1
|
Wang TT, Hirons A, Doerflinger M, Morris KV, Ledger S, Purcell DFJ, Kelleher AD, Ahlenstiel CL. Current State of Therapeutics for HTLV-1. Viruses 2024; 16:1616. [PMID: 39459949 PMCID: PMC11512412 DOI: 10.3390/v16101616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Human T cell leukaemia virus type-1 (HTLV-1) is an oncogenic retrovirus that causes lifelong infection in ~5-10 million individuals globally. It is endemic to certain First Nations populations of Northern and Central Australia, Japan, South and Central America, Africa, and the Caribbean region. HTLV-1 preferentially infects CD4+ T cells and remains in a state of reduced transcription, often being asymptomatic in the beginning of infection, with symptoms developing later in life. HTLV-1 infection is implicated in the development of adult T cell leukaemia/lymphoma (ATL) and HTLV-1-associated myelopathies (HAM), amongst other immune-related disorders. With no preventive or curative interventions, infected individuals have limited treatment options, most of which manage symptoms. The clinical burden and lack of treatment options directs the need for alternative treatment strategies for HTLV-1 infection. Recent advances have been made in the development of RNA-based antiviral therapeutics for Human Immunodeficiency Virus Type-1 (HIV-1), an analogous retrovirus that shares modes of transmission with HTLV-1. This review highlights past and ongoing efforts in the development of HTLV-1 therapeutics and vaccines, with a focus on the potential for gene therapy as a new treatment modality in light of its successes in HIV-1, as well as animal models that may help the advancement of novel antiviral and anticancer interventions.
Collapse
Affiliation(s)
- Tiana T. Wang
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
| | - Ashley Hirons
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3052, Australia; (A.H.); (D.F.J.P.)
| | - Marcel Doerflinger
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3050, Australia
| | - Kevin V. Morris
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia;
| | - Scott Ledger
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
| | - Damian F. J. Purcell
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3052, Australia; (A.H.); (D.F.J.P.)
| | - Anthony D. Kelleher
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
- UNSW RNA Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - Chantelle L. Ahlenstiel
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
- UNSW RNA Institute, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
2
|
Pise-Masison CA, Franchini G. Hijacking Host Immunity by the Human T-Cell Leukemia Virus Type-1: Implications for Therapeutic and Preventive Vaccines. Viruses 2022; 14:2084. [PMID: 36298639 PMCID: PMC9609126 DOI: 10.3390/v14102084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2024] Open
Abstract
Human T-cell Leukemia virus type-1 (HTLV-1) causes adult T-cell leukemia/lymphoma (ATLL), HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and other inflammatory diseases. High viral DNA burden (VL) in peripheral blood mononuclear cells is a documented risk factor for ATLL and HAM/TSP, and patients with HAM/TSP have a higher VL in cerebrospinal fluid than in peripheral blood. VL alone is not sufficient to differentiate symptomatic patients from healthy carriers, suggesting the importance of other factors, including host immune response. HTLV-1 infection is life-long; CD4+-infected cells are not eradicated by the immune response because HTLV-1 inhibits the function of dendritic cells, monocytes, Natural Killer cells, and adaptive cytotoxic CD8+ responses. Although the majority of infected CD4+ T-cells adopt a resting phenotype, antigen stimulation may result in bursts of viral expression. The antigen-dependent "on-off" viral expression creates "conditional latency" that when combined with ineffective host responses precludes virus eradication. Epidemiological and clinical data suggest that the continuous attempt of the host immunity to eliminate infected cells results in chronic immune activation that can be further exacerbated by co-morbidities, resulting in the development of severe disease. We review cell and animal model studies that uncovered mechanisms used by HTLV-1 to usurp and/or counteract host immunity.
Collapse
Affiliation(s)
- Cynthia A. Pise-Masison
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | |
Collapse
|
3
|
Moles R, Sarkis S, Galli V, Omsland M, Purcell DFJ, Yurick D, Khoury G, Pise-Masison CA, Franchini G. p30 protein: a critical regulator of HTLV-1 viral latency and host immunity. Retrovirology 2019; 16:42. [PMID: 31852501 PMCID: PMC6921414 DOI: 10.1186/s12977-019-0501-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/29/2019] [Indexed: 12/24/2022] Open
Abstract
The extraordinarily high prevalence of HTLV-1 subtype C (HTLV-1C) in some isolated indigenous communities in Oceania and the severity of the health conditions associated with the virus impress the great need for basic and translational research to prevent and treat HTLV-1 infection. The genome of the virus’s most common subtype, HTLV-1A, encodes structural, enzymatic, and regulatory proteins that contribute to viral persistence and pathogenesis. Among these is the p30 protein encoded by the doubly spliced Tax-orf II mRNA, a nuclear/nucleolar protein with both transcriptional and post-transcriptional activity. The p30 protein inhibits the productive replication cycle via nuclear retention of the mRNA that encodes for both the viral transcriptional trans-activator Tax, and the Rex proteins that regulate the transport of incompletely spliced viral mRNA to the cytoplasm. In myeloid cells, p30 inhibits the PU-1 transcription factor that regulates interferon expression and is a critical mediator of innate and adaptive immunity. Furthermore, p30 alters gene expression, cell cycle progression, and DNA damage responses in T-cells, raising the hypothesis that p30 may directly contribute to T cell transformation. By fine-tuning viral expression while also inhibiting host innate responses, p30 is likely essential for viral infection and persistence. This concept is supported by the finding that macaques, a natural host for the closely genetically related simian T-cell leukemia virus 1 (STLV-1), exposed to an HTLV-1 knockout for p30 expression by a single point mutation do not became infected unless reversion and selection of the wild type HTLV-1 genotype occurs. All together, these data suggest that inhibition of p30 may help to curb and eventually eradicate viral infection by exposing infected cells to an effective host immune response.
Collapse
Affiliation(s)
- Ramona Moles
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sarkis Sarkis
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Veronica Galli
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maria Omsland
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Damian F J Purcell
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - David Yurick
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Georges Khoury
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Cynthia A Pise-Masison
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Barreto FK, Khouri R, Rego FFDA, Santos LA, Castro-Amarante MFD, Bialuk I, Pise-Masison CA, Galvão-Castro B, Gessain A, Jacobson S, Franchini G, Alcantara LC. Analyses of HTLV-1 sequences suggest interaction between ORF-I mutations and HAM/TSP outcome. INFECTION GENETICS AND EVOLUTION 2016; 45:420-425. [PMID: 27553711 DOI: 10.1016/j.meegid.2016.08.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/17/2016] [Accepted: 08/19/2016] [Indexed: 10/21/2022]
Abstract
The region known as pX in the 3' end of the human T-cell lymphotropic virus type 1 (HTLV-1) genome contains four overlapping open reading frames (ORF) that encode regulatory proteins. HTLV-1 ORF-I produces the protein p12 and its cleavage product p8. The functions of these proteins have been linked to immune evasion and viral infectivity and persistence. It is known that the HTLV-1 infection does not necessarily imply the development of pathological processes and here we evaluated whether natural mutations in HTLV-1 ORF-I can influence the proviral load and clinical manifestation of HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP). For that, we performed molecular characterization, datamining and phylogenetic analysis with HTLV-1 ORF-I sequences from 156 patients with negative or positive diagnosis for HAM/TSP. Our analyses demonstrated that some mutations may be associated with the outcome of HAM/TSP (C39R, L40F, P45L, S69G and R88K) or with proviral load (P34L and F61L). We further examined the presence of mutations in motifs of HBZ and observed that P45L mutation is located within the HBZ nuclear localization signal and was found more frequently between patients with HAM/TSP and high proviral load. These results indicate that some natural mutations are located in functional domains of ORF-I and suggests a potential association between these mutations and the proviral loads and development of HAM/TSP. Therefore it is necessary to conduct functional studies aimed at evaluating the impact of these mutations on the virus persistence and immune evasion.
Collapse
Affiliation(s)
- Fernanda Khouri Barreto
- Centro de Pesquisa Gonçalo Moniz-Fiocruz, Laboratório de Hematologia Genética e Biologia Computacional, Salvador, Bahia, Brazil
| | - Ricardo Khouri
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Clinical and Epidemiological Virology, Leuven, Belgium
| | - Filipe Ferreira de Almeida Rego
- Centro de Pesquisa Gonçalo Moniz-Fiocruz, Laboratório de Hematologia Genética e Biologia Computacional, Salvador, Bahia, Brazil
| | - Luciane Amorim Santos
- Centro de Pesquisa Gonçalo Moniz-Fiocruz, Laboratório de Hematologia Genética e Biologia Computacional, Salvador, Bahia, Brazil
| | | | - Izabela Bialuk
- Department of General and Experimental Pathology, Medical University in Białystok, Poland
| | | | - Bernardo Galvão-Castro
- Centro de Pesquisa Gonçalo Moniz-Fiocruz, Laboratório de Hematologia Genética e Biologia Computacional, Salvador, Bahia, Brazil; Escola Bahiana de Medicina e Saúde Publica, Salvador, Bahia, Brazil
| | - Antoine Gessain
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Département de Virologie, Batiment Lwoff, Institut Pasteur, Paris, France
| | - Steven Jacobson
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, USA
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, USA
| | - Luiz Carlos Alcantara
- Centro de Pesquisa Gonçalo Moniz-Fiocruz, Laboratório de Hematologia Genética e Biologia Computacional, Salvador, Bahia, Brazil.
| |
Collapse
|
5
|
Nakano K, Watanabe T. HTLV-1 Rex Tunes the Cellular Environment Favorable for Viral Replication. Viruses 2016; 8:58. [PMID: 26927155 PMCID: PMC4810248 DOI: 10.3390/v8030058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/09/2016] [Accepted: 02/09/2016] [Indexed: 12/18/2022] Open
Abstract
Human T-cell leukemia virus type-1 (HTLV-1) Rex is a viral RNA binding protein. The most important and well-known function of Rex is stabilizing and exporting viral mRNAs from the nucleus, particularly for unspliced/partially-spliced mRNAs encoding the structural proteins essential for viral replication. Without Rex, these unspliced viral mRNAs would otherwise be completely spliced. Therefore, Rex is vital for the translation of structural proteins and the stabilization of viral genomic RNA and, thus, for viral replication. Rex schedules the period of extensive viral replication and suppression to enter latency. Although the importance of Rex in the viral life-cycle is well understood, the underlying molecular mechanism of how Rex achieves its function has not been clarified. For example, how does Rex protect unspliced/partially-spliced viral mRNAs from the host cellular splicing machinery? How does Rex protect viral mRNAs, antigenic to eukaryotic cells, from cellular mRNA surveillance mechanisms? Here we will discuss these mechanisms, which explain the function of Rex as an organizer of HTLV-1 expression based on previously and recently discovered aspects of Rex. We also focus on the potential influence of Rex on the homeostasis of the infected cell and how it can exert its function.
Collapse
Affiliation(s)
- Kazumi Nakano
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1, Shirokanedai, Minatoku, Tokyo 108-8639, Japan.
| | - Toshiki Watanabe
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1, Shirokanedai, Minatoku, Tokyo 108-8639, Japan.
| |
Collapse
|
6
|
Xue B, Blocquel D, Habchi J, Uversky AV, Kurgan L, Uversky VN, Longhi S. Structural disorder in viral proteins. Chem Rev 2014; 114:6880-911. [PMID: 24823319 DOI: 10.1021/cr4005692] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bin Xue
- Department of Cell Biology, Microbiology and Molecular Biology, College of Fine Arts and Sciences, and ‡Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida , Tampa, Florida 33620, United States
| | | | | | | | | | | | | |
Collapse
|
7
|
Anupam R, Doueiri R, Green PL. The need to accessorize: molecular roles of HTLV-1 p30 and HTLV-2 p28 accessory proteins in the viral life cycle. Front Microbiol 2013; 4:275. [PMID: 24062732 PMCID: PMC3774995 DOI: 10.3389/fmicb.2013.00275] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/24/2013] [Indexed: 11/25/2022] Open
Abstract
Extensive studies of human T-cell leukemia virus (HTLV)-1 and HTLV-2 over the last three decades have provided detailed knowledge on viral transformation, host–viral interactions and pathogenesis. HTLV-1 is the etiological agent of adult T cell leukemia and multiple neurodegenerative and inflammatory diseases while HTLV-2 disease association remains elusive, with few infected individuals displaying neurodegenerative diseases similar to HTLV-1. The HTLV group of oncoretroviruses has a genome that encodes structural and enzymatic proteins Gag, Pro, and Env, regulatory proteins Tax and Rex, and several accessory proteins from the pX region. Of these proteins, HTLV-1 p30 and HTLV-2 p28 are encoded by the open reading frame II of the pX region. Like most other accessory proteins, p30 and p28 are dispensable for in vitro viral replication and transformation but are required for efficient viral replication and persistence in vivo. Both p30 and p28 regulate viral gene expression at the post-transcriptional level whereas p30 can also function at the transcriptional level. Recently, several reports have implicated p30 and p28 in multiple cellular processes, which provide novel insight into HTLV spread and survival and ultimately pathogenesis. In this review we summarize and compare what is known about p30 and p28, highlighting their roles in viral replication and viral pathogenesis.
Collapse
Affiliation(s)
- Rajaneesh Anupam
- Center for Retrovirus Research, The Ohio State University Columbus, OH, USA ; Department of Veterinary Biosciences, The Ohio State University Columbus, OH, USA
| | | | | |
Collapse
|
8
|
Dube S, Saksena N, Spicer T, Healey J, Benz P, Dube DK, Poiesz BJ. Delayed seroconversion to STLV-1 infection is associated with mutations in the pol and rex genes. Virol J 2013; 10:282. [PMID: 24025129 PMCID: PMC3851238 DOI: 10.1186/1743-422x-10-282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 08/28/2013] [Indexed: 12/05/2022] Open
Abstract
Background Simian T-cell lymphoma/leukemia virus-1 (STLV-1) infection of non-human primates can serve as a model for human T-cell lymphoma/leukemia virus infection. Methods Two tantalus and 2 patas monkeys were transfused with intraspecies whole blood infected with STLV-1. Infection was determined by ELISA, western blot and DNA PCR analyses. The entire genome of the STLV-1 Tan 90 strain and some of the STVL-1 Pat74 strain were amplified using over-lapping primer-pairs and subsequently sequenced. Results Followup studies conducted over 2 years indicated that all 4 monkeys remained healthy despite being infected with STLV-1, as determined by PCR, cloning and sequencing analyses. ELISA and Western blot analyses indicated that both patas monkeys seroconverted within 2 months of transfusion, while one tantalus monkey required one year to seroconvert and the other never fully seroconverted. The tantalus monkey which never fully seroconverted, failed to react to HTLV-1 p24 Gag antigen. Sequence analyses indicated that, while unique, the deduced p24 Gag amino acid sequence of the STLV-1 Tan 90 strain used for infection was still highly homologous to the HTLV-1 p24 Gag amino acids present in the ELISA and WB assays. However, a mutation in the pol sequence of STLV-1 Tan 90 encoded a putative stop codon, while a common deletion in the pol/rex regulatory gene causes significant changes in the Pol, and p27 Rex proteins. These same mutations were also observed in the viral DNA of both recipient infected tantalus monkeys and were not present in the STLV-1 Pat 74 strain. Conclusion Our data suggest that seroconversion to STLV-1 infection may be prolonged due to the above mutations, and that compensatory molecular events must have occurred to allow for virus transmission.
Collapse
Affiliation(s)
- Syamalima Dube
- Division of Hematology/Oncology, Department of Medicine, State University of New York, Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Nakano K, Watanabe T. HTLV-1 Rex: the courier of viral messages making use of the host vehicle. Front Microbiol 2012; 3:330. [PMID: 22973269 PMCID: PMC3434621 DOI: 10.3389/fmicb.2012.00330] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 08/24/2012] [Indexed: 01/25/2023] Open
Abstract
The human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus causing an aggressive T-cell malignancy, adult T-cell leukemia (ATL). Although HTLV-1 has a compact RNA genome, it has evolved elaborate mechanisms to maximize its coding potential. The structural proteins Gag, Pro, and Pol are encoded in the unspliced form of viral mRNA, whereas the Env protein is encoded in singly spliced viral mRNA. Regulatory and accessory proteins, such as Tax, Rex, p30II, p12, and p13, are translated only from fully spliced mRNA. For effective viral replication, translation from all forms of HTLV-1 transcripts has to be achieved in concert, although unspliced mRNA are extremely unstable in mammalian cells. It has been well recognized that HTLV-1 Rex enhances the stability of unspliced and singly spliced HTLV-1 mRNA by promoting nuclear export and thereby removing them from the splicing site. Rex specifically binds to the highly structured Rex responsive element (RxRE) located at the 3' end of all HTLV-1 mRNA. Rex then binds to the cellular nuclear exporter, CRM1, via its nuclear export signal domain and the Rex-viral transcript complex is selectively exported from the nucleus to the cytoplasm for effective translation of the viral proteins. Yet, the mechanisms by which Rex inhibits the cellular splicing machinery and utilizes the cellular pathways beneficial to viral survival in the host cell have not been fully explored. Furthermore, physiological impacts of Rex against homeostasis of the host cell via interactions with numerous cellular proteins have been largely left uninvestigated. In this review, we focus on the biological importance of HTLV-1 Rex in the HTLV-1 life cycle by following the historical path in the literature concerning this viral post-transcriptional regulator from its discovery to this day. In addition, for future studies, we discuss recently discovered aspects of HTLV-1 Rex as a post-transcriptional regulator and its use in host cellular pathways.
Collapse
Affiliation(s)
- Kazumi Nakano
- Laboratory of Tumor Cell Biology, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo Tokyo, Japan
| | - Toshiki Watanabe
- Laboratory of Tumor Cell Biology, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo Tokyo, Japan
| |
Collapse
|
10
|
Orf-I and orf-II-encoded proteins in HTLV-1 infection and persistence. Viruses 2011; 3:861-85. [PMID: 21994758 PMCID: PMC3185781 DOI: 10.3390/v3060861] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 05/25/2011] [Accepted: 05/26/2011] [Indexed: 01/10/2023] Open
Abstract
The 3′ end of the human T-cell leukemia/lymphoma virus type-1 (HTLV-1) genome contains four overlapping open reading frames (ORF) that encode regulatory proteins. Here, we review current knowledge of HTLV-1 orf-I and orf-II protein products. Singly spliced mRNA from orf-I encodes p12, which can be proteolytically cleaved to generate p8, while differential splicing of mRNA from orf-II results in production of p13 and p30. These proteins have been demonstrated to modulate transcription, apoptosis, host cell activation and proliferation, virus infectivity and transmission, and host immune responses. Though these proteins are not essential for virus replication in vitro, p8, p12, p13, and p30 have an important role in the establishment and maintenance of HTLV-1 infection in vivo.
Collapse
|
11
|
Yoshida M. Molecular approach to human leukemia: isolation and characterization of the first human retrovirus HTLV-1 and its impact on tumorigenesis in adult T-cell leukemia. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2010; 86:117-130. [PMID: 20154469 PMCID: PMC3417562 DOI: 10.2183/pjab.86.117] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 12/25/2009] [Indexed: 05/28/2023]
Abstract
Molecular biology of mouse and chicken retroviruses had identified oncogenes and provided a revolutionary concept in understanding of cancers. A human retrovirus was established during 1980-1982 in linkage with a unique human leukemia, concurrently in Japan and USA. This review covers our efforts on the discovery of new retrovirus, Human T-cell Leukemia Virus Type 1 (HTLV-1), first introducing to a new class of retroviruses with a unique regulatory factors, Tax and Rex. Then it is followed by analyses of molecular interaction of the vial Tax with cellular machineries involved in the pathogenesis of Adult T-cell Leukemia (ATL). And then a probable mechanism of pathogenesis of ATL is proposed including recent findings on HBZ after our efforts.
Collapse
Affiliation(s)
- Mitsuaki Yoshida
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan.
| |
Collapse
|
12
|
Bogenberger JM, Laybourn PJ. Human T Lymphotropic Virus Type 1 protein Tax reduces histone levels. Retrovirology 2008; 5:9. [PMID: 18237376 PMCID: PMC2276518 DOI: 10.1186/1742-4690-5-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 01/31/2008] [Indexed: 12/21/2022] Open
Abstract
Background Human T-Lymphotropic Virus Type-1 (HTLV-1) is an oncogenic retrovirus that causes adult T-cell leukemia/lymphoma (ATLL). The virally encoded Tax protein is thought to be necessary and sufficient for T-cell leukemogenesis. Tax promotes inappropriate cellular proliferation, represses multiple DNA repair mechanisms, deregulates cell cycle checkpoints, and induces genomic instability. All of these Tax effects are thought to cooperate in the development of ATLL. Results In this study, we demonstrate that histone protein levels are reduced in HTLV-1 infected T-cell lines (HuT102, SLB-1 and C81) relative to uninfected T-cell lines (CEM, Jurkat and Molt4), while the relative amount of DNA per haploid complement is unaffected. In addition, we show that replication-dependent core and linker histone transcript levels are reduced in HTLV-1 infected T-cell lines. Furthermore, we show that Tax expression in Jurkat cells is sufficient for reduction of replication-dependent histone transcript levels. Conclusion These results demonstrate that Tax disrupts the proper regulation of replication-dependent histone gene expression. Further, our findings suggest that HTLV-1 infection uncouples replication-dependent histone gene expression and DNA replication, allowing the depletion of histone proteins with cell division. Histone proteins are involved in the regulation of all metabolic processes involving DNA including transcription, replication, repair and recombination. This study provides a previously unidentified mechanism by which Tax may directly induce chromosomal instability and deregulate gene expression through reduced histone levels.
Collapse
Affiliation(s)
- James M Bogenberger
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA.
| | | |
Collapse
|
13
|
Shuh M, Beilke M. The human T-cell leukemia virus type 1 (HTLV-1): New insights into the clinical aspects and molecular pathogenesis of adult t-cell leukemia/lymphoma (ATLL) and tropical spastic paraparesis/HTLV-associated myelopathy (TSP/HAM). Microsc Res Tech 2005; 68:176-96. [PMID: 16276549 DOI: 10.1002/jemt.20231] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) was the first human retrovirus to be identified in the early 1980s. The isolation and identification of a related virus, HTLV-2, and the distantly related human immunodeficiency virus (HIV) immediately followed. Of the three retroviruses, two are associated definitively with specific diseases, HIV, with acquired immune deficiency syndrome (AIDS) and HTLV-1, with adult T-cell leukemia/lymphoma (ATLL) and tropical spastic paraparesis/HTLV-1-associated myelopathy (TSP/HAM). While an estimated 10-20 million people worldwide are infected with HTLV-I, infection is endemic in the Caribbean, parts of Africa, southwestern Japan, and Italy. Approximately 4% of HTLV-I infected individuals develop ATLL, a disease with a poor prognosis. The clinical manifestations of infection and the current biology of HTLV viruses with emphasis on HTLV-1 are discussed in detail. The implications for improvements in diagnosis, treatment, intervention, and vaccination are included, as well as a discussion of the emergence of HTLV-1 and -2 as copathogens among HIV-1-infected individuals.
Collapse
Affiliation(s)
- Maureen Shuh
- Department of Biological Sciences, Loyola University New Orleans, New Orleans, Louisiana 70118, USA.
| | | |
Collapse
|
14
|
Lairmore MD, Silverman L, Ratner L. Animal models for human T-lymphotropic virus type 1 (HTLV-1) infection and transformation. Oncogene 2005; 24:6005-15. [PMID: 16155607 PMCID: PMC2652704 DOI: 10.1038/sj.onc.1208974] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over the past 25 years, animal models of human T-lymphotropic virus type 1 (HTLV-1) infection and transformation have provided critical knowledge about viral and host factors in adult T-cell leukemia/lymphoma (ATL). The virus consistently infects rabbits, some non-human primates, and to a lesser extent rats. In addition to providing fundamental concepts in viral transmission and immune responses against HTLV-1 infection, these models have provided new information about the role of viral proteins in carcinogenesis. Mice and rats, in particular immunodeficient strains, are useful models to assess immunologic parameters mediating tumor outgrowth and therapeutic invention strategies against lymphoma. Genetically altered mice including both transgenic and knockout mice offer important models to test the role of specific viral and host genes in the development of HTLV-1-associated lymphoma. Novel approaches in genetic manipulation of both HTLV-1 and animal models are available to address the complex questions that remain about viral-mediated mechanisms of cell transformation and disease. Current progress in the understanding of the molecular events of HTLV-1 infection and transformation suggests that answers to these questions are approachable using animal models of HTLV-1-associated lymphoma.
Collapse
Affiliation(s)
- Michael D Lairmore
- Center for Retrovirus Research and Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210-1093, USA.
| | | | | |
Collapse
|
15
|
Yoshida M. Discovery of HTLV-1, the first human retrovirus, its unique regulatory mechanisms, and insights into pathogenesis. Oncogene 2005; 24:5931-7. [PMID: 16155600 DOI: 10.1038/sj.onc.1208981] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
I briefly review the discovery and characterization of the first human retrovirus, human T-cell leukemia virus type 1, focusing on contributions from Japanese researchers. The unique regulatory mechanisms for the viral regulation with Tax and Rex, etiology of ATL and possible leukemogenic mechanism with Tax are also discussed briefly.
Collapse
Affiliation(s)
- Mitsuaki Yoshida
- Banyu Tsukuba Research Institute, Banyu Pharmaceutical Co., Ltd., 3 Ohkubo, Tsukuba, Ibaraki 300-2611, Japan.
| |
Collapse
|
16
|
Younis I, Khair L, Dundr M, Lairmore MD, Franchini G, Green PL. Repression of human T-cell leukemia virus type 1 and type 2 replication by a viral mRNA-encoded posttranscriptional regulator. J Virol 2004; 78:11077-83. [PMID: 15452228 PMCID: PMC521841 DOI: 10.1128/jvi.78.20.11077-11083.2004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) and HTLV-2 are complex retroviruses that persist in the host, eventually causing leukemia and neurological disease in a small percentage of infected individuals. In addition to structural and enzymatic proteins, HTLV encodes regulatory (Tax and Rex) and accessory (open reading frame I and II) proteins. The viral Tax and Rex proteins positively regulate virus production. Tax activates viral and cellular transcription to promote T-cell growth and, ultimately, malignant transformation. Rex acts posttranscriptionally to facilitate cytoplasmic expression of viral mRNAs that encode the structural and enzymatic gene products, thus positively controlling virion expression. Here, we report that both HTLV-1 and HTLV-2 have evolved accessory genes to encode proteins that act as negative regulators of both Tax and Rex. HTLV-1 p30(II) and the related HTLV-2 p28(II) inhibit virion production by binding to and retaining tax/rex mRNA in the nucleus. Reduction of viral replication in a cell carrying the provirus may allow escape from immune recognition in an infected individual. These data are consistent with the critical role of these proteins in viral persistence and pathogenesis in animal models of HTLV-1 and HTLV-2 infection.
Collapse
Affiliation(s)
- Ihab Younis
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Rd., Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
17
|
Nicot C, Dundr M, Johnson JM, Fullen JR, Alonzo N, Fukumoto R, Princler GL, Derse D, Misteli T, Franchini G. HTLV-1-encoded p30II is a post-transcriptional negative regulator of viral replication. Nat Med 2004; 10:197-201. [PMID: 14730358 DOI: 10.1038/nm984] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2003] [Accepted: 12/16/2003] [Indexed: 11/09/2022]
Abstract
Human T-cell leukemia/lymphoma virus type 1 (HTLV-1) persists despite a vigorous virus-specific host immune response, and causes adult T-cell leukemia and lymphoma in approximately 2% of infected individuals. Here we report that HTLV-1 has evolved a genetic function to restrict its own replication by a novel post-transcriptional mechanism. The HTLV-1-encoded p30(II) is a nuclear-resident protein that binds to, and retains in the nucleus, the doubly spliced mRNA encoding the Tax and Rex proteins. Because Tex and Rex are positive regulators of viral gene expression, their inhibition by p30(II) reduces virion production. p30(II) inhibits virus expression by reducing Tax and Rex protein expression.
Collapse
Affiliation(s)
- Christophe Nicot
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, National Institutes of Health, 41/D804, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Franchini G, Fukumoto R, Fullen JR. T-Cell Control by Human T-Cell Leukemia/Lymphoma Virus Type 1. Int J Hematol 2003; 78:280-96. [PMID: 14686485 DOI: 10.1007/bf02983552] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human T-cell leukemia/lymphoma virus type 1 (HTLV-1) causes neoplastic transformation of human T-cells in a small number of infected individuals several years from infection. Collective evidence from in vitro studies indicates that several viral proteins act in concert to increase the responsiveness of T-cells to extracellular stimulation, modulate proapoptotic and antiapoptotic gene signals, enhance T-cell survival, and avoid immune recognition of the infected T-cells. The virus promotes T-cell proliferation by usurping several signaling pathways central to immune T-cell function, such as antigen stimulation and receptor-ligand interaction, suggesting that extracellular signals are important for HTLV-1 oncogenesis. Environmental factors such as chronic antigen stimulation may therefore be of importance, as also suggested by epidemiological data. Thus genetic and environmental factors together with the virus contribute to disease development. This review focuses on current knowledge of the mechanisms regulating HTLV-1 replication and the T-cell pathways that are usurped by viral proteins to induce and maintain clonal proliferation of infected T-cells. The relevance of these laboratory findings is related to clonal T-cell proliferation and adult T-cell leukemia/lymphoma development in vivo.
Collapse
Affiliation(s)
- Genoveffa Franchini
- Basic Research Laboratory, National Cancer Institute, Bethesda, Maryland 20892-5055, USA.
| | | | | |
Collapse
|
19
|
Franchini G, Nicot C, Johnson JM. Seizing of T Cells by Human T-Cell Leukemia⧸Lymphoma Virus Type 1. Adv Cancer Res 2003; 89:69-132. [PMID: 14587871 DOI: 10.1016/s0065-230x(03)01003-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human T-cell leukemia/lymphoma virus type 1 (HTLV-1) causes neoplastic transformation of human T-cells in a small number of infected individuals several years from infection. Several viral proteins act in concert to increase the responsiveness of T-cells to extracellular stimulation, modulate proapoptotic and antiapoptotic gene signals, enhance T-cell survival, and avoid immune recognition of the infected T-cells. The virus promotes T-cell proliferation by usurping several signaling pathways central to immune T-cell function. Viral proteins modulate the downstream effects of antigen stimulation and receptor-ligand interaction, suggesting that extracellular signals are important for HTLV-1 oncogenesis. Environmental factors such as chronic antigen stimulation are therefore important, as also suggested by epidemiological data. The ability of a given individual to respond to specific antigens is determined genetically. Thus, genetic and environmental factors, together with the virus, contribute to disease development. As in the case of other virus-associated cancers, HTLV-1-induced leukemia/lymphoma can be prevented by avoiding viral infection or by intervention during the asymptomatic phase with approaches able to interrupt the vicious cycle of virus-induced proliferation of a subset of T-cells. This review focuses on current knowledge of the mechanisms regulating HTLV-1 replication and the T-cell pathways that are usurped by viral proteins to induce and maintain clonal proliferation of infected T-cells in vitro. The relevance of these laboratory findings will be related to clonal T-cell proliferation and adult T-cell leukemia/lymphoma development in vivo.
Collapse
Affiliation(s)
- Genoveffa Franchini
- National Cancer Institute, Basic Research Laboratory, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
20
|
Georges SA, Kraus WL, Luger K, Nyborg JK, Laybourn PJ. p300-mediated tax transactivation from recombinant chromatin: histone tail deletion mimics coactivator function. Mol Cell Biol 2002; 22:127-37. [PMID: 11739728 PMCID: PMC134225 DOI: 10.1128/mcb.22.1.127-137.2002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Efficient transcription of the human T-cell leukemia virus type 1 (HTLV-1) genome requires Tax, a virally encoded oncogenic transcription factor, in complex with the cellular transcription factor CREB and the coactivators p300/CBP. To examine Tax transactivation in vitro, we used a chromatin assembly system that included recombinant core histones. The addition of Tax, CREB, and p300 to the HTLV-1 promoter assembled into chromatin activated transcription several hundredfold. Chromatin templates selectively lacking amino-terminal histone tails demonstrated enhanced transcriptional activation by Tax and CREB, with significantly reduced dependence on p300 and acetyl coenzyme A (acetyl-CoA). Interestingly, Tax/CREB activation from the tailless chromatin templates retained a substantial requirement for acetyl-CoA, indicating a role for acetyl-CoA beyond histone acetylation. These data indicate that during Tax transcriptional activation, the amino-terminal histone tails are the major targets of p300 and that tail deletion and acetylation are functionally equivalent.
Collapse
Affiliation(s)
- Sara A Georges
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, USA
| | | | | | | | | |
Collapse
|
21
|
Lu SC, Kao CL, Chin LT, Chen JW, Yang CM, Chang JH, Hsu SC, Chang AC, Chen BH. Seroprevalence and demographic characteristics of HTLV-I among blood donors in Taiwan: 1996-1999. Int J Hematol 2001; 74:333-7. [PMID: 11721972 DOI: 10.1007/bf02982070] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Screening for the human T-cell lymphotropic virus type I (HTLV-I) and-II in blood donors was implemented in Taiwan beginning in February 1996. The purpose of the present study was to investigate the changes in HTLV-I seroprevalence in all unpaid blood donors in Taiwan during the period from February 1996 to December 1999 and to determine the influence of age and sex on the HTLV-I seropositivity of donors. HTLV-I and HTLV-II screening was performed using combined HTLV-I/II immunoassay. Repeated reactive samples were confirmed by Western blot analysis. Of a total of 3,701,087 donors in all 6 blood centers in Taiwan, 2,311 (0.058%) were seropositive for HTLV-I. The HTLV-I seropositivity was 0.130%, 0.063%, 0.044%, and 0.032% in the years 1996, 1997,1998, and 1999, respectively. There was a linear increase of HTLV-I seropositivity with advancing age. The HTLV-I carrier rate for female donors was twice that for the male donors. Ninty-seven percent of HTLV-I seropositive results came from first-time donors. Our findings suggest that Taiwan is a low-prevalence nonendemic area for HTLV-I infection. The large-scale HTLV-I screening program has decreased HTLV-I seropositivity among blood donors and is useful for preventing HTLV-I transmission via blood transfusion.
Collapse
Affiliation(s)
- S C Lu
- Department of Laboratory Medicine, College of Medicine, Kaohsiung Medical University, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The human T cell leukemia virus-1 (HTLV-1) is a retrovirus that causes adult T cell leukemia (ATL) and neurological disorder, the tropical spastic paraparesis (HAM/TSP). The pathogenesis apparently results from the pleiotropic function of Tax protein, which is a key regulator of viral replication. Tax exerts (a) trans-activation and -repression of transcription of different sets of cellular genes through binding to groups of transcription factors and coactivators, (b) dysregulation of cell cycle through binding to inhibitors of CDK4/6, and (c) inhibition of some tumor suppressor proteins. These effects on a wide variety of cellular targets seem to cooperate in promoting cell proliferation. This is an effective viral strategy to amplify its proviral genome through replication of infected cells; ultimately it results in cell transformation and leukemogenesis.
Collapse
Affiliation(s)
- M Yoshida
- Banyu Tsukuba Research Institute, Tsukuba, Ibaraki 300-2611, Japan.
| |
Collapse
|
23
|
Johnson JM, Harrod R, Franchini G. Molecular biology and pathogenesis of the human T-cell leukaemia/lymphotropic virus Type-1 (HTLV-1). Int J Exp Pathol 2001; 82:135-47. [PMID: 11488989 PMCID: PMC2517711 DOI: 10.1046/j.1365-2613.2001.00191.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retroviruses are associated with a variety of diseases, including immunological and neurological disorders, and various forms of cancer. In humans, the Human T-cell Leukaemia/Lymphotropic virus type 1 (HTLV-1), which belongs to the Oncovirus family, is the aetiological agent of two diverse diseases: Adult T-cell leukaemia/lymphoma (ATLL) (Poiesz et al. 1980; Hinuma et al. 1981; Yoshida et al. 1982), as well as the neurological disorder tropical spastic paraparesis/HTLV-1-associated myelopathy (TSP/HAM) (Gessain et al. 1985; Rodgers-Johnson et al. 1985; Osame et al. 1986). HTLV-1 is the only human retrovirus known to be the aetiological agent of cancer. A genetically related virus, HTLV-2, has been identified and isolated (Kalyanaraman et al. 1982). However, there has been no demonstration of a definitive aetiological role for HTLV-2 in human disease to date. Simian T-cell lymphotropic viruses types 1 and 2 (STLV-1 and -2) and bovine leukaemia virus (BLV) have also been classified in same group, Oncoviridae, based upon their similarities in genetic sequence and structure to HTLV-1 and -2 (Burny et al. 1988; Dekaban et al. 1995; Slattery et al. 1999). This article will focus on HTLV-1, reviewing its discovery, molecular biology, and its role in disease pathogenesis.
Collapse
Affiliation(s)
- J M Johnson
- National Cancer Institute, Basic Research Laboratory, 41 Library Drive, Building 41, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
24
|
Khorana AA, Rosenblatt JD, Young FM. Immunopathogenesis of HIV and HTLV-1 infection: mechanisms for lymphomagenesis. Cancer Treat Res 2001; 104:19-74. [PMID: 11191127 DOI: 10.1007/978-1-4615-1601-9_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Affiliation(s)
- A A Khorana
- Cancer Center and Hematology-Oncology Unit, University of Rochester Medical Center, Rochester, New York, USA
| | | | | |
Collapse
|
25
|
Hou X, Foley S, Cueto M, Robinson MA. The human T-cell leukemia virus type I (HTLV-I) X region encoded protein p13(II) interacts with cellular proteins. Virology 2000; 277:127-35. [PMID: 11062043 DOI: 10.1006/viro.2000.0604] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interactions between the Human T-cell leukemia virus type I (HTLV-I) gene product p13(II) and cellular proteins were investigated using the yeast two-hybrid system. Variant forms of p13(II) were derived from two HTLV-I molecular clones, K30p and K34p, that differ in both virus production and in vivo and in vitro infectivity. Two nucleotide differences between the p13 from K30p (p13K30) and K34p (p13K34) result in a Trp-Arg substitution at amino acid 17 and the truncation of the 25 carboxyl-terminal residues of p13K34. A cDNA library from an HTLV-I-infected rabbit T-cell line was screened with p13K30 and p13K34 as bait. Products of two cDNA clones, C44 and C254, interacted with p13K34 but not with p13K30. Interactions were further confirmed using the GST-fusion protein coprecipitation assay. Sequence analysis of C44 and C254 cDNA clones revealed similarities to members of the nucleoside monophosphate kinase superfamily and actin-binding protein 280, respectively. Further analysis of the function of these two proteins and the consequence of their interaction with p13 may help elucidate a role for p13 in virus production, infectivity, or the pathogenesis of HTLV-I.
Collapse
Affiliation(s)
- X Hou
- Laboratory of Immunogenetics, Twinbrook II Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12441 Parklawn Drive, Rockville, Maryland, 20852, USA
| | | | | | | |
Collapse
|
26
|
Kojima K, Hara M, Sawada T, Miyata A, Saito H, Matsuo Y, Yasukawa M, Fujita S, Harada M. Human T-lymphotropic virus type I provirus and T-cell prolymphocytic leukemia. Leuk Lymphoma 2000; 38:381-6. [PMID: 10830745 DOI: 10.3109/10428190009087029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
T-cell prolymphocytic leukemia (T-PLL) is a rare type of post-thymic T-cell neoplasm, the etiology of which is unknown. Patients with T-PLL have been found to be seronegative for human T-lymphotropic virus type-I (HTLV-I), and their leukemia cells do not retain monoclonally integrated HTLV-I provirus. Recently, we have demonstrated the presence of defective HTLV-I provirus by polymerase chain reaction in the DNA extracted from peripheral blood cells or affected lymph nodes of T-PLL patients. Although there is a possibility, from our observation, that an alternative mechanism is operating in HTLV-associated leukemogenesis, it is still unknown whether and how HTLV-I can contribute to the leukemogenesis of T-PLL. In this review, we describe controversial issues and discuss a role of HTLV-I in the leukemogenesis of T-PLL.
Collapse
Affiliation(s)
- K Kojima
- Division of Hematology, Ehime Prefectural Central Hospital, Matsuyama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Tsukasaki K, Koeffler P, Tomonaga M. Human T-lymphotropic virus type 1 infection. Best Pract Res Clin Haematol 2000; 13:231-43. [PMID: 10942623 DOI: 10.1053/beha.1999.0070] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human T-cell lymphotropic virus type-1 (HTLV-1) is aetiologically associated with adult T-cell leukaemia/lymphoma (ATL). HTLV-1 infection can also lead to various non-malignant diseases, for example, HTLV-1 associated myelopathy/tropical spastic paraparesis and HTLV-1 uveitis. HTLV-1 is endemic in southern Japan and the Caribbean. HTLV-1 infection is mainly transmitted by either breast-feeding, sexual intercourse or blood transfusions. Primary prevention of HTLV-1 in endemic areas by screening of blood and by refraining from breast-feeding have been successful. The incidence of ATL is rather low among HTLV-1 carriers (<5%). The precise mechanism of development of ATL remains unknown. It is a multiple-step process which does not require viral expression in the later stages of leukaemogenesis. Many samples have mutations of the tumour suppressor genes, p53 and/or p16(INK4A). Four subtypes of ATL have been identified, each having distinctive clinical features. Monoclonal integration of HTLV-1 proviral DNA into tumour cells is found in each of the subtypes. At present, no effective therapy for ATL exists.
Collapse
Affiliation(s)
- K Tsukasaki
- Department of Medicine, UCLA School of Medicine, CA, USA
| | | | | |
Collapse
|
28
|
Hill SA, Shuh M, Derse D. Comparisons of defective HTLV-I proviruses predict the mode of origin and coding potential of internally deleted genomes. Virology 1999; 263:273-81. [PMID: 10544101 DOI: 10.1006/viro.1999.9922] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell lines infected with a variety of HTLV-I isolates were examined for the presence of defective proviruses that contain deletions spanning the gag, pol, and env genes. Internally deleted proviruses were identified by Southern blotting and by PCR amplification with 5' and 3' primers complementary to gag and tax sequences, respectively. PCR products representing eight defective proviruses from seven different cell lines were subsequently cloned and sequenced. The objectives of this study were twofold: first, we sought to determine whether nucleotide sequences surrounding sites of deletion shared common features that might reveal the mechanisms by which the defective genomes originated. Second, we asked whether deleted proviruses encode Gag fusion proteins with related C-terminal residues derived from open reading frames in the pX region. While most of the defective proviruses had incurred a single, large deletion, two of them displayed a more complex pattern of multiple rearrangements. Alignments of bases flanking the 5' and 3' deletion endpoints within each provirus showed tracts of sequence identity consistent with a mechanism involving aberrant intramolecular strand-transfer events during replication. We suggest that the amount or activity of HTLV-I polymerase in virions may contribute both to the poor infectivity of the virus and to the high deletion frequency. Two of the eight proviruses that were examined encoded a gag gene joined to an extended open reading frame; the other six had very short open reading frames (one to six amino acids) derived from pX or env regions joined to gag that showed no apparent amino acid sequence similarity.
Collapse
Affiliation(s)
- S A Hill
- Basic Research Laboratory, National Cancer Institute, NCI-FCRDC, Frederick, Maryland 21702-1201, USA
| | | | | |
Collapse
|
29
|
Kusuhara K, Anderson M, Pettiford SM, Green PL. Human T-cell leukemia virus type 2 Rex protein increases stability and promotes nuclear to cytoplasmic transport of gag/pol and env RNAs. J Virol 1999; 73:8112-9. [PMID: 10482560 PMCID: PMC112827 DOI: 10.1128/jvi.73.10.8112-8119.1999] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human T-cell leukemia virus (HTLV) Rex protein is essential for efficient expression of the viral structural and enzymatic gene products. In this study, we assessed the role of the HTLV-2 rex gene in viral RNA expression and Gag protein production. Following transfection of human JM4 T cells with wild-type and rex mutant full-length proviral constructs, PCR was used for semiquantitative analysis of specific viral RNA transcripts. In the presence of Rex, the total amount of steady-state viral RNA was increased fourfold. Rex significantly up-regulated the level of incompletely spliced RNAs by increasing RNA stability and was associated with a twofold down-regulation of the completely spliced tax/rex RNA. PCR analysis of subcellular RNA fractions, isolated from transfected cells, indicated that the level of gag/pol and env cytoplasmic RNAs were increased 7- to 9-fold in the presence of Rex, whereas Gag protein production was increased 130-fold. These data indicate that HTLV-2 Rex increases the stability and promotes nucleus-to-cytoplasm transport of the incompletely spliced viral RNAs, ultimately resulting in increased structural protein production. Moreover, this model system provides a sensitive approach to further characterize HTLV gene expression from full-length proviral clones following transfection of human T cells.
Collapse
Affiliation(s)
- K Kusuhara
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2363, USA
| | | | | | | |
Collapse
|
30
|
Shuh M, Hill SA, Derse D. Defective and wild-type human T-cell leukemia virus type I proviruses: characterization of gene products and trans-interactions between proviruses. Virology 1999; 262:442-51. [PMID: 10502522 DOI: 10.1006/viro.1999.9909] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Defective provirus genomes of human T-cell leukemia virus type I are frequently detected in lymphocytes from infected individuals and in infected cell lines. One type of defective provirus contains internal deletions spanning gag, pol, and env genes but retains portions of open reading frames for trans-regulatory proteins. The deleted proviruses could potentially contribute to viral pathology by producing novel gene products that directly affect cell metabolism or that modulate expression of resident, wild-type proviruses. Virus gene products and the control of their expression were examined in cells transfected with defined molecular clones of wild-type and defective proviruses. Internally deleted provirus clones, which are unable to produce functional Tax and Rex proteins, were transcriptionally inactive in transfected cells. Ectopic expression of p40Tax activated transcription of the deleted provirus, resulting in the accumulation of a two-exon mRNA that yields a truncated form of Rex (p21Rex). Although this two-exon mRNA also has a potential initiation codon in the tax frame, a truncated form of Tax was not detected by immunoblotting or in transactivation assays. When complemented with p40Tax and p27Rex, cells transfected with deleted proviruses accumulated an unspliced mRNA that could potentially encode gag-pX fusion proteins. Although expression of deleted proviruses was dependent on trans-acting factors produced from intact proviruses, gene products from defective proviruses did not significantly affect expression of a cotransfected, full-length provirus.
Collapse
MESH Headings
- Cell Line
- Cloning, Molecular
- Defective Viruses/genetics
- Defective Viruses/physiology
- Gene Expression Regulation, Viral
- Gene Products, gag/chemistry
- Gene Products, gag/genetics
- Gene Products, gag/metabolism
- Gene Products, rex/chemistry
- Gene Products, rex/genetics
- Gene Products, rex/metabolism
- Gene Products, tax/chemistry
- Gene Products, tax/genetics
- Gene Products, tax/metabolism
- Genes, Reporter/genetics
- Genes, Viral/genetics
- HIV-1/genetics
- Human T-lymphotropic virus 1/genetics
- Human T-lymphotropic virus 1/physiology
- Humans
- Promoter Regions, Genetic/genetics
- Proviruses/genetics
- Proviruses/physiology
- RNA Splicing/genetics
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- RNA, Viral/analysis
- RNA, Viral/genetics
- Retroviridae Proteins, Oncogenic/chemistry
- Retroviridae Proteins, Oncogenic/genetics
- Retroviridae Proteins, Oncogenic/metabolism
- Sequence Deletion/genetics
- Trans-Activators/chemistry
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription, Genetic/genetics
- Transfection
- Viral Fusion Proteins/genetics
- Viral Fusion Proteins/metabolism
- Viral Proteins/analysis
- Viral Proteins/genetics
- gag Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- M Shuh
- Division of Basic Sciences, National Cancer Institute, Frederick, Maryland, 21702-1201, USA
| | | | | |
Collapse
|
31
|
Heger P, Rosorius O, Hauber J, Stauber RH. Titration of cellular export factors, but not heteromultimerization, is the molecular mechanism of trans-dominant HTLV-1 rex mutants. Oncogene 1999; 18:4080-90. [PMID: 10435589 DOI: 10.1038/sj.onc.1202762] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The HTLV-1 Rex protein is an essential shuttle protein required for nuclear export of unspliced and incompletely-spliced viral RNAs. Several trans-dominant (TD) mutant Rex proteins have been reported, however, the mechanism of trans-dominance is not known. We compared TD Rex mutants and found that a natural occurring Rex mutant, Rexp21, lacking the RNA binding domain, was highly TD and inhibited also HIV-1 Rev function. Using fusions to the green fluorescent protein (GFP) we observed that Rexp21-GFP displayed a cytoplasmic localization but was actively shuttling between the nucleus and the cytoplasm in live human cells. The presence of Rexp21-GFP inhibited the nuclear export of Rex and HIV-1 Rev as assayed by cotransfection and microinjection experiments. However, Rex-GFP or Rexp21-GFP did not form heteromultimers with nuclear Rex mutants in vivo. In contrast, shuttling was essential for trans-dominance. Thus, we propose that TD Rex mutants do not function by retaining WT Rex in the nucleus by protein-protein interactions, as demonstrated for Rev, but to titrate factors essential for Rex/Rev export. Our findings demonstrate differences between the regulatory proteins Rex and Rev and implicate a novel strategy to generate highly TD Rex mutants also applicable to other proteins.
Collapse
Affiliation(s)
- P Heger
- Institute for Medical and Clinical Virology, University of Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | |
Collapse
|
32
|
Heger P, Rosorius O, Koch C, Casari G, Grassmann R, Hauber J. Multimer formation is not essential for nuclear export of human T-cell leukemia virus type 1 Rex trans-activator protein. J Virol 1998; 72:8659-68. [PMID: 9765406 PMCID: PMC110278 DOI: 10.1128/jvi.72.11.8659-8668.1998] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Rex trans-regulatory protein of human T-cell leukemia virus type 1 (HTLV-1) is required for the nuclear export of incompletely spliced and unspliced viral mRNAs and is therefore essential for virus replication. Rex is a nuclear phosphoprotein that directly binds to its cis-acting Rex response element RNA target sequence and constantly shuttles between the nucleus and cytoplasm. Moreover, Rex induces nuclear accumulation of unspliced viral RNA. Three protein domains which mediate nuclear import-RNA binding, nuclear export, and Rex oligomerization have been mapped within the 189-amino-acid Rex polypeptide. Here we identified a different region in the carboxy-terminal half of Rex which is also required for biological activity. In inactive mutants with mutations that map within this region, as well as in mutants that are deficient in Rex-specific multimerization, Rex trans activation could be reconstituted by fusion to a heterologous leucine zipper dimerization interface. The intracellular trafficking capabilities of wild-type and mutant Rex proteins reveal that biologically inactive and multimerization-deficient Rex mutants are still efficiently translocated from the nucleus to the cytoplasm. This observation indicates that multimerization is essential for Rex function but is not required for nuclear export. Finally, we are able to provide an improved model of the HTLV-1 Rex domain structure.
Collapse
Affiliation(s)
- P Heger
- Institute for Clinical and Molecular Virology, University Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Tanimura A, Dan S, Yoshida M. Cloning of novel isoforms of the human Gli2 oncogene and their activities to enhance tax-dependent transcription of the human T-cell leukemia virus type 1 genome. J Virol 1998; 72:3958-64. [PMID: 9557682 PMCID: PMC109622 DOI: 10.1128/jvi.72.5.3958-3964.1998] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The expression of human T-cell leukemia virus type 1 (HTLV-1) is activated by interaction of a viral transactivator protein, Tax, and cellular transcription factor, CREB (cyclic AMP response element binding protein), which bind to a 21-bp enhancer in the long terminal repeats (LTR). THP (Tax-helping protein) was previously determined to enhance the transactivation by Tax protein. Here we report novel forms of the human homolog of a member of the Gli oncogene family, Gli2 (also termed Gli2/THP), an extended form of a zinc finger protein, THP, which was described previously. Four possible isoforms (hGli2 alpha, beta, gamma, and delta) are formed by combinations of two independent alternative splicings, and all the isoforms could bind to a DNA motif, TRE2S, in the LTR. The longer isoforms, alpha and beta, were abundantly expressed in various cell lines including HTLV-1-infected T-cell lines. Fusion proteins of the hGli2 isoforms with the DNA-binding domain of Gal4 activated transcription when the reporter contained a Gal4-binding site and one copy of the 21-bp sequence, to which CREB binds. This activation was observed only in the presence of Tax. The 21-bp sequence in the reporter was also essential for the activation. These results suggest that simultaneous binding of hGli2 and CREB to the respective sites in the reporter seems to be critical for Tax protein to activate transcription. Consequently, it is probable that the LTR can be regulated by two independent signals through hGli2 and CREB, since the LTR contains the 21-bp and TRE2S sequences in the vicinity.
Collapse
Affiliation(s)
- A Tanimura
- Department of Cellular and Molecular Biology, Institute of Medical Science, University of Tokyo, Japan
| | | | | |
Collapse
|
34
|
Mori N, Prager D. Transactivation of the interleukin-1 alpha promoter by human T-cell leukemia virus. Leuk Lymphoma 1997; 26:421-33. [PMID: 9389351 DOI: 10.3109/10428199709050880] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The expression of interleukin-1 alpha (IL-1 alpha) appears to be tightly regulated, as the levels of constitutive expression in normal cells is extremely low. In contrast to normal hematopoietic cells, human T-cell leukemia virus type I (HTLV-I)-infected T-cell lines constitutively produce high levels of IL-1 alpha mRNA and secret this cytokine into the culture medium. IL-1-alpha mRNA is also expressed in fresh leukemic cells of adult T-cell leukemia/lymphoma (ATLL) patients. HTLV-I-induced IL-1 alpha might explain some symptoms observed in ATLL. In this regard, molecular dissection of the IL-1 alpha gene transcriptional regulation is of primary importance. In this review, the transcriptional regulation of IL-1 alpha gene expression and the possible role of the NF-kappaB pathway are discussed in the light of our current understanding of IL-1 alpha gene regulation by HTLV-I and HTLV-II Tax proteins, which are viral transcriptional transactivators.
Collapse
Affiliation(s)
- N Mori
- Department of Medicine, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, USA
| | | |
Collapse
|
35
|
Saiga A, Orita S, Minoura-Tada N, Maeda M, Aono Y, Asakawa M, Nakahara K, Kubota R, Osame M, Igarashi H. cis-Acting inhibitory elements within the pol-env region of human T-cell leukemia virus type 1 possibly involved in viral persistence. J Virol 1997; 71:4485-94. [PMID: 9151840 PMCID: PMC191668 DOI: 10.1128/jvi.71.6.4485-4494.1997] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) remains latent throughout the life of the carrier, with cells containing the provirus and viral gene expression efficiently down-regulated. On a molecular level, exactly how viruses are down-regulated in vivo remains unresolved. We described here the possibility that down-regulation results from the presence of inhibitory elements within the gag-env region of the provirus in fresh peripheral blood mononuclear cells from carriers. In vitro experiments then revealed that potent cis-acting inhibitory elements (CIEs) are indeed contained in two discrete fragments from the pol region and weaker ones in the env region. The effect of CIEs is relieved by the HTLV-1 posttranscriptional regulator Rex through binding to the Rex-responsive element (RxRE), suggesting that Rex might interfere with pre-mRNA degradation and/or activate the export of mRNA molecules harboring both of the inhibitory elements and RxRE on the same RNA molecule. Thus, we propose the hypothesis that such functions of CIEs may be involved in HTLV-1 persistence.
Collapse
Affiliation(s)
- A Saiga
- Shionogi Institute for Medical Science, Settsu, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
D'Agostino DM, Ciminale V, Zotti L, Rosato A, Chieco-Bianchi L. The human T-cell lymphotropic virus type 1 Tof protein contains a bipartite nuclear localization signal that is able to functionally replace the amino-terminal domain of Rex. J Virol 1997; 71:75-83. [PMID: 8985325 PMCID: PMC191026 DOI: 10.1128/jvi.71.1.75-83.1997] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The X region of human T-cell lymphotropic virus type 1 (HTLV-1) encodes two nucleolar/nuclear proteins, the posttranscriptional regulator of mRNA expression Rex and a protein of unknown function named Tof. To gain insight into the possible biological role of Tof, we investigated the mechanism governing its intracellular trafficking and identified its nucleolar/nuclear localization signal (NLS). Mutational analysis of Tof revealed that its NLS was located between amino acids 71 and 98 and contained two arginine-rich domains that functioned in an interdependent manner. Studies of Tof-Rex hybrid proteins showed that the Tof NLS could functionally replace the NLS of Rex at the level of nuclear targeting. As the NLS of Rex is known to mediate its interaction with its RNA target, the Rex-responsive element (RXRE), we tested whether the NLS of Tof could replace that of Rex in mediating activation of a RXRE-containing mRNA. Results showed that the NLS of Tof was indeed able to mediate activation of RXRE-containing mRNAs, suggesting that Tof itself may function as a regulator of RNA expression and utilization. A comparison of their compartmentalization in response to actinomycin D treatment indicated that Tof did not share Rex's shuttling pathway. Expression of Tof from its natural multiply spliced mRNA required the presence of Rex, suggesting that Tof may regulate viral or cellular mRNA expression during the later stages of viral replication.
Collapse
Affiliation(s)
- D M D'Agostino
- Department of Oncology and Surgical Sciences, University of Padua, Italy.
| | | | | | | | | |
Collapse
|
37
|
Shnyreva M, Munder T. The oncoprotein Tax of the human T-cell leukemia virus type 1 activates transcription via interaction with cellular ATF-1/CREB factors in Saccharomyces cerevisiae. J Virol 1996; 70:7478-84. [PMID: 8892866 PMCID: PMC190815 DOI: 10.1128/jvi.70.11.7478-7484.1996] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The transcription factor Tax of the oncogenic human T-cell leukemia virus type 1 is likely to be responsible for viral replication in the host organism and for the induction of proliferation in infected cells. To investigate Tax-mediated transcription in vivo, we expressed Tax as well as CREB in Saccharomyces cerevisiae. The activity of these proteins was monitored by expression of a beta-galactosidase reporter gene, which was fused to two viral 21-bp repeats located upstream of the yeast cytochrome c1 oxidase minimal promoter. Coexpression of Tax and CREB in S. cerevisiae led to a 20-fold increase in beta-galactosidase activity in comparison with that in strains expressing either Tax or CREB alone. By screening a human cDNA library, we were able to demonstrate that the Tax transactivation assay using S. cerevisiae can be successfully applied to identify other cellular proteins forming ternary complexes with Tax and 21-bp repeats in vivo. Upon transformation in S. cerevisiae, 1 of 13,500 clones tested positive. Sequencing of the cDNA insert of the rescued plasmid revealed that this DNA encoded the ATF-1 protein. beta-Galactosidase induction was comparable to that of the Tax/CREB coexpression system. This indicates that Tax-mediated transcription is critically dependent on the presence of cellular CREB or ATF-1 in vivo. Stimulation of transcription initiation required an unmasked NH2 terminus of Tax. Fusion of Tax to the yeast Gal4 protein abolished the transactivation potential of Tax. Reconstitution of the transcriptional properties of viral Tax together with the cellular proteins of the ATF-1/CREB family in S. cerevisiae allows the functional characterization of these proteins in vivo.
Collapse
Affiliation(s)
- M Shnyreva
- Department of Cell and Molecular Biology, Hans-Knoll-Institut für Naturstoff-Forschung e.V., Jena, Germany
| | | |
Collapse
|
38
|
Palmeri D, Malim MH. The human T-cell leukemia virus type 1 posttranscriptional trans-activator Rex contains a nuclear export signal. J Virol 1996; 70:6442-5. [PMID: 8709278 PMCID: PMC190676 DOI: 10.1128/jvi.70.9.6442-6445.1996] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Rex protein of human T-cell leukemia virus type 1 is required for the nuclear export of unspliced viral mRNA and, therefore, for virus replication. In this manuscript, we demonstrate that Rex shuttles between the nucleus and the cytoplasm and that its activation domain constitutes a nuclear export signal that specifies efficient transport to the cytoplasm. These findings are consistent with a model for Rex-mediated trans-activation in which Rex-viral mRNA complexes are targeted for nuclear export by the direct action of the activation domain.
Collapse
Affiliation(s)
- D Palmeri
- Graduate Group in Molecular Biology, University of Pennsylvania School of Medicine, Philadelphia 19104-6148, USA
| | | |
Collapse
|
39
|
Abstract
Endogenous retroviruses (ERVs) are estimated to comprise up to 1% of human DNA. While the genome of many ERVs is interrupted by termination codons, deletions or frame shift mutations, some ERVs are transcriptionally active and recent studies reveal protein expression or particle formation by human ERVs. ERVs have been implicated as aetiological agents of autoimmune disease, because of their structural and sequence similarities to exogenous retroviruses associated with immune dysregulation and their tissue-specific or differentiation-dependent expression. In fact, retrovirus-like particles distinct from those of known exogenous retroviruses and immune responses to ERV proteins have been observed in autoimmune disease. Quantitatively or structurally aberrant expression of normally cryptic ERVs, induced by environmental or endogenous factors, could initiate autoimmunity through direct or indirect mechanisms. ERVs may lead to immune dysregulation as insertional mutagens or cis-regulatory elements of cellular genes involved in immune function. ERVs may also encode elements like tax in human T-lymphotrophic virus type I (HTLV-I) or tat in human immunodeficiency virus-I (HIV-I) that are capable of transactivating cellular genes. More directly, human ERV gene products themselves may be immunologically active, by analogy with the superantigen activity in the long terminal repeat (LTR) of mouse mammary tumour viruses (MMTV) and the non-specific immunosuppressive activity in mammalian type C retrovirus env protein. Alternatively, increased expression of an ERV protein, or expression of a novel ERV protein not expressed in the thymus during acquisition of immune tolerance, may lead to its perception as a neoantigen. Paraneoplastic syndromes raise the possibility that novel ERV-encoded epitopes expressed by a tumour elicit immunity to cross-reactive epitopes in normal tissues. Recombination events between different but related ERVs, to whose products the host is immunologically tolerant, may also generate new antigenic determinants. Frequently reported humoral immunity to exogenous retrovirus proteins in autoimmune disease could be elicited by cross-reactive ERV proteins. A review of the evidence implicating ERVs in immune dysfunction leads to the conclusion that direct molecular studies are likely to establish a pathogenic role for ERVs in autoimmune disease.
Collapse
Affiliation(s)
- K Nakagawa
- Burnet Clinical Research Unit, Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, Parkville, Australia
| | | |
Collapse
|
40
|
Sepehrnia B, Paz IB, Dasgupta G, Momand J. Heat shock protein 84 forms a complex with mutant p53 protein predominantly within a cytoplasmic compartment of the cell. J Biol Chem 1996; 271:15084-90. [PMID: 8663025 DOI: 10.1074/jbc.271.25.15084] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cellular DNA damage results in the increased expression and accumulation of the p53 tumor suppressor protein within the nucleus which leads to cell cycle arrest or apoptosis. In some cases, however, wild-type p53 and some mutant forms of p53 reside in the cytoplasm of cancer cells. To understand the mechanism responsible for its cytoplasmic retention, studies were undertaken to determine if unique proteins form a complex with mutant p53 within the cytoplasm of transformed cells. One protein, with an apparent molecular mass of 92 kDa (p92), was observed to form a complex with a temperature-sensitive mutant p53 (TSp53(Val-135)) in the cytoplasm of transformed rat embryo fibroblasts at the non-permissive temperature. p92 copurified with TSp53(Val-135) on a p53-specific immunoaffinity column and a gel filtration column. The protein was purified to homogeneity and identified as hsp84 by partial amino acid sequence analysis. hsp84 is a member of the hsp90 class of proteins. At the non-permissive temperature, TSp53(Val-135) and hsp84 colocalized in the cytoplasm near the nuclear envelope. At the permissive temperature, TSp53(Val-135) resides in the nucleus and expresses a "wild-type like" conformation. Under these conditions hsp84 continued to reside in the cytoplasm and little or no hsp84 formed a complex with p53. The results suggest that hsp84 binds mutant p53 in a spatial and/or conformation dependent manner.
Collapse
Affiliation(s)
- B Sepehrnia
- Department of Cell and Tumor Biology, City of Hope National Medical Center, Duarte, California 91010-0269, USA
| | | | | | | |
Collapse
|
41
|
Ciminale V, D'Agostino DM, Zotti L, Chieco-Bianchi L. Coding potential of the X region of human T-cell leukemia/lymphotropic virus type II. JOURNAL OF ACQUIRED IMMUNE DEFICIENCY SYNDROMES AND HUMAN RETROVIROLOGY : OFFICIAL PUBLICATION OF THE INTERNATIONAL RETROVIROLOGY ASSOCIATION 1996; 13 Suppl 1:S220-7. [PMID: 8797727 DOI: 10.1097/00042560-199600001-00033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Human T-cell leukemia/lymphotropic viruses type I and type II (HTLV-I and HTLV-II) are complex human retroviruses showing a similar genetic organization but substantially different biologic and pathogenic properties. As in other complex retroviruses, the 3' portion of the HTLV genome contains the peculiar "X region" comprising several partially overlapping open reading frames (ORFs). To search for a possible basis for the pathogenic differences between the two viruses, a number of studies have been carried out to analyze the coding potential of the X region of HTLV-I and, more recently, of HTLV-II. This review focuses on the coding potential of the HTLV-II X region and presents a comparison with that of HTLV-I. Expression of different ORFs present in the X region may be accessed through two expression strategies: alternative splicing and translation of more than one protein from the same mRNA. Initial analyses of the X region proteins indicate that some differ significantly from their HTLV-I homologues, thus providing possible clues to the understanding of the complex life cycle and pathogenicity of the two viruses.
Collapse
Affiliation(s)
- V Ciminale
- Institute of Oncology, University of Padova, Italy
| | | | | | | |
Collapse
|
42
|
Franchini G, Tartaglia J, Markham P, Benson J, Fullen J, Wills M, Arp J, Dekaban G, Paoletti E, Gallo RC. Highly attenuated HTLV type Ienv poxvirus vaccines induce protection against a cell-associated HTLV type I challenge in rabbits. AIDS Res Hum Retroviruses 1995; 11:307-13. [PMID: 7742044 DOI: 10.1089/aid.1995.11.307] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The entire envelope protein of the human T cell leukemia/lymphoma virus type I (HTLV-I)1711, obtained from the DNA of a West African healthy HTLV-I-infected patient, was expressed in the highly attenuated poxvirus vaccine vectors ALVAC and NYVAC. These live recombinant vaccine candidates were used to immunize New Zealand White rabbits. Immunization regimens included inoculation of the poxvirus recombinant alone as well as prime/boost protocols using gp63 HTLV-I envelope precursor protein in Alum as the subunit boost. All animals were exposed to an HTLV-I cell-associated challenge (5 x 10(4) cells) from a primary culture of the HTLV-IBOU isolate. The results indicated that two inoculations of the ALVAC-based HTLV-Ienv vaccine candidate protected animals against viral challenge 5 months following the last immunization. However, a combination protocol with ALVAC-env and two additional boosts of gp63 surprisingly failed to confer protection, suggesting that administration of the subunit preparation might be deleterious. Further, in the case of the NYVAC HTLV-Ienv recombinant, protection was afforded as early as 2 months following the first immunization. Last, all the protected animals in the NYVAC and ALVAC trials were challenged 5 months following the initial challenge exposure with 5 ml of blood from an HTLV-IBOU-infected animal, and subsequently became infected. Protection conferred by the attenuated HTLV-Ienv recombinant poxvirus vaccine in the rabbit model might be instrumental for optimizing the immunogenicity of poxvirus-based vaccine candidates against human immunodeficiency virus (HIV), particularly because of the need to enhance protection against cell-to-cell transmission.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- G Franchini
- Laboratory of Tumor Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Rosenblatt JD, Miles S, Gasson JC, Prager D. Transactivation of cellular genes by human retroviruses. Curr Top Microbiol Immunol 1995; 193:25-49. [PMID: 7648877 DOI: 10.1007/978-3-642-78929-8_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have focused this chapter on interactions with two of the best characterized transregulatory genes, tax for HTLV-I/II and Tat for HIV-1. Both genes illustrate the complex interplay between retroviral regulatory genes and cellular gene regulation. In both instances a viral gene of relatively straightforward function in the viral context appears to cause extensive dysregulation of cellular genes, either directly or as a consequence of altered cellular differentiation. Understanding this viral/cellular gene cross-talk may elucidate mechanisms leading to malignant transformation autoimmune disease and to neurologic and paraneoplastic complications such as hypercalcemia for HTLV-I/II, as well as the pathogenesis of immune dysfunction and opportunistic malignancy in HIV-I/II-infected individuals. An understanding of functional mechanisms of these transregulatory viral genes will undoubtedly afford better explanations for the myriad manifestations of retroviral infection.
Collapse
|
44
|
Roithmann S, Pique C, Le Cesne A, Delamarre L, Pham D, Tursz T, Dokhélar MC. The open reading frame I (ORF I)/ORF II part of the human T-cell leukemia virus type I X region is dispensable for p40tax, p27rex, or envelope expression. J Virol 1994; 68:3448-51. [PMID: 8151807 PMCID: PMC236841 DOI: 10.1128/jvi.68.5.3448-3451.1994] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The X region of the human T-cell leukemia virus type I contains the second coding exon of the tax and rex regulatory proteins (open reading frame IV [ORF IV] and ORF III, respectively), as well as coding regions for more recently described proteins, p30II (or the tof protein) and p13II in ORF II and the putative rof protein and p12I in ORF I. Deletions and transcomplementation experiments showed that expression of the envelope, as well as that of the tax and rex proteins, was independent of the proteins encoded in the ORF I/ORF II region. Furthermore, p30II and p12I proteins could not replace the rex protein in a rex-dependent envelope or Gag protein expression system.
Collapse
Affiliation(s)
- S Roithmann
- CNRS Unité de Recherche Associée 1156, Institut Gustave Roussy, Villejuif, France
| | | | | | | | | | | | | |
Collapse
|
45
|
Orita S, Kobayashi H, Saiga A, Kubota R, Osame M, Igarashi H. A spontaneous point mutation in the human T-cell leukemia virus type 1 pX gene leads to expression of a novel doubly spliced pX-mRNA that encodes a 25-kD, amino-terminal deleted rex protein. DNA Cell Biol 1994; 13:353-64. [PMID: 8011162 DOI: 10.1089/dna.1994.13.353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Primary RNA transcripts of the human T-cell leukemia virus type 1 (HTLV-1) are processed into mature mRNA by a complex series of splicing events. In this paper, we report the finding of a novel doubly spliced pX mRNA in two out of eight HTLV-1-infected cell lines and in one out of 13 peripheral blood mononuclear cells from HTLV-1-infected individuals. The second splicing for this novel pX mRNA is different from that for the known doubly spliced pX mRNA. A novel acceptor site in this splicing was generated by a single point mutation (G to A) at nucleotide 7,337 of the pX gene. This mRNA contained a complete open reading frame that encodes an amino-terminal truncated p27rex protein with 189 amino acids. A new 25-kD protein was detected in the cell lines expressing the novel pX mRNA by an antibody against the carboxy-terminal peptide of p27rex and was termed p25rex. Although the function of p25rex is not clear, we clarified that p25rex is a cytoplasmic phosphoprotein and its function is different from the transcriptional regulator function of p27rex. The possibility that the mutated virus is replicable only in cells coinfected with the wild type HTLV-1 may explain why the incidence of the mutants observed here is low.
Collapse
Affiliation(s)
- S Orita
- Shionogi Institute for Medical Science, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Kalland KH, Szilvay AM, Langhoff E, Haukenes G. Subcellular distribution of human immunodeficiency virus type 1 Rev and colocalization of Rev with RNA splicing factors in a speckled pattern in the nucleoplasm. J Virol 1994; 68:1475-85. [PMID: 8107211 PMCID: PMC236603 DOI: 10.1128/jvi.68.3.1475-1485.1994] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) Rev (regulator of virion protein expression) protein exemplifies a new type of posttranscriptional regulation. One main function of Rev is to increase the cytoplasmic expression of unspliced and incompletely spliced retroviral mRNAs from which viral structural proteins are made. In that way, Rev is essential in order to complete the retroviral life cycle. The biology of Rev in the host cell has remained elusive. In this study, a complex distribution of Rev in single cells was found. Rev was found in the cytoplasm, in a perinuclear zone, in the nucleoplasm, and in the nucleoli. In the nucleoplasm, Rev colocalized in a speckled pattern with host cell factors known to assemble on nascent transcripts. Those factors are involved in the processing of heterogeneous RNA to spliced mRNA in the nucleoplasm of all cells. The distribution of Rev was dependent only on Rev and host cell interactions, since neither the Rev target RNA nor other HIV proteins were expressed in the cells. Rev was found in the same subcellular compartments of cells treated for extended periods with cycloheximide, an inhibitor of protein synthesis. This finding implies that Rev shuttles continuously between cytoplasmic and nucleoplasmic compartments. The results suggest a potential role for Rev both in the RNA-splicing process and in the nucleocytoplasmic transport of Rev-dependent HIV mRNA.
Collapse
Affiliation(s)
- K H Kalland
- Department of Microbiology and Immunology, Gade Institute, University of Bergen, Norway
| | | | | | | |
Collapse
|
47
|
Affiliation(s)
- R Grassmann
- Institut für Klinische and Molekulare Virologie, Universität Erlangen--Nürnberg, Erlangen, Germany
| | | | | |
Collapse
|
48
|
Saggioro D, Majone F, Forino M, Turchetto L, Leszl A, Chieco-Bianchi L. Tax protein of human T-lymphotropic virus type I triggers DNA damage. Leuk Lymphoma 1994; 12:281-6. [PMID: 8167559 DOI: 10.3109/10428199409059600] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Previous findings indicated that in vitro HTLV-I-infected cells are highly susceptible to spontaneous and chemically induced DNA-damage. To further study the role of different virus gene products in inducing chromosome abnormalities, MOLT-3 cells were transiently transfected with a tax expressing plasmid (pTax), and assayed for genetic damage by the micronucleus test. We found that pTax-transfected cells not only had a statistically higher baseline micronucleus value than non-transfected control cells, but also were more susceptible to Mitomycin C (MMC)-induced DNA damage. Furthermore, the use of human serum containing anti-kinetochore antibodies disclosed that tax enhances the clastogenic effect of MMC. No increase in total micronucleus frequency was observed when MMC treatment preceded pTax transfection, thus suggesting that the micronucleus increase might not be due to the additive effect of tax and MMC. These findings indicate that the viral tax protein could play an important role in inducing the chromosome damage frequently observed in HTLV-I-infected cells.
Collapse
Affiliation(s)
- D Saggioro
- Institute of Oncology, Interuniversity Center for Cancer Research (CIRC), University of Padova, Italy
| | | | | | | | | | | |
Collapse
|
49
|
Franchini G, Mulloy JC, Koralnik IJ, Lo Monico A, Sparkowski JJ, Andresson T, Goldstein DJ, Schlegel R. The human T-cell leukemia/lymphotropic virus type I p12I protein cooperates with the E5 oncoprotein of bovine papillomavirus in cell transformation and binds the 16-kilodalton subunit of the vacuolar H+ ATPase. J Virol 1993; 67:7701-4. [PMID: 8230493 PMCID: PMC238245 DOI: 10.1128/jvi.67.12.7701-7704.1993] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The human T-cell leukemia/lymphotropic virus type I (HTLV-I) induces T-cell leukemia and transforms human T cells in vitro. A recently identified protein with a molecular weight of 12,000 (12K) (p12I), encoded by single- and double-spliced mRNAs transcribed from the 3' end of the HTLV-I genome, has been shown to localize in the perinuclear compartment and in the cellular endomembranes. The p12I protein exhibits significant amino acid sequence similarity to the E5 oncoprotein of bovine papillomavirus type 1 (BPV-1). Both proteins are very hydrophobic, contain a glutamine residue in the middle of a potential transmembrane region(s), and are localized in similar cellular compartments. Because of these observations, we investigated whether the p12I resemblance to E5 correlated with a similarity in their biological behavior. We expressed the p12I protein to evaluate its ability to functionally cooperate with the BPV-1 E5 oncoprotein and to bind to a cellular target of the E5 protein, the 16K component of the vacuolar H+ ATPase. Cotransfection of the mouse C127 cell line with the p12I and E5 cDNAs showed that although p12I alone could not induce focus formation, it strongly potentiated the transforming activity of E5. In addition, the p12I protein bound to the 16K protein as efficiently as the E5 protein. These findings might provide new insight for potential mechanisms of HTLV-I transformation and suggest that p12I and E5 represent an example of convergent evolution between RNA and DNA viruses.
Collapse
Affiliation(s)
- G Franchini
- Laboratory of Tumor Cell Biology, National Cancer Institute, Bethesda, Maryland 20892
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Orita S, Kobayashi H, Aono Y, Saiga A, Maeda M, Igarashi H. p21X mRNA is expressed as a singly spliced pX transcript from defective provirus genomes having a partial deletion of the pol-env region in human T-cell leukemia virus type 1-infected cells. Nucleic Acids Res 1993; 21:3799-807. [PMID: 8367298 PMCID: PMC309895 DOI: 10.1093/nar/21.16.3799] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In addition to the three typical transcripts such as genomic/gag-pol mRNA, env mRNA and tax/rex mRNA, we previously found the singly spliced pX mRNA, termed p21X mRNA, responsible for producing the p21X protein in human T-cell leukemia virus type 1 (HTLV-1)-infected cells. Our finding of the p21X mRNA being constitutively expressed in the fresh peripheral blood mononuclear cells (PBMCs) from patients with ATL has suggested that the expression mechanism is quite different from that of the others. In this paper, the expression mechanism of p21X mRNA was investigated by analyzing the organization of the proviral genomes present in the representative HTLV-1-infected cell lines which are positive or negative for the expression of p21X mRNA. Southern and PCR analyses show that most of the analyzed cell lines contain both one complete and one defective genome each. However, one cell line without the p21X mRNA expression, C91/PL, contains only the complete genome, suggesting that the complete HTLV-1 has no ability to express p21X mRNA in spite of having the ability to produce the infectious virus. The defective genomes of the p21X mRNA positive cell lines, MT-2 and H582, have a large deletion of the entire pol and parts of the gag and env regions including the common domain of the second exon of the doubly spliced tax/rex mRNA, while another defective genome of the p21X mRNA negative cell line, MT-1, has a deletion within the gag-pol gene. We show that these defective genomes have the ability to express their distinct, defective genomic mRNA, suggesting they are active. The defective genomic mRNAs in MT-2 and H582 cells retain the first splice donor and the second splice acceptor sites, suggesting the possibility of synthesizing p21X mRNA by splicing singly with these sites. These findings assume that defective HTLV-1 genomes deleting the second exon region acquire the ability to express p21X mRNA but no ability to express tax/rex mRNA. Such a deletion may explain the difference between the expression mechanisms in the p21X mRNA transcript and those in the other viral transcripts.
Collapse
MESH Headings
- Base Sequence
- Blotting, Southern
- Blotting, Western
- Cell Line
- DNA, Viral
- Genes, env
- Genes, pol
- Genome, Viral
- Human T-lymphotropic virus 1/genetics
- Human T-lymphotropic virus 1/physiology
- Humans
- Molecular Sequence Data
- Polymerase Chain Reaction
- Proviruses/genetics
- RNA Splicing
- RNA, Messenger/biosynthesis
- RNA, Viral/biosynthesis
- Retroviridae Proteins, Oncogenic/genetics
- Retroviridae Proteins, Oncogenic/metabolism
- Sequence Deletion
- T-Lymphocytes/cytology
- T-Lymphocytes/microbiology
- Transcription, Genetic
- Virus Replication
Collapse
Affiliation(s)
- S Orita
- Shionogi Institute for Medical Science, Osaka, Japan
| | | | | | | | | | | |
Collapse
|