1
|
Moser LM, Heim C, Koschade SE, Wendel P, Bozkurt S, Harenkamp S, Kreyenberg H, Merker M, Münch C, Gradhand E, Vogler M, Ullrich E, Bönig H, Klusmann JH, Bader P, Wels WS, Rettinger E. CAR-CIK vs. CAR-T: benchmarking novel cytokine-induced killer cells as solid tumor immunotherapy in ErbB2+ rhabdomyosarcoma. Front Immunol 2025; 16:1485817. [PMID: 39963129 PMCID: PMC11831232 DOI: 10.3389/fimmu.2025.1485817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 01/09/2025] [Indexed: 02/20/2025] Open
Abstract
Introduction CAR-T cell therapy, though successful in hematologic malignancies, faces challenges in solid tumors due to limitations of autologous T cells. Cytokine-induced killer (CIK) cells can be given safely across allogeneic barriers and constitute alternative effector cells generated from healthy donors. CIK cells are a heterogenous population of predominantly T cells with a mixed natural killer (NK) phenotype and combine non-MHC-restricted cytotoxicity with potent anti-tumor capacity of the adaptive immune system. Here, we characterize and compare efficacy, phenotypic subpopulations and modes of action of CAR-CIK cells and conventional CAR-T cells from same-donor samples in ErbB2+ rhabdomyosarcoma (RMS). Methods To benchmark CAR-CIK against conventional CAR-T cells, effector cells were generated from same-donor samples and lentivirally transduced with a second generation CD28-CD3ζ CAR. Effector subpopulations and their dynamics upon target cell exposure were phenotypically characterized by flow cytometry. Efficacy was assessed in human ErbB2+ RMS cancer cell lines and primary patient samples in vitro and ex vivo using cytotoxicity and spheroid co-incubation assays. Modes of action were assessed by comparing cytokine secretion profiles using bead-based multiplexed flow cytometry and by liquid chromatography mass spectrometry whole cell proteomics. Finally, we used an in vivo model of RMS mimicking minimal metastatic residual disease to compare anti-tumor potency of CAR-CIK vs. CAR-T cells and to assess their target organ infiltration. Results In vitro assays demonstrated superior cytotoxicity of CAR-CIK cells against RMS cell lines and primary tumor samples. Long-term co-incubation with tumor spheroids led to expansion of CAR-CIK cells and enrichment of CD3+CD56+ TNK cells. CAR-CIK cell cytokine signature showed significantly increased secretion of effector molecules like interferon-γ, perforin and granulysin, and lower secretion of Th2 cytokines IL-2, IL-4 and IL-10. Whole cell proteomics showed corresponding upregulation of chemokine signaling and NK-cytotoxicity pathways in CAR-CIK cells. In NSG mice xenografted with ErbB2+ RMS, a single injection of either CAR-effector cells strongly impeded metastatic tumor development and significantly improved survival. Conclusion Our results demonstrate that CAR-CIK cells are at least equipotent to CAR-T cells. Combined with their favorable safety profile and allogeneic applicability, these findings position CAR-CIK cells as promising immune effectors for solid tumors.
Collapse
Affiliation(s)
- Laura M. Moser
- Division for Stem Cell Transplantation and Immunology, Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
- Universitäres Centrum für Tumorerkrankungen (UCT), Frankfurt am Main, Germany
| | - Catrin Heim
- Division for Stem Cell Transplantation and Immunology, Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sebastian E. Koschade
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
- Universitäres Centrum für Tumorerkrankungen (UCT), Frankfurt am Main, Germany
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Philipp Wendel
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt am Main, Germany
- Experimental Immunology & Cell Therapy, Department of Pediatrics, Goethe University, Frankfurt am Main, Germany
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Süleyman Bozkurt
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Sabine Harenkamp
- Department of Cellular Therapeutics/Cell Processing, Institute for Transfusion Medicine and Immunotherapy, Goethe University, Frankfurt am Main, Germany
| | - Hermann Kreyenberg
- Division for Stem Cell Transplantation and Immunology, Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Michael Merker
- Division for Stem Cell Transplantation and Immunology, Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Christian Münch
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, Frankfurt am Main, Germany
| | - Elise Gradhand
- Department of Pediatric and Perinatal Pathology, Dr. Senckenberg Institute of Pathology, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Meike Vogler
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University, Frankfurt am Main, Germany
| | - Evelyn Ullrich
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
- Universitäres Centrum für Tumorerkrankungen (UCT), Frankfurt am Main, Germany
- Experimental Immunology & Cell Therapy, Department of Pediatrics, Goethe University, Frankfurt am Main, Germany
| | - Halvard Bönig
- Department of Cellular Therapeutics/Cell Processing, Institute for Transfusion Medicine and Immunotherapy, Goethe University, Frankfurt am Main, Germany
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Jan-Henning Klusmann
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
- Universitäres Centrum für Tumorerkrankungen (UCT), Frankfurt am Main, Germany
| | - Peter Bader
- Division for Stem Cell Transplantation and Immunology, Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
- Universitäres Centrum für Tumorerkrankungen (UCT), Frankfurt am Main, Germany
| | - Winfried S. Wels
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Eva Rettinger
- Division for Stem Cell Transplantation and Immunology, Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
- Universitäres Centrum für Tumorerkrankungen (UCT), Frankfurt am Main, Germany
| |
Collapse
|
2
|
Ikeda M, Ide T, Matsushima S, Ikeda S, Okabe K, Ishikita A, Tadokoro T, Sada M, Abe K, Sato M, Hanada A, Arai S, Ohtani K, Nonami A, Mizuno S, Morimoto S, Motohashi S, Akashi K, Taniguchi M, Tsutsui H. Immunomodulatory Cell Therapy Using αGalCer-Pulsed Dendritic Cells Ameliorates Heart Failure in a Murine Dilated Cardiomyopathy Model. Circ Heart Fail 2022; 15:e009366. [PMID: 36268712 PMCID: PMC9760469 DOI: 10.1161/circheartfailure.122.009366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is a life-threatening disease, resulting in refractory heart failure. An immune disorder underlies the pathophysiology associated with heart failure progression. Invariant natural killer T (iNKT) cell activation is a prospective therapeutic strategy for ischemic heart disease. However, its efficacy in nonischemic cardiomyopathy, such as DCM, remains to be elucidated, and the feasible modality for iNKT cell activation in humans is yet to be validated. METHODS Dendritic cells isolated from human volunteers were pulsed with α-galactosylceramide ex vivo, which were used as α-galactosylceramide-pulsed dendritic cells (αGCDCs). We treated DCM mice harboring mutated troponin TΔK210/ΔK210 with αGCDCs and evaluated the efficacy of iNKT cell activation on heart failure in DCM mice. Furthermore, we investigated the molecular basis underlying its therapeutic effects in these mice and analyzed primary cardiac cells under iNKT cell-secreted cytokines. RESULTS The number of iNKT cells in the spleens of DCM mice was reduced compared with that in wild-type mice, whereas αGCDC treatment activated iNKT cells, prolonged survival of DCM mice, and prevented decline in the left ventricular ejection fraction for 4 weeks, accompanied by suppressed interstitial fibrosis. Mechanistically, αGCDC treatment suppressed TGF (transforming growth factor)-β signaling and expression of fibrotic genes and restored vasculature that was impaired in DCM hearts by upregulating angiopoietin 1 (Angpt1) expression. Consistently, IFNγ (interferon gamma) suppressed TGF-β-induced Smad2/3 signaling and the expression of fibrotic genes in cardiac fibroblasts and upregulated Angpt1 expression in cardiomyocytes via Stat1. CONCLUSIONS Immunomodulatory cell therapy with αGCDCs is a novel therapeutic strategy for heart failure in DCM.
Collapse
Affiliation(s)
- Masataka Ikeda
- Department of Cardiovascular Medicine (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Immunoregulatory Cardiovascular Medicine (M.I., T.I.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomomi Ide
- Department of Cardiovascular Medicine (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Immunoregulatory Cardiovascular Medicine (M.I., T.I.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shouji Matsushima
- Department of Cardiovascular Medicine (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Soichiro Ikeda
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kosuke Okabe
- Department of Cardiovascular Medicine (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akihito Ishikita
- Department of Cardiovascular Medicine (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomonori Tadokoro
- Department of Cardiovascular Medicine (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masashi Sada
- Department of Cardiovascular Medicine (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ko Abe
- Department of Cardiovascular Medicine (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Midori Sato
- Department of Cardiovascular Medicine (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akiko Hanada
- Department of Cardiovascular Medicine (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinobu Arai
- Department of Early Childhood and Elementary Education, Faculty of Education, Nakamura Gakuen University, Fukuoka, Japan (S.A.)
| | - Kisho Ohtani
- Department of Cardiovascular Medicine (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Atsushi Nonami
- Center for Advanced Medical Innovation, Kyushu University Hospital, Fukuoka, Japan (A.N.)
| | - Shinichi Mizuno
- Department of Health Sciences (S. Mizuno), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sachio Morimoto
- Department of Health Sciences at Fukuoka, International University of Health and Welfare, Japan (S. Morimoto)
| | - Shinichiro Motohashi
- Department of Cardiovascular Medicine (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Medical Immunology, Graduate School of Medicine, Chiba University, Japan (S. Motohashi)
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science (K. Akashi), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaru Taniguchi
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan (M.T.)
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
3
|
Abstract
Gastrointestinal (GI) cancers represent a complex array of cancers that affect the digestive system. This includes liver, pancreatic, colon, rectal, anal, gastric, esophageal, intestinal and gallbladder cancer. Patients diagnosed with certain GI cancers typically have low survival rates, so new therapeutic approaches are needed. A potential approach is to harness the potent immunoregulatory properties of natural killer T (NKT) cells which are true T cells, not natural killer (NK) cells, that recognize lipid instead of peptide antigens presented by the non-classical major histocompatibility (MHC) molecule CD1d. The NKT cell subpopulation is known to play a vital role in tumor immunity by bridging innate and adaptive immune responses. In GI cancers, NKT cells can contribute to either antitumor or protumor immunity depending on the cytokine profile expressed and type of cancer. This review discusses the complexities of the role of NKT cells in liver, colon, pancreatic and gastric cancers with an emphasis on type I NKT cells.
Collapse
Affiliation(s)
- Julian Burks
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA,CONTACT Julian Burks National Cancer Institute, National Institute of Health, Building 41/Room D702, 41 Medlars Drive, Bethesda, Maryland20892, USA
| | - Purevdorj B. Olkhanud
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jay A. Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
de Lima Moreira M, Souter MNT, Chen Z, Loh L, McCluskey J, Pellicci DG, Eckle SBG. Hypersensitivities following allergen antigen recognition by unconventional T cells. Allergy 2020; 75:2477-2490. [PMID: 32181878 PMCID: PMC11056244 DOI: 10.1111/all.14279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/24/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023]
Abstract
Conventional T cells recognise protein-derived antigens in the context of major histocompatibility complex (MHC) class Ia and class II molecules and provide anti-microbial and anti-tumour immunity. Conventional T cells have also been implicated in type IV (also termed delayed-type or T cell-mediated) hypersensitivity reactions in response to protein-derived allergen antigens. In addition to conventional T cells, subsets of unconventional T cells exist, which recognise non-protein antigens in the context of monomorphic MHC class I-like molecules. These include T cells that are restricted to the cluster of differentiation 1 (CD1) family members, known as CD1-restricted T cells, and mucosal-associated invariant T cells (MAIT cells) that are restricted to the MHC-related protein 1 (MR1). Compared with conventional T cells, much less is known about the immune functions of unconventional T cells and their role in hypersensitivities. Here, we review allergen antigen presentation by MHC-I-like molecules, their recognition by unconventional T cells, and the potential role of unconventional T cells in hypersensitivities. We also speculate on possible scenarios of allergen antigen presentation by MHC-I-like molecules to unconventional T cells, the hallmarks of such responses, and the expected frequencies of hypersensitivities within the human population.
Collapse
Affiliation(s)
- Marcela de Lima Moreira
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Vic., Australia
| | - Michael N. T. Souter
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Vic., Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Vic., Australia
| | - Zhenjun Chen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Vic., Australia
| | - Liyen Loh
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Vic., Australia
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Vic., Australia
| | | | - Sidonia B. G. Eckle
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
5
|
Chinami M, Iwabuchi K, Muto Y, Uchida Y, Arita R, Shuraim RA, Adra CN. Assessment by miRNA microarray of an autologous cancer antigen-pulsed adoptive immune ensemble cell therapy (AC-ACT) approach; demonstrated induction of anti-oncogenic and anti-PD-L1 miRNAs. Clin Case Rep 2019; 7:2156-2164. [PMID: 31788270 PMCID: PMC6878052 DOI: 10.1002/ccr3.2343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/13/2019] [Accepted: 06/20/2019] [Indexed: 11/11/2022] Open
Abstract
A 60-year-old woman with stage IV rectal cancer received adoptive cell therapy with autologous cancer antigen (AC-ACT) causing induction of anti-oncogenic and anti-PD-L1 miRNAs as assessed by miRNA microarray. More than 1 year after AC-ACT, metastases have been arrested, and the patient reports good quality of life.
Collapse
Affiliation(s)
| | | | - Yoshiteru Muto
- The Research Institute of Health Rehabilitation of TokyoTokyoJapan
| | - Yasuhiko Uchida
- The Research Institute of Health Rehabilitation of TokyoTokyoJapan
| | - Ryu Arita
- Fukuoka MSC Medical ClinicsFukuokaJapan
| | | | - Chaker N. Adra
- BFSR InstituteFukuokaJapan
- The Adra InstituteBoston, MAUSA
| |
Collapse
|
6
|
Terabe M, Berzofsky JA. Tissue-Specific Roles of NKT Cells in Tumor Immunity. Front Immunol 2018; 9:1838. [PMID: 30158927 PMCID: PMC6104122 DOI: 10.3389/fimmu.2018.01838] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/25/2018] [Indexed: 01/07/2023] Open
Abstract
NKT cells are an unusual population of T cells recognizing lipids presented by CD1d, a non-classical class-I-like molecule, rather than peptides presented by conventional MHC molecules. Type I NKT cells use a semi-invariant T cell receptor and almost all recognize a common prototype lipid, α-galactosylceramide (α-GalCer). Type II NKT cells are any lipid-specific CD1d-restricted T cells that use other receptors and generally don't recognize α-GalCer. They play important regulatory roles in immunity, including tumor immunity. In contrast to type I NKT cells that most have found to promote antitumor immunity, type II NKT cells suppress tumor immunity and the two subsets cross-regulate each other, forming an immunoregulatory axis. They also can promote other regulatory cells including regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs), and can induce MDSCs to secrete TGF-β, one of the most immunosuppressive cytokines known. In some tumors, both Tregs and type II NKT cells can suppress immunosurveillance, and the balance between these is determined by a type I NKT cell. We have also seen that regulation of tumor immunity can depend on the tissue microenvironment, so the same tumor in the same animal in different tissues may be regulated by different cells, such as type II NKT cells in the lung vs Tregs in the skin. Also, the effector T cells that protect those sites when Tregs are removed do not always act between tissues even in the same animal. Thus, metastases may require different immunotherapy from primary tumors. Newly improved sulfatide-CD1d tetramers are starting to allow better characterization of the elusive type II NKT cells to better understand their function and control it to overcome immunosuppression.
Collapse
Affiliation(s)
- Masaki Terabe
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
7
|
Kato S, Berzofsky JA, Terabe M. Possible Therapeutic Application of Targeting Type II Natural Killer T Cell-Mediated Suppression of Tumor Immunity. Front Immunol 2018; 9:314. [PMID: 29520281 PMCID: PMC5827362 DOI: 10.3389/fimmu.2018.00314] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/05/2018] [Indexed: 12/17/2022] Open
Abstract
Natural killer T (NKT) cells are a unique T cell subset that exhibits characteristics from both the innate immune cells and T cells. There are at least two subsets of NKT cells, type I and type II. These two subsets of NKT cells have opposite functions in antitumor immunity. Type I NKT cells usually enhance and type II NKT cells suppress antitumor immunity. In addition, these two subsets of NKT cells cross-regulate each other. In this review, we mainly focus on immunosuppressive NKT cells, type II NKT cells. After summarizing their definition, experimental tools to study them, and subsets of them, we will discuss possible therapeutic applications of type II NKT cell pathway targeted therapies.
Collapse
Affiliation(s)
- Shingo Kato
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Jay A. Berzofsky
- Molecular Immunogenetics and Vaccine Research Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Masaki Terabe
- Molecular Immunogenetics and Vaccine Research Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
8
|
Franciszkiewicz K, Salou M, Legoux F, Zhou Q, Cui Y, Bessoles S, Lantz O. MHC class I-related molecule, MR1, and mucosal-associated invariant T cells. Immunol Rev 2017; 272:120-38. [PMID: 27319347 DOI: 10.1111/imr.12423] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The MHC-related 1, MR1, molecule presents a new class of microbial antigens (derivatives of the riboflavin [Vitamin B2] biosynthesis pathway) to mucosal-associated invariant T (MAIT) cells. This raises many questions regarding antigens loading and intracellular trafficking of the MR1/ligand complexes. The MR1/MAIT field is also important because MAIT cells are very abundant in humans and their frequency is modified in many infectious and non-infectious diseases. Both MR1 and the invariant TCRα chain expressed by MAIT cells are strikingly conserved among species, indicating important functions. Riboflavin is synthesized by plants and most bacteria and yeasts but not animals, and its precursor derivatives activating MAIT cells are short-lived unless bound to MR1. The recognition of MR1 loaded with these compounds is therefore an exquisite manner to detect invasive bacteria. Herein, we provide an historical perspective of the field before describing the main characteristics of MR1, its ligands, and the few available data regarding its cellular biology. We then summarize the current knowledge of MAIT cell differentiation and discuss the definition of MAIT cells in comparison to related subsets. Finally, we describe the phenotype and effector activities of MAIT cells.
Collapse
Affiliation(s)
| | | | | | - Qian Zhou
- Institut curie, Inserm U932, Paris, France
| | - Yue Cui
- Institut curie, Inserm U932, Paris, France
| | | | - Olivier Lantz
- Institut curie, Inserm U932, Paris, France.,Center of Clinical Investigations, CICBT1428 IGR/Curie, Paris, France.,Laboratoire d'Immunologie Clinique, Institut Curie, Paris, France
| |
Collapse
|
9
|
Cappuzzello E, Sommaggio R, Zanovello P, Rosato A. Cytokines for the induction of antitumor effectors: The paradigm of Cytokine-Induced Killer (CIK) cells. Cytokine Growth Factor Rev 2017. [PMID: 28629761 DOI: 10.1016/j.cytogfr.2017.06.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cytokine-Induced killer (CIK) cells are raising growing interest in cellular antitumor therapy, as they can be easily expanded with a straightforward and inexpensive protocol, and are safe requiring only GMP-grade cytokines to obtain very high amounts of cytotoxic cells. CIK cells do not need antigen-specific stimuli to be activated and proliferate, as they recognize and destroy tumor cells in an HLA-independent fashion through the engagement of NKG2D. In several preclinical studies and clinical trials, CIK cells showed a reduced alloreactivity compared to conventional T cells, even when challenged across HLA-barriers; only in a few patients, a mild GVHD occurred after treatment with allogeneic CIK cells. Additionally, their antitumor activity can be redirected and further improved with chimeric antigen receptors, clinical-grade monoclonal antibodies or immune checkpoint inhibitors. The evidence obtained from a growing body of literature support CIK cells as a very promising cell population for adoptive immunotherapy. In this review, all these aspects will be addressed with a particular emphasis on the role of the cytokines involved in CIK cell generation, expansion and functionalization.
Collapse
Affiliation(s)
- Elisa Cappuzzello
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padua, Padua, Italy
| | - Roberta Sommaggio
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padua, Padua, Italy
| | - Paola Zanovello
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padua, Padua, Italy; Department of Clinical and Experimental Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Antonio Rosato
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padua, Padua, Italy; Department of Clinical and Experimental Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy.
| |
Collapse
|
10
|
Keller CW, Freigang S, Lünemann JD. Reciprocal Crosstalk between Dendritic Cells and Natural Killer T Cells: Mechanisms and Therapeutic Potential. Front Immunol 2017; 8:570. [PMID: 28596767 PMCID: PMC5442181 DOI: 10.3389/fimmu.2017.00570] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 04/28/2017] [Indexed: 12/23/2022] Open
Abstract
Natural killer T cells carrying a highly conserved, semi-invariant T cell receptor (TCR) [invariant natural killer T (iNKT) cells] are a subset of unconventional T lymphocytes that recognize glycolipids presented by CD1d molecules. Although CD1d is expressed on a variety of hematopoietic and non-hematopoietic cells, dendritic cells (DCs) are key presenters of glycolipid antigen in vivo. When stimulated through their TCR, iNKT cells rapidly secrete copious amounts of cytokines and induce maturation of DCs, thereby facilitating coordinated stimulation of innate and adaptive immune responses. The bidirectional crosstalk between DCs and iNKT cells determines the functional outcome of iNKT cell-targeted responses and iNKT cell agonists are used and currently being evaluated as adjuvants to enhance the efficacy of antitumor immunotherapy. This review illustrates mechanistic underpinnings of reciprocal DCs and iNKT cell interactions and discusses how those can be harnessed for cancer therapy.
Collapse
Affiliation(s)
- Christian W Keller
- Institute of Experimental Immunology, Laboratory of Neuroinflammation, University of Zurich, Zurich, Switzerland
| | - Stefan Freigang
- Institute of Pathology, Laboratory of Immunopathology, University of Bern, Bern, Switzerland
| | - Jan D Lünemann
- Institute of Experimental Immunology, Laboratory of Neuroinflammation, University of Zurich, Zurich, Switzerland.,Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Huang S, Moody DB. Donor-unrestricted T cells in the human CD1 system. Immunogenetics 2016; 68:577-96. [PMID: 27502318 PMCID: PMC5915868 DOI: 10.1007/s00251-016-0942-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/14/2016] [Indexed: 02/06/2023]
Abstract
The CD1 and MHC systems are specialized for lipid and peptide display, respectively. Here, we review evidence showing how cellular CD1a, CD1b, CD1c, and CD1d proteins capture and display many cellular lipids to T cell receptors (TCRs). Increasing evidence shows that CD1-reactive T cells operate outside two classical immunogenetic concepts derived from the MHC paradigm. First, because CD1 proteins are non-polymorphic in human populations, T cell responses are not restricted to the donor's genetic background. Second, the simplified population genetics of CD1 antigen-presenting molecules can lead to simplified patterns of TCR usage. As contrasted with donor-restricted patterns of MHC-TCR interaction, the donor-unrestricted nature of CD1-TCR interactions raises the prospect that lipid agonists and antagonists of T cells could be developed.
Collapse
Affiliation(s)
- Shouxiong Huang
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| | - D Branch Moody
- Divison of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
12
|
Immunotherapeutic strategies targeting natural killer T cell responses in cancer. Immunogenetics 2016; 68:623-38. [PMID: 27393665 DOI: 10.1007/s00251-016-0928-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/22/2016] [Indexed: 12/21/2022]
Abstract
Natural killer T (NKT) cells are a unique subset of lymphocytes that bridge the innate and adaptive immune system. NKT cells possess a classic αβ T cell receptor (TCR) that is able to recognize self and foreign glycolipid antigens presented by the nonclassical class I major histocompatibility complex (MHC) molecule, CD1d. Type I NKT cells (referred to as invariant NKT cells) express a semi-invariant Vα14Jα18 TCR in mice and Vα24Jα18 TCR in humans. Type II NKT cells are CD1d-restricted T cells that express a more diverse set of TCR α chains. The two types of NKT cells often exert opposing effects especially in tumor immunity, where type II cells generally suppress tumor immunity while type I NKT cells can enhance anti-tumor immune responses. In this review, we focus on the role of NKT cells in cancer. We discuss their effector and suppressive functions, as well as describe preclinical and clinical studies utilizing therapeutic strategies focused on harnessing their potent anti-tumor effector functions, and conclude with a discussion on potential next steps for the utilization of NKT cell-targeted therapies for the treatment of cancer.
Collapse
|
13
|
TANIGUCHI M, HARADA M, DASHTSOODOL N, KOJO S. Discovery of NKT cells and development of NKT cell-targeted anti-tumor immunotherapy. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2015; 91:292-304. [PMID: 26194854 PMCID: PMC4631895 DOI: 10.2183/pjab.91.292] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 04/20/2015] [Indexed: 06/08/2023]
Abstract
Natural Killer T (NKT) cells are unique lymphocytes characterized by their expression of a single invariant antigen receptor encoded by Vα14Jα18 in mice and Vα24Jα18 in humans, which recognizes glycolipid antigens in association with the monomorphic CD1d molecule. NKT cells mediate adjuvant activity to activate both CD8T cells to kill MHC-positive tumor cells and NK cells to eliminate MHC-negative tumor at the same time in patients, resulting in the complete eradication of tumors without relapse. Therefore, the NKT cell-targeted therapy can be applied to any type of tumor and also to anyone individual, regardless of HLA type.Phase IIa clinical trials on advanced lung cancers and head and neck tumors have been completed and showed significantly prolonged median survival times with only the primary treatment. Another potential treatment option for the future is to use induced pluripotent stem cell (iPS)-derived NKT cells, which induced adjuvant effects on anti-tumor responses, inhibiting in vivo tumor growth in a mouse model.
Collapse
Affiliation(s)
- Masaru TANIGUCHI
- Laboratory of Immune Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Michishige HARADA
- Laboratory of Immune Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Nyambayar DASHTSOODOL
- Laboratory of Immune Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Satoshi KOJO
- Laboratory of Immune Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| |
Collapse
|
14
|
Gao Y, Workman S, Gadola S, Elliott T, Grimbacher B, Williams AP. Common variable immunodeficiency is associated with a functional deficiency of invariant natural killer T cells. J Allergy Clin Immunol 2014; 133:1420-8, 1428.e1. [PMID: 24582167 DOI: 10.1016/j.jaci.2013.10.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 10/18/2013] [Accepted: 10/22/2013] [Indexed: 01/17/2023]
Abstract
BACKGROUND Common variable immunodeficiency (CVID) is the commonest symptomatic primary antibody disorder, with monogenic causes identified in less than 10% of all cases. X-linked proliferative disease is a monogenic disorder that is associated with hypogammaglobulinemia and characterized by a deficiency of invariant NKT (iNKT) cells. We sought to evaluate whether a defect in iNKT cell number or function was associated with CVID. OBJECTIVE An evaluation of the function and number of iNKT cells in CVID. METHODS Six-color flow cytometry enumerated iNKT cells in 36 patients with CVID and 50 healthy controls. Their proliferative capacity and cytokine production (IFN-γ, IL-13, IL-17) was then investigated following activation with CD1d ligand alpha-galactosylceramide. RESULTS A reduction in the number of iNKT cells (31 iNKT cells/10(5) T cells) in patients with CVID compared with healthy controls (100 iNKT cells/10(5) T cells) was observed (P < .0001). Two cohorts could be discerned within the CVID group: group 1 with an abnormal number of iNKT cells (n = 28) and group 2 with a normal number of iNKT cells (n = 8). This segregation coassociated with the proliferative capacity of iNKT cells between the 2 groups. However, differences in the function of iNKT cells were noted in group 2, in which an increase in IFN-γ (P = .0016) and a decrease in IL-17 (P = .0002) production was observed between patients with CVID and controls. Finally, a significant association was seen between the number of iNKT cells and the percentage of class-switched memory B cells and propensity to lymphoproliferation (P = .002) in patients with CVID. CONCLUSION iNKT cells are deficient and/or functionally impaired in most of the patients with CVID.
Collapse
Affiliation(s)
- Yifang Gao
- Faculty of Medicine, Cancer Sciences Division, University of Southampton, Southampton, United Kingdom
| | - Sarita Workman
- Department of Clinical Immunology and Molecular Pathology, Royal Free Hospital, London, United Kingdom; University College London, London, United Kingdom
| | - Stephan Gadola
- Faculty of Medicine, Clinical and Experimental Sciences Division, University of Southampton, Southampton, United Kingdom
| | - Tim Elliott
- Faculty of Medicine, Cancer Sciences Division, University of Southampton, Southampton, United Kingdom
| | - Bodo Grimbacher
- Department of Clinical Immunology and Molecular Pathology, Royal Free Hospital, London, United Kingdom; University College London, London, United Kingdom
| | - Anthony P Williams
- Faculty of Medicine, Cancer Sciences Division, University of Southampton, Southampton, United Kingdom.
| |
Collapse
|
15
|
Fujii SI, Shimizu K, Okamoto Y, Kunii N, Nakayama T, Motohashi S, Taniguchi M. NKT cells as an ideal anti-tumor immunotherapeutic. Front Immunol 2013; 4:409. [PMID: 24348476 PMCID: PMC3845015 DOI: 10.3389/fimmu.2013.00409] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 11/11/2013] [Indexed: 12/28/2022] Open
Abstract
Human natural killer T (NKT) cells are characterized by their expression of an invariant T cell antigen receptor α chain variable region encoded by a Vα24Jα18 rearrangement. These NKT cells recognize α-galactosylceramide (α-GalCer) in conjunction with the MHC class I-like CD1d molecule and bridge the innate and acquired immune systems to mediate efficient and augmented immune responses. A prime example of one such function is adjuvant activity: NKT cells augment anti-tumor responses because they can rapidly produce large amounts of IFN-γ, which acts on NK cells to eliminate MHC negative tumors and also on CD8 cytotoxic T cells to kill MHC positive tumors. Thus, upon administration of α-GalCer-pulsed DCs, both MHC negative and positive tumor cells can be effectively eliminated, resulting in complete tumor eradication without tumor recurrence. Clinical trials have been completed in a cohort of 17 patients with advanced non-small cell lung cancers and 10 cases of head and neck tumors. Sixty percent of advanced lung cancer patients with high IFN-γ production had significantly prolonged median survival times of 29.3 months with only the primary treatment. In the case of head and neck tumors, 10 patients who completed the trial all had stable disease or partial responses 5 weeks after the combination therapy of α-GalCer-DCs and activated NKT cells. We now focus on two potential powerful treatment options for the future. One is to establish artificial adjuvant vector cells containing tumor mRNA and α-GalCer/CD1d. This stimulates host NKT cells followed by DC maturation and NK cell activation but also induces tumor-specific long-term memory CD8 killer T cell responses, suppressing tumor metastasis even 1 year after the initial single injection. The other approach is to establish induced pluripotent stem (iPS) cells that can generate unlimited numbers of NKT cells with adjuvant activity. Such iPS-derived NKT cells produce IFN-γ in vitro and in vivo upon stimulation with α-GalCer/DCs, and mediated adjuvant effects, suppressing tumor growth in vivo.
Collapse
Affiliation(s)
- Shin-Ichiro Fujii
- Laboratory for Immunotherapy, RCAI, RIKEN, Center for Integrative Medical Sciences (IMS-RCAI) , Yokohama , Japan
| | - Kanako Shimizu
- Laboratory for Immunotherapy, RCAI, RIKEN, Center for Integrative Medical Sciences (IMS-RCAI) , Yokohama , Japan
| | - Yoshitaka Okamoto
- Department of Otorhinolaryngology, Graduate School of Medicine, Chiba University , Chiba , Japan
| | - Naoki Kunii
- Department of Otorhinolaryngology, Graduate School of Medicine, Chiba University , Chiba , Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University , Chiba , Japan
| | - Shinichiro Motohashi
- Department of Medical Immunology, Graduate School of Medicine, Chiba University , Chiba , Japan
| | - Masaru Taniguchi
- Laboratory of Immune Regulation, RCAI, RIKEN, Center for Integrative Medical Sciences (IMS-RCAI) , Yokohama , Japan
| |
Collapse
|
16
|
Greenaway HY, Ng B, Price DA, Douek DC, Davenport MP, Venturi V. NKT and MAIT invariant TCRα sequences can be produced efficiently by VJ gene recombination. Immunobiology 2012; 218:213-24. [PMID: 22647874 DOI: 10.1016/j.imbio.2012.04.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 03/28/2012] [Accepted: 04/24/2012] [Indexed: 01/21/2023]
Abstract
Semi-invariant T cell receptors (TCRs) found on natural killer T (NKT) and mucosal-associated invariant T (MAIT) cells are characterized by the use of invariant variable (V) and joining (J) gene combinations in the TCR α-chain, as well as ubiquitous canonical TCRα amino acid sequences that are dominant in many individuals and similar across species. That they are so prevalent indicates that they occupy an important niche within the immune system. However, these TCRs are produced by a largely random gene recombination process, which seems a risky approach for the immune system to acquire these innate-like cells. We surveyed studies reporting NKT and MAIT TCRα sequences for six and four different species, respectively. Although the germline nature of the canonical human and mouse NKT and mouse MAIT TCRα sequences and an overlap of nucleotides between the mouse MAIT-related Vα and Jα genes have been noted in previous studies, in this study we demonstrate that, for all reported species, the canonical TCRα amino acid sequences can be encoded by at least one germline-derived nucleotide sequence. Moreover, these nucleotide sequences can utilize an overlap between the Vα and Jα genes in their production, which enables them to be produced by a large variety of recombination mechanisms. We investigated the role of these TCRα features in the production of the canonical NKT and MAIT TCRα sequences. In computer simulations of a random recombination process involving the invariant NKT and MAIT TCRα gene combinations for each species, the canonical NKT and MAIT TCRα sequences were the first or second most generated of all sequences with the CDR3α length restrictions associated with NKT and MAIT cells. These results suggest that the immune machinery enables the canonical NKT and MAIT TCRα sequences to be produced with great efficiency through the process of convergent recombination, ensuring their prevalence across individuals and species.
Collapse
Affiliation(s)
- Hui Yee Greenaway
- Computational Biology Group, Centre for Vascular Research, University of New South Wales, Kensington, NSW, Australia
| | | | | | | | | | | |
Collapse
|
17
|
Hix LM, Shi YH, Brutkiewicz RR, Stein PL, Wang CR, Zhang M. CD1d-expressing breast cancer cells modulate NKT cell-mediated antitumor immunity in a murine model of breast cancer metastasis. PLoS One 2011; 6:e20702. [PMID: 21695190 PMCID: PMC3113806 DOI: 10.1371/journal.pone.0020702] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 05/07/2011] [Indexed: 12/31/2022] Open
Abstract
Background Tumor tolerance and immune suppression remain formidable obstacles to the efficacy of immunotherapies that harness the immune system to eradicate breast cancer. A novel syngeneic mouse model of breast cancer metastasis was developed in our lab to investigate mechanisms of immune regulation of breast cancer. Comparative analysis of low-metastatic vs. highly metastatic tumor cells isolated from these mice revealed several important genetic alterations related to immune control of cancer, including a significant downregulation of cd1d1 in the highly metastatic tumor cells. The cd1d1 gene in mice encodes the MHC class I-like molecule CD1d, which presents glycolipid antigens to a specialized subset of T cells known as natural killer T (NKT) cells. We hypothesize that breast cancer cells, through downregulation of CD1d and subsequent evasion of NKT-mediated antitumor immunity, gain increased potential for metastatic tumor progression. Methodology/Principal Findings In this study, we demonstrate in a mouse model of breast cancer metastasis that tumor downregulation of CD1d inhibits iNKT-mediated antitumor immunity and promotes metastatic breast cancer progression in a CD1d-dependent manner in vitro and in vivo. Using NKT-deficient transgenic mouse models, we demonstrate important differences between type I and type II NKT cells in their ability to regulate antitumor immunity of CD1d-expressing breast tumors. Conclusions/Significance The results of this study emphasize the importance of determining the CD1d expression status of the tumor when tailoring NKT-based immunotherapies for the prevention and treatment of metastatic breast cancer.
Collapse
Affiliation(s)
- Laura M. Hix
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Yihui H. Shi
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Randy R. Brutkiewicz
- Department of Microbiology and Immunology, The Walther Oncology Center and Cancer Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Paul L. Stein
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Ming Zhang
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
18
|
Subleski JJ, Hall VL, Wolfe TB, Scarzello AJ, Weiss JM, Chan T, Hodge DL, Back TC, Ortaldo JR, Wiltrout RH. TCR-dependent and -independent activation underlie liver-specific regulation of NKT cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:838-47. [PMID: 21148802 PMCID: PMC3725575 DOI: 10.4049/jimmunol.1001735] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The fate of invariant NKT (iNKT) cells following activation remains controversial and unclear. We systemically examined how iNKT cells are regulated following TCR-dependent and -independent activation with α-galactosylceramide (αGC) or IL-18 plus IL-12, respectively. Our studies reveal activation by αGC or IL-18 plus IL-12 induced transient depletion of iNKT cells exclusively in the liver that was independent of caspase 3-mediated apoptosis. The loss of iNKT cells was followed by repopulation and expansion of phenotypically distinct cells via different mechanisms. Liver iNKT cell expansion following αGC, but not IL-18 plus IL-12, treatment required an intact spleen and IFN-γ. Additionally, IL-18 plus IL-12 induced a more prolonged expansion of liver iNKT cells compared with αGC. iNKT cells that repopulate the liver following αGC had higher levels of suppressive receptors PD-1 and Lag3, whereas those that repopulate the liver following IL-18 plus IL-12 had increased levels of TCR and ICOS. In contrast to acute treatment that caused a transient loss of iNKT cells, chronic αGC or IL-18 plus IL-12 treatment caused long-term systemic loss requiring an intact thymus for repopulation of the liver. This report reveals a previously undefined role for the liver in the depletion of activated iNKT cells. Additionally, TCR-dependent and -independent activation differentially regulate iNKT cell distribution and phenotype. These results provide new insights for understanding how iNKT cells are systemically regulated following activation.
Collapse
Affiliation(s)
- Jeff J. Subleski
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick MD, USA 21702
| | - Veronica L. Hall
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick MD, USA 21702
| | - Thomas B. Wolfe
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick MD, USA 21702
| | - Anthony J. Scarzello
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick MD, USA 21702
| | - Jonathan M. Weiss
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick MD, USA 21702
| | - Tim Chan
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick MD, USA 21702
| | - Deborah L. Hodge
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick MD, USA 21702
| | - Timothy C. Back
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick MD, USA 21702
| | - John R. Ortaldo
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick MD, USA 21702
| | - Robert H. Wiltrout
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick MD, USA 21702
| |
Collapse
|
19
|
|
20
|
Identification of canine natural CD3-positive T cells expressing an invariant T-cell receptor alpha chain. Vet Immunol Immunopathol 2009; 132:224-31. [DOI: 10.1016/j.vetimm.2009.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 07/08/2009] [Accepted: 08/04/2009] [Indexed: 11/22/2022]
|
21
|
Taniguchi M, Tashiro T, Dashtsoodol N, Hongo N, Watarai H. The specialized iNKT cell system recognizes glycolipid antigens and bridges the innate and acquired immune systems with potential applications for cancer therapy. Int Immunol 2009; 22:1-6. [PMID: 19858073 DOI: 10.1093/intimm/dxp104] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Invariant NKT (iNKT) cells bridge innate and acquired immunity and play an important role in both protective and regulatory responses. The nature of the response is dictated by the initial cytokine environment: interaction with IL-10-producing cells induces negative regulatory T(h)2/regulatory T cell-type iNKT cells, while that with IL-12-producing cells results in pro-inflammatory T(h)1-type responses. Particularly, in the anti-tumor response, iNKT cells mediate adjuvant activity by their production of IFN-gamma, which in turn activates both innate and acquired immune systems. Thus, upon activation of iNKT cells, both MHC(-) and MHC(+) tumor cells can be efficiently eliminated. On the basis of these mechanisms, iNKT cell-targeted adjuvant cell therapies have been developed and have shown great promise in initial clinical trials on cancer patients.
Collapse
Affiliation(s)
- Masaru Taniguchi
- Laboratory of Immune Regulation, RIKEN Research Center for Allergy and Immunology, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Japan
| | | | | | | | | |
Collapse
|
22
|
Szczepanik M, Nowak B, Askenase P, Ptak W. Soluble T Cell Receptors Modulate Cytokine Production and Oxygen Metabolism by Peritoneal Macrophages. Immunol Invest 2009. [DOI: 10.3109/08820130009060875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Pan PY, Ozao J, Zhou Z, Chen SH. Advancements in immune tolerance. Adv Drug Deliv Rev 2008; 60:91-105. [PMID: 17976856 DOI: 10.1016/j.addr.2007.08.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Accepted: 08/14/2007] [Indexed: 01/01/2023]
Abstract
In recent years, considerable attention has been given to immune tolerance and its potential clinical applications for the treatment of cancers and autoimmune diseases, and the prevention of allo-graft rejection and graft-versus-host diseases. Advances in our understanding of the underlying mechanisms of establishment and maintenance of immune tolerance in various experimental settings and animal models, and in our ability to manipulate the development of various immune tolerogenic cells in vitro and in vivo, have generated significant momentum for the field of cell-based tolerogenic therapy. This review briefly summarizes the major tolerogenic cell populations and their mechanisms of action, while focusing mainly on potential exploitation of their tolerogenic mechanisms for clinical applications.
Collapse
Affiliation(s)
- Ping-Ying Pan
- Department of Gene and Cell Medicine, Mount Sinai School od Medicine, New York, NY 10029, USA.
| | | | | | | |
Collapse
|
24
|
Abstract
Invariant natural killer T (iNKT) cells as we know them today are a unique subset of mature T cells co-expressing a semi-invariant Valpha14/Vbeta8 TCR and surface markers characteristic of NK cells. The semi-invariant TCR on iNKT cells recognizes glycolipids bound to monomorphic CD1d molecules, leading to rapid cytokine production. The purpose of this historical perspective is to describe how a series of seemingly unrelated findings in the late 1980s and early 1990s crystallized in the discovery of iNKT cells. The story is told from a personal viewpoint, with a particular effort to place both breakthroughs and misinterpretations in the context of their era.
Collapse
Affiliation(s)
- H Robson Macdonald
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, 1066 Epalinges, Switzerland.
| |
Collapse
|
25
|
Abstract
NKT cells are a relatively newly recognized member of the immune community, with profound effects on the rest of the immune system despite their small numbers. They are true T cells with a T cell receptor (TCR), but unlike conventional T cells that detect peptide antigens presented by conventional major histocompatibility (MHC) molecules, NKT cells recognize lipid antigens presented by CD1d, a nonclassical MHC molecule. As members of both the innate and adaptive immune systems, they bridge the gap between these, and respond rapidly to set the tone for subsequent immune responses. They fill a unique niche in providing the immune system a cellular arm to recognize lipid antigens. They play both effector and regulatory roles in infectious and autoimmune diseases. Furthermore, subsets of NKT cells can play distinct and sometimes opposing roles. In cancer, type I NKT cells, defined by their invariant TCR using Valpha14Jalpha18 in mice and Valpha24Jalpha18 in humans, are mostly protective, by producing interferon-gamma to activate NK and CD8(+) T cells and by activating dendritic cells to make IL-12. In contrast, type II NKT cells, characterized by more diverse TCRs recognizing lipids presented by CD1d, primarily inhibit tumor immunity. Moreover, type I and type II NKT cells counter-regulate each other, forming a new immunoregulatory axis. Because NKT cells respond rapidly, the balance along this axis can greatly influence other immune responses that follow. Therefore, learning to manipulate the balance along the NKT regulatory axis may be critical to devising successful immunotherapies for cancer.
Collapse
Affiliation(s)
- Masaki Terabe
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
26
|
Scott-Browne JP, Matsuda JL, Mallevaey T, White J, Borg NA, McCluskey J, Rossjohn J, Kappler J, Marrack P, Gapin L. Germline-encoded recognition of diverse glycolipids by natural killer T cells. Nat Immunol 2007; 8:1105-13. [PMID: 17828267 DOI: 10.1038/ni1510] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 08/10/2007] [Indexed: 12/13/2022]
Abstract
Natural killer T cells expressing 'invariant' T cell receptor alpha-chains (TCRalpha chains) containing variable (V) and joining (J) region V(alpha)14-J(alpha)18 (V(alpha)14i) rearrangements recognize both endogenous and microbial glycolipids in the context of CD1d. How cells expressing an invariant TCRalpha chain and a restricted set of TCRbeta chains recognize structurally diverse antigens is not clear. Here we show that a V(alpha)14i TCR recognized many alpha-linked glycolipids by means of a 'hot-spot' of germline-encoded amino acids in complementarity-determining regions 3alpha, 1alpha and 2beta. This hot-spot did not shift during the recognition of structurally distinct antigens, suggesting that the V(alpha)14i TCR functions as a pattern-recognition receptor, conferring on natural killer T cells the ability to sense and respond in an innate way to pathogens displaying antigenic alpha-linked glycolipids.
Collapse
MESH Headings
- Animals
- Antigens, CD1/chemistry
- Antigens, CD1/immunology
- Antigens, CD1d
- Complementarity Determining Regions
- Crystallography
- Galactosylceramides/chemistry
- Galactosylceramides/immunology
- Immunity, Innate
- Killer Cells, Natural/immunology
- Mice
- Mice, Inbred C57BL
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/physiology
Collapse
Affiliation(s)
- James P Scott-Browne
- Department of Immunology, University of Colorado Health Sciences Center and National Jewish Medical and Research Center, Denver, Colorado, 80206, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Recognized more than a decade ago, NKT cells differentiate from mainstream thymic precursors through instructive signals emanating during TCR engagement by CD1d-expressing cortical thymocytes. Their semi-invariant alphabeta TCRs recognize isoglobotrihexosylceramide, a mammalian glycosphingolipid, as well as microbial alpha-glycuronylceramides found in the cell wall of Gram-negative, lipopolysaccharide-negative bacteria. This dual recognition of self and microbial ligands underlies innate-like antimicrobial functions mediated by CD40L induction and massive Th1 and Th2 cytokine and chemokine release. Through reciprocal activation of NKT cells and dendritic cells, synthetic NKT ligands constitute promising new vaccine adjuvants. NKT cells also regulate a range of immunopathological conditions, but the mechanisms and the ligands involved remain unknown. NKT cell biology has emerged as a new field of research at the frontier between innate and adaptive immunity, providing a powerful model to study fundamental aspects of the cell and structural biology of glycolipid trafficking, processing, and recognition.
Collapse
MESH Headings
- Adjuvants, Immunologic/pharmacology
- Animals
- Antigen Presentation/immunology
- Antigens, Bacterial/immunology
- Antigens, CD1/immunology
- Antigens, CD1d
- Autoantigens/immunology
- Bacterial Vaccines/immunology
- Bacterial Vaccines/pharmacology
- CD40 Ligand/immunology
- Chemokines/immunology
- Dendritic Cells/immunology
- Globosides/immunology
- Glucosylceramides/immunology
- Gram-Negative Bacteria/immunology
- Gram-Negative Bacterial Infections/immunology
- Humans
- Immunity, Innate
- Killer Cells, Natural/immunology
- Lymphocyte Activation/immunology
- Models, Immunological
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Th1 Cells/immunology
- Th2 Cells/immunology
- Trihexosylceramides/immunology
Collapse
Affiliation(s)
- Albert Bendelac
- Howard Hughes Medical Institute, Committee on Immunology, Department of Pathology University of Chicago, Chicago, Illinois 60637, USA.
| | | | | |
Collapse
|
28
|
Togashi Y, Chamoto K, Wakita D, Tsutsumi N, Iwakura Y, Matsubara N, Kitamura H, Nishimura T. Natural killer T cells from interleukin-4-deficient mice are defective in early interferon-gamma production in response to alpha-galactosylceramide. Cancer Sci 2007; 98:721-5. [PMID: 17359285 PMCID: PMC11159288 DOI: 10.1111/j.1349-7006.2007.00451.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Discovery of the natural killer (NK) T cell-specific ligand, alpha-galactosylceramide (alpha-GalCer) has enabled us to investigate the functional regulation of NKT cells. However, the detailed mechanism of cytokine production by NKT cells remains to be elucidated. Here we evaluated the role of interleukin (IL)-4 in the production of interferon (IFN)-gamma from NKT cells using IL-4-deficient C57BL/6 mice (IL-4(-/-) mice). Administration of alpha-GalCer into wild-type C57BL/6 mice caused the production of both IFN-gamma and IL-4 in serum or cytoplasm within 4 h of the injection. Unexpectedly, however, IL-4(-/-) mice-derived NKT cells did not produce any IFN-gamma at early phase after primary stimulation with alpha-GalCer. Because NKT cells from IL-4(-/-) mice produced IFN-gamma when they were stimulated secondarily with alpha-GalCer in vitro for 72 h, NKT cells from IL-4(-/-) mice were not completely genetically deficient for IFN-gamma production. To elucidate which cells, NKT cells or dendritic cells (DC), were responsible for the deficiency in IFN-gamma production in IL-4(-/-) mice, we carried out an add-back experiment using purified NKT cells and DC, which were prepared from either wild-type mice or IL-4(-/-) mice. NKT cells from wild-type mice produced IFN-gamma when they were cocultured with DC prepared from either wild-type or IL-4(-/-) mice, whereas NKT cells from IL-4(-/-) mice did not produce IFN-gamma by coculturing with DC from either wild-type or IL-4(-/-) mice. These results indicate that NKT cells, not DC, were responsible for the deficiency in IFN-gamma production in IL-4(-/-) mice. Thus, IL-4 is required for the activation of NKT cells to produce IFN-gamma in response to alpha-GalCer.
Collapse
Affiliation(s)
- Yuji Togashi
- Bioimmulance Co., 2-1 E2-17, Toyohira-ku, Sapporo 062-8517, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Kishimoto H, Ohteki T, Yajima N, Kawahara K, Natsui M, Kawarasaki S, Hamada K, Horie Y, Kubo Y, Arase S, Taniguchi M, Vanhaesebroeck B, Mak TW, Nakano T, Koyasu S, Sasaki T, Suzuki A. The Pten/PI3K pathway governs the homeostasis of Valpha14iNKT cells. Blood 2006; 109:3316-24. [PMID: 17170126 DOI: 10.1182/blood-2006-07-038059] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tumor suppressor PTEN is mutated in many human cancers. We previously used the Cre-loxP system to generate mice (LckCrePten mice) with a Pten mutation in T-lineage cells. Here we describe the phenotype of Pten-deficient Valpha14iNKT cells. A failure in the development of Valpha14iNKT cells occurs in the LckCrePten thymus between stage 2 (CD44(high)NK1.1(-)) and stage 3 (CD44(high)NK1.1(+)), resulting in decreased numbers of peripheral Valpha14iNKT cells. In vitro, Pten-deficient Valpha14iNKT cells show reduced proliferation and cytokine secretion in response to alphaGalCer stimulation but enhanced inhibitory Ly49 receptor expression. Following interaction with dendritic cells (DCs) loaded with alphaGalCer, Pten-deficient Valpha14iNKT cells demonstrate activation of PI3K. Indeed, the effects of the Pten mutation require intact function of the PI3K subunits p110gamma and p110delta. In vivo, LckCrePten mice display reduced serum IFNgamma after alphaGalCer administration. Importantly, Valpha14iNKT cell-mediated protection against the metastasis of melanoma cells to the lung was impaired in the absence of Pten. Thus, the Pten/PI3K pathway is indispensable for the homeostasis and antitumor surveillance function of Valpha14iNKT cells.
Collapse
MESH Headings
- Animals
- Antigens, Ly/immunology
- Antigens, Surface/immunology
- Cell Line, Tumor
- Class I Phosphatidylinositol 3-Kinases
- Dendritic Cells/immunology
- Homeostasis/genetics
- Homeostasis/immunology
- Hyaluronan Receptors/immunology
- Immunologic Surveillance/genetics
- Immunologic Surveillance/immunology
- Killer Cells, Natural/immunology
- Lectins, C-Type/immunology
- Mice
- Mice, Transgenic
- Mutation
- NK Cell Lectin-Like Receptor Subfamily B
- PTEN Phosphohydrolase/genetics
- PTEN Phosphohydrolase/immunology
- Phosphatidylinositol 3-Kinases/immunology
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, NK Cell Lectin-Like
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Hiroyuki Kishimoto
- Department of Molecular Biology, Akita University School of Medicine, Hondo 1-1-1, Akita 0108-543, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Chamoto K, Takeshima T, Kosaka A, Tsuji T, Matsuzaki J, Togashi Y, Ikeda H, Nishimura T. NKT cells act as regulatory cells rather than killer cells during activation of NK cell-mediated cytotoxicity by alpha-galactosylceramide in vivo. Immunol Lett 2005; 95:5-11. [PMID: 15325792 DOI: 10.1016/j.imlet.2004.04.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2003] [Revised: 04/12/2004] [Accepted: 04/21/2004] [Indexed: 11/22/2022]
Abstract
Administration of NKT cell ligands, alpha-galactosylceramide (alpha-GalCer) resulted in the activation of both cytokine production and natural killing. These responses were abolished in both CD1d-deficient mice and Valpha14NKT-deficient mice. Therefore, NKT cells have been considered to be responsible cells for both cytokine production and natural killing. Here, we reevaluated a critical role of NKT and NK cells at early time after alpha-GalCer administration. Intracellular staining experiments demonstrated that NKT cells were the earliest source of both IL-4 and IFN-gamma production after alpha-GalCer administration in vivo. However, these alpha-GalCer-activated NKT cells exhibited no significant natural killing activity. In contrast, isolated NK1.1+CD3- classical NK cells exhibited greatly enhanced natural killing activity 6 h after alpha-GalCer administration. NKT cells, however, exhibited a strong cytotoxicity when they were activated and expanded with alpha-GalCer plus IL-2 in vitro. These results indicated that NKT cells act as regulatory cells via production of cytokines for activation of NK cell-mediated cytotoxicity in vivo at early phase after alpha-GalCer administration. Thus, NK cells rather than NKT cells may be a crucial early activated killer induced by alpha-GalCer in vivo.
Collapse
Affiliation(s)
- Kenji Chamoto
- Division of Immunoregulation, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, N-15, W-7, Sapporo 060-0815, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Godfrey DI, MacDonald HR, Kronenberg M, Smyth MJ, Van Kaer L. NKT cells: what's in a name? Nat Rev Immunol 2004; 4:231-7. [PMID: 15039760 DOI: 10.1038/nri1309] [Citation(s) in RCA: 949] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Dale I Godfrey
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | | | |
Collapse
|
32
|
Taniguchi M, Harada M, Kojo S, Nakayama T, Wakao H. The regulatory role of Valpha14 NKT cells in innate and acquired immune response. Annu Rev Immunol 2003; 21:483-513. [PMID: 12543936 DOI: 10.1146/annurev.immunol.21.120601.141057] [Citation(s) in RCA: 532] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A novel lymphocyte lineage, Valpha14 natural killer T (NKT) cells, is now well established as distinct from conventional alphabeta T cells. Valpha14 NKT cells express a single invariant Valpha14 antigen receptor that is essential for their development. Successful identification of a specific ligand, alpha-galactosylceramide(alpha-GalCer), and the establishment of gene-manipulated mice with selective loss of Valpha14 NKT cells helped elucidate the remarkable functional diversity of Valpha14 NKT cells in various immune responses such as host defense by mediating anti-nonself innate immune reaction, homeostatic regulation of anti-self responses, and antitumor immunity.
Collapse
MESH Headings
- Animals
- Autoimmune Diseases/immunology
- Biological Evolution
- Cell Differentiation
- Humans
- Immune Tolerance
- Immunity, Innate
- Infections/immunology
- Killer Cells, Natural/cytology
- Killer Cells, Natural/immunology
- Ligands
- Mice
- Mice, Knockout
- Multigene Family
- Neoplasms/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Selection, Genetic
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- Th1 Cells/immunology
- Th2 Cells/immunology
Collapse
Affiliation(s)
- Masaru Taniguchi
- Laboratory of Immune Regulation, RIKEN Research Center for Allergy and Immunology, Chuo-ku, Chiba 260-8670, Japan.
| | | | | | | | | |
Collapse
|
33
|
Smyth MJ, Crowe NY, Pellicci DG, Kyparissoudis K, Kelly JM, Takeda K, Yagita H, Godfrey DI. Sequential production of interferon-gamma by NK1.1(+) T cells and natural killer cells is essential for the antimetastatic effect of alpha-galactosylceramide. Blood 2002; 99:1259-66. [PMID: 11830474 DOI: 10.1182/blood.v99.4.1259] [Citation(s) in RCA: 300] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The antimetastatic effect of the CD1d-binding glycolipid, alpha-galactosylceramide (alpha-GalCer), is mediated by NK1.1(+)T (NKT) cells; however, the mechanisms behind this process are poorly defined. Although it has been shown to involve NK cells and interferon-gamma (IFN-gamma) production, the way these factors collaborate to mediate effective tumor rejection and the importance of other factors characteristic of NKT cell and NK cell activation are unknown. Using gene-targeted mice and antibody treatments, the critical need for interleukin 12 (IL-12), IFN-gamma, and NK cells has been shown in the antimetastatic activity of alpha-GalCer in the lungs and the liver. By contrast, in lung and liver metastasis models, cytotoxic molecules expressed by NK cells and NKT cells (perforin, Fas ligand, and tumor necrosis factor-related apoptosis-inducing ligand) and an NKT cell-secreted cytokine, IL-4, were not necessary for the antitumor activity of alpha-GalCer. Like IL-12, IL-18 was required for optimal serum IFN-gamma induction and control of lung metastases by alpha-GalCer. IL-18 was unnecessary for alpha-GalCer-related suppression of liver metastases. Most importantly, after adoptive transfer of alpha-GalCer-reactive NKT cells or NK cells into NKT cell-deficient, IFN-gamma-deficient, or RAG-1-deficient mice, it was demonstrated that the sequential production of IFN-gamma by NKT cells and NK cells was absolutely required to reconstitute the antimetastatic activity of alpha-GalCer.
Collapse
Affiliation(s)
- Mark J Smyth
- Cancer Immunology, Trescowthick Laboratories, Peter MacCallum Cancer Institute, East Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Gui M, Li J, Wen LJ, Hardy RR, Hayakawa K. TCR beta chain influences but does not solely control autoreactivity of V alpha 14J281T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:6239-46. [PMID: 11714786 DOI: 10.4049/jimmunol.167.11.6239] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD1d-dependent accumulation of alphabeta T cells bearing a canonical Valpha14Jalpha281 alpha-chain (Valpha14+ T cells) is thought to model positive selection of lipid-specific T cells, based on their ability to recognize CD1d-presented self glycolipid(s). However, it has been difficult to demonstrate self ligand specificity in this system, as most Valpha14+ T cells do not exhibit significant autoreactivity despite high reactivity to alpha-galactosylceramide presented by CD1d (alpha-GalCer/CD1d). To assess the role of TCRbeta chain in determining the alpha-GalCer/CD1d vs autoreactive specificity of Valpha14+ T cells, we conducted TCRalpha or TCRbeta chain transduction experiments. In this study we demonstrate, by combining different TCRbeta chains with the Valpha14 alpha-chain in retrovirally transduced T cell lines, that the Valpha14 alpha-chain plays a primary role, necessary but not sufficient for imparting alpha-GalCer/CD1d recognition. beta-Chain usage alone is not the sole factor that controls the extent of autoreactivity in Valpha14+ T cells, since transduction of TCRalphabeta chains from a high CD1d autoreactive Valpha14+ T cell line conferred the alpha-GalCer/CD1d specificity without induction of autoreactivity. Thus, heterogeneity of Valpha14+ T cell reactivity is due to both beta-chain diversity and control mechanism(s) beyond primary TCR structure.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, CD1/immunology
- Antigens, CD1/metabolism
- Antigens, CD1d
- Autoantigens/biosynthesis
- Autoantigens/immunology
- Complementarity Determining Regions/biosynthesis
- Complementarity Determining Regions/genetics
- Epitopes, T-Lymphocyte/analysis
- Galactosylceramides/immunology
- Galactosylceramides/metabolism
- Hybridomas
- Mice
- Mice, Inbred C57BL
- Mice, Inbred ICR
- Mice, Knockout
- Molecular Sequence Data
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Transduction, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- M Gui
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | | | |
Collapse
|
35
|
Kamada N, Iijima H, Kimura K, Harada M, Shimizu E, Kawano T, Shinkai H, Nakayama T, Sakai T, Brossay L, Kronenberg M, Taniguchi M. Crucial amino acid residues of mouse CD1d for glycolipid ligand presentation to V(alpha)14 NKT cells. Int Immunol 2001; 13:853-61. [PMID: 11431415 DOI: 10.1093/intimm/13.7.853] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A novel lymphocyte, NKT cells bearing an invariant V(alpha)14 antigen receptor, specifically recognizes alpha-galactosylceramide (alpha-GalCer) exclusively presented by mouse CD1d (mCD1d). However, the precise molecular interaction remains unclear. For the basis of functional analyses, a docking model of alpha-GalCer with the crystal structure of mCD1d was constructed. Possible residues involved in the alpha-GalCer--mCD1d interaction were found to be Arg79, Glu83 and Asp80 for carbohydrate recognition, and Asp153 for interaction with the amide group on the fatty acyl chain. The alpha-GalCer-presenting ability of various transfectants expressing mutant mCD1d was completely abrogated if a single amino acid mutation was induced at positions 79, 80, 83 or 153, suggesting that the polar amino acids above the F' pocket are crucial for alpha-GalCer presentation to activate V(alpha)14 NKT cells. The possibility that Glu83 is a contact site for the NKT cell receptor is also discussed.
Collapse
MESH Headings
- Amino Acids/chemistry
- Animals
- Antigen Presentation/immunology
- Antigens, CD1/chemistry
- Antigens, CD1/genetics
- Antigens, CD1/immunology
- Antigens, CD1d
- Binding Sites
- Computer Simulation
- Female
- Glucosylceramides/chemistry
- Glucosylceramides/immunology
- Killer Cells, Natural/immunology
- Ligands
- Male
- Mice
- Mice, Inbred C57BL
- Models, Molecular
- Protein Structure, Tertiary
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Structure-Activity Relationship
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- N Kamada
- Core Research for Evolutional Science and Technology and Department of Molecular Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Yamasaki M, Sasho T, Moriya H, Kanno M, Harada M, Kamada N, Shimizu E, Nakayama T, Taniguchi M. Extrathymic development of V alpha 11 T cells in placenta during pregnancy and their possible physiological role. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:7244-9. [PMID: 11390473 DOI: 10.4049/jimmunol.166.12.7244] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The molecular and cellular mechanisms of the feto-maternal immune responses in the placenta in connection with natural abortion remain unclear. In this report we provide evidence that V(alpha11) T cells developed in the placenta may be responsible for the induction of natural abortion. The majority of V(alpha11) TCRs detected during pregnancy showed a consensus motif in the CDR3 region, similar to that of anti-GM3 TCR clones, and were of maternal origin. V(alpha11) TCRs were found in the middle to late stages of gestation due to de novo generation in the placenta, not to migration from the maternal side, as evidenced by the significant increases in the out-of-frame V(alpha11) TCR mRNA and the copy number of circular DNA generated by V(alpha11) gene rearrangements. Furthermore, administration of anti-V(alpha11) Ab to pregnant mice resulted in a significant decrease in the incidence of fetal demise, suggesting that V(alpha11) T cells detected in the placenta develop extrathymically and are involved in natural abortion.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Base Sequence
- Cell Movement/immunology
- Female
- Injections, Intravenous
- Maternal-Fetal Exchange/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Placenta/cytology
- Placenta/immunology
- Pregnancy
- Pregnancy, Animal/immunology
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/physiology
- Thymus Gland/cytology
- Thymus Gland/immunology
- Transcription, Genetic/immunology
Collapse
Affiliation(s)
- M Yamasaki
- Core Research for Evolutional Science and Technology, Department of Molecular Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Seino KI, Fukao K, Muramoto K, Yanagisawa K, Takada Y, Kakuta S, Iwakura Y, Van Kaer L, Takeda K, Nakayama T, Taniguchi M, Bashuda H, Yagita H, Okumura K. Requirement for natural killer T (NKT) cells in the induction of allograft tolerance. Proc Natl Acad Sci U S A 2001; 98:2577-81. [PMID: 11226281 PMCID: PMC30180 DOI: 10.1073/pnas.041608298] [Citation(s) in RCA: 205] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In this study, we investigated the role of Valpha14 natural killer T (NKT) cells in transplant immunity. The ability to reject allografts was not significantly different between wild-type (WT) and Valpha14 NKT cell-deficient mice. However, in models in which tolerance was induced against cardiac allografts by blockade of lymphocyte function-associated antigen-1/intercellular adhesion molecule-1 or CD28/B7 interactions, long-term acceptance of the grafts was observed only in WT but not Valpha14 NKT cell-deficient mice. Adoptive transfer with Valpha14 NKT cells restored long-term acceptance of allografts in Valpha14 NKT cell-deficient mice. The critical role of Valpha14 NKT cells to mediate immunosuppression was also observed in vitro in mixed lymphocyte cultures in which lymphocyte function-associated antigen-1/intercellular adhesion molecule-1 or CD28/B7 interactions were blocked. Experiments using IL-4- or IFN-gamma-deficient mice suggested a critical contribution of IFN-gamma to the Valpha14 NKT cell-mediated allograft acceptance in vivo. These results indicate a critical contribution of Valpha14 NKT cells to the induction of allograft tolerance and provide a useful model to investigate the regulatory role of Valpha14 NKT cells in various immune responses.
Collapse
Affiliation(s)
- K I Seino
- Department of Surgery, Institute of Clinical Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba Science City, Ibaraki 305-8575, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
A novel lymphocyte lineage, V alpha 14 NKT cells, has recently been identified and appears to be distinct from conventional alphabeta T cells. V alpha 14 NKT cells express a single invariant V alpha 14 antigen receptor that is essential for their development. They recognize a glycolipid antigen (alpha -galactosylceramide) or parasitic glycophosphatidylinositols (GPI) in association with a monomorphic class Ib, CD1d, and perform various functions such as Th1 and Th2 cytokine production as well as perforin/granzyme B-mediated cytotoxicity. Although the precise physiological function of V alpha 14 NKT cells remains to be elucidated, emerging experimental evidence suggests their intriguing regulatory features in the immune system.
Collapse
Affiliation(s)
- M Taniguchi
- CREST (Core Research for Evolutional Science and Technology) Project and Department of Molecular Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | | |
Collapse
|
39
|
Ikehara Y, Yasunami Y, Kodama S, Maki T, Nakano M, Nakayama T, Taniguchi M, Ikeda S. CD4(+) Valpha14 natural killer T cells are essential for acceptance of rat islet xenografts in mice. J Clin Invest 2000; 105:1761-7. [PMID: 10862791 PMCID: PMC378508 DOI: 10.1172/jci8922] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pancreatic islet transplantation represents a potential treatment for insulin-dependent diabetes mellitus. However, the precise cellular and molecular mechanisms of the immune reactions against allogeneic and xenogeneic transplanted islets remain unclear. Here, we demonstrate that CD4(+) Valpha14 natural killer T (NKT) cells, a recently identified lymphoid cell lineage, are required for the acceptance of intrahepatic rat islet xenografts. An anti-CD4 mAb, administrated after transplantation, allowed islet xenografts to be accepted by C57BL/6 mice, with no need for immunosuppressive drugs. The dose of anti-CD4 mAb was critical, and the beneficial effect appeared to be associated with the reappearance of CD4(+) NKT cells at around 14 days after transplantation. Interestingly, rat islet xenografts were rejected, despite the anti-CD4 mAb treatment, in Valpha14 NKT cell-deficient mice, which exhibit the normal complement of conventional lymphoid cells; adoptive transfer of Valpha14 NKT cells into Valpha14 NKT cell-deficient mice restored the acceptance of rat islet xenografts. In addition, rat islet xenografts were accepted by Valpha14 NKT mice having only Valpha14 NKT cells and no other lymphoid cells. These results indicate that Valpha14 NKT cells play a crucial role in the acceptance of rat islet xenografts in mice treated with anti-CD4 antibody, probably by serving as immunosuppressive regulatory cells.
Collapse
Affiliation(s)
- Y Ikehara
- Department of Surgery I, Fukuoka University School of Medicine, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Matsuura A, Kinebuchi M, Chen HZ, Katabami S, Shimizu T, Hashimoto Y, Kikuchi K, Sato N. NKT cells in the rat: organ-specific distribution of NK T cells expressing distinct V alpha 14 chains. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:3140-8. [PMID: 10706704 DOI: 10.4049/jimmunol.164.6.3140] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Rat invariant TCR alpha-chains and NKT cells were investigated to clarify whether CD1d-mediated recognition by NKT cells is conserved further in evolution. Rats had multiple-copies of TRAV14 genes, which can be categorized into two types according to the diversity accumulated in the CDR2 region. Rats retained invariant TCR alpha forms with the homogeneous junctional region similar to mouse invariant TRAV14-J281. The proportion of invariant TCR among V alpha 14+ clones was 12.9% in the thymus and increased in the periphery, 31% in the spleen and 95% in hepatic sinusoidal cells. The invariant TRAV14-J281 was expressed by liver sinusoidal and splenic NKT cells with CD8, CD44high, and TCR V beta 8. Type 1 invariant TCR alpha was expressed more frequently in hepatic lymphocytes, while type 2 invariant TCR alpha was expressed predominantly in the spleen. Both types of cells cytolyzed to and were stimulated to proliferate by CD1d-expressing cells in a CD1d-restricted manner. These results suggested that rat NKT cells bearing distinct V alpha 14 chains are distributed in a tissue-specific pattern. NKT cell populations in rats were more variable than those in mice, indicating that they play novel roles in nature. The implication of the molecular interaction between the structurally diverse invariant TCR alpha and CD1d/ligand complex in different organs is discussed.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, CD1/immunology
- Antigens, Surface/biosynthesis
- Gene Expression Regulation/immunology
- Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor
- Genes, T-Cell Receptor alpha
- Immunophenotyping
- Killer Cells, Natural/classification
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lectins, C-Type
- Liver/cytology
- Liver/immunology
- Lymphocyte Activation
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- NK Cell Lectin-Like Receptor Subfamily B
- Organ Specificity/genetics
- Organ Specificity/immunology
- Protein Isoforms/biosynthesis
- Protein Isoforms/genetics
- Rats
- Rats, Inbred BN
- Rats, Inbred F344
- Rats, Inbred Lew
- Rats, Nude
- Rats, Sprague-Dawley
- Rats, Wistar
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/classification
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- T-Lymphocyte Subsets/classification
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- A Matsuura
- Sapporo Medical University, School of Medicine, Department of Pathology, Sapporo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Ishizaka K, Ishii Y, Nakano T, Sugie K. Biochemical basis of antigen-specific suppressor T cell factors: controversies and possible answers. Adv Immunol 2000; 74:1-60. [PMID: 10605603 DOI: 10.1016/s0065-2776(08)60907-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
MESH Headings
- Adoptive Transfer
- Animals
- Antibodies, Monoclonal/immunology
- Antigens/immunology
- Epitopes/immunology
- H-2 Antigens/immunology
- Histocompatibility Antigens Class II/immunology
- Humans
- Immune Tolerance
- Lymphokines/chemistry
- Lymphokines/immunology
- Mice
- Mice, Inbred Strains
- Models, Immunological
- Models, Molecular
- Phospholipases A/chemistry
- Prostatic Secretory Proteins
- Protein Binding
- Protein Conformation
- Radiation Chimera
- Receptors, Antigen, T-Cell/analysis
- Signal Transduction
- Suppressor Factors, Immunologic/chemistry
- Suppressor Factors, Immunologic/genetics
- Suppressor Factors, Immunologic/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Regulatory/classification
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
Collapse
Affiliation(s)
- K Ishizaka
- La Jolla Institute for Allergy and Immunology, San Diego, California, USA
| | | | | | | |
Collapse
|
42
|
Szczepanik M, Nowak B, Askenase P, Ptak W. Soluble T cell receptors modulate cytokine production and oxygen metabolism by peritoneal macrophages. Immunol Invest 2000; 29:27-39. [PMID: 10709844 DOI: 10.3109/08820130009105142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Preincubation of peritoneal macrophages and their subsequent culture with recombinant soluble T cell receptor (sTCR) results in significant increase of: TNF-alpha, IL-1beta, IL-6, IL-10, IL-12 production and nitric oxide (NO) synthesis and this phenomenon was dose dependent. Moreover, treatment of macrophages with sTCR showed two to three fold increase of luminol dependent chemiluminescence (LCL) when compared to untreated macrophages (Mf). In contrast, in our study we did not find any influence of sTCR on co-stimulatory (B7.1 and B7.2), adhesion molecule (ICAM-1) or FcRII/III expression by macrophages. However, macrophages treated with control supernatants received after phosphatidylinositol-specific phospholipase C (PI-PLC) treatment of BW1100 cells or thymocytes termed s-BW or s-Th did not influence their biological activity.
Collapse
Affiliation(s)
- M Szczepanik
- Department of Immunology, Jagiellonian University College of Medicine, Kraków, Poland
| | | | | | | |
Collapse
|
43
|
Ito K, Karasawa M, Kawano T, Akasaka T, Koseki H, Akutsu Y, Kondo E, Sekiya S, Sekikawa K, Harada M, Yamashita M, Nakayama T, Taniguchi M. Involvement of decidual Valpha14 NKT cells in abortion. Proc Natl Acad Sci U S A 2000; 97:740-4. [PMID: 10639149 PMCID: PMC15400 DOI: 10.1073/pnas.97.2.740] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The immunological mechanisms that regulate abortion are largely unknown. Here, we found that a distinct subset of lymphocytes, Valpha14 NKT cells expressing an invariant antigen receptor encoded by Valpha14/Jalpha281 and Vbeta7 segments, accumulated in the decidua during pregnancy and provoked abortion upon stimulation with alpha-galactosylceramide (alpha-GalCer), a specific ligand for Valpha14 NKT cells. The alpha-GalCer-mediated abortion was not observed in Valpha14 NKT-, IFN-gamma-, tumor necrosis factor alpha-, or perforin-knock-out mice and appeared to be due to the degeneration of embryonic trophoblasts mediated by the activated Valpha14 NKT cells whose perforin-dependent killing and production of IFN-gamma and tumor necrosis factor alpha were essential. The possible role of the decidual Valpha14 NKT cells in the pathogenesis of abortion is discussed.
Collapse
Affiliation(s)
- K Ito
- CREST (Core Research for Evolutional Science and Technology) Project and Department of Molecular Immunology, Graduate School of Medicine, Chiba University, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Sefrioui H, Billiau AD, Overbergh L, Rutgeerts O, Waer M. Influence of the additional injection of host-type bone marrow on the immune tolerance of minor antigen-mismatched chimeras: possible involvement of double-negative (natural killer) T cells. Transplantation 1999; 68:1560-7. [PMID: 10589955 DOI: 10.1097/00007890-199911270-00021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND It has previously been demonstrated that adding T cell-depleted (TCD) host bone marrow (BM) to an MHC-mismatched BM inoculum allows for induction of long-term stable chimeras without graft-versus-host disease (GVHD) even when non-TCD allogeneic BM was used. AIMS The present study was undertaken to investigate immune tolerance mechanisms in minor antigen-mismatched allogeneic BM chimeras when host-type BM was added to the BM inoculum. METHODS C3H (H2k, Thy 1.2, Mls 2a) recipients were conditioned with 9.5 gray (Gy) of total body irradiation. To exclude any interference with possible subclinical GVHD, 5x10(6) TCD AKR (H2k, Thy 1.1, Mls 1a) BM cells were injected with (syn + allo) or without (allo) 5x 10(6) TCD C3H BM cells. Chimerism, clonal deletion, and T lymphocyte subsets were scored using FACS and anti-mouse Thy, Vbeta6, Vbeta3, CD3, CD4, or CD8 monoclonal antibodies. The stability of tolerance was studied by investigating mixed lymphocyte reaction and cytotoxic T cell induction in chimeras after immunization with host, donor, or third-party (BALB/c) splenocytes. Breaking of chimerism was attempted by injecting nontolerant 40x10(6) host-type splenocytes 2 months after BM transplantation. Cytokines and Valpha14 mRNA were assayed using real time quantitative reverse transcriptase-polymerase chain reaction at 4 and 48 hr, respectively, after injection of nontolerant host-type splenocytes. RESULTS Both groups of mice became long-term stable mixed chimeras without any clinical sign of GVHD. Neither group was able to produce antihost nor antidonor cytotoxic T cells, even after immunization. The addition of syngeneic BM to the allogeneic inoculum reduced the overall level of allogeneic chimerism (from approximately 70% or approximately 85% in peripheral blood lymphocytes and spleen, respectively, in allo chimeras versus approximately 35% and approximately 60% in syn + allo chimeras). Moreover, it resulted in complete clonal deletion of both host-reactive (Vbeta3) and donor-reactive (Vbeta6) lymphocytes in syn + allo chimeras in contrast to in allo chimeras, in which only donor-reactive lymphocytes were completely deleted. After nontolerant C3H splenocyte injection, high levels of interleukin 2 mRNA were produced and chimerism decreased in syn + allo chimeras. In contrast, in allo chimeras, this maneuver was followed by the production of higher levels of interleukin 4 and interferon-gamma, and of Valpha14 mRNA, as well as by the proliferation of CD3+CD4-CD8- (double-negative) T cells and by an increase of donor chimerism. CONCLUSION The addition of host-type BM to the allogeneic inoculum has an influence on the level of chimerism, the extent of clonal deletion, and the reaction of chimeras after the injection of nontolerant host-type splenocytes. In the latter phenomenon, cytokine production and proliferation of Valpha14+ CD3+CD4-CD8- (double-negative, natural killer T) lymphocytes may be involved.
Collapse
Affiliation(s)
- H Sefrioui
- Laboratory of Experimental Transplantation, University of Leuven, Belgium
| | | | | | | | | |
Collapse
|
45
|
Hammond KJL, Pelikan SB, Crowe NY, Randle-Barrett E, Nakayama T, Taniguchi M, Smyth MJ, van Driel IR, Scollay R, Baxter AG, Godfrey DI. NKT cells are phenotypically and functionally diverse. Eur J Immunol 1999. [DOI: 10.1002/(sici)1521-4141(199911)29:11%3c3768::aid-immu3768%3e3.0.co;2-g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
46
|
Hammond KJ, Pelikan SB, Crowe NY, Randle-Barrett E, Nakayama T, Taniguchi M, Smyth MJ, van Driel IR, Scollay R, Baxter AG, Godfrey DI. NKT cells are phenotypically and functionally diverse. Eur J Immunol 1999; 29:3768-81. [PMID: 10556834 DOI: 10.1002/(sici)1521-4141(199911)29:11<3768::aid-immu3768>3.0.co;2-g] [Citation(s) in RCA: 177] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
NK1.1(+)alpha betaTCR(+) (NKT) cells have several important roles including tumor rejection and prevention of autoimmune disease. Although both CD4(+) and CD4(-)CD8(-) double-negative (DN) subsets of NKT cells have been identified, they are usually described as one population. Here, we show that NKT cells are phenotypically, functionally and developmentally heterogeneous, and that three distinct subsets (CD4(+), DN and CD8(+)) are differentially distributed in a tissue-specific fashion. CD8(+) NKT cells are present in all tissues but the thymus, and are highly enriched for CD8alpha(+)beta(-) cells. These subsets differ in their expression of a range of cell surface molecules (Vbeta8, DX5, CD69, CD45RB, Ly6C) and in their ability to produce IL-4 and IFN-gamma, with splenic NKT cell subsets producing lower levels than thymic NKT cells. Developmentally, most CD4(+) and DN NKT cells are thymus dependent, in contrast to CD8(+) NKT cells, and are also present amongst recent thymic emigrants in spleen and liver. TCR Jalpha281-deficient mice show a dramatic deficiency in thymic NKT cells, whereas a significant NKT cell population (enriched for the DN and CD8(+) subsets) is still present in the periphery. Taken together, this study reveals a far greater level of complexity within the NKT cell population than previously recognized.
Collapse
Affiliation(s)
- K J Hammond
- Department of Pathology and Immunology, Monash Medical School, Prahran, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Sugie K, Tomura T, Takakura K, Kawano T, Taniguchi M, Grey HM, Ishizaka K. Target cells for an immunosuppressive cytokine, glycosylation-inhibiting factor. Int Immunol 1999; 11:1149-56. [PMID: 10383948 DOI: 10.1093/intimm/11.7.1149] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Receptors for bioactive glycosylation-inhibiting factor (GIF) were demonstrated using a bioactive mutant of recombinant human (rh) GIF, which is comparable to the suppressor T (Ts) cell-derived bioactive GIF in its affinity for the receptors on helper T (Th) hybridoma cells. Both naive T and B cells in normal mouse spleen lacked GIF receptors. However, presentation of specific antigen to naive T cells resulted in the expression of the receptors on activated T cells. Furthermore, activation of small resting B cells with F(ab')2 fragments of anti-mouse IgM plus IL-4, lipopolysaccharide (LPS) plus IL-4 or LPS plus dextran sulfate induced the expression of the receptors within 48 h of B cell stimulation. It was also found that NK T cells freshly isolated from mouse spleen, but not conventional NK cells, expressed receptors for GIF. CD4(+) and CD4(-) subpopulations of NK T cells showed a similar binding capability. Mature dendritic cells derived from bone marrow did not bear the receptors. The dissociation constant (Kd) of the interaction between the bioactive rhGIF mutant and the high-affinity receptors was 10-100 pM, whereas inactive wild-type rhGIF failed to bind to the receptors. A bioactive derivative of rhGIF suppressed both IgG1 and IgE synthesis by purified B cells activated by LPS and IL-4, indicating that the binding of bioactive GIF to its receptors on activated B cells results in suppression of their differentiation.
Collapse
MESH Headings
- Animals
- Antigen Presentation/immunology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Binding Sites
- Cells, Cultured
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Epitopes, T-Lymphocyte/immunology
- Glycosylation
- Humans
- Immunoglobulin E/biosynthesis
- Immunoglobulin G/biosynthesis
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Kinetics
- Lymphocyte Activation/physiology
- Lymphokines/metabolism
- Lymphokines/physiology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Transgenic
- Prostatic Secretory Proteins
- Receptors, Cytokine/biosynthesis
- Receptors, Cytokine/metabolism
- Suppressor Factors, Immunologic/metabolism
- Suppressor Factors, Immunologic/physiology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- K Sugie
- Division of Immunobiology, La Jolla Institute for Allergy and Immunology, San Diego, CA 92121, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Eberl G, Lees R, Smiley ST, Taniguchi M, Grusby MJ, MacDonald HR. Tissue-Specific Segregation of CD1d-Dependent and CD1d-Independent NK T Cells. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.11.6410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
NKT cells, defined as T cells expressing the NK cell marker NK1.1, are involved in tumor rejection and regulation of autoimmunity via the production of cytokines. We show in this study that two types of NKT cells can be defined on the basis of their reactivity to the monomorphic MHC class I-like molecule CD1d. One type of NKT cell is positively selected by CD1d and expresses a biased TCR repertoire together with a phenotype found on activated T cells. A second type of NKT cell, in contrast, develops in the absence of CD1d, and expresses a diverse TCR repertoire and a phenotype found on naive T cells and NK cells. Importantly, the two types of NKT cells segregate in distinct tissues. Whereas thymus and liver contain primarily CD1d-dependent NKT cells, spleen and bone marrow are enriched in CD1d-independent NKT cells. Collectively, our data suggest that recognition of tissue-specific ligands by the TCR controls localization and activation of NKT cells.
Collapse
Affiliation(s)
- Gérard Eberl
- *Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Epalinges, Switzerland
| | - Rosemary Lees
- *Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Epalinges, Switzerland
| | - Stephen T. Smiley
- †Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115
| | - Masaru Taniguchi
- ‡CREST (Core Research for Evolutional Science and Technology) and Department of Molecular Immunology, Chiba University Graduate School of Medicine, Chiba, Japan; and
| | - Michael J. Grusby
- †Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115
- §Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - H. Robson MacDonald
- *Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
49
|
Matsuura A, Chen HZ, Kinebuchi M, Hashimoto Y, Kasai K. Identification of a rat invariant T-cell receptor; alpha chain similar to mouse V alpha 14-J alpha 281 and human V alpha 24-J alpha Q. Transplant Proc 1999; 31:1577-8. [PMID: 10331008 DOI: 10.1016/s0041-1345(99)00044-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- A Matsuura
- Department of Pathology, School of Medicine, Sapporo Medical University, Japan
| | | | | | | | | |
Collapse
|
50
|
Rueff-Juy D, Faure M, Drapier AM, Cazenave PA. Role of Maternal Ig in the Induction of Cκ-Specific CD8+ T Cell Tolerance. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.2.721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Although the influence of maternal Ig on the B cell repertoire and subsequent Ab response has been extensively studied, much less attention has been devoted to their effects on T cell responses of the offspring. To address this question, we have studied the influence of maternal κ-positive Ig (Igκ) on the Cκ-specific CD8+ T cell response of κ knock-out (κ−/−) pups resulting from various crosses and foster nursings. These systems allowed control of physiologic transmission of Igκ at defined periods of ontogeny. Our data show that conventional transfer of maternal Ig via the placenta plus colostrum/milk or adoptive transfer via only the colostrum/milk were the most efficient at tolerizing Cκ-specific CD8+ responses. Surprisingly, tolerance was not detected in κ−/− pups born to κ+/− females obtained by cesarean delivery and suckled by κ−/− mothers (transplacental supply only). Tolerance, which was strong until 5 wk of age, was reversible and waned with the decrease of Igκ serum concentration. Depletion of CD4+ T cells at the time of Cκ peptide immunization abolished the tolerance of Cκ-specific CD8+ T cells. These data suggest that an oral supply of Ig is very efficient at inducing and maintaining tolerance of Cκ-specific CD8+ T cells, at least for several weeks after birth, and that suppression rather than deletion is responsible for this tolerance. In addition, they strengthen the view that tolerance of CD8+ T cells to a soluble Ag is never permanently acquired even if it is present in large quantities during ontogeny.
Collapse
Affiliation(s)
- Dominique Rueff-Juy
- Département d’Immunologie, Institut Pasteur (Unité de Recherche Associée 161, Centre National de la Recherche Scientifique, et Université Pierre et Marie Curie), Paris, France
| | - Mathias Faure
- Département d’Immunologie, Institut Pasteur (Unité de Recherche Associée 161, Centre National de la Recherche Scientifique, et Université Pierre et Marie Curie), Paris, France
| | - Anne-Marie Drapier
- Département d’Immunologie, Institut Pasteur (Unité de Recherche Associée 161, Centre National de la Recherche Scientifique, et Université Pierre et Marie Curie), Paris, France
| | - Pierre-André Cazenave
- Département d’Immunologie, Institut Pasteur (Unité de Recherche Associée 161, Centre National de la Recherche Scientifique, et Université Pierre et Marie Curie), Paris, France
| |
Collapse
|