1
|
Houillier P, Prot-Bertoye C. Autoimmune Tubulopathies. J Am Soc Nephrol 2025; 36:706-712. [PMID: 39786900 PMCID: PMC11975238 DOI: 10.1681/asn.0000000628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025] Open
Abstract
The renal tubule and collecting duct express a large number of proteins, all having putative immunoreactive motives. Therefore, all can be the target of pathogenic autoantibodies. However, autoimmune tubulopathies seem to be rare, and we hypothesize that they are underdiagnosed. This review summarizes the current knowledge on autoimmune tubulopathies. We elected to classify tubulopathies according to the segment that is targeted because this determines, at least in part, the phenotypic presentation. In the proximal tubule, autoantibodies can cause anti-brush border antibody disease, renal Fanconi syndrome, renal proximal tubular acidosis, or tubulointerstitial nephritis and uveitis syndrome. Autoantibodies targeting the thick ascending limb of the loop of Henle can cause either acquired Bartter syndrome or hypomagnesemia with hypercalciuria, whereas autoantibodies targeting the distal convoluted tubule can cause acquired Gitelman syndrome. Finally, renal distal tubular acidosis or nephrogenic diabetes insipidus can be caused by autoantibodies targeting the collecting duct. In most instances, the characterization of the autoantibodies remains incomplete and the pathogenesis of the disease obscure. We believe it is important to increase the awareness of physicians regarding autoantibody-mediated tubular diseases to have a better estimation of the prevalence and to improve the care to patients. A research effort to increase the understanding of the pathogenesis of autoantibodies-mediated tubular diseases is also hoped for.
Collapse
Affiliation(s)
- Pascal Houillier
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France; CNRS ERL 8228 - Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, Paris, France; Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France; Centre de Référence des Maladies Rares du Calcium et du Phosphate, Paris, France; and Faculté de Médecine, Université Paris Cité, Paris, France
| | | |
Collapse
|
2
|
AlFaris B, AlBader FB, AlSheikh R, Bashiri FA, Hamad MH, Kentab A, Alghamdi M. The correlation of intracranial parenchymal calcium score and the severity of neurological clinical presentation in carbonic anhydrase deficiency type 2. Brain Dev 2025; 47:104309. [PMID: 39667299 DOI: 10.1016/j.braindev.2024.104309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/20/2024] [Accepted: 11/23/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND Carbonic anhydrase type II deficiency (CAII-D) syndrome is a rare autosomal recessive genetic disorder characterized by osteopetrosis, renal tubular acidosis, and brain calcifications. Understanding the clinical and radiological features of CAII-D is key to effective management. AIM This study aimed to comprehensively analyze and measure intracranial parenchymal calcium score in pediatric CAII-D in relation to the severity of neurological clinical presentation. METHODS A retrospective chart review at King Saud University Medical City included pediatric CAII-D patients diagnosed between June 2015 and December 2022. Study variables included age, gender, genetic results, developmental status, developmental quotient (DQ), CT findings, optic canal diameter, intracranial calcium score, and neuropsychiatric symptoms. RESULTS Ten CAII-D patients, median age 10.5 years, were included. Most patients displayed homozygous pathogenic CA2 gene variants. For neurodevelopmental symptoms, 60.0 % of patients presented with global developmental delay, 20.0 % had intellectual disability, and the remaining 20.0 % had normal development. The median DQ score was 63.50, with 80.0 % categorized as delayed. Neuropsychiatric disorders were present in 20.0 %. Optic nerve atrophy was observed in 22.2 %, while brain calcifications were present in 70.0 % of cases. Correlation analysis revealed no significant associations between intracranial parenchymal calcium score and age, DQ score, or optic canal diameter. Neurodevelopmental symptoms, neuropsychiatric symptoms, and DQ were not associated with intracranial parenchymal calcium score. CONCLUSION Intraparenchymal calcifications in CAII-D are common but unrelated to developmental delay and neuropsychiatric symptoms, suggesting complex pathophysiology. Follow-up brain imaging may not aid in prognosis or severity assessment, highlighting the need for further research.
Collapse
Affiliation(s)
- Basma AlFaris
- Division of Pediatric Neurology, Department of Pediatrics, King Fahad Medical City, Riyadh, Saudi Arabia.
| | - Fahad B AlBader
- Department of Radiology and Medical Imaging, King Saud University Medical City, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Rawan AlSheikh
- Division of Pediatric Neurology, Department of Pediatrics, King Saud Medical City, Riyadh, Saudi Arabia.
| | - Fahad A Bashiri
- Division of Pediatric Neurology, Department of Pediatrics, King Saud University Medical City, Riyadh, Saudi Arabia; Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Muddathir H Hamad
- Division of Pediatric Neurology, Department of Pediatrics, King Saud University Medical City, Riyadh, Saudi Arabia; Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Amal Kentab
- Division of Pediatric Neurology, Department of Pediatrics, King Saud University Medical City, Riyadh, Saudi Arabia; Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Malak Alghamdi
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia; Division of Medical Genetics, Department of Pediatrics, King Saud University Medical City, Riyadh, Saudi Arabia.
| |
Collapse
|
3
|
Neelam, Bopardikar M, Singh H. 1H, 15N and 13C resonance assignments of the S2A and H64A double mutant of human carbonic anhydrase II. BIOMOLECULAR NMR ASSIGNMENTS 2024; 18:299-304. [PMID: 39306647 DOI: 10.1007/s12104-024-10203-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/09/2024] [Indexed: 10/27/2024]
Abstract
Protein-water interactions profoundly influence protein structure and dynamics. Consequently, the function of many biomacromolecules is directly related to the presence and exchange of water molecules. While structural water molecules can be readily identified through X-ray crystallography, the dynamics within functional protein-water networks remain largely elusive. Therefore, to understand the role of biological water in protein dynamics and function, we have introduced S2A and H64A mutations in human Carbonic Anhydrase II (hCAII), a model system to study protein-water interactions. The mutations of serine to alanine at position 2 and histidine to alanine at position 64 cause an increase in hydrophobicity in the N-terminus and active site loop thereby restricting water entry and disrupting the water network in the Zn2+-binding pocket. To pave the way for a detailed investigation into the structural, functional, and mechanistic aspects of the Ser2Ala/His64Ala double mutant of hCAII, we present here almost complete sequence-specific resonance assignments for 1H, 15N, and 13C. These assignments serve as the basis for comprehensive studies on the dynamics of the protein-water network within the Zn2+-binding pocket and its role in catalysis.
Collapse
Affiliation(s)
- Neelam
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, 760010, India
| | - Mandar Bopardikar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, 760010, India
- Department of Biosciences and Technology, School of Science and Environmental Studies, Dr. Vishwanath Karad MIT World Peace University, Pune, Maharashtra, 411038, India
| | - Himanshu Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, 760010, India.
- Department of Biosciences and Bioengineering, IIT Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
4
|
Van Buren E, Azzara D, Rangel-Moreno J, Garcia-Hernandez MDLL, Murphy SP, Cohen ED, Lewis E, Lin X, Park HR. Single-cell RNA sequencing reveals placental response under environmental stress. Nat Commun 2024; 15:6549. [PMID: 39095385 PMCID: PMC11297347 DOI: 10.1038/s41467-024-50914-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 07/25/2024] [Indexed: 08/04/2024] Open
Abstract
The placenta is crucial for fetal development, yet the impact of environmental stressors such as arsenic exposure remains poorly understood. We apply single-cell RNA sequencing to analyze the response of the mouse placenta to arsenic, revealing cell-type-specific gene expression, function, and pathological changes. Notably, the Prap1 gene, which encodes proline-rich acidic protein 1 (PRAP1), is significantly upregulated in 26 placental cell types including various trophoblast cells. Our study shows a female-biased increase in PRAP1 in response to arsenic and localizes it in the placenta. In vitro and ex vivo experiments confirm PRAP1 upregulation following arsenic treatment and demonstrate that recombinant PRAP1 protein reduces arsenic-induced cytotoxicity and downregulates cell cycle pathways in human trophoblast cells. Moreover, PRAP1 knockdown differentially affects cell cycle processes, proliferation, and cell death depending on the presence of arsenic. Our findings provide insights into the placental response to environmental stress, offering potential preventative and therapeutic approaches for environment-related adverse outcomes in mothers and children.
Collapse
Affiliation(s)
- Eric Van Buren
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - David Azzara
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Javier Rangel-Moreno
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester, Rochester, NY, USA
| | | | - Shawn P Murphy
- Department of Obstetrics and Gynecology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Ethan D Cohen
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Ethan Lewis
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Xihong Lin
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Statistics, Harvard University, Cambridge, MA, USA
| | - Hae-Ryung Park
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
5
|
Kunchur MG, Mauch TJ, Parkanzky M, Rahilly LJ. A review of renal tubular acidosis. J Vet Emerg Crit Care (San Antonio) 2024; 34:325-355. [PMID: 39023331 DOI: 10.1111/vec.13407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 10/14/2022] [Accepted: 11/11/2022] [Indexed: 07/20/2024]
Abstract
OBJECTIVE To review the current scientific literature on renal tubular acidosis (RTA) in people and small animals, focusing on diseases in veterinary medicine that result in secondary RTA. DATA SOURCES Scientific reviews and original research publications on people and small animals focusing on RTA. SUMMARY RTA is characterized by defective renal acid-base regulation that results in normal anion gap hyperchloremic metabolic acidosis. Renal acid-base regulation includes the reabsorption and regeneration of bicarbonate in the renal proximal tubule and collecting ducts and the process of ammoniagenesis. RTA occurs as a primary genetic disorder or secondary to disease conditions. Based on pathophysiology, RTA is classified as distal or type 1 RTA, proximal or type 2 RTA, type 3 RTA or carbonic anhydrase II mutation, and type 4 or hyperkalemic RTA. Fanconi syndrome comprises proximal RTA with additional defects in proximal tubular function. Extensive research elucidating the genetic basis of RTA in people exists. RTA is a genetic disorder in the Basenji breed of dogs, where the mutation is known. Secondary RTA in human and veterinary medicine is the sequela of diseases that include immune-mediated, toxic, and infectious causes. Diagnosis and characterization of RTA include the measurement of urine pH and the evaluation of renal handling of substances that should affect acid or bicarbonate excretion. CONCLUSIONS Commonality exists between human and veterinary medicine among the types of RTA. Many genetic defects causing primary RTA are identified in people, but those in companion animals other than in the Basenji are unknown. Critically ill veterinary patients are often admitted to the ICU for diseases associated with secondary RTA, or they may develop RTA while hospitalized. Recognition and treatment of RTA may reverse tubular dysfunction and promote recovery by correcting metabolic acidosis.
Collapse
Affiliation(s)
| | - Teri Jo Mauch
- University of Nebraska Medical Center and Children's Hospital, Omaha, Nebraska, USA
- University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | | | - Louisa J Rahilly
- Cape Cod Veterinary Specialists, Buzzards Bay, Massachusetts, USA
| |
Collapse
|
6
|
Denner TC, Heise NV, Al-Harrasi A, Csuk R. Synthesis and Enzymatic Evaluation of a Small Library of Substituted Phenylsulfonamido-Alkyl Sulfamates towards Carbonic Anhydrase II. Molecules 2024; 29:3015. [PMID: 38998967 PMCID: PMC11243685 DOI: 10.3390/molecules29133015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
A small library of 79 substituted phenylsulfonamidoalkyl sulfamates, 1b-79b, was synthesized starting from arylsulfonyl chlorides and amino alcohols with different numbers of methylene groups between the hydroxyl and amino moieties yielding intermediates 1a-79a, followed by the reaction of the latter with sulfamoyl chloride. All compounds were screened for their inhibitory activity on bovine carbonic anhydrase II. Compounds 1a-79a showed no inhibition of the enzyme, in contrast to sulfamates 1b-79b. Thus, the inhibitory potential of compounds 1b-79b towards this enzyme depends on the substituent and the substitution pattern of the phenyl group as well as the length of the spacer. Bulkier substituents in the para position proved to be better for inhibiting CAII than compounds with the same substituent in the meta or ortho position. For many substitution patterns, compounds with shorter spacer lengths were superior to those with long chain spacers. Compounds with shorter spacer lengths performed better than those with longer chain spacers for a variety of substitution patterns. The most active compound held inhibition constant as low as Ki = 0.67 μM (for 49b) and a tert-butyl substituent in para position and acted as a competitive inhibitor of the enzyme.
Collapse
Affiliation(s)
- Toni C. Denner
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes, Str. 2, D-06120 Halle (Saale), Germany (N.V.H.)
| | - Niels V. Heise
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes, Str. 2, D-06120 Halle (Saale), Germany (N.V.H.)
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman;
| | - René Csuk
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes, Str. 2, D-06120 Halle (Saale), Germany (N.V.H.)
| |
Collapse
|
7
|
Dai P, Zou M, Cai Z, Zeng X, Zhang X, Liang M. pH Homeodynamics and Male Fertility: A Coordinated Regulation of Acid-Based Balance during Sperm Journey to Fertilization. Biomolecules 2024; 14:685. [PMID: 38927088 PMCID: PMC11201807 DOI: 10.3390/biom14060685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
pH homeostasis is crucial for spermatogenesis, sperm maturation, sperm physiological function, and fertilization in mammals. HCO3- and H+ are the most significant factors involved in regulating pH homeostasis in the male reproductive system. Multiple pH-regulating transporters and ion channels localize in the testis, epididymis, and spermatozoa, such as HCO3- transporters (solute carrier family 4 and solute carrier family 26 transporters), carbonic anhydrases, and H+-transport channels and enzymes (e.g., Na+-H+ exchangers, monocarboxylate transporters, H+-ATPases, and voltage-gated proton channels). Hormone-mediated signals impose an influence on the production of some HCO3- or H+ transporters, such as NBCe1, SLC4A2, MCT4, etc. Additionally, ion channels including sperm-specific cationic channels for Ca2+ (CatSper) and K+ (SLO3) are directly or indirectly regulated by pH, exerting specific actions on spermatozoa. The slightly alkaline testicular pH is conducive to spermatogenesis, whereas the epididymis's low HCO3- concentration and acidic lumen are favorable for sperm maturation and storage. Spermatozoa pH increases substantially after being fused with seminal fluid to enhance motility. In the female reproductive tract, sperm are subjected to increasing concentrations of HCO3- in the uterine and fallopian tube, causing a rise in the intracellular pH (pHi) of spermatozoa, leading to hyperpolarization of sperm plasma membranes, capacitation, hyperactivation, acrosome reaction, and ultimately fertilization. The physiological regulation initiated by SLC26A3, SLC26A8, NHA1, sNHE, and CFTR localized in sperm is proven for certain to be involved in male fertility. This review intends to present the key factors and characteristics of pHi regulation in the testes, efferent duct, epididymis, seminal fluid, and female reproductive tract, as well as the associated mechanisms during the sperm journey to fertilization, proposing insights into outstanding subjects and future research trends.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoning Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, China; (P.D.); (M.Z.); (Z.C.); (X.Z.)
| | - Min Liang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, China; (P.D.); (M.Z.); (Z.C.); (X.Z.)
| |
Collapse
|
8
|
Theparambil SM, Begum G, Rose CR. pH regulating mechanisms of astrocytes: A critical component in physiology and disease of the brain. Cell Calcium 2024; 120:102882. [PMID: 38631162 PMCID: PMC11423562 DOI: 10.1016/j.ceca.2024.102882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/19/2024]
Abstract
Strict homeostatic control of pH in both intra- and extracellular compartments of the brain is fundamentally important, primarily due to the profound impact of free protons ([H+]) on neuronal activity and overall brain function. Astrocytes, crucial players in the homeostasis of various ions in the brain, actively regulate their intracellular [H+] (pHi) through multiple membrane transporters and carbonic anhydrases. The activation of astroglial pHi regulating mechanisms also leads to corresponding alterations in the acid-base status of the extracellular fluid. Notably, astrocyte pH regulators are modulated by various neuronal signals, suggesting their pivotal role in regulating brain acid-base balance in both health and disease. This review presents the mechanisms involved in pH regulation in astrocytes and discusses their potential impact on extracellular pH under physiological conditions and in brain disorders. Targeting astrocytic pH regulatory mechanisms represents a promising therapeutic approach for modulating brain acid-base balance in diseases, offering a potential critical contribution to neuroprotection.
Collapse
Affiliation(s)
- Shefeeq M Theparambil
- Faculty of Health and Medicine, Department of Biomedical and Life Sciences, Lancaster University, Lancaster, LA1 4YW, Lancaster, UK.
| | - Gulnaz Begum
- Department of Neurology, The Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| |
Collapse
|
9
|
Shamsian BS, Momtazmanesh N, Saneifard H, Tabatabaei SMTH, Jafari M, Pour ZK, Al-Hussieni KJMR, Jamee M, Kamfar S. Allogenic hematopoietic stem cell transplantation in an Iranian patient with osteopetrosis caused by carbonic anhydrase II deficiency: A case report. Pediatr Transplant 2024; 28:e14689. [PMID: 38655726 DOI: 10.1111/petr.14689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 04/26/2024]
Abstract
BACKGROUND Osteopetrosis is a group of geneticall heterogeneous disorders resulting from impaired osteoclast function and bone resorption. The identification of specific genetic mutations can yield important prognostic and therapeutic implications. Herein, we present the diagnosis and successful application of hematopoietic stem cell transplantation (HSCT) in a patient with osteopetrosis caused by carbonic anhydrase II deficiency (Intermediate osteopetrosis). CASE PRESENTATION Herein, we describe a 2.5-year-old male patient born to consanguineous parents who presented at 8-month-old with hydrocephaly, brain shunt, and developmental delay. Later at 9 months old, he was found to have eye disorder such as nystagmus, fracture of the elbow, abnormal skeletal survey, normal cell blood count (CBC), and severe hypocellularity in the bone marrow. Further evaluation showed renal tubular acidosis type 2. Whole-exome sequencing revealed a pathogenic homozygous variant in intron 2 of the carbonic anhydrase 2 gene (CA2) gene (c.232 + 1 G>T). The diagnosis of intermediate autosomal recessive osteopetrosis was established, and allogenic HSCT from his mother, a full-matched related donor (MRD), was planned. The conditioning regimen included Busulfan, Fludarabine, and Rabbit anti-thymocyte globulin. Cyclosporine and Mycophenolate Mofetil were used for graft-versus-host-disease prophylaxis. He Engrafted on day +13, and 95% chimerism was achieved. He is currently doing well without immunosuppressive therapy, now 12 months post HSCT, with normal calcium level and improving visual quality and FISH analysis revealed complete donor chimerism. DISCUSSION HSCT could be a promising curative treatment for intermediate osteopetrosis and can provide long-term survival. Ongoing challenges in various aspects of HSCT remain to be addressed.
Collapse
Affiliation(s)
- Bibi Shahin Shamsian
- Pediatric Congenital Hematologic Disorders Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nader Momtazmanesh
- Pediatric Congenital Hematologic Disorders Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hedyeh Saneifard
- Pediatric Endocrinology and Metabolism Department, Faculty of Medicine, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohammadreza Jafari
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Zahra Khafaf Pour
- Pediatric Congenital Hematologic Disorders Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mahnaz Jamee
- Pediatric Nephrology Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sharareh Kamfar
- Pediatric Congenital Hematologic Disorders Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Rai D, Mondal D, Taraphder S. pH-Dependent Structure and Dynamics of the Catalytic Domains of Human Carbonic Anhydrase II and IX. J Phys Chem B 2023; 127:10279-10294. [PMID: 37983689 DOI: 10.1021/acs.jpcb.3c04721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Extensive computer simulation studies have been carried out to probe the pH-dependent structure and dynamics of the two most efficient isoenzymes II and IX of human carbonic anhydrase (HCA) that control the pH in the human body. The equilibrium structure and hydration of their catalytic domains are found to be largely unaffected by the variation of pH in the range studied, in close agreement with the known experimental results. In contrast, a significant effect of the change in pH is observed for the first time on the local electrostatic potential of the active site walls and the dynamics of active site water molecules. We also report for the first time the free energy and kinetics of coupled fluctuations of orientation and protonation states of the well-known His-mediated proton shuttle (His-64) in both isozymes at pH 7 and 8. The transitions between different tautomers of in or out conformations of His-64 side chain range between 109 and 106 s-1 depending on pH. Possible implications of these results on conformation-dependent pKa of His-64 side chain and its role in driving the catalysis toward hydration of CO2 or dehydration of HCO3- with varying pH are discussed.
Collapse
Affiliation(s)
- Divya Rai
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Dulal Mondal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Srabani Taraphder
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
11
|
El-Kamah GY, Mehrez MI, Taher MB, El-Bassyouni HT, Gaber KR, Amr KS. Outlining the Clinical Profile of TCIRG1 14 Variants including 5 Novels with Overview of ARO Phenotype and Ethnic Impact in 20 Egyptian Families. Genes (Basel) 2023; 14:genes14040900. [PMID: 37107657 PMCID: PMC10137576 DOI: 10.3390/genes14040900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 04/29/2023] Open
Abstract
TCIRG1 gene mutations underlie osteopetrosis, a rare genetic disorder impacting osteoclast function with consequent brittle bones prone to fracture, in spite of being characterized by increased bone density. The disorder is known to exhibit marked genetic heterogeneity, has no treatment, and is lethal in most instances. There are reports of ethnic variations affecting bone mineral density and variants' expression as diverse phenotypes even within individuals descending from the same pedigree. We herein focus on one of osteopetrosis's three types: the autosomal recessive malignant form (MIM 259700) (ARO) that is almost always associated with severe clinical symptoms. We reviewed the results of about 1800 Egyptian exomes and we did not detect similar variants within our Egyptian dataset and secondary neurological deficit. We studied twenty Egyptian families: sixteen ARO patients, ten carrier parents with at least one ARO affected sib, and two fetuses. They were all subjected to thorough evaluation and TCIRG1 gene sequencing. Our results of twenty-eight individuals descending from twenty Egyptian pedigrees with at least one ARO patient, expand the phenotype as well as genotype spectrum of recessive mutations in the TCIRG1 gene by five novel pathogenic variants. Identifying TCIRG1 gene mutations in Egyptian patients with ARO allowed the provision of proper genetic counseling, carrier detection, and prenatal diagnosis starting with two families included herein. It also could pave the way to modern genomic therapeutic approaches.
Collapse
Affiliation(s)
- Ghada Y El-Kamah
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Mennat I Mehrez
- Oro-Dental Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Mohamed B Taher
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Hala T El-Bassyouni
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Khaled R Gaber
- Prenatal Diagnosis and Fetal Medicine Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Khalda S Amr
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo 12622, Egypt
| |
Collapse
|
12
|
Abstract
Carbonic anhydrase II deficiency (OMIM # 259730), initially called "osteopetrosis with renal tubular acidosis and cerebral calcification syndrome", reveals an important role for the enzyme carbonic anhydrase II (CA II) in osteoclast and renal tubule function. Discovered in 1972 and subsequently given various names, CA II deficiency now describes >100 affected individuals encountered predominantly from the Middle East and Mediterranean region. In 1983, CA II deficiency emerged as the first osteopetrosis (OPT) understood metabolically, and in 1991 the first understood molecularly. CA II deficiency is the paradigm OPT featuring failure of osteoclasts to resorb bone due to inability to acidify their pericellular milieu. The disorder presents late in infancy or early in childhood with fracturing, developmental delay, weakness, short stature, and/or cranial nerve compression and palsy. Mental retardation is common. The skeletal findings may improve by adult life, and CA II deficiency can be associated with a normal life-span. Therefore, it has been considered an "intermediate" type of OPT. In CA II deficiency, OPT is uniquely accompanied by renal tubular acidosis (RTA) of proximal, distal, or combined type featuring hyperchloremic metabolic acidosis, rarely with hypokalemia and paralysis. Cerebral calcification uniquely appears in early childhood. The etiology is bi-allelic loss-of-function mutations of CA2 that encodes CA II. Prenatal diagnosis requires mutational analysis of CA2. Although this enzymopathy reveals how CA II is important for the skeleton and kidney tubule, the pathogenesis of the mental subnormality and cerebral calcification is less well understood. Several mouse models of CA II deficiency have shown growth hormone deficiency, yet currently there is no standard pharmacologic therapy for patients. Treatment of the systemic acidosis is often begun when growth is complete. Although CA II deficiency is an "osteoclast-rich" OPT, and therefore transplantation of healthy osteoclasts can improve the skeletal disease, the RTA and central nervous system difficulties persist.
Collapse
Affiliation(s)
- Michael P Whyte
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Shriners Hospitals for Children-St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
13
|
Wojtkowiak K, Jezierska A. Role of Non-Covalent Interactions in Carbonic Anhydrase I-Topiramate Complex Based on QM/MM Approach. Pharmaceuticals (Basel) 2023; 16:ph16040479. [PMID: 37111236 PMCID: PMC10146004 DOI: 10.3390/ph16040479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 04/29/2023] Open
Abstract
Carbonic anhydrase (CA) I with a Topiramate (TPM) complex was investigated on the basis of a Quantum Mechanics/Molecular Mechanics (QM/MM) approach. The QM part was treated using Density Functional Theory (DFT) while the MM was simulated using Amberff14SB and GAFF force fields. In addition, the TIP3P model was applied to reproduce the polar environment influence on the studied complex. Next, three snapshots (after 5 ps, 10 ps, and 15 ps of the simulation time) were taken from the obtained trajectory to provide an insight into the non-covalent interactions present between the ligand and binding pocket of the protein. Our special attention was devoted to the binding site rearrangement, which is known in the literature concerning the complex. This part of the computations was performed using ωB97X functional with Grimme D3 dispersion corrections as well as a Becke-Johnson damping function (D3-BJ). Two basis sets were applied: def2-SVP (for larger models) and def2-TZVPD (for smaller models), respectively. In order to detect and describe non-covalent interactions between amino acids of the binding pocket and the ligand, Independent Gradient Model based on Hirshfeld partitioning (IGMH), Interaction Region Indicator (IRI), Quantum Theory of Atoms in Molecules (QTAIM) and Natural Bond Orbitals (NBO) methods were employed. Finally, Symmetry-Adapted Perturbation Theory (SAPT) was applied for energy decomposition between the ligand and protein. It was found that during the simulation time, the ligand position in the binding site was preserved. Nonetheless, amino acids interacting with TPM were exchanging during the simulation, thus showing the binding site reorganization. The energy partitioning revealed that dispersion and electrostatics are decisive factors that are responsible for the complex stability.
Collapse
Affiliation(s)
- Kamil Wojtkowiak
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Aneta Jezierska
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
14
|
Stauber T, Wartosch L, Vishnolia S, Schulz A, Kornak U. CLCN7, a gene shared by autosomal recessive and autosomal dominant osteopetrosis. Bone 2023; 168:116639. [PMID: 36513280 DOI: 10.1016/j.bone.2022.116639] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
After the discovery of abundant v-ATPase complexes in the osteoclast ruffled membrane it was obvious that in parallel a negative counter-ion needs to be transported across this membrane to allow for efficient transport of protons into the resorption lacuna. While different candidate proteins were discussed the osteopetrosis phenotype of Clcn7 knockout mice suggested that the chloride/proton-exchanger ClC-7 might be responsible for transporting the negative charge. In the following, individuals with autosomal recessive osteopetrosis (ARO) were found to carry biallelic CLCN7 pathogenic variants. Shortly thereafter, heterozygous pathogenic variants were identified as the exclusive cause of autosomal dominant osteopetrosis type 2 (ADO2). Since in most cell types other than osteoclasts ClC-7 resides in late endosomes and lysosomes, it took some time until the electrophysiological properties of ClC-7 were elucidated. Whereas most missense variants lead to reduced chloride currents, several variants with accelerated kinetics have been identified. Evidence for folding problems is also known for several missense variants. Paradoxically, a heterozygous activating variant in ClC-7 was described to cause lysosomal alteration, pigmentation defects, and intellectual disability without osteopetrosis. The counter-intuitive 2 Cl-/H+ exchange function of ClC-7 was shown to be physiologically important for intravesicular ion homeostasis. The lysosomal function of ClC-7 is also the reason why individuals with CLCN7-ARO can develop a storage disorder and neurodegeneration, a feature that is variable and difficult to predict. Furthermore, the low penetrance of heterozygous pathogenic CLCN7 variants and the clinical variability of ADO2 are incompletely understood. We aim to give an overview not only of the current knowledge about ClC-7 and its related pathologies, but also of the scientists and clinicians that paved the way for these discoveries.
Collapse
Affiliation(s)
- Tobias Stauber
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Lena Wartosch
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Svenja Vishnolia
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Ansgar Schulz
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Uwe Kornak
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
15
|
Potential Novel Role of Membrane-Associated Carbonic Anhydrases in the Kidney. Int J Mol Sci 2023; 24:ijms24044251. [PMID: 36835660 PMCID: PMC9961601 DOI: 10.3390/ijms24044251] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
Carbonic anhydrases (CAs), because they catalyze the interconversion of carbon dioxide (CO2) and water into bicarbonate (HCO3-) and protons (H+), thereby influencing pH, are near the core of virtually all physiological processes in the body. In the kidneys, soluble and membrane-associated CAs and their synergy with acid-base transporters play important roles in urinary acid secretion, the largest component of which is the reabsorption of HCO3- in specific nephron segments. Among these transporters are the Na+-coupled HCO3- transporters (NCBTs) and the Cl--HCO3- exchangers (AEs)-members of the "solute-linked carrier" 4 (SLC4) family. All of these transporters have traditionally been regarded as "HCO3-" transporters. However, recently our group has demonstrated that two of the NCBTs carry CO32- rather than HCO3- and has hypothesized that all NCBTs follow suit. In this review, we examine current knowledge on the role of CAs and "HCO3-" transporters of the SLC4 family in renal acid-base physiology and discuss how our recent findings impact renal acid secretion, including HCO3- reabsorption. Traditionally, investigators have associated CAs with producing or consuming solutes (CO2, HCO3-, and H+) and thus ensuring their efficient transport across cell membranes. In the case of CO32- transport by NCBTs, however, we hypothesize that the role of membrane-associated CAs is not the appreciable production or consumption of substrates but the minimization of pH changes in nanodomains near the membrane.
Collapse
|
16
|
Abstract
Osteopetrosis (OPT) is a rare inherited bone disease characterized by a bone resorption defect, due to osteoclast malfunction (in osteoclast-rich, oc-rich, OPT forms) or absence (in oc-poor OPT forms). This causes severe clinical abnormalities, including increased bone density, lack of bone marrow cavity, stunted growth, macrocephaly, progressive deafness, blindness, hepatosplenomegaly, and severe anemia. The oc-poor subtype of OPT is ultra-rare in humans. It is caused by mutations in either the tumor necrosis factor ligand superfamily member 11 (TNFSF11) gene, encoding RANKL (Receptor Activator of Nuclear factor-kappa B [NF-κB] Ligand) which is expressed on cells of mesenchymal origin and lymphocytes, or the TNFRSF member 11A (TNFRSF11A) gene, encoding the RANKL functional receptor RANK which is expressed on cells of myeloid lineage including osteoclasts. Clinical presentation is usually severe with onset in early infancy or in fetal life, although as more patients are reported, expressivity is variable. Phenotypic variability of RANK-deficient OPT sometimes includes hypogammaglobulinemia or radiological features of dysosteosclerosis. Disease progression is somewhat slower in RANKL-deficient OPT than in other 'malignant' subtypes of OPT. While both RANKL and RANK are essential for normal bone turnover, hematopoietic stem cell transplantation (HSCT) is the treatment of choice only for patients with the RANK-deficient form of oc-poor OPT. So far, there is no cure for RANKL-deficient OPT.
Collapse
Affiliation(s)
- Cristina Sobacchi
- CNR-IRGB, Milan Unit, via Fantoli 16/15, 20138 Milan, Italy; Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, MI, Italy.
| | - Mario Abinun
- Paediatric Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne NE1 4LP, UK; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
17
|
Teti A. Early treatment of osteopetrosis: Paradigm shift to marrow cell transplantation. Bone 2022; 164:116512. [PMID: 35933094 DOI: 10.1016/j.bone.2022.116512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022]
Abstract
The osteopetroses reflect alterations of a special cell type, the osteoclast, belonging to the myeloid lineage. We have known this since the 1970s, confirmed by a myriad of reports featuring details that guided subsequent molecular diagnosis and treatment. This review is a tribute to two pioneers in the field: Donald G. Walker PhD (1925-1979) and Sandy C. Marks Jr. PhD (1937-2002), who explored osteopetrosis pathophysiology and treatment. Using spontaneous mutant models of osteopetrosis in mice, rats, and rabbits, they demonstrated the cellular basis of osteopetrosis while also advancing understanding of the hematological origin of osteoclasts. This became the foundation for life-saving treatment by hematopoietic stem cell transplantation. Their prose was uncomplicated, experiments were straightforward, and conclusions were based on facts explaining why their teaching became influential worldwide. I never met Dr. Walker but spoke with Dr. Marks on several occasions. Both inspired my work and, now appreciating how they shaped the osteoclast/osteopetrosis scientist community, we must thank these eminent scientists for being mentors of all of us.
Collapse
Affiliation(s)
- Anna Teti
- University of L'Aquila, Department of Biotechnological and Applied Clinical Sciences, L'Aquila, Italy.
| |
Collapse
|
18
|
Everts V, Jansen IDC, de Vries TJ. Mechanisms of bone resorption. Bone 2022; 163:116499. [PMID: 35872106 DOI: 10.1016/j.bone.2022.116499] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 01/08/2023]
Affiliation(s)
- Vincent Everts
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Amsterdam, the Netherlands; Department of Anatomy, Dental Faculty, Chulalongkorn University, Bangkok, Thailand.
| | - Ineke D C Jansen
- Department of Periodontology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Amsterdam, the Netherlands
| | - Teun J de Vries
- Department of Periodontology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Amsterdam, the Netherlands
| |
Collapse
|
19
|
Başaran E, Çakmak R, Şentürk M, Taskin-Tok T. Biological activity and molecular docking studies of some N-phenylsulfonamides against cholinesterases and carbonic anhydrase isoenzymes. J Mol Recognit 2022; 35:e2982. [PMID: 35842829 DOI: 10.1002/jmr.2982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/18/2022] [Accepted: 06/28/2022] [Indexed: 11/07/2022]
Abstract
In this research, a series of N-phenylsulfonamide derivatives (1-12) were designed, synthesized and investigated for their inhibitory potencies against carbonic anhydrase isoenzymes I, II and IX (hCA I, hCA II, and hCA IX) and cholinesterases (ChE), namely, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). These compounds, whose inhibition potentials were evaluated for the first time, were characterized by spectroscopic techniques (1 H- and 13 C NMR and FT-IR). CA isoenzyme inhibitors are significant therapeutic targets, especially owing to their preventive/activation potential in the therapy processes of some diseases such as cancer, osteoporosis, and glaucoma. On the other hand, Cholinesterase inhibitors are valuable molecules with biological importance that can be employed in the therapy process of Alzheimer's patients. The results showed that the tested molecules had enzyme inhibition activities ranging from 9.7 to 93.7 nM against these five metabolic enzymes. Among the tested molecules, the methoxy and the hydroxyl group-containing compounds 10, 11, and 12 exhibited more enzyme inhibition activities when compared to standard compounds acetazolamide (AAZ), sulfapyridine, and sulfadiazine for CA isoenzymes and neostigmine for ChE, respectively. Of these three molecules, compound 12, which had a hydroxyl group in the para position in the aromatic ring, was determined to be the most active molecule against all enzymes. In silico work, molecular docking has also shown similar results and consistent with the experimental data in the study. As a result, we can say that some of the tested molecules might be used as promising inhibitor candidates for further studies on this topic.
Collapse
Affiliation(s)
- Eyüp Başaran
- Department of Chemistry and Chemical Processing Technologies, Vocational School of Technical Sciences, Batman University, Batman, Turkey
| | - Reşit Çakmak
- Medical Laboratory Techniques Program, Vocational School of Health Services, Batman University, Batman, Turkey
| | - Murat Şentürk
- Department of Biochemistry, Pharmacy Faculty, Ağrı Ibrahim Çecen University, Ağrı, Turkey
| | - Tugba Taskin-Tok
- Gaziantep University, Faculty of Arts and Sciences, Department of Chemistry, Gaziantep, Turkey.,Gaziantep University, Institute of Health Sciences, Department of Bioinformatics and Computational Biology, Gaziantep, Turkey
| |
Collapse
|
20
|
Al Zu'bi YO, Al Sharie AH, Dwairi W, Altamimi E. Blessing in disguise: when head trauma solves the riddle of carbonic anhydrase II deficiency. Radiol Case Rep 2022; 17:847-851. [PMID: 35035649 PMCID: PMC8753056 DOI: 10.1016/j.radcr.2021.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 11/30/2022] Open
Abstract
Carbonic anhydrase II deficiency is a rare autosomal recessive disorder with a classical triad of renal tubular acidosis, intracerebral calcifications and osteopetrosis. We present a case of a 6-year and 4-months old male patient presented to our pediatric gastroenterology outpatients' clinic with parental concern of poor growth. The patient is a known case of unexplained global developmental delay, recurrent fractures and constipation since birth. As a result of the patient's hyperactivity, he hit his head with the clinic's door resulting in a cut wound. Brain computed tomography scan showed abnormal symmetrical calcifications seen in both basal ganglia, thalami and subcortical white matter associated with increased bone density of the skull and upper cervical spine reassembling osteopetrosis. The suspicion of carbonic anhydrase II deficiency was confirmed by arterial blood gases revealing a marked metabolic acidosis fulfilling the diagnostic triad. The patient was discharged on sodium bicarbonate therapy, lactulose and vitamin D3 supplements and has been followed up regularly.
Collapse
Affiliation(s)
- Yazan O. Al Zu'bi
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Ahmed H. Al Sharie
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Waed Dwairi
- Pediatric Department, Faculty of Medicine, Jordan University of Science and Technology, P.O. Box. 3030, Irbid 22110, Jordan
| | - Eyad Altamimi
- Pediatric Department, Faculty of Medicine, Jordan University of Science and Technology, P.O. Box. 3030, Irbid 22110, Jordan
| |
Collapse
|
21
|
Aspatwar A, Tolvanen MEE, Barker H, Syrjänen L, Valanne S, Purmonen S, Waheed A, Sly WS, Parkkila S. Carbonic Anhydrases in Metazoan Model Organisms: Molecules, Mechanisms, and Physiology. Physiol Rev 2022; 102:1327-1383. [PMID: 35166161 DOI: 10.1152/physrev.00018.2021] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
During the past three decades, mice, zebrafish, fruit flies, and Caenorhabditis elegans have been the primary model organisms used for the study of various biological phenomena. These models have also been adopted and developed to investigate the physiological roles of carbonic anhydrases (CAs) and carbonic anhydrase-related proteins (CARPs). These proteins belong to eight CA families and are identified by Greek letters: α, β, γ, δ, ζ, η, θ, and ι. Studies using model organisms have focused on two CA families, α-CAs and β-CAs, which are expressed in both prokaryotic and eukaryotic organisms with species-specific distribution patterns and unique functions. This review covers the biological roles of CAs and CARPs in light of investigations performed in model organisms. Functional studies demonstrate that CAs are not only linked to the regulation of pH homeostasis, the classical role of CAs but also contribute to a plethora of previously undescribed functions.
Collapse
Affiliation(s)
- Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Harlan Barker
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Ltd and TAYS Cancer Centre, Tampere University Hospital, Tampere, Finland
| | - Leo Syrjänen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Department of Otorhinolaryngology, Tampere University Hospital, Tampere, Finland
| | - Susanna Valanne
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sami Purmonen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Abdul Waheed
- Department of Biochemistry and Molecular Biology, Edward A. Doisy Research Center, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - William S Sly
- Department of Biochemistry and Molecular Biology, Edward A. Doisy Research Center, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Ltd and TAYS Cancer Centre, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
22
|
Lee S, Kim M, Hong S, Kim EJ, Kim JH, Sohn Y, Jung HS. Effects of Sparganii Rhizoma on Osteoclast Formation and Osteoblast Differentiation and on an OVX-Induced Bone Loss Model. Front Pharmacol 2022; 12:797892. [PMID: 35058781 PMCID: PMC8764242 DOI: 10.3389/fphar.2021.797892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/06/2021] [Indexed: 12/31/2022] Open
Abstract
Postmenopausal osteoporosis is caused by an imbalance between osteoclasts and osteoblasts and causes severe bone loss. Osteoporotic medicines are classified into bone resorption inhibitors and bone formation promoters according to the mechanism of action. Long-term use of bisphosphonate and selective estrogen receptor modulators (SERMs) can cause severe side effects in postmenopausal osteoporosis patients. Therefore, it is important to find alternative natural products that reduce osteoclast activity and increase osteoblast formation. Sparganii Rhizoma (SR) is the dried tuberous rhizome of Sparganium stoloniferum Buchanan-Hamilton and is called “samreung” in Korea. However, to date, the effect of SR on osteoclast differentiation and the ovariectomized (OVX)-induced bone loss model has not been reported. In vitro, tartrate-resistant acid phosphatase (TRAP) staining, western blots, RT-PCR and other methods were used to examine the effect of SR on osteoclast differentiation and osteoblasts. In vivo, we confirmed the effect of SR in a model of OVX-induced postmenopausal osteoporosis. SR inhibited osteoclast differentiation and decreased the expression of TNF receptor-associated factor 6 (TRAF6), nuclear factor of activated T cells 1 (NFATc1) and c-Fos pathway. In addition, SR stimulates osteoblast differentiation and increased protein expression of the bone morphogenetic protein 2 (BMP-2)/SMAD signaling pathway. Moreover, SR protected against bone loss in OVX-induced rats. Our results appear to advance our knowledge of SR and successfully demonstrate its potential role as a osteoclastogenesis-inhibiting and osteogenesis-promoting herbal medicine for the treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Sungyub Lee
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Minsun Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Sooyeon Hong
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Eom Ji Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jae-Hyun Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Youngjoo Sohn
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Hyuk-Sang Jung
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
23
|
Osteopetrosis and renal tubular acidosis: Answers. Pediatr Nephrol 2021; 36:4055-4059. [PMID: 34251494 DOI: 10.1007/s00467-021-05185-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 10/20/2022]
|
24
|
Sharma G, Bhattacharya R, Krishna S, Alomar SY, Alkhuriji AF, Warepam M, Kumari K, Rahaman H, Singh LR. Structural and Functional Characterization of Covalently Modified Proteins Formed By a Glycating Agent, Glyoxal. ACS OMEGA 2021; 6:20887-20894. [PMID: 34423196 PMCID: PMC8374913 DOI: 10.1021/acsomega.1c02300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/29/2021] [Indexed: 06/03/2023]
Abstract
Glycation, the main consequence of hyperglycemia, is one of the major perpetrators of diabetes and several other conditions, including coronary and neurodegenerative complications. Such a hyperglycemic condition is represented by a large increase in levels of various glycation end products including glyoxal, methylglyoxal, and carboxymethyl-lysine among others. These glycation end products are known to play a crucial role in diabetic complications due to their ability to covalently modify important proteins and enzymes, specifically at lysine residues (a process termed as glycation), making them non-functional. Previous studies have largely paid attention on characterization and identification of these reactive glycating agents. Structural and functional consequences of proteins affected by glycation have not yet been critically investigated. We have made a systematic investigation on the early conformational changes and functional alterations brought about by a glycating agent, glyoxal, on different proteins. We found that the early event in glycation includes an increase in hydrodynamic diameter, followed by minor structural alterations sufficient to impair enzyme activity. The study indicates the importance of glyoxal-induced early structural alteration of proteins toward the pathophysiology of hyperglycemia/diabetes and associated conditions.
Collapse
Affiliation(s)
- Gurumayum
Suraj Sharma
- Department
of Botany, Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi 110095, India
| | - Reshmee Bhattacharya
- Dr.
B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Snigdha Krishna
- Dr.
B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Suliman Y. Alomar
- Doping
Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| | - Afrah F. Alkhuriji
- Department
of Zoology, College of Science, King Saud
University, Riyadh 11495, Saudi Arabia
| | - Marina Warepam
- Department
of Biotechnology, Manipur University, Imphal, Manipur 795003, India
| | - Kritika Kumari
- Dr.
B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Hamidur Rahaman
- Department
of Biotechnology, Manipur University, Imphal, Manipur 795003, India
| | | |
Collapse
|
25
|
Ozsoy HZ. Anticonvulsant Effects of Carbonic Anhydrase Inhibitors: The Enigmatic Link Between Carbonic Anhydrases and Electrical Activity of the Brain. Neurochem Res 2021; 46:2783-2799. [PMID: 34226984 DOI: 10.1007/s11064-021-03390-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/08/2021] [Accepted: 06/25/2021] [Indexed: 10/20/2022]
Abstract
Acetazolamide (ACZ), a sulfonamide carbonic anhydrase (CA) inhibitor, was first introduced into medical use as a diuretic in the1950s. Shortly after its introduction, its antiglaucoma and anticonvulsant properties came to light. Subsequently, studies of ACZ have explored a plethora of neurophysiological functions of CAs in the CNS. In addition, topiramate (TPM) and zonisamide (ZNS), which were developed as antiepileptic drugs (AEDs) in the1990s, were found to have the ability to inhibit CAs. How CA inhibition prevents seizures is elusive. CA expression and activity are extensively detected in neurons, the choroid plexus, oligodendrocytes and astrocytes. TPM and ZNS appear to produce multimodal actions in the CNS as well as CA inhibition unlike ACZ. Nonetheless, CA inhibitors share some common denominators. They do not only affect the fine equilibrium among CO2, H+ and HCO3- in the extraneuronal and intraneuronal milieu, but also modulate the activity of ligand gated ion channels at the neuronal level such as GABA-A signaling through inhibiting CA-replenished HCO3- efflux. In addition, there are studies reporting their ability to alter Ca2+ kinetics through modulation of ligand gated Ca2+ channels, voltage gated Ca2+ channels (VGCC) or Ca2+-induced Ca2+ release channels (CICRC). The present study will review the involvement of CAs in the formation of epileptogenesis, and likely mechanisms by which CA inhibitors suppress the electrical activity of the brain. The common properties of CA inhibitors provide some clues for a possible link among metabolism, CAs, Ca2+ and GABA signaling.
Collapse
|
26
|
Meng T, Huang R, Jin J, Gao J, Liu F, Wei Z, Xu X, Chang Z, Lin J, Ta N, Huang Z, Yin H, Zhou W, Song D. The comparative integrated multi-omics analysis identifies CA2 as a novel target for chordoma. Neuro Oncol 2021; 23:1709-1722. [PMID: 34214167 DOI: 10.1093/neuonc/noab156] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Chordoma is a rare mesenchymal malignancy, with a high recurrence rate and unclear tumorigenic mechanism. Genetic alterations, epigenetic regulators, and chromatin spatial organization play crucial roles in the initiation and progression of chordoma. In the current study, we aim to uncover the novel therapeutical targets for chordoma via using integrated multi-omics analysis. METHODS The RNA-sequencing (RNA-seq), assay for transposable accessible chromatin by high throughput sequencing (ATAC-seq) and Hi-C were performed between chordoma and human nucleus pulposus (HNP), along with imageological examination and clinical information. The expressions of identified targets were validated by clinical samples and their function were further evaluated by cell and animal experiments via gene knockdown and inhibitors. RESULTS The integrated multi-omics analysis revealed the important roles of bone microenvironment in chordoma tumorigenesis. By comparing the hierarchical structures, CA2 and THNSL2 were identified in the switched compartments, cell-specific boundaries and loops. Additionally, CA2 was highly expressed in chordoma, but barely found in HNP. The cell growth and migration of chordoma cells were dramatically suppressed via inhibition of CA2 either with genetic deletion or pharmaceutical treatment with Dorzolamide HCl. Furthermore, Dorzolamide HCl also regulated the bone microenvironment by blocking the osteoclast differentiation of bone marrow monocytes. CONCLUSION This study uncovers the roles of bone microenvironment in the chordoma tumorigenesis and identifies CA2 as a novel therapeutic target for chordoma. Besides, our findings suggest Dorzolamide HCl as a promising therapeutic option for chordoma.
Collapse
Affiliation(s)
- Tong Meng
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Runzhi Huang
- Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China.,Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiali Jin
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jianxuan Gao
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Fuyan Liu
- Biomarker Technologies Corporation, Beijing, China
| | - Ziheng Wei
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiaowen Xu
- Department of Medical Imaging, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Zhengyan Chang
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Lin
- Department of Pathology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Na Ta
- Department of Pathology, Shanghai Changhai Hospital, Navy Medical University, Shanghai, China
| | - Zongqiang Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huabin Yin
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wang Zhou
- Departments of Neurovascular Center, Shanghai Changhai Hospital, Navy Medical University, Shanghai, China.,The Musculoskeletal laboratory, Institute of Biotechnology, University of Shanghai for Science and Technology, Shanghai, China
| | - Dianwen Song
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
27
|
Penna S, Villa A, Capo V. Autosomal recessive osteopetrosis: mechanisms and treatments. Dis Model Mech 2021; 14:261835. [PMID: 33970241 PMCID: PMC8188884 DOI: 10.1242/dmm.048940] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Autosomal recessive osteopetrosis (ARO) is a severe inherited bone disease characterized by defective osteoclast resorption or differentiation. Clinical manifestations include dense and brittle bones, anemia and progressive nerve compression, which hamper the quality of patients' lives and cause death in the first 10 years of age. This Review describes the pathogenesis of ARO and highlights the strengths and weaknesses of the current standard of care, namely hematopoietic stem cell transplantation (HSCT). Despite an improvement in the overall survival and outcomes of HSCT, transplant-related morbidity and the pre-existence of neurological symptoms significantly limit the success of HSCT, while the availability of human leukocyte antigen (HLA)-matched donors still remains an open issue. Novel therapeutic approaches are needed for ARO patients, especially for those that cannot benefit from HSCT. Here, we review preclinical and proof-of-concept studies, such as gene therapy, systematic administration of deficient protein, in utero HSCT and gene editing. Summary: Autosomal recessive osteopetrosis is a heterogeneous and rare bone disease for which effective treatments are still lacking for many patients. Here, we review the literature on clinical, preclinical and proof-of-concept studies.
Collapse
Affiliation(s)
- Sara Penna
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan 20132, Italy.,Translational and Molecular Medicine (DIMET), University of Milano-Bicocca, Monza 20900, Italy
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan 20132, Italy.,Institute of Genetic and Biomedical Research, Milan Unit, National Research Council, Milan 20090, Italy
| | - Valentina Capo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan 20132, Italy.,Institute of Genetic and Biomedical Research, Milan Unit, National Research Council, Milan 20090, Italy
| |
Collapse
|
28
|
Rajasekaran S, Chitraa T, Dilip Chand Raja S, Raveendran M, Sharon Miracle N, Sri Vijayanand KS, Ajoy Prasad S, Rishi Mugesh K. Subclinical infection can be an initiator of inflammaging leading to degenerative disk disease: evidence from host-defense response mechanisms. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2021; 30:2586-2604. [PMID: 33835272 DOI: 10.1007/s00586-021-06826-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/06/2021] [Accepted: 03/20/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE There is considerable controversy on the role of genetics, mechanical and environmental factors, and, recently, on subclinical infection in triggering inflammaging leading to disk degeneration. The present study investigated sequential molecular events in the host, analyzing proteome level changes that will reveal triggering factors of inflammaging and degeneration. METHODS Ten MRI normal disks (ND) from braindead organ donors and 17 degenerated disks (DD) from surgery were subjected to in-gel-based label-free ESI-LC-MS/MS analysis. Bacterial-responsive host-defense response proteins/pathways leading to Inflammaging were identified and compared between ND and DD. RESULTS Out of the 263 well-established host-defense response proteins (HDRPs), 243 proteins were identified, and 64 abundantly expressed HDRPs were analyzed further. Among the 21 HDRPs common to both ND and DD, complement factor 3 (C3) and heparan sulfate proteoglycan 2 (HSPG2) were significantly upregulated, and lysozyme (LYZ), superoxide dismutase 3 (SOD3), phospholipase-A2 (PLA2G2A), and tissue inhibitor of metalloproteinases 3 (TIMP-3) were downregulated in DD. Forty-two specific HDRPs mainly, complement proteins, apolipoproteins, and antimicrobial proteins involved in the complement cascade, neutrophil degranulation, and oxidative-stress regulation pathways representing an ongoing host response to subclinical infection and uncontrolled inflammation were identified in DD. Protein-Protein interaction analysis revealed cross talk between most of the expressed HDRPs, adding evidence to bacterial presence and stimulation of these defense pathways. CONCLUSIONS The predominance of HDRPs involved in complement cascades, neutrophil degranulation, and oxidative-stress regulation indicated an ongoing infection mediated inflammatory process in DD. Our study has documented increasing evidence for bacteria's role in triggering the innate immune system leading to chronic inflammation and degenerative disk disease.
Collapse
Affiliation(s)
- S Rajasekaran
- Department of Orthopaedics and Spine Surgery, Ganga Hospital, 313, Mettupalayam road, Coimbatore, India.
| | - Tangavel Chitraa
- Ganga Research Centre, No 91, Mettupalayam road, Coimbatore, 641030, India
| | - S Dilip Chand Raja
- Department of Orthopaedics and Spine Surgery, Ganga Hospital, 313, Mettupalayam road, Coimbatore, India
| | - M Raveendran
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | | | - K S Sri Vijayanand
- Department of Orthopaedics and Spine Surgery, Ganga Hospital, 313, Mettupalayam road, Coimbatore, India
| | - Shetty Ajoy Prasad
- Department of Orthopaedics and Spine Surgery, Ganga Hospital, 313, Mettupalayam road, Coimbatore, India
| | - Kanna Rishi Mugesh
- Department of Orthopaedics and Spine Surgery, Ganga Hospital, 313, Mettupalayam road, Coimbatore, India
| |
Collapse
|
29
|
Yang Y, Tang N, Zhu Y, Zhang L, Cao X, Liu L, Xia W, Li P, Yang Y. A novel homozygous nonsense mutation in the CA2 gene (c.368G>A, p.W123X) linked to carbonic anhydrase II deficiency syndrome in a Chinese family. Metab Brain Dis 2021; 36:589-599. [PMID: 33555497 DOI: 10.1007/s11011-021-00677-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/24/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Carbonic anhydrase II deficiency syndrome is an autosomal recessive osteopetrosis with renal tubular acidosis and cerebral calcifications. We tried to detect the causative mutation for carbonic anhydrase II deficiency syndrome in a five-generation Chinese family. MATERIALS AND METHODS Genomic DNA was extracted from whole blood of the proband, his grandmother, parents, aunt, uncle and sister. The exomes were sequenced by whole exon sequencing followed by genetic analysis and Sanger sequencing validation. Then, physical and chemical properties studies and structure analysis were performed on mutated protein. Finally, Minigene model of vector plasmids for wild type and mutant type was constructed and transfected into human embryonic kidney 293T cells to further explore the expression change of CA2 transcript and protein after mutation. RESULTS Sequencing and genetic analysis have revealed the homozygous nonsense mutation of CA2 gene (c.368G > A, p.W123X) in the exon 4 of chromosome 8 of the proband, while it was not found in his grandmother, parents, aunt, uncle and sister. Furthermore, Sanger sequencing in the proband and his parents validated the mutation. Properties and structure of mutated CA2 proteins changed after mutation, especially in change of protein modification and hindrance of zinc ions binding, which may lead to decreased protein expression level of CA2. CONCLUSIONS We found a new homozygous nonsense mutation in CA2 gene (c.368G > A, p.W123X), which may be valuable in the early diagnosis and therapy of carbonic anhydrase II deficiency syndrome.
Collapse
Affiliation(s)
- Yan Yang
- Department of Endocrinology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32 the west second section of the first ring road, Qingyang District, Chengdu, Sichuan, 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, 610072, Chengdu, China
| | - Nie Tang
- Department of Endocrinology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32 the west second section of the first ring road, Qingyang District, Chengdu, Sichuan, 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, 610072, Chengdu, China
| | - Ying Zhu
- Department of Endocrinology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32 the west second section of the first ring road, Qingyang District, Chengdu, Sichuan, 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, 610072, Chengdu, China
| | - Lei Zhang
- Department of Endocrinology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32 the west second section of the first ring road, Qingyang District, Chengdu, Sichuan, 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, 610072, Chengdu, China
| | - Xu Cao
- Department of Endocrinology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32 the west second section of the first ring road, Qingyang District, Chengdu, Sichuan, 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, 610072, Chengdu, China
| | - Limei Liu
- Department of Endocrinology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32 the west second section of the first ring road, Qingyang District, Chengdu, Sichuan, 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, 610072, Chengdu, China
| | - Wei Xia
- Department of Endocrinology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32 the west second section of the first ring road, Qingyang District, Chengdu, Sichuan, 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, 610072, Chengdu, China
| | - Pengqiu Li
- Department of Endocrinology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32 the west second section of the first ring road, Qingyang District, Chengdu, Sichuan, 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, 610072, Chengdu, China
| | - Yi Yang
- Department of Endocrinology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32 the west second section of the first ring road, Qingyang District, Chengdu, Sichuan, 610072, China.
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, 610072, Chengdu, China.
| |
Collapse
|
30
|
Trampert DC, van de Graaf SFJ, Jongejan A, Oude Elferink RPJ, Beuers U. Hepatobiliary acid-base homeostasis: Insights from analogous secretory epithelia. J Hepatol 2021; 74:428-441. [PMID: 33342564 DOI: 10.1016/j.jhep.2020.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/03/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022]
Abstract
Many epithelia secrete bicarbonate-rich fluid to generate flow, alter viscosity, control pH and potentially protect luminal and intracellular structures from chemical stress. Bicarbonate is a key component of human bile and impaired biliary bicarbonate secretion is associated with liver damage. Major efforts have been undertaken to gain insight into acid-base homeostasis in cholangiocytes and more can be learned from analogous secretory epithelia. Extrahepatic examples include salivary and pancreatic duct cells, duodenocytes, airway and renal epithelial cells. The cellular machinery involved in acid-base homeostasis includes carbonic anhydrase enzymes, transporters of the solute carrier family, and intra- and extracellular pH sensors. This pH-regulatory system is orchestrated by protein-protein interactions, the establishment of an electrochemical gradient across the plasma membrane and bicarbonate sensing of the intra- and extracellular compartment. In this review, we discuss conserved principles identified in analogous secretory epithelia in the light of current knowledge on cholangiocyte physiology. We present a framework for cholangiocellular acid-base homeostasis supported by expression analysis of publicly available single-cell RNA sequencing datasets from human cholangiocytes, which provide insights into the molecular basis of pH homeostasis and dysregulation in the biliary system.
Collapse
Affiliation(s)
- David C Trampert
- Amsterdam UMC, University of Amsterdam, Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Meibergdreef 9, Amsterdam, the Netherlands
| | - Stan F J van de Graaf
- Amsterdam UMC, University of Amsterdam, Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Meibergdreef 9, Amsterdam, the Netherlands
| | - Aldo Jongejan
- Amsterdam UMC, University of Amsterdam, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Meibergdreef 9, Amsterdam, the Netherlands
| | - Ronald P J Oude Elferink
- Amsterdam UMC, University of Amsterdam, Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Meibergdreef 9, Amsterdam, the Netherlands
| | - Ulrich Beuers
- Amsterdam UMC, University of Amsterdam, Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Meibergdreef 9, Amsterdam, the Netherlands.
| |
Collapse
|
31
|
Proteomic Profiling of the First Human Dental Pulp Mesenchymal Stem/Stromal Cells from Carbonic Anhydrase II Deficiency Osteopetrosis Patients. Int J Mol Sci 2020; 22:ijms22010380. [PMID: 33396517 PMCID: PMC7795265 DOI: 10.3390/ijms22010380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 12/30/2022] Open
Abstract
Osteopetrosis is a hereditary disorder characterized by sclerotic, thick, weak, and brittle bone. The biological behavior of mesenchymal cells obtained from osteopetrosis patients has not been well-studied. Isolated mesenchymal stem/stromal cells from dental pulp (DP-MSSCs) of recently extracted deciduous teeth from osteopetrosis (OP) patients and healthy controls (HCs) were compared. We evaluated whether the dental pulp of OP patients has a population of MSSCs with similar multilineage differentiation capability to DP-MSSCs of healthy subjects. Stem/progenitor cells were characterized using immunohistochemistry, flow cytometry, and proteomics. Our DP-MSSCs were strongly positive for CD44, CD73, CD105, and CD90. DP-MSSCs obtained from HC subjects and OP patients showed similar patterns of proliferation and differentiation as well as gene expression. Proteomic analysis identified 1499 unique proteins with 94.3% similarity in global protein fingerprints of HCs and OP patients. Interestingly, we observed subtle differences in expressed proteins of osteopetrosis disease-related in pathways, including MAPK, ERK 1/2, PI3K, and integrin, rather than in the stem cell signaling network. Our findings of similar protein expression signatures in DP-MSSCs of HC and OP patients are of paramount interest, and further in vivo validation study is needed. There is the possibility that OP patients could have their exfoliating deciduous teeth banked for future use in regenerative dentistry.
Collapse
|
32
|
Molecular Genetics and Modifier Genes in Pseudoxanthoma Elasticum, a Heritable Multisystem Ectopic Mineralization Disorder. J Invest Dermatol 2020; 141:1148-1156. [PMID: 33341249 DOI: 10.1016/j.jid.2020.10.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 01/08/2023]
Abstract
In the past two decades, there has been great progress in identifying the molecular basis and pathomechanistic details in pseudoxanthoma elasticum (PXE), a heritable multisystem ectopic mineralization disorder. Although the identification of pathogenic variants in ABCC6 has been critical for understanding the disease process, genetic modifiers have been disclosed that explain the phenotypic heterogeneity of PXE. Adding to the genetic complexity of PXE are PXE-like phenotypes caused by pathogenic variants in other ectopic mineralization-associated genes. This review summarizes the current knowledge of the genetics and candidate modifier genes in PXE, a multifactorial disease at the genome-environment interface.
Collapse
|
33
|
Hamroun A, Maanaoui M, Lenain R, Lionet A. Marble brain disease: a rare cause of renal tubular acidosis. J Nephrol 2020; 34:1261-1262. [PMID: 32960441 DOI: 10.1007/s40620-020-00857-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/03/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Aghilès Hamroun
- Nephrology, Dialysis and Kidney Transplantation Department, Lille University, Regional and University Hospital Center of Lille, 59000, Lille, France.
- Center for Research in Epidemiology and Population Health (CESP), Clinical Epidemiology Team, National Institute of Health and Medical Research, Villejuif, France.
| | - Mehdi Maanaoui
- Nephrology, Dialysis and Kidney Transplantation Department, Lille University, Regional and University Hospital Center of Lille, 59000, Lille, France
- INSERM U1190, Translational Research for Diabetes, Lille, France
| | - Rémi Lenain
- Nephrology, Dialysis and Kidney Transplantation Department, Lille University, Regional and University Hospital Center of Lille, 59000, Lille, France
| | - Arnaud Lionet
- Nephrology, Dialysis and Kidney Transplantation Department, Lille University, Regional and University Hospital Center of Lille, 59000, Lille, France
| |
Collapse
|
34
|
Neurosurgical considerations in osteopetrosis. INTERDISCIPLINARY NEUROSURGERY 2020. [DOI: 10.1016/j.inat.2020.100679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
35
|
Abstract
Acid-base balance is critical for normal life. Acute and chronic disturbances impact cellular energy metabolism, endocrine signaling, ion channel activity, neuronal activity, and cardiovascular functions such as cardiac contractility and vascular blood flow. Maintenance and adaptation of acid-base homeostasis are mostly controlled by respiration and kidney. The kidney contributes to acid-base balance by reabsorbing filtered bicarbonate, regenerating bicarbonate through ammoniagenesis and generation of protons, and by excreting acid. This review focuses on acid-base disorders caused by renal processes, both inherited and acquired. Distinct rare inherited monogenic diseases affecting acid-base handling in the proximal tubule and collecting duct have been identified. In the proximal tubule, mutations of solute carrier 4A4 (SLC4A4) (electrogenic Na+/HCO3--cotransporter Na+/bicarbonate cotransporter e1 [NBCe1]) and other genes such as CLCN5 (Cl-/H+-antiporter), SLC2A2 (GLUT2 glucose transporter), or EHHADH (enoyl-CoA, hydratase/3-hydroxyacyl CoA dehydrogenase) causing more generalized proximal tubule dysfunction can cause proximal renal tubular acidosis resulting from bicarbonate wasting and reduced ammoniagenesis. Mutations in adenosine triphosphate ATP6V1 (B1 H+-ATPase subunit), ATPV0A4 (a4 H+-ATPase subunit), SLC4A1 (anion exchanger 1), and FOXI1 (forkhead transcription factor) cause distal renal tubular acidosis type I. Carbonic anhydrase II mutations affect several nephron segments and give rise to a mixed proximal and distal phenotype. Finally, mutations in genes affecting aldosterone synthesis, signaling, or downstream targets can lead to hyperkalemic variants of renal tubular acidosis (type IV). More common forms of renal acidosis are found in patients with advanced stages of chronic kidney disease and are owing, at least in part, to a reduced capacity for ammoniagenesis.
Collapse
Affiliation(s)
- Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland; National Center for Competence in Research Kidney, Switzerland.
| | - Pedro H Imenez Silva
- Institute of Physiology, University of Zurich, Zurich, Switzerland; National Center for Competence in Research Kidney, Switzerland
| | - Soline Bourgeois
- Institute of Physiology, University of Zurich, Zurich, Switzerland; National Center for Competence in Research Kidney, Switzerland
| |
Collapse
|
36
|
Abstract
Over the last decades, the association between vascular calcification (VC) and all-cause/cardiovascular mortality, especially in patients with high atherogenic status, such as those with diabetes and/or chronic kidney disease, has been repeatedly highlighted. For over a century, VC has been noted as a passive, degenerative, aging process without any treatment options. However, during the past decades, studies confirmed that mineralization of the arteries is an active, complex process, similar to bone genesis and formation. The main purpose of this review is to provide an update of the existing biomarkers of VC in serum and develop the various pathogenetic mechanisms underlying the calcification process, including the pivotal roles of matrix Gla protein, osteoprotegerin, bone morphogenetic proteins, fetuin-a, fibroblast growth-factor-23, osteocalcin, osteopontin, osteonectin, sclerostin, pyrophosphate, Smads, fibrillin-1 and carbonic anhydrase II.
Collapse
|
37
|
Effect of disease-linked mutations on the structure, function, stability and aggregation of human carbonic anhydrase II. Int J Biol Macromol 2020; 143:472-482. [DOI: 10.1016/j.ijbiomac.2019.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 11/15/2022]
|
38
|
Shaik NA, Bokhari HA, Masoodi TA, Shetty PJ, Ajabnoor GMA, Elango R, Banaganapalli B. Molecular modelling and dynamics of CA2 missense mutations causative to carbonic anhydrase 2 deficiency syndrome. J Biomol Struct Dyn 2019; 38:4067-4080. [PMID: 31542996 DOI: 10.1080/07391102.2019.1671899] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Carbonic anhydrase 2 (CA2) enzyme deficiency caused by CA2 gene mutations is an inherited disorder characterized by symptoms like osteopetrosis, renal tubular acidosis, and cerebral calcification. This study has collected the CA2 deficiency causal missense mutations and assessed their pathogenicity using diverse computational programs. The 3D protein models for all missense mutations were built, and analyzed for structural divergence, protein stability, and molecular dynamics properties. We found M-CAP as the most sensitive prediction method to measure the deleterious potential of CA2 missense mutations. Free energy dynamics of tertiary structure models of CA2 mutants with DUET, mCSM, and SDM based consensus methods predicted only 50% of the variants as destabilizing. Superimposition of native and mutant CA2 models revealed the minor structural fluctuations at the amino acid residue level but not at the whole protein structure level. Near native molecular dynamic simulation analysis indicated that CA2 causative missense variants result in residue level fluctuation pattern in the protein structure. This study expands the understanding of genotype-protein phenotype correlations underlying CA2 variant pathogenicity and presents a potential avenue for modifying the CA2 deficiency by targeting biophysical structural features of CA2 protein. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Noor A Shaik
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hifaa A Bokhari
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tariq Ahmed Masoodi
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Preetha J Shetty
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, UAE
| | - Ghada M A Ajabnoor
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ramu Elango
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Babajan Banaganapalli
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
39
|
Occhipinti R, Boron WF. Role of Carbonic Anhydrases and Inhibitors in Acid-Base Physiology: Insights from Mathematical Modeling. Int J Mol Sci 2019; 20:E3841. [PMID: 31390837 PMCID: PMC6695913 DOI: 10.3390/ijms20153841] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 01/25/2023] Open
Abstract
Carbonic anhydrases (CAs) catalyze a reaction fundamental for life: the bidirectional conversion of carbon dioxide (CO2) and water (H2O) into bicarbonate (HCO3-) and protons (H+). These enzymes impact numerous physiological processes that occur within and across the many compartments in the body. Within compartments, CAs promote rapid H+ buffering and thus the stability of pH-sensitive processes. Between compartments, CAs promote movements of H+, CO2, HCO3-, and related species. This traffic is central to respiration, digestion, and whole-body/cellular pH regulation. Here, we focus on the role of mathematical modeling in understanding how CA enhances buffering as well as gradients that drive fluxes of CO2 and other solutes (facilitated diffusion). We also examine urinary acid secretion and the carriage of CO2 by the respiratory system. We propose that the broad physiological impact of CAs stem from three fundamental actions: promoting H+ buffering, enhancing H+ exchange between buffer systems, and facilitating diffusion. Mathematical modeling can be a powerful tool for: (1) clarifying the complex interdependencies among reaction, diffusion, and protein-mediated components of physiological processes; (2) formulating hypotheses and making predictions to be tested in wet-lab experiments; and (3) inferring data that are impossible to measure.
Collapse
Affiliation(s)
- Rossana Occhipinti
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Walter F Boron
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
40
|
Quantitative Trait Locus and Integrative Genomics Revealed Candidate Modifier Genes for Ectopic Mineralization in Mouse Models of Pseudoxanthoma Elasticum. J Invest Dermatol 2019; 139:2447-2457.e7. [PMID: 31207231 DOI: 10.1016/j.jid.2019.04.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/28/2019] [Accepted: 04/26/2019] [Indexed: 02/06/2023]
Abstract
Pseudoxanthoma elasticum, a prototype of heritable multisystem ectopic mineralization disorders, is caused by mutations in the ABCC6 gene encoding a putative efflux transporter, ABCC6. The phenotypic spectrum of pseudoxanthoma elasticum varies, and the correlation between genotype and phenotype has not been established. To identify genetic modifiers, we performed quantitative trait locus analysis in inbred mouse strains that carry the same hypomorphic allele in Abcc6 yet with highly variable ectopic mineralization phenotypes of pseudoxanthoma elasticum. Abcc6 was confirmed as a major determinant for ectopic mineralization in multiple tissues. Integrative analysis using functional genomics tools that included GeneWeaver, String, and Mouse Genome Informatics identified a total of nine additional candidate modifier genes that could influence the organ-specific ectopic mineralization phenotypes. Integration of the candidate genes into the existing ectopic mineralization gene network expands the current knowledge on the complexity of the network that, as a whole, governs ectopic mineralization in soft connective tissues.
Collapse
|
41
|
Affiliation(s)
- Maximillian A Rogers
- From the Centers for Interdisciplinary Cardiovascular Sciences (MA.R., M.A., E.A.) and Excellence in Vascular Biology (M.A., E.A.), Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Masanori Aikawa
- From the Centers for Interdisciplinary Cardiovascular Sciences (MA.R., M.A., E.A.) and Excellence in Vascular Biology (M.A., E.A.), Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Elena Aikawa
- From the Centers for Interdisciplinary Cardiovascular Sciences (MA.R., M.A., E.A.) and Excellence in Vascular Biology (M.A., E.A.), Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
| |
Collapse
|
42
|
TCIRG1 and SNX10 gene mutations in the patients with autosomal recessive osteopetrosis. Gene 2019; 702:83-88. [PMID: 30898715 DOI: 10.1016/j.gene.2019.02.088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/08/2019] [Accepted: 02/25/2019] [Indexed: 11/21/2022]
Abstract
Autosomal recessive osteopetrosis (ARO) is a rare genetic bone disease characterized by dense and fragile bone, caused by a defect in osteoclasts responsible for the bone destruction. In this study, we aimed to investigate the mutations in TCIRG1 and SNX10 that are responsible for 50% and 4% of the cases, respectively. All amplicons were sequenced by Sanger sequencing following PCR amplification. As a result, six different mutations of the TCIRG1 gene were found in five of the twelve unrelated cases. These include two novel mutations, namely c.630 + 1G > T mutation and c.1778_1779delTG mutation of the gene which are identified as homozygous. A compound heterozygosity of known mutations c.649_674del26 and c.1372G > A and homozygous presence of the known c.2235 + 1G > A mutation were also observed in different patients. In addition, as a result of the prenatal testing in a family with osteopetrosis infant, the c.1674-1G > A mutation was detected as homozygous for the fetus. In TCIRG1, c.166C > T change, which is indicated as likely benign according to ClinVar database, was heterozygous. Several known polymorphisms; c.117 + 83 T > C, c.417 + 11A > G and c.714-19C > A in TCIRG1 gene; c.24 + 36 T > A and c.112-84G > A in SNX10 gene were also detected. In conclusion, our study revealed that five of the twelve cases carry at least one mutation of TCIRG1 gene. Further studies with more patients and other genes would help better understanding of genetic etiology of the disease.
Collapse
|
43
|
Abstract
Renal tubular acidosis should be suspected in poorly thriving young children with hyperchloremic and hypokalemic normal anion gap metabolic acidosis, with/without syndromic features. Further workup is needed to determine the type of renal tubular acidosis and the presumed etiopathogenesis, which informs treatment choices and prognosis. The risk of nephrolithiasis and calcinosis is linked to the presence (proximal renal tubular acidosis, negligible stone risk) or absence (distal renal tubular acidosis, high stone risk) of urine citrate excretion. New formulations of slow-release alkali and potassium combination supplements are being tested that are expected to simplify treatment and lead to sustained acidosis correction.
Collapse
Affiliation(s)
- Robert Todd Alexander
- Department of Pediatrics and Physiology, Stollery Children's Hospital, 11405-87 Avenue, Edmonton, Alberta T6G 1C9, Canada
| | - Martin Bitzan
- Division of Nephrology, Department of Pediatrics, The Montreal Children's Hospital, McGill University Health Centre, Room B RC.6651, Montreal, Quebec H4A 3J1, Canada; Al Jalila Children's Hospital, Al Jadaf PO Box 7662, Dubai, UAE.
| |
Collapse
|
44
|
Ozsoy HZ. Carbonic anhydrase enzymes: Likely targets for inhalational anesthetics. Med Hypotheses 2019; 123:118-124. [PMID: 30696581 DOI: 10.1016/j.mehy.2019.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/09/2019] [Indexed: 10/27/2022]
Abstract
Inhalational anesthetics such as isoflurane, desflurane and halothane are the mainstay medications for surgical procedures; upon inhalation, they produce anesthesia described as reversible unconsciousness with the features of amnesia, sleep, immobility and analgesia. To date, how they produce anesthesia is unknown. This study proposes that carbonic anhydrase enzymes are likely targets mediating the actions of inhalational anesthetics. Carbonic anhydrase enzymes, commonly expressed in living organisms, utilize carbon dioxide (CO2) as a substrate and can generate H+ and HCO3- from CO2 with a great efficiency. There are remarkable lines of evidence for their likely roles in mediating anesthetic actions. Firstly, carbonic anhydrase enzymes are extensively expressed in the brain and spinal cord, and their importance in the brain activity, especially for the GABA and NMDA receptor signaling pathways, has been demonstrated in numerous studies. According to these studies, they provide HCO3- for GABA-A receptor activities and also buffer HCO3- excess resulting from NMDA receptor activation. Activation of GABA-A and inhibition of NMDA receptors are associated with the induction of anesthesia by the intravenous general anesthetics propofol and ketamine, respectively. Secondly, the carbonic anhydrase inhibitors topiramate and zonisamide are effectively used in the treatment of epilepsy for decades; their chronic use results in the requirement of increased levels of amobarbital in order to produce anesthesia in the epileptic patients during WADA test. In addition, given that CO2 is a substrate for these enzymes, their tertiary structure is likely has a hydrophobic pocket suitable for the anesthetic molecules to bind. Inhalational anesthetic molecules, which are lipophilic and inert in nature, have an ability to cross the membranes and inhibit carbonic anhydrases, which might not be accessible by topiramate and zonisamide. Unlike carbonic anhydrase inhibitors, they could bind to the hydrophobic pocket for CO2 molecules and produce a profound effect called anesthesia. Finally, there is a great deal of similarities between the physiological actions of inhalational anesthetics and carbonic anhydrase inhibitors; moreover well-known side effects of inhalational anesthetics could be associated with the inhibition of carbonic anhydrases. Therefore, this article presents a hypothesis that the anesthetic actions of inhalational anesthetics could be due to their inhibitory effects on the carbonic anhydrases. Investigating this hypothesis might lead to the development of new safer anesthetics, and more importantly it might reveal an endogenous anesthetic pathway, in which the carbonic anhydrase system is a component along with the GABA-A and NMDA receptor systems.
Collapse
Affiliation(s)
- H Z Ozsoy
- 2515 Gramercy Street, Houston, TX 77030, United States.
| |
Collapse
|
45
|
Brommage R, Ohlsson C. High Fidelity of Mouse Models Mimicking Human Genetic Skeletal Disorders. Front Endocrinol (Lausanne) 2019; 10:934. [PMID: 32117046 PMCID: PMC7010808 DOI: 10.3389/fendo.2019.00934] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/23/2019] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED The 2019 International Skeletal Dysplasia Society nosology update lists 441 genes for which mutations result in rare human skeletal disorders. These genes code for enzymes (33%), scaffolding proteins (18%), signal transduction proteins (16%), transcription factors (14%), cilia proteins (8%), extracellular matrix proteins (5%), and membrane transporters (4%). Skeletal disorders include aggrecanopathies, channelopathies, ciliopathies, cohesinopathies, laminopathies, linkeropathies, lysosomal storage diseases, protein-folding and RNA splicing defects, and ribosomopathies. With the goal of evaluating the ability of mouse models to mimic these human genetic skeletal disorders, a PubMed literature search identified 260 genes for which mutant mice were examined for skeletal phenotypes. These mouse models included spontaneous and ENU-induced mutants, global and conditional gene knockouts, and transgenic mice with gene over-expression or specific base-pair substitutions. The human X-linked gene ARSE and small nuclear RNA U4ATAC, a component of the minor spliceosome, do not have mouse homologs. Mouse skeletal phenotypes mimicking human skeletal disorders were observed in 249 of the 260 genes (96%) for which comparisons are possible. A supplemental table in spreadsheet format provides PubMed weblinks to representative publications of mutant mouse skeletal phenotypes. Mutations in 11 mouse genes (Ccn6, Cyp2r1, Flna, Galns, Gna13, Lemd3, Manba, Mnx1, Nsd1, Plod1, Smarcal1) do not result in similar skeletal phenotypes observed with mutations of the homologous human genes. These discrepancies can result from failure of mouse models to mimic the exact human gene mutations. There are no obvious commonalities among these 11 genes. Body BMD and/or radiologic dysmorphology phenotypes were successfully identified for 28 genes by the International Mouse Phenotyping Consortium (IMPC). Forward genetics using ENU mouse mutagenesis successfully identified 37 nosology gene phenotypes. Since many human genetic disorders involve hypomorphic, gain-of-function, dominant-negative and intronic mutations, future studies will undoubtedly utilize CRISPR/Cas9 technology to examine transgenic mice having genes modified to exactly mimic variant human sequences. Mutant mice will increasingly be employed for drug development studies designed to treat human genetic skeletal disorders. SIGNIFICANCE Great progress is being made identifying mutant genes responsible for human rare genetic skeletal disorders and mouse models for genes affecting bone mass, architecture, mineralization and strength. This review organizes data for 441 human genetic bone disorders with regard to heredity, gene function, molecular pathways, and fidelity of relevant mouse models to mimic the human skeletal disorders. PubMed weblinks to citations of 249 successful mouse models are provided.
Collapse
Affiliation(s)
- Robert Brommage
- Department of Internal Medicine and Clinical Nutrition, Centre for Bone and Arthritis Research, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- *Correspondence: Robert Brommage
| | - Claes Ohlsson
- Department of Internal Medicine and Clinical Nutrition, Centre for Bone and Arthritis Research, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Drug Treatment, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
46
|
Nephrolithiasis secondary to inherited defects in the thick ascending loop of henle and connecting tubules. Urolithiasis 2018; 47:43-56. [PMID: 30460527 DOI: 10.1007/s00240-018-1097-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/08/2018] [Indexed: 12/19/2022]
Abstract
Twin and genealogy studies suggest a strong genetic component of nephrolithiasis. Likewise, urinary traits associated with renal stone formation were found to be highly heritable, even after adjustment for demographic, anthropometric and dietary covariates. Recent high-throughput sequencing projects of phenotypically well-defined cohorts of stone formers and large genome-wide association studies led to the discovery of many new genes associated with kidney stones. The spectrum ranges from infrequent but highly penetrant variants (mutations) causing mendelian forms of nephrolithiasis (monogenic traits) to common but phenotypically mild variants associated with nephrolithiasis (polygenic traits). About two-thirds of the genes currently known to be associated with nephrolithiasis code for membrane proteins or enzymes involved in renal tubular transport. The thick ascending limb of Henle and connecting tubules are of paramount importance for renal water and electrolyte handling, urinary concentration and maintenance of acid-base homeostasis. In most instances, pathogenic variants in genes involved in thick ascending limb of Henle and connecting tubule function result in phenotypically severe disease, frequently accompanied by nephrocalcinosis with progressive CKD and to a variable degree by nephrolithiasis. The aim of this article is to review the current knowledge on kidney stone disease associated with inherited defects in the thick ascending loop of Henle and the connecting tubules. We also highlight recent advances in the field of kidney stone genetics that have implications beyond rare disease, offering new insights into the most common type of kidney stone disease, i.e., idiopathic calcium stone disease.
Collapse
|
47
|
Abstract
Distal renal tubular acidosis (DRTA) is defined as hyperchloremic, non-anion gap metabolic acidosis with impaired urinary acid excretion in the presence of a normal or moderately reduced glomerular filtration rate. Failure in urinary acid excretion results from reduced H+ secretion by intercalated cells in the distal nephron. This results in decreased excretion of NH4+ and other acids collectively referred as titratable acids while urine pH is typically above 5.5 in the face of systemic acidosis. The clinical phenotype in patients with DRTA is characterized by stunted growth with bone abnormalities in children as well as nephrocalcinosis and nephrolithiasis that develop as the consequence of hypercalciuria, hypocitraturia, and relatively alkaline urine. Hypokalemia is a striking finding that accounts for muscle weakness and requires continued treatment together with alkali-based therapies. This review will focus on the mechanisms responsible for impaired acid excretion and urinary potassium wastage, the clinical features, and diagnostic approaches of hypokalemic DRTA, both inherited and acquired.
Collapse
|
48
|
Tsikas D, Kinzel M. Associations between asymmetric dimethylarginine (ADMA), nitrite-dependent renal carbonic anhydrase activity, and plasma testosterone levels in hypogonadal men. Hellenic J Cardiol 2018; 59:201-206. [DOI: 10.1016/j.hjc.2017.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 11/25/2022] Open
|
49
|
Batlle D, Arruda J. Hyperkalemic Forms of Renal Tubular Acidosis: Clinical and Pathophysiological Aspects. Adv Chronic Kidney Dis 2018; 25:321-333. [PMID: 30139459 DOI: 10.1053/j.ackd.2018.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In contrast to distal type I or classic renal tubular acidosis (RTA) that is associated with hypokalemia, hyperkalemic forms of RTA also occur usually in the setting of mild-to-moderate CKD. Two pathogenic types of hyperkalemic metabolic acidosis are frequently encountered in adults with underlying CKD. One type, which corresponds to some extent to the animal model of selective aldosterone deficiency (SAD) created experimentally by adrenalectomy and glucocorticoid replacement, is manifested in humans by low plasma and urinary aldosterone levels, reduced ammonium excretion, and preserved ability to lower urine pH below 5.5. This type of hyperkalemic RTA is also referred to as type IV RTA. It should be noted that the mere deficiency of aldosterone when glomerular filtration rate is completely normal only causes a modest decline in plasma bicarbonate which emphasizes the importance of reduced glomerular filtration rate in the development of the hyperchloremic metabolic acidosis associated with SAD. Another type of hyperkalemic RTA distinctive from SAD in which plasma aldosterone is not reduced is referred to as hyperkalemic distal renal tubular acidosis because urine pH cannot be reduced despite acidemia or after provocative tests aimed at increasing sodium-dependent distal acidification such as the administration of sodium sulfate or loop diuretics with or without concurrent mineralocorticoid administration. This type of hyperkalemic RTA (also referred to as voltage-dependent distal renal tubular acidosis) has been best described in patients with obstructive uropathy and resembles the impairment in both hydrogen ion and potassium secretion that are induced experimentally by urinary tract obstruction and when sodium transport in the cortical collecting tubule is blocked by amiloride.
Collapse
|
50
|
Abstract
Renal tubular acidosis (RTA) is comprised of a diverse group of congenital or acquired diseases with the common denominator of defective renal acid excretion with protean manifestation, but in adults, recurrent kidney stones and nephrocalcinosis are mainly found in presentation. Calcium phosphate (CaP) stones and nephrocalcinosis are frequently encountered in distal hypokalemic RTA type I. Alkaline urinary pH, hypocitraturia, and, less frequently, hypercalciuria are the tripartite lithogenic factors in distal RTA (dRTA) predisposing to CaP stone formation; the latter 2 are also commonly encountered in other causes of urolithiasis. Although the full blown syndrome is easily diagnosed by conventional clinical criteria, an attenuated forme fruste called incomplete dRTA typically evades clinical testing and is only uncovered by provocative acid-loading challenges. Stone formers (SFs) that cannot acidify urine of pH < 5.3 during acid loading are considered to have incomplete dRTA. However, urinary acidification capacity is not a dichotomous but rather a continuous trait, so incomplete dRTA is not a distinct entity but may be one end of a spectrum. Recent findings suggest that incomplete dRTA can be attributed to heterozygous carriers of hypofunctional V-ATPase. The value of incomplete dRTA diagnosis by provocative testing and genotyping candidate genes is a valuable research tool, but it remains unclear at the moment whether they alter clinical practice and needs further clarification. No randomized controlled trials have been performed in SFs with dRTA or CaP stones, and until such data are available, treatment of CaP stones are centered on reversing the biochemical abnormalities encountered in the metabolic workup. SFs with type I dRTA should receive alkali therapy, preferentially in the form of K-citrate delivered judiciously to treat the chronic acid retention that drives both stone formation and bone disease.
Collapse
|