1
|
SoRelle ED, Luftig MA. Multiple sclerosis and infection: history, EBV, and the search for mechanism. Microbiol Mol Biol Rev 2025; 89:e0011923. [PMID: 39817754 PMCID: PMC11948499 DOI: 10.1128/mmbr.00119-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025] Open
Abstract
SUMMARYInfection has long been hypothesized as the cause of multiple sclerosis (MS), and recent evidence for Epstein-Barr virus (EBV) as the trigger of MS is clear and compelling. This clarity contrasts with yet uncertain viral mechanisms and their relation to MS neuroinflammation and demyelination. As long as this disparity persists, it will invigorate virologists, molecular biologists, immunologists, and clinicians to ascertain how EBV potentiates MS onset, and possibly the disease's chronic activity and progression. Such efforts should take advantage of the diverse body of basic and clinical research conducted over nearly two centuries since the first clinical descriptions of MS plaques. Defining the contribution of EBV to the complex and multifactorial pathology of MS will also require suitable experimental models and techniques. Such efforts will broaden our understanding of virus-driven neuroinflammation and specifically inform the development of EBV-targeted therapies for MS management and, ultimately, prevention.
Collapse
Affiliation(s)
- Elliott D. SoRelle
- Department of Molecular Genetics & Microbiology, Center for Virology, Duke University, Durham, North Carolina, USA
| | - Micah A. Luftig
- Department of Molecular Genetics & Microbiology, Center for Virology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
2
|
Shekhar R, O'Grady T, Keil N, Feswick A, Amador DM, Tibbetts S, Flemington E, Renne R. High-density resolution of the Kaposi's sarcoma associated herpesvirus transcriptome identifies novel transcript isoforms generated by long-range transcription and alternative splicing. Nucleic Acids Res 2024; 52:7720-7739. [PMID: 38922687 PMCID: PMC11260491 DOI: 10.1093/nar/gkae540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/14/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Kaposi's sarcoma-associated herpesvirus is the etiologic agent of Kaposi's sarcoma and two B-cell malignancies. Recent advancements in sequencing technologies have led to high resolution transcriptomes for several human herpesviruses that densely encode genes on both strands. However, for KSHV progress remained limited due to the overall low percentage of KSHV transcripts, even during lytic replication. To address this challenge, we have developed a target enrichment method to increase the KSHV-specific reads for both short- and long-read sequencing platforms. Furthermore, we combined this approach with the Transcriptome Resolution through Integration of Multi-platform Data (TRIMD) pipeline developed previously to annotate transcript structures. TRIMD first builds a scaffold based on long-read sequencing and validates each transcript feature with supporting evidence from Illumina RNA-Seq and deepCAGE sequencing data. Our stringent innovative approach identified 994 unique KSHV transcripts, thus providing the first high-density KSHV lytic transcriptome. We describe a plethora of novel coding and non-coding KSHV transcript isoforms with alternative untranslated regions, splice junctions and open-reading frames, thus providing deeper insights on gene expression regulation of KSHV. Interestingly, as described for Epstein-Barr virus, we identified transcription start sites that augment long-range transcription and may increase the number of latency-associated genes potentially expressed in KS tumors.
Collapse
Affiliation(s)
- Ritu Shekhar
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - Tina O'Grady
- Department of Pathology, Tulane University, New Orleans, LA, USA
| | - Netanya Keil
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
- UF Genetics Institute, University of Florida, Gainesville, FL, USA
| | - April Feswick
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - David A Moraga Amador
- UF Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, USA
| | - Scott A Tibbetts
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA
- UF Genetics Institute, University of Florida, Gainesville, FL, USA
| | | | - Rolf Renne
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA
- UF Genetics Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
3
|
Zhao B. Epstein-Barr Virus B Cell Growth Transformation: The Nuclear Events. Viruses 2023; 15:832. [PMID: 37112815 PMCID: PMC10146190 DOI: 10.3390/v15040832] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Epstein-Barr virus (EBV) is the first human DNA tumor virus identified from African Burkitt's lymphoma cells. EBV causes ~200,000 various cancers world-wide each year. EBV-associated cancers express latent EBV proteins, EBV nuclear antigens (EBNAs), and latent membrane proteins (LMPs). EBNA1 tethers EBV episomes to the chromosome during mitosis to ensure episomes are divided evenly between daughter cells. EBNA2 is the major EBV latency transcription activator. It activates the expression of other EBNAs and LMPs. It also activates MYC through enhancers 400-500 kb upstream to provide proliferation signals. EBNALP co-activates with EBNA2. EBNA3A/C represses CDKN2A to prevent senescence. LMP1 activates NF-κB to prevent apoptosis. The coordinated activity of EBV proteins in the nucleus allows efficient transformation of primary resting B lymphocytes into immortalized lymphoblastoid cell lines in vitro.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
4
|
Comprehensive Profiling of EBV Gene Expression and Promoter Methylation Reveals Latency II Viral Infection and Sporadic Abortive Lytic Activation in Peripheral T-Cell Lymphomas. Viruses 2023; 15:v15020423. [PMID: 36851637 PMCID: PMC9960980 DOI: 10.3390/v15020423] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/18/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Epstein-Barr virus (EBV) latency patterns are well defined in EBV-associated epithelial, NK/T-cell, and B-cell malignancies, with links between latency stage and tumorigenesis deciphered in various studies. In vitro studies suggest that the oncogenic activity of EBV in T-cells might be somewhat different from that in EBV-tropic B lymphoid cells, prompting us to study this much less investigated viral gene expression pattern and its regulation in nine EBV+ peripheral T-cell lymphoma (PTCL) biopsies. Using frozen specimens, RT-PCR showed 6/7 cases with a latency II pattern of EBV gene expression. Analyses of EBNA1 promoter usage and CpG methylation status in these six cases showed that only Qp was used, while Cp, Wp, and Fp were all silent. However, the remaining case showed an exceptionally unique latency III type with lytic activation, as evidenced by EBV lytic clonality and confirmed by the full usage of Cp and Qp as well as weakly lytic Fp and Wp, fully unmethylated Cp and marginally unmethylated Wp. Further immunostaining of the eight cases revealed a few focally clustered LMP1+ cells in 7/8 cases, with rare isolated LMP1+ cells detected in another case. Double immunostaining confirmed that the LMP1+ cells were of the T-cell phenotype (CD3+). In 6/8 cases, sporadically scattered Zta+ cells were detected. Double staining of EBER-ISH with T-cell (CD45RO/UCHL1) or B-cell (CD20) markers confirmed that the vast majority of EBER+ cells were of the T-cell phenotype. Predominant type-A EBV variant and LMP1 30-bp deletion variant were present, with both F and f variants detected. In summary, the EBV gene expression pattern in PTCL was found to be mainly of latency II (BART+EBNA1(Qp)+LMP1+LMP2A+BZLF1+), similar to that previously reported in EBV-infected nasopharyngeal epithelial, NK/T-cell, and Hodgkin malignancies; however, fully lytic infection could also be detected in occasional cases. Rare cells with sporadic immediate-early gene expression were commonly detected in PTCL. These findings have implications for the future development of EBV-targeting therapeutics for this cancer.
Collapse
|
5
|
Wang C, Zhou H, Xue Y, Liang J, Narita Y, Gerdt C, Zheng AY, Jiang R, Trudeau S, Peng CW, Gewurz BE, Zhao B. Epstein-Barr Virus Nuclear Antigen Leader Protein Coactivates EP300. J Virol 2018; 92:e02155-17. [PMID: 29467311 PMCID: PMC5899200 DOI: 10.1128/jvi.02155-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 02/10/2018] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus nuclear antigen (EBNA) leader protein (EBNALP) is one of the first viral genes expressed upon B-cell infection. EBNALP is essential for EBV-mediated B-cell immortalization. EBNALP is thought to function primarily by coactivating EBNA2-mediated transcription. Chromatin immune precipitation followed by deep sequencing (ChIP-seq) studies highlight that EBNALP frequently cooccupies DNA sites with host cell transcription factors (TFs), in particular, EP300, implicating a broader role in transcription regulation. In this study, we investigated the mechanisms of EBNALP transcription coactivation through EP300. EBNALP greatly enhanced EP300 transcription activation when EP300 was tethered to a promoter. EBNALP coimmunoprecipitated endogenous EP300 from lymphoblastoid cell lines (LCLs). EBNALP W repeat serine residues 34, 36, and 63 were required for EP300 association and coactivation. Deletion of the EP300 histone acetyltransferase (HAT) domain greatly reduced EBNALP coactivation and abolished the EBNALP association. An EP300 bromodomain inhibitor also abolished EBNALP coactivation and blocked the EP300 association with EBNALP. EBNALP sites cooccupied by EP300 had significantly higher ChIP-seq signals for sequence-specific TFs, including SPI1, RelA, EBF1, IRF4, BATF, and PAX5. EBNALP- and EP300-cooccurring sites also had much higher H3K4me1 and H3K27ac signals, indicative of activated enhancers. EBNALP-only sites had much higher signals for DNA looping factors, including CTCF and RAD21. EBNALP coactivated reporters under the control of NF-κB or SPI1. EP300 inhibition abolished EBNALP coactivation of these reporters. Clustered regularly interspaced short palindromic repeat interference targeting of EBNALP enhancer sites significantly reduced target gene expression, including that of EP300 itself. These data suggest a previously unrecognized mechanism by which EBNALP coactivates transcription through subverting of EP300 and thus affects the expression of LCL genes regulated by a broad range of host TFs.IMPORTANCE Epstein-Barr virus was the first human DNA tumor virus discovered over 50 years ago. EBV is causally linked to ∼200,000 human malignancies annually. These cancers include endemic Burkitt lymphoma, Hodgkin lymphoma, lymphoma/lymphoproliferative disease in transplant recipients or HIV-infected people, nasopharyngeal carcinoma, and ∼10% of gastric carcinoma cases. EBV-immortalized human B cells faithfully model key aspects of EBV lymphoproliferative diseases and are useful models of EBV oncogenesis. EBNALP is essential for EBV to transform B cells and transcriptionally coactivates EBNA2 by removing repressors from EBNA2-bound DNA sites. Here, we found that EBNALP can also modulate the activity of the key transcription activator EP300, an acetyltransferase that activates a broad range of transcription factors. Our data suggest that EBNALP regulates a much broader range of host genes than was previously appreciated. A small-molecule inhibitor of EP300 abolished EBNALP coactivation of multiple target genes. These findings suggest novel therapeutic approaches to control EBV-associated lymphoproliferative diseases.
Collapse
Affiliation(s)
- Chong Wang
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Hufeng Zhou
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Yong Xue
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jun Liang
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Yohei Narita
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Catherine Gerdt
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Amy Y Zheng
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Runsheng Jiang
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Stephen Trudeau
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Chih-Wen Peng
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Benjamin E Gewurz
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Bo Zhao
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
New Interactors of the Truncated EBNA-LP Protein Identified by Mass Spectrometry in P3HR1 Burkitt's Lymphoma Cells. Cancers (Basel) 2018; 10:cancers10010012. [PMID: 29303964 PMCID: PMC5789362 DOI: 10.3390/cancers10010012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 01/07/2023] Open
Abstract
The Epstein-Barr virus nuclear antigen leader protein (EBNA-LP) acts as a co-activator of EBNA-2, a transcriptional activator essential for Epstein-Barr virus (EBV)-induced B-cell transformation. Burkitt's lymphoma (BL) cells harboring a mutant EBV strain that lacks both the EBNA-2 gene and 3' exons of EBNA-LP express Y1Y2-truncated isoforms of EBNA-LP (tEBNA-LP) and better resist apoptosis than if infected with the wild-type virus. In such BL cells, tEBNA-LP interacts with the protein phosphatase 2A (PP2A) catalytic subunit (PP2A C), and this interaction likely plays a role in resistance to apoptosis. Here, 28 cellular and four viral proteins have been identified by mass spectrometry as further possible interactors of tEBNA-LP. Three interactions were confirmed by immunoprecipitation and Western blotting, namely with the A structural subunit of PP2A (PP2A A), the structure-specific recognition protein 1 (SSRP1, a component of the facilitate chromatin transcription (FACT) complex), and a new form of the transcription factor EC (TFEC). Thus, tEBNA-LP appears to be involved not only in cell resistance to apoptosis through its interaction with two PP2A subunits, but also in other processes where its ability to co-activate transcriptional regulators could be important.
Collapse
|
7
|
Ba Abdullah MM, Palermo RD, Palser AL, Grayson NE, Kellam P, Correia S, Szymula A, White RE. Heterogeneity of the Epstein-Barr Virus (EBV) Major Internal Repeat Reveals Evolutionary Mechanisms of EBV and a Functional Defect in the Prototype EBV Strain B95-8. J Virol 2017; 91:e00920-17. [PMID: 28904201 PMCID: PMC5686732 DOI: 10.1128/jvi.00920-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/02/2017] [Indexed: 12/28/2022] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous pathogen of humans that can cause several types of lymphoma and carcinoma. Like other herpesviruses, EBV has diversified through both coevolution with its host and genetic exchange between virus strains. Sequence analysis of the EBV genome is unusually challenging because of the large number and lengths of repeat regions within the virus. Here we describe the sequence assembly and analysis of the large internal repeat 1 of EBV (IR1; also known as the BamW repeats) for more than 70 strains. The diversity of the latency protein EBV nuclear antigen leader protein (EBNA-LP) resides predominantly within the exons downstream of IR1. The integrity of the putative BWRF1 open reading frame (ORF) is retained in over 80% of strains, and deletions truncating IR1 always spare BWRF1. Conserved regions include the IR1 latency promoter (Wp) and one zone upstream of and two within BWRF1. IR1 is heterogeneous in 70% of strains, and this heterogeneity arises from sequence exchange between strains as well as from spontaneous mutation, with interstrain recombination being more common in tumor-derived viruses. This genetic exchange often incorporates regions of <1 kb, and allelic gene conversion changes the frequency of small regions within the repeat but not close to the flanks. These observations suggest that IR1-and, by extension, EBV-diversifies through both recombination and breakpoint repair, while concerted evolution of IR1 is driven by gene conversion of small regions. Finally, the prototype EBV strain B95-8 contains four nonconsensus variants within a single IR1 repeat unit, including a stop codon in the EBNA-LP gene. Repairing IR1 improves EBNA-LP levels and the quality of transformation by the B95-8 bacterial artificial chromosome (BAC).IMPORTANCE Epstein-Barr virus (EBV) infects the majority of the world population but causes illness in only a small minority of people. Nevertheless, over 1% of cancers worldwide are attributable to EBV. Recent sequencing projects investigating virus diversity to see if different strains have different disease impacts have excluded regions of repeating sequence, as they are more technically challenging. Here we analyze the sequence of the largest repeat in EBV (IR1). We first characterized the variations in protein sequences encoded across IR1. In studying variations within the repeat of each strain, we identified a mutation in the main laboratory strain of EBV that impairs virus function, and we suggest that tumor-associated viruses may be more likely to contain DNA mixed from two strains. The patterns of this mixing suggest that sequences can spread between strains (and also within the repeat) by copying sequence from another strain (or repeat unit) to repair DNA damage.
Collapse
Affiliation(s)
- Mohammed M Ba Abdullah
- Section of Virology, Imperial College Faculty of Medicine, St. Mary's Hospital, Norfolk Place, London, United Kingdom
| | - Richard D Palermo
- Section of Virology, Imperial College Faculty of Medicine, St. Mary's Hospital, Norfolk Place, London, United Kingdom
| | - Anne L Palser
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | | | - Paul Kellam
- Section of Virology, Imperial College Faculty of Medicine, St. Mary's Hospital, Norfolk Place, London, United Kingdom
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
- Kymab, Babraham Research Campus, Cambridge, United Kingdom
| | - Samantha Correia
- Section of Virology, Imperial College Faculty of Medicine, St. Mary's Hospital, Norfolk Place, London, United Kingdom
| | - Agnieszka Szymula
- Section of Virology, Imperial College Faculty of Medicine, St. Mary's Hospital, Norfolk Place, London, United Kingdom
| | - Robert E White
- Section of Virology, Imperial College Faculty of Medicine, St. Mary's Hospital, Norfolk Place, London, United Kingdom
| |
Collapse
|
8
|
O'Grady T, Wang X, Höner Zu Bentrup K, Baddoo M, Concha M, Flemington EK. Global transcript structure resolution of high gene density genomes through multi-platform data integration. Nucleic Acids Res 2016; 44:e145. [PMID: 27407110 PMCID: PMC5062983 DOI: 10.1093/nar/gkw629] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/02/2016] [Indexed: 12/11/2022] Open
Abstract
Annotation of herpesvirus genomes has traditionally been undertaken through the detection of open reading frames and other genomic motifs, supplemented with sequencing of individual cDNAs. Second generation sequencing and high-density microarray studies have revealed vastly greater herpesvirus transcriptome complexity than is captured by existing annotation. The pervasive nature of overlapping transcription throughout herpesvirus genomes, however, poses substantial problems in resolving transcript structures using these methods alone. We present an approach that combines the unique attributes of Pacific Biosciences Iso-Seq long-read, Illumina short-read and deepCAGE (Cap Analysis of Gene Expression) sequencing to globally resolve polyadenylated isoform structures in replicating Epstein-Barr virus (EBV). Our method, Transcriptome Resolution through Integration of Multi-platform Data (TRIMD), identifies nearly 300 novel EBV transcripts, quadrupling the size of the annotated viral transcriptome. These findings illustrate an array of mechanisms through which EBV achieves functional diversity in its relatively small, compact genome including programmed alternative splicing (e.g. across the IR1 repeats), alternative promoter usage by LMP2 and other latency-associated transcripts, intergenic splicing at the BZLF2 locus, and antisense transcription and pervasive readthrough transcription throughout the genome.
Collapse
Affiliation(s)
- Tina O'Grady
- Department of Pathology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Xia Wang
- Department of Pathology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Kerstin Höner Zu Bentrup
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Melody Baddoo
- Department of Pathology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Monica Concha
- Department of Pathology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Erik K Flemington
- Department of Pathology, Tulane University School of Medicine, New Orleans, LA 70112, USA Tulane Cancer Center, New Orleans, LA 70112, USA
| |
Collapse
|
9
|
Abstract
While all herpesviruses can switch between lytic and latent life cycle, which are both driven by specific transcription programs, a unique feature of latent EBV infection is the expression of several distinct and well-defined viral latent transcription programs called latency I, II, and III. Growth transformation of B-cells by EBV in vitro is based on the concerted action of Epstein-Barr virus nuclear antigens (EBNAs) and latent membrane proteins(LMPs). EBV growth-transformed B-cells express a viral transcriptional program, termed latency III, which is characterized by the coexpression of EBNA2 and EBNA-LP with EBNA1, EBNA3A, -3B, and -3C as well as LMP1, LMP2A, and LMP2B. The focus of this review will be to discuss the current understanding of how two of these proteins, EBNA2 and EBNA-LP, contribute to EBV-mediated B-cell growth transformation.
Collapse
Affiliation(s)
- Bettina Kempkes
- Department of Gene Vectors, Helmholtz Center Munich, German Research Center for Environmental Health, Marchioninistr. 25, 81377, Munich, Germany.
| | - Paul D Ling
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
10
|
Tursiella ML, Bowman ER, Wanzeck KC, Throm RE, Liao J, Zhu J, Sample CE. Epstein-Barr virus nuclear antigen 3A promotes cellular proliferation by repression of the cyclin-dependent kinase inhibitor p21WAF1/CIP1. PLoS Pathog 2014; 10:e1004415. [PMID: 25275486 PMCID: PMC4183747 DOI: 10.1371/journal.ppat.1004415] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 08/21/2014] [Indexed: 11/20/2022] Open
Abstract
Latent infection by Epstein-Barr virus (EBV) is highly associated with the endemic form of Burkitt lymphoma (eBL), which typically limits expression of EBV proteins to EBNA-1 (Latency I). Interestingly, a subset of eBLs maintain a variant program of EBV latency - Wp-restricted latency (Wp-R) - that includes expression of the EBNA-3 proteins (3A, 3B and 3C), in addition to EBNA-1. In xenograft assays, Wp-R BL cell lines were notably more tumorigenic than their counterparts that maintain Latency I, suggesting that the additional latency-associated proteins expressed in Wp-R influence cell proliferation and/or survival. Here, we evaluated the contribution of EBNA-3A. Consistent with the enhanced tumorigenic potential of Wp-R BLs, knockdown of EBNA-3A expression resulted in abrupt cell-cycle arrest in G0/G1 that was concomitant with conversion of retinoblastoma protein (Rb) to its hypophosphorylated state, followed by a loss of Rb protein. Comparable results were seen in EBV-immortalized B lymphoblastoid cell lines (LCLs), consistent with the previous observation that EBNA-3A is essential for sustained growth of these cells. In agreement with the known ability of EBNA-3A and EBNA-3C to cooperatively repress p14ARF and p16INK4a expression, knockdown of EBNA-3A in LCLs resulted in rapid elevation of p14ARF and p16INK4a. By contrast, p16INK4a was not detectably expressed in Wp-R BL and the low-level expression of p14ARF was unchanged by EBNA-3A knockdown. Amongst other G1/S regulatory proteins, only p21WAF1/CIP1, a potent inducer of G1 arrest, was upregulated following knockdown of EBNA-3A in Wp-R BL Sal cells and LCLs, coincident with hypophosphorylation and destabilization of Rb and growth arrest. Furthermore, knockdown of p21WAF1/CIP1 expression in Wp-R BL correlated with an increase in cellular proliferation. This novel function of EBNA-3A is distinct from the functions previously described that are shared with EBNA-3C, and likely contributes to the proliferation of Wp-R BL cells and LCLs. Epstein-Barr virus (EBV) infects over 98% of the population worldwide and is associated with a variety of human cancers. In the healthy host, the virus represses expression of its proteins to avoid detection by the immune system to enable it to remain in the body for the lifetime of its host, a situation known as latency. This downregulation was first observed in EBV-associated Burkitt lymphoma (BL), which classically express only one viral protein, EBNA-1. A subset of BL named Wp-restricted (Wp-R) BL express additional latency-associated viral proteins. Because Wp-R BL also express wild-type p53 (which normally prevents cellular proliferation), we wanted to explore the possibility that these viral proteins play a role in tumorigenesis. Indeed, we have demonstrated that Wp-R BL cells are more tumorigenic in immunocompromised mice than other BL. Here, we have investigated the role of one of these viral proteins, EBNA-3A. If we inhibit the expression of EBNA-3A, Wp-R BL cells fail to proliferate and express increased p21WAF1/CIP1, a cellular protein that inhibits cell proliferation. These results suggest that this previously undescribed function of EBNA-3A plays a role in the proliferation and likely contributes to tumorigenesis in Wp-R BL.
Collapse
Affiliation(s)
- Melissa L. Tursiella
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, and the Penn State Hershey Cancer Institute, Hershey, Pennsylvania, United States of America
| | - Emily R. Bowman
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, and the Penn State Hershey Cancer Institute, Hershey, Pennsylvania, United States of America
| | - Keith C. Wanzeck
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Robert E. Throm
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Jason Liao
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, and the Penn State Hershey Cancer Institute, Hershey, Pennsylvania, United States of America
| | - Junjia Zhu
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, and the Penn State Hershey Cancer Institute, Hershey, Pennsylvania, United States of America
| | - Clare E. Sample
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, and the Penn State Hershey Cancer Institute, Hershey, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
11
|
Epstein-Barr virus BamHI W repeat number limits EBNA2/EBNA-LP coexpression in newly infected B cells and the efficiency of B-cell transformation: a rationale for the multiple W repeats in wild-type virus strains. J Virol 2011; 85:12362-75. [PMID: 21957300 DOI: 10.1128/jvi.06059-11] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The genome of Epstein-Barr virus (EBV), a gammaherpesvirus with potent B-cell growth-transforming ability, contains multiple copies of a 3-kb BamHI W repeat sequence; each repeat carries (i) a promoter (Wp) that initiates transformation by driving EBNA-LP and EBNA2 expression and (ii) the W1W2 exons encoding the functionally active repeat domain of EBNA-LP. The W repeat copy number of a virus therefore influences two potential determinants of its transforming ability: the number of available Wp copies and the maximum size of the encoded EBNA-LP. Here, using recombinant EBVs, we show that optimal B-cell transformation requires a minimum of 5 W repeats (5W); the levels of transforming ability fall progressively with viruses carrying 4, 3, and 2 W repeats, as do the levels of Wp-initiated transcripts expressed early postinfection (p.i.), while viruses with 1 copy of the wild-type W repeat (1W) and 0W are completely nontransforming. We therefore suggest that genetic analyses of EBV transforming function should ensure that wild-type and mutant strains have equal numbers (ideally at least 5) of W copies if the analysis is not to be compromised. Attempts to enhance the transforming function of low-W-copy-number viruses, via the activity of helper EBV strains or by gene repair, suggested that the critical defect is not related to EBNA-LP size but to the failure to achieve sufficiently strong coexpression of EBNA-LP and EBNA2 early postinfection. We further show by the results of ex vivo assays that EBV strains in the blood of infected individuals typically have a mean of 5 to 8 W copies, consistent with the view that evolution has selected for viruses with an optimal transforming function.
Collapse
|
12
|
trans-Repression of protein expression dependent on the Epstein-Barr virus promoter Wp during latency. J Virol 2011; 85:11435-47. [PMID: 21865378 DOI: 10.1128/jvi.05158-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
An ordered silencing of Epstein-Barr virus (EBV) latency gene transcription is critical for establishment of persistent infection within B lymphocytes, yet the mechanisms responsible and the role that the virus itself may play are unclear. Here we describe two B-cell superinfection models with which to address these problems. In the first, Burkitt lymphoma (BL) cells that maintain latency I, when superinfected, initially supported transcription from the common EBNA promoters Wp and Cp (latency III) but ultimately transitioned to latency I (Cp/Wp silent), an essential requirement for establishment of EBV latency in vivo. We used this model to test whether the early lytic-cycle gene BHLF1, implicated in silencing of the Cp/Wp locus, is required to establish latency I. Upon superinfection with EBV deleted for the BHLF1 locus, however, we have demonstrated that BHLF1 is not essential for this aspect of EBV latency. In the second model, BL cells that maintain Wp-restricted latency, a variant program in which Cp is silent but Wp remains active, sustained the latency III program of transcription from the superinfecting-virus genomes, failing to transition to latency I. Importantly, there was substantial reduction in Wp-mediated protein expression from endogenous EBV genomes, in the absence of Cp reactivation, that could occur independent of a parallel decrease in mRNA. Thus, our data provide evidence of a novel, potentially posttranscriptional mechanism for trans-repression of Wp-dependent gene expression. We suggest that this may ensure against overexpression of the EBV nuclear antigens (EBNAs) prior to the transcriptional repression of Wp in cis that occurs upon activation of Cp.
Collapse
|
13
|
C-terminal region of EBNA-2 determines the superior transforming ability of type 1 Epstein-Barr virus by enhanced gene regulation of LMP-1 and CXCR7. PLoS Pathog 2011; 7:e1002164. [PMID: 21857817 PMCID: PMC3145799 DOI: 10.1371/journal.ppat.1002164] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 05/30/2011] [Indexed: 12/22/2022] Open
Abstract
Type 1 Epstein-Barr virus (EBV) strains immortalize B lymphocytes in vitro much more efficiently than type 2 EBV, a difference previously mapped to the EBNA-2 locus. Here we demonstrate that the greater transforming activity of type 1 EBV correlates with a stronger and more rapid induction of the viral oncogene LMP-1 and the cell gene CXCR7 (which are both required for proliferation of EBV-LCLs) during infection of primary B cells with recombinant viruses. Surprisingly, although the major sequence differences between type 1 and type 2 EBNA-2 lie in N-terminal parts of the protein, the superior ability of type 1 EBNA-2 to induce proliferation of EBV-infected lymphoblasts is mostly determined by the C-terminus of EBNA-2. Substitution of the C-terminus of type 1 EBNA-2 into the type 2 protein is sufficient to confer a type 1 growth phenotype and type 1 expression levels of LMP-1 and CXCR7 in an EREB2.5 cell growth assay. Within this region, the RG, CR7 and TAD domains are the minimum type 1 sequences required. Sequencing the C-terminus of EBNA-2 from additional EBV isolates showed high sequence identity within type 1 isolates or within type 2 isolates, indicating that the functional differences mapped are typical of EBV type sequences. The results indicate that the C-terminus of EBNA-2 accounts for the greater ability of type 1 EBV to promote B cell proliferation, through mechanisms that include higher induction of genes (LMP-1 and CXCR7) required for proliferation and survival of EBV-LCLs. Epstein-Barr virus (EBV) is a common human virus that is involved in several types of cancer and directly causes human B lymphocytes to proliferate when they become infected. EBV occurs naturally as two different viral types (type 1 and type 2). The genomes of these viruses are mostly very similar but they differ in a few genes, particularly the EBNA-2 gene. For many years it has been known that type 1 EBV is much more effective than type 2 EBV at causing B lymphocyte proliferation and this difference is mediated by the EBNA-2 gene. Here we have shown that the greater ability of type 1 EBNA-2 to cause B cell proliferation is due to superior induction of the EBV LMP-1 and the cell CXCR7 genes, both of which are required for growth of EBV-infected lymphocytes. We mapped the section of type 1 EBNA-2 responsible for this to the C-terminus of the protein, including the transactivation and EBNA-LP interaction domains. The results provide a mechanism for the long-standing question of the functional difference between these two major types of EBV and will be important in understanding the significance of the EBV types in human infection.
Collapse
|
14
|
Abstract
Latency is a state of cryptic viral infection associated with genomic persistence and highly restricted gene expression. Its hallmark is reversibility: under appropriate circumstances, expression of the entire viral genome can be induced, resulting in the production of infectious progeny. Among the small number of virus families capable of authentic latency, the herpesviruses stand out for their ability to produce such infections in every infected individual and for being completely dependent upon latency as a mode of persistence. Here, we review the molecular basis of latency, with special attention to the gamma-herpesviruses, in which the understanding of this process is most advanced.
Collapse
Affiliation(s)
- Samuel H Speck
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
15
|
Rowe M, Kelly GL, Bell AI, Rickinson AB. Burkitt's lymphoma: the Rosetta Stone deciphering Epstein-Barr virus biology. Semin Cancer Biol 2009; 19:377-88. [PMID: 19619657 PMCID: PMC3764430 DOI: 10.1016/j.semcancer.2009.07.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 07/10/2009] [Indexed: 02/07/2023]
Abstract
Epstein-Barr virus was originally identified in the tumour cells of a Burkitt's lymphoma, and was the first virus to be associated with the pathogenesis of a human cancer. Studies on the relationship of EBV with Burkitt's lymphoma have revealed important general principles that are relevant to other virus-associated cancers. In addition, the impact of such studies on the knowledge of EBV biology has been enormous. Here, we review some of the key historical observations arising from studies on Burkitt's lymphoma that have informed our understanding of EBV, and we summarise the current hypotheses regarding the role of EBV in the pathogenesis of Burkitt's lymphoma.
Collapse
Affiliation(s)
- Martin Rowe
- Institute for Cancer Studies, School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | | | | |
Collapse
|
16
|
STAT1 contributes to the maintenance of the latency III viral programme observed in Epstein-Barr virus-transformed B cells and their recognition by CD8+ T cells. J Gen Virol 2009; 90:2239-50. [DOI: 10.1099/vir.0.011627-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
17
|
Nuclear-cytoplasmic shuttling is not required for the Epstein-Barr virus EBNA-LP transcriptional coactivation function. J Virol 2009; 83:7109-16. [PMID: 19403674 DOI: 10.1128/jvi.00654-09] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) EBNA-LP is a transcriptional coactivator of EBNA2 that works though interaction with the promyelocytic leukemia nuclear-body-associated protein Sp100A. EBNA-LP localizes predominantly in the nucleus through the action of nuclear localization signals in the repeated regions of the protein. EBNA-LP has also been detected in the cytoplasm, and a previous study suggested that some of the EBNA-LP coactivation function is mediated by relocalizing histone deacetylase 4 (HDAC4) from the nucleus to the cytoplasm. Although EBNA-LP can be found in the cytoplasm, it has no obvious nuclear export signal, and there is no direct evidence for active shuttling between these cellular compartments. Whether active shuttling between the nucleus and cytoplasm is required for coactivation remains to be clarified. To address these issues, we tested a variety of EBNA-LP isoforms and mutants for nuclear-cytoplasmic shuttling activity in an interspecies heterokaryon assay and for the ability to associate with HDAC4. EBNA-LP isoforms smaller than 42 kDa shuttle efficiently in the heterokaryon assay via a crm-1-independent mechanism. In addition, no specific EBNA-LP domain that mediates nuclear export could be identified. In contrast, an EBNA-LP 62-kDa isoform does not demonstrate detectable shuttling in the heterokaryon assay yet still coactivates EBNA2 similarly to the smaller EBNA-LP isoforms. All of the EBNA-LP mutants tested, including the coactivation-deficient DeltaCR3 mutant and the nonshuttling 62-kDa isoform, were capable of associating with HDAC4. Taken together, our results suggest that simple diffusion may account for the nuclear export observed with smaller isoforms of EBNA-LP, that nuclear-cytoplasmic shuttling is not required for efficient EBNA-LP coactivation function, and that competence for HDAC4 association is not sufficient to mediate nuclear-cytoplasmic shuttling or EBNA-LP coactivation in the absence of a functional interaction with Sp100A.
Collapse
|
18
|
Kelly GL, Long HM, Stylianou J, Thomas WA, Leese A, Bell AI, Bornkamm GW, Mautner J, Rickinson AB, Rowe M. An Epstein-Barr virus anti-apoptotic protein constitutively expressed in transformed cells and implicated in burkitt lymphomagenesis: the Wp/BHRF1 link. PLoS Pathog 2009; 5:e1000341. [PMID: 19283066 PMCID: PMC2652661 DOI: 10.1371/journal.ppat.1000341] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 02/12/2009] [Indexed: 02/07/2023] Open
Abstract
Two factors contribute to Burkitt lymphoma (BL) pathogenesis, a chromosomal translocation leading to c-myc oncogene deregulation and infection with Epstein-Barr virus (EBV). Although the virus has B cell growth–transforming ability, this may not relate to its role in BL since many of the transforming proteins are not expressed in the tumor. Mounting evidence supports an alternative role, whereby EBV counteracts the high apoptotic sensitivity inherent to the c-myc–driven growth program. In that regard, a subset of BLs carry virus mutants in a novel form of latent infection that provides unusually strong resistance to apoptosis. Uniquely, these virus mutants use Wp (a viral promoter normally activated early in B cell transformation) and express a broader-than-usual range of latent antigens. Here, using an inducible system to express the candidate antigens, we show that this marked apoptosis resistance is mediated not by one of the extended range of EBNAs seen in Wp-restricted latency but by Wp-driven expression of the viral bcl2 homologue, BHRF1, a protein usually associated with the virus lytic cycle. Interestingly, this Wp/BHRF1 connection is not confined to Wp-restricted BLs but appears integral to normal B cell transformation by EBV. We find that the BHRF1 gene expression recently reported in newly infected B cells is temporally linked to Wp activation and the presence of W/BHRF1-spliced transcripts. Furthermore, just as Wp activity is never completely eclipsed in in vitro–transformed lines, low-level BHRF1 transcripts remain detectable in these cells long-term. Most importantly, recognition by BHRF1-specific T cells confirms that such lines continue to express the protein independently of any lytic cycle entry. This work therefore provides the first evidence that BHRF1, the EBV bcl2 homologue, is constitutively expressed as a latent protein in growth-transformed cells in vitro and, in the context of Wp-restricted BL, may contribute to virus-associated lymphomagenesis in vivo. Cancer almost always develops through the cumulative effects of several independent changes in the target cell. For certain tumors, one step in the chain involves infection of the cell with a particular type of virus. The best example is Burkitt lymphoma (BL), a tumor of B lymphocytes which develops through the combined action of a genetic accident leading to uncontrolled expression of the c-myc oncogene and infection with a common herpesvirus, the Epstein-Barr virus (EBV). Recent evidence suggests that, although latent EBV infection can itself drive B cell growth, the virus plays a different role in the context of BL, namely to counteract the naturally poor survival ability of c-myc–expressing cells while leaving their c-myc–driven growth intact. Here we show that EBV achieves this by unexpectedly switching on a viral protein that was thought never to be seen in latent infection; this viral protein resembles one of the cell's own key survival proteins called bcl2. Furthermore, the work has led us to realise that this virally encoded bcl2-like protein is not only important in the context of BL but, contrary to conventional wisdom, is actually part of EBV's natural strategy for B cell growth transformation.
Collapse
Affiliation(s)
- Gemma L. Kelly
- Cancer Research UK Institute for Cancer Studies, The University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Heather M. Long
- Cancer Research UK Institute for Cancer Studies, The University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Julianna Stylianou
- Cancer Research UK Institute for Cancer Studies, The University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Wendy A. Thomas
- Cancer Research UK Institute for Cancer Studies, The University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Alison Leese
- Cancer Research UK Institute for Cancer Studies, The University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Andrew I. Bell
- Cancer Research UK Institute for Cancer Studies, The University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Georg W. Bornkamm
- GSF-Institut fur Klinische Molekularbiologie und Tumorgenetik GSF-Forschungszentrum fur Umwelt und Gesundheit, Munich, Germany
| | - Josef Mautner
- Munich University of Technology, Children's Hospital, Munich, Germany
| | - Alan B. Rickinson
- Cancer Research UK Institute for Cancer Studies, The University of Birmingham, Edgbaston, Birmingham, United Kingdom
- * E-mail:
| | - Martin Rowe
- Cancer Research UK Institute for Cancer Studies, The University of Birmingham, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
19
|
Echendu CW, Ling PD. Regulation of Sp100A subnuclear localization and transcriptional function by EBNA-LP and interferon. J Interferon Cytokine Res 2008; 28:667-78. [PMID: 18844582 PMCID: PMC2988464 DOI: 10.1089/jir.2008.0023] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2008] [Accepted: 04/30/2008] [Indexed: 01/12/2023] Open
Abstract
Epstein-Barr virus (EBV) efficiently immortalizes human B cells and is associated with several human malignancies. The EBV transcriptional activating protein EBNA2 and the EBNA2 coactivator EBNA-leader protein (EBNA-LP) are important for B cell immortalization. Recent observations from our laboratory indicate that EBNA-LP coactivation function is mediated through interactions with the interferon-inducible gene (ISG) Sp100, resulting in displacement from its normal location in promyelocytic leukemia nuclear bodies (PML NBs) into the nucleoplasm. The EBNA-LP- and interferon-mediated mechanisms that regulate Sp100 subnuclear localization and transcriptional function remain undefined. To clarify these issues, we generated a panel of Sp100 mutant proteins to ascertain whether EBNA-LP induces Sp100 displacement from PML NBs by interfering with Sp100 dimerization or through other domains. In addition, we tested EBNA-LP function in interferon-treated cells. Our results indicate that Sp100 dimerization, PML NB localization, and EBNA-LP interaction domains overlap significantly. We also show that IFN-beta does not inhibit EBNA-LP coactivation function. The results suggest that EBNA-LP might play a role in EBV-evasion of IFN-mediated antiviral responses.
Collapse
Affiliation(s)
- Chisaroka W Echendu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
20
|
Forsman A, Rüetschi U, Ekholm J, Rymo L. Identification of intracellular proteins associated with the EBV-encoded nuclear antigen 5 using an efficient TAP procedure and FT-ICR mass spectrometry. J Proteome Res 2008; 7:2309-19. [PMID: 18457437 DOI: 10.1021/pr700769e] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Epstein-Barr virus nuclear antigen 5 (EBNA5) is one of the first viral proteins detected after primary EBV infection and has been shown to be required for efficient transformation of B lymphocytes. EBNA5 is a protein that has many suggested functions but the underlying biology remains to be clarified. To gain further insight into the biological roles of the proposed multifunctional EBNA5, we isolated EBNA5 containing protein complexes using a modified tandem affinity purification (TAP) method and identified the protein components by LC-MS/MS analysis of tryptic digests on a LTQ-FT-ICR mass spectrometer. The modified TAP tag contained a Protein A domain and a StrepTagII sequence separated by two Tobacco Etch Virus protease cleavage sites and was fused to the C-terminus of EBNA5. Our results confirmed the wide applicability of this two-step affinity purification strategy for purification of protein complexes in mammalian cells. A total of 147 novel putative EBNA5 interaction partners were identified, 37 of which were validated with LC-MS/MS in split-tag experiments or in co-immuno precipitates from HEK293 cell extracts. This subgroup included the Bcl2-associated Athanogene 2 (BAG2) co-chaperone involved in protein folding and renaturation, the 26S proteasome subunit 2 involved in regulation of ubiquitin/proteasome protein degradation, and the heterogeneous ribonucleoprotein M (hnRNP M) involved in pre-mRNA processing. These EBNA5 interactors were further verified by co-immunoprecipitations from cell extracts of three EBV-positive lymphoblastoid lines. The combination of the Hsp70, Hsc70, BAG2 and 26S proteasome subunit 2 interactors suggests that EBNA5 might have a functional relationship with protein quality control systems that recognize proteins with abnormal structures and either refold them to normal conformation or target them for degradation. Our study also confirms previously identified interactors including HA95, Hsp70, Hsc70, Hsp27, HAX-1, Prolyl 4-hydroxylase, S3a, and alpha- and beta-tubulin.
Collapse
Affiliation(s)
- Alma Forsman
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | | | | | | |
Collapse
|
21
|
Tierney R, Nagra J, Hutchings I, Shannon-Lowe C, Altmann M, Hammerschmidt W, Rickinson A, Bell A. Epstein-Barr virus exploits BSAP/Pax5 to achieve the B-cell specificity of its growth-transforming program. J Virol 2007; 81:10092-100. [PMID: 17626071 PMCID: PMC2045388 DOI: 10.1128/jvi.00358-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) can infect various cell types but limits its classical growth-transforming function to B lymphocytes, the cells in which it persists in vivo. Transformation initiates with the activation of Wp, a promoter present as tandemly repeated copies in the viral genome. Assays with short Wp reporter constructs have identified two promoter-activating regions, one of which (UAS2) appears to be lineage independent, while the other (UAS1) was B-cell specific and contained two putative binding sites for the B-cell-specific activator protein BSAP/Pax5. To address the physiologic relevance of these findings, we first used chromosome immunoprecipitation assays and found that BSAP is indeed bound to Wp sequences on the EBV genome in transformed cells. Thereafter, we constructed recombinant EBVs carrying two Wp copies, both wild type, with UAS1 or UAS2 deleted, or mutated in the BSAP binding sites. All the viruses delivered their genomes to the B-cell nucleus equally well. However, the BSAP binding mutant (and the virus with UAS1 deleted) showed no detectable activity in B cells, whether measured by early Wp transcription, expression of EBV latent proteins, or outgrowth of transformed cells. This was a B-cell-specific defect since, on entry into epithelial cells, an environment where Wp is not the latent promoter of choice, all the Wp mutant viruses initiated infection as efficiently as wild-type virus. We infer that EBV ensures the B-cell specificity of its growth-transforming function by exploiting BSAP/Pax5 as a lineage-specific activator of the transforming program.
Collapse
Affiliation(s)
- Rosemary Tierney
- Institute for Cancer Studies, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Garibal J, Hollville E, Bell AI, Kelly GL, Renouf B, Kawaguchi Y, Rickinson AB, Wiels J. Truncated form of the Epstein-Barr virus protein EBNA-LP protects against caspase-dependent apoptosis by inhibiting protein phosphatase 2A. J Virol 2007; 81:7598-607. [PMID: 17494066 PMCID: PMC1933342 DOI: 10.1128/jvi.02435-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 05/03/2007] [Indexed: 12/31/2022] Open
Abstract
The Epstein-Barr virus (EBV)-encoded leader protein, EBNA-LP, strongly activates the EBNA2-mediated transcriptional activation of cellular and viral genes and is therefore important for EBV-induced B-cell transformation. However, a truncated form of EBNA-LP is produced in cells infected with variant EBV strains lacking EBNA2 due to a genetic deletion. The function of this truncated form is unknown. We show here that some Burkitt's lymphoma cells harboring defective EBV strains are specifically resistant to the caspase-dependent apoptosis induced by verotoxin 1 (VT-1) or staurosporine. These cells produced low-molecular-weight Y1Y2-truncated isoforms of EBNA-LP, which were partly localized in the cytoplasm. The transfection of sensitive cells with constructs encoding truncated EBNA-LP isoforms, but not full-length EBNA-LP, induced resistance to caspase-mediated apoptosis. Furthermore, VT-1 induced protein phosphatase 2A (PP2A) activation in sensitive cells but not in resistant cells, in which the truncated EBNA-LP interacted with this protein. Thus, the resistance to apoptosis observed in cells harboring defective EBV strains most probably results from the inactivation of PP2A via interactions with low-molecular-weight Y1Y2-truncated EBNA-LP isoforms.
Collapse
Affiliation(s)
- Julie Garibal
- UMR 8126 CNRS, University Paris-Sud, Institut Gustave Roussy, Rue Camille Desmoulins, 94805 Villejuif cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Park JH, Jeon JP, Shim SM, Nam HY, Kim JW, Han BG, Lee S. Wp specific methylation of highly proliferated LCLs. Biochem Biophys Res Commun 2007; 358:513-20. [PMID: 17499215 DOI: 10.1016/j.bbrc.2007.04.169] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2007] [Accepted: 04/24/2007] [Indexed: 12/12/2022]
Abstract
The epigenetic regulation of viral genes may be important for the life cycle of EBV. We determined the methylation status of three viral promoters (Wp, Cp, Qp) from EBV B-lymphoblastoid cell lines (LCLs) by pyrosequencing. Our pyrosequencing data showed that the CpG region of Wp was methylated, but the others were not. Interestingly, Wp methylation was increased with proliferation of LCLs. Wp methylation was as high as 74.9% in late-passage LCLs, but 25.6% in early-passage LCLs. From two Burkitt's lymphoma cell lines, Wp specific hypermethylation was also found (>80%). Interestingly, the expression of EBNA2 gene which located directly next to Wp was associated with its methylation. Our data suggested that Wp specific methylation may be important for the indicator of the proliferation status of LCLs, and the epigenetic viral gene regulation of EBNA2 gene by Wp should be further defined possibly with other biological processes.
Collapse
Affiliation(s)
- Jung-Hoon Park
- Functional Genomics Lab, Graduate School of Life Science and Biotechnology, CHA Research Institute, Bundang Campus, College of Medicine, Pochon CHA University, 222 Yatap-Dong, Bundang-Gu, Sungnam-Si, Kyunggi-Do, South Korea
| | | | | | | | | | | | | |
Collapse
|
24
|
Bajaj BG, Murakami M, Robertson ES. Molecular biology of EBV in relationship to AIDS-associated oncogenesis. Cancer Treat Res 2007; 133:141-62. [PMID: 17672040 DOI: 10.1007/978-0-387-46816-7_5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Epstein-Barr virus (EBV) is a gammaherpesvirus of the Lymphocryptovirus genus, which infects greater than 90% of the world's population. Infection is nonsymptomatic in healthy individuals, but has been associated with a number of lymphoproliferative disorders when accompanied by immunosuppression. Like all herpesviruses, EBV has both latent and lytic replication programs, which allows it to evade immune clearance and persist for the lifetime of the host. Latent infection is characterized by replication of the viral genome as an integral part of the host cell chromosomes, and the absence of production of infectious virus. A further layer of complexity is added in that EBV can establish three distinct latency programs, in each of which a specific set of viral antigens is expressed. In most malignant disorders associated with EBV, the virus replicates using one of these three latency programs. In the most aggressive latency program, only 11 of the hitherto 85 identified open reading frames in the EBV genome are expressed. The other two latency programs express even smaller subsets of this repertoire of latent genes. The onset of the AIDS pandemic and the corresponding increase in individuals with acquired immunodeficiency resulted in a sharp increase in EBV-mediated AIDS-associated malignancies. This has sparked a renewed interest in EBV biology and pathogenesis.
Collapse
Affiliation(s)
- Bharat G Bajaj
- Department of Microbiology, Abramson Comprehensive Cancer Center, University of Pennsylvania Medical School, Philadelphia, PA, USA
| | | | | |
Collapse
|
25
|
Portal D, Rosendorff A, Kieff E. Epstein-Barr nuclear antigen leader protein coactivates transcription through interaction with histone deacetylase 4. Proc Natl Acad Sci U S A 2006; 103:19278-83. [PMID: 17159145 PMCID: PMC1748217 DOI: 10.1073/pnas.0609320103] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Epstein-Barr nuclear antigen (EBNA) leader protein (EBNALP) coactivates promoters with EBNA2 and is important for Epstein-Barr virus immortalization of B cells. Investigation of the role of histone deacetylases (HDACs) in EBNALP and EBNA2 promoter regulation has now identified EBNALP and EBNA2 to be associated with HDAC4 in a lymphoblastoid cell line. Furthermore, a transcription-deficient EBNALP point mutant did not associate with HDAC4. HDAC4 and 5 overexpression repressed EBNA2 activation and EBNALP coactivation, whereas other HDACs had little effect. Moreover, EBNALP expression decreased nuclear HDAC4. Expression of 14-3-3 anchors HDAC4 in the cytoplasm, increased EBNALP effects, and reversed HDAC4 or 5 repression. HDAC4 reversal depended on the HDAC4 nuclear export sequence. Consistent with EBNALP coactivation being mediated by nuclear HDAC4 depletion, HDAC4 overexpression increased nuclear HDAC4 and specifically repressed EBNA2-dependent activation as well as EBNALP-dependent coactivation. Also, EBNALP, HDAC4, and 14-3-3 could be immunoprecipitated in a single complex. Thus, these data strongly support a model in which EBNALP coactivates transcription by relocalizing HDAC4 and 5 from EBNA2 activated promoters to the cytoplasm. The observed EBNALP effects are likely also in part through HDAC5, which is highly homologous to HDAC4.
Collapse
Affiliation(s)
- D. Portal
- Departments of Microbiology and Molecular Genetics and Medicine, Brigham and Women's Hospital, Channing Laboratory, Harvard University, 181 Longwood Avenue, Boston, MA 02115
| | - A. Rosendorff
- Departments of Microbiology and Molecular Genetics and Medicine, Brigham and Women's Hospital, Channing Laboratory, Harvard University, 181 Longwood Avenue, Boston, MA 02115
| | - E. Kieff
- Departments of Microbiology and Molecular Genetics and Medicine, Brigham and Women's Hospital, Channing Laboratory, Harvard University, 181 Longwood Avenue, Boston, MA 02115
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
26
|
Buck M, Burgess A, Stirzaker R, Krauer K, Sculley T. Epstein-Barr virus nuclear antigen 3A contains six nuclear-localization signals. J Gen Virol 2006; 87:2879-2884. [PMID: 16963745 DOI: 10.1099/vir.0.81927-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The Epstein-Barr nuclear antigen 3A (EBNA3A) is one of only six viral proteins essential for Epstein-Barr virus-induced transformation of primary human B cells in vitro. Viral proteins such as EBNA3A are able to interact with cellular proteins, manipulating various biochemical and signalling pathways to initiate and maintain the transformed state of infected cells. EBNA3A has been reported to have one nuclear-localization signal and is targeted to the nucleus during transformation, where it associates with components of the nuclear matrix. By using enhanced green fluorescent protein-tagged deletion mutants of EBNA3A in combination with site-directed mutagenesis, an additional five functional nuclear-localization signals have been identified in the EBNA3A protein. Two of these (aa 63-66 and 375-381) were computer-predicted, whilst the remaining three (aa 394-398, 573-578 and 598-603) were defined functionally in this study.
Collapse
Affiliation(s)
- Marion Buck
- Queensland Institute of Medical Research and Griffith Medical Research Centre, Griffith University, 300 Herston Road, Brisbane, QLD 4029, Australia
| | - Anita Burgess
- Queensland Institute of Medical Research and Griffith Medical Research Centre, Griffith University, 300 Herston Road, Brisbane, QLD 4029, Australia
| | - Roslynn Stirzaker
- Queensland University of Technology, School of Life Sciences, GPO Box 2434, Brisbane, QLD 4001, Australia
- Queensland Institute of Medical Research and Griffith Medical Research Centre, Griffith University, 300 Herston Road, Brisbane, QLD 4029, Australia
| | - Kenia Krauer
- Queensland Institute of Medical Research and Griffith Medical Research Centre, Griffith University, 300 Herston Road, Brisbane, QLD 4029, Australia
| | - Tom Sculley
- Queensland Institute of Medical Research and Griffith Medical Research Centre, Griffith University, 300 Herston Road, Brisbane, QLD 4029, Australia
| |
Collapse
|
27
|
Bell AI, Groves K, Kelly GL, Croom-Carter D, Hui E, Chan ATC, Rickinson AB. Analysis of Epstein-Barr virus latent gene expression in endemic Burkitt's lymphoma and nasopharyngeal carcinoma tumour cells by using quantitative real-time PCR assays. J Gen Virol 2006; 87:2885-2890. [PMID: 16963746 DOI: 10.1099/vir.0.81906-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Studies of Epstein-Barr virus (EBV)-positive cell lines have identified several forms of virus latency, but the patterns of virus gene expression in EBV-positive tumour cells appear more variable. However, it is unclear to what extent these differences merely reflect the increased sensitivities of different detection methods. Here, the design and validation of novel real-time RT-PCR assays to quantify relative levels of EBV transcripts are described. When the new assays were used to screen a collection of endemic Burkitt's lymphoma tumours, abundant Qp-driven EBNA1 expression was found, whereas the other latent transcripts (with the exception of LMP2A) were either absent or detectable only at trace levels. Analysis of 12 nasopharyngeal carcinoma biopsies revealed significant levels of EBNA1 and LMP2A transcripts in almost every case but, in contrast to previous reports, LMP1 expression was undetectable. These new quantitative assays may help to provide a clearer picture of EBV gene expression in tumour material.
Collapse
Affiliation(s)
- Andrew I Bell
- Cancer Research UK Institute for Cancer Studies, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Katherine Groves
- Cancer Research UK Institute for Cancer Studies, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Gemma L Kelly
- Cancer Research UK Institute for Cancer Studies, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Debbie Croom-Carter
- Cancer Research UK Institute for Cancer Studies, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Edwin Hui
- Department of Clinical Oncology, Prince of Wales Hospital, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Anthony T C Chan
- Department of Clinical Oncology, Prince of Wales Hospital, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Alan B Rickinson
- Cancer Research UK Institute for Cancer Studies, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
28
|
Hutchings IA, Tierney RJ, Kelly GL, Stylianou J, Rickinson AB, Bell AI. Methylation status of the Epstein-Barr virus (EBV) BamHI W latent cycle promoter and promoter activity: analysis with novel EBV-positive Burkitt and lymphoblastoid cell lines. J Virol 2006; 80:10700-11. [PMID: 16920819 PMCID: PMC1641762 DOI: 10.1128/jvi.01204-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Epstein-Barr virus (EBV) latent cycle promoter Wp, present in each tandemly arrayed copy of the BamHI W region in the EBV genome, drives expression of the EB viral nuclear antigens (EBNAs) at the initiation of virus-induced B-cell transformation. Thereafter, an alternative EBNA promoter, Cp, becomes dominant, Wp activity declines dramatically, and bisulfite sequencing of EBV-transformed lymphoblastoid cell lines (LCLs) shows extensive Wp methylation. Despite this, Wp is never completely silenced in LCLs. Here, using a combination of bisulfite sequencing and methylation-specific PCR, we show that in standard LCLs transformed with wild-type EBV isolates, some Wp copies always remain unmethylated, and in LCLs transformed with a recombinant EBV carrying just two BamHI W copies, Wp is completely unmethylated. Furthermore, we have analyzed rare LCLs, recently established using wild-type EBV isolates, and rare Burkitt lymphoma (BL) cell clones, recently established from tumors carrying EBNA2-deleted EBV genomes, which express EBNAs exclusively from Wp-initiated transcripts. Here, in sharp contrast to standard LCL and BL lines, all resident copies of Wp appear to be predominantly hypomethylated. Thus, studies of B cells with atypical patterns of Wp usage emphasize the strong correlation between the presence of unmethylated Wp sequences and promoter activity.
Collapse
MESH Headings
- B-Lymphocytes/virology
- Base Sequence
- Burkitt Lymphoma/virology
- Cell Line, Transformed
- Cell Line, Tumor
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Viral/genetics
- DNA Methylation
- DNA, Viral/chemistry
- DNA, Viral/genetics
- Epstein-Barr Virus Nuclear Antigens/genetics
- Genes, Viral
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/pathogenicity
- Humans
- Promoter Regions, Genetic
Collapse
Affiliation(s)
- Isabel A Hutchings
- Cancer Research UK Institute for Cancer Studies, The University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| | | | | | | | | | | |
Collapse
|
29
|
Shaku F, Matsuda G, Furuya R, Kamagata C, Igarashi M, Tanaka M, Kanamori M, Nishiyama Y, Yamamoto N, Kawaguchi Y. Development of a monoclonal antibody against Epstein-Barr virus nuclear antigen leader protein (EBNA-LP) that can detect EBNA-LP expressed in P3HR1 cells. Microbiol Immunol 2005; 49:477-83. [PMID: 15905610 DOI: 10.1111/j.1348-0421.2005.tb03743.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A mouse monoclonal antibody, LP4D3, was raised against purified Epstein-Barr virus nuclear antigen leader protein (EBNA-LP) fused to glutathione-S-transferase. The antibody detected endogenous and exogenous EBNA-LP in immunoblotting, immunofluorescence and immunoprecipitation assays, and the epitope of the antibody was mapped in the W2 domain of EBNA-LP. While another monoclonal antibody to EBNA-LP, JF186, which is widely used for analyses of the viral protein, did not react with truncated forms of EBNA-LP expressed in P3HR1 cells, as reported earlier, the LP4D3 antibody did. The LP4D3 antibody will be a useful tool for further studies of EBNA-LP, especially investigations into the phenotypes of mutant EBNA-LP expressed in P3HR1 cells.
Collapse
Affiliation(s)
- Fumio Shaku
- Department of Cell Regulation, Medical Research Institute, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ling PD, Peng RS, Nakajima A, Yu JH, Tan J, Moses SM, Yang WH, Zhao B, Kieff E, Bloch KD, Bloch DB. Mediation of Epstein-Barr virus EBNA-LP transcriptional coactivation by Sp100. EMBO J 2005; 24:3565-75. [PMID: 16177824 PMCID: PMC1276704 DOI: 10.1038/sj.emboj.7600820] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Accepted: 08/25/2005] [Indexed: 12/15/2022] Open
Abstract
The Epstein-Barr virus (EBV) EBNA-LP protein is important for EBV-mediated B-cell immortalization and is a potent gene-specific coactivator of the viral transcriptional activator, EBNA2. The mechanism(s) by which EBNA-LP functions as a coactivator remains an important question in the biology of EBV-induced B-cell immortalization. In this study, we found that EBNA-LP interacts with the promyelocytic leukemia nuclear body (PML NB)-associated protein Sp100 and displaces Sp100 and heterochromatin protein 1alpha (HP1alpha) from PML NBs. Interaction between EBNA-LP and Sp100 was mediated through conserved region 3 in EBNA-LP and the PML NB targeting domain in Sp100. Overexpression of Sp100 lacking the N-terminal PML NB targeting domain, but not a mutant form of Sp100 lacking the HP1alpha interaction domain, was sufficient to coactivate EBNA2 in a gene-specific manner independent of EBNA-LP. These findings suggest that Sp100 is a major mediator of EBNA-LP coactivation. These studies indicate that modulation of PML NB-associated proteins may be important for establishment of latent viral infections, and also identify a convenient model system to investigate the functions of Sp100.
Collapse
Affiliation(s)
- Paul D Ling
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Rong Sheng Peng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Ayako Nakajima
- Department of Medicine, Harvard Medical School and Center for Immunology and Inflammatory Diseases of the General Medical Services, Massachusetts General Hospital, Boston, MA, USA
| | - Jiang H Yu
- Department of Medicine, Harvard Medical School and Center for Immunology and Inflammatory Diseases of the General Medical Services, Massachusetts General Hospital, Boston, MA, USA
| | - Jie Tan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Stephanie M Moses
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Wei-Hong Yang
- Department of Medicine, Harvard Medical School and Center for Immunology and Inflammatory Diseases of the General Medical Services, Massachusetts General Hospital, Boston, MA, USA
| | - Bo Zhao
- Departments of Medicine and Microbiology and Molecular Genetics, Channing Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Elliott Kieff
- Departments of Medicine and Microbiology and Molecular Genetics, Channing Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kenneth D Bloch
- Department of Medicine, Harvard Medical School and Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital, Boston, MA, USA
| | - Donald B Bloch
- Department of Medicine, Harvard Medical School and Center for Immunology and Inflammatory Diseases of the General Medical Services, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
31
|
Hong M, Murai Y, Kutsuna T, Takahashi H, Nomoto K, Cheng CM, Ishizawa S, Zhao QL, Ogawa R, Harmon BV, Tsuneyama K, Takano Y. Suppression of Epstein-Barr nuclear antigen 1 (EBNA1) by RNA interference inhibits proliferation of EBV-positive Burkitt’s lymphoma cells. J Cancer Res Clin Oncol 2005; 132:1-8. [PMID: 16180023 DOI: 10.1007/s00432-005-0036-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Accepted: 08/22/2005] [Indexed: 12/19/2022]
Abstract
PURPOSE Epstein-Barr virus (EBV) is associated with the development of several lymphoid and epithelial malignancies, including Burkitt's lymphoma. The EBV latent protein, EBV Nuclear Antigen 1 (EBNA1), is detectable in almost all types of EBV-associated tumors and is essential for replication and maintenance of the latent episome of EBV. We here examined whether the RNA interference (RNAi) technique could be employed to suppress expression of EBNA1 in EBV-positive Burkitt's lymphoma cells. METHODS A Raji cell line expressing small hairpin RNAs (shRNAs) against EBNA1 was established and EBNA1 mRNA level was determined by real-time RT-PCR analysis. We investigated the effects of EBNA1 silence on lymphoma cell growth and cell cycle progression. RESULTS Transfection of an EBNA1 RNAi plasmid resulted in substantial loss of EBNA1 mRNA and significantly inhibited proliferation of Raji cells relative to the control plasmid case. Suppression of EBNA1 was also associated with downregulation of EBV oncogene EBNA2, a decreased PCNA labeling index and increased G0/G1 fraction in cell cycle analysis. CONCLUSIONS These findings point to potential therapeutic applications for vector-mediated siRNA delivery to control EBV-associated malignant disorders.
Collapse
Affiliation(s)
- Mei Hong
- Department of Pathology, School of Medicine, Toyama Medical and Pharmaceutical University, 2630 Sugitani, 930-0194, Toyama, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Peng R, Moses SC, Tan J, Kremmer E, Ling PD. The Epstein-Barr virus EBNA-LP protein preferentially coactivates EBNA2-mediated stimulation of latent membrane proteins expressed from the viral divergent promoter. J Virol 2005; 79:4492-505. [PMID: 15767449 PMCID: PMC1061541 DOI: 10.1128/jvi.79.7.4492-4505.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanistic contribution of the Epstein-Barr virus (EBV) EBNA-LP protein to B-cell immortalization remains an enigma. However, previous studies have indicated that EBNA-LP may contribute to immortalization by enhancing EBNA2-mediated transcriptional activation of the LMP-1 gene. To gain further insight into the potential role EBNA-LP has in EBV-mediated B-cell immortalization, we asked whether it is a global or gene-specific coactivator of EBNA2 and whether coactivation requires interaction between these proteins. In type I Burkitt's lymphoma cells, we found that EBNA-LP strongly coactivated EBNA2 stimulation of LMP-1 and LMP2B RNAs, which are expressed from the viral divergent promoter. Surprisingly, the viral LMP2A gene and cellular CD21 and Hes-1 genes were induced by EBNA2 but showed no further induction after EBNA-LP coexpression. We also found that EBNA-LP did not stably interact with EBNA2 in coimmunoprecipitation assays, even though the conditions were adequate to observe specific interactions between EBNA2 and its cellular cofactor, CBF1. Colocalization between EBNA2 and EBNA-LP was not detectable in EBV-transformed cell lines or transfected type I Burkitt's cells. Finally, no significant interactions between EBNA2 and EBNA-LP were found with mammalian two-hybrid assays. From this data, we conclude that EBNA-LP is not a global coactivator of EBNA2 targets, but it preferentially coactivates EBNA2 stimulation of the viral divergent promoter. While this may require specific transient interactions between these proteins that only occur in the context of the divergent promoter, our data strongly suggest that EBNA-LP also cooperates with EBNA2 through mechanisms that do not require direct or indirect complex formation between these proteins.
Collapse
Affiliation(s)
- Rongsheng Peng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
33
|
Berggren MAM, Isaksson A, Larsson U, Nilsson F, Nyström U, Ekman T, Löfvenmark J, Ricksten A. Alternative EBNA1 expression in organ transplant patients. J Med Virol 2005; 76:378-85. [PMID: 15902706 DOI: 10.1002/jmv.20369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In order to identify patients at risk for developing post-transplant lymphoproliferative disease (PTLD), a sensitive nested RT-PCR method for detection of EBNA1 gene expression in peripheral blood cells was used. EBNA1 expression in peripheral blood samples from 60 organ recipients was analyzed and compared with 24 healthy controls in a retrospective study. Overall, EBNA1-positive samples were detected at least once in 43% of the transplant patients with post-transplant lymphoproliferative disease, in 18% of the other transplant patients and in none of the healthy controls. The odds ratio for EBNA1 expression in patients with post-transplant lymphoproliferative disease was 3.42 (95% CI=1.02-11.54) compared to other transplant recipients. Together with normal EBV Q promoter initiated EBNA1 transcripts, an alternatively spliced form was expressed in peripheral blood cells in the above-mentioned transplant patients. This transcript lacks the U leader exon in the 5'-untranslated region (UTR). We have previously identified and characterized a functional internal ribosome entry site, the EBNA IRES, in the untranslated U leader exon of EBNA1. Transfection experiments with EBNA1 coding plasmids followed by Western blot showed that the EBNA IRES promotes cap-independent translation and increases the EBNA1 protein level. The alternative EBNA1 transcript lacking this function is expressed in the majority of the investigated EBNA1-positive patient samples as well as in some EBV-positive B-cell lines. Alternative splicing in this form gives EBV potential to regulate the translation of EBNA1 by modifying the 5' UTR. These findings indicate a new mechanism for EBNA1 expression in vivo.
Collapse
Affiliation(s)
- Malin A M Berggren
- Institute of Laboratory Medicine, Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska University Hospital, Göteborg University, Gothenburg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Correa RM, Fellner MD, Alonio LV, Durand K, Teyssié AR, Picconi MA. Epstein-barr virus (EBV) in healthy carriers: Distribution of genotypes and 30 bp deletion in latent membrane protein-1 (LMP-1) oncogene. J Med Virol 2004; 73:583-8. [PMID: 15221903 DOI: 10.1002/jmv.20129] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
There are two types of Epstein Barr virus (EBV): EBV-1 and EBV-2, distinguished by genomic polymorphism in the genes encoding the nuclear antigens (EBNA-2, -3A, -3B, -3C). Latent membrane protein 1 (LMP-1) is an EBV protein with known oncogenic properties. Different variants had been described; among them, a 30 base pair (bp) deletion (del-LMP-1) had been reported in benign and malignant pathologies, but there is little information about its frequency in healthy populations. The aim of this study was to determine the distribution of the EBV genotypes and the 30 bp deletion frequency, in EBV healthy carriers from Argentina. Analysis of EBNA-3C and LMP-1 genes were done by polymerase chain reaction (PCR) followed by Southern blot hybridization on DNA of peripheral blood mononuclear cells (PBMCs) from blood bank donors. EBV-1 was present in 75.9% of samples, EBV-2 in 14.6%, and co-infections with both types in 6.5%. The deleted LMP-1 variant was found in 7.4% of analyzed samples, corresponding 3.2% to deleted variant alone and 4.2% to co-infections with non-deleted form. The non-deleted variant was found in 64.6% whereas in the remaining 28%, no PCR product was detected. These results showed that EBV-1 was the more prevalent type in healthy carriers of Argentina, similar to reports from others countries. A predominance of the non-deleted LMP-1 variant was observed. The presence of co-infections with both types and variants demonstrated that healthy individuals may also harbor multiple EBV infections.
Collapse
Affiliation(s)
- Rita Mariel Correa
- Servicio Virus Oncogénicos, Instituto Nacional de Enfermedades Infecciosas (INEI), ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|
35
|
Kanamori M, Watanabe S, Honma R, Kuroda M, Imai S, Takada K, Yamamoto N, Nishiyama Y, Kawaguchi Y. Epstein-Barr virus nuclear antigen leader protein induces expression of thymus- and activation-regulated chemokine in B cells. J Virol 2004; 78:3984-93. [PMID: 15047814 PMCID: PMC374277 DOI: 10.1128/jvi.78.8.3984-3993.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) plays a critical role in transformation of primary B lymphocytes to continuously proliferating lymphoblastoid cell lines (LCLs). To identify cellular genes in B cells whose expression is regulated by EBNA-LP, we performed microarray expression profiling on an EBV-negative human B-cell line, BJAB cells, that were transduced by a retroviral vector expressing the EBV EBNA-LP (BJAB-LP cells) and on BJAB cells that were transduced with a control vector (BJAB-vec cells). Microarray analysis led to the identification of a cellular gene encoding the CC chemokine TARC as a novel target gene that was induced by EBNA-LP. The levels of TARC mRNA expression and TARC secretion were significantly up-regulated in BJAB-LP compared with BJAB-vec cells. Induction of TARC was also observed when a subline of BJAB cells was converted by a recombinant EBV. Among the EBV-infected B-cell lines with the latency III phenotype that were tested, the LCLs especially secreted significantly high levels of TARC. The level of TARC secretion appeared to correlate with the level of full-length EBNA-LP expression. These results indicate that EBV infection induces TARC expression in B cells and that EBNA-LP is one of the viral gene products responsible for the induction.
Collapse
Affiliation(s)
- Mikiko Kanamori
- Department of Virology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Peng CW, Xue Y, Zhao B, Johannsen E, Kieff E, Harada S. Direct interactions between Epstein-Barr virus leader protein LP and the EBNA2 acidic domain underlie coordinate transcriptional regulation. Proc Natl Acad Sci U S A 2004; 101:1033-8. [PMID: 14732686 PMCID: PMC327146 DOI: 10.1073/pnas.0307808100] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Epstein-Barr virus nuclear leader protein LP (EBNALP) and EBNA2 are expressed first in lymphocyte infection, coordinately regulate cell and viral gene transcription, and are critical for lymphocyte outgrowth into lymphoblastoid cell lines (LCLs). We have now found that EBNALP readily associated with EBNA2 or with the EBNA2 C-terminal acidic activation domain (E2AD) when both components were expressed by bacteria. In lymphoblasts, EBNALP and EBNA2 did not stably associate. However, EBNALP deleted for only 10 C-terminal amino acids stably associated with EBNA2 in lymphoblasts or with EBNA2 acidic activating domain from bacteria. The E2AD was essential for EBNALP coactivation of the latent membrane protein 1 promoter in lymphoblasts; EBNALP could coactivate with a deficient mutant EBNA2, EBNA2W(454)T, but not with EBNA2 deleted for E2AD. Moreover, EBNALP 31 amino acids (dW2Y1) with 24 C- or N-terminal amino acids was a specific and efficient affinity matrix for EBNA2 or EBNALP. Even an EBNALP 22-aa peptide, dW2, specifically bound EBNALP or EBNA2. These biochemical interactions between EBNALP and EBNA2 enable coordinated transcriptional regulation of cell and viral gene expression in lymphoblasts only when the interaction is unstable; deletion of the EBNALP C-terminal 10 aa stabilized association with EBNA2 and prevented coactivation. Because EBNALPd10 dominantly inhibited EBNALP coactivation with EBNA2, EBNALPd10 expression in LCLs may be useful in assessing the role of EBNALP coactivation in LCL growth or survival.
Collapse
Affiliation(s)
- Chih-Wen Peng
- Program in Virology and Departments of Medicine, Brigham and Women's Hospital and Harvard University, 181 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
37
|
Krauer K, Buck M, Flanagan J, Belzer D, Sculley T. Identification of the nuclear localization signals within the Epstein–Barr virus EBNA-6 protein. J Gen Virol 2004; 85:165-172. [PMID: 14718631 DOI: 10.1099/vir.0.19549-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Epstein-Barr virus nuclear antigen (EBNA)-6 is essential for EBV-induced immortalization of primary human B-lymphocytes in vitro. Previous studies have shown that EBNA-6 acts as a transcriptional regulator of viral and cellular genes; however at present, few functional domains of the 140 kDa EBNA-6 protein have been completely characterized. There are five computer-predicted nuclear localization signals (NLS), four monopartite and one bipartite, present in the EBNA-6 amino acid sequence. To identify which of these NLS are functional, fusion proteins between green fluorescent protein and deletion constructs of EBNA-6 were expressed in HeLa cells. Each of the constructs containing at least one of the NLS was targeted to the nucleus of cells whereas a construct lacking all of the NLS was cytoplasmic. Site-directed mutation of these NLS demonstrated that only three of the NLS were functional, one at the N-terminal end (aa 72-80), one in the middle (aa 412-418) and one at the C-terminal end (aa 939-945) of the EBNA-6 protein.
Collapse
Affiliation(s)
- Kenia Krauer
- Queensland Institute of Medical Research and ACITHN University of Queensland, 300 Herston Road, Brisbane 4029, Queensland, Australia
| | - Marion Buck
- Queensland Institute of Medical Research and ACITHN University of Queensland, 300 Herston Road, Brisbane 4029, Queensland, Australia
| | - James Flanagan
- Queensland Institute of Medical Research and ACITHN University of Queensland, 300 Herston Road, Brisbane 4029, Queensland, Australia
| | - Deanna Belzer
- Queensland Institute of Medical Research and ACITHN University of Queensland, 300 Herston Road, Brisbane 4029, Queensland, Australia
| | - Tom Sculley
- Queensland Institute of Medical Research and ACITHN University of Queensland, 300 Herston Road, Brisbane 4029, Queensland, Australia
| |
Collapse
|
38
|
Tao Q, Robertson KD. Stealth technology: how Epstein-Barr virus utilizes DNA methylation to cloak itself from immune detection. Clin Immunol 2003; 109:53-63. [PMID: 14585276 DOI: 10.1016/s1521-6616(03)00198-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Epstein-Barr virus (EBV) is a large lymphotrophic DNA virus that establishes life-long residency in the infected host and is associated with a number of human tumors. The EBV genome encodes proteins essential for persistence, an oncoprotein, and proteins that render it vulnerable to the host's immune system; therefore, EBV gene transcription is tightly regulated. One critically important regulatory mechanism utilized by EBV is DNA methylation. Methylation of cytosines within CpG dinucleotides at promoter regions is important for gene silencing and genome integrity. Although most parasitic elements are methylated in mammalian cells never to be reactivated again, EBV has evolved to utilize DNA methylation to maximize persistence and cloak itself from immune detection. EBV's reliance on DNA methylation also provides a unique therapeutic strategy for the treatment of EBV-associated tumors. DNA demethylating agents are capable of reactivating transcription of highly immunogenic viral proteins, rendering tumor cells susceptible to killing by the host immune system, and inducing the viral lytic cycle which culminates in cell lysis.
Collapse
Affiliation(s)
- Qian Tao
- Tumor Virology/Cancer Epigenetics Laboratory, Johns Hopkins Singapore, Level 5, Clinical Research Center, NUS, 10 Medical Drive, Singapore 117597
| | | |
Collapse
|
39
|
Yang L, Ikeda H, Lai Y, Yoshiki T, Takada K. Epstein-Barr virus infection of rat lymphocytes expressing human CD21 results in restricted latent viral gene expression and not in immunoblastic transformation. J Med Virol 2003; 70:126-30. [PMID: 12629653 DOI: 10.1002/jmv.10369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transgenic rats expressing human CD21 gene (hCD21) driven by the mouse immunoglobulin enhancer were generated. hCD21 was expressed in lymphoid tissues, especially in the spleen and in the brain. Flow cytometric analysis indicated that about 20% of spleen cells, most having a B-lymphocyte marker, expressed hCD21. After Epstein-Barr virus (EBV) infection of spleen cells, EBV-determined nuclear antigen (EBNA) was first detected on Day 4 and reached a maximum of 0.3% on Day 5, but the infection was abortive and was not followed by blastogenesis, cellular DNA synthesis or proliferation. Reverse transcription-polymerase chain reaction (RT-PCR) analyses demonstrated that EBV-infected spleen cells expressed EBNA1 and EBV-encoded small RNA (EBER), but not other latent EBV products. EBNA promoter analysis by RT-PCR indicated that the Q promoter was active, whereas C and W promoters were not active. The present findings indicate that human and rat lymphocytes respond to EBV infection differently in vitro.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- B-Lymphocytes/physiology
- B-Lymphocytes/virology
- Blotting, Northern
- Cell Transformation, Viral
- DNA, Viral/biosynthesis
- Epstein-Barr Virus Nuclear Antigens/genetics
- Gene Expression
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/physiology
- Humans
- Lymphocyte Activation
- Models, Animal
- Promoter Regions, Genetic
- RNA, Viral/genetics
- Rats
- Receptors, Complement 3d/physiology
Collapse
Affiliation(s)
- Lixin Yang
- Department of Tumor Virology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | |
Collapse
|
40
|
Igarashi M, Kawaguchi Y, Hirai K, Mizuno F. Physical interaction of Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) with human oestrogen-related receptor 1 (hERR1): hERR1 interacts with a conserved domain of EBNA-LP that is critical for EBV-induced B-cell immortalization. J Gen Virol 2003; 84:319-327. [PMID: 12560563 DOI: 10.1099/vir.0.18615-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) consists of W1W2 repeats and a unique C-terminal Y1Y2 domain and plays a critical role in EBV-induced transformation. To identify the cellular proteins associating with EBNA-LP, we performed a yeast two-hybrid screen using EBNA-LP cDNA containing a single W1W2 domain as bait and an EBV-transformed human peripheral blood lymphocyte cDNA library as the source of cellular genes. Our results were as follows. (i) A cDNA in the positive yeast colony was found to encode a cellular protein, human oestrogen-related receptor 1 (hERR1), which is a constitutive transcriptional activator of the various types of oestrogen response elements. (ii) A purified chimeric protein consisting of glutathione S-transferase (GST) fused to hERR1 specifically formed complexes with EBNA-LPs containing one (EBNA-LPR1), two (EBNA-LPR2) or four W1W2 repeats (EBNA-LPR4) transiently expressed in COS-7 cells. Reciprocally, GST fused to EBNA-LPR1 or EBNA-LPR2 pulled down hERR1 transiently expressed in COS-7 cells. (iii) Mutational analyses of EBNA-LP revealed that the Y2 domain of EBNA-LP is responsible for the interaction with hERR1 and two leucines in the Y2 domain (Leu-78 and -82), which are conserved among a subset of primate gammaherpesviruses, are interactive sites for hERR1. So far, it has been reported that the only domain of EBNA-LP critical for EBV-induced transformation is the Y1Y2 domain. Potential roles of hERR1 in EBV-induced transformation are discussed.
Collapse
Affiliation(s)
- Mie Igarashi
- Department of Microbiology, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
- Department of Tumor Virology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yasushi Kawaguchi
- Department of Tumor Virology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Kanji Hirai
- Department of Tumor Virology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Fumio Mizuno
- Department of Microbiology, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| |
Collapse
|
41
|
Isaksson A, Berggren M, Ricksten A. Epstein-Barr virus U leader exon contains an internal ribosome entry site. Oncogene 2003; 22:572-81. [PMID: 12555070 DOI: 10.1038/sj.onc.1206149] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Eukaryotic translation can be initiated either by a cap-dependent mechanism or by internal ribosome entry, a process by which ribosomes are directly recruited to structured regions of mRNA upstream of the initiation codon. Here we report the finding of an internal ribosome entry site (IRES) in the untranslated region of the Epstein-Barr nuclear antigen 1 (EBNA1) gene. EBNA1 is the only nuclear protein expressed in all known states of Epstein-Barr virus (EBV) latency and in the virus lytic cycle, and is required for the maintenance of the EBV episome. Using cDNA reporter constructs and in vitro transfection assays, we found that sequences contained in the 5' untranslated region (UTR) of the Fp and Qp initiated EBNA1 mRNA increased the expression level 4-14- fold in different Burkitt lymphoma cell lines. The U leader exon, located within the 5' UTR, included in all known EBNA1 transcripts and also contained in the EBNA3, 4 and 6 mRNAs, was demonstrated by bicistronic expression analyses to contain an IRES. The EBNA IRES initiates translation more efficiently than the encephalomyocarditis virus IRES in EBV-positive lymphoma cells. We propose that the EBNA IRES constitute a novel mechanism, whereby EBV regulates latent gene expression.
Collapse
Affiliation(s)
- Asa Isaksson
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Laboratory Medicine, Sahlgrenska University Hospital, Göteburg University, Sweden
| | | | | |
Collapse
|
42
|
Abstract
Epstein-Barr virus (EBV) is consistently detected in nasopharyngeal carcinoma (NPC) from regions of high and low incidence. EBV DNA within the tumor is homogeneous with regard to the number of terminal repeats. The detection of a single form of viral DNA suggests that the tumors are clonal proliferations of a single cell that was initially infected with EBV. Specific EBV genes are consistently expressed within the NPC tumors and in early, dysplastic lesions. The viral proteins, latent membrane protein 1 and 2, have profound effects on cellular gene expression and cellular growth, resulting in the highly invasive, malignant growth of NPC tumors. In addition to potential genetic changes, the establishment of a latent, transforming infection in epithelial cells is likely to be a major contributing factor to the development of this tumor.
Collapse
Affiliation(s)
- Nancy Raab-Traub
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina CB#729, Chapel Hill, NC 27599-7297, USA.
| |
Collapse
|
43
|
Rivailler P, Cho YG, Wang F. Complete genomic sequence of an Epstein-Barr virus-related herpesvirus naturally infecting a new world primate: a defining point in the evolution of oncogenic lymphocryptoviruses. J Virol 2002; 76:12055-68. [PMID: 12414947 PMCID: PMC136909 DOI: 10.1128/jvi.76.23.12055-12068.2002] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Callitrichine herpesvirus 3 (CalHV-3) was isolated from a B-cell lymphoma arising spontaneously in the New World primate Callithrix jacchus, the common marmoset. Partial genomic sequence analysis definitively identified CalHV-3 as a member of the Epstein-Barr virus (EBV)-related lymphocryptovirus (LCV) genus and extended the known host range of LCVs beyond humans and Old World nonhuman primates. We have now completed the first genomic sequence of an LCV infecting a New World primate by describing the unique short region, the major internal repeat, and a portion of the unique long region. This portion of the genome contains the putative latent origin of replication and 13 additional open reading frames (ORFs), 5 of which show no homology to any viral or cell genes. One of the novel genes, C5, is a positional homologue for the transformation-essential EBV gene EBNA-2. The marmoset LCV genome is also notable for the absence of viral interleukin-10 and small nonpolyadenylated RNA homologues. Marmoset LCV transcripts encoding putative latent infection nuclear proteins have a common leader sequence that is spliced from the major internal repeat in a manner similar to that of the EBV EBNA-LP, suggesting strong conservation of a common promoter and splicing of these latent infection mRNAs. An EBV LMP2A-like spliced transcript crossing the terminal repeats encodes a unique ORF, C7, with multiple transmembrane domains and tyrosine kinase phosphorylation sites functionally reminiscent of EBV LMP2A. However, the carboxy-terminal location of the candidate phosphotyrosine residues is more reminiscent of the Kaposi's sarcoma-associated herpesvirus K15 gene and provides potential evidence of an evolutionary transition from rhadinoviruses to lymphocryptoviruses. The unusual gene repertoire of the marmoset LCV differentiates ancestral viral genes likely present in an LCV progenitor from viral genes acquired later as primates and LCV coevolved, providing a defining point in the evolution of oncogenic LCVs.
Collapse
Affiliation(s)
- Pierre Rivailler
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
44
|
Han I, Xue Y, Harada S, Orstavik S, Skalhegg B, Kieff E. Protein kinase A associates with HA95 and affects transcriptional coactivation by Epstein-Barr virus nuclear proteins. Mol Cell Biol 2002; 22:2136-46. [PMID: 11884601 PMCID: PMC133669 DOI: 10.1128/mcb.22.7.2136-2146.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HA95, a nuclear protein homologous to AKAP95, has been identified in immune precipitates of the Epstein-Barr virus (EBV) coactivating nuclear protein EBNA-LP from EBV-transformed lymphoblastoid cells (LCLs). We now find that HA95 and EBNA-LP are highly associated in LCLs and in B-lymphoma cells where EBNA-LP is expressed by gene transfer. Binding was also evident in yeast two-hybrid assays. HA95 binds to the EBNA-LP repeat domain that is the principal coactivator of transcription. EBNA-LP localizes with HA95 and causes HA95 to partially relocalize with EBNA-LP in promyelocytic leukemia nuclear bodies. Protein kinase A catalytic subunit alpha (PKAcsalpha) is significantly associated with HA95 in the presence or absence of EBNA-LP. Although EBNA-LP is not a PKA substrate, HA95 or PKAcsalpha expression in B lymphoblasts specifically down-regulates the strong coactivating effects of EBNA-LP. The inhibitory effects of PKAcsalpha are reversed by coexpression of protein kinase inhibitor. PKAcsalpha also inhibits EBNA-LP coactivation with the EBNA-2 acidic domain fused to the Gal4 DNA binding domain. Furthermore, EBNA-LP- and EBNA-2-induced expression of the EBV oncogene, LMP1, is down-regulated by PKAcsalpha or HA95 expression in EBV-infected lymphoblasts. These experiments indicate that HA95 and EBNA-LP localize PKAcsalpha at nuclear sites where it can affect transcription from specific promoters. The role of HA95 as a scaffold for transcriptional regulation is discussed.
Collapse
Affiliation(s)
- Innoc Han
- Ewha Institute of Neuroscience, Ewha University Medical School, Seoul 110-783, Korea
| | | | | | | | | | | |
Collapse
|
45
|
McCann EM, Kelly GL, Rickinson AB, Bell AI. Genetic analysis of the Epstein-Barr virus-coded leader protein EBNA-LP as a co-activator of EBNA2 function. J Gen Virol 2001; 82:3067-3079. [PMID: 11714985 DOI: 10.1099/0022-1317-82-12-3067] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Co-operation between the Epstein-Barr virus (EBV)-coded leader protein EBNA-LP and the nuclear antigen EBNA2 appears to be critical for efficient virus-induced B cell transformation. Here we report the genetic analysis of EBNA-LP function using two transient co-transfection assays of co-operativity, activation of latent membrane protein 1 (LMP1) expression from a resident EBV genome in Akata-BL cells and activation of an EBNA2-responsive reporter construct. Small deletions were introduced into each of five conserved regions (CRs) of EBNA-LP sequence present in type 1 and type 2 EBV strains and in several primate lymphocryptovirus EBNA-LP homologues. Deletions within all three CRs in the EBNA-LP W1W2 repeat domain completely abrogated function, through inhibition of nuclear localization in the cases of CR1 and CR2 but not of CR3; deletions within CR4 and CR5 in the Y1Y2 unique domain had relatively little effect, yet loss of the whole Y2 sequence blocked activity. Alanine substitution of serine residues within potential phosphorylation sites identified two mutants of particular interest. Substitution of three such residues (S34,36,63) within W1W2 not only abrogated EBNA-LP activity but was associated with a complete loss of EBNA2 detectability in co-transfected cells, implying possible destabilization of the co-expressed EBNA2 protein. More importantly the individual substitution of S36 completely blocked EBNA-LP/EBNA2 co-operativity while retaining EBNA2 expression. We infer critical roles for the CR3 domain and for the S36 residue in EBNA-LP's co-operative function.
Collapse
Affiliation(s)
- Eamon M McCann
- CRC Institute for Cancer Studies, The University of Birmingham, Edgbaston, Birmingham B15 2TA, UK1
| | - Gemma L Kelly
- CRC Institute for Cancer Studies, The University of Birmingham, Edgbaston, Birmingham B15 2TA, UK1
| | - Alan B Rickinson
- CRC Institute for Cancer Studies, The University of Birmingham, Edgbaston, Birmingham B15 2TA, UK1
| | - Andrew I Bell
- CRC Institute for Cancer Studies, The University of Birmingham, Edgbaston, Birmingham B15 2TA, UK1
| |
Collapse
|
46
|
Han I, Harada S, Weaver D, Xue Y, Lane W, Orstavik S, Skalhegg B, Kieff E. EBNA-LP associates with cellular proteins including DNA-PK and HA95. J Virol 2001; 75:2475-81. [PMID: 11160753 PMCID: PMC114833 DOI: 10.1128/jvi.75.5.2475-2481.2001] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
EBNA-LP-associated proteins were identified by sequencing proteins that immunoprecipitated with Flag epitope-tagged EBNA-LP (FLP) from lymphoblasts in which FLP was stably expressed. The association of EBNA-LP with Hsp70 (72/73) was confirmed, and sequences of DNA-PK catalytic subunit (DNA-PKcs), HA95, Hsp27, prolyl 4-hydroxylase alpha-1 subunit, alpha-tubulin, and beta-tubulin were identified. The fraction of total cellular HA95 that associated with FLP was very high, while progressively lower fractions of the total DNA-PKcs, Hsp70, Hsp 27, alpha-tubulin, and beta-tubulin specifically associated with EBNA-LP as determined by immunoblotting with antibodies to these proteins. EBNA-LP bound to two domains in the DNA-PKcs C terminus and DNA-PKcs associated with the EBNA-LP repeat domain. DNA-PKcs that was bound to EBNA-LP phosphorylated p53 or EBNA-LP in vitro, and the phosphorylation of EBNA-LP was inhibited by Wortmannin, a specific in vitro inhibitor of DNA-PKcs.
Collapse
Affiliation(s)
- I Han
- Channing Laboratory, Harvard Medical School, Boston, Massachusetts 02445, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Kawaguchi Y, Nakajima K, Igarashi M, Morita T, Tanaka M, Suzuki M, Yokoyama A, Matsuda G, Kato K, Kanamori M, Hirai K. Interaction of Epstein-Barr virus nuclear antigen leader protein (EBNA-LP) with HS1-associated protein X-1: implication of cytoplasmic function of EBNA-LP. J Virol 2000; 74:10104-11. [PMID: 11024139 PMCID: PMC102049 DOI: 10.1128/jvi.74.21.10104-10111.2000] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) consists of W1W2 repeats and a unique C-terminal Y1Y2 domain and has been suggested to play an important role in EBV-induced transformation. To identify the cellular factors interacting with EBNA-LP, we performed a yeast two-hybrid screen, using EBNA-LP cDNA containing four W1W2 repeats as bait and an EBV-transformed human peripheral blood lymphocyte cDNA library as the source of cellular genes. Our results were as follows. (i) All three cDNAs in positive yeast colonies were found to encode the same cellular protein, HS1-associated protein X-1 (HAX-1), which is localized mainly in the cytoplasm and has been suggested to be involved in the regulation of B-cell signal transduction and apoptosis. (ii) Mutational analysis of EBNA-LP revealed that the association with HAX-1 is mediated by the W1W2 repeat domain. (iii) A purified chimeric protein consisting of glutathione S-transferase fused to EBNA-LP specifically formed complexes with HAX-1 transiently expressed in COS-7 cells. (iv) When EBNA-LP and HAX-1 were coexpressed in COS-7 cells, EBNA-LP was specifically coimmunoprecipitated with HAX-1. (v) Careful cell fractionation experiments of an EBV-infected lymphoblastoid cell line revealed that EBNA-LP is localized in the cytoplasm as well as in the nucleus. (vi) When EBNA-LP containing four W1W2 repeats was expressed in COS-7 cells, EBNA-LP was detected mainly in the nucleus by immunofluorescence assay. Interestingly, when EBNA-LP containing a single W1W2 repeat was expressed in COS-7 cells, EBNA-LP was localized predominantly in the cytoplasm and was colocalized with HAX-1. These results indicate that EBNA-LP is in fact present and may have a significant function in the cytoplasm, possibly by interacting with and affecting the function of HAX-1.
Collapse
Affiliation(s)
- Y Kawaguchi
- Department of Tumor Virology, Division of Virology and Immunology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Peng R, Tan J, Ling PD. Conserved regions in the Epstein-Barr virus leader protein define distinct domains required for nuclear localization and transcriptional cooperation with EBNA2. J Virol 2000; 74:9953-63. [PMID: 11024123 PMCID: PMC102033 DOI: 10.1128/jvi.74.21.9953-9963.2000] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) EBNA-LP is a latent protein whose function is not fully understood. Recent studies have shown that EBNA-LP may be an important EBNA2 cofactor by enhancing EBNA2 stimulation of the latency C and LMP-1 promoters. To further our understanding of EBNA-LP function, we have introduced a series of mutations into evolutionarily conserved regions and tested the mutant proteins for the ability to enhance EBNA2 stimulation of the latency C and LMP-1 promoters. Three conserved regions (CR1 to CR3) are located in the repeat domains that are essential for the EBNA2 cooperativity function. In addition, three serine residues are also well conserved in the repeat domains. Clustered alanine mutations were introduced into CR1 to CR3, and the conserved serines were also changed to alanine residues in an EBNA-LP with two repeats, which is the minimal protein able to cooperate with EBNA2. Mutations introduced into CR1a had no effect on EBNA-LP function, while mutations introduced into CR1b resulted in EBNA-LP with slightly decreased activity. Mutations in CR1c and CR2 resulted in proteins that no longer localized exclusively to the nucleus and also had no EBNA2 cooperation activity. Mutations introduced into conserved serines S5/71 resulted in proteins with slightly higher activity, while mutations introduced into conserved serines S35/101 or in CR3 (which contains S60/126) resulted in EBNA-LP proteins with substantially reduced activity. The potential karyophilic signals within EBNA-LP CR1c and CR2 were also examined by introducing oligonucleotides encoding these positively charged amino acid groupings into a cytoplasmic test protein, herpes simplex virus DeltaIE175, and by examining the intracellular localization of the resulting proteins. This assay identified a strong nuclear localization signal between EBNA-LP amino acids 43 and 50 (109 to 117 in the second W repeat) comprising CR2, while EBNA-LP amino acids 29 to 36 (91 to 98 in the second W repeat) were unable to function independently as a nuclear localization signal. However, a combination of amino acids 29 to 50 resulted in more efficient nuclear localization than with amino acids 43 to 50 alone. These results indicate that EBNA-LP has a bipartite nuclear localization signal and that efficient nuclear localization is essential for EBNA2 cooperativity function. Interestingly, EBNA-LP with only a single repeat localized exclusively to the cytoplasm, providing an explanation for why this isoform has no activity. In addition, two conserved serine residues which are distinct from nuclear import functions are important for EBNA2 cooperativity function.
Collapse
Affiliation(s)
- R Peng
- Division of Molecular Virology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
49
|
Liu W, Nichols AF, Graham JA, Dualan R, Abbas A, Linn S. Nuclear transport of human DDB protein induced by ultraviolet light. J Biol Chem 2000; 275:21429-34. [PMID: 10777491 DOI: 10.1074/jbc.m000961200] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human damage-specific DNA-binding (DDB) protein can be purified as a heterodimer (p48 and p127) that binds to DNA damaged by ultraviolet light. We report here the effects of UV irradiation on the cellular localization of each DDB subunit as a function of time using green fluorescent fusion proteins in three diploid fibroblast strains: repair-proficient IMR-90 and two repair-deficient xeroderma pigmentosum group E strains (XP95TO and XP3RO). Although p48 remained in the nucleus after UV irradiation, a dynamic nuclear accumulation of p127 from the cytoplasm was found after 24 h. In IMR-90 cells, the nuclear localization of p127 corresponded to the up-regulation of p48 mRNA and protein levels and of DDB activity. XP3RO cells showed delayed but similar kinetics with less transport, whereas XP95TO cells appeared to have different kinetics, suggesting that these cells exhibit different defects in p127 translocation. We propose that p48 might act as the transporter for nuclear entry of p127 but that a third factor might be necessary for efficient transportation.
Collapse
Affiliation(s)
- W Liu
- Division of Biochemistry and Molecular Biology, University of California, Berkeley, California 94720-3202, USA
| | | | | | | | | | | |
Collapse
|
50
|
Fu Z, Cannon MJ. Functional analysis of the CD4(+) T-cell response to Epstein-Barr virus: T-cell-mediated activation of resting B cells and induction of viral BZLF1 expression. J Virol 2000; 74:6675-9. [PMID: 10864684 PMCID: PMC112180 DOI: 10.1128/jvi.74.14.6675-6679.2000] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In contrast to the major role played by Epstein-Barr virus (EBV)-specific CD8(+) cytotoxic T-cell responses in immunosurveillance, recent studies have offered the apparently paradoxical suggestion that development of EBV-driven human B-cell lymphoproliferative disorders and tumors in SCID/hu mice is dependent on the presence of T cells, in particular CD4(+) T cells. This study presents a functional analysis of the CD4(+) T-cell response to EBV and shows that while CD4(+) T cells may be cytotoxic, they also express Th2 cytokines and CD40 ligand (gp39) and possess B-cell helper function. We show that EBV-specific CD4(+) T cells can provide non-HLA-restricted help for activation of resting B cells via a gp39-CD40-dependent pathway and are able to induce expression of BZLF1, a viral lytic cycle transactivator in latently infected resting B cells, ultimately resulting in rapid outgrowth of transformed B-cell colonies. These results support the proposal that CD4(+) T cells may play a key role in reactivation of latent EBV infection and may thus contribute to the pathogenesis of EBV-driven lymphoproliferative disorders.
Collapse
Affiliation(s)
- Z Fu
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | |
Collapse
|