1
|
Characterization of an androgen-responsive, ornithine decarboxylase-related protein in mouse kidney. Biosci Rep 2017; 37:BSR20170163. [PMID: 28607032 PMCID: PMC5518511 DOI: 10.1042/bsr20170163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 06/09/2017] [Accepted: 06/09/2017] [Indexed: 01/26/2023] Open
Abstract
We have investigated and characterized a novel ornithine decarboxylase (ODC) related protein (ODCrp) also annotated as gm853. ODCrp shows 41% amino acid sequence identity with ODC and 38% with ODC antizyme inhibitor 1 (AZIN1). The Odcrp gene is selectively expressed in the epithelium of proximal tubuli of mouse kidney with higher expression in males than in females. Like Odc in mouse kidney, Odcrp is also androgen responsive with androgen receptor (AR)-binding loci within its regulatory region. ODCrp forms homodimers but does not heterodimerize with ODC. Although ODCrp contains 20 amino acid residues known to be necessary for the catalytic activity of ODC, no decarboxylase activity could be found with ornithine, lysine or arginine as substrates. ODCrp does not function as an AZIN, as it neither binds ODC antizyme 1 (OAZ1) nor prevents OAZ-mediated inactivation and degradation of ODC. ODCrp itself is degraded via ubiquination and mutation of Cys363 (corresponding to Cys360 of ODC) appears to destabilize the protein. Evidence for a function of ODCrp was found in ODC assays on lysates from transfected Cos-7 cells where ODCrp repressed the activity of endogenous ODC while Cys363Ala mutated ODCrp increased the enzymatic activity of endogenous ODC.
Collapse
|
2
|
Levillain O, Ramos-Molina B, Forcheron F, Peñafiel R. Expression and distribution of genes encoding for polyamine-metabolizing enzymes in the different zones of male and female mouse kidneys. Amino Acids 2012; 43:2153-63. [PMID: 22562773 DOI: 10.1007/s00726-012-1300-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 04/12/2012] [Indexed: 12/16/2022]
Abstract
The role of polyamines in renal physiology is only partially understood. Moreover, most of the data on the enzymes of polyamine metabolism come from studies using whole kidneys. The aim of the present study was to analyze the mRNA abundance of the genes implicated in both the polyamine biosynthetic and catabolic pathways in different renal zones of male and female mice, by means of the quantitative reverse transcription-polymerase chain reaction. Our results indicate that there is an uneven distribution of the different mRNAs studied in the five renal zones: superficial cortex, deep cortex, outer stripe of the outer medulla (OS), inner stripe of the outer medulla (IS), and the inner medulla + papilla (IM). The biosynthetic genes, ornithine decarboxylase (ODC) and spermine synthase, were more expressed in the cortex, whereas the mRNAs of the catabolic genes spermine oxidase (SMO) and diamine oxidase were more abundant in IS and IM. The genes involved in the regulation of polyamine synthesis (AZ1, AZ2 and AZIN1) were expressed in all the renal zones, predominantly in the cortex, while AZIN2 gene was more abundant in the OS. ODC, SMO, spermidine synthase and spermidine/spermine acetyl transferase expression was higher in males than in females. In conclusion, the genes encoding for the polyamine metabolism were specifically and quantitatively distributed along the corticopapillary axis of male and female mouse kidneys, suggesting that their physiological role is essential in defined renal zones and/or nephron segments.
Collapse
Affiliation(s)
- Olivier Levillain
- Institut de Biologie et Chimie des Protéines, FRE 3310, Dysfonctionnements de l'homéostasie tissulaire et ingénierie thérapeutique, (DyHTIT), 7 passage du Vercors, 69367, Lyon, France.
| | | | | | | |
Collapse
|
3
|
Ray RM, Viar MJ, Johnson LR. Amino acids regulate expression of antizyme-1 to modulate ornithine decarboxylase activity. J Biol Chem 2011; 287:3674-90. [PMID: 22157018 DOI: 10.1074/jbc.m111.232561] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In a glucose-salt solution (Earle's balanced salt solution), asparagine (Asn) stimulates ornithine decarboxylase (ODC) activity in a dose-dependent manner, and the addition of epidermal growth factor (EGF) potentiates the effect of Asn. However, EGF alone fails to activate ODC. Thus, the mechanism by which Asn activates ODC is important for understanding the regulation of ODC activity. Asn reduced antizyme-1 (AZ1) mRNA and protein. Among the amino acids tested, Asn and glutamine (Gln) effectively inhibited AZ1 expression, suggesting a differential role for amino acids in the regulation of ODC activity. Asn decreased the putrescine-induced AZ1 translation. The absence of amino acids increased the binding of eukaryotic initiation factor 4E-binding protein (4EBP1) to 5'-mRNA cap and thereby inhibited global protein synthesis. Asn failed to prevent the binding of 4EBP1 to mRNA, and the bound 4EBP1 was unphosphorylated, suggesting the involvement of the mammalian target of rapamycin (mTOR) in the regulation of AZ1 synthesis. Rapamycin treatment (4 h) failed to alter the expression of AZ1. However, extending the treatment (24 h) allowed expression in the presence of amino acids, indicating that AZ1 is expressed when TORC1 signaling is decreased. This suggests the involvement of cap-independent translation. However, transient inhibition of mTORC2 by PP242 completely abolished the phosphorylation of 4EBP1 and decreased basal as well as putrescine-induced AZ1 expression. Asn decreased the phosphorylation of mTOR-Ser(2448) and AKT-Ser(473), suggesting the inhibition of mTORC2. In the absence of amino acids, mTORC1 is inhibited, whereas mTORC2 is activated, leading to the inhibition of global protein synthesis and increased AZ1 synthesis via a cap-independent mechanism.
Collapse
Affiliation(s)
- Ramesh M Ray
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA.
| | | | | |
Collapse
|
4
|
Pihlajamaa P, Zhang FP, Saarinen L, Mikkonen L, Hautaniemi S, Jänne OA. The phytoestrogen genistein is a tissue-specific androgen receptor modulator. Endocrinology 2011; 152:4395-405. [PMID: 21878517 DOI: 10.1210/en.2011-0221] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
To enable studies of androgen signaling in different tissues in vivo, we generated an androgen receptor (AR) reporter mouse line by inserting a luciferase gene construct into the murine genome. The construct is driven by four copies of androgen-responsive elements from the mouse sex-limited protein gene (slp-HRE2) and a minimal thymidine kinase promoter. Luciferase activity was readily measurable in a number of murine tissues, including prostate, lung, testis, brain, and skeletal muscle, and testosterone administration elicited a significant increase in reporter gene activity in these tissues. Consumption of isoflavonoid genistein is linked to reduced risk of prostate cancer, but direct effects of genistein on the AR pathway are not well understood. To examine androgen-modulating activity of genistein in vivo, male mice received daily doses of genistein (10 mg/kg) for 5 d. In intact males, genistein was antiandrogenic in testis, prostate, and brain, and it attenuated reporter gene activity by 50-80%. In castrated males, genistein exhibited significant androgen agonistic activity in prostate and brain by increasing reporter gene activity over 2-fold in both tissues. No antiandrogenic action was seen in lung or skeletal muscle of intact males. Gene expression profiling of the murine prostate under the same experimental conditions revealed that genistein modulates androgen-dependent transcription program in prostate in a fashion similar to that observed in reporter mice by luciferase expression. In conclusion, genistein is a partial androgen agonist/antagonist in some but not in all mouse tissues and should be considered as a tissue-specific AR modulator.
Collapse
Affiliation(s)
- Päivi Pihlajamaa
- Institute of Biomedicine, Physiology, Biomedicum Helsinki, University of Helsinki, and Department of Clinical Chemistry, Helsinki University Central Hospital, P.O. Box 63, FI-00014 Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
5
|
Abstract
A chicken embryo cDNA library was screened with a mouse probe for ornithine decarboxylase (ODC) and 14 positively hybridizing clones isolated. The longest of these (1.7 kb) was sub-cloned and sequenced. It is estimated that the clone comprises approximately 98% of the coding region for chicken ODC. The DNA sequence shows 78% identity with the human ODC cDNA sequence and the deduced amino acid sequence is almost 90% homologous to mouse and human. Both the peptide and cDNA sequences show interesting potential regulatory features which are discussed here.
Collapse
Affiliation(s)
- R Johnson
- AFRC Institute of Animal Physiology and Genetics Research, Edinburgh Research Station, Roslin, Midlothian, UK
| | | |
Collapse
|
6
|
Vitvitsky V, Prudova A, Stabler S, Dayal S, Lentz SR, Banerjee R. Testosterone regulation of renal cystathionine β-synthase: implications for sex-dependent differences in plasma homocysteine levels. Am J Physiol Renal Physiol 2007; 293:F594-600. [PMID: 17537983 DOI: 10.1152/ajprenal.00171.2007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Elevated plasma total homocysteine (tHcy) is an independent risk factor for ischemic heart disease and stroke. Epidemiological studies reveal that men have higher tHcy levels than women, but the mechanism underlying this sex-dependent difference is unknown. One route for intracellular disposal of homocysteine is catalyzed by cystathionine β-synthase (CBS). Renal function is known to be an important determinant of tHcy, and, in this study, we demonstrate that renal CBS expression and activity in mice diminished approximately twofold after castration, whereas ovariectomization was without effect. The higher renal CBS activity in males (22.7 ± 3.1 mmol cystathionine·h−1·kg kidney−1) vs. females (8.4 ± 3.4 mmol cystathionine·h−1·kg kidney−1, P ≤ 10−6) in C57Bl/6J mice was associated with lower plasma tHcy levels in males vs. females, and this difference was exacerbated in Cbs+/− mice (7.7 ± 1.9 μmol/l in males vs. 13.8 ± 6.4 μmol/l in females, P = 0.005). Surprisingly, mammals exhibit a diversity of regulatory patterns for kidney CBS, with females exhibiting lower CBS activity in mice, higher in rats and humans, and being indistinguishable from males in rabbit, hamster, and guinea pig. Our data suggest that testosterone-dependent regulation of human CBS in kidney may contribute to sex-dependent differences in homocysteine transsulfuration.
Collapse
Affiliation(s)
- Victor Vitvitsky
- Redox Biology Center and the Biochemistry Dept., University of Nebraska, Lincoln, NE 68588-0664, USA
| | | | | | | | | | | |
Collapse
|
7
|
Wilson SM, Hawel L, Pastorian KE, Byus CV. A stable, inducible, dose-responsive ODC overexpression system in human cell lines. ACTA ACUST UNITED AC 2005; 1732:103-10. [PMID: 16458983 DOI: 10.1016/j.bbaexp.2005.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Revised: 08/19/2005] [Accepted: 08/23/2005] [Indexed: 11/18/2022]
Abstract
ODC is a labile protein subject to rapid turnover, and a conditional expression system providing long-term overexpression may be helpful in further understanding the biochemical properties of this enzyme and elucidating aspects of the polyamine biosynthetic pathway that have otherwise been difficult to study. HEK293 and LNCaP cell lines were engineered to stably and inducibly overexpress ODC using a Tet-on inducible construct. Clones from both cell lines were characterized by evaluating ODC mRNA expression, ODC activity, intracellular and extracellular polyamine levels, SSAT activity and growth kinetics. The ODC-inducible cell lines were time- and dose-responsive providing a mechanism to increase ODC and putrescine accumulation to a desired level in a flexible and controllable manner. The findings demonstrate that LNCaP ODC overexpressing cells maintained over a 100-fold increase in ODC activity and over a 10-fold increase in intracellular putrescine after 6 h. ODC induction at the highest levels was accompanied by a slight decline in intracellular spermidine and spermine levels and this observation was supported by the finding that SSAT activity was induced over 40-fold under these conditions. Growth rate remained unaffected following at least 12 h of ODC overexpression. Similar results were observed in the HEK293 ODC overexpressing cells.
Collapse
Affiliation(s)
- Shannon M Wilson
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | | | | | | |
Collapse
|
8
|
Voigt J, Fausel M, Bohley P, Adam KH, Marquardt O. Structure and expression of the ornithine decarboxylase gene of Chlamydomonas reinhardtii. Microbiol Res 2005; 159:403-17. [PMID: 15646386 DOI: 10.1016/j.micres.2004.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A cDNA was cloned encoding ornithine decarboxylase (ODC) of the unicellular green alga Chlamydomonas reinhardtii. The polypeptide consists of 396 amino acid residues with 35-37% sequence identity to other eukaryotic ODCs. As indicated by the phylogenetic tree calculated by neighbour joining analysis, the Chlamydomonas ODC has the same evolutionary distances to the ODCs of higher plants and mammalians. The Chlamydomonas ODC gene contains three introns of 222, 133, and 129bp, respectively. As revealed by Northern-blot analyses, expression of the Chlamydomonas ODC gene is neither altered throughout the vegetative cell cycle nor modulated by exogenous polyamines.
Collapse
Affiliation(s)
- Jürgen Voigt
- Physiologisch-chemisches Institut der Eberhard-Karls-Universität, Hoppe-Seyler-Strasse 4, D-72076 Tübingen, Germany.
| | | | | | | | | |
Collapse
|
9
|
Hardin MS, Mader R, Hurta RAR. K-FGF mediated transformation and induction of metastatic potential involves altered ornithine decarboxylase and S-adenosylmethionine decarboxylase expression--role in cellular invasion. Mol Cell Biochem 2002; 233:49-56. [PMID: 12083379 DOI: 10.1023/a:1015554006581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Omithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (SAMDC) expression was investigated in NIH-3T3 fibroblasts that secrete K-FGF. Correlations between altered ODC and SAMDC expression and malignant potential were determined. Increased ODC and SAMDC expression was associated with increased expression of both ODC and SAMDC mRNA and enzyme activity levels. Transcriptional and post-transcriptional regulatory mechanisms were found to account for the increased expression of both ODC and SAMDC. Amplification of the ODC gene also played a role. Correlations between the expression of ODC and the invasion ability of the K-FGF overexpressing cells were also found. Additionally, putrescine, which is a cellular polyamine, was found to play a role in determining the nature of the invasive capacity of the K-FGF overexpressing cells. The results of this study which established correlations between alterations in the expression of ODC and SAMDC, the key rate limiting and regulatory activities in the synthesis of cellular polyamines, and malignant potential as a consequence of K-FGF overexpression supports a model which suggests that growth factor modulation of ODC and SAMDC expression is part of the altered growth regulatory program associated with cellular transformation and malignant progression.
Collapse
Affiliation(s)
- Marcus S Hardin
- Department of Laboratory Medicine and Pathobiology, St. Michael's Hospital, University of Toronto, ON, Canada
| | | | | |
Collapse
|
10
|
Sanchez Mas J, Martijnez-Esparza M, Bastida CM, Solano F, Penafiel R, Garcija-Borron JC. Regulation of ornithine decarboxylase in B16 mouse melanoma cells: synergistic activation of melanogenesis by alphaMSH and ornithine decarboxylase inhibition. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1542:57-65. [PMID: 11853879 DOI: 10.1016/s0167-4889(01)00165-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ornithine decarboxylase (ODC) is the rate-limiting enzyme in the biosynthesis of polyamines, a family of cationic compounds required for optimal cell proliferation and differentiation. Within mammalian melanocytes, the expression of genes regulating cell growth and/or differentiation can be controlled by alpha-melanocyte-stimulating hormone (alphaMSH) and other melanogenesis modulating agents. In the B16 mouse melanoma model, alphaMSH stimulates melanogenesis by upmodulation of tyrosinase (tyr) activity, whereas the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) inhibits melanin synthesis. Therefore, we analyzed the regulation of ODC by these agents, as related to changes in the melanogenic pathway. Treatment of B16 cells with TPA or alphaMSH rapidly stimulated ODC activity. The effect was stronger for TPA and appeared mainly posttranslational. Irreversible inhibition of ODC with the active site-directed inhibitor alpha-difluoromethylornithine (DFMO) did not block TPA-mediated inhibition of tyr. Conversely, prolonged treatment of B16 cells with DFMO stimulated tyr activity by a posttranslational mechanism, probably requiring polyamine depletion. Combination treatment with alphaMSH and DFMO synergistically activated tyr. Therefore, ODC induction is not involved in the melanogenic response of B16 cells to alphaMSH. Rather, increased intracellular concentrations of polyamines following ODC induction might constitute a feedback mechanism to limit melanogenesis activation by alphaMSH.
Collapse
Affiliation(s)
- J Sanchez Mas
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Murcia, Apto 4021, Campus Espinardo, 30100, Murcia, Spain
| | | | | | | | | | | |
Collapse
|
11
|
Bordallo C, Rubín JM, Varona AB, Cantabrana B, Hidalgo A, Sánchez M. Increases in ornithine decarboxylase activity in the positive inotropism induced by androgens in isolated left atrium of the rat. Eur J Pharmacol 2001; 422:101-7. [PMID: 11430920 DOI: 10.1016/s0014-2999(01)01039-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
It is well established that the intracellular receptors of androgens act as transcription factors upon their activation by androgen binding. However, a growing number of studies have associated androgens with rapid biological responses independent of their classical action mechanism. In this sense, 5alpha- and 5beta-dihydrotestosterone elicited a rapid positive inotropism in the isolated left atrium of the rat via cAMP-dependent mechanisms that may involve genomic effects. In addition, polyamines are mediators of several biological actions including those acute and long-term effects induced by androgens in the heart. The present study analyzed the role of polyamine synthesis in the cardiotonic effect of androgens in the left atrium of male Wistar rats, electrically stimulated (0.5 Hz, 5 ms and supramaximal voltage) and placed in an organ bath in 10 ml of Tyrode's solution. Incubation in the organ bath with an inhibitor of ornithine decarboxylase activity, alpha-difluoromethylornithine 10 mM, significantly decreased the positive inotropism induced by 5alpha- and 5beta-dihydrotestosterone (0.1-100 microM). This suggests that ornithine decarboxylase seems to be involved in androgen-induced positive inotropism. Furthermore, 6-min exposure to 5alpha- or 5beta-dihydrotestosterone significantly increased the activity of ornithine decarboxylase from 61.81+/-7.53 (control) to 93.28+/-9.45 and 80.28+/-12 pmol/h/mg of protein, respectively. Northern blot analysis showed that 5alpha- and 5beta-dihydrotestosterone did not modify the level of expression of the ornithine decarboxylase gene. Therefore, our results suggest that polyamine synthesis might be involved in the positive inotropism elicited by androgens through the stimulation of ornithine decarboxylase activity without changes in the expression of the ornithine decarboxylase gene.
Collapse
Affiliation(s)
- C Bordallo
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Oviedo, Spain
| | | | | | | | | | | |
Collapse
|
12
|
Kilpeläinen PT, Saarimies J, Kontusaari SI, Järvinen MJ, Soler AP, Kallioinen MJ, Hietala OA. Abnormal ornithine decarboxylase activity in transgenic mice increases tumor formation and infertility. Int J Biochem Cell Biol 2001; 33:507-20. [PMID: 11331206 DOI: 10.1016/s1357-2725(01)00014-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A transgenic mouse line carrying ornithine decarboxylase cDNA as the transgene under the control of a mouse mammary tumor virus long terminal repeat (MMTV LTR) promoter was generated in order to study whether ornithine decarboxylase transgene expression will have any physiological or pathological effect during the entire life of a transgenic mouse. The high frequency of infertile animals and the loss of pups made the breeding of homozygous mice unsuccessful. However, a colony of heterozygous transgenic mice was followed for 2 years. In adult heterozygous transgenic mice, ornithine decarboxylase activity was significantly increased in the testis, seminal vesicle and preputial gland when compared to non-transgenic controls. In contrast, ornithine decarboxylase activity was decreased in the kidney and prostate of transgenic mice. No significant changes in ornithine decarboxylase activity were found in the ovary and mammary gland and only moderate changes in ornithine decarboxylase activity were detected in the heart, brain, pancreas and lung. The most common abnormalities found in adult animals (12 males and 20 females) of the transgenic line were inflammatory processes, including pancreatitis, hepatitis, sialoadenitis and pyelonephritis. Spontaneous tumors were observed in eight animals, including two benign tumors (one dermatofibroma, one liver hemangioma) and six malignant tumors (one lymphoma, one intestinal and three mammary adenocarcinomas and one adenocarcinoma in the lung). No significant pathological changes were found in 17 nontransgenic controls.
Collapse
Affiliation(s)
- P T Kilpeläinen
- Department of Biochemistry, University of Oulu, FIN-90014, Oulu, Finland
| | | | | | | | | | | | | |
Collapse
|
13
|
Isern J, Hagenbuch B, Stieger B, Meier PJ, Meseguer A. Functional analysis and androgen-regulated expression of mouse organic anion transporting polypeptide 1 (Oatp1) in the kidney. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1518:73-8. [PMID: 11267661 DOI: 10.1016/s0167-4781(01)00169-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mouse Oatp1 was recently identified as a new murine member of the organic anion transporting polypeptide (Oatp) family and suggested to represent the counterpart of rat Oatp1. Northern blot analysis detected expression of several mouse Oatp-transcripts predominantly in liver and kidney. In the present study we describe the strict androgen-dependent expression of mouse Oatp1 mRNA in kidney and obtained further information about its substrate specificity using Xenopus oocytes. In addition to the previously reported estrone-3-sulfate, we demonstrate that mouse Oatp1 mediates sodium-independent uptake of the anionic steroid conjugates dehydroepiandrosterone sulfate (K(m) approximately 8 microM) and estradiol-17-glucuronide (K(m) approximately 5 microM) and also of the prostaglandin PGE(2).
Collapse
Affiliation(s)
- J Isern
- Centre d'Investigacions en Bioquimica i Biologia Molecular (CIBBIM), Hospital Universitari Vall d'Hebron, Pg Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | | | | | | | | |
Collapse
|
14
|
Ray RM, Viar MJ, Patel TB, Johnson LR. Interaction of asparagine and EGF in the regulation of ornithine decarboxylase in IEC-6 cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:G773-80. [PMID: 10070056 DOI: 10.1152/ajpgi.1999.276.3.g773] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Our laboratory has shown that asparagine (ASN) stimulates both ornithine decarboxylase (ODC) activity and gene expression in an intestinal epithelial cell line (IEC-6). The effect of ASN is specific, and other A- and N-system amino acids are almost as effective as ASN when added alone. In the present study, epidermal growth factor (EGF) was unable to increase ODC activity in cells maintained in a salt-glucose solution (Earle's balanced salt solution). However, the addition of ASN (10 mM) in the presence of EGF (30 ng/ml) increased the activity of ODC 0.5- to 4-fold over that stimulated by ASN alone. EGF also showed induction of ODC with glutamine and alpha-aminoisobutyric acid, but ODC induction was maximum with ASN and EGF. Thus the mechanism of the interaction between ASN and EGF is important for understanding the regulation of ODC under physiological conditions. Therefore, we examined the expression of the ODC gene and those for several protooncogenes under the same conditions. Increased expression of the genes for c-Jun and c-Fos but not for ODC occurred with EGF alone. The addition of ASN did not further increase the expression of the protooncogenes, but the combination of EGF and ASN further increased the expression of ODC over that of ASN alone. Western analysis showed no significant difference in the level of ODC protein in Earle's balanced salt solution, ASN, EGF, or EGF plus ASN. Addition of cycloheximide during ASN and ASN plus EGF treatment completely inhibited ODC activity without affecting the level of ODC protein. These results indicated that 1) the increased expression of protooncogenes in response to EGF is independent of increases in ODC activity and 2) potentiation between EGF and ASN on ODC activity may not be due to increased gene transcription but to posttranslational regulation and the requirement of ongoing protein synthesis involving a specific factor dependent on ASN.
Collapse
Affiliation(s)
- R M Ray
- Department of Physiology and Biophysics, University of Tennessee, Memphis, College of Medicine, Memphis, Tennessee 38163, USA.
| | | | | | | |
Collapse
|
15
|
Manteuffel-Cymborowska M, Peska M, Chmurzyńska W, Grzelakowska-Sztabert B. Catecholamines are required for androgen-induced ODC expression but not for hypertrophy of mouse kidney. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1356:292-8. [PMID: 9194572 DOI: 10.1016/s0167-4889(97)00011-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Catecholamine depletion, evoked by reserpine, dramatically impaired (5-fold) the testosterone-induced increase of ornithine decarboxylase (ODC) activity in female mouse kidney. However, reserpine did not prevent kidney hypertrophy evoked by testosterone. This is evidenced by the activity of sensitive, biochemical markers of renal hypertrophy, namely arginase and ornithine aminotransferase (OAT), that responded with the increase and decrease of activities to testosterone treatment, respectively. Arginine and ornithine, substrates and/or products of marker enzymes, showed a striking homeostasis as their level was not affected by testosterone and reserpine, and only slightly by DFMO. Northern blot analysis revealed that the ODC mRNA level, that was increased 10-fold by testosterone, was decreased 2-fold in catecholamine-depleted hypertrophic kidney. Thus, ODC transcript level, lowered by reserpine, correlated partially with an attenuated response of ODC activity to testosterone. This was in contrast to DFMO, which inhibited ODC activity, but significantly increased its mRNA content. It is concluded that catecholamines could be involved together with testosterone in regulation of the ODC gene expression in mouse kidney.
Collapse
|
16
|
Nishikawa Y, Kar S, Wiest L, Pegg AE, Carr BI. Inhibition of spermidine synthase gene expression by transforming growth factor-beta 1 in hepatoma cells. Biochem J 1997; 321 ( Pt 2):537-43. [PMID: 9020892 PMCID: PMC1218102 DOI: 10.1042/bj3210537] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We screened genes responsive to transforming growth factor-beta (TGF-beta 1) protein in a human hepatoma cell line (Hep3B) using a PCR-mediated differential display technique, in order to investigate the mechanisms involved in TGF-beta-induced growth suppression. We found a gene that was down-regulated by TGF-beta 1 to be completely identical in an approx. 620 bp segment to the gene for the enzyme spermidine synthase, which mediates the conversion of putrescine into spermidine. Both spermidine synthase mRNA expression and its enzyme activity were decreased after TGF-beta 1 treatment of Hep3B cells. The inhibition of spermidine synthase gene expression by TGF-beta 1 protein was also observed in other hepatoma cell lines. The expression of genes for other biosynthetic enzymes in polyamine metabolism (ornithine decarboxylase and S-adenosylmethionine decarboxylase) was also inhibited to the same extent as for spermidine synthase, while the gene expression of spermidine/spermine N1-acetyltransferase, a catabolic enzyme, was relatively resistant to TGF-beta 1. Spermine levels in Hep3B cells were decreased by TGF-beta 1 treatment, although the levels of spermidine and putrescine were unchanged, probably due to compensation by remaining spermidine/spermine N1-acetyltransferase activity. Exogenously added spermidine or spermine, but not putrescine, partially antagonized the growth-inhibitor effects of TGF-beta 1 on Hep3B cells. Our data suggest that down-regulation of gene expression of the enzymes involved in polyamine metabolism, including spermidine synthase, may be associated with the mechanism of TGF-beta-induced growth suppression.
Collapse
Affiliation(s)
- Y Nishikawa
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|
17
|
Hurta RA, Huang A, Wright JA. Basic fibroblast growth factor selectively regulates ornithine decarboxylase gene expression in malignant H-ras transformed cells. J Cell Biochem 1996; 60:572-83. [PMID: 8707896 DOI: 10.1002/(sici)1097-4644(19960315)60:4<572::aid-jcb13>3.0.co;2-j] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cell growth regulation by fibroblast growth factors (FGFs) is highly complex. The present study demonstrates a novel link between alterations in bFGF regulation during malignant conversion and the expression of ornithine decarboxylase, a key rate-limiting and regulatory activity in the biosynthesis of polyamines. H-ras transformed mouse 10T 1/2 cell lines exhibiting increasing malignant potential were investigated for possible bFGF-mediated changes in ornithine decarboxylase gene expression. Selective induction of ornithine decarboxylase gene expression was observed, since, in contrast to nontransformed 10T 1/2 cells and cells capable of only benign tumor formation, H-ras transformed metastatic cells exhibited marked elevations in ornithine decarboxylase message levels. Evidence for regulation of ornithine decarboxylase gene expression by bFGF at both transcription and posttranscription was found. Actinomycin D pretreatment of malignant cells prior to bFGF exposure inhibited the increase in ornithine decarboxylase message. Furthermore, striking differences in the rates of ornithine decarboxylase message decay were observed when cells treated with bFGF were compared to untreated control cells, with the half-life of ornithine decarboxylase mRNA increasing from 2.4 h in untreated cells to 12.5 h in cells exposed to bFGF. Evidence was also obtained for a cycloheximide-sensitive regulator of ornithine decarboxylase gene expression whose effect, in combination with bFGF, resulted in a further augmentation of ornithine decarboxylase gene expression. Furthermore, evidence is presented to suggest a possible role for G-protein-coupled events in the bFGF-mediated regulation of ornithine decarboxylase gene expression. The bFGF regulation of ornithine decarboxylase expression in H-ras transformed malignant cells appeared to occur independent of protein kinase C-mediated events. These results show that bFGF can modulate ornithine decarboxylase gene expression in malignant H-ras transformed cells and further suggests a mechanism of growth factor stimulation of malignant cells wherein early alterations in the regulatory control of ornithine decarboxylase gene expression are critical.
Collapse
Affiliation(s)
- R A Hurta
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Canada
| | | | | |
Collapse
|
18
|
Koibuchi N, Konno R, Matsuzaki S, Ohtake H, Niwa A, Yamaoka S. Localization of D-amino acid oxidase mRNA in the mouse kidney and the effect of testosterone treatment. Histochem Cell Biol 1995; 104:349-55. [PMID: 8574884 DOI: 10.1007/bf01458128] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
D-Amino acid oxidase (DAO), which catalyzes oxidative deamination of D-amino acids, is known to be highly expressed in the kidney. This study was designed to examine the localization of DAO mRNA in the mouse kidney using in situ hybridization histochemistry (ISH). For comparison, ISH for mRNA of ornithine decarboxylase (ODC), which is also highly expressed in the mouse kidney, was simultaneously performed. Adult, male mice which received 1 mg of testosterone propionate or vehicle injection, were sacrificed 14 h after injection and their kidneys were removed and processed for ISH. Hybridization signals for both mRNAs were exclusively located over the epithelial cells of the proximal tubule in the vehicle-treated animals. Signals for the DAO mRNA were observed at nearly the same hybridization intensity throughout the proximal tubule, whereas hybridization signals for the ODC mRNA were observed exclusively in the pars convoluta. Following testosterone treatment, ODC mRNA in the pars convoluta was expressed with a stronger intensity than that in the vehicle-injected animals. ODC mRNA was also expressed in the pars recta with a weaker intensity than in the pars convoluta. On the other hand, DAO mRNA expression was little affected by testosterone treatment. These results indicate that, although both genes are possibly expressed in the same cells, the expression of these genes is regulated by different mechanisms.
Collapse
Affiliation(s)
- N Koibuchi
- Department of Physiology, Dokkyo University School of Medicine, Tochigi, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Korhonen VP, Halmekytö M, Kauppinen L, Myöhänen S, Wahlfors J, Keinänen T, Hyvönen T, Alhonen L, Eloranta T, Jänne J. Molecular cloning of a cDNA encoding human spermine synthase. DNA Cell Biol 1995; 14:841-7. [PMID: 7546290 DOI: 10.1089/dna.1995.14.841] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have isolated and sequenced cDNA clones that encode human spermine synthase (EC 2.5.1.22). The total length of the sequenced cDNA was 1,612 nucleotides, containing an open reading frame encoding a polypeptide chain of 368 amino acids. All of the previously sequenced peptide fragments of human and bovine spermine synthase proteins could be located within the coding region derived from the cDNA. An unusual sequence of AATTAA apparently signaled the initiation of polyadenylation. Sequence comparisons between human spermine synthase and spermidine synthases from bacterial and mammalian sources revealed a nearly complete lack of similarity between the primary structures of these two enzymes catalyzing almost identical reactions. A modest similarity found was restricted to a relatively short peptide domain apparently involved in the binding of decarboxylated S-adenosylmethionine, the common substrate for both enzymes. The apparent lack of an overall similarity may indicate that spermine synthase, the enzyme found only in eukaryotes, and spermidine synthase with more universal distribution, although functionally closely related, have evolved separately.
Collapse
Affiliation(s)
- V P Korhonen
- A.I. Virtanen Institute, University of Kuopio, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Packianathan S, Cain CD, Liwnicz BH, Longo LD. Ornithine decarboxylase activity in vitro in response to acute hypoxia: a novel use of newborn rat brain slices. Brain Res 1995; 688:61-71. [PMID: 8542323 DOI: 10.1016/0006-8993(95)00508-n] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In fetal as well as newborn rats, acute hypoxic exposure results in significantly elevated brain ornithine decarboxylase (ODC) activity, polyamine concentrations, and ODC mRNA. The interpretations of these in vivo hypoxic-induced changes, however, are complicated by maternal confounding effects. To test the hypothesis that acute hypoxia will also increase ODC activity in vitro, we developed a brain slice preparation which eliminates such maternal effects. Sections of whole cerebrum, approximately 300-500 microns thick, were made from 3- to 4-day old Sprague-Dawley rat pups. The slices were equilibrated for 1 h in artificial cerebrospinal fluid (ACSF) continuously bubbled with 95% O2/5% CO2, prior to induction of hypoxia. We induced hypoxia by changing the oxygen concentration to 40%, 30%, 21%, 15%, 10%, or 0% O2, all with 5% CO2 and balance N2. In the normoxic control brain slices, low but stable basal ODC activity persisted for up to 5 h post-sacrifice. Slices in ACSF treated with bovine serum albumin (BSA), or both BSA and fetal bovine serum (FBS), however, showed stable ODC activity values 2- to 3-fold higher than slices in ACSF alone, for up to 5 h. In response to acute hypoxia (i.e., 15, 21, and 30% O2), ODC activity was elevated 1.5- to 2-fold above control values between 1 and 2 h after initiation of hypoxia. Qualitative light and electron microscopic examination of the neonatal brain slices following 2 h hypoxic exposure suggested that the great majority of cells did not show severe hypoxic damage or necrosis. It was concluded that: (1) in neonatal rat brain slices in vitro, stable ODC activity values approximating the whole brain ODC activity seen at sacrifice, can be maintained for several hours; (2) the in vivo hypoxic-induced increase in ODC activity can be approximated in vitro; (3) the neonatal rat brain slice preparation may be an alternative to other methods for studying hypoxic-induced ODC enzyme kinetics, or other brain enzymes, without maternal confounding effects; and (4) ODC activity may be an indicator of active metabolism within the newborn brain slice both in normoxia and hypoxia.
Collapse
Affiliation(s)
- S Packianathan
- Department of Physiology, Loma Linda University School of Medicine, CA 92350-0001, USA
| | | | | | | |
Collapse
|
21
|
Shubhada S, Soli P, Lamb DJ. Growth inhibition of the androgen responsive DDT(1)MF-2 cell line by glucocorticoids: the role of ornithine decarboxylase. Endocrine 1995; 3:493-8. [PMID: 21153204 DOI: 10.1007/bf02738823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/1994] [Accepted: 03/30/1995] [Indexed: 11/24/2022]
Abstract
While testosterone (T) stimulates the growth of DDT(1)MF-2 cells, glucocorticoids arrest the growth of these cells in the G(0)/G(1) stage of the cycle. Ornithine decarboxylase (ODC), the first and rate-limiting enzyme in the polyamine biosynthetic pathway, is highly sensitive both to growth and inhibitory stimuli. To assess the mechanism of glucocorticoid inhibition of cell growth, the effect of triamcinolone acetonide (TA) on growth and ODC was studied. DDT(1)-MF-2 cell growth was inhibited by TA and difluoromethyl ornithine (DFMO), an irreversible inhibitor of ODC. TA (10NM: ) inhibited the ODC activity to 10% of the control levels by 12 h and inhibition was maintained at all later intervals studied. Ten μM: DFMO inhibited ODC activity to a maximum of 50% of control. The concentration of ODC mRNA was maximally decreased at 15 h after TA administration.Though TA and DFMO inhibited cell growth and ODC activity in DDT(1)-MF2 cells, growth inhibition by DFMO, but not by TA, was overcome by the addition of putrescine, the product of ODC reaction. Thus, inhibition of ODC is one pathway through which glucocorticoids inhibit DDT(1)MF-2 cell growth. ODC inhibition, however, is not the only pathway through which glucocorticoids act.
Collapse
Affiliation(s)
- S Shubhada
- Department of Urology, Baylor College of Medicine, Houston, Texas, USA
| | | | | |
Collapse
|
22
|
Elias S, Bercovich B, Kahana C, Coffino P, Fischer M, Hilt W, Wolf DH, Ciechanover A. Degradation of Ornithine Decarboxylase by the Mammalian and Yeast 26S Proteasome Complexes Requires all the Components of the Protease. ACTA ACUST UNITED AC 1995. [DOI: 10.1111/j.1432-1033.1995.0276l.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Minocha SC, Minocha R. Role of Polyamines in Somatic Embryogenesis. BIOTECHNOLOGY IN AGRICULTURE AND FORESTRY 1995. [DOI: 10.1007/978-3-662-03091-2_5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
24
|
Hurta RA, Wright JA. Ornithine decarboxylase gene expression is aberrantly regulated via the cAMP signal transduction pathway in malignant H-ras transformed cell lines. J Cell Physiol 1994; 161:383-91. [PMID: 7525612 DOI: 10.1002/jcp.1041610224] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have tested the hypothesis that H-ras transformed cells contain alterations in signal pathways important in controlling the expression of ornithine decarboxylase (ODC), the highly regulated rate-limiting activity in the biosynthesis of polyamines. Mouse 10T1/2 fibroblasts and a series of 10T1/2 H-ras transformed cell lines were treated with stimulators of cAMP synthesis (forskolin and cholera toxin), a biologically stable analogue of cAMP (8-bromo-cAMP), and an inhibitor of cAMP degradation (3-isobutyl-1-methylxanthine). Elevations in ODC gene expression were noted in H-ras transformed cells that were not observed in parental 10T1/2 fibroblasts. The forskolin-mediated effects were not detected with 1,9-dideoxyforskolin, a compound structurally related to forskolin, which does not activate adenyl cyclase. The effects observed with cholera toxin were not detected when cells were treated with the purified subunits of this compound, indicating that the toxin-induced effects were cAMP-specific. Actinomycin D treatment prior to forskolin exposure reduced the elevation observed in ODC gene expression indicating the involvement of the transcriptional process. Furthermore, we observed that cycloheximide treatment of malignant but not benign H-ras transformed cells significantly elevated ODC message level. Treatment of malignant cells with both cycloheximide and forskolin together resulted in a further additive elevation in ODC message, but a similar treatment of benign tumor cells reduced the forskolin-mediated increase in ODC message. In addition, treatment of H-ras transformed cells with the tumor promoter, 12-O-tetradecanoylphorbol-13-acetate (TPA) led to an elevation in ODC mRNA levels not observed in parental 10T1/2 fibroblasts.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R A Hurta
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
25
|
Tobias KE, Mamroud-Kidron E, Kahana C. Gly387 of murine ornithine decarboxylase is essential for the formation of stable homodimers. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 218:245-50. [PMID: 8243470 DOI: 10.1111/j.1432-1033.1993.tb18371.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In its active form mammalian ornithine decarboxylase (ODC) is a homodimer composed of two 53-kDa subunits while the monomer retains no enzymic activity. In the present study we demonstrate that Gly387 of mouse ODC plays an important role in enabling dimer formation. Gly387 of mouse ODC, an evolutionary conserved residue, was converted to all possible 19 amino acids using site-directed mutagenesis. With the exception of alanine, all other substitutions of Gly387 completely abolished enzymic activity. Cross-linking analysis and fractionation through a Superose-12 sizing column have demonstrated that mutant subunits are detected only in their monomeric form. These results strongly suggest that the primary lesion of substitution at position 387 of mouse ODC is the inability of mutant subunits to associate with each other to form the active homodimers. In agreement with this conclusion, G387A, the only mutant that retained partial activity, displayed reduced dimerization. The degradation rate of ODC mutants in which Gly387 was substituted by aspartic acid or alanine was enhanced compared to the wild-type enzyme, suggesting that monomers may be more susceptible to degradation.
Collapse
Affiliation(s)
- K E Tobias
- Department of Molecular Genetics and Virology, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
26
|
Koibuchi N, Matsuzaki S, Sakai M, Ohtake H, Yamaoka S. Heterogeneous expression of ornithine decarboxylase gene in the proximal tubule of the mouse kidney following testosterone treatment. HISTOCHEMISTRY 1993; 100:325-30. [PMID: 8307774 DOI: 10.1007/bf00268930] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The expression of the ornithine decarboxylase (ODC) gene in the mouse kidney following testosterone treatment was examined using in situ hybridization histochemistry. Testosterone (n = 5) or vehicle (n = 5) was subcutaneously injected (1 mg/animal) into male BALB/c mice (8 weeks in age) 14 h before sacrifice. Animals were sacrificed under ether anesthesia, their kidneys were removed and immediately frozen in liquid nitrogen. Frozen sections (10-microns-thick) were cut on a cryostat. Sections were hybridized with 35S-labeled sense or antisense RNA probe. The hybridization continued for 24 h at 50 degrees C and emulsion autoradiography was subsequently performed. A marked increase in ODC mRNA was exclusively detected in the proximal tubule of the renal cortex in the testosterone-treated animals. The hybridization signal was greater in the outer portion of the proximal tubule than in the inner portion. No significant hybridization signal was detected either in the distal tubule, renal corpuscle or peritubular tissues. These results indicate that testosterone induces the expression of the ODC gene in the proximal tubule of the renal cortex, leading to the increase in ODC activity in the same region.
Collapse
Affiliation(s)
- N Koibuchi
- Department of Physiology, Dokkyo University School of Medicine, Tochigi, Japan
| | | | | | | | | |
Collapse
|
27
|
Hurta RA, Greenberg AH, Wright JA. Transforming growth factor beta 1 selectively regulates ornithine decarboxylase gene expression in malignant H-ras transformed fibrosarcoma cell lines. J Cell Physiol 1993; 156:272-9. [PMID: 8344985 DOI: 10.1002/jcp.1041560208] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Negative growth regulators such as the transforming growth factor beta (TGF-beta) family appear to be important inhibitors in most tissue types. However, inhibition of DNA synthesis and cell proliferation is frequently lost during malignant transformation, and in some cases, tumor cell proliferation is actually stimulated by TGF-beta. The present study demonstrates a novel link between alterations in TGF-beta regulation during malignant conversion, and the expression of ornithine decarboxylase, a key rate-limiting activity in the biosynthesis of polyamines, and an enzyme that plays an important role in cell growth and differentiation. A panel of radiation and H-ras transformed mouse 10T1/2 cell lines exhibiting increasing malignant potential was investigated for possible TGF-beta 1 mediated changes in ornithine decarboxylase gene expression. Selective induction of gene expression was observed since only H-ras transformed cell lines with malignant potential exhibited marked elevations in ornithine decarboxylase message levels. Ornithine decarboxylase gene expression in nontransformed 10T1/2 cells and cell lines capable of only benign tumor formation was unaffected by TGF-beta 1 treatment. H-ras transformed cells were transfected with a plasmid placing the TGF-beta 1 coding region under the control of a zinc sensitive metallothionein promoter. When these cells were cultured in the presence of zinc an elevation of TGF-beta 1 mRNA was observed within 30 min. This increase in TGF-beta 1 message closely coincided with an elevation in ornithine decarboxylase message, and preceded an induction of jun-B, an early response gene in cells sensitive to TGF-beta 1 stimulation. Evidence for regulation of ornithine decarboxylase gene expression by TGF-beta 1 at both transcription and posttranscription was found. Actinomycin D pretreatment of malignant cells prior to TGF-beta 1 exposure prevented the increase in ornithine decarboxylase message. Marked differences in the rates of ornithine decarboxylase message decay were observed when cells treated with TGF-beta 1 were compared to untreated controls, with the half-life of ornithine decarboxylase mRNA increasing from 2.5 h in untreated cells to 17.5 h in cells exposed to TGF-beta 1. In addition, evidence was obtained for a cycloheximide sensitive regulator of ornithine decarboxylase gene expression, since the presence of this protein synthesis inhibitor increased the levels of ornithine decarboxylase message, and this effect was synergistically augmented by exposure of cells to cycloheximide and induction of TGF-beta 1 gene expression together.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- R A Hurta
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Canada
| | | | | |
Collapse
|
28
|
Abstract
The acute effect of dehydroepiandrosterone (DHEA) and its conjugate, DHEA-sulfate (DHEA-S) on glucocorticoid action was tested in vivo using male Swiss-Webster mice. The authors found that DHEA and DHEA-S significantly inhibited induction of hepatic tyrosine aminotransferase activity, although the former was more potent. This inhibition was dose- and time-dependent and was not demonstrable with other steroids. The same inhibitory effect of DHEA was seen with kidney tyrosine aminotransferase induction, as well as with liver and kidney ornithine decarboxylase enzyme activity, another glucocorticoid-induced enzyme. The conclusion is that DHEA acts acutely as an antiglucocorticoid and exerts its effect in different glucocorticoid-sensitive systems.
Collapse
Affiliation(s)
- E S Browne
- Department of Medicine, Obesity Research Program, Louisiana State University Medical School, New Orleans
| | | | | | | |
Collapse
|
29
|
Johannes G, Berger F. Alterations in mRNA translation as a mechanism for the modification of enzyme synthesis during evolution. The ornithine decarboxylase model. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50206-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
30
|
Richards-Smith BA, Elliott RW. Mapping of the mouse ornithine decarboxylase-related sequence family. Mamm Genome 1992; 2:215-32. [PMID: 1347476 DOI: 10.1007/bf00355431] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A family of DNA sequences homologous to the mRNA encoding ornithine decarboxylase (ODC) and comprising approximately 12 members in the mouse genome has been analyzed genetically. The inheritance of variant DNA restriction fragments detected by ODC cDNA probes on Southern blots of DNA from inbred strain mice was determined in six sets of recombinant inbred (RI) mouse strains. The distributions of these variations among the RI strains were then compared with the RI strain distribution patterns (SDPs) of previously mapped loci. This allowed the identification of nine independent ODC-related loci, of which eight could be localized to specific regions of the mouse genome: Odc-rs1 near Lamb2 on Chromosome (Chr) 1; Odc-rs2 near Psp on Chr 2; Odc-rs5, a complex locus comprising at least 5-7 copies of the ODC sequence, associated with Igk on Chr 6; Odc-rs6 between Abpa and Tam-1 on proximal Chr 7; Odc-rs7 near Hbb on distal Chr 7; Odc-rs12 near Agt and Emv-2 on distal Chr 8; Odc-rs8 associated with the Igh complex on Chr 12; and Odc-rs9 near Otf-3f on Chr 14. The ODC-related sequence family thus comprises a set of genomically dispersed "marker" loci, and alleles for several of these loci can be analyzed simultaneously in DNA from mice or cell lines. DNA from mice of 70 inbred strains has been characterized for alleles at all nine Odc-rs loci.
Collapse
Affiliation(s)
- B A Richards-Smith
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York 14263
| | | |
Collapse
|
31
|
Chen Z, Chen K. Mechanism of regulation of ornithine decarboxylase gene expression by asparagine in a variant mouse neuroblastoma cell line. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50520-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
32
|
Richards-Smith BA, Elliott RW. Fine-structure mapping of the complex locus Odc-rs5 relative to Igk and distal loci. Mamm Genome 1992; 3:689-99. [PMID: 1362101 DOI: 10.1007/bf00444364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Odc-rs5 was previously identified as a complex locus closely linked to the Igk complex on mouse Chromosome (Chr) 6 and comprising at least five copies of a sequence related to the mRNA encoding ornithine decarboxylase (ODC) in the genomes of mice of some inbred strains and at least seven copies in others (Richards-Smith and Elliott, Mammalian Genome 2: 215, 1992). In the present study, Odc-rs5 was shown to be composed of at least seven copies of the ODC sequence in both the Odc-rs5a and Odc-rs5b haplotypes. Based upon the distribution of DNA restriction fragments (RFs) that had previously been associated with Odc-rs5a or Odc-rs5b among 42 mice of inbred laboratory strains having various haplotypes at Igk and in mice of two congenic strains [B6.PL-Ly-2a, Ly-3a(75NS)/Cy and B6.PL-Ly-2a,Ly-3a(85NS)/Cy] and a backcross-derived stock (NAK) known to be recombinant within Igk, a fine structure map of Odc-rs5 was deduced relative to Igk and more distal loci. Odc-rs5-derived RFs were located to three distinct regions within and/or distal to Igk and to a fourth site between (Ly-3, Ly-2) and Raf-1. Additionally, DNAs from 19 mice of inbred strains and random-bred stocks derived from wild progenitors trapped at various locations were analyzed and found to exhibit an unexpected variety of combinations of RFs associated with the two Odc-rs5 haplotypes most frequently observed among inbred laboratory strains of mice.
Collapse
Affiliation(s)
- B A Richards-Smith
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York 14263
| | | |
Collapse
|
33
|
Halmekytö M, Hyttinen J, Sinervirta R, Utriainen M, Myöhänen S, Voipio H, Wahlfors J, Syrjänen S, Syrjänen K, Alhonen L. Transgenic mice aberrantly expressing human ornithine decarboxylase gene. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)55055-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
34
|
Schulze-Lohoff E, Brand K, Fees H, Netzker R, Sterzel RB. Role of ornithine decarboxylase for proliferation of mesangial cells in culture. Kidney Int 1991; 40:684-90. [PMID: 1745018 DOI: 10.1038/ki.1991.261] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To elucidate the role of polyamine metabolism in the regulation of mesangial cell growth, we examined the involvement of ornithine decarboxylase (ODC), the rate limiting enzyme for polyamine synthesis, in the mitogenesis of cultured rat mesangial cells (MCs). Resting MCs, stimulated with fetal calf serum (FCS 10%), showed an induction of ODC activity from undetectable values in resting cells to mean = 5035 nmol CO2/10(10) cells.hr (range 3157 to 7154, N = 5), which is 25-fold above the detection limit. We found a single peak of ODC activity eight to ten hours after stimulation, declining to 22 to 34% of peak levels after 24 hours. 3H-thymidine (TdR) uptake, an S-phase marker of MC replication, peaked at 24 hours, reaching 10.7-fold values of resting MCs. ODC mRNA levels were low in resting cells. After serum stimulation there was a two- to 10-fold increase in ODC mRNA with a maximum after six hours. ODC activity with similar kinetics but lower peak levels was also induced by incubating MCs with mitogens, such as platelet-derived growth factor (PDGF-AB 20 ng/ml), arginine vasopressin (AVP 10(-7) M), phorbol myristate acetate (PMA 10(-7) M), interleukin 1 alpha and beta (IL-1 alpha 10 U/ml, IL-1 beta 10 U/ml). In the presence of alpha-difluoromethylornithine (DFMO), an enzyme-activated irreversible inhibitor of ODC, the growth rate of MCs, assessed by cell counts and by 3H-TdR uptake, was markedly reduced by 62 to 100%. This antiproliferative effect of DFMO could be reversed by addition of putrescine, the reaction product of ODC.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
35
|
Halmekytö M, Alhonen L, Wahlfors J, Sinervirta R, Eloranta T, Jänne J. Characterization of a transgenic mouse line over-expressing the human ornithine decarboxylase gene. Biochem J 1991; 278 ( Pt 3):895-8. [PMID: 1898376 PMCID: PMC1151432 DOI: 10.1042/bj2780895] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have produced several transgenic mouse lines over-expressing the human ornithine decarboxylase (ODC) gene. We have now characterized one of the transgenic lines as regards the tissue accumulation of the polyamines and the activities of their metabolizing enzymes. Among the tissues analysed, the polyamine pattern was most strikingly changed in testis and brain of the transgenic animals. ODC activity was greatly enhanced in all tissues, except kidney, of the transgenic animals. The most dramatic increase, 80-fold, was found in brain of the transgenic mice. The activities of S-adenosylmethionine decarboxylase and spermidine and spermine syntheses were likewise significantly increased in testis of the transgenic animals. The activities of the enzymes involved in the back-conversion of the polyamines, namely spermidine/spermine acetyltransferase and polyamine oxidase, were similar in the transgenic and non-transgenic animals. As analysed by reverse transcriptase/polymerase chain reaction, all the six tissues of the transgenic animals expressed human-specific ODC mRNA. Determination of the half-life of testicular ODC revealed a stabilization of the enzyme in the transgenic males.
Collapse
Affiliation(s)
- M Halmekytö
- Department of Biochemistry and Biotechnology, University of Kuopio, Finland
| | | | | | | | | | | |
Collapse
|
36
|
Crann SA, Van de Water TR, Schacht J. Ornithine decarboxylase activity during development of the mouse inner ear in vivo and in vitro. Cell Tissue Res 1991; 265:547-50. [PMID: 1786595 DOI: 10.1007/bf00340878] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ornithine decarboxylase activity was determined during the development of the peripheral auditory system in the murine otocyst with the goal of understanding the role of this enzyme in the morphological and functional maturation of the inner ear. At gestational days 11 and 12 enzyme activity was more than 10-fold higher than adult levels. A sharp decline occurred between day 12 and 13 after which activity rose to a peak around day 15. Activity then dropped continuously until near-adult levels were reached at birth. A lower specific activity of ODC but a similar time-course was seen in otocysts explanted at gestational day 13 and subsequently cultured for 6 days. For two stages of development, enzyme activity and binding of 3H-alpha-difluoromethylornithine were compared. The four-fold difference in enzymatic activity on gestational days 15 and 17 was paralleled by a similar difference in binding. Ornithine decarboxylase activity during inner ear development therefore seems primarily regulated at the level of protein synthesis. Ornithine decarboxylase activity correlates with major inductive events in the morphogenesis of the cartilagenous otic capsule that serves as a template for the formation of the bony labyrinth. The pattern of activity may reflect the changes in the head mesenchyme that is recruited by the otocyst to aggregate and form its protective otic capsule.
Collapse
Affiliation(s)
- S A Crann
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor 48109-0506
| | | | | |
Collapse
|
37
|
Abstract
The polyamines putrescine, spermidine and spermine represent a group of naturally occurring compounds exerting a bewildering number of biological effects, yet despite several decades of intensive research work, their exact physiological function remains obscure. Chemically these compounds are organic aliphatic cations with two (putrescine), three (spermidine) or four (spermine) amino or amino groups that are fully protonated at physiological pH values. Early studies showed that the polyamines are closely connected to the proliferation of animal cells. Their biosynthesis is accomplished by a concerted action of four different enzymes: ornithine decarboxylase, adenosylmethionine decarboxylase, spermidine synthase and spermine synthase. Out of these four enzyme, the two decarboxylases represent unique mammalian enzymes with an extremely short half life and dramatic inducibility in response to growth promoting stimuli. The regulation of ornithine decarboxylase, and to some extent also that of adenosylmethionine decarboxylase, is complex, showing features that do not always fit into the generally accepted rules of molecular biology. The development and introduction of specific inhibitors to the biosynthetic enzymes of the polyamines have revealed that an undisturbed synthesis of the polyamines is a prerequisite for animal cell proliferation to occur. The biosynthesis of the polyamines thus offers a meaningful target for the treatment of certain hyperproliferative diseases, most notably cancer. Although most experimental cancer models responds strikingly to treatment with polyamine antimetabolites--namely, inhibitors of various polyamine synthesizing enzymes--a real breakthrough in the treatment of human cancer has not yet occurred. It is, however, highly likely that the concept is viable. An especially interesting approach is the chemoprevention of cancer with polyamine antimetabolites, a process that appears to work in many experimental animal models. Meanwhile, the inhibition of polyamine accumulation has shown great promise in the treatment of human parasitic diseases, such as African trypanosomiasis.
Collapse
Affiliation(s)
- J Jänne
- Department of Biochemistry & Biotechnology, University of Kuopio, Finland
| | | | | |
Collapse
|
38
|
Rosenberg-Hasson Y, Bercovich Z, Kahana C. cis-recognition and degradation of ornithine decarboxylase subunits in reticulocyte lysate. Biochem J 1991; 277 ( Pt 3):683-5. [PMID: 1872804 PMCID: PMC1151297 DOI: 10.1042/bj2770683] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
One of the most interesting characteristics of ornithine decarboxylase (ODC) is its extremely short half-life. In a recent study we have demonstrated that deletion of a C-terminal segment converts ODC into a stable protein. In the present study we have extended this observation by testing the degradation of an ODC heterodimer composed of one rapidly degraded wild-type subunit and one stable mutant subunit. Our study was motivated by the possibility of trans-recognition of stable subunits due to their association with labile subunits. Our results demonstrate that such an association did not confer lability upon the stable subunits, not did it stabilize the short-lived subunits.
Collapse
Affiliation(s)
- Y Rosenberg-Hasson
- Department of Molecular Genetics and Virology, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
39
|
Rosenberg-Hasson Y, Strumpf D, Kahana C. Mouse ornithine decarboxylase is phosphorylated by casein kinase-II at a predominant single location (serine 303). EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 197:419-24. [PMID: 2026163 DOI: 10.1111/j.1432-1033.1991.tb15927.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ornithine decarboxylase (ODC), a key enzyme in the biosynthetic pathway of polyamines in mammalian cells is characterized by an extremely short half-life and by a rapid induction following stimulation with growth-promoting agents. Inspection of its deduced amino acid sequence revealed the presence of sequences that may serve as targets for phosphorylation by casein kinase II (CK-II). In the present study we demonstrate that ODC serves as a substrate for phosphorylation by CK-II in vitro and that it is phosphorylated in intact mammalian cells. One-dimensional phosphopeptide analysis demonstrated that all the phosphopeptides generated by V8 protease digestion of in vivo phosphorylated ODC correspond to the major phosphopeptides of ODC phosphorylated in vitro by CK-II. Phosphopeptide analysis of wild-type ODC and of a mutant in which serine 303 was converted to alanine demonstrated that the latter lacks the phosphopeptides that correspond to those detected in ODC phosphorylated in vivo. In addition, no incorporation of phosphate into the alanine 303 mutant was observed when it was expressed in transfected cos cells. Based on these observations, we conclude that in mammalian cells serine 303 is the major (if not the only) phosphorylated residue of ODC and that CK-II or another cellular kinase with very similar sequence specificity is responsible for manifestation of this modification. The unphosphorylated alanine 303 mutant retained enzymatic activity, which decayed at a similar rate to that of the wild-type enzyme. We therefore conclude that phosphorylation is not essential for maintaining enzymatic activity or regulating ODC turnover.
Collapse
Affiliation(s)
- Y Rosenberg-Hasson
- Department of Molecular Genetics and Virology, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
40
|
Rosenberg-Hasson Y, Bercovich Z, Kahana C. Characterization of sequences involved in mediating degradation of ornithine decarboxylase in cells and in reticulocyte lysate. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 196:647-51. [PMID: 2013288 DOI: 10.1111/j.1432-1033.1991.tb15861.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mouse ornithine decarboxylase is a 461-amino-acid protein that is extremely labile. A set of contiguous in-frame deletions were introduced into its C-terminal hydrophilic region. The resulting mutant proteins were expressed in cos monkey cells using an expression vector based on simian virus 40 (SV40) or by in vitro translation in reticulocyte lysate. The degradation of wild-type and mutant proteins was determined in transfected cos cells and in a degradation system based on reticulocyte lysate. Deletion mutants lacking segments of the C-terminus (amino acids 423-461, 423-435, 436-449 and 449-461) were converted into stable proteins in both experimental systems. The mutant lacking amino acids 295-309 was significantly stabilized in transfected cos cells, but was rapidly degraded in reticulocyte-lysate-based degradation mix. Our results suggest that the carboxyl-terminal region encompassing amino acids 423-461 and perhaps also amino acids 295-309 may constitute a signal recognized by the proteolytic machinery that degrades ornithine decarboxylase.
Collapse
Affiliation(s)
- Y Rosenberg-Hasson
- Department of Molecular Genetics and Virology, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
41
|
LAU LESTERF, NATHANS DANIEL. Genes induced by serum growth factors. ACTA ACUST UNITED AC 1991. [DOI: 10.1016/b978-0-444-81382-4.50019-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
42
|
Rosen CF, Gajic D, Jia Q, Drucker DJ. Ultraviolet B radiation induction of ornithine decarboxylase gene expression in mouse epidermis. Biochem J 1990; 270:565-8. [PMID: 2241891 PMCID: PMC1131769 DOI: 10.1042/bj2700565] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The cellular effects of u.v. radiation have been studied by using a hairless-mouse model in vivo. U.v. B radiation (u.v.B) induced the activity of the enzyme ornithine decarboxylase (ODC) in mouse epidermis. Maximal induction was noted after radiation with 90 mJ/cm2, and increased ODC activity was first detected 2 h after u.v.B exposure. U.v.B. also induced the expression of the ODC gene in a time- and dose-dependent manner, but did not induce the levels of actin mRNA transcripts. Cycloheximide treatment did not alter basal levels of ODC mRNA transcripts and had no effect on the u.v.B induction of ODC-gene expression. The results of these experiments demonstrate that u.v.B radiation induces both the expression of the ODC gene and the activity of the enzyme, and provides a useful 'in vivo' paradigm for the analysis of the molecular effects of u.v.B radiation.
Collapse
Affiliation(s)
- C F Rosen
- Department of Medicine, Women's College Hospital, University of Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
43
|
|
44
|
The 5'- and 3'-untranslated regions of ornithine decarboxylase mRNA affect the translational efficiency. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38470-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
45
|
Wahlfors J, Alhonen L, Kauppinen L, Hyvönen T, Jänne J, Eloranta TO. Human spermidine synthase: cloning and primary structure. DNA Cell Biol 1990; 9:103-10. [PMID: 2344393 DOI: 10.1089/dna.1990.9.103] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Using a synthetic deoxyoligonucleotide mixture constructed for a tryptic peptide of the bovine enzyme as a probe, cDNA coding for the full-length subunit of spermidine synthase was isolated from a human decidual cDNA library constructed on phage lambda gt11. After subcloning into the Eco RI site of pBR322 and propagation, both strands of the insert were sequenced using a shotgun strategy. Starting from the first start codon, which was immediately preceded by a GC-rich region including four overlapping CCGCC consensus sequences, an open reading frame for a 302-amino-acid polypeptide was resolved. This peptide had an Mr of 33,827, started with methionine, and ended with serine. The identity of the isolated cDNA was confirmed by comparison of the deduced amino acid sequence with resolved sequences of the tryptic peptides of bovine spermidine synthase. The coding strand of the cDNA revealed no special regulatory or ribosome-binding signals within 82 nucleotides preceding the start codon and no polyadenylation signal within 247 nucleotides following the stop codon. The coding region, containing a 13-nucleotide repeat close to the 5' end, was longer than, and very different from, that of the bacterial counterpart. This region seems to be of retroviral origin and shows marked homology with sequences found in a variety of human, mammalian, avian, and viral genes and mRNAs. By computer analysis, the first 200 nucleotides of the 5' end of the coding strand appear able to form a very stable secondary structure with a free energy change of -157.6 kcal/mole.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J Wahlfors
- Department of Biochemistry, University of Kuopio, Finland
| | | | | | | | | | | |
Collapse
|
46
|
Moshier JA, Gilbert JD, Skunca M, Dosescu J, Almodovar KM, Luk GD. Isolation and expression of a human ornithine decarboxylase gene. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)34057-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
47
|
Grens A, Steglich C, Pilz R, Scheffler IE. Nucleotide sequence of the Chinese hamster ornithine decarboxylase gene. Nucleic Acids Res 1989; 17:10497. [PMID: 2602162 PMCID: PMC335322 DOI: 10.1093/nar/17.24.10497] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- A Grens
- University of California, San Diego, La Jolla 92093
| | | | | | | |
Collapse
|
48
|
van Daalen Wetters T, Brabant M, Coffino P. Regulation of mouse ornithine decarboxylase activity by cell growth, serum and tetradecanoyl phorbol acetate is governed primarily by sequences within the coding region of the gene. Nucleic Acids Res 1989; 17:9843-60. [PMID: 2602143 PMCID: PMC335218 DOI: 10.1093/nar/17.23.9843] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
To determine the genetic elements required for modulation of ornithine decarboxylase (ODC) activity in response to cell growth or treatment with serum or with tetradecanoyl phorbol acetate, ODC-deficient cells were transfected with a series of recombinant DNAs encoding mouse ODC. All of the transfected cells expressing an intact mouse ODC protein displayed regulation of ODC activity, including those expressing a construct deprived of all ODC-specific sequence information except the protein-coding region. ODC mRNA changed much less than enzymatic activity. A mutation of the protein-coding region that converted ODC from an unstable to a stable intracellular protein attenuated the regulatory response. We conclude that post-transcriptional events associated with ODC degradation dominate the response to these stimuli.
Collapse
Affiliation(s)
- T van Daalen Wetters
- Department of Microbiology and Immunology, University of California, San Francisco 94143
| | | | | |
Collapse
|
49
|
Berger FG. Assignment of a gene encoding ornithine decarboxylase to the proximal region of chromosome 12 in the mouse. Biochem Genet 1989; 27:745-53. [PMID: 2627199 DOI: 10.1007/bf02396065] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ornithine decarboxylase (ODC), the first enzyme in the polyamine biosynthetic pathway, is encoded by at least one member of a multi-gene family in the mouse. Analysis of a polymorphism in ODC structure in recombinant inbred strains has enabled assigning a functional ODC structural gene (Odc) to the proximal region of mouse chromosome 12 between Apob and Es25. Linkage of Odc to Apob and Ah is conserved in the mouse and human genomes.
Collapse
Affiliation(s)
- F G Berger
- Department of Biological Sciences, University of South Carolina, Columbia 29208
| |
Collapse
|
50
|
Rosenberg-Hasson Y, Bercovich Z, Ciechanover A, Kahana C. Degradation of ornithine decarboxylase in mammalian cells is ATP dependent but ubiquitin independent. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 185:469-74. [PMID: 2555193 DOI: 10.1111/j.1432-1033.1989.tb15138.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ornithine decarboxylase (ODC), a key enzyme in the biosynthesis of polyamines in mammalian cells is characterized by an extremely short half-life. In the present study, ODC degradation was investigated in 653-1 mouse myeloma cells that overproduce ODC and in ts85 cells that are thermosensitive for conjunction of ubiquitin to target proteins. Addition of 2-deoxyglucose and dinitrophenol (agents that efficiently deplete cellular ATP) to the growth medium of these cells inhibited ODC degradation. In contrast, chloroquine and leupeptin, inhibitors of intralysosomal proteolysis, did not affect ODC degradation. Shifting ts85 cells to 42 degrees C (a non-permissive temperature that inhibited conjugation of ubiquitin to target proteins) did not prevent ODC degradation. The ATP-dependent degradation of ODC in 653-1 cells was inhibited substantially by N alpha-tosyl-L-lysine chloromethane (TosPheMeCl), iodoacetamide and o-phenanthroline. These results suggest that ODC degradation occurs via a non-lysosomal. ATP-requiring and ubiquitin-independent cellular proteolytic mechanism, and that serine proteases and enzymes containing sulphydryl groups and metalloenzyme(s) may be involved in this process.
Collapse
|