1
|
Karmaker S, Rosales PD, Tirumuruhan B, Viravalli A, Boehnke N. More than a delivery system: the evolving role of lipid-based nanoparticles. NANOSCALE 2025; 17:11864-11893. [PMID: 40293317 DOI: 10.1039/d4nr04508d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Lipid-based nanoparticles, including liposomes and lipid nanoparticles (LNPs), make up an important class of drug delivery systems. Their modularity enables encapsulation of a wide range of therapeutic cargoes, their ease of functionalization allows for incorporation of targeting motifs and anti-fouling coatings, and their scalability facilitates rapid translation to the clinic. While the discovery and early understanding of lipid-based nanoparticles is heavily rooted in biology, formulation development has largely focused on materials properties, such as how liposome and lipid nanoparticle composition can be altered to maximize drug loading, stability and circulation. To achieve targeted delivery and enable improved accumulation of therapeutics at target tissues or disease sites, emphasis is typically placed on the use of external modifications, such as peptide, protein, and polymer motifs. However, these approaches can increase the complexity of the nanocarrier and complicate scale up. In this review, we focus on how our understanding of lipid structure and function in biological contexts can be used to design intrinsically functional and targeted nanocarriers. We highlight formulation-based strategies, such as the incorporation of bioactive lipids, that have been used to modulate liposome and lipid nanoparticle properties and improve their functionality while retaining simple nanocarrier designs. We also highlight classes of naturally occurring lipids, their functions, and how they have been incorporated into lipid-based nanoparticles. We will additionally position these approaches into the historical context of both liposome and LNP development.
Collapse
Affiliation(s)
- Senjuti Karmaker
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities Minneapolis, MN 55455, USA.
| | - Plinio D Rosales
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities Minneapolis, MN 55455, USA.
| | - Barath Tirumuruhan
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities Minneapolis, MN 55455, USA.
| | - Amartya Viravalli
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities Minneapolis, MN 55455, USA.
| | - Natalie Boehnke
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities Minneapolis, MN 55455, USA.
| |
Collapse
|
2
|
López-Estévez AM, Lapuhs P, Pineiro-Alonso L, Alonso MJ. Personalized Cancer Nanomedicine: Overcoming Biological Barriers for Intracellular Delivery of Biopharmaceuticals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309355. [PMID: 38104275 DOI: 10.1002/adma.202309355] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/09/2023] [Indexed: 12/19/2023]
Abstract
The success of personalized medicine in oncology relies on using highly effective and precise therapeutic modalities such as small interfering RNA (siRNA) and monoclonal antibodies (mAbs). Unfortunately, the clinical exploitation of these biological drugs has encountered obstacles in overcoming intricate biological barriers. Drug delivery technologies represent a plausible strategy to overcome such barriers, ultimately facilitating the access to intracellular domains. Here, an overview of the current landscape on how nanotechnology has dealt with protein corona phenomena as a first and determinant biological barrier is presented. This continues with the analysis of strategies facilitating access to the tumor, along with conceivable methods for enhanced tumor penetration. As a final step, the cellular barriers that nanocarriers must confront in order for their biological cargo to reach their target are deeply analyzed. This review concludes with a critical analysis and future perspectives of the translational advances in personalized oncological nanomedicine.
Collapse
Affiliation(s)
- Ana María López-Estévez
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacology, Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Philipp Lapuhs
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacology, Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Laura Pineiro-Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacology, Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacology, Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| |
Collapse
|
3
|
Xie X, Yue T, Gu W, Cheng W, He L, Ren W, Li F, Piao JG. Recent Advances in Mesoporous Silica Nanoparticles Delivering siRNA for Cancer Treatment. Pharmaceutics 2023; 15:2483. [PMID: 37896243 PMCID: PMC10609930 DOI: 10.3390/pharmaceutics15102483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Silencing genes using small interfering (si) RNA is a promising strategy for treating cancer. However, the curative effect of siRNA is severely constrained by low serum stability and cell membrane permeability. Therefore, improving the delivery efficiency of siRNA for cancer treatment is a research hotspot. Recently, mesoporous silica nanoparticles (MSNs) have emerged as bright delivery vehicles for nucleic acid drugs. A comprehensive understanding of the design of MSN-based vectors is crucial for the application of siRNA in cancer therapy. We discuss several surface-functionalized MSNs' advancements as effective siRNA delivery vehicles in this paper. The advantages of using MSNs for siRNA loading regarding considerations of different shapes, various options for surface functionalization, and customizable pore sizes are highlighted. We discuss the recent investigations into strategies that efficiently improve cellular uptake, facilitate endosomal escape, and promote cargo dissociation from the MSNs for enhanced intracellular siRNA delivery. Also, particular attention was paid to the exciting progress made by combining RNAi with other therapies to improve cancer therapeutic outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fanzhu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (X.X.); (T.Y.); (W.G.); (W.C.); (L.H.); (W.R.)
| | - Ji-Gang Piao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (X.X.); (T.Y.); (W.G.); (W.C.); (L.H.); (W.R.)
| |
Collapse
|
4
|
Nsairat H, Khater D, Sayed U, Odeh F, Al Bawab A, Alshaer W. Liposomes: structure, composition, types, and clinical applications. Heliyon 2022; 8:e09394. [PMID: 35600452 PMCID: PMC9118483 DOI: 10.1016/j.heliyon.2022.e09394] [Citation(s) in RCA: 452] [Impact Index Per Article: 150.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/19/2022] [Accepted: 05/06/2022] [Indexed: 12/18/2022] Open
Abstract
Liposomes are now considered the most commonly used nanocarriers for various potentially active hydrophobic and hydrophilic molecules due to their high biocompatibility, biodegradability, and low immunogenicity. Liposomes also proved to enhance drug solubility and controlled distribution, as well as their capacity for surface modifications for targeted, prolonged, and sustained release. Based on the composition, liposomes can be considered to have evolved from conventional, long-circulating, targeted, and immune-liposomes to stimuli-responsive and actively targeted liposomes. Many liposomal-based drug delivery systems are currently clinically approved to treat several diseases, such as cancer, fungal and viral infections; more liposomes have reached advanced phases in clinical trials. This review describes liposomes structure, composition, preparation methods, and clinical applications.
Collapse
Affiliation(s)
- Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Dima Khater
- Department of Chemistry, Faculty of Arts and Science, Applied Science Private University, Amman, Jordan
| | - Usama Sayed
- Department of Biology, The University of Jordan, Amman, 11942, Jordan
| | - Fadwa Odeh
- Department of Chemistry, The University of Jordan, Amman, 11942, Jordan
| | - Abeer Al Bawab
- Department of Chemistry, The University of Jordan, Amman, 11942, Jordan.,Hamdi Mango Center for Scientific Research, The University of Jordan, Amman, 11942, Jordan
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
5
|
Sheth V, Wang L, Bhattacharya R, Mukherjee P, Wilhelm S. Strategies for Delivering Nanoparticles across Tumor Blood Vessels. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2007363. [PMID: 37197212 PMCID: PMC10187772 DOI: 10.1002/adfm.202007363] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Indexed: 05/19/2023]
Abstract
Nanoparticle transport across tumor blood vessels is a key step in nanoparticle delivery to solid tumors. However, the specific pathways and mechanisms of this nanoparticle delivery process are not fully understood. Here, the biological and physical characteristics of the tumor vasculature and the tumor microenvironment are explored and how these features affect nanoparticle transport across tumor blood vessels is discussed. The biological and physical methods to deliver nanoparticles into tumors are reviewed and paracellular and transcellular nanoparticle transport pathways are explored. Understanding the underlying pathways and mechanisms of nanoparticle tumor delivery will inform the engineering of safer and more effective nanomedicines for clinical translation.
Collapse
Affiliation(s)
- Vinit Sheth
- Stephenson School of Biomedical Engineering, University of Oklahoma, 173 Felgar St, Norman, OK 73019, USA
| | - Lin Wang
- Stephenson School of Biomedical Engineering, University of Oklahoma, 173 Felgar St, Norman, OK 73019, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, 800 NE 10th St, Oklahoma City, OK 73104, USA
| | - Priyabrata Mukherjee
- Department of Pathology, Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, 800 NE 10th St, Oklahoma City, OK 73104, USA
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, 173 Felgar St, Norman, OK 73019, USA
| |
Collapse
|
6
|
Adityan S, Tran M, Bhavsar C, Wu SY. Nano-therapeutics for modulating the tumour microenvironment: Design, development, and clinical translation. J Control Release 2020; 327:512-532. [DOI: 10.1016/j.jconrel.2020.08.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022]
|
7
|
Mosayebi J, Kiyasatfar M, Laurent S. Synthesis, Functionalization, and Design of Magnetic Nanoparticles for Theranostic Applications. Adv Healthc Mater 2017; 6. [PMID: 28990364 DOI: 10.1002/adhm.201700306] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/14/2017] [Indexed: 12/13/2022]
Abstract
In order to translate nanotechnology into medical practice, magnetic nanoparticles (MNPs) have been presented as a class of non-invasive nanomaterials for numerous biomedical applications. In particular, MNPs have opened a door for simultaneous diagnosis and brisk treatment of diseases in the form of theranostic agents. This review highlights the recent advances in preparation and utilization of MNPs from the synthesis and functionalization steps to the final design consideration in evading the body immune system for therapeutic and diagnostic applications with addressing the most recent examples of the literature in each section. This study provides a conceptual framework of a wide range of synthetic routes classified mainly as wet chemistry, state-of-the-art microfluidic reactors, and biogenic routes, along with the most popular coating materials to stabilize resultant MNPs. Additionally, key aspects of prolonging the half-life of MNPs via overcoming the sequential biological barriers are covered through unraveling the biophysical interactions at the bio-nano interface and giving a set of criteria to efficiently modulate MNPs' physicochemical properties. Furthermore, concepts of passive and active targeting for successful cell internalization, by respectively exploiting the unique properties of cancers and novel targeting ligands are described in detail. Finally, this study extensively covers the recent developments in magnetic drug targeting and hyperthermia as therapeutic applications of MNPs. In addition, multi-modal imaging via fusion of magnetic resonance imaging, and also innovative magnetic particle imaging with other imaging techniques for early diagnosis of diseases are extensively provided.
Collapse
Affiliation(s)
- Jalal Mosayebi
- Department of Mechanical Engineering; Urmia University; Urmia 5756151818 Iran
| | - Mehdi Kiyasatfar
- Department of Mechanical Engineering; Urmia University; Urmia 5756151818 Iran
| | - Sophie Laurent
- Laboratory of NMR and Molecular Imaging; University of Mons; Mons Belgium
| |
Collapse
|
8
|
|
9
|
Targeting of pegylated liposomal mitomycin-C prodrug to the folate receptor of cancer cells: Intracellular activation and enhanced cytotoxicity. J Control Release 2016; 225:87-95. [DOI: 10.1016/j.jconrel.2016.01.039] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 11/19/2022]
|
10
|
Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 2014; 66:2-25. [PMID: 24270007 PMCID: PMC4219254 DOI: 10.1016/j.addr.2013.11.009] [Citation(s) in RCA: 1990] [Impact Index Per Article: 180.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/23/2013] [Accepted: 11/13/2013] [Indexed: 12/17/2022]
Abstract
Cancer nanotherapeutics are progressing at a steady rate; research and development in the field has experienced an exponential growth since early 2000's. The path to the commercialization of oncology drugs is long and carries significant risk; however, there is considerable excitement that nanoparticle technologies may contribute to the success of cancer drug development. The pace at which pharmaceutical companies have formed partnerships to use proprietary nanoparticle technologies has considerably accelerated. It is now recognized that by enhancing the efficacy and/or tolerability of new drug candidates, nanotechnology can meaningfully contribute to create differentiated products and improve clinical outcome. This review describes the lessons learned since the commercialization of the first-generation nanomedicines including DOXIL® and Abraxane®. It explores our current understanding of targeted and non-targeted nanoparticles that are under various stages of development, including BIND-014 and MM-398. It highlights the opportunities and challenges faced by nanomedicines in contemporary oncology, where personalized medicine is increasingly the mainstay of cancer therapy. We revisit the fundamental concepts of enhanced permeability and retention effect (EPR) and explore the mechanisms proposed to enhance preferential "retention" in the tumor, whether using active targeting of nanoparticles, binding of drugs to their tumoral targets or the presence of tumor associated macrophages. The overall objective of this review is to enhance our understanding in the design and development of therapeutic nanoparticles for treatment of cancers.
Collapse
Affiliation(s)
- Nicolas Bertrand
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jun Wu
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Xiaoyang Xu
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Nazila Kamaly
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Omid C Farokhzad
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA.
| |
Collapse
|
11
|
Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 2013; 65:36-48. [PMID: 23036225 DOI: 10.1016/j.addr.2012.09.037] [Citation(s) in RCA: 3111] [Impact Index Per Article: 259.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 09/10/2012] [Accepted: 09/20/2012] [Indexed: 02/06/2023]
Abstract
The first closed bilayer phospholipid systems, called liposomes, were described in 1965 and soon were proposed as drug delivery systems. The pioneering work of countless liposome researchers over almost 5 decades led to the development of important technical advances such as remote drug loading, extrusion for homogeneous size, long-circulating (PEGylated) liposomes, triggered release liposomes, liposomes containing nucleic acid polymers, ligand-targeted liposomes and liposomes containing combinations of drugs. These advances have led to numerous clinical trials in such diverse areas as the delivery of anti-cancer, anti-fungal and antibiotic drugs, the delivery of gene medicines, and the delivery of anesthetics and anti-inflammatory drugs. A number of liposomes (lipidic nanoparticles) are on the market, and many more are in the pipeline. Lipidic nanoparticles are the first nanomedicine delivery system to make the transition from concept to clinical application, and they are now an established technology platform with considerable clinical acceptance. We can look forward to many more clinical products in the future.
Collapse
|
12
|
Santos H, Bimbo L, Das Neves J, Sarmento B, INEB. Nanoparticulate targeted drug delivery using peptides and proteins. Nanomedicine (Lond) 2012. [DOI: 10.1533/9780857096449.2.236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
13
|
Huynh NT, Roger E, Lautram N, Benoît JP, Passirani C. The rise and rise of stealth nanocarriers for cancer therapy: passive versus active targeting. Nanomedicine (Lond) 2010; 5:1415-33. [DOI: 10.2217/nnm.10.113] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Research in designing and engineering long-circulating nanoparticles, so-called ‘stealth’ nanoparticles, has been attracting increasing interest as a new platform for targeted drug delivery, especially in chemotherapy. In particular, the modification of nanoparticulate surfaces with poly(ethylene glycol) derivatives has illustrated a decreased uptake of nanoparticles by mononuclear phagocyte system cells and, hence, an increased circulation time, allowing passive accumulation in the tumor. The clinical trials on patients with solid tumors are described in this article, to illustrate this generation of promising nanoparticles. In the last few years, the new-generation technique of grafting ligands on the nanoparticle surface in order to target and penetrate specific cancer cells has been developed. This article discusses the benefits of passive targeting for drug delivery to the solid tumors via the enhanced permeability and retention effect, when using stealth nanoparticles, and compares them with the advantages of active targeting.
Collapse
Affiliation(s)
- Ngoc Trinh Huynh
- Inserm U646, Université d’Angers, IBS-CHU Angers, 4 rue Larrey, 49933 Angers cedex 9, France
| | - Emilie Roger
- Inserm U646, Université d’Angers, IBS-CHU Angers, 4 rue Larrey, 49933 Angers cedex 9, France
| | - Nolwenn Lautram
- Inserm U646, Université d’Angers, IBS-CHU Angers, 4 rue Larrey, 49933 Angers cedex 9, France
| | - Jean-Pierre Benoît
- Inserm U646, Université d’Angers, IBS-CHU Angers, 4 rue Larrey, 49933 Angers cedex 9, France
| | | |
Collapse
|
14
|
Abstract
Adsorption of serum proteins to the liposomal surface plays a critical role in the clearance of liposomes from the blood circulation. In this review, we will discuss the role of the liposomal opsonins proposed so far in liposome clearance. Additional, related topics that will be addressed are the cell-surface receptors that might be involved in liposome elimination from the blood compartment and the effect of poly(ethylene glycol) (PEG) modification on prevention of liposome opsonization.
Collapse
Affiliation(s)
- Xuedong Yan
- Department of Cell Biology, Section Liposome Research, Groningen University Institute for Drug Exploration (GUIDE), Groningen, The Netherlands
| | | | | |
Collapse
|
15
|
Shvets VI, Kaplun AP, Krasnopol’skii YM, Stepanov AE, Chekhonin VP. From liposomes of the 1970s to 21st century nanobiotechnology. ACTA ACUST UNITED AC 2008. [DOI: 10.1134/s1995078008110013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Guo W, Lee T, Sudimack J, Lee RJ. Receptor-Specific Delivery of Liposomes Via Folate-Peg-Chol. J Liposome Res 2008. [DOI: 10.3109/08982100009029385] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Semple SC, Chonn A. Liposome-Blood Protein Interactions in Relation to Liposome Clearance. J Liposome Res 2008. [DOI: 10.3109/08982109609037201] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Chonn A, Cullis PR. Ganglioside GM1and Hydrophilic Polymers Increase Liposome Circulation Times by Inhibiting the Association of Blood Proteins. J Liposome Res 2008. [DOI: 10.3109/08982109209010217] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
The effect of pre-existing immunity on the capacity of influenza virosomes to induce cytotoxic T lymphocyte activity. Vaccine 2008; 26:2314-21. [DOI: 10.1016/j.vaccine.2008.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 01/23/2008] [Accepted: 03/03/2008] [Indexed: 11/22/2022]
|
20
|
Nobs L, Buchegger F, Gurny R, Allémann E. Current methods for attaching targeting ligands to liposomes and nanoparticles. J Pharm Sci 2005; 93:1980-92. [PMID: 15236448 DOI: 10.1002/jps.20098] [Citation(s) in RCA: 221] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Liposomes and nanoparticles have emerged as versatile carrier systems for delivering active molecules in the organism. These colloidal particles have demonstrated enhanced efficacy compared to conventional drugs. However, the design of liposomes and nanoparticles with a prolonged circulation time and ability to deliver active compounds specifically to target sites remains an ongoing research goal. One interesting way to achieve active targeting is to attach ligands, such as monoclonal antibodies or peptides, to the carrier. These surface-bound ligands recognize and bind specifically to target cells. To this end, various techniques have been described, including covalent and noncovalent approaches. Both in vitro and in vivo studies have proved the efficacy of the concept of active targeting. The present review summarizes the most common coupling techniques developed for binding homing moieties to the surface of liposomes and nanoparticles. Various coupling methods, covalent and noncovalent, will be reviewed, with emphasis on the major differences between the coupling reactions, on their advantages and drawbacks, on the coupling efficiency obtained, and on the importance of combining active targeting with long-circulating particles.
Collapse
Affiliation(s)
- Leila Nobs
- School of Pharmacy, University of Geneva, Quai Ernest-Ansermet 30, 1211 4, Switzerland
| | | | | | | |
Collapse
|
21
|
Serre K, Giraudo L, Leserman L, Machy P. Liposomes Targeted to Fc Receptors for Antigen Presentation by Dendritic Cells In Vitro and In Vivo∗. Methods Enzymol 2003; 373:100-18. [PMID: 14714399 DOI: 10.1016/s0076-6879(03)73007-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Karine Serre
- Centre d'Immunologie de Marseille-Luminy, Campus de Luminy, Case 906, 13288 Marsielle, France
| | | | | | | |
Collapse
|
22
|
Abstract
The folate receptor is a highly selective tumor marker overexpressed in greater than 90% of ovarian carcinomas. Two general strategies have been developed for the targeted delivery of drugs to folate receptor-positive tumor cells: by coupling to a monoclonal antibody against the receptor and by coupling to a high affinity ligand, folic acid. First, antibodies against the folate receptor, including their fragments and derivatives, have been evaluated for tumor imaging and immunotherapy clinically and have shown significant targeting efficacy in ovarian cancer patients. Folic acid, a high affinity ligand of the folate receptor, retains its receptor binding properties when derivatized via its gamma-carboxyl. Folate conjugation, therefore, presents an alternative method of targeting the folate receptor. This second strategy has been successfully applied in vitro for the receptor-specific delivery of protein toxins, anti-T-cell receptor antibodies, interleukin-2, chemotherapy agents, gamma-emitting radiopharmaceuticals, magnetic resonance imaging contrast agents, liposomal drug carriers, and gene transfer vectors. Low molecular weight radiopharmaceuticals based on folate conjugates showed much more favorable pharmacokinetic properties than radiolabeled antibodies and greater tumor selectivity in folate receptor-positive animal tumor models. The small size, convenient availability, simple conjugation chemistry, and presumed lack of immunogenicity of folic acid make it an ideal ligand for targeted delivery to tumors.
Collapse
Affiliation(s)
- J Sudimack
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Rm 542 LM Parks Hall, 500 W. 12th Ave., Columbus, OH, 43210, USA
| | | |
Collapse
|
23
|
Interactions of liposomes and lipid-based carrier systems with blood proteins: Relation to clearance behaviour in vivo. Adv Drug Deliv Rev 1998; 32:3-17. [PMID: 10837632 DOI: 10.1016/s0169-409x(97)00128-2] [Citation(s) in RCA: 276] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Liposomes and lipid-based drug delivery systems have been used extensively over the last decade to improve the pharmacological and therapeutic activity of a wide variety of drugs. More recently, this class of carrier systems has been used for the delivery of relatively large DNA and RNA-based drugs, including plasmids, antisense oligonucleotides and ribozymes. Despite recent successes in prolonging the circulation times of liposomes, virtually all lipid compositions studied to date are removed from the plasma compartment within 24h after administration by the cells and tissues of the reticuloendothelial system (RES). Plasma proteins have long been thought to play a critical role in this process but only a few efforts were made to evaluate the relevant importance of plasma protein-liposome interactions in the clearance process. Strategies to increase the bioavailability of liposomal drugs have included altering lipid compositions and charge, increasing lipid doses, and incorporating surface coatings. All of these modifications can influence membrane-protein interactions. In this article, we will focus on our experiences with liposome-blood protein interactions and how alterations in the chemical and physical properties of the carrier system influence the interactions with blood proteins and circulation times.
Collapse
|
24
|
Abstract
This review examines methods of protein conjugation onto liposomes and the effects of surface bound protein on the liposomes' biological behavior. It is evident that the presence of a conjugated protein significantly alters the attributes of targeted liposomes. Specifically, protein conjugation can result in dramatic increases in liposome size, enhanced immunogenicity, and increased plasma elimination. Techniques are discussed for preventing some of the physical (size) and biological (immunogenic) alterations involving the use of PEG-lipids and drug loaded liposomes. In addition, the advantages of conjugating antibodies via carbohydrate moieties, to minimize changes in antibody binding and tertiary structure as well as effectively decreasing plasma elimination, are also discussed. It is, however, apparent that the accessibility of targeted liposomes to extravascular sites is a key step that will require further study and it is, therefore, anticipated that with the development of novel ligands and novel ligand-liposome interactions, the therapeutic utility of targeting strategies will likely be realized.
Collapse
|
25
|
Abstract
Numerous studies have appeared over the years dealing with liposome-cell interaction mechanisms, most of them performed under in vitro conditions with isolated cell populations or cell lines. It is remarkable that, nonetheless, there hardly seem to exist established and generally accepted views on how precisely liposomes interact with cells and by what parameters this is influenced. In this article we will summarize and discuss the most relevant studies (in our opinion) on this matter in relation to in vivo conditions and with special attention to the relation between scavenger, complement and PS receptors.Researchers in the field have long been aware of the interaction of liposomes with blood proteins and their potential involvement in the process of liposome elimination from the blood circulation. A few of these 'opsonizing' proteins have been identified, but it is not clear to what extent each of them determines the fate of the liposome in the blood stream and how liposomal parameters such as size, charge and rigidity play a role in this process. We will include in this article our own recent observations on a thus far largely ignored class of such liposomal 'opsonins', the apolipoproteins. This class of plasma proteins, which physiologically are instrumental in hepatic lipoprotein clearance and processing, has been shown to contribute specifically to hepatocyte-mediated uptake of liposomes.Separately, as opposed to the fate of plain liposomes, we briefly touch on the clearance of surface-modified liposomes, which are designed to actively target specific cells or tissues. Plasma proteins are not usually supposed to play a significant role in the clearance of such liposomes. We will summarize these studies and address in this connection the question of how plasma proteins may interfere with such active targeting attempts.
Collapse
|
26
|
Abstract
Liposomes have gained increased attention as systemic drug delivery vehicles following recent regulatory approvals of several vesicle-formulated drugs. These products have demonstrated improved therapeutic indices over their corresponding conventional drugs by avoiding sensitive tissues and/or increasing delivery to specific targets in vivo. They have achieved these improvements primarily through physical means: (1) by retaining drug within vesicles while in the circulation, thus avoiding or minimizing uptake by sensitive normal tissues; and (2) by selectively extravasating into target tissues, releasing active drug. In order to improve upon these therapies in the future, clinically active liposome delivery systems most likely will need to include site-directed surface ligands to further enhance their selective delivery. This may be crucial for the in vivo transport and delivery of macromolecules, including antisense, oligonucleotide aptamers, and genes, which-unlike most conventional drugs-do not circulate well and often require cellular uptake by fusion, endocytosis, or other processes to reach their active sites. This manuscript reviews technologies applicable to directing liposomes and their contents to selected in vivo targets using surface-bound, site-specific ligands. Presented are the biological barriers to be overcome, criteria for selecting the determinants to be targeted, various targeting ligands and overall delivery system design considerations. Several novel targets as well as novel ligand constructs for site-directed therapy are reviewed and discussed. Systemic liposome therapy, which currently must be administered by the intravenous route, is the principal focus of this analysis.
Collapse
Affiliation(s)
- M Willis
- NeXstar Pharmaceuticals, Inc., Boulder, CO, USA
| | | |
Collapse
|
27
|
Ribozymes as Biotherapeutic Tools for the Modulation of Gene Expression. Gene Ther 1998. [DOI: 10.1007/978-3-662-03577-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Irie A, Kijima H, Ohkawa T, Bouffard DY, Suzuki T, Curcio LD, Holm PS, Sassani A, Scanlon KJ. Anti-oncogene ribozymes for cancer gene therapy. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1997; 40:207-57. [PMID: 9217927 DOI: 10.1016/s1054-3589(08)60141-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- A Irie
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, California 91010, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lee R, Low P. Delivery of liposomes into cultured KB cells via folate receptor-mediated endocytosis. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)41848-5] [Citation(s) in RCA: 451] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
30
|
Rombi G, Cossu F, Melis G. mAb-labeled liposomes in breast cancer cell targeting. Therapeutics and diagnostic use of polyspecific artificial carriers. Ann N Y Acad Sci 1993; 698:429-35. [PMID: 8279783 DOI: 10.1111/j.1749-6632.1993.tb17237.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- G Rombi
- Istituto Radiologia, Università di Cagliari, Italy
| | | | | |
Collapse
|
31
|
Rombi G, Piu G, Piro S, Anedda V. Mab labelled liposomes as selective vehicles for drugs in H.I.V. infected cells. Cytotechnology 1993; 11:S147-9. [DOI: 10.1007/bf00746082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
32
|
Alam A, Bhuri SR, Mavila AK, Singh V. Design of liposome to improve encapsulation efficiency of gelonin and its effect on immunoreactivity and ribosome inactivating property. Mol Cell Biochem 1992; 112:97-107. [PMID: 1640932 DOI: 10.1007/bf00227566] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Gelonin, purified from the seeds of Gelonium multiflorum, using cation-exchange and gel-filtration chromatography was characterised for its purity, homogeneity and molecular weight by reverse-phase HPLC (RP-HPLC) and SDS-PAGE analysis. The HPLC purified gelonin was used for entrapment studies in the liposomes. Liposomes were prepared by reverse phase evaporation (REV) technique using three different types of lipid composition in the same molar ratio. The method resulted in 75-80% entrapment efficiency of gelonin in the liposomes. Entrapped and unentrapped gelonin was characterized for physico-chemical, immunochemical and biological properties. The immunoreactivity of entrapped gelonin was fully preserved but the ribosome-inactivating property was slightly inhibited. The method involved mild conditions, highly reproducible and the liposomes produced appeared to be stable for several months. It has important implications in the development of cell type specific cytotoxic agents where a chemical cross-linking is involved which significantly inhibits both immunoreactivity and ribosome-inactivating ability of the toxin.
Collapse
Affiliation(s)
- A Alam
- Department of Biochemistry, North-Eastern Hill University, Shillong, India
| | | | | | | |
Collapse
|
33
|
Rombi GP, Piu G. Selective modulation with liposomes containing Der. P1 labelled with monoclonal antibodies. Cytotechnology 1991; 5:137-8. [DOI: 10.1007/bf00736832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
34
|
Szebeni J, Wahl SM, Betageri GV, Wahl LM, Gartner S, Popovic M, Parker RJ, Black CD, Weinstein JN. Inhibition of HIV-1 in monocyte/macrophage cultures by 2',3'-dideoxycytidine-5'-triphosphate, free and in liposomes. AIDS Res Hum Retroviruses 1990; 6:691-702. [PMID: 2163269 DOI: 10.1089/aid.1990.6.691] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The antiviral effects of 2',3'-dideoxycytidine (ddC), 2',3'-dideoxycytidine-5'-triphosphate (ddCTP) and liposome-encapsulated ddCTP [L(ddCTP)] were compared in cultured human monocyte-macrophages (M/M) infected with HIV-1. These treatments inhibited virus replication at nanomolar drug levels with activities in the order ddC greater than ddCTP = L(ddCTP). Studies on drug stability and uptake suggest that a large part of the free ddCTP is dephosphorylated before entering the cells, whereas L(ddCTP) remains stable over days and is taken up, probably by endocytosis. The response to L(ddCTP) suggests that the capability of liposomes for targeting drugs to macrophages in vivo could potentially be exploited to improve the therapeutic index of dideoxynucleoside drugs.
Collapse
Affiliation(s)
- J Szebeni
- Theoretical Immunology Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Leserman L, Langlet C, Schmitt-Verhulst AM, Machy P. Positive and negative liposome-based immunoselection techniques. Methods Cell Biol 1989; 32:447-71. [PMID: 2691860 DOI: 10.1016/s0091-679x(08)61185-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- L Leserman
- Centre d'Immunologie, INSERM-CNRS de Marseille-Luminy, Marseille, France
| | | | | | | |
Collapse
|
36
|
Aragnol D, Leserman LD. Immune clearance of liposomes inhibited by an anti-Fc receptor antibody in vivo. Proc Natl Acad Sci U S A 1986; 83:2699-703. [PMID: 3458229 PMCID: PMC323367 DOI: 10.1073/pnas.83.8.2699] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In a study designed to evaluate the potential for in vivo manipulation of the circulation and tissue distribution of injected liposomes, mice were passively injected with antidinitrophenyl (anti-DNP) monoclonal antibodies of the IgG2a or IgG2b subclasses or were immunized with the nitrophenyl hapten bound to a protein carrier. They were then injected i.v. with 125I- and carboxyfluorescein-labeled, DNP-bearing liposomes. Circulation time of the DNP-bearing liposomes was markedly reduced in actively and passively immune mice, with increased deposition of liposomes in the liver. The increased clearance of liposomes could be abrogated by injection of a monoclonal antibody directed against the murine IgG Fc receptor (2.4G2). The results suggest that clearance of ligand-bearing reagent in the face of an immune response may be modified by specific immunologic manipulation in vivo.
Collapse
|
37
|
Bayard B, Leserman LD, Bisbal C, Lebleu B. Antiviral activity in L1210 cells of liposome-encapsulated (2'-5')oligo(adenylate) analogues. EUROPEAN JOURNAL OF BIOCHEMISTRY 1985; 151:319-25. [PMID: 2992962 DOI: 10.1111/j.1432-1033.1985.tb09103.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Evidence is available for a role of a (2'-5')(A)n-activated endoribonuclease (RNase L) in the antiviral activity of interferon for several RNA viruses. (2'-5')(A)n and their analogues might thus provide an interesting alternative to exogenous interferons or their inducers in antiviral chemotherapy. In addition, the evaluation of the activity of (2'-5)(A)n as mediators of interferon's biological activities or as cell growth regulators requires biochemical studies using agonists or antagonists of the system. Non-disruptive techniques for the introduction of (2'-5')(A)n and their analogues into cell lines or tissues are required for these studies since these highly charged compounds are cell impermeable. (2'-5')(A)n oligomers and analogues of increased stability towards phosphodiesterases were derived by chemical modification of their 2' end and encapsulated in protein-A-bearing liposomes. The specific delivery of liposome contents into L1210 mouse leukemic cells was achieved with the help of monoclonal antibodies directed against the appropriate class I major histocompatibility complex-encoded proteins expressed by these cells. This intracellular delivery led to transient inhibition of protein synthesis and an antiviral activity, both compatible with activation of RNase L. This activity was enhanced for the analogues designed to resist degradation, with respect to the natural product.
Collapse
|
38
|
Pouton CW. Drug targeting--current aspects and future prospects. JOURNAL OF CLINICAL AND HOSPITAL PHARMACY 1985; 10:45-58. [PMID: 3889064 DOI: 10.1111/j.1365-2710.1985.tb00715.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A variety of materials have been suggested as carriers for the delivery of drugs to specific sites of action. Drugs may be covalently bound to carriers or physically trapped within particulate carriers. Likely mechanisms of action of targeting agents are described. The results of in vitro and in vivo experiments are reviewed and the prospective clinical uses of each type of carrier are discussed. In particular, monoclonal antibodies are promising agents for the targeting of cytotoxic agents to malignant cells. Radiolabelled monoclonal antibodies are likely to develop as agents for the radio-imaging of tumours which will prove useful in the diagnosis and treatment of cancer.
Collapse
|
39
|
Lelkes PI, Friedman JE. Interaction of French-pressed liposomes with isolated bovine adrenal chromaffin cells. Characterization of the cell-liposome interactions. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(18)89663-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
40
|
Shen WC, Ryser HJ. Selective killing of Fc-receptor-bearing tumor cells through endocytosis of a drug-carrying immune complex. Proc Natl Acad Sci U S A 1984; 81:1445-7. [PMID: 6369328 PMCID: PMC344852 DOI: 10.1073/pnas.81.5.1445] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A soluble immune complex was used as a drug carrier targeted to Fc-receptor-positive cells. Two receptor-positive tumor cell lines, WEHI-3 and M5076, were exposed to methotrexate-human serum albumin conjugate (MTX-HSA) in the presence and absence of anti-HSA antiserum. Both cell types were killed by 30 nM MTX when the drug conjugate was given in the presence of antiserum but were totally unaffected in the absence of antiserum. Drug-free HSA given with antiserum had no effect. Both cell lines responded similarly despite their marked difference in phagocytotic activity. One of the two lines, M5076, is defective in MTX transport and hence resistant to free MTX. Since this line would not be affected by MTX released extracellularly from MTX-HSA, its susceptibility implies that MTX is released inside cells, after endocytosis of the complex, and that endocytosis circumvents the transport defect. Two cell lines lacking Fc receptors (CHO and L929) were not influenced by the drug complex. The pharmacologic effect is mediated by a specific ligand-receptor interaction, since Fc receptor-positive cells are protected by an excess of unconjugated HSA and by the addition of a small amount of staphylococcal protein A, which binds to the Fc portion of IgG. These data demonstrate that Fc receptors can be exploited for cellular drug delivery using a common antigen-antibody complex as a drug carrier.
Collapse
|
41
|
Truneh A, Mishal Z, Barbet J, Machy P, Leserman LD. Endocytosis of liposomes bound to cell surface proteins measured by flow cytofluorometry. Biochem J 1983; 214:189-94. [PMID: 6615464 PMCID: PMC1152225 DOI: 10.1042/bj2140189] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A new technique for the quantification of cellular receptor-mediated endocytosis has been developed based on the analysis by flow cytometry of ligand-bearing liposomes containing the fluorochrome carboxyfluorescein. Carboxyfluorescein encapsulated at high concentrations in protein A-bearing liposomes is self-quenched. Binding and internalization of such liposomes by cells via antibodies directed towards membrane surface determinants results in the release of the liposome-encapsulated carboxyfluorescein into the cytoplasm causing an increase in cell-associated fluorescence. This increase can be quantified on a flow cytofluorometer.
Collapse
|
42
|
Sargiacomo M, Barbieri L, Stirpe F, Tomasi M. Cytotoxicity acquired by ribosome-inactivating proteins carried by reconstituted Sendai virus envelopes. FEBS Lett 1983; 157:150-4. [PMID: 6305714 DOI: 10.1016/0014-5793(83)81135-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Association of the ribosome-inactivating proteins (RIPs): pokeweed antiviral protein (PAP), gelonin, Momordica charantia inhibitor (MCI), with reconstituted Sendai virus envelopes (RSVE) was obtained without detectable loss of activities either of RIPs or of viral envelope glycoproteins. RIPs are inactive towards intact cells, but, once encapsulated in RSVE, they become cytotoxic. The concentration of RSVE-associated PAP, which causes 50% inhibition of protein synthesis by Friend erythroleukemic cells, is 0.5 ng/ml. Substances capable to inhibit the viral activities block the acquired cytotoxicity of RIPs associated to RSVE.
Collapse
|
43
|
Machy P, Barbet J, Leserman LD. Differential endocytosis of T and B lymphocyte surface molecules evaluated with antibody-bearing fluorescent liposomes containing methotrexate. Proc Natl Acad Sci U S A 1982; 79:4148-52. [PMID: 7051006 PMCID: PMC346594 DOI: 10.1073/pnas.79.13.4148] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Antibody-bearing fluorescent liposomes containing methotrexate became bound to cells expressing determinants recognized by the antibody. The number of bound liposomes could be evaluated by fluorometry, and the internalization of liposomes was evaluated by the methotrexate-mediated inhibition of radio-labeled deoxyuridine incorporation. The effect of methotrexate transferred from the liposomes into the cells was a function not of the number of liposomes bound but of the nature of the cells and of the target molecules. Liposomes bearing antibodies with specificity for the H-2K or Mr 94,000 and 180,000 molecules were much more effective at drug delivery into T than B cells, even though these determinants were expressed by both cell types. B cells were more sensitive to the effect of methotrexate in anti-H-2 I-A and I-E liposomes than in anti-H-2K liposomes. Inhibition of the methotrexate effect by NH4Cl suggested that methotrexate entered the cell by endocytosis of the liposomes. The results are consistent with differential internalization of H-2K, I-A, I-E, and Mr 94,000 and 180,000 cell surface molecules by mitogen-stimulated T and B cells.
Collapse
|
44
|
|
45
|
Blumenthal R, Ralston E, Dragsten P, Leserman LD, Weinstein JN. Lipid vesicle-cell interactions: analysis of a model for transfer of contents from adsorbed vesicles to cells. MEMBRANE BIOCHEMISTRY 1982; 4:283-303. [PMID: 6897439 DOI: 10.3109/09687688209065437] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
46
|
Gregoriadis G, Meehan A. Interaction of antibody-bearing small unilamellar liposomes with antigen-coated cells. The effect of antibody and antigen concentration on the liposomal and cell surface respectively. Biochem J 1981; 200:211-6. [PMID: 6176223 PMCID: PMC1163526 DOI: 10.1042/bj2000211] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Human blood lymphocytes were coated with increasing amounts of human kappa chain (2-85mug/10(7) cells) through the linking reagent CrCl(3). These cells were then exposed to small unilamellar liposomes composed of egg phosphatidylcholine, cholesterol and phosphatidic acid (molar proportions 7:7:1) containing carboxyfluorescein and/or (111)In-labelled bleomycin and bearing (131)I-labelled affinity chromatography-purified or non-purified anti-(kappa-chain) immunoglobulin G (IgG) [see the preceding paper, Gregoriadis, Meehan & Mah (1981) Biochem. J.200, 203-210]. In some experiments liposomes contained [(14)C]phosphatidylcholine. (1) Lymphocytes (10(7)) coated with 2-85mug of kappa chain and exposed to liposomes devoid of IgG or bearing non-purified anti-(kappa chain) IgG bound only a small proportion of the liposomal markers. Even with liposomes bearing the purified anti-(kappa chain) IgG, uptake of the labels improved only slightly for cells coated with up to 10mug of kappa chain. However, with higher concentrations of the antigen on the cell surface, binding was improved considerably to reach values of 31% ((111)In-labelled bleomycin) and 43% ((131)I-labelled IgG) of added liposomes for cells coated with 85mug of kappa chain. (2) Lymphocytes coated with kappa chain were exposed to liposomes bearing increasing amounts (0-180mug/0.9mg of egg phosphatidylcholine) of purified anti-(kappa chain) IgG. It was found that under the present conditions, binding of all three markers ((111)In-labelled bleomycin, (131)I-labelled IgG and [(14)C]phosphatidylcholine) was directly proportional to the concentration of IgG on the liposomal surface. However, uptake values remained unchanged above 90mug of IgG. (3) Antibody-mediated uptake of liposomes by cells coated with the corresponding antigen without loss of their metabolic activities may provide a method of efficient targeting.
Collapse
|
47
|
Gregoriadis G, Meehan A, Mah MM. Interaction of antibody-bearing small unilamellar liposomes with target free antigen in vitro and in vivo. Some influencing factors. Biochem J 1981; 200:203-10. [PMID: 6803776 PMCID: PMC1163525 DOI: 10.1042/bj2000203] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Affinity chromatography-purified and non-purified rabbit immunoglobulin G (IgG) raised against human immunoglobulin M (IgM) or kappa chain was incorporated into carboxyfluorescein-containing small unilamellar liposomes composed of egg phosphatidylcholine, cholesterol and phosphatidic acid (molar proportions 7:7:1). IgG incorporation was carried out by co-sonicating the immunoglobulin with the lipids (30% incorporated) (method A) or by interacting it with preformed liposomes bearing goat anti-(rabbit IgG) IgG (63 and 70% incorporated) (method B). (1) Judging from liposomal carboxyfluorescein-latency values, incorporation of IgG by either method did not affect liposomal stability. Furthermore, treatment of liposomes with papain released 75.1% (method A) and 93.3% and 95.1% (method B) of the IgG, suggesting that most of its antigen-recognizing Fab regions were available on the liposomal surface. This was strongly supported by the immunoelectrophoretic detection of Fab in papain-released products. (2) Liposomes bearing purified anti-IgM IgG bound 30%, (method A) and 45% (method B) of IgM in buffer. These values wee about 6-fold greater (both methods) than those obtained with corresponding liposomes bearing non-purified IgG. Binding of liposomes bearing anti-(kappa chain) IgG to kappa chain in buffer was 37% of that added. In the presence of mouse blood or serum, binding of IgM to liposomes bearing purified anti-IgM IgG was decreased slightly (24 and 30% for methods A and B). However, because of the nearly complete abolition of IgM binding to liposomes bearing non-purified IgG, these values were now 20-25-fold greater than those obtained with liposomes bearing non-purified IgG. (3) In mice pre-injected with IgM, at least 36.1% and 37.7% of the antigen was bound to subsequently injected liposomes bearing anti-IgM IgG incorporated by methods A and B respectively. No binding occurred with liposomes bearing the non-purified IgG. (4) Cholesterol-rich small unilamellar liposomes bearing affinity chromatography-purified antibodies may prove useful for the specific binding of free antigens in vivo.
Collapse
|
48
|
Leserman LD, Machy P, Barbet J. Cell-specific drug transfer from liposomes bearing monoclonal antibodies. Nature 1981; 293:226-8. [PMID: 7278980 DOI: 10.1038/293226a0] [Citation(s) in RCA: 114] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
49
|
Tomasi M, Loyter A. Selective extraction of biologically active F-glycoprotein from dithiothreitol reduced Sendai virus particles. FEBS Lett 1981; 131:381-5. [PMID: 6271578 DOI: 10.1016/0014-5793(81)80409-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
50
|
Martin FJ, Hubbell WL, Papahadjopoulos D. Immunospecific targeting of liposomes to cells: a novel and efficient method for covalent attachment of Fab' fragments via disulfide bonds. Biochemistry 1981; 20:4229-38. [PMID: 7284322 DOI: 10.1021/bi00517a043] [Citation(s) in RCA: 154] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
An efficient method for covalently cross-linking 50K Fab' antibody fragments to the surface of lipid vesicles is reported. Coupling up to 600 microgram of Fab'/mumol of phospholipid (about 6000 Fab' molecules per 0.2-micrometer vesicle) is achieved via a disulfide interchange reaction between the thiol group exposed on each Fab' fragment and a pyridyldithio-derivative of phosphatidylethanolamine present in low concentration in the membranes of preformed large unilamellar vesicles. The coupling reaction is efficient, proceeds rapidly under mild conditions, and yields well-defined products. Each vesicle-linked Fab' fragment retains its original antigenic specificity and full capacity to bind antigen. We have used Fab' fragments, coupled to vesicles by this method, to achieve immunospecific targeting of liposomes to cells in vitro. Vesicles bearing antihuman erythrocyte Fab' fragments bind quantitatively to human erythrocytes (at multiplicities up to 5000 0.2-micrometer vesicles per cell) while essentially no binding is observed to sheep or ox red blood cells. Vesicle-cell binding is stable over a pH range from 6 to 8 and is virtually unaffected by the presence of human serum (50%). Cell-bound vesicles retain their aqueous contents and can be eluted intact from cells by treatment with reducing agents (dithiothreitol or mercaptoethanol) at alkaline pH.
Collapse
|