1
|
Bick MV, Puig E, Beauparlant D, Nedellec R, Burton I, Ardaghi K, Zalunardo TR, Bastidas R, Li X, Guenaga J, Lee WH, Wyatt R, Zhu W, Crispin M, Ozorowski G, Ward AB, Burton DR, Hangartner L. Molecular parameters governing antibody FcγR signaling and effector functions in the context of HIV envelope. Cell Rep 2025; 44:115331. [PMID: 40158219 DOI: 10.1016/j.celrep.2025.115331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 10/29/2024] [Accepted: 01/28/2025] [Indexed: 04/02/2025] Open
Abstract
Antibody effector functions contribute to the immune response to pathogens and can influence the efficacy of antibodies as therapeutics. To date, however, there is limited information on the molecular parameters that govern fragment crystallizable (Fc) effector functions. In this study, using AI-assisted protein design, the influences of binding kinetics, epitope location, and stoichiometry of binding on cellular Fc effector functions were investigated using engineered HIV-1 envelope as a model antigen. For this antigen, stoichiometry of binding was found to be the primary molecular determinant of FcγRIIIa signaling, antibody-dependent cellular cytotoxicity, and antibody-dependent cellular phagocytosis, while epitope location and antibodybinding kinetics, at least in the ranges investigated, were of no substantial impact. These findings are of importance for informing the development of vaccination strategies against HIV-1 and, possibly, other viral pathogens.
Collapse
Affiliation(s)
- Michael V Bick
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA
| | - Eduard Puig
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA
| | - David Beauparlant
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA
| | - Rebecca Nedellec
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA
| | - Iszac Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA
| | - Keihvan Ardaghi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA
| | - Thea R Zalunardo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA
| | - Raiza Bastidas
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA
| | - Xuduo Li
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA
| | - Javier Guenaga
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92109, USA
| | - Richard Wyatt
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wenwen Zhu
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92109, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew B Ward
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92109, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Lars Hangartner
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
2
|
Sears RM, Nowling NL, Yarbro J, Zhao N. Expanding the tagging toolbox for visualizing translation live. Biochem J 2025; 482:BCJ20240183. [PMID: 39889305 DOI: 10.1042/bcj20240183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 02/02/2025]
Abstract
Translation is a highly regulated process that includes three steps: initiation, elongation, and termination. Tremendous efforts have been spent to study the regulation of each translation step. In the last two decades, researchers have begun to investigate translation by tracking it in its native and live intracellular environment with high spatiotemporal resolution. To achieve this goal, a handful of tagging tools have been developed that can distinguish nascent chains from previously synthesized mature proteins. In this review, we will focus on these tagging tools and describe their development, working mechanisms, and advantages and drawbacks in tracking translation in live mammalian cells and organisms. In the second part of the review, we will summarize novel discoveries in translation by a recently developed nascent polypeptide tracking technology using tandem epitope tag array tagging tools. The superior spatiotemporal resolution of this technology enables us to directly and continuously track nascent chains live and thus reveal preferred translation location and timing, as well as the kinetics of canonical and noncanonical translation, translation bursts, ribosome quality control, and nonsense-mediated mRNA decay. In the future, we expect more tagging tools to be developed that allow us to track other regulation processes of a protein, such as folding, modifications, and degradation. With the expanding tagging toolbox, there is potential that we can track a protein from translation to degradation to fully understand its regulation in a native live cell environment.
Collapse
Affiliation(s)
- Rhiannon M Sears
- Department of Biochemistry and Molecular Genetics, University of Colorado-Anschutz Medical Campus, Aurora, CO, U.S.A
| | - Nathan L Nowling
- Department of Biochemistry and Molecular Genetics, University of Colorado-Anschutz Medical Campus, Aurora, CO, U.S.A
| | - Jake Yarbro
- Department of Biochemistry and Molecular Genetics, University of Colorado-Anschutz Medical Campus, Aurora, CO, U.S.A
| | - Ning Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado-Anschutz Medical Campus, Aurora, CO, U.S.A
| |
Collapse
|
3
|
Graves D, Akkerman N, Fulham L, Helwer R, Pelka P. Molecular insights into type I interferon suppression and enhanced pathogenicity by species B human adenoviruses B7 and B14. mBio 2024; 15:e0103824. [PMID: 38940561 PMCID: PMC11323573 DOI: 10.1128/mbio.01038-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/22/2024] [Indexed: 06/29/2024] Open
Abstract
Human adenoviruses (HAdVs) are small DNA viruses that generally cause mild disease. Certain strains, particularly those belonging to species B HAdVs, can cause severe pneumonia and have a relatively high mortality rate. Little is known about the molecular aspects of how these highly pathogenic species affect the infected cell and how they suppress innate immunity. The present study provides molecular insights into how species B adenoviruses suppress the interferon signaling pathway. Our study shows that these viruses, unlike HAdV-C2, are resistant to type I interferon. This resistance likely arises due to the highly efficient suppression of interferon-stimulated gene expression. Unlike in HAdV-C2, HAdV-B7 and B14 sequester STAT2 and RNA polymerase II from interferon-stimulated gene promoters in infected cells. This results in suppressed interferon- stimulated gene activation. In addition, we show that RuvBL1 and RuvBL2, cofactors important for RNA polymerase II recruitment to promoters and interferon-stimulated gene activation, are redirected to the cytoplasm forming high molecular weight complexes that, likely, are unable to associate with chromatin. Proteomic analysis also identified key differences in the way these viruses affect the host cell, providing insights into species B-associated high pathogenicity. Curiously, we observed that at the level of protein expression changes to the infected cell, HAdV-C2 and B7 were more similar than those of the same species, B7 and B14. Collectively, our study represents the first such study of innate immune suppression by the highly pathogenic HAdV-B7 and B14, laying an important foundation for future investigations.IMPORTANCEHuman adenoviruses form a large family of double-stranded DNA viruses known for a variety of usually mild diseases. Certain strains of human adenovirus cause severe pneumonia leading to much higher mortality and morbidity than most other strains. The reasons for this enhanced pathogenicity are unknown. Our study provides a molecular investigation of how these highly pathogenic strains might inactivate the interferon signaling pathway, highlighting the lack of sensitivity of these viruses to type I interferon in general while providing a global picture of how viral changes in cellular proteins drive worse disease outcomes.
Collapse
Affiliation(s)
- Drayson Graves
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nikolas Akkerman
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lauren Fulham
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Rafe Helwer
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Peter Pelka
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
4
|
Robinson MP, Jung J, Lopez-Barbosa N, Chang M, Li M, Jaroentomeechai T, Cox EC, Zheng X, Berkmen M, DeLisa MP. Isolation of full-length IgG antibodies from combinatorial libraries expressed in the cytoplasm of Escherichia coli. Nat Commun 2023; 14:3514. [PMID: 37316535 PMCID: PMC10267130 DOI: 10.1038/s41467-023-39178-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/01/2023] [Indexed: 06/16/2023] Open
Abstract
Here we describe a facile and robust genetic selection for isolating full-length IgG antibodies from combinatorial libraries expressed in the cytoplasm of redox-engineered Escherichia coli cells. The method is based on the transport of a bifunctional substrate comprised of an antigen fused to chloramphenicol acetyltransferase, which allows positive selection of bacterial cells co-expressing cytoplasmic IgGs called cyclonals that specifically capture the chimeric antigen and sequester the antibiotic resistance marker in the cytoplasm. The utility of this approach is first demonstrated by isolating affinity-matured cyclonal variants that specifically bind their cognate antigen, the leucine zipper domain of a yeast transcriptional activator, with subnanomolar affinities, which represent a ~20-fold improvement over the parental IgG. We then use the genetic assay to discover antigen-specific cyclonals from a naïve human antibody repertoire, leading to the identification of lead IgG candidates with affinity and specificity for an influenza hemagglutinin-derived peptide antigen.
Collapse
Affiliation(s)
- Michael-Paul Robinson
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Jinjoo Jung
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Natalia Lopez-Barbosa
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Matthew Chang
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Mingji Li
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Thapakorn Jaroentomeechai
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Emily C Cox
- Biomedical and Biological Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Xiaolu Zheng
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Mehmet Berkmen
- New England Biolabs, 240 County Road, Ipswich, MA, 01938, USA
| | - Matthew P DeLisa
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA.
- Biomedical and Biological Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
- Cornell Institute of Biotechnology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
5
|
Jaiswal D, Kumar U, Gaur V, Salunke DM. Epitope-directed anti-SARS-CoV-2 scFv engineered against the key spike protein region could block membrane fusion. Protein Sci 2023; 32:e4575. [PMID: 36691733 PMCID: PMC9926471 DOI: 10.1002/pro.4575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023]
Abstract
The newly emerged SARS-CoV-2 causing coronavirus disease (COVID-19) resulted in >500 million infections. A great deal about the molecular processes of virus infection in the host is getting uncovered. Two sequential proteolytic cleavages of viral spike protein by host proteases are prerequisites for the entry of the virus into the host cell. The first cleavage occurs at S1/S2 site by the furin protease, and the second cleavage at a fusion activation site, the S2' site, by the TMPRSS2 protease. S2' cleavage site is present in the S2 domain of spike protein followed by a fusion peptide. Given the S2' site to be conserved among all the SARS-CoV-2 variants, we chose an S2' epitope encompassing the S2' cleavage site and generated single-chain antibodies (scFvs) through an exhaustive phage display library screening. Crystal structure of a scFv in complex with S2' epitope was determined. Incidentally, S2' epitope in the scFv bound structure adopts an alpha-helical conformation equivalent to the conformation of the epitope in the spike protein. Furthermore, these scFvs can bind to the spike protein expressed either in vitro or on the mammalian cell surface. We illustrate a molecular model based on structural and biochemical insights into the antibody-S2' epitope interaction emphasizing scFvs mediated blocking of virus entry into the host cell by restricting the access of TMPRSS2 protease and consequently inhibiting the S2' cleavage competitively.
Collapse
Affiliation(s)
- Deepika Jaiswal
- International Centre for Genetic Engineering and BiotechnologyNew DelhiDelhiIndia
| | - Ujjwal Kumar
- International Centre for Genetic Engineering and BiotechnologyNew DelhiDelhiIndia
| | - Vineet Gaur
- National Institute of Plant Genome ResearchNew DelhiDelhiIndia
| | - Dinakar M. Salunke
- International Centre for Genetic Engineering and BiotechnologyNew DelhiDelhiIndia
| |
Collapse
|
6
|
Liew OW, Ling SSM, Lilyanna S, Chong JPC, Ng JYX, Richards AM. One-Shot Generation of Epitope-Directed Monoclonal Antibodies to Multiple Nonoverlapping Targets: Peptide Selection, Antigen Preparation, and Epitope Mapping. Methods Mol Biol 2023; 2578:121-141. [PMID: 36152284 DOI: 10.1007/978-1-0716-2732-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This chapter describes an epitope-directed approach to generate antipeptide monoclonal antibodies to multiple nonoverlapping protein sites using a cocktail of fusion peptides as immunogen. It provides a step-by-step protocol on how antigenic peptides on a target protein can be identified by in silico prediction and discusses considerations for final peptide selection. Each antigenic peptide (10-20 amino acids long) is displayed as three-copy inserts on the surface exposed loop of a thioredoxin scaffold protein. The corresponding DNA coding sequence specifying the tripeptide insert flanked by Gly-Ser-Gly-Ser-Gly linkers is cloned in-frame into the Rsr II site of the thioredoxin gene in the pET-32a vector. The presence of a C-terminal polyhistidine tag (His6-tag) allows the soluble fusion proteins to be purified by one-step native immobilized metal affinity chromatography (IMAC) to greater than 95% purity. Multiple thioredoxin fusion proteins are mixed in equimolar concentrations and used as an immunogen cocktail for animal immunization. The use of short antigenic peptides of known sequence facilitates direct epitope mapping requiring only small mutagenesis scan peptide libraries in the multipin peptide format.
Collapse
Affiliation(s)
- Oi Wah Liew
- Cardiovascular Research Institute, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore.
| | - Samantha Shi Min Ling
- Cardiovascular Research Institute, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| | - Shera Lilyanna
- Cardiovascular Research Institute, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| | - Jenny Pek Ching Chong
- Cardiovascular Research Institute, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| | - Jessica Yan Xia Ng
- Cardiovascular Research Institute, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| | - Arthur Mark Richards
- Cardiovascular Research Institute, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| |
Collapse
|
7
|
IŞIK M, BİLİCİ Z, ÇİNE N, ÖZTÜRK S. Usage of Peptide Antigens for Antibody-Based BoNT Detection System. KOCAELI ÜNIVERSITESI SAĞLIK BILIMLERI DERGISI 2021. [DOI: 10.30934/kusbed.935903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
8
|
Lis N, Hein Z, Ghanwat SS, Ramnarayan VR, Chambers BJ, Springer S. The murine cytomegalovirus immunoevasin gp40/m152 inhibits NKG2D receptor RAE-1γ by intracellular retention and cell surface masking. J Cell Sci 2021; 134:269012. [PMID: 34085696 DOI: 10.1242/jcs.257428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/14/2021] [Indexed: 12/21/2022] Open
Abstract
NKG2D (also known as KLRK1) is a crucial natural killer (NK) cell-activating receptor, and the murine cytomegalovirus (MCMV) employs multiple immunoevasins to avoid NKG2D-mediated activation. One of the MCMV immunoevasins, gp40 (m152), downregulates the cell surface NKG2D ligand RAE-1γ (also known as Raet1c) thus limiting NK cell activation. This study establishes the molecular mechanism by which gp40 retains RAE-1γ in the secretory pathway. Using flow cytometry and pulse-chase analysis, we demonstrate that gp40 retains RAE-1γ in the early secretory pathway, and that this effect depends on the binding of gp40 to a host protein, TMED10, a member of the p24 protein family. We also show that the TMED10-based retention mechanism can be saturated, and that gp40 has a backup mechanism as it masks RAE-1γ on the cell surface, blocking the interaction with the NKG2D receptor and thus NK cell activation.
Collapse
Affiliation(s)
- Natalia Lis
- Department of Life Sciences and Chemistry, Jacobs University, Bremen 28759, Germany
| | - Zeynep Hein
- Department of Life Sciences and Chemistry, Jacobs University, Bremen 28759, Germany
| | - Swapnil S Ghanwat
- Department of Life Sciences and Chemistry, Jacobs University, Bremen 28759, Germany
| | - Venkat R Ramnarayan
- Department of Life Sciences and Chemistry, Jacobs University, Bremen 28759, Germany
| | - Benedict J Chambers
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm 14152, Sweden
| | - Sebastian Springer
- Department of Life Sciences and Chemistry, Jacobs University, Bremen 28759, Germany
| |
Collapse
|
9
|
Epitope-directed monoclonal antibody production using a mixed antigen cocktail facilitates antibody characterization and validation. Commun Biol 2021; 4:441. [PMID: 33824395 PMCID: PMC8024308 DOI: 10.1038/s42003-021-01965-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/08/2021] [Indexed: 02/01/2023] Open
Abstract
High quality, well-validated antibodies are needed to mitigate irreproducibility and clarify conflicting data in science. We describe an epitope-directed monoclonal antibody (mAb) production method that addresses issues of antibody quality, validation and utility. The workflow is illustrated by generating mAbs against multiple in silico-predicted epitopes on human ankyrin repeat domain 1 (hANKRD1) in a single hybridoma production cycle. Antigenic peptides (13-24 residues long) presented as three-copy inserts on the surface exposed loop of a thioredoxin carrier produced high affinity mAbs that are reactive to native and denatured hANKRD1. ELISA assay miniaturization afforded by novel DEXT microplates allowed rapid hybridoma screening with concomitant epitope identification. Antibodies against spatially distant sites on hANKRD1 facilitated validation schemes applicable to two-site ELISA, western blotting and immunocytochemistry. The use of short antigenic peptides of known sequence facilitated direct epitope mapping crucial for antibody characterization. This robust method motivates its ready adoption for other protein targets.
Collapse
|
10
|
Masking terminal neo-epitopes of linear peptides through glycosylation favours immune responses towards core epitopes producing parental protein bound antibodies. Sci Rep 2020; 10:18497. [PMID: 33116268 PMCID: PMC7595224 DOI: 10.1038/s41598-020-75754-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 10/20/2020] [Indexed: 01/20/2023] Open
Abstract
Glycosylation of hydrophobic peptides at one terminus effectively increases their water-solubility, and conjugation through the opposing end to a carrier protein, renders them more immunogenic. Moreover, the glycosylation minimizes antibody responses to potentially deleterious, non-productive terminal neo-epitope regions of the peptides, and consequently shifts peptide immunogenicity towards the core amino acid residues. As proof of concept, glycopeptide-protein conjugates related to influenza hemagglutinin (HA), neuraminidase (NA), and the dimerization loop region of human epidermal growth factor receptor 2 (Her2), demonstrated a favorable production of core peptide specific antibodies as determined by ELISA studies. Furthermore, glycosylated Her2 peptide conjugate antisera were also shown to recognize full length Her2 protein by ELISA and at the cell surface through flow cytometry analysis. In contrast, unmasked peptide conjugates generated significant antibody populations that were specific to the terminal neo-epitope of the peptide immunogen that are notably absent in parental proteins. Antibodies generated in this manner to peptides in the dimerization loop of Her2 are also functional as demonstrated by the growth inhibition of Her2 expressing SKBR3 carcinoma cells. This method provides a technique to tailor-make epitope-specific antibodies that may facilitate vaccine, therapeutic and diagnostic antibody development.
Collapse
|
11
|
Diaz N, Lico C, Capodicasa C, Baschieri S, Dessì D, Benvenuto E, Fiori PL, Rappelli P. Production and Functional Characterization of a Recombinant Predicted Pore-Forming Protein (TVSAPLIP12) of Trichomonas vaginalis in Nicotiana benthamiana Plants. Front Cell Infect Microbiol 2020; 10:581066. [PMID: 33117734 PMCID: PMC7561387 DOI: 10.3389/fcimb.2020.581066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/31/2020] [Indexed: 01/05/2023] Open
Abstract
Pore-forming proteins (PFPs) are a group of functionally versatile molecules distributed in all domains of life, and several microbial pathogens notably use members of this class of proteins as cytotoxic effectors. Among pathogenic protists, Entamoeba histolytica, and Naegleria fowleri display a range of pore-forming toxins belonging to the Saposin-Like Proteins (Saplip) family: Amoebapores and Naegleriapores. Following the genome sequencing of Trichomonas vaginalis, we identified a gene family of 12 predicted saposin-like proteins (TvSaplips): this work focuses on investigating the potential role of TvSaplips as cytopathogenetic effectors. We provide evidence that TvSaplip12 gene expression is potently upregulated upon T. vaginalis contact with target cells. We cloned and expressed recombinant TvSaplip12 in planta and we demonstrate haemolytic, cytotoxic, and bactericidal activities of rTvSaplip12 in vitro. Also, evidence for TvSaplip subcellular discrete distribution in cytoplasmic granules is presented. Altogether, our results highlight the importance of TvSaplip in T. vaginalis pathogenesis, depicting its involvement in the cytolytic and bactericidal activities during the infection process, leading to predation on host cells and resident vaginal microbiota for essential nutrients acquisition. This hence suggests a potential key role for TvSaplip12 in T. vaginalis pathogenesis as a candidate Trichopore.
Collapse
Affiliation(s)
- Nicia Diaz
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Chiara Lico
- Laboratory of Biotechnology, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) Casaccia Research Center, Rome, Italy
| | - Cristina Capodicasa
- Laboratory of Biotechnology, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) Casaccia Research Center, Rome, Italy
| | - Selene Baschieri
- Laboratory of Biotechnology, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) Casaccia Research Center, Rome, Italy
| | - Daniele Dessì
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Mediterranean Center for Diseases Control, Sassari, Italy
| | - Eugenio Benvenuto
- Laboratory of Biotechnology, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) Casaccia Research Center, Rome, Italy
| | - Pier Luigi Fiori
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Mediterranean Center for Diseases Control, Sassari, Italy
| | - Paola Rappelli
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Mediterranean Center for Diseases Control, Sassari, Italy
| |
Collapse
|
12
|
Schüchner S, Behm C, Mudrak I, Ogris E. The Myc tag monoclonal antibody 9E10 displays highly variable epitope recognition dependent on neighboring sequence context. Sci Signal 2020; 13:13/616/eaax9730. [PMID: 31992583 DOI: 10.1126/scisignal.aax9730] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Epitope tags are short, linear antibody recognition sequences that enable detection of tagged fusion proteins by antibodies. Epitope tag position and neighboring sequences potentially affect its recognition by antibodies, and such context-dependent differences in tag binding may have a wide-ranging effect on data interpretation. We tested by Western blotting six antibodies that recognize the c-Myc epitope tag, including monoclonal antibodies 9E10, 4A6, 9B11, and 71D10 and polyclonal antibodies 9106 and A-14. All displayed context-dependent differences in their ability to detect N- or C-terminal Myc-tagged proteins. In particular, clone 9E10, the most cited Myc-tag antibody, displayed high context-dependent detection variability, whereas others, notably 4A6 and 9B11, showed much less context sensitivity in their detection of Myc-tagged proteins. The very high context sensitivity of 9E10 was further substantiated by peptide microarray analyses. We conclude that recently developed, purpose-made monoclonal antibodies specific for Myc have much more uniform reactivity in diverse assays and are much less context sensitive than is the legacy antibody 9E10.
Collapse
Affiliation(s)
- Stefan Schüchner
- Center for Medical Biochemistry, Max Perutz Labs, Vienna BioCenter, Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Christian Behm
- Center for Medical Biochemistry, Max Perutz Labs, Vienna BioCenter, Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Ingrid Mudrak
- Center for Medical Biochemistry, Max Perutz Labs, Vienna BioCenter, Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Egon Ogris
- Center for Medical Biochemistry, Max Perutz Labs, Vienna BioCenter, Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria.
| |
Collapse
|
13
|
Merezhko M, Brunello CA, Yan X, Vihinen H, Jokitalo E, Uronen RL, Huttunen HJ. Secretion of Tau via an Unconventional Non-vesicular Mechanism. Cell Rep 2019; 25:2027-2035.e4. [PMID: 30463001 DOI: 10.1016/j.celrep.2018.10.078] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/26/2018] [Accepted: 10/19/2018] [Indexed: 10/27/2022] Open
Abstract
Tauopathies are characterized by cerebral accumulation of Tau protein aggregates that appear to spread throughout the brain via a cell-to-cell transmission process that includes secretion and uptake of pathological Tau, followed by templated misfolding of normal Tau in recipient cells. Here, we show that phosphorylated, oligomeric Tau clusters at the plasma membrane in N2A cells and is secreted in vesicle-free form in an unconventional process sensitive to changes in membrane properties, particularly cholesterol and sphingomyelin content. Cell surface heparan sulfate proteoglycans support Tau secretion, possibly by facilitating its release after membrane penetration. Notably, secretion of endogenous Tau from primary cortical neurons is mediated, at least partially, by a similar mechanism. We suggest that Tau is released from cells by an unconventional secretory mechanism that involves its phosphorylation and oligomerization and that membrane interaction may help Tau to acquire properties that allow its escape from cells directly through the plasma membrane.
Collapse
Affiliation(s)
- Maria Merezhko
- Neuroscience Center, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Cecilia A Brunello
- Neuroscience Center, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Xu Yan
- Neuroscience Center, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Helena Vihinen
- Electron Microscopy Unit, Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Eija Jokitalo
- Electron Microscopy Unit, Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Riikka-Liisa Uronen
- Neuroscience Center, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Henri J Huttunen
- Neuroscience Center, HiLIFE, University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
14
|
Kanduc D. The comparative biochemistry of viruses and humans: an evolutionary path towards autoimmunity. Biol Chem 2019; 400:629-638. [PMID: 30504522 DOI: 10.1515/hsz-2018-0271] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/07/2018] [Indexed: 11/15/2022]
Abstract
Analyses of the peptide sharing between five common human viruses (Borna disease virus, influenza A virus, measles virus, mumps virus and rubella virus) and the human proteome highlight a massive viral vs. human peptide overlap that is mathematically unexpected. Evolutionarily, the data underscore a strict relationship between viruses and the origin of eukaryotic cells. Indeed, according to the viral eukaryogenesis hypothesis and in light of the endosymbiotic theory, the first eukaryotic cell (our lineage) originated as a consortium consisting of an archaeal ancestor of the eukaryotic cytoplasm, a bacterial ancestor of the mitochondria and a viral ancestor of the nucleus. From a pathologic point of view, the peptide sequence similarity between viruses and humans may provide a molecular platform for autoimmune crossreactions during immune responses following viral infections/immunizations.
Collapse
Affiliation(s)
- Darja Kanduc
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona 4, I-70124 Bari, Italy
| |
Collapse
|
15
|
Dyson HJ, Wright PE. Perspective: the essential role of NMR in the discovery and characterization of intrinsically disordered proteins. JOURNAL OF BIOMOLECULAR NMR 2019; 73:651-659. [PMID: 31617035 PMCID: PMC7043288 DOI: 10.1007/s10858-019-00280-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/12/2019] [Indexed: 05/13/2023]
Abstract
The 2019 ISMAR Prize recognized NMR studies of disordered proteins. Here we provide a highly personal perspective on the discovery of intrinsically disordered proteins and the development and application of NMR methods to characterize their conformational ensembles, dynamics, and interactions.
Collapse
Affiliation(s)
- H Jane Dyson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
16
|
Vashisht S, Verma S, Salunke DM. Cross-clade antibody reactivity may attenuate the ability of influenza virus to evade the immune response. Mol Immunol 2019; 114:149-161. [DOI: 10.1016/j.molimm.2019.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 01/12/2023]
|
17
|
Influenza and sudden unexpected death: the possible role of peptide cross-reactivity. INFECTION INTERNATIONAL 2018. [DOI: 10.2478/ii-2018-0023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract
This study investigates the hypothesis that cross-reactions may occur between human cardiac proteins and influenza antigens, thus possibly representing the molecular mechanism underlying influenzaassociated sudden unexpected death (SUD). Using titin protein as a research model, data were obtained on (1) the occurrence of the titin octapeptide AELLVLLE or its mimic AELLVALE in influenza A virus hemagglutinin (HA) sequences; (2) the immunological potential of AELLVLLE and its mimic AELLVALE; (3) the possible role of the flanking amino acid aa) context of the two octapeptide determinants in eliciting cross-reactivity between the human cardiac titin protein and HA antigens.
Collapse
|
18
|
Ohara Y, Ozeki Y, Tateishi Y, Mashima T, Arisaka F, Tsunaka Y, Fujiwara Y, Nishiyama A, Yoshida Y, Kitadokoro K, Kobayashi H, Kaneko Y, Nakagawa I, Maekura R, Yamamoto S, Katahira M, Matsumoto S. Significance of a histone-like protein with its native structure for the diagnosis of asymptomatic tuberculosis. PLoS One 2018; 13:e0204160. [PMID: 30359374 PMCID: PMC6201868 DOI: 10.1371/journal.pone.0204160] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/03/2018] [Indexed: 12/15/2022] Open
Abstract
Tuberculosis causes the highest mortality among all single infections. Asymptomatic tuberculosis, afflicting one third of the global human population, is the major source as 5–10% of asymptomatic cases develop active tuberculosis during their lifetime. Thus it is one of important issues to develop diagnostic tools for accurately detecting asymptomatic infection. Mycobacterial DNA-binding protein 1 (MDP1) is a major protein in persistent Mycobacterium tuberculosis and has potential for diagnostic use in detecting asymptomatic infection. However, a previous ELISA-based study revealed a specificity problem; IgGs against MDP1 were detected in both M. tuberculosis-infected and uninfected individuals. Although the tertiary structures of an antigen are known to influence antibody recognition, the MDP1 structural details have not yet been investigated. The N-terminal half of MDP1, homologous to bacterial histone-like protein HU, is predicted to be responsible for DNA-binding, while the C-terminal half is assumed as totally intrinsically disordered regions. To clarify the relationship between the MDP1 tertiary structure and IgG recognition, we refined the purification method, which allow us to obtain a recombinant protein with the predicted structure. Furthermore, we showed that an IgG-ELISA using MDP1 purified by our refined method is indeed useful in the detection of asymptomatic tuberculosis.
Collapse
Affiliation(s)
- Yukiko Ohara
- Department of Bacteriology, Niigata University School of Medicine, Niigata, Japan
- Department of Microbiology, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
- * E-mail: (YOh); (YOz); (SM)
| | - Yuriko Ozeki
- Department of Bacteriology, Niigata University School of Medicine, Niigata, Japan
- * E-mail: (YOh); (YOz); (SM)
| | - Yoshitaka Tateishi
- Department of Bacteriology, Niigata University School of Medicine, Niigata, Japan
| | - Tsukasa Mashima
- Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto, Japan
| | - Fumio Arisaka
- College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Yasuo Tsunaka
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Japan
| | - Yoshie Fujiwara
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, Japan
| | - Akihito Nishiyama
- Department of Bacteriology, Niigata University School of Medicine, Niigata, Japan
| | - Yutaka Yoshida
- Department of Structural Pathology, Institute of Nephrology, Graduate School of Medicine, Niigata University, Niigata, Japan
| | - Kengo Kitadokoro
- Graduate School of Science and Technology, Department of Biomolecular Engineering, Kyoto Institute of Technology, Matsugasakigosyokaido-cho, Sakyo-ku, Kyoto, Japan
| | - Haruka Kobayashi
- Department of Bacteriology, Niigata University School of Medicine, Niigata, Japan
| | - Yukihiro Kaneko
- Department of Bacteriology and Virology, Osaka-City University Graduate School of Medicine, Osaka, Japan
| | - Ichiro Nakagawa
- Department of Microbiology, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Ryoji Maekura
- Department of Respiratory Medicine, National Hospital Organization Toneyama National Hospital, 5-1-1 Toneyama, Toyonaka, Osaka, Japan
- Graduate School of Health Care Sciences, Jikei Institute, Osaka, Japan
| | - Saburo Yamamoto
- Central Laboratory, Japan BCG Laboratory, Kiyose-shi, Tokyo, Japan
| | - Masato Katahira
- Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto, Japan
| | - Sohkichi Matsumoto
- Department of Bacteriology, Niigata University School of Medicine, Niigata, Japan
- * E-mail: (YOh); (YOz); (SM)
| |
Collapse
|
19
|
Dirscherl C, Hein Z, Ramnarayan VR, Jacob-Dolan C, Springer S. A two-hybrid antibody micropattern assay reveals specific in cis interactions of MHC I heavy chains at the cell surface. eLife 2018; 7:e34150. [PMID: 30180933 PMCID: PMC6125123 DOI: 10.7554/elife.34150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 07/24/2018] [Indexed: 12/22/2022] Open
Abstract
We demonstrate a two-hybrid assay based on antibody micropatterns to study protein-protein interactions at the cell surface of major histocompatibility complex class I (MHC I) proteins. Anti-tag and conformation-specific antibodies are used for individual capture of specific forms of MHC I proteins that allow for location- and conformation-specific analysis by fluorescence microscopy. The assay is used to study the in cis interactions of MHC I proteins at the cell surface under controlled conditions and to define the involved protein conformations. Our results show that homotypic in cis interactions occur exclusively between MHC I free heavy chains, and we identify the dissociation of the light chain from the MHC I protein complex as a condition for MHC I in cis interactions. The functional role of these MHC I protein-protein interactions at the cell surface needs further investigation. We propose future technical developments of our two-hybrid assay for further analysis of MHC I protein-protein interactions.
Collapse
Affiliation(s)
- Cindy Dirscherl
- Department of Life Sciences and ChemistryJacobs UniversityBremenGermany
| | - Zeynep Hein
- Department of Life Sciences and ChemistryJacobs UniversityBremenGermany
| | | | | | | |
Collapse
|
20
|
Kanduc D, Shoenfeld Y. Inter-Pathogen Peptide Sharing and the Original Antigenic Sin: Solving a Paradox. ACTA ACUST UNITED AC 2018. [DOI: 10.2174/1874226201808010016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aims:To analyse the peptide commonality among viral, bacterial, and protozoan pathogens, and the immunopathologic consequences in the human host.Methods:HPV16, HCMV,C. diphtheriae, B. pertussis, C. tetani, T. gondii,andT. cruziwere analysed for common amino acid sequences that are additionally shared with the human host. The pentapeptide, a minimal immune determinant in humoral and cellular immune recognition, was used as a measurement unit of the peptide similarity level. Molecular modeling was applied to compare the amino acid contexts containing common minimal determinants.Results:Twenty-nine pentapeptides were found to occur, even hundreds of times, throughout the analyzed pathogen proteomes as well as in the human proteome. Such vast peptide commonalities together with molecular modeling data support the possibility that a pre-existing immune response to a first pathogen can be boosted by a successive exposure to a second different pathogen,i.e., the primary response to a pathogen can be transformed into a secondary response to a previously encountered different pathogen. Two possible consequences emerge. Firstly, no responses might be elicited against the pathogen lastly encountered either by infection or active immunization, but reactions could occur only with the early sensitizing pathogen, which is no more present in the organism. Secondly, the immune response boosted by the pathogen lastly encountered will find a way out by cross-reacting with human proteins.Conclusion:This study might explain the “original antigenic sin” phenomenon described seven decades ago [Francis T. Jr. Ann Intern Med 1953;39:203], thus providing explanations for vaccine failures and offering possible clues for designing successful vaccines.
Collapse
|
21
|
Cytomegalovirus gp40/m152 Uses TMED10 as ER Anchor to Retain MHC Class I. Cell Rep 2018; 23:3068-3077. [DOI: 10.1016/j.celrep.2018.05.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 03/12/2018] [Accepted: 05/03/2018] [Indexed: 02/03/2023] Open
|
22
|
Capping protein-controlled actin polymerization shapes lipid membranes. Nat Commun 2018; 9:1630. [PMID: 29691404 PMCID: PMC5915599 DOI: 10.1038/s41467-018-03918-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 03/20/2018] [Indexed: 11/08/2022] Open
Abstract
Arp2/3 complex-mediated actin assembly at cell membranes drives the formation of protrusions or endocytic vesicles. To identify the mechanism by which different membrane deformations can be achieved, we reconstitute the basic membrane deformation modes of inward and outward bending in a confined geometry by encapsulating a minimal set of cytoskeletal proteins into giant unilamellar vesicles. Formation of membrane protrusions is favoured at low capping protein (CP) concentrations, whereas the formation of negatively bent domains is promoted at high CP concentrations. Addition of non-muscle myosin II results in full fission events in the vesicle system. The different deformation modes are rationalized by simulations of the underlying transient nature of the reaction kinetics. The relevance of the regulatory mechanism is supported by CP overexpression in mouse melanoma B16-F1 cells and therefore demonstrates the importance of the quantitative understanding of microscopic kinetic balances to address the diverse functionality of the cytoskeleton. Cell membrane protrusions and invaginations are both driven by actin assembly but the mechanism leading to different membrane shapes is unknown. Using a minimal system and modelling the authors reconstitute the deformation modes and identify capping protein as a regulator of both deformation types.
Collapse
|
23
|
Takahashi H, Nagata S, Odagiri T, Kageyama T. Establishment of the cross-clade antigen detection system for H5 subtype influenza viruses using peptide monoclonal antibodies specific for influenza virus H5 hemagglutinin. Biochem Biophys Res Commun 2018. [PMID: 29524417 DOI: 10.1016/j.bbrc.2018.03.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The H5 subtype of highly pathogenic avian influenza (H5 HPAI) viruses is a threat to both animal and human public health and has the potential to cause a serious future pandemic in humans. Thus, specific and rapid detection of H5 HPAI viruses is required for infection control in humans. To develop a simple and rapid diagnostic system to detect H5 HPAI viruses with high specificity and sensitivity, we attempted to prepare monoclonal antibodies (mAbs) that specifically recognize linear epitopes in hemagglutinin (HA) of H5 subtype viruses. Nine mAb clones were obtained from mice immunized with a synthetic partial peptide of H5 HA molecules conserved among various H5 HPAI viruses. The antigen-capture enzyme-linked immunosorbent assay using the most suitable combination of these mAbs, which bound specifically to lysed H5 HA under an optimized detergent condition, was specific for H5 viruses and could broadly detect H5 viruses in multiple different clades. Taken together, these peptide mAbs, which recognize linear epitopes in a highly conserved region of H5 HA, may be useful for specific and highly sensitive detection of H5 HPAI viruses and can help in the rapid diagnosis of human, avian, and animal H5 virus infections.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Enzyme-Linked Immunosorbent Assay/methods
- Hemagglutinin Glycoproteins, Influenza Virus/analysis
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza A Virus, H5N1 Subtype/isolation & purification
- Influenza A Virus, H5N2 Subtype/immunology
- Influenza A Virus, H5N2 Subtype/isolation & purification
- Influenza A Virus, H5N8 Subtype/immunology
- Influenza A Virus, H5N8 Subtype/isolation & purification
- Influenza, Human/diagnosis
- Influenza, Human/immunology
- Influenza, Human/virology
- Mice, Inbred BALB C
- Orthomyxoviridae Infections/diagnosis
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/virology
Collapse
Affiliation(s)
- Hitoshi Takahashi
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Shiho Nagata
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Takato Odagiri
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Tsutomu Kageyama
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan.
| |
Collapse
|
24
|
Generation and characterization of a human-mouse chimeric high-affinity antibody that detects the DYKDDDDK FLAG peptide. Biochem Biophys Res Commun 2017; 486:1077-1082. [PMID: 28377223 DOI: 10.1016/j.bbrc.2017.03.165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 03/31/2017] [Indexed: 11/21/2022]
Abstract
DYKDDDDK peptide (FLAG) is a useful tool for investigating the function and localization of proteins whose antibodies (Abs) are not available. We recently established a high-affinity monoclonal antibody (mAb) for FLAG (clone 2H8). The 2H8 Ab is highly sensitive for detecting FLAG-tagged proteins by flowcytometry and immunoprecipitation, but it can yield nonspecific signals in immunohistochemistry of mouse tissues because it is of mouse origin. In this study, we reduced nonspecific signals by generating a chimeric 2H8 Ab with Fc fragments derived from human immunoglobulin. We fused a 5' terminal cDNA fragments for the Fab region of 2H8 mAb with 3' terminal cDNA fragments for Fc region of human IgG1. We transfected both chimeric plasmids and purified the resulting human-mouse chimeric 2H8. The chimeric 2H8 Ab successfully detected FLAG-tagged proteins in flowcytometry with anti-human IgG secondary Ab with comparable sensitivity to 2H8 mAb. Importantly, chimeric 2H8 detected specific FLAG peptide signals without nonspecific signals in immunohistochemical analysis with mouse tissues. This human-mouse chimeric high-affinity anti-FLAG Ab will prove useful for future immunohistochemical analysis of mouse tissues.
Collapse
|
25
|
Ahmed SS, Volkmuth W, Duca J, Corti L, Pallaoro M, Pezzicoli A, Karle A, Rigat F, Rappuoli R, Narasimhan V, Julkunen I, Vuorela A, Vaarala O, Nohynek H, Pasini FL, Montomoli E, Trombetta C, Adams CM, Rothbard J, Steinman L. Antibodies to influenza nucleoprotein cross-react with human hypocretin receptor 2. Sci Transl Med 2016; 7:294ra105. [PMID: 26136476 DOI: 10.1126/scitranslmed.aab2354] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The sleep disorder narcolepsy is linked to the HLA-DQB1*0602 haplotype and dysregulation of the hypocretin ligand-hypocretin receptor pathway. Narcolepsy was associated with Pandemrix vaccination (an adjuvanted, influenza pandemic vaccine) and also with infection by influenza virus during the 2009 A(H1N1) influenza pandemic. In contrast, very few cases were reported after Focetria vaccination (a differently manufactured adjuvanted influenza pandemic vaccine). We hypothesized that differences between these vaccines (which are derived from inactivated influenza viral proteins) explain the association of narcolepsy with Pandemrix-vaccinated subjects. A mimic peptide was identified from a surface-exposed region of influenza nucleoprotein A that shared protein residues in common with a fragment of the first extracellular domain of hypocretin receptor 2. A significant proportion of sera from HLA-DQB1*0602 haplotype-positive narcoleptic Finnish patients with a history of Pandemrix vaccination (vaccine-associated narcolepsy) contained antibodies to hypocretin receptor 2 compared to sera from nonnarcoleptic individuals with either 2009 A(H1N1) pandemic influenza infection or history of Focetria vaccination. Antibodies from vaccine-associated narcolepsy sera cross-reacted with both influenza nucleoprotein and hypocretin receptor 2, which was demonstrated by competitive binding using 21-mer peptide (containing the identified nucleoprotein mimic) and 55-mer recombinant peptide (first extracellular domain of hypocretin receptor 2) on cell lines expressing human hypocretin receptor 2. Mass spectrometry indicated that relative to Pandemrix, Focetria contained 72.7% less influenza nucleoprotein. In accord, no durable antibody responses to nucleoprotein were detected in sera from Focetria-vaccinated nonnarcoleptic subjects. Thus, differences in vaccine nucleoprotein content and respective immune response may explain the narcolepsy association with Pandemrix.
Collapse
Affiliation(s)
- Syed Sohail Ahmed
- Global Clinical Sciences, Novartis Vaccines Srl, Siena 53100, Italy.
| | - Wayne Volkmuth
- Informatics and Information Technology, Atreca Inc., Redwood City, CA 94063, USA
| | - José Duca
- Computer-Aided Drug Discovery, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Lorenzo Corti
- Formulation Analytics, Novartis Vaccines Srl, Siena 53100, Italy
| | - Michele Pallaoro
- Formulation Analytics, Novartis Vaccines Srl, Siena 53100, Italy
| | | | - Anette Karle
- Integrated Biologics Profiling Unit, Novartis Pharma AG, Basel 4057, Switzerland
| | - Fabio Rigat
- Quantitative Sciences, Novartis Vaccines Srl, Siena 53100, Italy
| | | | - Vas Narasimhan
- Development, Novartis Vaccines, Cambridge, MA 02139, USA
| | - Ilkka Julkunen
- National Institute for Health and Welfare (THL), Helsinki 00300, Finland. Virology, University of Turku, Turku 20520, Finland
| | - Arja Vuorela
- National Institute for Health and Welfare (THL), Helsinki 00300, Finland
| | - Outi Vaarala
- National Institute for Health and Welfare (THL), Helsinki 00300, Finland
| | - Hanna Nohynek
- National Institute for Health and Welfare (THL), Helsinki 00300, Finland
| | - Franco Laghi Pasini
- Internal Medicine, Policlinico Santa Maria alle Scotte, Azienda Ospedaliera Universitaria Senese, Siena 53100, Italy. Medical Science, Surgery, and Neuroscience, University of Siena, Siena 53100, Italy
| | - Emanuele Montomoli
- Molecular and Developmental Medicine, University of Siena, Siena 53100, Italy. VisMederi Srl, Siena 53100, Italy
| | - Claudia Trombetta
- Molecular and Developmental Medicine, University of Siena, Siena 53100, Italy
| | - Christopher M Adams
- Stanford University Mass Spectrometry, Stanford University School of Medicine, Palo Alto, CA 94305 USA
| | - Jonathan Rothbard
- Immunology, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Lawrence Steinman
- Neurology and Neuroscience, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
26
|
The Dual Nature of Nek9 in Adenovirus Replication. J Virol 2015; 90:1931-43. [PMID: 26676776 DOI: 10.1128/jvi.02392-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/25/2015] [Indexed: 01/10/2023] Open
Abstract
UNLABELLED To successfully replicate in an infected host cell, a virus must overcome sophisticated host defense mechanisms. Viruses, therefore, have evolved a multitude of devices designed to circumvent cellular defenses that would lead to abortive infection. Previous studies have identified Nek9, a cellular kinase, as a binding partner of adenovirus E1A, but the biology behind this association remains a mystery. Here we show that Nek9 is a transcriptional repressor that functions together with E1A to silence the expression of p53-inducible GADD45A gene in the infected cell. Depletion of Nek9 in infected cells reduces virus growth but unexpectedly enhances viral gene expression from the E2 transcription unit, whereas the opposite occurs when Nek9 is overexpressed. Nek9 localizes with viral replication centers, and its depletion reduces viral genome replication, while overexpression enhances viral genome numbers in infected cells. Additionally, Nek9 was found to colocalize with the viral E4 orf3 protein, a repressor of cellular stress response. Significantly, Nek9 was also shown to associate with viral and cellular promoters and appears to function as a transcriptional repressor, representing the first instance of Nek9 playing a role in gene regulation. Overall, these results highlight the complexity of virus-host interactions and identify a new role for the cellular protein Nek9 during infection, suggesting a role for Nek9 in regulating p53 target gene expression. IMPORTANCE In the arms race that exists between a pathogen and its host, each has continually evolved mechanisms to either promote or prevent infection. In order to successfully replicate and spread, a virus must overcome every mechanism that a cell can assemble to block infection. On the other hand, to counter viral spread, cells must have multiple mechanisms to stifle viral replication. In the present study, we add to our understanding of how the human adenovirus is able to circumvent cellular roadblocks to replication. We show that the virus uses a cellular protein, Nek9, in order to block activation of p53-regulated gene GADD45A, which is an important player in stress response and p53-mediated cell cycle arrest. Importantly, our study also identifies Nek9 as a transcriptional repressor.
Collapse
|
27
|
Van Hove AH, Benoit DSW. Depot-Based Delivery Systems for Pro-Angiogenic Peptides: A Review. Front Bioeng Biotechnol 2015; 3:102. [PMID: 26236708 PMCID: PMC4504170 DOI: 10.3389/fbioe.2015.00102] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 06/29/2015] [Indexed: 01/13/2023] Open
Abstract
Insufficient vascularization currently limits the size and complexity for all tissue engineering approaches. Additionally, increasing or re-initiating blood flow is the first step toward restoration of ischemic tissue homeostasis. However, no FDA-approved pro-angiogenic treatments exist, despite the many pre-clinical approaches that have been developed. The relatively small size of peptides gives advantages over protein-based treatments, specifically with respect to synthesis and stability. While many pro-angiogenic peptides have been identified and shown promising results in vitro and in vivo, the majority of biomaterials developed for pro-angiogenic drug delivery focus on protein delivery. This narrow focus limits pro-angiogenic therapeutics as peptides, similar to proteins, suffer from poor pharmacokinetics in vivo, necessitating the development of controlled release systems. This review discusses pro-angiogenic peptides and the biomaterials delivery systems that have been developed, or that could easily be adapted for peptide delivery, with a particular focus on depot-based delivery systems.
Collapse
Affiliation(s)
- Amy H. Van Hove
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Danielle S. W. Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Department of Chemical Engineering, University of Rochester, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
28
|
Shukla RT, Sasidhar YU. Conformational dynamics of a short antigenic peptide in its free and antibody bound forms gives insight into the role of β-turns in peptide immunogenicity. Proteins 2015; 83:1352-67. [DOI: 10.1002/prot.24831] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 04/21/2015] [Accepted: 05/02/2015] [Indexed: 02/02/2023]
Affiliation(s)
- Rashmi Tambe Shukla
- Department of Chemistry; Indian Institute of Technology Bombay; Powai Mumbai 400076 India
| | - Yellamraju U. Sasidhar
- Department of Chemistry; Indian Institute of Technology Bombay; Powai Mumbai 400076 India
| |
Collapse
|
29
|
Lajko M, Haddad AF, Robinson CA, Connolly SA. Using proximity biotinylation to detect herpesvirus entry glycoprotein interactions: Limitations for integral membrane glycoproteins. J Virol Methods 2015; 221:81-9. [PMID: 25958131 DOI: 10.1016/j.jviromet.2015.04.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 04/02/2015] [Accepted: 04/28/2015] [Indexed: 01/23/2023]
Abstract
Herpesvirus entry into cells requires coordinated interactions among several viral transmembrane glycoproteins. Viral glycoproteins bind to receptors and interact with other glycoproteins to trigger virus-cell membrane fusion. Details of these glycoprotein interactions are not well understood because they are likely transient and/or low affinity. Proximity biotinylation is a promising protein-protein interaction assay that can capture transient interactions in live cells. One protein is linked to a biotin ligase and a second protein is linked to a short specific acceptor peptide (AP). If the two proteins interact, the ligase will biotinylate the AP, without requiring a sustained interaction. To examine herpesvirus glycoprotein interactions, the ligase and AP were linked to herpes simplex virus 1 (HSV1) gD and Epstein Barr virus (EBV) gB. Interactions between monomers of these oligomeric proteins (homotypic interactions) served as positive controls to demonstrate assay sensitivity. Heterotypic combinations served as negative controls to determine assay specificity, since HSV1 gD and EBV gB do not interact functionally. Positive controls showed strong biotinylation, indicating that viral glycoprotein proximity can be detected. Unexpectedly, the negative controls also showed biotinylation. These results demonstrate the special circumstances that must be considered when examining interactions among glycosylated proteins that are constrained within a membrane.
Collapse
Affiliation(s)
- Michelle Lajko
- DePaul University, Department of Biological Sciences, Chicago, IL, USA
| | | | | | - Sarah A Connolly
- DePaul University, Department of Biological Sciences, Chicago, IL, USA; DePaul University, Department of Health Sciences, Chicago, IL, USA.
| |
Collapse
|
30
|
Forsström B, Bisławska Axnäs B, Rockberg J, Danielsson H, Bohlin A, Uhlen M. Dissecting antibodies with regards to linear and conformational epitopes. PLoS One 2015; 10:e0121673. [PMID: 25816293 PMCID: PMC4376703 DOI: 10.1371/journal.pone.0121673] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 02/04/2015] [Indexed: 12/24/2022] Open
Abstract
An important issue for the performance and specificity of an antibody is the nature of the binding to its protein target, including if the recognition involves linear or conformational epitopes. Here, we dissect polyclonal sera by creating epitope-specific antibody fractions using a combination of epitope mapping and an affinity capture approach involving both synthesized peptides and recombinant protein fragments. This allowed us to study the relative amounts of antibodies to linear and conformational epitopes in the polyclonal sera as well as the ability of each antibody-fraction to detect its target protein in Western blot assays. The majority of the analyzed polyclonal sera were found to have most of the target-specific antibodies directed towards linear epitopes and these were in many cases giving Western blot bands of correct molecular weight. In contrast, many of the antibodies towards conformational epitopes did not bind their target proteins in the Western blot assays. The results from this work have given us insights regarding the nature of the antibody response generated by immunization with recombinant protein fragments and has demonstrated the advantage of using antibodies recognizing linear epitopes for immunoassay involving wholly or partially denatured protein targets.
Collapse
Affiliation(s)
- Björn Forsström
- Science for Life Laboratory, KTH—Royal Institute of Technology, SE-171 21 Stockholm, Sweden
| | - Barbara Bisławska Axnäs
- Department of Proteomics, School of Biotechnology, AlbaNova University Center, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Johan Rockberg
- Department of Proteomics, School of Biotechnology, AlbaNova University Center, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Hanna Danielsson
- Department of Proteomics, School of Biotechnology, AlbaNova University Center, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Anna Bohlin
- Department of Proteomics, School of Biotechnology, AlbaNova University Center, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Mathias Uhlen
- Science for Life Laboratory, KTH—Royal Institute of Technology, SE-171 21 Stockholm, Sweden
- Department of Proteomics, School of Biotechnology, AlbaNova University Center, Royal Institute of Technology (KTH), Stockholm, Sweden
- * E-mail:
| |
Collapse
|
31
|
Montealegre S, Venugopalan V, Fritzsche S, Kulicke C, Hein Z, Springer S. Dissociation of β2-microglobulin determines the surface quality control of major histocompatibility complex class I molecules. FASEB J 2015; 29:2780-8. [PMID: 25782992 DOI: 10.1096/fj.14-268094] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/25/2015] [Indexed: 11/11/2022]
Abstract
Major histocompatibility complex class I proteins, which present antigenic peptides to cytotoxic T lymphocytes at the surface of all nucleated cells, are endocytosed and destroyed rapidly once their peptide ligand has dissociated. The molecular mechanism of this cellular quality control process, which prevents rebinding of exogenous peptides and thus erroneous immune responses, is unknown. To identify the nature of the decisive step in endocytic sorting of class I molecules and its location, we have followed the removal of optimally and suboptimally peptide-loaded murine H-2K(b) class I proteins from the cell surface. We find that the binding of their light chain, β2-microglobulin (β2m), protects them from endocytic destruction. Thus, the extended survival of suboptimally loaded K(b) molecules at 25°C is attributed to decreased dissociation of β2m. Because all forms of K(b) are constantly internalized but little β2m-receptive heavy chain is present at the cell surface, it is likely that β2m dissociation and recognition of the heavy chain for lysosomal degradation take place in an endocytic compartment.
Collapse
Affiliation(s)
- Sebastián Montealegre
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Vaishnavi Venugopalan
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Susanne Fritzsche
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Corinna Kulicke
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Zeynep Hein
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Sebastian Springer
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| |
Collapse
|
32
|
Capone G, Fasano C, Lucchese G, Calabrò M, Kanduc D. EBV-Associated Cancer and Autoimmunity: Searching for Therapies. Vaccines (Basel) 2015; 3:74-89. [PMID: 26344947 PMCID: PMC4494242 DOI: 10.3390/vaccines3010074] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/12/2014] [Accepted: 01/27/2015] [Indexed: 12/26/2022] Open
Abstract
Epstein-Barr virus (EBV) infects B-, T-, and NK cells and has been associated not only with a wide range of lymphoid malignancies but also with autoimmune diseases such as lupus erythematosus, rheumatoid arthritis and, in particular, multiple sclerosis. Hence, effective immunotherapeutic approaches to eradicate EBV infection might overthrow cancer and autoimmunity incidence. However, currently no effective anti-EBV immunotherapy is available. Here we use the concept that protein immunogenicity is allocated in rare peptide sequences and search the Epstein-Barr nuclear antigen 1 (EBNA1) sequence for peptides unique to the viral protein and absent in the human host. We report on a set of unique EBV EBNA1 peptides that might be used in designing peptide-based therapies able to specifically hitting the virus or neutralizing pathogenic autoantibodies.
Collapse
Affiliation(s)
- Giovanni Capone
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari 70126, Italy.
| | - Candida Fasano
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari 70126, Italy.
| | - Guglielmo Lucchese
- Brain and Language Laboratory, Free University of Berlin, 14195 Berlin, Germany.
| | - Michele Calabrò
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari 70126, Italy.
| | - Darja Kanduc
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari 70126, Italy.
| |
Collapse
|
33
|
Janßen L, Ramnarayan VR, Aboelmagd M, Iliopoulou M, Hein Z, Majoul I, Fritzsche S, Halenius A, Springer S. The murine cytomegalovirus immunoevasin gp40 binds MHC class I molecules to retain them in the early secretory pathway. J Cell Sci 2015; 129:219-27. [DOI: 10.1242/jcs.175620] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/26/2015] [Indexed: 12/30/2022] Open
Abstract
In the presence of the murine cytomegalovirus (mCMV) gp40 (m152) protein, murine major histocompatibility complex (MHC) class I molecules do not reach the cell surface but are retained in an early compartment of the secretory pathway. We find that gp40 does not impair folding or high-affinity peptide binding of class I molecules but binds to them to retain them in the endoplasmic reticulum (ER), the ER-Golgi intermediate compartment (ERGIC), and the cis-Golgi, most likely by retrieval from the cis-Golgi to the ER. We identify a sequence in gp40 that is required for both its own retention in the early secretory pathway and for that of class I molecules.
Collapse
Affiliation(s)
- Linda Janßen
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Germany
| | | | - Mohamed Aboelmagd
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Germany
| | - Maria Iliopoulou
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Germany
| | - Zeynep Hein
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Germany
| | - Irina Majoul
- Institute of Biology, University of Lübeck, Germany
| | - Susanne Fritzsche
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Germany
| | - Anne Halenius
- Institute of Virology, University of Freiburg, Germany
| | - Sebastian Springer
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Germany
| |
Collapse
|
34
|
Adenovirus E1A targets the DREF nuclear factor to regulate virus gene expression, DNA replication, and growth. J Virol 2014; 88:13469-81. [PMID: 25210186 DOI: 10.1128/jvi.02538-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The adenovirus E1A gene is the first gene expressed upon viral infection. E1A remodels the cellular environment to maximize permissivity for viral replication. E1A is also the major transactivator of viral early gene expression and a coregulator of a large number of cellular genes. E1A carries out its functions predominantly by binding to cellular regulatory proteins and altering their activities. The unstructured nature of E1A enables it to bind to a large variety of cellular proteins and form new molecular complexes with novel functions. The C terminus of E1A is the least-characterized region of the protein, with few known binding partners. Here we report the identification of cellular factor DREF (ZBED1) as a novel and direct binding partner of E1A. Our studies identify a dual role for DREF in the viral life cycle. DREF contributes to activation of gene expression from all viral promoters early in infection. Unexpectedly, it also functions as a growth restriction factor for adenovirus as knockdown of DREF enhances virus growth and increases viral genome copy number late in the infection. We also identify DREF as a component of viral replication centers. E1A affects the subcellular distribution of DREF within PML bodies and enhances DREF SUMOylation. Our findings identify DREF as a novel E1A C terminus binding partner and provide evidence supporting a role for DREF in viral replication. IMPORTANCE This work identifies the putative transcription factor DREF as a new target of the E1A oncoproteins of human adenovirus. DREF was found to primarily localize with PML nuclear bodies in uninfected cells and to relocalize into virus replication centers during infection. DREF was also found to be SUMOylated, and this was enhanced in the presence of E1A. Knockdown of DREF reduced the levels of viral transcripts detected at 20 h, but not at 40 h, postinfection, increased overall virus yield, and enhanced viral DNA replication. DREF was also found to localize to viral promoters during infection together with E1A. These results suggest that DREF contributes to activation of viral gene expression. However, like several other PML-associated proteins, DREF also appears to function as a growth restriction factor for adenovirus infection.
Collapse
|
35
|
Urban E, Nagarkar-Jaiswal S, Lehner CF, Heidmann SK. The cohesin subunit Rad21 is required for synaptonemal complex maintenance, but not sister chromatid cohesion, during Drosophila female meiosis. PLoS Genet 2014; 10:e1004540. [PMID: 25101996 PMCID: PMC4125089 DOI: 10.1371/journal.pgen.1004540] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 06/16/2014] [Indexed: 01/03/2023] Open
Abstract
Replicated sister chromatids are held in close association from the time of their synthesis until their separation during the next mitosis. This association is mediated by the ring-shaped cohesin complex that appears to embrace the sister chromatids. Upon proteolytic cleavage of the α-kleisin cohesin subunit at the metaphase-to-anaphase transition by separase, sister chromatids are separated and segregated onto the daughter nuclei. The more complex segregation of chromosomes during meiosis is thought to depend on the replacement of the mitotic α-kleisin cohesin subunit Rad21/Scc1/Mcd1 by the meiotic paralog Rec8. In Drosophila, however, no clear Rec8 homolog has been identified so far. Therefore, we have analyzed the role of the mitotic Drosophila α-kleisin Rad21 during female meiosis. Inactivation of an engineered Rad21 variant by premature, ectopic cleavage during oogenesis results not only in loss of cohesin from meiotic chromatin, but also in precocious disassembly of the synaptonemal complex (SC). We demonstrate that the lateral SC component C(2)M can interact directly with Rad21, potentially explaining why Rad21 is required for SC maintenance. Intriguingly, the experimentally induced premature Rad21 elimination, as well as the expression of a Rad21 variant with destroyed separase consensus cleavage sites, do not interfere with chromosome segregation during meiosis, while successful mitotic divisions are completely prevented. Thus, chromatid cohesion during female meiosis does not depend on Rad21-containing cohesin.
Collapse
Affiliation(s)
- Evelin Urban
- Lehrstuhl für Genetik, University of Bayreuth, Bayreuth, Germany
| | | | - Christian F. Lehner
- Institute of Molecular Life Sciences (IMLS), University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
36
|
Hein Z, Uchtenhagen H, Abualrous ET, Saini SK, Janßen L, Van Hateren A, Wiek C, Hanenberg H, Momburg F, Achour A, Elliott T, Springer S, Boulanger D. Peptide-independent stabilization of MHC class I molecules breaches cellular quality control. J Cell Sci 2014; 127:2885-97. [PMID: 24806963 DOI: 10.1242/jcs.145334] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2024] Open
Abstract
The intracellular trafficking of major histocompatibility complex class I (MHC-I) proteins is directed by three quality control mechanisms that test for their structural integrity, which is correlated to the binding of high-affinity antigenic peptide ligands. To investigate which molecular features of MHC-I these quality control mechanisms detect, we have followed the hypothesis that suboptimally loaded MHC-I molecules are characterized by their conformational mobility in the F-pocket region of the peptide-binding site. We have created a novel variant of an MHC-I protein, K(b)-Y84C, in which two α-helices in this region are linked by a disulfide bond that mimics the conformational and dynamic effects of bound high-affinity peptide. K(b)-Y84C shows a remarkable increase in the binding affinity to its light chain, beta-2 microglobulin (β2m), and bypasses all three cellular quality control steps. Our data demonstrate (1) that coupling between peptide and β2m binding to the MHC-I heavy chain is mediated by conformational dynamics; (2) that the folded conformation of MHC-I, supported by β2m, plays a decisive role in passing the ER-to-cell-surface transport quality controls; and (3) that β2m association is also tested by the cell surface quality control that leads to MHC-I endocytosis.
Collapse
Affiliation(s)
- Zeynep Hein
- Molecular Life Science Center, Jacobs University Bremen, 28759 Bremen, Germany
| | - Hannes Uchtenhagen
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | - Sunil Kumar Saini
- Molecular Life Science Center, Jacobs University Bremen, 28759 Bremen, Germany
| | - Linda Janßen
- Molecular Life Science Center, Jacobs University Bremen, 28759 Bremen, Germany
| | - Andy Van Hateren
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, Hampshire SO16 6YD, UK
| | - Constanze Wiek
- Department of Otorhinolaryngology, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Helmut Hanenberg
- Department of Otorhinolaryngology, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Frank Momburg
- Division of Translational Immunology, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Tim Elliott
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, Hampshire SO16 6YD, UK
| | - Sebastian Springer
- Molecular Life Science Center, Jacobs University Bremen, 28759 Bremen, Germany
| | - Denise Boulanger
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, Hampshire SO16 6YD, UK
| |
Collapse
|
37
|
Wuethrich I, Guillen E, Ploegh HL. A mouse monoclonal antibody against Alexa Fluor 647. Monoclon Antib Immunodiagn Immunother 2014; 33:109-20. [PMID: 24746152 DOI: 10.1089/mab.2013.0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fluorophores are essential tools in molecular and cell biology. However, their application is mostly confined to the singular exploitation of their fluorescent properties. To enhance the versatility and expand the use of the fluorophore Alexa Fluor 647 (AF647), we generated a mouse monoclonal antibody against it. We demonstrate its use of AF647 for immunoblot, immunoprecipitation, and cytofluorimetry.
Collapse
Affiliation(s)
- Irene Wuethrich
- Whitehead Institute for Biomedical Research , Cambridge, Massachusetts
| | | | | |
Collapse
|
38
|
Armstrong AA, Hildreth JEK, Amzel LM. Structural and thermodynamic insights into the recognition of native proteins by anti-peptide antibodies. J Mol Biol 2013; 425:2027-2038. [PMID: 23473830 PMCID: PMC3985606 DOI: 10.1016/j.jmb.2013.02.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 02/25/2013] [Accepted: 02/26/2013] [Indexed: 01/07/2023]
Abstract
The mechanism by which antibodies elicited against protein-derived peptides achieve cross-reactivity with their cognate proteins remains unknown. To address this question, we have carried out the complete thermodynamic characterization of the association of a monoclonal antibody (260.33.12) raised against a peptide (SNpep) derived from staphylococcal nuclease (SNase) with both eliciting peptide and cognate protein. Although both ligands bind with similar affinity (Kd=0.42 μM and 0.30 μM for protein and peptide, respectively), protein and peptide binding have highly different thermodynamic signatures: peptide binding is characterized by a large enthalpic contribution (ΔH=-7.7 kcal/mol) whereas protein binding is dominated by a large entropic contribution (-TΔS=-7.2 kcal/mol). The structure of the SNpep:Fab complex, determined by X-ray diffraction, reveals that the bound conformation of the peptide differs from the conformation of the corresponding loop region in crystal structures of free SNase. The energy difference, estimated by molecular dynamics simulations between native SNase and a model in which the Ω-loop is built in the conformation of the Fab-bound peptide, shows that the energetic cost of adopting this conformation is compatible with the enthalpic cost of binding the protein vis-à-vis the peptide. These results are compatible with a mechanism by which the anti-peptide antibody recognizes the cognate protein: high affinity is maintained upon binding a non-native conformation by offsetting enthalpic penalties with reduced entropic losses. These findings provide potentially useful guidelines for the identification of linear epitopes within protein sequences that are well suited for the development of synthetic peptide vaccines.
Collapse
Affiliation(s)
- A. A. Armstrong
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205
| | - James E. K. Hildreth
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205
| | - L. M. Amzel
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205,Corresponding author. Phone: 410-955-3955 FAX: 410-955-0637
| |
Collapse
|
39
|
Preparation of monoclonal antibodies against poor immunogenic avian influenza virus proteins. J Immunol Methods 2013; 387:43-50. [DOI: 10.1016/j.jim.2012.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 09/05/2012] [Accepted: 09/19/2012] [Indexed: 11/21/2022]
|
40
|
Shukla RT, Sasidhar YU. Energetics of β-turn formation in a mutant peptide YPGDV from influenza hemagglutinin: an MD simulation study. Phys Chem Chem Phys 2013; 15:18571-83. [DOI: 10.1039/c3cp52166d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Braun P, Gingras AC. History of protein-protein interactions: From egg-white to complex networks. Proteomics 2012; 12:1478-98. [DOI: 10.1002/pmic.201100563] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Pascal Braun
- Department of Plant Systems Biology; Center for Life and Food Sciences Weihenstephan; Technical University Munich; Freising Germany
- Research Unit Protein Science; Helmholtz Centre Munich; Munich Germany
| | - Anne-Claude Gingras
- Samuel Lunenfeld Research Institute at Mount Sinai Hospital; Toronto Ontario Canada
- Department of Molecular Genetics; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
42
|
Conroy PJ, O'Kennedy RJ, Hearty S. Cardiac troponin I: a case study in rational antibody design for human diagnostics. Protein Eng Des Sel 2012; 25:295-305. [PMID: 22509048 DOI: 10.1093/protein/gzs018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In vitro diagnostic (IVD) platforms provide rapid and accurate determination of disease status. The clinical performance of antibody-based diagnostic platforms is paramount as the information provided often informs the medical intervention taken and, ultimately, the patient's outcome. Breaking down such an immuno-IVD device into its component elements, the biorecognition entity is key to the analytical specificity of the test. Furthermore, tailored optimisation of the antibody is often necessary to impart the desired biophysical properties for the specific application. This tailoring is now widely facilitated by advances in combinatorial approaches to antibody generation, molecular evolution strategies and the availability of truly high-throughput (HT), refined surface plasmon resonance-based screening tools. In this paper, we demonstrate a rational, knowledge-driven approach to the generation of epitope-specific antibodies for the early detection of cardiovascular disease, discuss the merits of the approaches taken and offer a perspective on HT strategies to mining large antibody libraries. These results highlight the expedience of such methodologies for the development of truly superior cardiovascular disease biorecognition elements.
Collapse
Affiliation(s)
- P J Conroy
- Biomedical Diagnostics Institute, National Centre for Sensor Research and School of Biotechnology, Dublin City University, Dublin 9, Ireland
| | | | | |
Collapse
|
43
|
A high-affinity monoclonal antibody against the FLAG tag useful for G-protein-coupled receptor study. Anal Biochem 2012; 425:157-65. [PMID: 22465329 DOI: 10.1016/j.ab.2012.03.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 03/13/2012] [Accepted: 03/19/2012] [Indexed: 11/22/2022]
Abstract
The FLAG sequence (DYKDDDDK) is an artificial sequence widely used to detect, quantify, and purify proteins expressed as FLAG-fusion proteins. Several highly specific monoclonal antibodies for FLAG are commercially available; however, they are not always sensitive enough to detect proteins expressed at low levels and can give rise to unacceptable levels of background signal when used for immunostaining in vitro and in vivo. The current study reports the successful establishment of hybridoma cells that produce an extremely high-affinity antibody to FLAG, namely 2H8 Ab. 2H8 Ab stained FLAG-tagged G-protein-coupled receptors more strongly than commercially available antibodies in both flow cytometry and immunostaining experiments with no background staining. 2H8 was sensitive enough to detect FLAG-tagged G-protein-coupled receptors and soluble proteins in crude preparations, which could not be achieved using commercially available antibodies. Only 10 ng of 2H8 Ab was required to immunoprecipitate FLAG-tagged G-protein-coupled receptors from cell lysates. Of note, 2H8 stained FLAG-tagged BLT2, a low-affinity leukotriene B4 receptor, expressed in vivo in the small intestine of mice under control of the villin promoter. Thus, 2H8 Ab is a promising tool for analyzing various FLAG-fusion proteins, particularly G-protein-coupled receptors, both in vitro and in vivo.
Collapse
|
44
|
Baumann S, Pohlmann T, Jungbluth M, Brachmann A, Feldbrügge M. Kinesin-3 and dynein mediate microtubule-dependent co-transport of mRNPs and endosomes. J Cell Sci 2012; 125:2740-52. [DOI: 10.1242/jcs.101212] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Long-distance transport of mRNAs is important in determining polarity in eukaryotes. Molecular motors shuttle large ribonucleoprotein complexes (mRNPs) containing RNA-binding proteins and associated factors along microtubules. However, precise mechanisms including the interplay of molecular motors and a potential connection to membrane trafficking remain elusive. Here, we solve the motor composition of transported mRNPs containing the RNA-binding protein Rrm4 of the pathogen Ustilago maydis. The underlying transport process determines the axis of polarity in infectious filaments. Plus end-directed Kin3, a Kinesin-3 type motor, mediates anterograde transport of mRNPs and is also present in transport units moving retrogradely. Split-dynein Dyn1/2 functions in retrograde movement of mRNPs. Plus end-directed conventional kinesin Kin1 is indirectly involved by transporting minus end-directed Dyn1/2 back to plus ends. Importantly, we additionally demonstrate that Rrm4-containing mRNPs co-localise with the t-SNARE Yup1 on shuttling endosomes and that functional endosomes are essential for mRNP movement. Either loss of Kin3 or removal of its lipid-binding pleckstrin homology domain abolish Rrm4-dependent movement without preventing co-localisation of Rrm4 and Yup1-positive endosomes. In summary, we uncovered the combination of motors required for mRNP shuttling along microtubules. Furthermore, intimately linked co-transport of endosomes and mRNPs suggests vesicle hitchhiking as novel mode of mRNP transport.
Collapse
|
45
|
Brown MC, Joaquim TR, Chambers R, Onisk DV, Yin F, Moriango JM, Xu Y, Fancy DA, Crowgey EL, He Y, Stave JW, Lindpaintner K. Impact of immunization technology and assay application on antibody performance--a systematic comparative evaluation. PLoS One 2011; 6:e28718. [PMID: 22205963 PMCID: PMC3243671 DOI: 10.1371/journal.pone.0028718] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 11/14/2011] [Indexed: 11/27/2022] Open
Abstract
Antibodies are quintessential affinity reagents for the investigation and determination of a protein's expression patterns, localization, quantitation, modifications, purification, and functional understanding. Antibodies are typically used in techniques such as Western blot, immunohistochemistry (IHC), and enzyme-linked immunosorbent assays (ELISA), among others. The methods employed to generate antibodies can have a profound impact on their success in any of these applications. We raised antibodies against 10 serum proteins using 3 immunization methods: peptide antigens (3 per protein), DNA prime/protein fragment-boost ("DNA immunization"; 3 per protein), and full length protein. Antibodies thus generated were systematically evaluated using several different assay technologies (ELISA, IHC, and Western blot). Antibodies raised against peptides worked predominantly in applications where the target protein was denatured (57% success in Western blot, 66% success in immunohistochemistry), although 37% of the antibodies thus generated did not work in any of these applications. In contrast, antibodies produced by DNA immunization performed well against both denatured and native targets with a high level of success: 93% success in Western blots, 100% success in immunohistochemistry, and 79% success in ELISA. Importantly, success in one assay method was not predictive of success in another. Immunization with full length protein consistently yielded the best results; however, this method is not typically available for new targets, due to the difficulty of generating full length protein. We conclude that DNA immunization strategies which are not encumbered by the limitations of efficacy (peptides) or requirements for full length proteins can be quite successful, particularly when multiple constructs for each protein are used.
Collapse
Affiliation(s)
- Michael C Brown
- Research and Development, SDIX, Newark, Delaware, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Production and characterization of peptide antibodies. Methods 2011; 56:136-44. [PMID: 22178691 DOI: 10.1016/j.ymeth.2011.12.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 11/30/2011] [Accepted: 12/02/2011] [Indexed: 12/18/2022] Open
Abstract
Proteins are effective immunogens for generation of antibodies. However, occasionally the native protein is known but not available for antibody production. In such cases synthetic peptides derived from the native protein are good alternatives for antibody production. These peptide antibodies are powerful tools in experimental biology and are easily produced to any peptide of choice. A widely used approach for production of peptide antibodies is to immunize animals with a synthetic peptide coupled to a carrier protein. Very important is the selection of the synthetic peptide, where factors such as structure, accessibility and amino acid composition are crucial. Since small peptides tend not to be immunogenic, it may be necessary to conjugate them to carrier proteins in order to enhance immune presentation. Several strategies for conjugation of peptide-carriers applied for immunization exist, including solid-phase peptide-carrier conjugation and peptide-carrier conjugation in solution. Upon immunization, adjuvants such as Al(OH)(3) are added together with the immunogenic peptide-carrier conjugate, which usually leads to high-titred antisera. Following immunization and peptide antibody purification, the antibodies are characterized based on their affinity or specificity. An efficient approach for characterization of peptide antibodies is epitope mapping using peptide based assays. This review describes standard solid-phase approaches for generation of peptide antibodies with special emphasis on peptide selection, generation of peptide conjugates for immunization and characterization of the resulting peptide antibodies.
Collapse
|
47
|
Bavaro SL, Kanduc D. Pentapeptide commonality between Corynebacterium diphtheriae toxin and the Homo sapiens proteome. Immunotherapy 2010; 3:49-58. [PMID: 21174557 DOI: 10.2217/imt.10.83] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cross-reactivity may affect diagnostic tests and cause harmful autoimmune reactions following immunotherapy. To predict potential cross-reactivity and search for safe immunotherapeutic approaches, we analyzed sequence identity between microbial antigens and the human proteome. Using diphtheria toxin (DT) as a model, we examined its patterns of identity with human proteins at the pentapeptide level. DT shares 503 pentapeptides with the human proteome, while only 31 pentapeptides are unique to the toxin. DT pentapeptide identity involves multiple/repeated matches in human proteins (a total of 4966 occurrences). Human proteins containing bacterial peptide matches include antigens linked to fundamental cellular functions, such as cell cycle control, proliferation, development and differentiation. The data presented in this article offer a rational basis for designing peptide-based vaccines that specifically target DT and thus eliminate the potential risk of cross-reactivity with human proteins. More generally, this study proposes a methodological approach for avoiding cross-reactivity in immune reactions.
Collapse
Affiliation(s)
- Simona Lucia Bavaro
- Department of Biochemistry & Molecular Biology, University of Bari, Bari 70126, Italy
| | | |
Collapse
|
48
|
Kanduc D. Describing the hexapeptide identity platform between the influenza A H5N1 and Homo sapiens proteomes. Biologics 2010; 4:245-61. [PMID: 20859452 PMCID: PMC2943197 DOI: 10.2147/btt.s12097] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Indexed: 11/23/2022]
Abstract
We searched the primary sequence of influenza A H5N1 polyprotein for hexamer amino acid sequences shared with human proteins using the Protein International Resource database and the exact peptide matching analysis program. We find that the viral polyprotein shares numerous hexapeptides with the human proteome. The human proteins involved in the viral overlap are represented by antigens associated with basic cell functions such as proliferation, development, and differentiation. Of special importance, many human proteins that share peptide sequences with influenza A polyprotein are antigens such as reelin, neurexin I-α, myosin-IXa, Bardet–Biedl syndrome 10 protein, Williams syndrome transcription factor, disrupted in schizophrenia 1 protein, amyotrophic lateral sclerosis 2 chromosomal region candidate gene 17 protein, fragile X mental retardation 2 protein, and jouberin. That is, the viral-vs-human overlap involves human proteins that, when altered, have been reported to be potentially associated with multiple neurological disorders that can include autism, epilepsy, obesity, dystonia, ataxia–telangiectasia, amyotrophic lateral sclerosis, sensorineural deafness, sudden infant death syndrome, Charcot-Marie-Tooth disease, and myelination. The present data are discussed as a possible molecular basis for understanding influenza A viral escape from immunosurveillance and for defining anti-influenza immune-therapeutic approaches devoid of collateral adverse events.
Collapse
Affiliation(s)
- Darja Kanduc
- Department of Biochemistry and Molecular Biology, University of Bari, Italy
| |
Collapse
|
49
|
Proposing low-similarity peptide vaccines against Mycobacterium tuberculosis. J Biomed Biotechnol 2010; 2010:832341. [PMID: 20625421 PMCID: PMC2896900 DOI: 10.1155/2010/832341] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 12/02/2009] [Accepted: 03/24/2010] [Indexed: 12/03/2022] Open
Abstract
Using the currently available proteome databases and based on the concept that a rare sequence is a potential epitope, epitopic sequences derived from Mycobacterium tuberculosis were examined for similarity score to the proteins of the host in which the epitopes were defined. We found that: (i) most of the bacterial linear determinants had peptide fragment(s) that were rarely found in the host proteins and (ii) the relationship between low similarity and epitope definition appears potentially applicable to T-cell determinants. The data confirmed the hypothesis that low-sequence similarity shapes or determines the epitope definition at the molecular level and provides a potential tool for designing new approaches to prevent, diagnose, and treat tuberculosis and other infectious diseases.
Collapse
|
50
|
Repnikova E, Koles K, Nakamura M, Pitts J, Li H, Ambavane A, Zoran MJ, Panin VM. Sialyltransferase regulates nervous system function in Drosophila. J Neurosci 2010; 30:6466-76. [PMID: 20445073 PMCID: PMC3354699 DOI: 10.1523/jneurosci.5253-09.2010] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 02/17/2010] [Accepted: 03/23/2010] [Indexed: 11/21/2022] Open
Abstract
In vertebrates, sialylated glycans participate in a wide range of biological processes and affect the development and function of the nervous system. While the complexity of glycosylation and the functional redundancy among sialyltransferases provide obstacles for revealing biological roles of sialylation in mammals, Drosophila possesses a sole vertebrate-type sialyltransferase, Drosophila sialyltransferase (DSiaT), with significant homology to its mammalian counterparts, suggesting that Drosophila could be a suitable model to investigate the function of sialylation. To explore this possibility and investigate the role of sialylation in Drosophila, we inactivated DSiaT in vivo by gene targeting and analyzed phenotypes of DSiaT mutants using a combination of behavioral, immunolabeling, electrophysiological, and pharmacological approaches. Our experiments demonstrated that DSiaT expression is restricted to a subset of CNS neurons throughout development. We found that DSiaT mutations result in significantly decreased life span, locomotor abnormalities, temperature-sensitive paralysis, and defects of neuromuscular junctions. Our results indicate that DSiaT regulates neuronal excitability and affects the function of a voltage-gated sodium channel. Finally, we showed that sialyltransferase activity is required for DSiaT function in vivo, which suggests that DSiaT mutant phenotypes result from a defect in sialylation of N-glycans. This work provided the first evidence that sialylation has an important biological function in protostomes, while also revealing a novel, nervous system-specific function of alpha2,6-sialylation. Thus, our data shed light on one of the most ancient functions of sialic acids in metazoan organisms and suggest a possibility that this function is evolutionarily conserved between flies and mammals.
Collapse
Affiliation(s)
| | - Kate Koles
- Departments of Biochemistry and Biophysics and
| | | | - Jared Pitts
- Departments of Biochemistry and Biophysics and
| | - Haiwen Li
- Departments of Biochemistry and Biophysics and
| | | | - Mark J. Zoran
- Biology, Texas A&M University, College Station, Texas 77843
| | | |
Collapse
|