- Adam J Trexler
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Justin W Taraska
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
10
|
Pedersen MG, Tagliavini A, Cortese G, Riz M, Montefusco F. Recent advances in mathematical modeling and statistical analysis of exocytosis in endocrine cells. Math Biosci 2016; 283:60-70. [PMID: 27838280 DOI: 10.1016/j.mbs.2016.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/03/2016] [Accepted: 11/05/2016] [Indexed: 12/15/2022]
Abstract
Most endocrine cells secrete hormones as a result of Ca2+-regulated exocytosis, i.e., fusion of the membranes of hormone-containing secretory granules with the cell membrane, which allows the hormone molecules to escape to the extracellular space. As in neurons, electrical activity and cell depolarization open voltage-sensitive Ca2+ channels, and the resulting Ca2+ influx elevate the intracellular Ca2+ concentration, which in turn causes exocytosis. Whereas the main molecular components involved in exocytosis are increasingly well understood, quantitative understanding of the dynamical aspects of exocytosis is still lacking. Due to the nontrivial spatiotemporal Ca2+ dynamics, which depends on the particular pattern of electrical activity as well as Ca2+ channel kinetics, exocytosis is dependent on the spatial arrangement of Ca2+ channels and secretory granules. For example, the creation of local Ca2+ microdomains, where the Ca2+ concentration reaches tens of µM, are believed to be important for triggering exocytosis. Spatiotemporal simulations of buffered Ca2+ diffusion have provided important insight into the interplay between electrical activity, Ca2+ channel kinetics, and the location of granules and Ca2+ channels. By confronting simulations with statistical time-to-event (or survival) regression analysis of single granule exocytosis monitored with TIRF microscopy, a direct connection between location and rate of exocytosis can be obtained at the local, single-granule level. To get insight into whole-cell secretion, simplifications of the full spatiotemporal dynamics have shown to be highly helpful. Here, we provide an overview of recent approaches and results for quantitative analysis of Ca2+ regulated exocytosis of hormone-containing granules.
Collapse
Affiliation(s)
- Morten Gram Pedersen
- Department of Information Engineering, University of Padua, Via Gradenigo 6/B, 35131 Padova, Italy.
| | - Alessia Tagliavini
- Department of Information Engineering, University of Padua, Via Gradenigo 6/B, 35131 Padova, Italy
| | - Giuliana Cortese
- Department of Statistical Sciences, University of Padua, Via Cesare Battisti 141, 35121 Padova, Italy
| | - Michela Riz
- Department of Information Engineering, University of Padua, Via Gradenigo 6/B, 35131 Padova, Italy; Sanofi, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Francesco Montefusco
- Department of Information Engineering, University of Padua, Via Gradenigo 6/B, 35131 Padova, Italy
| |
Collapse
|
11
|
PKC enhances the capacity for secretion by rapidly recruiting covert voltage-gated Ca2+ channels to the membrane. J Neurosci 2015; 35:2747-65. [PMID: 25673863 DOI: 10.1523/jneurosci.3581-14.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
It is unknown whether neurons can dynamically control the capacity for secretion by promptly changing the number of plasma membrane voltage-gated Ca(2+) channels. To address this, we studied peptide release from the bag cell neurons of Aplysia californica, which initiate reproduction by secreting hormone during an afterdischarge. This burst engages protein kinase C (PKC) to trigger the insertion of a covert Ca(2+) channel, Apl Cav2, alongside a basal channel, Apl Cav1. The significance of Apl Cav2 recruitment to secretion remains undetermined; therefore, we used capacitance tracking to assay secretion, along with Ca(2+) imaging and Ca(2+) current measurements, from cultured bag cell neurons under whole-cell voltage-clamp. Activating PKC with the phorbol ester, PMA, enhanced Ca(2+) entry, and potentiated stimulus-evoked secretion. This relied on channel insertion, as it was occluded by preventing Apl Cav2 engagement with prior whole-cell dialysis or the cytoskeletal toxin, latrunculin B. Channel insertion reduced the stimulus duration and/or frequency required to initiate secretion and strengthened excitation-secretion coupling, indicating that Apl Cav2 accesses peptide release more readily than Apl Cav1. The coupling of Apl Cav2 to secretion also changed with behavioral state, as Apl Cav2 failed to evoke secretion in silent neurons from reproductively inactive animals. Finally, PKC also acted secondarily to enhance prolonged exocytosis triggered by mitochondrial Ca(2+) release. Collectively, our results suggest that bag cell neurons dynamically elevate Ca(2+) channel abundance in the membrane to ensure adequate secretion during the afterdischarge.
Collapse
|
12
|
Snapin accelerates exocytosis at low intracellular calcium concentration in mouse chromaffin cells. Cell Calcium 2013; 54:105-10. [DOI: 10.1016/j.ceca.2013.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 04/30/2013] [Accepted: 05/03/2013] [Indexed: 11/20/2022]
|
13
|
On depolarization-evoked exocytosis as a function of calcium entry: possibilities and pitfalls. Biophys J 2011; 101:793-802. [PMID: 21843469 DOI: 10.1016/j.bpj.2011.06.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 06/16/2011] [Accepted: 06/29/2011] [Indexed: 11/23/2022] Open
Abstract
Secretion from many endocrine cells is a result of calcium-regulated exocytosis due to Ca²⁺ influx. Using the patch-clamp technique, voltage pulses can be applied to the cells to open Ca²⁺ channels, resulting in a measurable Ca²⁺ current, and evoke exocytosis, which can be seen as an increase in membrane capacitance. A common tool for evaluating the relation between Ca²⁺ influx and exocytosis is to plot the increase in capacitance (ΔC(m)) as a function of the integral of the measured Ca²⁺current (Q). When depolarizations of different lengths are imposed, the rate of exocytosis is typically higher for shorter than for longer pulses, which has been suggested to result from depletion of a granule pool or from Ca²⁺ current inactivation. It is here demonstrated that ΔC(m) as a function of Q can reveal whether Ca²⁺ current inactivation masquerades as pool depletion. Moreover, it is shown that a convex, cooperativity-like, relation between ΔC(m) and Q surprisingly cannot occur as a result of cooperative effects, but can result from delays in the exocytotic process or in Ca²⁺dynamics. An overview of expected ΔC(m)-versus-Q relations for a range of explicit situations is given, which should help in the interpretation of data of depolarization-evoked exocytosis in endocrine cells.
Collapse
|
14
|
Liu T, Shang SJ, Liu B, Wang CH, Wang YS, Xiong W, Zheng LH, Zhang CX, Zhou Z. Two distinct vesicle pools for depolarization-induced exocytosis in somata of dorsal root ganglion neurons. J Physiol 2011; 589:3507-15. [PMID: 21646411 DOI: 10.1113/jphysiol.2011.208777] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The somata of dorsal root ganglion (DRG) neurons release neurotransmitters and neuropeptides. In addition to the conventional Ca2+-dependent secretion (CDS), Ca2+-independent but voltage-dependent secretion (CIVDS) also occurs in the somata of DRG neurons. Electrical stimulation induces both CDS and CIVDS, which differ in size and are coupled with different types of endocytosis contributed by CIVDS and CDS, respectively. However, it is unclear whether they use a common vesicle pool, so we investigated the relationship between the vesicle pools of CDS and CIVDS. Membrane capacitance recording and photolysis of a caged-Ca2+ compound showed that, in low external Ca2+ solutions, the depolarization-induced exocytosis contained two (fast and slow) phases, which were contributed by CIVDS and CDS, respectively. Depletion of the CDS readily releasable pool using photolysis did not affect the CIVDS. When the CIVDS and CDS vesicle pools were depleted by electrical stimulation, the pools had different sizes. Their kinetics of exocytosis-coupled endocytosis were also different. Thus, CIVDS and CDS used different vesicle pools in DRG neurons.
Collapse
Affiliation(s)
- Tao Liu
- State Key Laboratory of Biomembrane Engineering, Institute of Molecular Medicine, Peking University, Beijing 100871, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Huang Y, Cai D, Chen P. Micro- and Nanotechnologies for Study of Cell Secretion. Anal Chem 2011; 83:4393-406. [DOI: 10.1021/ac200358b] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yinxi Huang
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457
| | - Dong Cai
- Biology Department, Boston College, Boston, Massachusetts 02467, United States
| | - Peng Chen
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457
| |
Collapse
|
16
|
Stevens DR, Schirra C, Becherer U, Rettig J. Vesicle pools: lessons from adrenal chromaffin cells. Front Synaptic Neurosci 2011; 3:2. [PMID: 21423410 PMCID: PMC3059608 DOI: 10.3389/fnsyn.2011.00002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 01/17/2011] [Indexed: 11/30/2022] Open
Abstract
The adrenal chromaffin cell serves as a model system to study fast Ca2+-dependent exocytosis. Membrane capacitance measurements in combination with Ca2+ uncaging offers a temporal resolution in the millisecond range and reveals that catecholamine release occurs in three distinct phases. Release of a readily releasable (RRP) and a slowly releasable (SRP) pool are followed by sustained release, due to maturation, and release of vesicles which were not release-ready at the start of the stimulus. Trains of depolarizations, a more physiological stimulus, induce release from a small immediately releasable pool of vesicles residing adjacent to calcium channels, as well as from the RRP. The SRP is poorly activated by depolarization. A sequential model, in which non-releasable docked vesicles are primed to a slowly releasable state, and then further mature to the readily releasable state, has been proposed. The docked state, dependent on membrane proximity, requires SNAP-25, synaptotagmin, and syntaxin. The ablation or modification of SNAP-25 and syntaxin, components of the SNARE complex, as well as of synaptotagmin, the calcium sensor, and modulators such complexins and Snapin alter the properties and/or magnitudes of different phases of release, and in particular can ablate the RRP. These results indicate that the composition of the SNARE complex and its interaction with modulatory molecules drives priming and provides a molecular basis for different pools of releasable vesicles.
Collapse
Affiliation(s)
- David R Stevens
- Physiologisches Institut, Universität des Saarlandes Homburg, Saarland, Germany
| | | | | | | |
Collapse
|
17
|
Than A, Ye F, Xue R, Ong JW, Poh CL, Chen P. The crosstalks between adipokines and catecholamines. Mol Cell Endocrinol 2011; 332:261-70. [PMID: 21070834 DOI: 10.1016/j.mce.2010.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 10/29/2010] [Accepted: 11/01/2010] [Indexed: 01/11/2023]
Abstract
Adipocytes, which secrete a spectrum of adipokines, play an integral role in metabolism via communications with other endocrine cells. In the present work, we have studied the interplays between adipokines and catecholamines, using 3T3-L1 adipocytes and PC12 cells as the cell models and an integrative experimental platform. We demonstrate that all catecholamines inhibit vesicle trafficking and secretion of leptin and resistin through β-adrenergic receptors, while leptin and resistin enhance the vesicle trafficking and secretion of catecholamines through PKC, PKA, MAPK kinase and Ca(2+) dependent pathways. The crosstalks between adipokines and catecholamines were further corroborated by co-culturing 3T3-L1 adipocytes and PC12 cells. Our findings highlight the importance of adipo-adrenal axis in energy metabolism and the intricate interactions between metabolic hormones.
Collapse
Affiliation(s)
- Aung Than
- Division of Bioengineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | | | | | | | | | | |
Collapse
|
18
|
Álvarez YD, Marengo FD. The immediately releasable vesicle pool: highly coupled secretion in chromaffin and other neuroendocrine cells. J Neurochem 2010; 116:155-63. [DOI: 10.1111/j.1471-4159.2010.07108.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Misler S. Unifying concepts in stimulus-secretion coupling in endocrine cells and some implications for therapeutics. ADVANCES IN PHYSIOLOGY EDUCATION 2009; 33:175-186. [PMID: 19745043 PMCID: PMC3747786 DOI: 10.1152/advan.90213.2008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 06/16/2009] [Indexed: 05/28/2023]
Abstract
Stimulus-secretion coupling (SSC) in endocrine cells remains underappreciated as a subject for the study/teaching of general physiology. In the present article, we review key new electrophysiological, electrochemical, and fluorescence optical techniques for the study of exocytosis in single cells that have made this a fertile area for recent research. Based on findings using these techniques, we developed a model of SSC for adrenal chromaffin cells that blends features of Ca(2+) entry-dependent SSC (characteristic of neurons) with G protein receptor-coupled, Ca(2+) release-dependent, and second messenger-dependent SSC (characteristic of epithelial exocrine cells and nucleated blood cells). This model requires two distinct pools of secretory graunules with differing Ca(2+) sensitivities. We extended this model to account for SSC in a wide variety of peripheral and hypothalamic/pituitary-based endocrine cells. These include osmosensitive magnocellular neurosecretory cells releasing antidiuretic hormone, stretch-sensitive atrial myocytes secreting atrial natriuretic peptide, K(+)-sensitive adrenal glomerulosa cells secreting aldosterone, Ca(2+)-sensitive parathyroid chief cells secreting parathyroid hormone, and glucose-sensitive beta- and alpha-cells of pancreatic islets secreting insulin and glucagon, respectively. We conclude this article with implications of this approach for pathophysiology and therapeutics, including defects in chief cell Ca(2+) sensitivity, resulting in the hyperparathyroidism of renal disease, and defects in biphasic insulin secretion, resulting in diabetes mellitus.
Collapse
Affiliation(s)
- Stanley Misler
- Department of Internal Medicine and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| |
Collapse
|
20
|
Xue R, Zhao Y, Su L, Ye F, Chen P. PKC epsilon facilitates recovery of exocytosis after an exhausting stimulation. Pflugers Arch 2009; 458:1137-49. [PMID: 19593582 DOI: 10.1007/s00424-009-0697-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 06/22/2009] [Accepted: 06/26/2009] [Indexed: 01/18/2023]
Abstract
It has been well documented that protein kinase Cs (PKCs) play multifaceted roles in regulating exocytosis of neurotransmitters and hormones. But the isoform-specific PKC effects are still poorly elucidated mainly because of the large variety of PKC isoforms and the dubious specificity of the commonly used pharmacological agents. In the present study, based on overexpression of wild-type or dominant negative PKC epsilon, we demonstrate in neuroendocrine PC12 cells that PKC epsilon, but not PKC alpha, facilitates recovery of exocytosis after an exhausting stimulation. Specifically, PKC epsilon mediates fast recovery of the extent of exocytosis in a phosphatidylinositol biphosphate-dependent manner, likely through enhancing the rate of vesicle delivery and reorganization of cortical actin network. In addition, PKC epsilon promotes fast recovery of vesicle release kinetics that is slowed after a strong stimulation. These experimental results may suggest a PKC-dependent mechanism relevant to the short-term plasticity of exocytosis in both neurons and neuroendocrine cells.
Collapse
Affiliation(s)
- Renhao Xue
- Division of Bioengineering, Nanyang Technological University, Singapore, 637457, Singapore
| | | | | | | | | |
Collapse
|
21
|
Newcomer insulin secretory granules as a highly calcium-sensitive pool. Proc Natl Acad Sci U S A 2009; 106:7432-6. [PMID: 19372374 DOI: 10.1073/pnas.0901202106] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Insulin secretion is biphasic in response to a step in glucose stimulation. Recent experiments suggest that 2 different mechanisms operate during the 2 phases, with transient first-phase secretion due to exocytosis of docked granules but the second sustained phase due largely to newcomer granules. Another line of research has shown that there exist 2 pools of releasable granules with different Ca(2+) sensitivities. An immediately releasable pool (IRP) is located in the vicinity of Ca(2+) channels, whereas a highly Ca(2+)-sensitive pool (HCSP) resides mainly away from Ca(2+) channels. We extend a previous model of exocytosis and insulin release by adding an HCSP and show that the inclusion of this pool naturally leads to insulin secretion mainly from newcomer granules during the second phase of secretion. We show that the model is compatible with data from single cells on the HCSP and from stimulation of islets by glucose, including L- and R-type Ca(2+) channel knockouts, as well as from Syntaxin-1A-deficient cells. We also use the model to investigate the relative contribution of calcium signaling and pool depletion in controlling biphasic secretion.
Collapse
|
22
|
Involvement of PKCα in PMA-induced facilitation of exocytosis and vesicle fusion in PC12 cells. Biochem Biophys Res Commun 2009; 380:371-6. [DOI: 10.1016/j.bbrc.2009.01.105] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 01/12/2009] [Indexed: 11/18/2022]
|
23
|
Gonzalez-Iglesias AE, Murano T, Li S, Tomić M, Stojilkovic SS. Dopamine inhibits basal prolactin release in pituitary lactotrophs through pertussis toxin-sensitive and -insensitive signaling pathways. Endocrinology 2008; 149:1470-9. [PMID: 18096663 PMCID: PMC2276716 DOI: 10.1210/en.2007-0980] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dopamine D2 receptors signal through the pertussis toxin (PTX)-sensitive G(i/o) and PTX-insensitive G(z) proteins, as well as through a G protein-independent, beta-arrestin/glycogen synthase kinase-3-dependent pathway. Activation of these receptors in pituitary lactotrophs leads to inhibition of prolactin (PRL) release. It has been suggested that this inhibition occurs through the G(i/o)-alpha protein-mediated inhibition of cAMP production and/or G(i/o)-betagamma dimer-mediated activation of inward rectifier K(+) channels and inhibition of voltage-gated Ca(2+) channels. Here we show that the dopamine agonist-induced inhibition of spontaneous Ca(2+) influx and release of prestored PRL was preserved when cAMP levels were elevated by forskolin treatment. We further observed that dopamine agonists inhibited both spontaneous and depolarization-induced Ca(2+) influx in untreated but not in PTX-treated cells. This inhibition was also observed in cells with blocked inward rectifier K(+) channels, suggesting that the dopamine effect on voltage-gated Ca(2+) channel gating is sufficient to inhibit spontaneous Ca(2+) influx. However, agonist-induced inhibition of PRL release was only partially relieved in PTX-treated cells, indicating that dopamine receptors also inhibit exocytosis downstream of voltage-gated Ca(2+) influx. The PTX-insensitive step in agonist-induced inhibition of PRL release was not affected by the addition of wortmannin, an inhibitor of phosphatidylinositol 3-kinase, and lithium, an inhibitor of glycogen synthase kinase-3, but was attenuated in the presence of phorbol 12-myristate 13-acetate, which inhibits G(z) signaling pathway in a protein kinase C-dependent manner. Thus, dopamine inhibits basal PRL release by blocking voltage-gated Ca(2+) influx through the PTX-sensitive signaling pathway and by desensitizing Ca(2+) secretion coupling through the PTX-insensitive and protein kinase C-sensitive signaling pathway.
Collapse
Affiliation(s)
- Arturo E Gonzalez-Iglesias
- National Institute of Child Health and Human Development, 49 Convent Drive, Bethesda, MD 20892-4510, USA
| | | | | | | | | |
Collapse
|
24
|
Zhang E, Xue R, Soo J, Chen P. Effects of phorbol ester on vesicle dynamics as revealed by total internal reflection fluorescence microscopy. Pflugers Arch 2008; 457:211-22. [PMID: 18343946 DOI: 10.1007/s00424-008-0485-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 02/14/2008] [Accepted: 02/27/2008] [Indexed: 11/24/2022]
Abstract
Exocytosis of neurotransmitter or hormone-filled vesicles is a highly dynamic process regulated by various proteins and lipids. As mainly revealed indirectly by the electrophysiological methods, exocytosis is believed to involve multiple kinetic steps in which vesicles transit from one state to another. Using total internal reflection fluorescence microscopy which enables direct visualization of individual vesicles, we developed an analytical framework to track and analyze vesicle dynamics. We demonstrated that all subplasmalemmal vesicles generally undergo constant and caged Brownian motion. And they can be classified into three populations that differ in their motion characteristics and fusion competence. Furthermore, we showed that these vesicle pools are differentially modulated by phorbol-12-myristate-13-acetate, a phorbol ester analog to endogenous diacylglycerol, through both protein-kinase-C-dependent and -independent pathways.
Collapse
Affiliation(s)
- Enming Zhang
- Division of Bioengineering, Nanyang Technological University, Singapore 637457, Singapore
| | | | | | | |
Collapse
|
25
|
Synaptotagmin-1 and -7 are functionally overlapping Ca2+ sensors for exocytosis in adrenal chromaffin cells. Proc Natl Acad Sci U S A 2008; 105:3998-4003. [PMID: 18308932 DOI: 10.1073/pnas.0712373105] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Synaptotagmin-1, the canonical isoform of the synaptotagmin family, is a Ca(2+) sensor for fast synchronous neurotransmitter release in forebrain neurons and chromaffin cells. Even though deletion of synaptotagmin-1 abolishes fast exocytosis in chromaffin cells, it reduces overall secretion by only 20% because of the persistence of slow exocytosis. Therefore, another Ca(2+) sensor dominates release in these cells. Synaptotagmin-7 has a higher Ca(2+) affinity and slower binding kinetics than synaptotagmin-1, matching the proposed properties for the second, slower Ca(2+) sensor. Here, we examined Ca(2+)-triggered exocytosis in chromaffin cells from KO mice lacking synaptotagmin-7, and from knockin mice containing normal levels of a mutant synaptotagmin-7 whose C(2)B domain does not bind Ca(2+). In both types of mutant chromaffin cells, Ca(2+)-triggered exocytosis was decreased dramatically. Moreover, in chromaffin cells lacking both synaptotagmin-1 and -7, only a very slow release component, accounting for approximately 30% of WT exocytosis, persisted. These data establish synaptotagmin-7 as a major Ca(2+) sensor for exocytosis in chromaffin cells, which, together with synaptotagmin-1, mediates almost all of the Ca(2+) triggering of exocytosis in these cells, a surprising result, considering the lack of a role of synaptotagmin-7 in synaptic vesicle exocytosis.
Collapse
|
26
|
Phosphorylation of SNAP-25 at Ser187 mediates enhancement of exocytosis by a phorbol ester in INS-1 cells. J Neurosci 2008; 28:21-30. [PMID: 18171919 DOI: 10.1523/jneurosci.2352-07.2008] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Activation of diacylglycerol (DAG) signaling pathways with phorbol esters dramatically enhances Ca2+-triggered exocytosis from both endocrine cells and neurons, however the relevant targets of DAG are controversial. A possible effector mechanism for this signaling pathway is phosphorylation of SNAP-25 (25 kDa synaptosome-associated protein) at Ser187 by PKC. Here, we investigated the role of Ser187 in the enhancement of exocytosis by the phorbol ester PMA (phorbol 12-myristate 13-acetate). We used patch-clamp measurements of membrane capacitance together with photorelease of caged-Ca2+ and membrane depolarization to study exocytosis. Expression of the nonphosphorylatable S187C SNAP-25 mutant did not attenuate the enhancement of exocytosis by PMA in either bovine chromaffin cells or the INS-1 insulin-secreting cell line. To test the effects of Ser187 mutations under conditions in which the endogenous SNAP-25 is disabled, we expressed botulinum toxin serotype E to cleave SNAP-25 in INS-1 cells. Coexpression of a toxin-resistant mutant (TR), but not wild-type SNAP-25, was able to rescue PMA-modulated exocytosis. Coexpression of the toxin with the TR-S187C SNAP-25 mutant was able to completely block the enhancement of exocytosis by PMA in response to photoelevation of [Ca2+]i to low microM levels or to a depolarizing train. The phospho-mimetic S187E mutation enhanced the small, fast burst of exocytosis evoked by photelevation of Ca2+, but, like PMA, had smaller effects on exocytosis evoked by a depolarizing train. This work supports the hypothesis that phosphorylation of Ser187 of SNAP-25 by PKC is a key step in the enhancement of exocytosis by DAG.
Collapse
|
27
|
Borges R, Camacho M, Gillis KD. Measuring secretion in chromaffin cells using electrophysiological and electrochemical methods. Acta Physiol (Oxf) 2008; 192:173-84. [PMID: 18021323 DOI: 10.1111/j.1748-1716.2007.01814.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Our present understanding of exocytosis of catecholamines has benefited tremendously from the arrival of single-cell electrochemical methods (amperometry and voltammetry), electrophysiological techniques (whole-cell and patch capacitance) and from the combination of both techniques (patch amperometry). In this brief review, we will outline the strengths and limitations of amperometric and electrophysiological methods and highlight the major contribution obtained with the use of these techniques in chromaffin cells.
Collapse
Affiliation(s)
- R Borges
- Unidad de Farmacología, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain.
| | | | | |
Collapse
|
28
|
Staal RGW, Hananiya A, Sulzer D. PKC theta activity maintains normal quantal size in chromaffin cells. J Neurochem 2008; 105:1635-41. [PMID: 18248621 DOI: 10.1111/j.1471-4159.2008.05264.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Protein kinase C (PKC) activity mediates multiple neurosecretory processes, but these are poorly understood due in part to the existence of at least 12 PKC isoforms. Using amperometry to record quantal catecholamine release from chromaffin cells, we found that both broad spectrum PKC antagonists and rottlerin, a selective inhibitor of the novel isoforms PKC theta and PKC delta, decreased quantal size and the number of secretory events recorded per stimulus. In contrast, drugs that selectively inhibit the atypical and conventional PKC isoforms had no effect on these parameters. While both PKC theta and delta were expressed in chromaffin cells, mice deficient for PKC theta, but not for PKC delta, exhibited lower quantal size than wild-type and were insensitive to rottlerin. Finally, an inhibitory PKC theta pseudosubstrate produced rottlerin-like responses in wild-type mice, indicating that the lack of rottlerin response in the PKC theta mutants was not the result of a form of compensation. These findings demonstrate neurosecretory regulation by a novel PKC isoform, PKC theta, and should contribute to defining mechanisms of activity-dependent regulation of neurosecretion.
Collapse
Affiliation(s)
- Roland G W Staal
- Department of Neurology, Columbia University Medical Center, New York, New York 10032, USA
| | | | | |
Collapse
|
29
|
Abstract
G-proteins (guanine nucleotide-binding proteins) are membrane-attached proteins composed of three subunits, alpha, beta, and gamma. They transduce signals from G-protein coupled receptors (GPCRs) to target effector proteins. The agonistactivated receptor induces a conformational change in the G-protein trimer so that the alpha-subunit binds GTP in exchange for GDP and alpha-GTP, and betagamma-subunits separate to interact with the target effector. Effector-interaction is terminated by the alpha-subunit GTPase activity, whereby bound GTP is hydrolyzed to GDP. This is accelerated in situ by RGS proteins, acting as GTPase-activating proteins (GAPs). Galpha-GDP and Gbetagamma then reassociate to form the Galphabetagamma trimer. G-proteins primarily involved in the modulation of neurotransmitter release are G(o), G(q) and G(s). G(o) mediates the widespread presynaptic auto-inhibitory effect of many neurotransmitters (e.g., via M2/M4 muscarinic receptors, alpha(2) adrenoreceptors, micro/delta opioid receptors, GABAB receptors). The G(o) betagamma-subunit acts in two ways: first, and most ubiquitously, by direct binding to CaV2 Ca(2+) channels, resulting in a reduced sensitivity to membrane depolarization and reduced Ca(2+) influx during the terminal action potential; and second, through a direct inhibitory effect on the transmitter release machinery, by binding to proteins of the SNARE complex. G(s) and G(q) are mainly responsible for receptor-mediated facilitatory effects, through activation of target enzymes (adenylate cyclase, AC and phospholipase-C, PLC respectively) by the GTP-bound alpha-subunits.
Collapse
Affiliation(s)
- David A Brown
- Department of Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| | | |
Collapse
|
30
|
Kuri BA, Khan SA, Chan SA, Prabhakar NR, Smith CB. Increased secretory capacity of mouse adrenal chromaffin cells by chronic intermittent hypoxia: involvement of protein kinase C. J Physiol 2007; 584:313-9. [PMID: 17702812 PMCID: PMC2277058 DOI: 10.1113/jphysiol.2007.140624] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Previous studies have shown that catecholamine secretion from the adrenal medulla plays a critical role in chronic intermittent hypoxia (CIH)-induced alterations in cardiovascular function. In the present study we examined the cellular mechanisms associated with the effects of CIH on adrenal chromaffin cell catecholamine secretion. Experiments were performed on adult male mice (C57/BL6) that were exposed to 1-4 days of CIH or to normoxia. Perforated patch electrical capacitance recordings were performed on freshly prepared adrenal medullary slices that permit separating the chromaffin cell secretion from sympathetic input. CIH resulted in a significant increase in the readily releasable pool (RRP) of secretory granules, and decreased stimulus-evoked Ca(2+) influx. Continuous hypoxia (CH) either for 2.5 h (equivalent to hypoxic duration accumulated over 4 days of CIH) or for 4 days were ineffective in evoking changes in the RRP and Ca(2+) influx. CIH activated PKC in adrenal medullae as evidenced by increased phosphorylation of PKC at Thr(514) and PKC inhibitors prevented CIH-induced increases in the RRP and restored stimulus-evoked attenuation of Ca(2+) influx. CIH resulted in elevated thio-barbituric acid reactive substances (TBARSs, an index of oxidized proteins) and an antioxidant prevented CIH-induced changes in the RRP, suggesting the involvement of reactive oxygen species (ROS). These results demonstrate that CIH increases the RRP in adrenal chromaffin cells via ROS-mediated activation of PKC and suggest that CIH can directly affect the secretory capacity of chromaffin cells and contribute, in part, to elevated catecholamine levels.
Collapse
Affiliation(s)
- Barbara A Kuri
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106-4970, USA
| | | | | | | | | |
Collapse
|
31
|
Yang Y, Craig TJ, Chen X, Ciufo LF, Takahashi M, Morgan A, Gillis KD. Phosphomimetic mutation of Ser-187 of SNAP-25 increases both syntaxin binding and highly Ca2+-sensitive exocytosis. ACTA ACUST UNITED AC 2007; 129:233-44. [PMID: 17325194 PMCID: PMC2151612 DOI: 10.1085/jgp.200609685] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The phosphorylation targets that mediate the enhancement of exocytosis by PKC are unknown. PKC phosporylates the SNARE protein SNAP-25 at Ser-187. We expressed mutants of SNAP-25 using the Semliki Forest Virus system in bovine adrenal chromaffin cells and then directly measured the Ca2+ dependence of exocytosis using photorelease of caged Ca2+ together with patch-clamp capacitance measurements. A flash of UV light used to elevate [Ca2+]i to several μM and release the highly Ca2+-sensitive pool (HCSP) of vesicles was followed by a train of depolarizing pulses to elicit exocytosis from the less Ca2+-sensitive readily releasable pool (RRP) of vesicles. Carbon fiber amperometry confirmed that the amount and kinetics of catecholamine release from individual granules were similar for the two phases of exocytosis. Mimicking PKC phosphorylation with expression of the S187E SNAP-25 mutant resulted in an approximately threefold increase in the HCSP, whereas the response to depolarization increased only 1.5-fold. The phosphomimetic S187D mutation resulted in an ∼1.5-fold increase in the HCSP but a 30% smaller response to depolarization. In vitro binding assays with recombinant SNARE proteins were performed to examine shifts in protein–protein binding that may promote the highly Ca2+-sensitive state. The S187E mutant exhibited increased binding to syntaxin but decreased Ca2+-independent binding to synaptotagmin I. Mimicking phosphorylation of the putative PKA phosphorylation site of SNAP-25 with the T138E mutation decreased binding to both syntaxin and synaptotagmin I in vitro. Expressing the T138E/ S187E double mutant in chromaffin cells demonstrated that enhancing the size of the HCSP correlates with an increase in SNAP-25 binding to syntaxin in vitro, but not with Ca2+-independent binding of SNAP-25 to synaptotagmin I. Our results support the hypothesis that exocytosis triggered by lower Ca2+ concentrations (from the HCSP) occurs by different molecular mechanisms than exocytosis triggered by higher Ca2+ levels.
Collapse
Affiliation(s)
- Yan Yang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Sieburth D, Madison JM, Kaplan JM. PKC-1 regulates secretion of neuropeptides. Nat Neurosci 2006; 10:49-57. [PMID: 17128266 DOI: 10.1038/nn1810] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Accepted: 11/02/2006] [Indexed: 11/09/2022]
Abstract
The secretion of neurotransmitters and neuropeptides is mediated by distinct organelles-synaptic vesicles (SVs) and dense-core vesicles (DCVs), respectively. Relatively little is known about the factors that differentially regulate SV and DCV secretion. Here we show that protein kinase C-1 (PKC-1), which is most similar to the vertebrate PKC eta and epsilon isoforms, regulates exocytosis of DCVs in Caenorhabditis elegans motor neurons. Mutants lacking PCK-1 activity had delayed paralysis induced by the acetylcholinesterase inhibitor aldicarb, whereas mutants with increased PKC-1 activity had more rapid aldicarb-induced paralysis. Imaging and electrophysiological assays indicated that SV release occurred normally in pkc-1 mutants. By contrast, genetic analysis of aldicarb responses and imaging of fluorescently tagged neuropeptides indicated that mutants lacking PKC-1 had reduced neuropeptide secretion. Similar neuropeptide secretion defects were found in mutants lacking unc-31 (encoding the protein CAPS) or unc-13 (encoding Munc13). These results suggest that PKC-1 selectively regulates DCV release from neurons.
Collapse
Affiliation(s)
- Derek Sieburth
- Department of Molecular Biology, Simches 7, Massachusetts General Hospital, 185 Cambridge St., Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
33
|
Bonanomi D, Benfenati F, Valtorta F. Protein sorting in the synaptic vesicle life cycle. Prog Neurobiol 2006; 80:177-217. [PMID: 17074429 DOI: 10.1016/j.pneurobio.2006.09.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 09/14/2006] [Accepted: 09/18/2006] [Indexed: 01/06/2023]
Abstract
At early stages of differentiation neurons already contain many of the components necessary for synaptic transmission. However, in order to establish fully functional synapses, both the pre- and postsynaptic partners must undergo a process of maturation. At the presynaptic level, synaptic vesicles (SVs) must acquire the highly specialized complement of proteins, which make them competent for efficient neurotransmitter release. Although several of these proteins have been characterized and linked to precise functions in the regulation of the SV life cycle, a systematic and unifying view of the mechanisms underlying selective protein sorting during SV biogenesis remains elusive. Since SV components do not share common sorting motifs, their targeting to SVs likely relies on a complex network of protein-protein and protein-lipid interactions, as well as on post-translational modifications. Pleiomorphic carriers containing SV proteins travel and recycle along the axon in developing neurons. Nevertheless, SV components appear to eventually undertake separate trafficking routes including recycling through the neuronal endomembrane system and the plasmalemma. Importantly, SV biogenesis does not appear to be limited to a precise stage during neuronal differentiation, but it rather continues throughout the entire neuronal lifespan and within synapses. At nerve terminals, remodeling of the SV membrane results from the use of alternative exocytotic pathways and possible passage through as yet poorly characterized vacuolar/endosomal compartments. As a result of both processes, SVs with heterogeneous molecular make-up, and hence displaying variable competence for exocytosis, may be generated and coexist within the same nerve terminal.
Collapse
Affiliation(s)
- Dario Bonanomi
- Department of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| | | | | |
Collapse
|
34
|
Behrens UD, Borde J, Mack AF, Wagner HJ. Distribution of phosphorylated protein kinase C alpha in goldfish retinal bipolar synaptic terminals: control by state of adaptation and pharmacological treatment. Cell Tissue Res 2006; 327:209-20. [PMID: 17043793 DOI: 10.1007/s00441-006-0302-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Accepted: 07/12/2006] [Indexed: 10/24/2022]
Abstract
Protein kinase C (PKC) is a signalling enzyme critically involved in many aspects of synaptic plasticity. In cyprinid retinae, the PKC alpha isoform is localized in a subpopulation of depolarizing bipolar cells that show adaptation-related morphological changes of their axon terminals. We have studied the subcellular localization of phosphorylated PKC alpha (pPKC alpha) in retinae under various conditions by immunohistochemistry with a phosphospecific antibody. In dark-adapted retinae, pPKC alpha immunoreactivity is weak in the cytoplasm of synaptic terminals, labelling being predominantly associated with the membrane compartment. In light-adapted cells, immunoreactivity is diffusely distributed throughout the terminal. Western blot analysis has revealed a reduction of pPKC alpha immunoreactivity in cytosolic fractions of homogenized dark-adapted retinae compared with light-adapted retinae. Pharmacological experiments with the isoform-specific PKC blocker Goe6976 have shown that inhibition of the enzyme influences immunolabelling for pPKC alpha, mimicking the effects of light on the subcellular distribution of immunoreactivity. Our findings suggest that the state of adaptation modifies the subcellular localization of a signalling molecule (PKC alpha) at the ribbon-type synaptic complex. We propose that changes in the subcellular distribution of PKC alpha immunoreactivity might be one component regulating the strength of the signal transfer of the bipolar cell terminal.
Collapse
Affiliation(s)
- Uwe D Behrens
- Anatomisches Institut, Oesterbergstrasse 3, 72074, Tübingen, Germany.
| | | | | | | |
Collapse
|
35
|
Houeland G, Nakhost A, Sossin WS, Castellucci VF. PKC modulation of transmitter release by SNAP-25 at sensory-to-motor synapses in aplysia. J Neurophysiol 2006; 97:134-43. [PMID: 16971689 DOI: 10.1152/jn.00122.2006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation of phosphokinase C (PKC) can increase transmitter release at sensory-motor neuron synapses in Aplysia, but the target of PKC phosphorylation has not been determined. One putative target of PKC at synapses is the synaptosomal-associated protein of 25 kDa (SNAP-25), a member of the SNARE protein complex implicated in synaptic vesicle docking and fusion. To determine whether PKC regulated transmitter release through phosphorylation of SNAP-25, we cloned Aplysia SNAP-25 and expressed enhanced green fluorescent protein (EGFP)-coupled SNAP-25 constructs mutated at the PKC phosphorylation site Ser198 in Aplysia sensory neurons. We found several distinct effects of expression of EGFP-SNAP-25 constructs. First, the rates of synaptic depression were slowed when cells contained SNAP-25 with phosphomimetic residues Glu or Asp. Second, PDBu-mediated increases in transmitter release at naïve synapses were blocked in cells expressing nonphosphorylated-state SNAP-25. Finally, expression of EGFP-coupled SNAP-25 but not uncoupled SNAP-25 inhibited 5-HT-mediated reversal of depression and the ability of EGFP-coupled SNAP-25 to inhibit the reversal of depression was affected by changes at Ser198. These results suggest SNAP-25 and phosphorylation of SNAP-25 by PKC can regulate transmitter release at Aplysia sensory-motor neuron synapses by a number of distinct processes.
Collapse
Affiliation(s)
- Gry Houeland
- Department of Physiology, University of Montreal, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
36
|
Becherer U, Rettig J. Vesicle pools, docking, priming, and release. Cell Tissue Res 2006; 326:393-407. [PMID: 16819626 DOI: 10.1007/s00441-006-0243-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 05/09/2006] [Indexed: 10/24/2022]
Abstract
The release of neurotransmitter from synaptic vesicles represents the final event by which presynapses send their chemical signal to the receiving postsynapses. Prior to fusion, synaptic vesicles undergo a series of maturation events, most notably the membrane-delimited docking and priming steps. Physiological and optical experiments with high-time resolution have allowed the distinction of vesicles in different maturation states with respect to fusion, the so-called vesicle pools. In this review, we define the various vesicle pools and discuss pathways leading into and out of these pools. We also provide an overview of an array of proteins that have been identified or are speculated to play a role in the transition between the various vesicle pools.
Collapse
Affiliation(s)
- Ute Becherer
- Universität des Saarlandes, Physiologisches Institut, Gebäude 59, Kirrberger Strasse 8, 66421, Homburg/Saar, Germany
| | | |
Collapse
|
37
|
Liu HS, Hu ZT, Zhou KM, Jiu YM, Yang H, Wu ZX, Xu T. Heterogeneity of the Ca2+ sensitivity of secretion in a pituitary gonadotrope cell line and its modulation by protein kinase C and Ca2+. J Cell Physiol 2006; 207:668-74. [PMID: 16482531 DOI: 10.1002/jcp.20598] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Modulation of the Ca2+ sensitivity and cooperativity of secretion is an important means of regulating neurotransmission and hormone secretion. Employing high-time resolution measurement of membrane capacitance (Cm) stimulated by step-like or ramp [Ca2+]i elevation, we have identified the co-existence of both a high and low Ca2+-sensitive exocytosis in an immortal pituitary gonadotrope cell line, LbetaT2. Ramp [Ca2+]i generated by slow uncaging elicited a biphasic C(m) response. The first phase of response, which represents a highly Ca2+-sensitive pool (HCSP) of vesicles, began to secrete at low [Ca2+]i concentration (<1 microM) with low Ca2+ cooperativity. In contrast, the second phase, which represents a lowly Ca2+-sensitive pool (LCSP) of vesicles, only exocytozed at higher [Ca2+]i (>5 microM) and displayed a steep Ca2+ cooperativity. The co-existence of vesicle populations with different Ca2+ sensitivities was further confirmed by flash photolysis stimuli. The size of the HCSP was approximately 30 fF under resting conditions, but was dramatically increased (approximately threefold) by application of phorbol-12-myristate-13-acetate (PMA, an activator of protein kinase C). Forskolin (an activator of protein kinase A), however, exerted no significant effect on the size of both HCSP and LCSP. GnRH (gonadotropin releasing hormone) augmented the size of both pools to a larger extent (5- and 1.7-fold increase for HCSP and LCSP, respectively). The heterogeneity of Ca2+ sensitivity from different pools of vesicles and its differential modulation by intracellular signals suggests that LbetaT2 cells are an ideal model to further unravel the mechanism underlying the modulation of Ca2+-sensing machineries for exocytosis.
Collapse
Affiliation(s)
- Hui-Sheng Liu
- Joint Laboratory of Institute of Biophysics and Huazhong University of Science and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | | | | | | | | | | | | |
Collapse
|
38
|
Kubista H, Boehm S. Molecular mechanisms underlying the modulation of exocytotic noradrenaline release via presynaptic receptors. Pharmacol Ther 2006; 112:213-42. [PMID: 16730801 DOI: 10.1016/j.pharmthera.2006.04.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 04/10/2006] [Indexed: 10/24/2022]
Abstract
The release of noradrenaline from nerve terminals is modulated by a variety of presynaptic receptors. These receptors belong to one of the following three receptor superfamilies: transmitter-gated ion channels, G protein-coupled receptors (GPCR), and membrane receptors with intracellular enzymatic activities. For representatives of each of these three superfamilies, receptor activation has been reported to cause either an enhancement or a reduction of noradrenaline release. As these receptor classes display greatly diverging structures and functions, a multitude of different molecular mechanisms are involved in the regulation of noradrenaline release via presynaptic receptors. This review gives a short overview of the presynaptic receptors on noradrenergic nerve terminals and summarizes the events involved in vesicle exocytosis in order to finally delineate the most important signaling cascades that mediate the modulation via presynaptic receptors. In addition, the interactions between the various presynaptic receptors are described and the underlying molecular mechanisms are elucidated. Together, these presynaptic signaling mechanisms form a sophisticated network that precisely adapts the amount of noradrenaline being released to a given situation.
Collapse
Affiliation(s)
- Helmut Kubista
- Institute of Pharmacology, Centre of Biomolecular Medicine and Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, A-1090 Vienna, Austria
| | | |
Collapse
|
39
|
Roggero CM, Tomes CN, De Blas GA, Castillo J, Michaut MA, Fukuda M, Mayorga LS. Protein kinase C-mediated phosphorylation of the two polybasic regions of synaptotagmin VI regulates their function in acrosomal exocytosis. Dev Biol 2006; 285:422-35. [PMID: 16111671 DOI: 10.1016/j.ydbio.2005.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Revised: 07/09/2005] [Accepted: 07/11/2005] [Indexed: 11/22/2022]
Abstract
We have previously reported that synaptotagmin VI is present in human sperm cells and that a recombinant protein containing the C2A and C2B domains abrogates acrosomal exocytosis in permeabilized spermatozoa, an effect that was regulated by phosphorylation. In this report, we show that each individual C2 domain blocks acrosomal exocytosis. The inhibitory effect was completely abrogated by phosphorylation of the domains with purified PKCbetaII. We found by site-directed mutagenesis that Thr418 and/or Thr419 in the polybasic region (KKKTTIK) of the C2B domain--a key region for the function of synaptotagmins--are the PKC target that regulates its inhibitory effect on acrosomal exocytosis. Similarly, we showed that Thr284 in the polybasic region of C2A (KCKLQTR) is the target for PKC-mediated phosphorylation in this domain. An antibody that specifically binds to the phosphorylated polybasic region of the C2B domain recognized endogenous phosphorylated synaptotagmin in the sperm acrosomal region. The antibody was inhibitory only at early stages of exocytosis in sperm acrosome reaction assays, and the immunolabeling decreased upon sperm stimulation, indicating that the protein is dephosphorylated during acrosomal exocytosis. Our results indicate that acrosomal exocytosis is regulated through the PKC-mediated phosphorylation of conserved threonines in the polybasic regions of synaptotagmin VI.
Collapse
Affiliation(s)
- Carlos M Roggero
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Casilla de Correo 56, 5500 Mendoza, Argentina
| | | | | | | | | | | | | |
Collapse
|
40
|
Nagy G, Kim JH, Pang ZP, Matti U, Rettig J, Südhof TC, Sørensen JB. Different effects on fast exocytosis induced by synaptotagmin 1 and 2 isoforms and abundance but not by phosphorylation. J Neurosci 2006; 26:632-43. [PMID: 16407561 PMCID: PMC6674391 DOI: 10.1523/jneurosci.2589-05.2006] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synaptotagmins comprise a large protein family, of which synaptotagmin 1 (Syt1) is a Ca2+ sensor for fast exocytosis, and its close relative, synaptotagmin 2 (Syt2), is assumed to serve similar functions. Chromaffin cells express Syt1 but not Syt2. We compared secretion from chromaffin cells from Syt1 null mice overexpressing either Syt isoform. High time-resolution capacitance measurement showed that Syt1 null cells lack the exocytotic phase corresponding to the readily-releasable pool (RRP) of vesicles. Comparison with the amperometric signal confirmed that the missing phase of exocytosis consists of catecholamine-containing vesicles. Overexpression of Syt1 rescued the RRP and increased its size above wild-type values, whereas the size of the slowly releasable pool decreased, indicating that the availability of Syt1 regulates the relative size of the two releasable pools. The RRP was also rescued by Syt2 overexpression, but the kinetics of fusion was slightly slower than in cells expressing Syt1. Biochemical experiments showed that Syt2 has a slightly lower Ca2+ affinity for phospholipid binding than Syt1 because of a difference in the C2A domain. These data constitute evidence for the function of Syt1 and Syt2 as alternative, but not identical, calcium-sensors for RRP fusion. By overexpression of Syt1 mutated in the shared PKC/calcium/calmodulin-dependent kinase phosphorylation site, we show that phorbol esters act independently and upstream of Syt1 to regulate the size of the releasable pools. We conclude that exocytosis from mouse chromaffin cells can be modified by the differential expression of Syt isoforms and by Syt abundance but not by phosphorylation of Syt1.
Collapse
Affiliation(s)
- Gábor Nagy
- Max-Planck-Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
41
|
Virmani T, Ertunc M, Sara Y, Mozhayeva M, Kavalali ET. Phorbol esters target the activity-dependent recycling pool and spare spontaneous vesicle recycling. J Neurosci 2006; 25:10922-9. [PMID: 16306405 PMCID: PMC6725880 DOI: 10.1523/jneurosci.3766-05.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Using electrophysiology and styryl dye imaging, we studied the effect of phorbol 12-myristate 13-acetate (PMA) on activity-dependent and spontaneous vesicle recycling. In electrophysiological experiments, we found that the PMA effect depended on the maturational state of the synapses. Spontaneous neurotransmitter release from nascent synapses without a functional readily releasable pool (RRP) was unresponsive to PMA application. In contrast, mature synapses responded robustly to PMA application, consistent with previous studies. Using styryl dye imaging, we found that there was a PMA-dependent increase in the size of the RRP when PMA was present before, during, or after activity-dependent dye uptake, suggesting that this effect involves an increase in the population of the RRP by vesicles recruited from the reserve pool. Additionally, we found that when PMA was present during spontaneous dye uptake, there was an increase in dye labeling, and these additional dye-loaded vesicles showed rapid destaining in response to strong stimulation and were also releasable by hypertonic sucrose. In contrast, these observations were not reproducible when PMA treatment was performed after spontaneous dye uptake and extracellular dye washout. Together, these findings suggest that the increased spontaneous neurotransmission in the presence of PMA was attributable to release of vesicles from the RRP rather than an effect of PMA on the spontaneously recycling pool. Thus, the phorbol esters selectively regulate the activity-dependent pool of vesicles, indicating that priming mechanisms that prepare vesicles for fusion, which are targeted by phorbol esters, are different for the spontaneous and evoked forms of fusion.
Collapse
Affiliation(s)
- Tuhin Virmani
- Center for Basic Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111, USA
| | | | | | | | | |
Collapse
|
42
|
Hu ZT, Zhao P, Liu J, Wu ZX, Xu T. Alpha-latrotoxin triggers extracellular Ca(2+)-dependent exocytosis and sensitizes fusion machinery in endocrine cells. Acta Biochim Biophys Sin (Shanghai) 2006; 38:8-14. [PMID: 16395521 DOI: 10.1111/j.1745-7270.2006.00129.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
alpha-Latrotoxin from the venom of black widow spider induces and augments neurotransmitter and hormone release by way of extracellular Ca(2+) influx and cellular signal transduction pathways. By using whole cell current and capacitance recording, the photolysis of caged Ca(2+), and Ca(2+) microfluorometry and amperometry, we investigated the stimulating effect and mechanism of alpha-latrotoxin on exocytosis in rat pancreatic beta cells, LbetaT2 cells and latrophilin plasmid-transfected INS-1 cells. Our data indicated that: (1) alpha-latrotoxin increased cytosolic Ca(2+) concentration through the formation of cation-permitting pores and subsequent Ca(2+) influx with the presence of extracellular Ca(2+); (2) alpha-latrotoxin stimulated exocytosis in normal bath solution and its stimulating effect on secretion was eradicated in Ca(2+)-free bath solution; and (3) alpha-latrotoxin sensitized the molecular machinery of fusion through activation of protein kinase C and increased the response of cells to Ca(2+) photolyzed by a flash of ultraviolet light. In summary, alpha-latrotoxin induced exocytosis by way of Ca(2+) influx and accelerated vesicle fusion by the sensitization of fusion machinery.
Collapse
Affiliation(s)
- Zhi-Tao Hu
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | | | |
Collapse
|
43
|
Abstract
PKC (protein kinase C) has been known for many years to modulate regulated exocytosis in a wide variety of cell types. In neurons and neuroendocrine cells, PKC regulates several different stages of the exocytotic process, suggesting that these multiple actions of PKC are mediated by phosphorylation of distinct protein targets. In recent years, a variety of exocytotic proteins have been identified as PKC substrates, the best characterized of which are SNAP-25 (25 kDa synaptosome-associated protein) and Munc18. In the present study, we review recent evidence suggesting that site-specific phosphorylation of SNAP-25 and Munc18 by PKC regulates distinct stages of exocytosis.
Collapse
|
44
|
Bilandzić N, Simić B, Zurić M, Lojkić M. Effect of ACTH administration on biochemical and immune measures in boars. JOURNAL OF VETERINARY MEDICINE. A, PHYSIOLOGY, PATHOLOGY, CLINICAL MEDICINE 2005; 52:440-6. [PMID: 16268954 DOI: 10.1111/j.1439-0442.2005.00765.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The effects of stress induced by adrenocorticotropic hormone (ACTH) on biochemical and immune changes in Swedish Landrace boars aged approximately 6-7 months were observed during ACTH administration and for 16 days after the cessation of treatment. Adrenocorticotropic hormone treated animals (n = 7) were given intravenously 10 microg/kg body mass of ACTH for 3 days. Control group of animals (n = 7) received intramuscularly 1 ml of sterile 0.9% saline. Total protein and globulin levels were significantly elevated during the induced stress period and for the next 16 days (P < 0.01 to P < 0.0001, respectively). Also, serum immunoglobulin IgG concentration was significantly elevated during and after ACTH injection (P < 0.001 to P < 0.0001). Adrenocorticotropic hormone treatment had no effect on serum albumin, IgA and IgM concentrations. Glucose concentration was significantly decreased on the second day of ACTH administration (P < 0.001) and on day 9 after treatment (P < 0.001). Calcium level was significantly decreased only for 24 h after the last ACTH dosage (P < 0.01). Also, serum phosphorus level was significantly decreased on the first (P < 0.05) and third (P < 0.001) days of ACTH challenge but remained unaffected after the cessation of ACTH treatment. It is concluded that the administration of ACTH to boars results in immune humoral and biochemical changes during stress and the post-stress period.
Collapse
Affiliation(s)
- N Bilandzić
- Croatian Veterinary Institute, Savska cesta 143, HR-10000 Zagreb, Croatia.
| | | | | | | |
Collapse
|
45
|
Obermüller S, Lindqvist A, Karanauskaite J, Galvanovskis J, Rorsman P, Barg S. Selective nucleotide-release from dense-core granules in insulin-secreting cells. J Cell Sci 2005; 118:4271-82. [PMID: 16141231 DOI: 10.1242/jcs.02549] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Secretory granules of insulin-secreting cells are used to store and release peptide hormones as well as low-molecular-weight compounds such as nucleotides. Here we have compared the rate of exocytosis with the time courses of nucleotide and peptide release by a combination of capacitance measurements, electrophysiological detection of ATP release and single-granule imaging. We demonstrate that the release of nucleotides and peptides is delayed by approximately 0.1 and approximately 2 seconds with respect to membrane fusion, respectively. We further show that in up to 70% of the cases exocytosis does not result in significant release of the peptide cargo, likely because of a mechanism that leads to premature closure of the fusion pore. Release of nucleotides and protons occurred regardless of whether peptides were secreted or not. These observations suggest that insulin-secreting cells are able to use the same secretory vesicles to release small molecules either alone or together with the peptide hormone.
Collapse
Affiliation(s)
- Stefanie Obermüller
- Department of Experimental Medicinal Sciences, Lund University, BMC B11, SE-221 84 Lund, Sweden
| | | | | | | | | | | |
Collapse
|
46
|
Chan SA, Polo-Parada L, Landmesser LT, Smith C. Adrenal Chromaffin Cells Exhibit Impaired Granule Trafficking in NCAM Knockout Mice. J Neurophysiol 2005; 94:1037-47. [PMID: 15800072 DOI: 10.1152/jn.01213.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neural cell adhesion molecule (NCAM) plays several critical roles in neuron path-finding and intercellular communication during development. In the clinical setting, serum NCAM levels are altered in both schizophrenic and autistic patients. NCAM knockout mice have been shown to exhibit deficits in neuronal functions including impaired hippocampal long term potentiation and motor coordination. Recent studies in NCAM null mice have indicated that synaptic vesicle trafficking and active zone targeting are impaired, resulting in periodic synaptic transmission failure under repetitive physiological stimulation. In this study, we tested whether NCAM plays a role in vesicle trafficking that is limited to the neuromuscular junction or whether it may also play a more general role in transmitter release from other cell systems. We tested catecholamine release from neuroendocrine chromaffin cells in the mouse adrenal tissue slice preparation. We utilize electrophysiological and electrochemical measures to assay granule recruitment and targeting in wild-type and NCAM −/− mice. Our data show that NCAM −/− mice exhibit deficits in normal granule trafficking between the readily releasable pool and the highly release-competent immediately releasable pool. This defect results in a decreased rate of granule fusion and thus catecholamine release under physiological stimulation. Our data indicate that NCAM plays a basic role in the transmitter release mechanism in neuroendocrine cells through mediation of granule recruitment and is not limited to the neuromuscular junction and central synapse active zones.
Collapse
Affiliation(s)
- Shyue-An Chan
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106-4970, USA
| | | | | | | |
Collapse
|
47
|
Marengo FD. Calcium gradients and exocytosis in bovine adrenal chromaffin cells. Cell Calcium 2005; 38:87-99. [PMID: 16076487 DOI: 10.1016/j.ceca.2005.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 05/15/2005] [Accepted: 06/01/2005] [Indexed: 10/25/2022]
Abstract
The relationship between the localized Ca(2+) concentration and depolarization-induced exocytosis was studied in patch-clamped adrenal chromaffin cells using pulsed-laser Ca(2+) imaging and membrane capacitance measurements. Short depolarizing voltage steps induced Ca(2+) gradients and small "synchronous" increases in capacitance during the pulses. Longer pulses increased the capacitance changes, which saturated at 16 fF, suggesting the presence of a small immediately releasable pool of fusion-ready vesicles. A Hill plot of the capacitance changes versus the estimated Ca(2+) concentration in a thin (100 nm) shell beneath the membrane gave n = 2.3 and K(d) = 1.4 microM. Repetitive stimulation elicited a more complex pattern of exocytosis: early pulses induced synchronous capacitance increases, but after five or more pulses there was facilitation of the synchronous responses and gradual increases in capacitance continued between pulses (asynchronous exocytosis) as the steep submembrane Ca(2+) gradients collapsed. Raising the pipette Ca(2+) concentration led to early facilitation of the synchronous response and early appearance of asynchronous exocytosis. We used this data to develop a kinetic model of depolarization-induced exocytosis, where Ca(2+)-dependent fusion of vesicles occurs from a small immediately releasable pool with an affinity of 1-2 microM and vesicles are mobilized to this pool in a Ca(2+)-dependent manner.
Collapse
Affiliation(s)
- Fernando D Marengo
- Department of Physiology, UCLA, School of Medicine, Los Angeles, CA 90095, USA.
| |
Collapse
|
48
|
Andric SA, Zivadinovic D, Gonzalez-Iglesias AE, Lachowicz A, Tomic M, Stojilkovic SS. Endothelin-induced, Long Lasting, and Ca2+ Influx-independent Blockade of Intrinsic Secretion in Pituitary Cells by Gz Subunits. J Biol Chem 2005; 280:26896-903. [PMID: 15919662 DOI: 10.1074/jbc.m502226200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The G protein-coupled receptors in excitable cells have prominent roles in controlling Ca2+-triggered secretion by modulating voltage-gated Ca2+ influx. In pituitary lactotrophs, spontaneous voltage-gated Ca2+ influx is sufficient to maintain prolactin release high. Here we show that endothelin in picomolar concentrations can interrupt such release for several hours downstream of spontaneous and high K+-stimulated voltage-gated Ca2+ influx. This action occurred through the Gz signaling pathway; the adenylyl cyclase-signaling cascade could mediate sustained inhibition of secretion, whereas rapid inhibition also occurred at elevated cAMP levels regardless of the status of phospholipase C, tyrosine kinases, and protein kinase C. In a nanomolar concentration range, endothelin also inhibited voltage-gated Ca2+ influx through the G i/o signaling pathway. Thus, the coupling of seven-transmembrane domain endothelin receptors to Gz proteins provided a pathway that effectively blocked hormone secretion distal to Ca2+ entry, whereas the cross-coupling to G i/o proteins reinforced such inhibition by simultaneously reducing the pacemaking activity.
Collapse
Affiliation(s)
- Silvana A Andric
- Section on Cellular Signaling, Endocrinology and Reproduction Research Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892-4510, USA
| | | | | | | | | | | |
Collapse
|
49
|
Sedej S, Rose T, Rupnik M. cAMP increases Ca2+-dependent exocytosis through both PKA and Epac2 in mouse melanotrophs from pituitary tissue slices. J Physiol 2005; 567:799-813. [PMID: 15994184 PMCID: PMC1474225 DOI: 10.1113/jphysiol.2005.090381] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cyclic AMP regulates Ca(2+)-dependent exocytosis through a classical protein kinase A (PKA)-dependent and an alternative cAMP-guanine nucleotide exchange factor (GEF)/Epac-dependent pathway in many secretory cells. Although increased cAMP is believed to double secretory output in isolated pituitary cells, the direct target(s) for cAMP action and a detailed and high-time resolved analysis of the effect of intracellular cAMP levels on the secretory activity in melanotrophs are still lacking. We investigated the effect of 200 microM cAMP on the kinetics of secretory vesicle depletion in mouse melanotrophs from fresh pituitary tissue slices. The whole-cell patch-clamp technique was used to depolarize melanotrophs and increase the cytosolic Ca(2+) concentration ([Ca(2+)](i)). Exogenous cAMP elicited an about twofold increase in cumulative membrane capacitance change and approximately 34% increase of high-voltage activated Ca(2+) channel amplitude. cAMP-dependent mechanisms did not affect [Ca(2+)](i), since the application of forskolin failed to change [Ca(2+)](i) in melanotrophs, a phenomenon readily observed in anterior lobe. Depolarization-induced secretion resulted in two distinct kinetic components: a linear and a threshold component, both stimulated by cAMP. The linear component (ATP-independent) probably represented the exocytosis of the release-ready vesicles, whereas the threshold component was assigned to the exocytosis of secretory vesicles that required ATP-dependent reaction(s) and > 800 nM [Ca(2+)](i). The linear component was modulated by 8-pCPT-2Me-cAMP (Epac agonist), while either H-89 (PKA inhibitor) or Rp-cAMPS (the competitive antagonist of cAMP binding to PKA) completely prevented the action of cAMP on the threshold component. In line with this, 6-Phe-cAMP, (PKA agonist), increased the threshold component. From our study, we suggest that the stimulation of cAMP production by application of oestrogen, as found in pregnant mice, increases the efficacy of the hormonal output through both PKA and cAMP-GEFII/Epac2-dependent mechanisms.
Collapse
Affiliation(s)
- Simon Sedej
- European Neuroscience Institute--Göttingen, Germany
| | | | | |
Collapse
|
50
|
Lou X, Scheuss V, Schneggenburger R. Allosteric modulation of the presynaptic Ca2+ sensor for vesicle fusion. Nature 2005; 435:497-501. [PMID: 15917809 DOI: 10.1038/nature03568] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Accepted: 03/22/2005] [Indexed: 11/09/2022]
Abstract
Neurotransmitter release is triggered by an increase in the cytosolic Ca2+ concentration ([Ca2+]i), but it is unknown whether the Ca2+-sensitivity of vesicle fusion is modulated during synaptic plasticity. We investigated whether the potentiation of neurotransmitter release by phorbol esters, which target presynaptic protein kinase C (PKC)/munc-13 signalling cascades, exerts a direct effect on the Ca2+-sensitivity of vesicle fusion. Using direct presynaptic Ca2+-manipulation and Ca2+ uncaging at a giant presynaptic terminal, the calyx of Held, we show that phorbol esters potentiate transmitter release by increasing the apparent Ca2+-sensitivity of vesicle fusion. Phorbol esters potentiate Ca2+-evoked release as well as the spontaneous release rate. We explain both effects by an increased fusion 'willingness' in a new allosteric model of Ca2+-activation of vesicle fusion. In agreement with an allosteric mechanism, we observe that the classically high Ca2+ cooperativity in triggering vesicle fusion (approximately 4) is gradually reduced below 3 microM [Ca2+]i, reaching a value of <1 at basal [Ca2+]i. Our data indicate that spontaneous transmitter release close to resting [Ca2+]i is a consequence of an intrinsic property of the molecular machinery that mediates synaptic vesicle fusion.
Collapse
Affiliation(s)
- Xuelin Lou
- AG Synaptische Dynamik und Modulation und Abt. Membranbiophysik, Max-Planck-Institut für biophysikalische Chemie, Am Fassberg 11, D-37077 Göttingen, Germany
| | | | | |
Collapse
|