1
|
Zerr I, Ladogana A, Mead S, Hermann P, Forloni G, Appleby BS. Creutzfeldt-Jakob disease and other prion diseases. Nat Rev Dis Primers 2024; 10:14. [PMID: 38424082 DOI: 10.1038/s41572-024-00497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 03/02/2024]
Abstract
Prion diseases share common clinical and pathological characteristics such as spongiform neuronal degeneration and deposition of an abnormal form of a host-derived protein, termed prion protein. The characteristic features of prion diseases are long incubation times, short clinical courses, extreme resistance of the transmissible agent to degradation and lack of nucleic acid involvement. Sporadic and genetic forms of prion diseases occur worldwide, of which genetic forms are associated with mutations in PRNP. Human to human transmission of these diseases has occurred due to iatrogenic exposure, and zoonotic forms of prion diseases are linked to bovine disease. Significant progress has been made in the diagnosis of these disorders. Clinical tools for diagnosis comprise brain imaging and cerebrospinal fluid tests. Aggregation assays for detection of the abnormally folded prion protein have a clear potential to diagnose the disease in peripherally accessible biofluids. After decades of therapeutic nihilism, new treatment strategies and clinical trials are on the horizon. Although prion diseases are relatively rare disorders, understanding their pathogenesis and mechanisms of prion protein misfolding has significantly enhanced the field in research of neurodegenerative diseases.
Collapse
Affiliation(s)
- Inga Zerr
- National Reference Center for CJD Surveillance, Department of Neurology, University Medical Center, Georg August University, Göttingen, Germany.
| | - Anna Ladogana
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Simon Mead
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
| | - Peter Hermann
- National Reference Center for CJD Surveillance, Department of Neurology, University Medical Center, Georg August University, Göttingen, Germany
| | - Gianluigi Forloni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Brian S Appleby
- Departments of Neurology, Psychiatry and Pathology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
2
|
Wang F, Pritzkow S, Soto C. PMCA for ultrasensitive detection of prions and to study disease biology. Cell Tissue Res 2023; 392:307-321. [PMID: 36567368 PMCID: PMC9790818 DOI: 10.1007/s00441-022-03727-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/08/2022] [Indexed: 12/27/2022]
Abstract
The emergence of a novel class of infectious agent composed exclusively of a misfolded protein (termed prions) has been a challenge in modern biomedicine. Despite similarities on the behavior of prions with respect to conventional pathogens, the many uncertainties regarding the biology and virulence of prions make them a worrisome paradigm. Since prions do not contain nucleic acids and rely on a very different way of replication and spreading, it was necessary to invent a novel technology to study them. In this article, we provide an overview of such a technology, termed protein misfolding cyclic amplification (PMCA), and summarize its many applications to detect prions and understand prion biology.
Collapse
Affiliation(s)
- Fei Wang
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Sandra Pritzkow
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Claudio Soto
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Recent developments in antibody therapeutics against prion disease. Emerg Top Life Sci 2020; 4:169-173. [PMID: 32633322 DOI: 10.1042/etls20200002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022]
Abstract
Preclinical evidence indicates that prion diseases can respond favorably to passive immunotherapy. However, certain antibodies to the cellular prion protein PrPC can be toxic. Comprehensive studies of structure-function relationships have revealed that the flexible amino-terminal tail of PrPC is instrumental for mediating prion toxicity. In a first-in-human study, an anti-prion antibody has been recently administered to patients diagnosed with sporadic Creutzfeldt-Jakob's disease, the most prevalent human prion disease. Moreover, large-scale serosurveys have mapped the prevalence of naturally occurring human anti-prion autoantibodies in health and disease. Here, we provide a perspective on the limitations and opportunities of therapeutic anti-prion antibodies.
Collapse
|
4
|
Forloni G, Roiter I, Tagliavini F. Clinical trials of prion disease therapeutics. Curr Opin Pharmacol 2019; 44:53-60. [DOI: 10.1016/j.coph.2019.04.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/15/2019] [Accepted: 04/29/2019] [Indexed: 12/31/2022]
|
5
|
Abstract
Currently all prion diseases are without effective treatment and are universally fatal. It is increasingly being recognized that the pathogenesis of many neurodegenerative diseases, such as Alzheimer disease (AD), includes "prion-like" properties. Hence, any effective therapeutic intervention for prion disease could have significant implications for other neurodegenerative diseases. Conversely, therapies that are effective in AD might also be therapeutically beneficial for prion disease. AD-like prion disease has no effective therapy. However, various vaccine and immunomodulatory approaches have shown great success in animal models of AD, with numerous ongoing clinical trials of these potential immunotherapies. More limited evidence suggests that immunotherapies may be effective in prion models and in naturally occurring prion disease. In particular, experimental data suggest that mucosal vaccination against prions can be effective for protection against orally acquired prion infection. Many prion diseases, including natural sheep scrapie, bovine spongiform encephalopathy, chronic wasting disease, and variant Creutzfeldt-Jakob disease, are thought to be acquired peripherally, mainly by oral exposure. Mucosal vaccination would be most applicable to this form of transmission. In this chapter we review various immunologically based strategies which are under development for prion infection.
Collapse
Affiliation(s)
- Thomas Wisniewski
- Center for Cognitive Neurology, New York University School of Medicine, New York, NY, United States; Department of Neurology, New York University School of Medicine, New York, NY, United States; Department of Pathology, New York University School of Medicine, New York, NY, United States; Department of Psychiatry, New York University School of Medicine, New York, NY, United States.
| | - Fernando Goñi
- Center for Cognitive Neurology, New York University School of Medicine, New York, NY, United States; Department of Neurology, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
6
|
Abstract
Three decades after the discovery of prions as the cause of Creutzfeldt-Jakob disease and other transmissible spongiform encephalopathies, we are still nowhere close to finding an effective therapy. Numerous pharmacological interventions have attempted to target various stages of disease progression, yet none has significantly ameliorated the course of disease. We still lack a mechanistic understanding of how the prions damage the brain, and this situation results in a dearth of validated pharmacological targets. In this review, we discuss the attempts to interfere with the replication of prions and to enhance their clearance. We also trace some of the possibilities to identify novel targets that may arise with increasing insights into prion biology.
Collapse
Affiliation(s)
- Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, CH-8091 Zürich, Switzerland;
| | - Asvin K K Lakkaraju
- Institute of Neuropathology, University of Zurich, CH-8091 Zürich, Switzerland;
| | - Karl Frontzek
- Institute of Neuropathology, University of Zurich, CH-8091 Zürich, Switzerland;
| |
Collapse
|
7
|
Legname G, Moda F. The Prion Concept and Synthetic Prions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:147-156. [PMID: 28838659 DOI: 10.1016/bs.pmbts.2017.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
Transmissible spongiform encephalopathies or prion diseases are a group of fatal neurodegenerative diseases caused by unconventional infectious agents, known as prions (PrPSc). Prions derive from a conformational conversion of the normally folded prion protein (PrPC), which acquires pathological and infectious features. Moreover, PrPSc is able to transmit the pathological conformation to PrPC through a mechanism that is still not well understood. The generation of synthetic prions, which behave like natural prions, is of fundamental importance to study the process of PrPC conversion and to assess the efficacy of therapeutic strategies to interfere with this process. Moreover, the ability of synthetic prions to induce pathology in animals confirms that the pathological properties of the prion strains are all enciphered in abnormal conformations, characterizing these infectious agents.
Collapse
Affiliation(s)
- Giuseppe Legname
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy.
| | - Fabio Moda
- IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy.
| |
Collapse
|
8
|
Moore RA, Choi YP, Head MW, Ironside JW, Faris R, Ritchie DL, Zanusso G, Priola SA. Relative Abundance of apoE and Aβ1–42 Associated with Abnormal Prion Protein Differs between Creutzfeldt-Jakob Disease Subtypes. J Proteome Res 2016; 15:4518-4531. [DOI: 10.1021/acs.jproteome.6b00633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Roger A. Moore
- Rocky Mountain Laboratories, National Institute of Allergy & Infectious Disease, National Institutes of Health, Hamilton, Montana 59840, United States
| | - Young Pyo Choi
- Laboratory
Animal Center, Research Division, Korea Brain Research Institute, Daegu 41068, Republic of Korea
| | - Mark W. Head
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, School of Clinical Sciences, University of Edinburgh, Edinburgh EH8 9YL, U.K
| | - James W. Ironside
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, School of Clinical Sciences, University of Edinburgh, Edinburgh EH8 9YL, U.K
| | - Robert Faris
- Rocky Mountain Laboratories, National Institute of Allergy & Infectious Disease, National Institutes of Health, Hamilton, Montana 59840, United States
| | - Diane L. Ritchie
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, School of Clinical Sciences, University of Edinburgh, Edinburgh EH8 9YL, U.K
| | - Gianluigi Zanusso
- Department
of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona 37129, Italy
| | - Suzette A. Priola
- Rocky Mountain Laboratories, National Institute of Allergy & Infectious Disease, National Institutes of Health, Hamilton, Montana 59840, United States
| |
Collapse
|
9
|
Abstract
Prion diseases are a heterogeneous class of fatal neurodegenerative disorders associated with misfolding of host cellular prion protein (PrP(C)) into a pathological isoform, termed PrP(Sc). Prion diseases affect various mammals, including humans, and effective treatments are not available. Prion diseases are distinguished from other protein misfolding disorders - such as Alzheimer's or Parkinson's disease - in that they are infectious. Prion diseases occur sporadically without any known exposure to infected material, and hereditary cases resulting from rare mutations in the prion protein have also been documented. The mechanistic underpinnings of prion and other neurodegenerative disorders remain poorly understood. Various proteomics techniques have been instrumental in early PrP(Sc) detection, biomarker discovery, elucidation of PrP(Sc) structure and mapping of biochemical pathways affected by pathogenesis. Moving forward, proteomics approaches will likely become more integrated into the clinical and research settings for the rapid diagnosis and characterization of prion pathogenesis.
Collapse
Affiliation(s)
- Roger A Moore
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIH,NIAID, Hamilton, MT 59840, USA
| | | | | |
Collapse
|
10
|
Brazier MW, Wall VA, Brazier BW, Masters CL, Collins SJ. Therapeutic interventions ameliorating prion disease. Expert Rev Anti Infect Ther 2014; 7:83-105. [DOI: 10.1586/14787210.7.1.83] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Abstract
Individuals infected with prions succumb to brain damage, and prion infections continue to be inexorably lethal. However, many crucial steps in prion pathogenesis occur in lymphatic organs and precede invasion of the central nervous system. In the past two decades, a great deal has been learnt concerning the cellular and molecular mechanisms of prion lymphoinvasion. These properties are diagnostically useful and have, for example, facilitated preclinical diagnosis of variant Creutzfeldt-Jakob disease in the tonsils. Moreover, the early colonization of lymphoid organs can be exploited for post-exposure prophylaxis of prion infections. As stromal cells of lymphoid organs are crucial for peripheral prion infection, the dedifferentiation of these cells offers a powerful means of hindering prion spread in infected individuals. In this Review, we discuss the current knowledge of the immunobiology of prions with an emphasis on how basic discoveries might enable translational strategies.
Collapse
|
12
|
Molecular dynamics studies on the NMR and X-ray structures of rabbit prion proteins. J Theor Biol 2013; 342:70-82. [PMID: 24184221 DOI: 10.1016/j.jtbi.2013.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/25/2013] [Accepted: 10/09/2013] [Indexed: 12/27/2022]
Abstract
Prion diseases, traditionally referred to as transmissible spongiform encephalopathies (TSEs), are invariably fatal and highly infectious neurodegenerative diseases that affect a wide variety of mammalian species, manifesting as scrapie in sheep and goats, bovine spongiform encephalopathy (BSE or mad-cow disease) in cattle, chronic wasting disease in deer and elk, and Creutzfeldt-Jakob diseases, Gerstmann-Sträussler-Scheinker syndrome, fatal familial insomnia, and kulu in humans, etc. These neurodegenerative diseases are caused by the conversion from a soluble normal cellular prion protein (PrP(C)) into insoluble abnormally folded infectious prions (PrP(Sc)), and the conversion of PrP(C) to PrP(Sc) is believed to involve conformational change from a predominantly α-helical protein to one rich in β-sheet structure. Such a conformational change may be amenable to study by molecular dynamics (MD) techniques. For rabbits, classical studies show that they have a low susceptibility to be infected by PrP(Sc), but recently it was reported that rabbit prions can be generated through saPMCA (serial automated Protein Misfolding Cyclic Amplification) in vitro and the rabbit prion is infectious and transmissible. In this paper, we first do a detailed survey on the research advances of rabbit prion protein (RaPrP) and then we perform MD simulations on the NMR and X-ray molecular structures of rabbit prion protein wild-type and mutants. The survey shows to us that rabbits were not challenged directly in vivo with other known prion strains and the saPMCA result did not pass the test of the known BSE strain of cattle. Thus, we might still look rabbits as a prion resistant species. MD results indicate that the three α-helices of the wild-type are stable under the neutral pH environment (but under low pH environment the three α-helices have been unfolded into β-sheets), and the three α-helices of the mutants (I214V and S173N) are unfolded into rich β-sheet structures under the same pH environment. In addition, we found an interesting result that the salt bridges such as ASP201-ARG155, ASP177-ARG163 contribute greatly to the structural stability of RaPrP.
Collapse
|
13
|
Yi CW, Xu WC, Chen J, Liang Y. Recent progress in prion and prion-like protein aggregation. Acta Biochim Biophys Sin (Shanghai) 2013; 45:520-6. [PMID: 23709368 DOI: 10.1093/abbs/gmt052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Prion diseases and prion-like protein misfolding diseases involve the accumulation of abnormally aggregated forms of the normal host proteins, such as prion protein and Tau protein. These proteins are special because of their self-duplicating and transmissible characteristics. Such abnormally aggregated proteins mainly formed in neurons, cause the neurons dysfunction, and finally lead to invariably fatal neurodegenerative diseases. Prion diseases appear not only in animals, such as bovine spongiform encephalopathy in cattle and scrapie in sheep, but also in humans, such as Creutzfeldt-Jacob disease, and even the same prion or prion-like proteins can have many different phenotypes. A lot of biological evidence has suggested that the molecular basis for different strains of prions could be hidden in protein conformations, and the misfolded proteins with conformations different from the normal proteins have been proved to be the main cause for protein aggregation. Crowded physiological environments can be imitated in vitro to study how the misfolding of these proteins leads to the diseases in vivo. In this review, we provide an overview of the existing structural information for prion and prion-like proteins, and discuss the post-translational modifications of prion proteins and the difference between prion and other infectious pathogens. We also discuss what makes a misfolded protein become an infectious agent, and show some examples of prion-like protein aggregation, such as Tau protein aggregation and superoxide dismutase 1 aggregation, as well as some cases of prion-like protein aggregation in crowded physiological environments.
Collapse
Affiliation(s)
- Chuan-Wei Yi
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | |
Collapse
|
14
|
Immunotherapeutic approaches in prion disease: progress, challenges and potential directions. Ther Deliv 2013; 4:615-28. [DOI: 10.4155/tde.13.30] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Therapeutic trials utilizing animal models of prion disease have explored a variety of compounds and a number of approaches with varying success, including several immunotherapeutic strategies, such as passive immunization through the delivery of viruses carrying nucleic acid inserts encoding prion protein-specific immunoglobulin. Targeted, organ-specific cellular production of therapeutic proteins is a relatively unexplored approach in the treatment of neurodegeneration despite many successful experimental outcomes in animal models and human trials of other diseases of the CNS. Emphasizing studies utilizing mouse models of disease, this review outlines developments and limitations of immunological approaches to the treatment of prion diseases. In addition, the authors discuss the potential of an experimental therapeutic strategy, utilizing hybridoma cells injected directly into the CNS to establish long-term production of anti-prion antibodies in vivo within the organ associated with the greatest pathogenic change in prion disease, the brain.
Collapse
|
15
|
Moda F, Vimercati C, Campagnani I, Ruggerone M, Giaccone G, Morbin M, Zentilin L, Giacca M, Zucca I, Legname G, Tagliavini F. Brain delivery of AAV9 expressing an anti-PrP monovalent antibody delays prion disease in mice. Prion 2012; 6:383-90. [PMID: 22842862 DOI: 10.4161/pri.20197] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Prion diseases are caused by a conformational modification of the cellular prion protein (PrP (C)) into disease-specific forms, termed PrP (Sc), that have the ability to interact with PrP (C) promoting its conversion to PrP (Sc). In vitro studies demonstrated that anti-PrP antibodies inhibit this process. In particular, the single chain variable fragment D18 antibody (scFvD18) showed high efficiency in curing chronically prion-infected cells. This molecule binds the PrP (C) region involved in the interaction with PrP (Sc) thus halting further prion formation. These findings prompted us to test the efficiency of scFvD18 in vivo. A recombinant Adeno-Associated Viral vector serotype 9 was used to deliver scFvD18 to the brain of mice that were subsequently infected by intraperitoneal route with the mouse-adapted scrapie strain RML. We found that the treatment was safe, prolonged the incubation time of scrapie-infected animals and decreased the burden of total proteinase-resistant PrP (Sc) in the brain, suggesting that scFvD18 interferes with prion replication in vivo. This approach is relevant for designing new therapeutic strategies for prion diseases and other disorders characterized by protein misfolding.
Collapse
Affiliation(s)
- Fabio Moda
- Division of Neuropathology and Neurology 5, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wisniewski T, Goñi F. Could immunomodulation be used to prevent prion diseases? Expert Rev Anti Infect Ther 2012; 10:307-17. [PMID: 22397565 DOI: 10.1586/eri.11.177] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
All prion diseases are currently without effective treatment and are universally fatal. The underlying pathogenesis of prion diseases (prionoses) is related to an autocatalytic conformational conversion of PrP(C) (C for cellular) to a pathological and infectious conformer known as PrP(Sc) (Sc for scrapie) or PrP(Res) (Res for proteinase K resistant). The past experience with variant Creutzfeldt-Jakob disease, which originated from bovine spongiform encephalopathy, as well as the ongoing epidemic of chronic wasting disease has highlighted the necessity for effective prophylactic and/or therapeutic approaches. Human prionoses are most commonly sporadic, and hence therapy is primarily directed to stop progression; however, in animals the majority of prionoses are infectious and, as a result, the emphasis is on prevention of transmission. These infectious prionoses are most commonly acquired via the alimentary tract as a major portal of infectious agent entry, making mucosal immunization a potentially attractive method to produce a local immune response that can partially or completely prevent prion entry across the gut barrier, while at the same time producing a modulated systemic immunity that is unlikely to be associated with toxicity. A critical factor in any immunomodulatory methodology that targets a self-antigen is the need to delicately balance an effective humoral immune response with potential autoimmune inflammatory toxicity. The ongoing epidemic of chronic wasting disease affecting the USA and Korea, with the potential to spread to human populations, highlights the need for such immunomodulatory approaches.
Collapse
Affiliation(s)
- Thomas Wisniewski
- New York University School of Medicine, 560 First Avenue, New York, NY 10016, USA.
| | | |
Collapse
|
17
|
Hedlin P, Taschuk R, Potter A, Griebel P, Napper S. Detection and control of prion diseases in food animals. ISRN VETERINARY SCIENCE 2012; 2012:254739. [PMID: 23738120 PMCID: PMC3658581 DOI: 10.5402/2012/254739] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 12/22/2011] [Indexed: 12/14/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs), or prion diseases, represent a unique form of infectious disease based on misfolding of a self-protein (PrPC) into a pathological, infectious conformation (PrPSc). Prion diseases of food animals gained notoriety during the bovine spongiform encephalopathy (BSE) outbreak of the 1980s. In particular, disease transmission to humans, to the generation of a fatal, untreatable disease, elevated the perspective on livestock prion diseases from food production to food safety. While the immediate threat posed by BSE has been successfully addressed through surveillance and improved management practices, another prion disease is rapidly spreading. Chronic wasting disease (CWD), a prion disease of cervids, has been confirmed in wild and captive populations with devastating impact on the farmed cervid industries. Furthermore, the unabated spread of this disease through wild populations threatens a natural resource that is a source of considerable economic benefit and national pride. In a worst-case scenario, CWD may represent a zoonotic threat either through direct transmission via consumption of infected cervids or through a secondary food animal, such as cattle. This has energized efforts to understand prion diseases as well as to develop tools for disease detection, prevention, and management. Progress in each of these areas is discussed.
Collapse
Affiliation(s)
- Peter Hedlin
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E3 ; Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E3
| | | | | | | | | |
Collapse
|
18
|
Moore RA, Timmes AG, Wilmarth PA, Safronetz D, Priola SA. Identification and removal of proteins that co-purify with infectious prion protein improves the analysis of its secondary structure. Proteomics 2011; 11:3853-65. [PMID: 21805638 DOI: 10.1002/pmic.201100253] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 05/30/2011] [Accepted: 06/27/2011] [Indexed: 12/13/2022]
Abstract
Prion diseases are neurodegenerative disorders associated with the accumulation of an abnormal isoform of the mammalian prion protein (PrP). Fourier transform infrared spectroscopy (FTIR) has previously been used to show that the conformation of aggregated, infectious PrP (PrP(Sc) ) varies between prion strains and these unique conformations may determine strain-specific disease phenotypes. However, the relative amounts of α-helix, β-sheet and other secondary structures have not always been consistent between studies, suggesting that other proteins might be confounding the analysis of PrP(Sc) secondary structure. We have used FTIR and LC-MS/MS to analyze enriched PrP(Sc) from mouse and hamster prion strains both before and after the removal of protein contaminants that commonly co-purify with PrP(Sc) . Our data show that non-PrP proteins do contribute to absorbances that have been associated with α-helical, loop, turn and β-sheet structures attributed to PrP(Sc) . The major contaminant, the α-helical protein ferritin, absorbs strongly at 1652 cm(-1) in the FTIR spectrum associated with PrP(Sc) . However, even the removal of more than 99% of the ferritin from PrP(Sc) did not completely abolish absorbance at 1652 cm(-1) . Our results show that contaminating proteins alter the FTIR spectrum attributed to PrP(Sc) and suggest that the α-helical, loop/turn and β-sheet secondary structure that remains following their removal are derived from PrP(Sc) itself.
Collapse
Affiliation(s)
- Roger A Moore
- Rocky Mountain Laboratories/Laboratory of Persistent Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 S. 4th St., Hamilton, MT 59840, USA.
| | | | | | | | | |
Collapse
|
19
|
Soto C. Prion hypothesis: the end of the controversy? Trends Biochem Sci 2011; 36:151-8. [PMID: 21130657 PMCID: PMC3056934 DOI: 10.1016/j.tibs.2010.11.001] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 11/03/2010] [Accepted: 11/04/2010] [Indexed: 01/25/2023]
Abstract
Forty-three years have passed since it was first proposed that a protein could be the sole component of the infectious agent responsible for the enigmatic prion diseases. Many discoveries have strongly supported the prion hypothesis, but only recently has this once heretical hypothesis been widely accepted by the scientific community. In the past 3 years, researchers have achieved the 'Holy Grail' demonstration that infectious material can be generated in vitro using completely defined components. These breakthroughs have proven that a misfolded protein is the active component of the infectious agent, and that propagation of the disease and its unique features depend on the self-replication of the infectious folding of the prion protein. In spite of these important discoveries, it remains unclear whether another molecule besides the misfolded prion protein might be an essential element of the infectious agent. Future research promises to reveal many more intriguing features about the rogue prions.
Collapse
Affiliation(s)
- Claudio Soto
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, The University of Texas Medical school at Houston, 6431 Fannin St, Houston, TX 77030, USA.
| |
Collapse
|
20
|
Li L, Napper S, Cashman NR. Immunotherapy for prion diseases: opportunities and obstacles. Immunotherapy 2010; 2:269-82. [PMID: 20635933 DOI: 10.2217/imt.10.3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) represent a unique form of infectious disease based on the misfolding of a self-protein into a pathological conformation. While other human diseases are also attributed to protein misfolding, the TSEs are unique in their zoonotic potential and iatrogenic infectivity. These characteristics are of particular importance in the aftermath of the UK bovine spongiform encephalopathy (BSE) outbreak due to the dual concerns that a subpopulation of individuals exposed to the infectious agent may be serving as asymptomatic carriers, and that TSEs of other food animals may also threaten human health. These potentials, in addition to the ongoing baseline of familial and sporadic human prion diseases, necessitate development of effective treatment options. While TSEs represent a novel paradigm of infection, there is nevertheless the opportunity to apply traditional approaches of medicine for disease treatment and prevention, including vaccines for immunotherapy and immunoprophylaxis. However, vaccine development for TSEs is complicated by the challenges and potential dangers associated with induction of immune responses to a self-epitope, as well as the obstacles to treatment of a chronic infection through immunotherapy. The ongoing threat of TSEs to human health, together with the opportunity to apply information emerging from these investigations to other protein misfolding disorders, justifies the efforts required to overcome these obstacles.
Collapse
Affiliation(s)
- Li Li
- University of British Columbia & Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
21
|
Prion protein self-interactions: A gateway to novel therapeutic strategies? Vaccine 2010; 28:7810-23. [DOI: 10.1016/j.vaccine.2010.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 08/31/2010] [Accepted: 09/03/2010] [Indexed: 11/19/2022]
|
22
|
Moore RA, Timmes A, Wilmarth PA, Priola SA. Comparative profiling of highly enriched 22L and Chandler mouse scrapie prion protein preparations. Proteomics 2010; 10:2858-69. [PMID: 20518029 PMCID: PMC3742083 DOI: 10.1002/pmic.201000104] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 05/16/2010] [Indexed: 12/11/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs) or prion diseases are characterized by the accumulation of an aggregated isoform of the prion protein (PrP). This pathological isoform, termed PrP(Sc), appears to be the primary component of the TSE infectious agent or prion. However, it is not clear to what extent other protein cofactors may be involved in TSE pathogenesis or whether there are PrP(Sc)-associated proteins which help to determine TSE strain-specific disease phenotypes. We enriched PrP(Sc) from the brains of mice infected with either 22L or Chandler TSE strains and examined the protein content of these samples using nanospray LC-MS/MS. These samples were compared with "mock" PrP(Sc) preparations from uninfected brains. PrP was the major component of the infected samples and ferritin was the most abundant impurity. Mock enrichments contained no detectable PrP but did contain a significant amount of ferritin. Of the total proteins identified, 32% were found in both mock and infected samples. The similarities between PrP(Sc) samples from 22L and Chandler TSE strains suggest that the non-PrP(Sc) protein components found in standard enrichment protocols are not strain specific.
Collapse
Affiliation(s)
- Roger A Moore
- Rocky Mountain Laboratories, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA.
| | | | | | | |
Collapse
|
23
|
Aguzzi A, O'Connor T. Protein aggregation diseases: pathogenicity and therapeutic perspectives. Nat Rev Drug Discov 2010; 9:237-48. [PMID: 20190788 DOI: 10.1038/nrd3050] [Citation(s) in RCA: 562] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A growing number of diseases seem to be associated with inappropriate deposition of protein aggregates. Some of these diseases--such as Alzheimer's disease and systemic amyloidoses--have been recognized for a long time. However, it is now clear that ordered aggregation of pathogenic proteins does not only occur in the extracellular space, but in the cytoplasm and nucleus as well, indicating that many other diseases may also qualify as amyloidoses. The common structural and pathogenic features of these diverse protein aggregation diseases is only now being fully understood, and may provide novel opportunities for overarching therapeutic approaches such as depleting the monomeric precursor protein, inhibiting aggregation, enhancing aggregate clearance or blocking common aggregation-induced cellular toxicity pathways.
Collapse
Affiliation(s)
- Adriano Aguzzi
- Institute of Neuropathology, University Hospital of Zürich, Schmelzbergstrasse 12, CH8091 Zürich, Switzerland.
| | | |
Collapse
|
24
|
Hnasko R, Serban AV, Carlson G, Prusiner SB, Stanker LH. Generation of antisera to purified prions in lipid rafts. Prion 2010; 4:94-104. [PMID: 20647769 DOI: 10.4161/pri.4.2.12622] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Prion diseases are fatal neurodegenerative disorders caused by prion proteins (PrP). Infectious prions accumulate in the brain through a template-mediated conformational conversion of endogenous PrP(C) into alternately folded PrP(Sc). Immunoassays toward pre-clinical detection of infectious PrP(Sc) have been confounded by low-level prion accumulation in non-neuronal tissue and the lack of PrP(Sc) selective antibodies. We report a method to purify infectious PrP(Sc) from biological tissues for use as an immunogen and sample enrichment for increased immunoassay sensitivity. Significant prion enrichment is accomplished by sucrose gradient centrifugation of infected tissue and isolation with detergent resistant membranes from lipid rafts (DRMs). At equivalent protein concentration a 50-fold increase in detectable PrP(Sc) was observed in DRM fractions relative to crude brain by direct ELISA. Sequential purification steps result in increased specific infectivity (DRM <20-fold and purified DRM immunogen <40-fold) relative to 1% crude brain homogenate. Purification of PrP(Sc) from DRM was accomplished using phosphotungstic acid protein precipitation after proteinase-K (PK) digestion followed by size exclusion chromatography to separate PK and residual protein fragments from larger prion aggregates. Immunization with purified PrP(Sc) antigen was performed using wild-type (wt) and Prnp(0/0) mice, both on Balb/cJ background. A robust immune response against PrP(Sc) was observed in all inoculated Prnp(0/0) mice resulting in antisera containing high-titer antibodies against prion protein. Antisera from these mice recognized both PrP(C) and PrP(Sc), while binding to other brain-derived protein was not observed. In contrast, the PrP(Sc) inoculum was non-immunogenic in wt mice and antisera showed no reactivity with PrP or any other protein.
Collapse
Affiliation(s)
- Robert Hnasko
- USDA Agricultural Research Service, Foodborne Contaminants Research Unit, Albany, CA, USA
| | | | | | | | | |
Collapse
|
25
|
Biasini E, Tapella L, Mantovani S, Stravalaci M, Gobbi M, Harris DA, Chiesa R. Immunopurification of pathological prion protein aggregates. PLoS One 2009; 4:e7816. [PMID: 19915706 PMCID: PMC2773113 DOI: 10.1371/journal.pone.0007816] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 10/15/2009] [Indexed: 11/23/2022] Open
Abstract
Background Prion diseases are fatal neurodegenerative disorders that can arise sporadically, be genetically inherited or acquired through infection. The key event in these diseases is misfolding of the cellular prion protein (PrPC) into a pathogenic isoform that is rich in β-sheet structure. This conformational change may result in the formation of PrPSc, the prion isoform of PrP, which propagates itself by imprinting its aberrant conformation onto PrPC molecules. A great deal of effort has been devoted to developing protocols for purifying PrPSc for structural studies, and testing its biological properties. Most procedures rely on protease digestion, allowing efficient purification of PrP27-30, the protease-resistant core of PrPSc. However, protease treatment cannot be used to isolate abnormal forms of PrP lacking conventional protease resistance, such as those found in several genetic and atypical sporadic cases. Principal Findings We developed a method for purifying pathological PrP molecules based on sequential centrifugation and immunoprecipitation with a monoclonal antibody selective for aggregated PrP. With this procedure we purified full-length PrPSc and mutant PrP aggregates at electrophoretic homogeneity. PrPSc purified from prion-infected mice was able to seed misfolding of PrPC in a protein misfolding cyclic amplification reaction, and mutant PrP aggregates from transgenic mice were toxic to cultured neurons. Significance The immunopurification protocol described here isolates biologically active forms of aggregated PrP. These preparations may be useful for investigating the structural and chemico-physical properties of infectious and neurotoxic PrP aggregates.
Collapse
Affiliation(s)
- Emiliano Biasini
- Dulbecco Telethon Institute, Milan, Italy
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milan, Italy
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Laura Tapella
- Dulbecco Telethon Institute, Milan, Italy
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Susanna Mantovani
- Dulbecco Telethon Institute, Milan, Italy
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Matteo Stravalaci
- Department of Biochemistry and Molecular Pharmacology, Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Marco Gobbi
- Department of Biochemistry and Molecular Pharmacology, Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - David A. Harris
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Roberto Chiesa
- Dulbecco Telethon Institute, Milan, Italy
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milan, Italy
- * E-mail:
| |
Collapse
|
26
|
Abstract
Transmissible spongiform encephalopathies (TSEs) are inevitably lethal neurodegenerative diseases that affect humans and a large variety of animals. The infectious agent responsible for TSEs is the prion, an abnormally folded and aggregated protein that propagates itself by imposing its conformation onto the cellular prion protein (PrPC) of the host. PrPCis necessary for prion replication and for prion-induced neurodegeneration, yet the proximal causes of neuronal injury and death are still poorly understood. Prion toxicity may arise from the interference with the normal function of PrPC, and therefore, understanding the physiological role of PrPCmay help to clarify the mechanism underlying prion diseases. Here we discuss the evolution of the prion concept and how prion-like mechanisms may apply to other protein aggregation diseases. We describe the clinical and the pathological features of the prion diseases in human and animals, the events occurring during neuroinvasion, and the possible scenarios underlying brain damage. Finally, we discuss potential antiprion therapies and current developments in the realm of prion diagnostics.
Collapse
|
27
|
Luhr KM, Löw P, Taraboulos A, Bergman T, Kristensson K. Prion adsorption to stainless steel is promoted by nickel and molybdenum. J Gen Virol 2009; 90:2821-2828. [PMID: 19605588 DOI: 10.1099/vir.0.012302-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Prions are infectious agents resulting from the conversion of a normal cellular protein, PrP(C), to a misfolded species, PrP(Sc). Iatrogenic transmission of prions is known from surgical procedures involving stainless steel materials. Here, it was shown that stainless steel containing nickel and molybdenum binds PrP(Sc) more efficiently and transmits infection to cells in culture to a higher degree than if these elements are not present. Furthermore, both nickel and molybdenum alone adsorbed PrP(Sc), and nickel powder could be used to extract PrP(Sc) from dilute solutions, thus providing a simple approach to concentration of PrP(Sc). The fact that nickel and molybdenum in steel alloys increased the binding affinity, and bound infectivity, of PrP(Sc) is an important issue to consider in the manufacture of surgical instruments and abattoir tools.
Collapse
Affiliation(s)
- Katarina M Luhr
- Department of Neuroscience, Retzius väg 8, Karolinska Institutet, Stockholm, Sweden
| | - Peter Löw
- Department of Neuroscience, Retzius väg 8, Karolinska Institutet, Stockholm, Sweden
| | - Albert Taraboulos
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Tomas Bergman
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Krister Kristensson
- Department of Neuroscience, Retzius väg 8, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
28
|
Nuvolone M, Aguzzi A, Heikenwalder M. Cells and prions: A license to replicate. FEBS Lett 2009; 583:2674-84. [DOI: 10.1016/j.febslet.2009.06.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 06/01/2009] [Accepted: 06/09/2009] [Indexed: 10/20/2022]
|
29
|
Campana V, Zentilin L, Mirabile I, Kranjc A, Casanova P, Giacca M, Prusiner SB, Legname G, Zurzolo C. Development of antibody fragments for immunotherapy of prion diseases. Biochem J 2009; 418:507-15. [PMID: 19000036 DOI: 10.1042/bj20081541] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Prions are infectious proteins responsible for a group of fatal neurodegenerative diseases called TSEs (transmissible spongiform encephalopathies) or prion diseases. In mammals, prions reproduce themselves by recruiting the normal cellular protein PrP(C) and inducing its conversion into the disease-causing isoform denominated PrP(Sc). Recently, anti-prion antibodies have been shown to permanently cure prion-infected cells. However, the inability of full-length antibodies and proteins to cross the BBB (blood-brain barrier) hampers their use in the therapy of TSEs in vivo. Alternatively, brain delivery of prion-specific scFv (single-chain variable fragment) by AAV (adeno-associated virus) transfer delays the onset of the disease in infected mice, although protection is not complete. We investigated the anti-prion effects of a recombinant anti-PrP (D18) scFv by direct addition to scrapie-infected cell cultures or by infection with both lentivirus and AAV-transducing vectors. We show that recombinant anti-PrP scFv is able to reduce proteinase K-resistant PrP content in infected cells. In addition, we demonstrate that lentiviruses are more efficient than AAV in gene transfer of the anti-PrP scFv gene and in reducing PrP(Sc) content in infected neuronal cell lines. Finally, we have used a bioinformatic approach to construct a structural model of the D18scFv-PrP(C) complex. Interestingly, according to the docking results, Arg(PrP)(151) (Arg(151) from prion protein) is the key residue for the interactions with D18scFv, anchoring the PrP(C) to the cavity of the antibody. Taken together, these results indicate that combined passive and active immunotherapy targeting PrP might be promising strategies for therapeutic intervention in prion diseases.
Collapse
Affiliation(s)
- Vincenza Campana
- Unité de Trafic Membranaire et Pathogénèse, Institut Pasteur, 25 Rue du Docteur Roux, Paris Cedex 15, France
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Iwamaru Y, Shimizu Y, Imamura M, Murayama Y, Endo R, Tagawa Y, Ushiki-Kaku Y, Takenouchi T, Kitani H, Mohri S, Yokoyama T, Okada H. Lactoferrin induces cell surface retention of prion protein and inhibits prion accumulation. J Neurochem 2008; 107:636-46. [PMID: 18717818 DOI: 10.1111/j.1471-4159.2008.05628.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Prion diseases are fatal neurodegenerative disorders, and the conformational conversion of normal cellular prion protein (PrP(C)) into its pathogenic, amyloidogenic isoform (PrP(Sc)) is the essential event in the pathogenesis of these diseases. Lactoferrin (LF) is a cationic iron-binding glycoprotein belonging to the transferrin (TF) family, which accumulates in the amyloid deposits in the brain in neurodegenerative disorders, such as Alzheimer's disease and Pick's disease. In the present study, we have examined the effects of LF on PrP(Sc) formation by using cell culture models. Bovine LF inhibited PrP(Sc) accumulation in scrapie-infected cells in a time- and dose-dependent manner, whereas TF was not inhibitory. Bioassays of LF-treated cells demonstrated prolonged incubation periods compared with non-treated cells indicating a reduction of prion infectivity. LF mediated the cell surface retention of PrP(C) by diminishing its internalization and was capable of interacting with PrP(C) in addition to PrP(Sc). Furthermore, LF partially inhibited the formation of protease-resistant PrP as determined by the protein misfolding cyclic amplification assay. Our results suggest that LF has multifunctional antiprion activities.
Collapse
Affiliation(s)
- Yoshifumi Iwamaru
- Prion Disease Research Center, National Institute of Animal Health, Ibaraki, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Müller-Schiffmann A, Korth C. Vaccine approaches to prevent and treat prion infection : progress and challenges. BioDrugs 2008; 22:45-52. [PMID: 18215090 DOI: 10.2165/00063030-200822010-00005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Prion diseases are transmissible neurodegenerative diseases of humans and animals. The prion agent consists of a misfolded protein, PrPSc (prion protein, scrapie form), of a glycosylphosphatidylinositol-anchored host protein, PrPC (PrP cellular form) of unknown function. During prion replication, PrPSc induces host PrPC to adopt its pathogenic conformation. Some PrPSc may aggregate to microscopically visible, extracellular prion plaques that stain for amyloid. The development of antiprion vaccines presents some challenges. While there is strong self-tolerance to an endogenous antibody response to PrPC and PrPSc, highly potent monoclonal antibodies (mAbs) have been raised in mice in which the prion protein gene has been deleted by gene targeting. These mAbs have been demonstrated to be antiprion-active in permanently scrapie-infected neuroblastoma (ScN2a) cells, primarily when bound to one of four epitopes (the octarepeat region, the region around codons 90-110, helix 1 region codons 145-160, and the extreme C-terminal codons 210-220). The mAbs directed against codon regions 90-110 or 145-160 are also antiprion-active in vivo, but only after intraperitoneal infection with prions, not intracerebral infection, suggesting their blood-brain barrier (BBB) impermeability. The challenge will be to make antibodies, or recombinant derivatives thereof, BBB permeable; this is preferably achieved by monovalent antibody fragments since divalent ones were found to be neurotoxic. Self-tolerance of wild-type animals to PrP immunizations was found to be of extrathymic origin. Even though antibodies raised in wild-type mice were found to display antiprion activity in ScN2a cells, these mice did not have significant extensions of incubation times when challenged intraperitoneally with prions. A general low affinity of these antibody responses to native surface-bound PrPC may account for this. Since wild-type mice were found to develop sufficient T-cell responses to codon regions 145-160 and 210-220, we believe that there is a theoretical chance of a successful vaccination therapy. The influence of the way the immunogen is presented has already been shown to be of major importance for the ensuing immune response, in that presentation of PrP with CpG oligodeoxynucleotides as adjuvant or viral packaging improved antibody responses. Major progress for active immunizations may therefore be expected in this field. Eradication programs will be one of the most important uses of active immunization protocols. For this purpose, vaccines will have to be inexpensive, easy to handle, and effective. In the short term, passive immunizations will likely be most promising for therapy of prion disease, including for human medical interventions. Active immunization protocols are less likely to succeed quickly, and will take years if not decades to be validated for domestic or free-ranging animals.
Collapse
|
32
|
Tribouillard-Tanvier D, Béringue V, Desban N, Gug F, Bach S, Voisset C, Galons H, Laude H, Vilette D, Blondel M. Antihypertensive drug guanabenz is active in vivo against both yeast and mammalian prions. PLoS One 2008; 3:e1981. [PMID: 18431471 PMCID: PMC2291559 DOI: 10.1371/journal.pone.0001981] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 03/10/2008] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Prion-based diseases are incurable transmissible neurodegenerative disorders affecting animals and humans. METHODOLOGY/PRINCIPAL FINDINGS Here we report the discovery of the in vivo antiprion activity of Guanabenz (GA), an agonist of alpha2-adrenergic receptors routinely used in human medicine as an antihypertensive drug. We isolated GA in a screen for drugs active in vivo against two different yeast prions using a previously described yeast-based two steps assay. GA was then shown to promote ovine PrP(Sc) clearance in a cell-based assay. These effects are very specific as evidenced by the lack of activity of some GA analogues that we generated. GA antiprion activity does not involve its agonist activity on alpha2-adrenergic receptors as other chemically close anti-hypertensive agents possessing related mechanism of action were found inactive against prions. Finally, GA showed activity in a transgenic mouse-based in vivo assay for ovine prion propagation, prolonging slightly but significantly the survival of treated animals. CONCLUSION/SIGNIFICANCE GA thus adds to the short list of compounds active in vivo in animal models for the treatment of prion-based diseases. Because it has been administrated for many years to treat hypertension on a daily basis, without major side-effects, our results suggest that it could be evaluated in human as a potential treatment for prion-based diseases.
Collapse
Affiliation(s)
- Déborah Tribouillard-Tanvier
- INSERM U613, Brest, France
- Univ Brest, Faculté de Médecine et des Sciences de la Santé, UMR-S613, Brest, France
- Etablissement Français du Sang (EFS) Bretagne, Brest, France
- CHU Brest, Hop Morvan, Laboratoire de Génétique Moléculaire, Brest, France
- CNRS UPS2682, Station Biologique, Protein Phosphorylation and Disease Laboratory, Place Georges Teissier, Roscoff, France
| | - Vincent Béringue
- Institut National de la Recherche Agronomique (INRA), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Nathalie Desban
- CNRS UPS2682, Station Biologique, Protein Phosphorylation and Disease Laboratory, Place Georges Teissier, Roscoff, France
| | - Fabienne Gug
- INSERM U648, Laboratoire de Chimie Organique 2, Université Paris Descartes, Paris, France
| | - Stéphane Bach
- CNRS UPS2682, Station Biologique, Protein Phosphorylation and Disease Laboratory, Place Georges Teissier, Roscoff, France
| | - Cécile Voisset
- INSERM U613, Brest, France
- Univ Brest, Faculté de Médecine et des Sciences de la Santé, UMR-S613, Brest, France
- Etablissement Français du Sang (EFS) Bretagne, Brest, France
- CHU Brest, Hop Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Hervé Galons
- INSERM U648, Laboratoire de Chimie Organique 2, Université Paris Descartes, Paris, France
| | - Hubert Laude
- Institut National de la Recherche Agronomique (INRA), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Didier Vilette
- Institut National de la Recherche Agronomique (INRA), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Marc Blondel
- INSERM U613, Brest, France
- Univ Brest, Faculté de Médecine et des Sciences de la Santé, UMR-S613, Brest, France
- Etablissement Français du Sang (EFS) Bretagne, Brest, France
- CHU Brest, Hop Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| |
Collapse
|
33
|
Suzuki SY, Takata M, Teruya K, Shinagawa M, Mohri S, Yokoyama T. Conformational change in hamster scrapie prion protein (PrP27-30) associated with proteinase K resistance and prion infectivity. J Vet Med Sci 2008; 70:159-65. [PMID: 18319576 DOI: 10.1292/jvms.70.159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The scrapie prion protein (PrP27-30) is a crucial component of the prion and is responsible for its transmissibility. Structural information on this protein is limited because it is insoluble and shows aggregated properties. In this study, PrP27-30 was effectively dispersed using sonication under the weak alkaline condition. Subsequently, the small PrP27-30 aggregates were subjected to different pH, heat, and denaturing conditions. The loss of proteinase K (PK) resistance of PrP27-30 and prion infectivity were monitored along with spectroscopic changes. Prion inactivation could not be achieved by the loss of PK resistance alone; a significant loss of the PrP27-30 amyloid structure, which was represented by a decrease in thioflavin T fluorescence, was required for the loss of transmissibility.
Collapse
Affiliation(s)
- Sachiko Y Suzuki
- Prion Disease Research Center, National Institute of Animal Health, Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Leclerc E, Vetter S. Conformational changes and development of proteinase K resistance in surface-immobilized PrP. Arch Virol 2008; 153:683-91. [DOI: 10.1007/s00705-008-0049-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Accepted: 01/09/2008] [Indexed: 12/25/2022]
|
35
|
Kaiser-Schulz G, Heit A, Quintanilla-Martinez L, Hammerschmidt F, Hess S, Jennen L, Rezaei H, Wagner H, Schätzl HM. Polylactide-coglycolide microspheres co-encapsulating recombinant tandem prion protein with CpG-oligonucleotide break self-tolerance to prion protein in wild-type mice and induce CD4 and CD8 T cell responses. THE JOURNAL OF IMMUNOLOGY 2007; 179:2797-807. [PMID: 17709493 DOI: 10.4049/jimmunol.179.5.2797] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Prion diseases are fatal neurodegenerative diseases that are characterized by the conformational conversion of the normal, mainly alpha-helical cellular prion protein (PrP) into the abnormal beta-sheet-rich infectious isoform (PrP(Sc)). The immune system neither shows reaction against cellular PrP nor PrP(Sc), most likely due to profound self-tolerance. In previous studies, we were able to partly overcome self-tolerance using recombinantly expressed dimeric PrP (tandem PrP (tPrP)), in association with different adjuvants. Proof of principle for antiprion efficacy was obtained in vitro and in vivo. In this study, we demonstrate the induction of a specific Th1 T cell response in wild-type mice immunized with tPrP and CpG-oligonucleotide (ODN). Biochemical influences such as refolding conditions, ionic strength, pH, and interaction with CpG-ODN affected antigenic structure and thus improved immunogenicity. Furthermore, s.c. immunization with tPrP and CpG-ODN co-encapsulated in biodegradable polylactide-coglycolide microspheres (PLGA-MS) enhanced CD4 T cell responses and, more prominent, the induction of CD8 T cells. In this vaccination protocol, PLGA-MS function as endosomal delivery device of Ag plus CpG-ODN to macrophages and dendritic cells. In contrast, PLGA-MS-based DNA vaccination approaches with a tPrP construct generated poor humoral and T cell responses. Our data show that prophylactic and therapeutic immunization approaches against prion infections might be feasible using tPrP Ag and CpG-ODN adjuvant without detectable side effects.
Collapse
Affiliation(s)
- Gunnar Kaiser-Schulz
- Institute of Virology, Prion Research Group, Technical University of Munich, Trogerstrasse 30, 81675 Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Nitschke C, Flechsig E, van den Brandt J, Lindner N, Lührs T, Dittmer U, Klein MA. Immunisation strategies against prion diseases: prime-boost immunisation with a PrP DNA vaccine containing foreign helper T-cell epitopes does not prevent mouse scrapie. Vet Microbiol 2007; 123:367-76. [PMID: 17499458 DOI: 10.1016/j.vetmic.2007.03.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Vaccination against prion diseases constitutes a promising approach for the treatment and prevention of the disease. Passive immunisation with antibodies binding to the cellular prion protein (PrP(C)) can protect against prion disease. However, immunotherapeutic strategies with active immunisation are limited due to the immune tolerance against the self-antigen. In order to develop an anti-prion vaccine, we designed a novel DNA fusion vaccine composed of mouse PrP and immune stimulatory helper T-cell epitopes of the tetanus toxin that have previously been reported to break tolerance to other self-antigens. This approach provoked a strong PrP(C)-specific humoral and cellular immune response in PrP null mice, but only low antibody titres were found in vaccinated wild-type mice. Furthermore, prime-boost immunisation with the DNA vaccine and recombinant PrP protein increased antibody titres in PrP null mice, but failed to protect wild-type mice from mouse scrapie.
Collapse
Affiliation(s)
- Cindy Nitschke
- Institute of Virology and Immunobiology, University of Wuerzburg, Versbacherstr. 7, D-97078 Wuerzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Bovine spongiform encephalopathy in cattle is highly suspected to be orally transmitted to humans through contaminated food, causing new variant Creutzfeldt-Jakob disease. However, no prophylactic procedures against these diseases, such as vaccines, in particular those stimulating mucosal protective immunity, have been established. The causative agents of these diseases, termed prions, consist of the host-encoded prion protein (PrP). Therefore, prions are immunologically tolerated, inducing no host antibody responses. This immune tolerance to PrP has hampered the development of vaccines against prions. We and others recently reported that the immune tolerance could be successfully broken and mucosal immunity could be stimulated by mucosal immunization of mice with PrP fused with bacterial enterotoxin or delivered using an attenuated Salmonella strain, eliciting significantly higher immunoglobulin A and G antibody responses against PrP. In this review, we will discuss these reports.
Collapse
Affiliation(s)
- Suehiro Sakaguchi
- Division of Molecular Cytology, The Institute for Enzyme Research, The University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan.
| | | |
Collapse
|
38
|
Abstract
The resemblance between the discoveries that DNA is the basis of heredity and that prions are infectious proteins is remarkable. Though four decades separated these two discoveries, the biochemical methodologies and scientific philosophies that were employed are surprisingly similar. In both cases, bioassays available at the time that the projects were initiated proved to be inadequate to support purification studies. Improved bioassays allowed the transforming principle (TP) to be purified from pneumococci and prions from scrapie-infected hamster brains. Publications describing TP as composed of DNA prompted some scientists to contend that undetected proteins must contaminate TP enriched fractions. The simplicity of DNA was thought to prevent it from encoding genetic information. By the time prions were discovered, the genomes of all infectious pathogens including viruses, bacteria, fungi and parasites had been shown to be comprised of nucleic acids and so an antithetical refrain became widely echoed: DNA or RNA molecules must be hiding among the proteins of prions. Finding the unexpected and being asked to demonstrate unequivocally the absence of a possible contaminant represent uncanny parallels between the discoveries that DNA encodes the genotype and that prions are infectious proteins.
Collapse
Affiliation(s)
- Stanley B Prusiner
- Institute for Neurodegenerative Diseases, Department of Neurology, University of California, San Francisco, California 94143, USA
| | | |
Collapse
|
39
|
Ishibashi D, Yamanaka H, Yamaguchi N, Yoshikawa D, Nakamura R, Okimura N, Yamaguchi Y, Shigematsu K, Katamine S, Sakaguchi S. Immunization with recombinant bovine but not mouse prion protein delays the onset of disease in mice inoculated with a mouse-adapted prion. Vaccine 2006; 25:985-92. [PMID: 17055125 DOI: 10.1016/j.vaccine.2006.09.078] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Revised: 08/25/2006] [Accepted: 09/26/2006] [Indexed: 10/24/2022]
Abstract
Host tolerance to endogenous prion protein (PrP) has hampered the development of prion vaccines as PrP is a major component of prions. Indeed, we show that immunization of mice with mouse recombinant PrP elicited no prophylactic effect against a mouse-adapted prion. However, interestingly, mice immunized with recombinant bovine PrP developed the disease significantly later than non-immunized mice after inoculation of a mouse prion. Sheep recombinant PrP exhibited variable prophylactic effects. Mouse recombinant PrP stimulated only very weak antibody responses. In contrast, bovine recombinant PrP was higher immunogenic and produced variable amounts of anti-mouse PrP autoantibodies. Sheep recombinant PrP was also immunogenic but produced more variable amounts of anti-PrP autoantibodies. These results might open a new way for development of prion vaccines.
Collapse
Affiliation(s)
- Daisuke Ishibashi
- PRESTO Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Bach S, Tribouillard D, Talarek N, Desban N, Gug F, Galons H, Blondel M. A yeast-based assay to isolate drugs active against mammalian prions. Methods 2006; 39:72-7. [PMID: 16750390 DOI: 10.1016/j.ymeth.2006.04.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Accepted: 04/24/2006] [Indexed: 11/29/2022] Open
Abstract
Recently, we have developed a yeast-based (Saccharomyces cerevisiae) assay to isolate drugs active against mammalian prions. The initial assumption was that mechanisms controlling prion appearance and/or propagation could be conserved from yeast to human, as it is the case for most of the major cell biology regulatory mechanisms. Indeed, the vast majority of drugs we isolated as active against both [PSI(+)] and [URE3] budding yeast prions turned out to be also active against mammalian prion in three different mammalian cell-based assays. These results strongly argue in favor of common prion controlling mechanisms conserved in eukaryotes, thus validating our yeast-based assay and also the use of budding yeast to identify antiprion compounds and to study the prion world.
Collapse
Affiliation(s)
- Stéphane Bach
- CNRS, Station Biologique, UPS2682, Place G. Teissier, 29680 Roscoff, Bretagne, France
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Neuronal vacuolation (spongiosis), neuronal death, and pronounced glial reactions are the hallmarks of transmissible spongiform encephalopathies (TSEs), or prion diseases. A wealth of physical, biochemical, and immunological evidence indicates that the TSE agent, termed prion, does not contain agent-specific nucleic acid encoding its own constituents, as is the case for all other infectious pathogens. Also, no adaptive immune responses are elicited upon infection. A defining feature of TSEs is the deposition, mainly in the brain and lymphoreticular tissues, of an aggregated and structurally abnormal protein, designated PrP(Sc) or PrP-res, which represents a conformational isomer of the ubiquitous surface protein PrP(C). Biochemical and genetic evidence link PrP and its gene to the disease. Although TSEs are by definition transmissible, a growing number of Prnp-associated non-infectious neurodegenerative proteinopathies are now being recognized.
Collapse
Affiliation(s)
- Adriano Aguzzi
- Institute of Neuropathology, Universitätsspital Zürich, Zürich, Switzerland.
| |
Collapse
|
42
|
Safar JG, Wille H, Geschwind MD, Deering C, Latawiec D, Serban A, King DJ, Legname G, Weisgraber KH, Mahley RW, Miller BL, DeArmond SJ, Prusiner SB. Human prions and plasma lipoproteins. Proc Natl Acad Sci U S A 2006; 103:11312-7. [PMID: 16849426 PMCID: PMC1544083 DOI: 10.1073/pnas.0604021103] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Prions are composed solely of an alternatively folded isoform of the prion protein (PrP), designated PrP(Sc). The polyoxometalate phosphotungstic acid has been used to separate PrP(Sc) from its precursor PrP(C) by selective precipitation; notably, native PrP(Sc) has not been solubilized by using nondenaturing detergents. Because of the similarities between PrP(Sc) and lipoproteins with respect to hydrophobicity and formation of phosphotungstic acid complexes, we asked whether these molecules are bound to each other in blood. Here we report that prions from the brains of patients with sporadic Creutzfeldt-Jakob disease (CJD) bind to very low-density (VLDL) and low-density (LDL) lipoproteins but not to high-density lipoproteins (HDL) or other plasma components, as demonstrated both by affinity assay and electron microscopy. Immunoassays demonstrated that apolipoprotein B (apoB), which is the major protein component of VLDL and LDL, bound PrP(Sc) through a highly cooperative process. Approximately 50% of the PrP(Sc) bound to LDL particles was released after exposure to 4 M guanidine hydrochloride at 80 degrees C for 20 min. The apparent binding constants of native human (Hu) PrP(Sc) or denatured recombinant HuPrP(90-231) for apoB and LDL ranged from 28 to 212 pM. Whether detection of PrP(Sc) in VLDL and LDL particles can be adapted into an antemortem diagnostic test for prions in the blood of humans, livestock, and free-ranging cervids remains to be determined.
Collapse
Affiliation(s)
- Jiri G. Safar
- *Institute for Neurodegenerative Diseases
- Departments of Neurology
| | - Holger Wille
- *Institute for Neurodegenerative Diseases
- Departments of Neurology
| | - Michael D. Geschwind
- Departments of Neurology
- Memory and Aging Center, University of California, San Francisco, CA 94143; and
| | | | | | - Ana Serban
- *Institute for Neurodegenerative Diseases
| | | | - Giuseppe Legname
- *Institute for Neurodegenerative Diseases
- Departments of Neurology
| | | | - Robert W. Mahley
- Gladstone Institute, University of California, San Francisco, CA 94158
| | - Bruce L. Miller
- Departments of Neurology
- Memory and Aging Center, University of California, San Francisco, CA 94143; and
| | | | - Stanley B. Prusiner
- *Institute for Neurodegenerative Diseases
- Departments of Neurology
- Biochemistry and Biophysics, and
| |
Collapse
|
43
|
Caramelli M, Ru G, Acutis P, Forloni G. Prion diseases: current understanding of epidemiology and pathogenesis, and therapeutic advances. CNS Drugs 2006; 20:15-28. [PMID: 16396521 DOI: 10.2165/00023210-200620010-00002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The bovine spongiform encephalopathy (BSE) epidemic, along with the related threat to human health posed by the transmission of the BSE agent to humans, has highlighted the importance of prion diseases. These fatal neurodegenerative diseases are characterised by spongiform changes in the CNS, and comprise a wide spectrum of clinicopathological entities in humans and animals, such as Creutzfeldt-Jakob disease (CJD) and its emerging new variant (vCJD) in humans, and BSE and scrapie in animals. This article reviews the geographical distribution and the temporal trends of CJD and vCJD; the major events in the pathogenesis of prion diseases; the risk factors for sporadic CJD and vCJD; and the possible strategies for treating them. Worldwide statistics indicate that sporadic CJD has a stable incidence of one case per million people per year; in contrast, the incidence of vCJD appears to have increased exponentially from its characterisation in 1994 to a peak in 2000. As of December 2005, 183 definite or probable cases of vCJD had been reported worldwide. The crucial event in the pathogenesis of prion diseases is the conversion of the normally occurring cellular prion protein (PrP(c)) into a pathogenic form, called protease-resistant PrP (PrP(res)) or scrapie PrP (PrP(sc)). Pathogenetic studies in rodent models have shown that PrP(sc) is found in the enteric nervous system and in the gut-associated lymphoid tissue following oral scrapie ingestion. The role of the lymphoreticular system in the pathogenesis of TSE seems to be related to the strains of agents and the host genotype. Therapeutic approaches to vCJD are mainly based on the inhibition or prevention of the pathological change that creates PrP(sc). Derivatives of acridine (such as mepacrine [quinacrine]) and the phenothiazine psychotropics have been proposed as possible therapies because of their activity in cellular models; however, neither class was able to affect the protease resistance of preexisting PrP fibrils. More encouragingly, in animal models of prion disease, tetracyclines were found to reduce prion infectivity by direct inactivation of PrP(sc). While these findings are promising, the suitability of these compounds for clinical use is still limited by their low efficacy once symptoms are apparent. Treatments based on the vaccination approach have also produced positive results, but further investigations are necessary to establish their clinical application.
Collapse
Affiliation(s)
- Maria Caramelli
- CEA-National TSE Reference Laboratory, Istituto Zooprofilattico Sperimentale del Piemonte, Turin, Italy
| | | | | | | |
Collapse
|
44
|
Abstract
In the late 1980s and early 1990s, there was widespread exposure of the UK population to bovine spongiform encephalopathy (BSE)-contaminated food products, which has led to over 150 deaths from variant Creutzfeldt-Jakob disease (vCJD). Although the pathogenesis in humans is not fully understood, data from animal models and, to a lesser extent, patients with vCJD suggest that oral exposure to BSE is rapidly followed by accumulation of PrP(res) in gut-associated lymphoid tissue, then, after haematogenous spread, throughout the lymphoreticular system. Spread to the central nervous system may not occur for several years, but blood from individuals in the pre-clinical phase appears to be able to transmit disease. The incidence of vCJD has remained low and is in decline, but it is known from iatrogenic CJD and kuru that human prion disease can have incubation periods of up to 40 years. Cases of vCJD are therefore likely to occur for many more years and alternative phenotypes may develop in individuals with different PRNP genotypes to those seen to date. Studies in transgenic mice have shown that sub-clinical infection is frequent following oral exposure to BSE and a study looking at the accumulation of PrP in anonymized human lymphoid tissue samples found positive cases. There are likely to be a number of asymptomatic 'carriers' of disease within the UK and although it is unclear whether these individuals will develop clinical disease, there is a potential for iatrogenic spread to others. These uncertainties highlight the importance of developing a reliable blood test for vCJD and the continued need for surveillance.
Collapse
Affiliation(s)
- David A Hilton
- Department of Histopathology, Derriford Hospital, Plymouth, UK.
| |
Collapse
|
45
|
Buchholz CJ, Bach P, Nikles D, Kalinke U. Prion protein-specific antibodies for therapeutic intervention of transmissible spongiform encephalopathies. Expert Opin Biol Ther 2006; 6:293-300. [PMID: 16503737 DOI: 10.1517/14712598.6.3.293] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Prion diseases, also called transmissible spongiform encephalopathies, are a group of fatal neurodegenerative conditions that affect humans and a wide variety of animals. There is no therapeutic or prophylactic approach against prion diseases available at present. The causative infectious agent is the prion, also termed PrPSc, which is a pathological conformer of the cellular prion protein PrPC. Passive immunisation studies with PrPC-specific antibodies indicated that immunotherapeutic strategies directed against PrPC can prevent prion disease. In this review, putative mechanisms of antibody-mediated prion inactivation, as well as active immunisation strategies, are discussed. Special attention is given to the problem of immunological self-tolerance against PrP.
Collapse
Affiliation(s)
- Christian J Buchholz
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany.
| | | | | | | |
Collapse
|
46
|
Soto C, Estrada L, Castilla J. Amyloids, prions and the inherent infectious nature of misfolded protein aggregates. Trends Biochem Sci 2006; 31:150-5. [PMID: 16473510 DOI: 10.1016/j.tibs.2006.01.002] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 12/01/2005] [Accepted: 01/26/2006] [Indexed: 10/25/2022]
Abstract
Misfolded aggregates present in amyloid fibrils are associated with various diseases known as "protein misfolding" disorders. Among them, prion diseases are unique in that the pathology can be transmitted by an infectious process involving an unprecedented agent known as a "prion". Prions are infectious proteins that can transmit biological information by propagating protein misfolding and aggregation. The molecular mechanism of prion conversion has a striking resemblance to the process of amyloid formation, suggesting that misfolded aggregates have an inherent ability to be transmissible. Intriguing recent data suggest that other protein misfolding disorders might also be transmitted by a prion-like infectious process.
Collapse
Affiliation(s)
- Claudio Soto
- George and Cynthia Mitchell Center for Alzheimer's disease and related Neurodegenerative Disorders, Departments of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | | | | |
Collapse
|
47
|
Fasano C, Campana V, Zurzolo C. Prions: protein only or something more? Overview of potential prion cofactors. J Mol Neurosci 2006; 29:195-214. [PMID: 17085779 DOI: 10.1385/jmn:29:3:195] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Revised: 11/30/1999] [Accepted: 02/03/2006] [Indexed: 12/12/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs) in humans and animals are attributed to protein-only infectious agents, called prions. Prions have been proposed to arise from the conformational conversion of the cellular protein PrP(C) into a misfolded form (e.g., PrP(Sc) for scrapie), which precipitates into aggregates and fibrils. It has been proposed that the conversion process is triggered by the interaction of the infectious form (PrP(Sc)) with the cellular form (PrP(C)) or might result from a mutation in the gene for PrP(C). However, until recently, all efforts to reproduce this process in vitro had failed, suggesting that host factors are necessary for prion replication. In this review we discuss recent findings such as the cellular factors that might be involved in the conformational conversion of prion proteins and the potential mechanisms by which they could operate.
Collapse
Affiliation(s)
- Carlo Fasano
- Unité de Trafic Membranaire et Pathogénése, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | |
Collapse
|
48
|
Prion diseases. NEURODEGENER DIS 2005. [DOI: 10.1017/cbo9780511544873.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
49
|
Castilla J, Saá P, Hetz C, Soto C. In vitro generation of infectious scrapie prions. Cell 2005; 121:195-206. [PMID: 15851027 DOI: 10.1016/j.cell.2005.02.011] [Citation(s) in RCA: 604] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Revised: 12/20/2004] [Accepted: 02/11/2005] [Indexed: 11/22/2022]
Abstract
Prions are unconventional infectious agents responsible for transmissible spongiform encephalopathy (TSE) diseases. They are thought to be composed exclusively of the protease-resistant prion protein (PrPres) that replicates in the body by inducing the misfolding of the cellular prion protein (PrPC). Although compelling evidence supports this hypothesis, generation of infectious prion particles in vitro has not been convincingly demonstrated. Here we show that PrPC --> PrPres conversion can be mimicked in vitro by cyclic amplification of protein misfolding, resulting in indefinite amplification of PrPres. The in vitro-generated forms of PrPres share similar biochemical and structural properties with PrPres derived from sick brains. Inoculation of wild-type hamsters with in vitro-produced PrPres led to a scrapie disease identical to the illness produced by brain infectious material. These findings demonstrate that prions can be generated in vitro and provide strong evidence in support of the protein-only hypothesis of prion transmission.
Collapse
Affiliation(s)
- Joaquín Castilla
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | | | |
Collapse
|
50
|
Abstract
Antibody-based immunotherapy may represent a realistic approach against prion diseases, given that antibodies to the cellular prion protein PrPC have been shown to antagonize deposition of the disease-associated prion protein (termed PrPSc) in in vitro assays and in laboratory animals. However, induction of protective antiprion immune responses in wild-type animals is difficult because of host tolerance to the endogenous PrPC. Several studies indicate that it might be possible to overcome tolerance to PrPC and induce immune responses to bacterially expressed, recombinant PrP. However, it is much more difficult to induce antibodies capable of recognizing native cell-surface PrPC, and there is reason to believe that the latter immune responses correlate with anti-prion protection. The difficulties involved in eliciting development of such anti-native PrPC immune responses may be partly intrinsic to B cells and, in addition, may reside in peripheral T helper tolerance.
Collapse
Affiliation(s)
- Frank L Heppner
- Institute of Neuropathology, University Hospital Zurich, Schmelzbergstrasse 12, CH-8091, Switzerland.
| | | |
Collapse
|