1
|
Mo H, Jeter R, Bachmann A, Yount ST, Shen CL, Yeganehjoo H. The Potential of Isoprenoids in Adjuvant Cancer Therapy to Reduce Adverse Effects of Statins. Front Pharmacol 2019; 9:1515. [PMID: 30662405 PMCID: PMC6328495 DOI: 10.3389/fphar.2018.01515] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/11/2018] [Indexed: 12/11/2022] Open
Abstract
The mevalonate pathway provides sterols for membrane structure and nonsterol intermediates for the post-translational modification and membrane anchorage of growth-related proteins, including the Ras, Rac, and Rho GTPase family. Mevalonate-derived products are also essential for the Hedgehog pathway, steroid hormone signaling, and the nuclear localization of Yes-associated protein and transcriptional co-activator with PDZ-binding motif, all of which playing roles in tumorigenesis and cancer stem cell function. The phosphatidylinositol-4,5-bisphosphate 3-kinase-AKT-mammalian target of rapamycin complex 1 pathway, p53 with gain-of-function mutation, and oncoprotein MYC upregulate the mevalonate pathway, whereas adenosine monophosphate-activated protein kinase and tumor suppressor protein RB are the downregulators. The rate-limiting enzyme, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), is under a multivalent regulation. Sterol regulatory element binding protein 2 mediates the sterol-controlled transcriptional downregulation of HMGCR. UbiA prenyltransferase domain-containing protein-1 regulates the ubiquitination and proteasome-mediated degradation of HMGCR, which is accelerated by 24, 25-dihydrolanosterol and the diterpene geranylgeraniol. Statins, competitive inhibitors of HMGCR, deplete cells of mevalonate-derived intermediates and consequently inhibit cell proliferation and induce apoptosis. Clinical application of statins is marred by dose-limiting toxicities and mixed outcomes on cancer risk, survival and mortality, partially resulting from the statin-mediated compensatory upregulation of HMGCR and indiscriminate inhibition of HMGCR in normal and tumor cells. Tumor HMGCR is resistant to the sterol-mediated transcriptional control; consequently, HMGCR is upregulated in cancers derived from adrenal gland, blood and lymph, brain, breast, colon, connective tissue, embryo, esophagus, liver, lung, ovary, pancreas, prostate, skin, and stomach. Nevertheless, tumor HMGCR remains sensitive to isoprenoid-mediated degradation. Isoprenoids including monoterpenes (carvacrol, L-carvone, geraniol, perillyl alcohol), sesquiterpenes (cacalol, farnesol, β-ionone), diterpene (geranylgeranyl acetone), “mixed” isoprenoids (tocotrienols), and their derivatives suppress the growth of tumor cells with little impact on non-malignant cells. In cancer cells derived from breast, colon, liver, mesothelium, prostate, pancreas, and skin, statins and isoprenoids, including tocotrienols, geraniol, limonene, β-ionone and perillyl alcohol, synergistically suppress cell proliferation and associated signaling pathways. A blend of dietary lovastatin and δ-tocotrienol, each at no-effect doses, suppress the growth of implanted murine B16 melanomas in C57BL6 mice. Isoprenoids have potential as adjuvant agents to reduce the toxicities of statins in cancer prevention or therapy.
Collapse
Affiliation(s)
- Huanbiao Mo
- Department of Nutrition, Byrdine F. Lewis College of Nursing and Health Professions, Georgia State University, Atlanta, GA, United States
| | - Rayna Jeter
- Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Andrea Bachmann
- Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Sophie T Yount
- Department of Chemistry, Georgia State University, Atlanta, GA, United States
| | - Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Hoda Yeganehjoo
- Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
2
|
ATP depletion during mitotic arrest induces mitotic slippage and APC/C Cdh1-dependent cyclin B1 degradation. Exp Mol Med 2018; 50:1-14. [PMID: 29700288 PMCID: PMC5938023 DOI: 10.1038/s12276-018-0069-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/18/2017] [Accepted: 01/29/2018] [Indexed: 01/08/2023] Open
Abstract
ATP depletion inhibits cell cycle progression, especially during the G1 phase and the G2 to M transition. However, the effect of ATP depletion on mitotic progression remains unclear. We observed that the reduction of ATP after prometaphase by simultaneous treatment with 2-deoxyglucose and NaN3 did not arrest mitotic progression. Interestingly, ATP depletion during nocodazole-induced prometaphase arrest resulted in mitotic slippage, as indicated by a reduction in mitotic cells, APC/C-dependent degradation of cyclin B1, increased cell attachment, and increased nuclear membrane reassembly. Additionally, cells successfully progressed through the cell cycle after mitotic slippage, as indicated by EdU incorporation and time-lapse imaging. Although degradation of cyclin B during normal mitotic progression is primarily regulated by APC/CCdc20, we observed an unexpected decrease in Cdc20 prior to degradation of cyclin B during mitotic slippage. This decrease in Cdc20 was followed by a change in the binding partner preference of APC/C from Cdc20 to Cdh1; consequently, APC/CCdh1, but not APC/CCdc20, facilitated cyclin B degradation following ATP depletion. Pulse-chase analysis revealed that ATP depletion significantly abrogated global translation, including the translation of Cdc20 and Cdh1. Additionally, the half-life of Cdh1 was much longer than that of Cdc20. These data suggest that ATP depletion during mitotic arrest induces mitotic slippage facilitated by APC/CCdh1-dependent cyclin B degradation, which follows a decrease in Cdc20 resulting from reduced global translation and the differences in the half-lives of the Cdc20 and Cdh1 proteins. An investigation into the effects of cellular energy depletion reveals a potential mechanism by which tumors evade chemotherapy. Adenosine triphosphate (ATP) is the primary energetic currency for many biological processes, and ATP depletion generally stalls the cell cycle that regulates proliferation. However, researchers led by Jae-Ho Lee of South Korea’s Ajou University School of Medicine discovered that ATP-depleted cells can sometimes bypass roadblocks in the cell division process. Before dividing, cells synthesize duplicates of every chromosome, and Lee’s team treated cells with chemotherapy agents that stall cell division by preventing separation of these duplicates. Surprisingly, subsequent ATP depletion allowed these cells to bypass this arrested state and re-enter the cell cycle, albeit with twice as much DNA as normal. Since many cancerous cells experience ATP depletion, this ‘escape hatch’ could help tumors survive treatment.
Collapse
|
3
|
Replication of JC Virus DNA in the G144 Oligodendrocyte Cell Line Is Dependent Upon Akt. J Virol 2017; 91:JVI.00735-17. [PMID: 28768870 DOI: 10.1128/jvi.00735-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/26/2017] [Indexed: 12/24/2022] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is an often-fatal demyelinating disease of the central nervous system. PML results when oligodendrocytes within immunocompromised individuals are infected with the human JC virus (JCV). We have identified an oligodendrocyte precursor cell line, termed G144, that supports robust levels of JCV DNA replication, a central part of the JCV life cycle. In addition, we have determined that JC virus readily infects G144 cells. Furthermore, we have determined that JCV DNA replication in G144 cells is stimulated by myristoylated (i.e., constitutively active) Akt and reduced by the Akt-specific inhibitor MK2206. Thus, this oligodendrocyte-based model system will be useful for a number of purposes, such as studies of JCV infection, establishing key pathways needed for the regulation of JCV DNA replication, and identifying inhibitors of this process.IMPORTANCE The disease progressive multifocal leukoencephalopathy (PML) is caused by the infection of particular brain cells, termed oligodendrocytes, by the JC virus. Studies of PML, however, have been hampered by the lack of an immortalized human cell line derived from oligodendrocytes. Here, we report that the G144 oligodendrocyte cell line supports both infection by JC virus and robust levels of JCV DNA replication. Moreover, we have established that the Akt pathway regulates JCV DNA replication and that JCV DNA replication can be inhibited by MK2206, a compound that is specific for Akt. These and related findings suggest that we have established a powerful oligodendrocyte-based model system for studies of JCV-dependent PML.
Collapse
|
4
|
Plachez C, Lindwall C, Sunn N, Piper M, Moldrich RX, Campbell CE, Osinski JM, Gronostajski RM, Richards LJ. Nuclear factor I gene expression in the developing forebrain. J Comp Neurol 2008; 508:385-401. [DOI: 10.1002/cne.21645] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Lazakovitch E, Kalb JM, Matsumoto R, Hirono K, Kohara Y, Gronostajski RM. nfi-I affects behavior and life-span in C. elegans but is not essential for DNA replication or survival. BMC DEVELOPMENTAL BIOLOGY 2005; 5:24. [PMID: 16242019 PMCID: PMC1277823 DOI: 10.1186/1471-213x-5-24] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Accepted: 10/20/2005] [Indexed: 11/10/2022]
Abstract
BACKGROUND The Nuclear Factor I (one) (NFI) family of transcription/replication factors plays essential roles in mammalian gene expression and development and in adenovirus DNA replication. Because of its role in viral DNA replication NFI has long been suspected to function in host DNA synthesis. Determining the requirement for NFI proteins in mammalian DNA replication is complicated by the presence of 4 NFI genes in mice and humans. Loss of individual NFI genes in mice cause defects in brain, lung and tooth development, but the presence of 4 homologous NFI genes raises the issue of redundant roles for NFI genes in DNA replication. No NFI genes are present in bacteria, fungi or plants. However single NFI genes are present in several simple animals including Drosophila and C. elegans, making it possible to test for a requirement for NFI in multicellular eukaryotic DNA replication and development. Here we assess the functions of the single nfi-1 gene in C. elegans. RESULTS C. elegans NFI protein (CeNFI) binds specifically to the same NFI-binding site recognized by vertebrate NFIs. nfi-1 encodes alternatively-spliced, maternally-inherited transcripts that are expressed at the single cell stage, during embryogenesis, and in adult muscles, neurons and gut cells. Worms lacking nfi-1 survive but have defects in movement, pharyngeal pumping and egg-laying and have a reduced life-span. Expression of the muscle gene Ce titin is decreased in nfi-1 mutant worms. CONCLUSION NFI gene function is not needed for survival in C. elegans and thus NFI is likely not essential for DNA replication in multi-cellular eukaryotes. The multiple defects in motility, egg-laying, pharyngeal pumping, and reduced lifespan indicate that NFI is important for these processes. Reduction in Ce titin expression could affect muscle function in multiple tissues. The phenotype of nfi-1 null worms indicates that NFI functions in multiple developmental and behavioral systems in C. elegans, likely regulating genes that function in motility, egg-laying, pharyngeal pumping and lifespan maintenance.
Collapse
Affiliation(s)
- Elena Lazakovitch
- Dept. of Biochemistry, SUNY at Buffalo, 140 Farber Hall, 3435 Main St., Buffalo, NY, 14214, USA
| | - John M Kalb
- Dept. of Biology, Canisius College, Buffalo, NY, USA
| | - Reiko Matsumoto
- Dept. of Biochemistry, SUNY at Buffalo, 140 Farber Hall, 3435 Main St., Buffalo, NY, 14214, USA
| | - Keiko Hirono
- CREST and Gene Network Lab, National Institute of Genetics, Mishima, Japan
| | - Yuji Kohara
- CREST and Gene Network Lab, National Institute of Genetics, Mishima, Japan
| | - Richard M Gronostajski
- Dept. of Biochemistry, SUNY at Buffalo, 140 Farber Hall, 3435 Main St., Buffalo, NY, 14214, USA
| |
Collapse
|
6
|
Xu H, Uno JK, Inouye M, Collins JF, Ghishan FK. NF1 transcriptional factor(s) is required for basal promoter activation of the human intestinal NaPi-IIb cotransporter gene. Am J Physiol Gastrointest Liver Physiol 2005; 288:G175-81. [PMID: 15458926 DOI: 10.1152/ajpgi.00396.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The human intestinal type IIb Na+-P(i) cotransporter (hNaPi-IIb) gene promoter lacks a TATA box and has a high GC content in the 5'-flanking region. To understand the mechanism of hNaPi-IIb gene transcription, the current study was performed to characterize the minimal promoter region and transcriptional factor(s) necessary to activate gene expression in human intestinal cells (Caco-2). With the use of progressively shorter promoter constructs, a minimal promoter extending from bp -58 to +15 was identified and shown to direct high levels of hNaPi-IIb cotransporter expression in Caco-2 cells. Gel mobility shift assays (GMSAs) indicated that two regions could be bound by nuclear proteins from Caco-2 cells: region A at bp -26/-23 and region B at bp -44/-35. The introduction of mutations in region A abolished promoter activity, whereas mutations in region B had no effect. Deletion mutants of the same regions showed identical results. Furthermore, DNase I footprinting experiments confirmed the observation made by GMSAs. Additional studies, which used a specific nuclear factor 1 (NF1) antiserum, demonstrated that NF1 protein(s) binds to the minimal promoter at region A. These results indicated that the NF1 protein(s) is required to activate the basal transcription of hNaPi-IIb gene under normal growth conditions. This study has thus identified a new target gene in the small intestinal epithelium that is directly regulated by NF1 transcriptional factor(s).
Collapse
Affiliation(s)
- Hua Xu
- Department of Pediatrics, Steele Memorial Children's Research Center, University of Arizona Health Sciences Center, Tucson, AZ 85724, USA
| | | | | | | | | |
Collapse
|
7
|
Uramoto H, Izumi H, Nagatani G, Ohmori H, Nagasue N, Ise T, Yoshida T, Yasumoto K, Kohno K. Physical interaction of tumour suppressor p53/p73 with CCAAT-binding transcription factor 2 (CTF2) and differential regulation of human high-mobility group 1 (HMG1) gene expression. Biochem J 2003; 371:301-10. [PMID: 12534345 PMCID: PMC1223307 DOI: 10.1042/bj20021646] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2002] [Revised: 01/14/2003] [Accepted: 01/20/2003] [Indexed: 12/27/2022]
Abstract
The CCAAT-binding transcription factor (CTF)/nuclear factor I (NF-I) group of cellular DNA-binding proteins recognizes the sequence GCCAAT and is implicated in eukaryotic transcription, as well as DNA replication. Molecular analysis of human CTF/NF-I cDNA clones revealed multiple mRNA species that contain alternative coding regions, apparently as a result of differential splicing. Expression and functional analysis established that individual gene products can bind to GCCAAT recognition sites and serve as both promoter-selective transcriptional activators and initiation factors for DNA replication. The interaction between CTF2 and p53/p73 was shown to modulate their ability to regulate transcription of their respective target genes. In the present paper, we report that p53 down-regulates the activity of the high mobility group 1 (HMG1) gene promoter, whereas p73alpha up-regulates the activity of this promoter. Furthermore, CTF2 transactivates p53-induced p21 promoter activity, but inhibits p73alpha-induced p21 promoter activity. Using deletion mutants, we found that the DNA-binding domains of both p53 and p73alpha are required for physical interaction with CTF2 via the regions between amino acid residues 161 and 223, and 228 and 312 respectively. CTF2 enhances the DNA-binding activity of p53 and inhibits the DNA-binding activity of p73alpha. These results provide novel information on the functional interplay between CTF2 and p53/p73 as important determinants of their function in cell proliferation, apoptosis, DNA repair and cisplatin resistance.
Collapse
Affiliation(s)
- Hidetaka Uramoto
- Department of Molecular Biology, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Murtagh J, Martin F, Gronostajski RM. The Nuclear Factor I (NFI) gene family in mammary gland development and function. J Mammary Gland Biol Neoplasia 2003; 8:241-54. [PMID: 14635798 DOI: 10.1023/a:1025909109843] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mammary gland development and function require the coordinated spatial and temporal expression of a large fraction of the mammalian genome. A number of site-specific transcription factors are essential to achieve the appropriate growth, branching, expansion, and involution of the mammary gland throughout early postnatal development and the lactation cycle. One family of transcription factors proposed to play a major role in the mammary gland is encoded by the Nuclear Factor I (NFI) genes. The NFI gene family is found only in multicellular animals, with single genes being present in flies and worms and four genes in vertebrates. While the NFI family expanded and diversified prior to the evolution of the mammary gland, it is clear that several mammary-gland specific genes are regulated by NFI proteins. Here we address the structure and evolution of the NFI gene family and examine the role of the NFI transcription factors in the expression of mammary-gland specific proteins, including whey acidic protein and carboxyl ester lipase. We discuss current data showing that unique NFI proteins are expressed during lactation and involution and suggest that the NFI gene family likely has multiple important functions throughout mammary gland development.
Collapse
Affiliation(s)
- Janice Murtagh
- Conway Institute of Biomolecular and Biomedical Research and Department of Pharmacology, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | |
Collapse
|
9
|
Kane R, Murtagh J, Finlay D, Marti A, Jaggi R, Blatchford D, Wilde C, Martin F. Transcription factor NFIC undergoes N-glycosylation during early mammary gland involution. J Biol Chem 2002; 277:25893-903. [PMID: 11991954 DOI: 10.1074/jbc.m202469200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of a 74-kDa nuclear factor I (NFI) protein is triggered in early involution in the mouse mammary gland, and its expression correlates with enhanced occupation of a twin (NFI) binding element in the clusterin promoter, a gene whose transcription is induced at this time (Furlong, E. E., Keon, N. K., Thornton, F. D., Rein, T., and Martin, F. (1996) J. Biol. Chem. 271, 29688-29697). We now identify this 74-kDa NFI as an NFIC isoform based on its interaction in Western analysis with two NFIC-specific antibodies. A transition from the expression of a 49-kDa NFIC in lactation to the expression of the 74-kDa NFIC in early involution is demonstrated. We show that the 74-kDa NFIC binds specifically to concanavalin A (ConA) and that this binding can be reversed by the specific ConA ligands, methyl alpha-D-mannopyranoside and methyl alpha-D-glucopyranoside. In addition, its apparent molecular size was reduced to approximately 63 kDa by treatment with the peptide N-glycosidase. The 49-kDa lactation-associated NFIC did not bind ConA nor was it affected by peptide N-glycosidase. Tunicamycin, a specific inhibitor of N-glycosylation, blocked formation of the 74-kDa NFI in involuting mouse mammary gland in vivo when delivered from implanted Elvax depot pellets. Finally, the production of the ConA binding activity could be reiterated in "mammospheres" formed from primary mouse mammary epithelial cells associated with a laminin-rich extracellular matrix. Synthesis of the 74-kDa NFIC was also inhibited in this setting by tunicamycin. Thus, involution triggers the production of an NFIC isoform that is post-translationally modified by N-glycosylation. We further show, by using quantitative competitive reverse transcriptase-PCR, that there is increased expression of the major mouse mammary NFIC mRNA transcript, mNFIC2, in early involution, suggesting that the involution-associated change in NFIC expression also has a transcriptional contribution.
Collapse
Affiliation(s)
- Rosemary Kane
- Conway Institute of Biomolecular and Biomedical Research and Department of Pharmacology, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
10
|
del Castillo-Olivares A, Gil G. Differential effects of sterol regulatory binding proteins 1 and 2 on sterol 12 alpha-hydroxylase. SREBP-2 suppresses the sterol 12 alpha-hydroxylase promoter. J Biol Chem 2002; 277:6750-7. [PMID: 11741989 DOI: 10.1074/jbc.m106785200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The most important pathway for the catabolism and excretion of cholesterol in mammals is the formation of bile acids. Improper regulation of this pathway has implications for atherosclerosis, cholesterol gallstone formation, and some lipid storage diseases. Sterol 12 alpha-hydroxylase (12 alpha-hydroxylase) is required for cholic acid biosynthesis. The alpha(1)-fetoprotein transcription factor FTF is crucial for the expression and the bile acid-mediated down-regulation of 12 alpha-hydroxylase. Cholesterol, on the other hand, down-regulates expression of the 12 alpha-hydroxylase gene. In this study, we show that the two sterol regulatory binding proteins (SREBPs) have opposite effects on the 12 alpha-hydroxylase promoter. SREBP-1 activated the 12 alpha-hydroxylase promoter, as it does with many other cholesterol-regulated genes. In contrast, SREBP-2 suppressed 12 alpha-hydroxylase promoter activity. SREBP-1 mediates the cholesterol-down-regulation of 12 alpha-hydroxylase promoter by binding to two inverted sterol regulatory elements found approximately 300 nucleotides from the transcriptional initiation site. SREBP-2 mediated suppression of 12 alpha-hydroxylase without binding to its promoter. Data are presented suggesting that SREBP-2 suppresses the 12 alpha-hydroxylase promoter by interacting with FTF. This is the first report of a promoter responding oppositely to two members of the SREBP family of transcription factors. These studies provide a novel function and mode of action of a SREBP protein.
Collapse
Affiliation(s)
- Antonio del Castillo-Olivares
- Department of Biochemistry and Molecular Biophysics, Medical College of Virginia, Richmond, Virginia 23298-0614, USA
| | | |
Collapse
|
11
|
Rafty LA, Santiago FS, Khachigian LM. NF1/X represses PDGF A-chain transcription by interacting with Sp1 and antagonizing Sp1 occupancy of the promoter. EMBO J 2002; 21:334-43. [PMID: 11823426 PMCID: PMC125828 DOI: 10.1093/emboj/21.3.334] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The regulatory mechanisms mediating basal and inducible platelet-derived growth factor (PDGF)-A expression have been the focus of intense recent investigation, but repression of PDGF-A expression is largely unexplored. Here we isolated a nuclear factor that interacts with the proximal region of the PDGF-A promoter using bulk binding assays and chromatography techniques. Peptide mass fingerprint and supershift analysis revealed this DNA-binding protein to be NF1/X. NF1/X repressed PDGF-A promoter-dependent transcription and endogenous mRNA expression, which was reversible by oligonucleotide decoys bearing an NF1/X-binding site. Mutation in the DNA-binding domain of NF1/X abolished its repression of PDGF-A promoter. NF1/X antagonized the activity of a known activator of the PDGF-A chain, Sp1, by inhibiting its occupancy of the proximal PDGF-A promoter. NF1/X physically and specifically interacts with Sp1 via its subtype-specific domain and blocks Sp1 induction of the promoter. NF1/X residues 311-416 mediated NF1/X suppression of basal PDGF-A transcription, whereas residues 243-416 were required for NF1/X repression of Sp1-inducible promoter activity. These findings demonstrate that repression of PDGF-A gene transcription is governed by interplay between NF1/X and Sp1.
Collapse
Affiliation(s)
| | | | - Levon M. Khachigian
- Centre for Thrombosis and Vascular Research, Department of Pathology, The University of New South Wales and Department of Haematology, Prince of Wales Hospital, Sydney, Australia
Corresponding author e-mail:
| |
Collapse
|
12
|
Xie Y, Madelian V, Zhang J, Ling G, Ding X. Activation of the NPTA element of the CYP2A3 gene by NFI-A2, a nasal mucosa-selective nuclear factor 1 isoform. Biochem Biophys Res Commun 2001; 289:1225-8. [PMID: 11741324 DOI: 10.1006/bbrc.2001.6084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to determine whether the NPTA element of the olfactory mucosa-predominant CYP2A3 gene can be activated by NFI-A2, a recently identified member of the nuclear factor 1 family of transcription factors. Isoform-specific RNA-PCR confirmed that NFI-A2 is mainly expressed in rat olfactory mucosa. A full-length NFI-A2 cDNA was isolated from a cDNA library of rat olfactory mucosa and was used for preparation of a construct encoding a fusion protein of NFI-A2 with the yeast GAL4 activation domain. Expression of the fusion protein in yeast was detected with an antibody to NFI-A. The fusion protein activated the expression of a LacZ reporter gene in yeast one-hybrid assays with a reporter construct containing the NPTA element, but not with other constructs lacking the NPTA element. These findings suggest that NFI-A2 may be involved in the tissue-selective transcriptional activation of the CYP2A3 gene in the olfactory mucosa.
Collapse
Affiliation(s)
- Y Xie
- Wadsworth Center, State University of New York, Albany, New York 12201, USA
| | | | | | | | | |
Collapse
|
13
|
Hentosh P, Yuh SH, Elson CE, Peffley DM. Sterol-independent regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in tumor cells. Mol Carcinog 2001; 32:154-66. [PMID: 11746827 DOI: 10.1002/mc.1074] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Elevated 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase expression supports synthesis of prenyl pyrophosphate intermediates required for tumor growth. In this study, the copy number of HMG-CoA reductase mRNA was determined in solid tumor and leukemic cell lines using competitive reverse transcriptase-polymerase chain reaction. Reductase mRNA was increased about eight-fold in Caco2 human colon adenocarcinoma cells compared with that in CCD18 normal colon cells. We also found a 50-fold enhancement of reductase mRNA in stimulated human lymphocytes compared with unstimulated cells. In CEM human leukemia cells, reductase mRNA was increased 8.6 times compared with that in stimulated lymphocytes. Greater low density lipoprotein receptor mRNA was also observed in tumor cells compared with normal counterparts. We hypothesized that elevated reductase mRNA was due to attenuation of sterol-mediated control of tumor reductase promoter activity. We first compared the methylation status of CpG dinucleotides in the promoters of reductase and p16 tumor suppressor genes from solid tumor, leukemic, and normal cells. As reported for other tumor cells the p16 promoter region was hypermethylated in Caco2 and CEM cells but was hypomethylated in corresponding normal cells. However, reductase promoter sequences in both normal and tumor cells were hypomethylated, demonstrating that methylation is not involved in sterol-independent reductase regulation. We addressed altered transcription factor binding to the tumor cell reductase promoter by transiently transfecting Caco2 and CCD18 with a plasmid vector containing a hamster HMG-CoA reductase promoter fused to the luciferase gene. We found that increased reductase mRNA was partially due to an approximately three-fold higher reductase promoter activity in Caco2 than in CCD18, measured by luciferase reporter assays. Thus, differential binding of transcription factor or factors on the tumor cell reductase promoter attenuates normal sterol-mediated regulation of reductase activity.
Collapse
Affiliation(s)
- P Hentosh
- Department of Pharmacology, University of Health Sciences, Kansas City, Missouri 64106, USA
| | | | | | | |
Collapse
|
14
|
Mukhopadhyay SS, Wyszomierski SL, Gronostajski RM, Rosen JM. Differential interactions of specific nuclear factor I isoforms with the glucocorticoid receptor and STAT5 in the cooperative regulation of WAP gene transcription. Mol Cell Biol 2001; 21:6859-69. [PMID: 11564870 PMCID: PMC99863 DOI: 10.1128/mcb.21.20.6859-6869.2001] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The distal region (-830 to -720 bp) of the rat whey acidic protein (WAP) gene contains a composite response element (CoRE), which has been demonstrated previously to confer mammary gland-specific and hormonally regulated WAP gene expression. Point mutations in the binding sites for specific transcription factors present within this CoRE have demonstrated the importance of both nuclear factor I (NFI) and STAT5 as well as cooperative interactions with the glucocorticoid receptor (GR) in the regulation of WAP gene expression in the mammary gland of transgenic mice. This study reports the characterization of NFI gene expression during mammary gland development and the identification and cloning of specific NFI isoforms (NFI-A4, NFI-B2, and NFI-X1) from the mouse mammary gland during lactation. Some but not all of these NFI isoforms synergistically activate WAP gene transcription in cooperation with GR and STAT5, as determined using transient cotransfection assays in JEG-3 cells. On both the WAP CoRE and the mouse mammary tumor virus long terminal repeat promoter, the NFI-B isoform preferentially activated gene transcription in cooperation with STAT5A and GR. In contrast, the NFI-A isoform suppressed GR and STAT cooperativity at the WAP CoRE. Finally, unlike their interaction with the NFI consensus binding site in the adenovirus promoter, the DNA-binding specificities of the three NFI isoforms to the palindromic NFI site in the WAP CoRE were not identical, which may partially explain the failure of the NFI-A isoform to cooperate with GR and STAT5A.
Collapse
MESH Headings
- Adenoviridae/genetics
- Alternative Splicing
- Animals
- Binding Sites
- Binding, Competitive
- Blotting, Western
- Breast/metabolism
- CCAAT-Enhancer-Binding Proteins/chemistry
- CCAAT-Enhancer-Binding Proteins/metabolism
- Cells, Cultured
- Cloning, Molecular
- DNA/metabolism
- DNA-Binding Proteins/metabolism
- Female
- Gene Expression Regulation
- Lactation
- Luciferases/metabolism
- Mice
- Milk Proteins/genetics
- Milk Proteins/metabolism
- Models, Genetic
- NFI Transcription Factors
- Nuclear Proteins
- Plasmids/metabolism
- Promoter Regions, Genetic
- Protein Binding
- Protein Isoforms
- Protein Structure, Tertiary
- RNA/metabolism
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Response Elements
- Reverse Transcriptase Polymerase Chain Reaction
- Ribonucleases/metabolism
- STAT5 Transcription Factor
- Time Factors
- Trans-Activators/metabolism
- Transcription Factors
- Transcription, Genetic
- Transfection
- Y-Box-Binding Protein 1
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- S S Mukhopadhyay
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
15
|
Monaco MC, Sabath BF, Durham LC, Major EO. JC virus multiplication in human hematopoietic progenitor cells requires the NF-1 class D transcription factor. J Virol 2001; 75:9687-95. [PMID: 11559801 PMCID: PMC114540 DOI: 10.1128/jvi.75.20.9687-9695.2001] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
JCV, a small DNA virus of the polyomavirus family, has been shown to infect glial cells of the central nervous system, hematopoietic progenitor cells, and immune system lymphocytes. A family of DNA binding proteins called nuclear factor-1 (NF-1) has been linked with site-coding specific transcription of cellular and viral genes and replication of some viruses, including JC virus (JCV). It is unclear which NF-1 gene product must be expressed by cells to promote JCV multiplication. Previously, it was shown that elevated levels of NF-1 class D mRNA were expressed by human brain cells that are highly susceptible to JCV infection but not by JCV nonpermissive HeLa cells. Recently, we reported that CD34(+) precursor cells of the KG-1 line, when treated with the phorbol ester phorbol 12-myristate 13-acetate (PMA), differentiated to cells with macrophage-like characteristics and lost susceptibility to JCV infection. These studies have now been extended by asking whether loss of JCV susceptibility by PMA-treated KG-1 cells is linked with alterations in levels of NF-1 class D expression. Using reverse transcription-PCR, we have found that PMA-treated KG-1 cells express mRNA that codes for all four classes of NF-1 proteins, although different levels of RNA expression were observed in the hematopoietic cells differentiated into macrophages. Northern hybridization confirms that the expression of NF-1 class D gene is lower in JCV nonpermissive PMA-treated KG-1 cells compared with non-PMA-treated cells. Further, using gel mobility shift assays, we were able to show the induction of specific NF-1-DNA complexes in KG-1 cells undergoing PMA treatment. The binding increases in direct relation to the duration of PMA treatment. These results suggest that the binding pattern of NF-1 class members may change in hematopoietic precursor cells, such as KG-1, as they undergo differentiation to macrophage-like cells. Transfection of PMA-treated KG-1 cells with an NF-1 class D expression vector restored the susceptibility of these cells to JCV infection, while the transfection of PMA-treated KG-1 cells with NF-1 class A, B, and C vectors was not able to restore JCV susceptibility. These data collectively suggest that selective expression of NF-1 class D has a regulatory role in JCV multiplication.
Collapse
Affiliation(s)
- M C Monaco
- Laboratory of Molecular Medicine and Neuroscience, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
16
|
Kraus RJ, Shadley L, Mertz JE. Nuclear factor 1 family members mediate repression of the BK virus late promoter. Virology 2001; 287:89-104. [PMID: 11504545 DOI: 10.1006/viro.2001.1024] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BK virus (BKV) is a member of the polyoma virus family that is ubiquitous in humans. Its 5-kb DNA genome consists of a bidirectional promoter region situated between two temporally regulated coding regions. We mapped the transcription initiation site of the major late promoter (MLP) of the archetype strain BKV(WW) to nt 185. We found that it lies within the sequence TGGN6GCCA, a binding site for members of the nuclear factor 1 (NF1) family of transcription factors. Competition electrophoretic mobility shift and immunoshift assays confirmed that NF1 factors present in nuclear extracts of HeLa and CV-1 cells bind to the BKV-MLP. Because BKV(WW) grew poorly in tissue culture and failed to express detectable levels of RNA in vitro, SV40-BKV chimeric viruses were constructed to investigate the transcriptional function of this NF-1 binding site. These sequence-specific factors repressed transcription in a cell-free system when template copy number was low. This repression could be relieved by the addition in trans of oligonucleotides containing wild-type, but not mutated, NF1-binding site sequences. SV40-BKV chimeric viruses defective in this NF1-binding site overproduced late RNA at early, but not late, times after transfection of CV-1 cells. Finally, transient expression in 293 cells of cDNAs encoding the family members NF1-A4, NF1-C2, and NF1-X2 specifically repressed transcription from the BKV late promoter approximately 3-, 10-, and 10-fold, respectively, in a DNA binding-dependent manner. We conclude that some members of the NF1 family of transcription factors can act as sequence-specific cellular repressors of the BKV-MLP. We propose that titration of these and other cellular repressors by viral genome amplification may be responsible in part for the replication-dependent component of the early-to-late switch in BKV gene expression.
Collapse
Affiliation(s)
- R J Kraus
- McArdle Laboratory for Cancer Research, University of Wisconsin Medical School, Madison, Wisconsin 53706-1599, USA
| | | | | |
Collapse
|
17
|
Laniel MA, Poirier GG, Guerin SL. Nuclear factor 1 interferes with Sp1 binding through a composite element on the rat poly(ADP-ribose) polymerase promoter to modulate its activity in vitro. J Biol Chem 2001; 276:20766-73. [PMID: 11278663 DOI: 10.1074/jbc.m010360200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) catalyzes the rapid and extensive poly(ADP-ribosyl)ation of nuclear proteins in response to DNA strand breaks, and its expression, although ubiquitous, is modulated from tissue to tissue and during cellular differentiation. PARP-1 gene promoters from human, rat, and mouse have been cloned, and they share a structure common to housekeeping genes, as they lack a functional TATA box and contain multiple GC boxes, which bind the transcriptional activator Sp1. We have previously shown that, although Sp1 is important for rat PARP1 (rPARP) promoter activity, its finely tuned modulation is likely dependent on other transcription factors that bind the rPARP proximal promoter in vitro. In this study, we identified one such factor as NF1-L, a rat liver isoform of the nuclear factor 1 family of transcription factors. The NF1-L site on the rPARP promoter overlaps one of the Sp1 binding sites previously identified, and we demonstrated that binding of both factors to this composite element is mutually exclusive. Furthermore, we provide evidence that NF1-L has no effect by itself on rPARP promoter activity, but rather down-regulates the Sp1 activity by interfering with its ability to bind the rPARP promoter in order to modulate transcription of the rPARP gene.
Collapse
Affiliation(s)
- M A Laniel
- Oncology and Molecular Endocrinology Research Center and the Unit of Health and Environment, CHUL Research Center, Ste-Foy, Quebec G1V 4G2, Canada
| | | | | |
Collapse
|
18
|
Cho SY, Jeon JW, Lee SH, Park SS. p67 isoform of mouse disabled 2 protein acts as a transcriptional activator during the differentiation of F9 cells. Biochem J 2000; 352 Pt 3:645-50. [PMID: 11104669 PMCID: PMC1221500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The mouse disabled 2 (mDab2) gene is a mouse homologue of the Drosophila disabled gene and is alternatively spliced to form two isoforms, p96 and p67. Although p96 has been known to regulate the Ras-Sos G-protein signal transduction pathway by interacting with Grb2, little is known about the biological function of p67. Recent studies have shown that the expression of mDab2 is markedly up-regulated during the retinoic acid (RA)-induced differentiation of F9 cells, suggesting another role for mDab2 in cell differentiation [Cho, Lee and Park (1999) Mol. Cells 9, 179-184). In the present study, we first elucidated the biological function of p67 isoform of mDab2 and identified its binding partner. Unlike p96, p67 largely resides in RA-treated F9 cell nuclei. In this system, p67 interacts with mouse androgen-receptor interacting protein 3, termed the mDab2 interacting protein, which acts as a transcriptional co-regulator. By using a fusion protein with a heterologous DNA-binding domain (GAL4), we showed that p67 had an intrinsic transcriptional activation function. These results suggest that mDab2 p67 may function as a transcriptional co-factor for certain complexes of transcriptional regulatory elements involved in the RA-induced differentiation of F9 cells.
Collapse
Affiliation(s)
- S Y Cho
- Graduate School of Biotechnology, Korea University, 1, 5-ka, Anam-dong, Sungbuk-ku, Seoul 136-701, Korea
| | | | | | | |
Collapse
|
19
|
Nakazato M, Chung HK, Ulianich L, Grassadonia A, Suzuki K, Kohn LD. Thyroglobulin repression of thyroid transcription factor 1 (TTF-1) gene expression is mediated by decreased DNA binding of nuclear factor I proteins which control constitutive TTF-1 expression. Mol Cell Biol 2000; 20:8499-512. [PMID: 11046146 PMCID: PMC102156 DOI: 10.1128/mcb.20.22.8499-8512.2000] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Follicular thyroglobulin (TG) selectively suppresses the expression of thyroid-restricted transcription factors, thereby altering the expression of thyroid-specific proteins. In this study, we investigated the molecular mechanism by which TG suppresses the prototypic thyroid-restricted transcription factor, thyroid transcription factor 1 (TTF-1), in rat FRTL-5 thyrocytes. We show that the region between bp -264 and -153 on the TTF-1 promoter contains two nuclear factor I (NFI) elements whose function is involved in TG-mediated suppression. Thus, NFI binding to these elements is critical for constitutive expression of TTF-1; TG decreases NFI binding to the NFI elements in association with TG repression. NFI is a family of transcription factors that is ubiquitously expressed and contributes to constitutive and cell-specific gene expression. In contrast to the contribution of NFI proteins to constitutive gene expression in other systems, we demonstrate that follicular TG transcriptionally represses all NFI RNAs (NFI-A, -B, -C, and -X) in association with decreased NFI binding and that the RNA levels decrease as early as 4 h after TG treatment. Although TG treatment for 48 h results in a decrease in NFI protein-DNA complexes measured in DNA mobility shift assays, NFI proteins are still detectable by Western analysis. We show, however, that the binding of all NFI proteins is redox regulated. Thus, diamide treatment of nuclear extracts strongly reduces the binding of NFI proteins, and the addition of higher concentrations of dithiothreitol to nuclear extracts from TG-treated cells restores NFI-DNA binding to levels in extracts from untreated cells. We conclude that NFI binding to two NFI elements, at bp -264 to -153, positively regulates TTF-1 expression and controls constitutive TTF-1 levels. TG mediates the repression of TTF-1 gene expression by decreasing NFI RNA and protein levels, as well as by altering the binding activity of NFI, which is redox controlled.
Collapse
Affiliation(s)
- M Nakazato
- Cell Regulation Section, Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
20
|
Andreani M, Olivier JL, Berenbaum F, Raymondjean M, Béréziat G. Transcriptional regulation of inflammatory secreted phospholipases A(2). BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1488:149-58. [PMID: 11080684 DOI: 10.1016/s1388-1981(00)00117-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Secreted phospholipases A(2) is a family of small molecular weight and calcium-dependent enzymes of which the members list is presently growing. Among these enzymes, the synovial type IIA and the type V phospholipases A(2) are involved in inflammation. Although their actual mechanism is still a subject of debate, new therapeutic strategies can result from the knowledge of the regulations of their gene expression. The human genes of the type IIA and type V phospholipases A(2) are located on the chromosome 1 at close positions and transcribed in reverse orientations. These genes can therefore be regulated by common elements but only the regulation of the type IIA phospholipase A(2) gene expression has been extensively studied. Pro-inflammatory cytokines upregulate while the growth factors downregulate the type IIA phospholipase A(2) gene expression. Interleukin-6 and interleukin-1beta exert their effects at least partially at the transcriptional level. The transcriptional regulation of the type IIA phospholipase A(2) gene is cell- and species-specific. The activity of the human promoter is controlled by the CAAT-enhancer binding protein (C/EBP) factors while that of the rat promoter is regulated by nuclear factor kappaB (NF-kappaB) and C/EBPs. Furthermore, the human promoter is constitutively repressed in hepatocytes by single strand DNA binding proteins whose effects are relieved by C/EBP factors while the glucocorticoid receptor interacts with C/EBPs in chondrocytes to achieve full basal and interleukin-1beta-stimulated transcription activity. Other factors like CTF/NF1 and Sp1 might be involved in the regulation of both the rat and human promoter. Peroxisome proliferator-activated receptors could contribute to the stimulation of the rat promoter by NF-kappaB in vascular smooth muscle cells. The study of the coactivators and coinhibitors associated to these transcription factors will give a better understanding of the diversity and complexity of the transcriptional regulations of the type IIA phospholipase A(2) gene.
Collapse
Affiliation(s)
- M Andreani
- CNRS-associated research unit of Pierre and Marie Curie University (Paris VI), ESA 7079, 7 quai Saint Bernard, 75005, Paris, France
| | | | | | | | | |
Collapse
|
21
|
Massaad C, Paradon M, Jacques C, Salvat C, Bereziat G, Berenbaum F, Olivier JL. Induction of secreted type IIA phospholipase A2 gene transcription by interleukin-1beta. Role of C/EBP factors. J Biol Chem 2000; 275:22686-94. [PMID: 10791956 DOI: 10.1074/jbc.m001250200] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Secreted type IIA phospholipase A(2), which is involved in arachidonic acid release, is abundantly produced by chondrocytes and secreted in the synovial fluids of patients affected by rheumatoid arthritis. Transfection experiments showed that interleukin-1beta stimulates the phospholipase A(2) [-1614; +20] promoter activity by 6-7-fold and that the [-210; -176] fragment is critical for this stimulation. CAAT enhancer-binding protein (C/EBP) beta and C/EBPdelta transcription factors bind to this element as shown by bandshift experiments. Interleukin-1beta increased the levels of C/EBPdelta mRNA as soon as 2 h and up to 24 h without affecting those of C/EBPbeta. Higher amounts of C/EBPdelta proteins correlate with the stimulation of C/EBPdelta mRNA. Mutations or 5' deletions in the upstream [-247; -210] region reduced by 2-fold the basal and interleukin-1beta-stimulated transcription activities. Two types of factors bind to overlapping sequences on this fragment: NF1-like proteins and the glucocorticoid receptor. The glucocorticoid receptor is responsible for a moderate stimulation of the promoter activity by dexamethasone and may interact with C/EBP factors to achieve a full transcription activity in basal conditions and in the presence of interleukin-1beta. A [-114; -85] proximal regulatory element forms three complexes in bandshift experiments, the slowest mobility one involving the Sp1 zinc finger factor. Mutation of this sequence reduced to 2-fold the stimulation of the promoter activity by interleukin-1beta or the C/EBP factors. Induction of the transcription of secreted type IIA phospholipase A(2) gene by interleukin-1beta in chondrocytes absolutely requires C/EBPbeta and C/EBPdelta factors but does not involve NF-kappaB.
Collapse
Affiliation(s)
- C Massaad
- UPRES-A CNRS 7079, UFR Saint Antoine, UPRES-A CNRS 7079, Université Pierre et Marie Curie, 7 quai Saint Bernard 75252 Paris Cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
22
|
Jiang JG, Gao B, Zarnegar R. The concerted regulatory functions of the transcription factors nuclear factor-1 and upstream stimulatory factor on a composite element in the promoter of the hepatocyte growth factor gene. Oncogene 2000; 19:2786-90. [PMID: 10851080 DOI: 10.1038/sj.onc.1203581] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hepatocyte growth factor (HGF) is an important multifunctional cytokine whose gene expression is regulated mainly at the transcriptional level. Previous studies using transgenic mice as well as in vitro analyses showed that a potential regulatory element(s) exists between -260 to -230 bp in the upstream region of the HGF gene promoter. In the present study, we have discovered that this region is a composite site through which members of the nuclear factor 1 (NF1) and upstream stimulatory factor (USF) families bind to and regulate HGF gene transcription. Gel mobility shift and supershift assays revealed that USF and NF1 have high binding affinity for this region and that the binding sites of the two different transcription factor families overlap. Functional studies showed that NF1 suppresses HGF gene promoter activity and that USF has an activating function. We found that the NF1/X and NF1/Red1 isoforms strongly suppressed HGF promoter activity while the NF1/L variant had no obvious effects. USF1, but not USF2, of the USF family stimulated HGF gene promoter activity. More interestingly, during liver regeneration after partial hepatectomy, a process which activates the HGF gene, we noted that the binding activity of USF to the HGF promoter element increased while that of NF1 decreased. These data provide insight into the molecular mechanisms that govern HGF gene transcription. Oncogene (2000).
Collapse
Affiliation(s)
- J G Jiang
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburth, Pennsylvania, PA 15261, USA
| | | | | |
Collapse
|
23
|
Abstract
The Nuclear Factor I (NFI) family of site-specific DNA-binding proteins (also known as CTF or CAAT box transcription factor) functions both in viral DNA replication and in the regulation of gene expression. The classes of genes whose expression is modulated by NFI include those that are ubiquitously expressed, as well as those that are hormonally, nutritionally, and developmentally regulated. The NFI family is composed of four members in vertebrates (NFI-A, NFI-B, NFI-C and NFI-X), and the four NFI genes are expressed in unique, but overlapping, patterns during mouse embryogenesis and in the adult. Transcripts of each NFI gene are differentially spliced, yielding as many as nine distinct proteins from a single gene. Products of the four NFI genes differ in their abilities to either activate or repress transcription, likely through fundamentally different mechanisms. Here, we will review the properties of the NFI genes and proteins and their known functions in gene expression and development.
Collapse
Affiliation(s)
- R M Gronostajski
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Case Western Reserve University, OH 44195, USA.
| |
Collapse
|
24
|
Zhang J, Zhang QY, Guo J, Zhou Y, Ding X. Identification and functional characterization of a conserved, nuclear factor 1-like element in the proximal promoter region of CYP1A2 gene specifically expressed in the liver and olfactory mucosa. J Biol Chem 2000; 275:8895-902. [PMID: 10722736 DOI: 10.1074/jbc.275.12.8895] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CYP1A2 is a major cytochrome P-450 isoform in the liver and the olfactory mucosa but is essentially not expressed in other tissues. A nuclear factor 1 (NF-1) -like element was identified in the proximal promoter region of rat, mouse, rabbit, and human CYP1A2 genes through data base analysis. In vitro DNase I footprinting with a -211 to +81 probe from the rat CYP1A2 gene and nuclear extracts from rat liver and olfactory mucosa revealed a single protected region corresponding to the NF-1-like element at -129 to -111. Protein binding to this NF-1-like element was tissue-selective and was confirmed by in vivo footprinting in native chromatin from rat liver. Multiple DNA-binding complexes were detected in gel-shift assays using the CYP1A2 NF-1-like element and nuclear extracts from liver and olfactory mucosa, all of which were supershifted in the presence of an anti-NF1 antibody. The NF-1-like element was essential for transcriptional activity of the CYP1A2 gene in an in vitro transcription assay using nuclear extracts from the two tissues. Thus, members of the NF-1 family of transcription factors may play an important role in the tissue-selective expression of the CYP1A2 gene in the liver and olfactory mucosa.
Collapse
Affiliation(s)
- J Zhang
- Wadsworth Center, New York State Department of Health and the Department of Environmental Health and Toxicology, School of Public Health, State University of New York at Albany, Empire State Plaza, Albany, New York 12201-0509, USA
| | | | | | | | | |
Collapse
|
25
|
Ethelberg S, Tzschaschel BD, Luz A, Diaz-Cano SJ, Pedersen FS, Schmidt J. Increased induction of osteopetrosis, but unaltered lymphomagenicity, by murine leukemia virus SL3-3 after mutation of a nuclear factor 1 site in the enhancer. J Virol 1999; 73:10406-15. [PMID: 10559359 PMCID: PMC113096 DOI: 10.1128/jvi.73.12.10406-10415.1999] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SL3-3 is a murine leukemia virus which is only weakly bone pathogenic but highly T-cell lymphomagenic. A major pathogenic determinant is the transcriptional enhancer comprising several transcription factor binding sites, among which are three identical sites for nuclear factor 1 (NF1). We have investigated the pathogenic properties of NF1 site enhancer mutants of SL3-3. Two different mutants carrying a 3-bp mutation either in all three NF1 sites or in the central site alone were constructed and assayed in inbred NMRI mice. The wild type and both mutants induced lymphomas in all mice, with a mean latency period of 9 weeks. However, there was a considerable difference in osteopetrosis induction. Wild-type SL3-3 induced osteopetrosis in 11% of the mice (2 of 19), and the triple NF1 site mutant induced osteopetrosis in none of the mice (0 of 19), whereas the single NF1 site mutant induced osteopetrosis in 56% (10 of 18) of the mice, as determined by X-ray analysis. A detailed histological examination of the femurs of the mice was carried out and found to support this diagnosis. Thus, the NF1 sites of SL3-3 are major determinants of osteopetrosis induction, without determining lymphomagenesis. This conclusion was further supported by evaluation of the bone pathogenicity of other SL3-3 enhancer variants, the lymphomagenicity of which had been examined previously. This evaluation furthermore strongly indicated that the core sites, a second group of transcription factor binding sites in the viral enhancer, are necessary for the osteopetrosis induction potential of SL3-3.
Collapse
Affiliation(s)
- S Ethelberg
- Institute of Molecular Virology, GSF-National Research Center for Environment and Health, D-85764 Neuherberg, Germany
| | | | | | | | | | | |
Collapse
|
26
|
das Neves L, Duchala CS, Tolentino-Silva F, Haxhiu MA, Colmenares C, Macklin WB, Campbell CE, Butz KG, Gronostajski RM, Godinho F. Disruption of the murine nuclear factor I-A gene (Nfia) results in perinatal lethality, hydrocephalus, and agenesis of the corpus callosum. Proc Natl Acad Sci U S A 1999; 96:11946-51. [PMID: 10518556 PMCID: PMC18392 DOI: 10.1073/pnas.96.21.11946] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The phylogenetically conserved nuclear factor I (NFI) family of transcription/replication proteins is essential both for adenoviral DNA replication and for the transcription of many cellular genes. We showed previously that the four murine NFI genes (Nfia, Nfib, Nfic, and Nfix) are expressed in unique but overlapping patterns during mouse development and in adult tissues. Here we show that disruption of the Nfia gene causes perinatal lethality, with >95% of homozygous Nfia(-/-) animals dying within 2 weeks after birth. Newborn Nfia(-/-) animals lack a corpus callosum and show ventricular dilation indicating early hydrocephalus. Rare surviving homozygous Nfia(-/-) mice lack a corpus callosum, show severe communicating hydrocephalus, a full-axial tremor indicative of neurological defects, male-sterility, low female fertility, but near normal life spans. These findings indicate that while the Nfia gene appears nonessential for cell viability and DNA replication in embryonic stem cells and fibroblasts, loss of Nfia function causes severe developmental defects. This finding of an NFI gene required for a developmental process suggests that the four NFI genes may have distinct roles in vertebrate development.
Collapse
Affiliation(s)
- L das Neves
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland OH 44195, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Baumeister H, Gronostajski RM, Lyons GE, Margolis FL. Identification of NFI-binding sites and cloning of NFI-cDNAs suggest a regulatory role for NFI transcription factors in olfactory neuron gene expression. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 72:65-79. [PMID: 10521600 DOI: 10.1016/s0169-328x(99)00210-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Olfactory receptor neurons are responsible for the detection and signal transduction of odor ligands. Several genes associated with this activity are preferentially or exclusively expressed in these neurons. Among these genes are those coding for olfactory receptors, adenylyl cyclase type III, the cyclic nucleotide gated olfactory channel 1 (OcNC-1), Galpha(olf) and the olfactory marker protein (OMP). Promoter analyses of these genes identified a binding site for the new transcription factor family O/E whose initial member, Olf-1, is abundantly expressed in olfactory neurons. We report here that the proximal promoters of three of these genes, that are selectively expressed in olfactory neurons, each contains a functional NFI binding site and that the sites have different affinities for NFI proteins indicating a regulatory role for NFI proteins in olfactory gene expression. We further demonstrate, by cloning, that all four NFI genes are expressed in the olfactory nasal mucosa. Analysis by in situ hybridization illustrates that at least three of these gene products are expressed in the neuroepithelium in which the olfactory neurons reside. NFI proteins are capable of functioning as positive or negative regulators of transcription depending on the tissue, cell-type, age, and gene in question. These multivalent functions of NFI could be achieved by temporally and spatially regulated expression of distinct subsets of NFI isoforms. It now remains to characterize the tissue and cell specific patterns of expression of distinct NFI transcription factors during ontogeny and their roles in regulating gene expression.
Collapse
Affiliation(s)
- H Baumeister
- Deutsches Institut fur Ernährungsforschung, Bergholz-Rehbrücke, 14558, Germany
| | | | | | | |
Collapse
|
28
|
Osada S, Matsubara T, Daimon S, Terazu Y, Xu M, Nishihara T, Imagawa M. Expression, DNA-binding specificity and transcriptional regulation of nuclear factor 1 family proteins from rat. Biochem J 1999; 342 ( Pt 1):189-98. [PMID: 10432316 PMCID: PMC1220452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Nuclear factor 1 (NF1) family proteins, which are encoded by four different genes (NF1-A, NF1-B, NF1-C and NF1-X), bind to the palindromic sequence and regulate the expression of many viral and cellular genes. We have previously purified NF1-A and NF1-B from rat liver as factors that bind to the silencer in the glutathione transferase P gene, and have also reported the repression domain of NF1-A. In the present study we cloned five cDNA species (NF1-B1, NF1-B2, NF1-B3, NF1-C2 and NF1-X1) and compared their expression profiles and the affinity and specificity of the DNA binding of these NF1 family members. By Northern blot analysis, we found that the expression profiles of the NF1s are indistinguishable in the various tissues of the rat. The DNA-binding affinities of NF1-A and NF1-X are higher than those of NF1-B and NF1-C, whereas all four NF1 proteins showed the same DNA-binding specificity. Transfection analyses revealed that the function of NF1-B on the transcriptional regulation differed between NF1-B isoforms and was affected by the factor(s) that bind to the promoter regions. In addition, we identified the transcriptional regulatory domain of NF1-B, which is enriched with proline and serine residues.
Collapse
Affiliation(s)
- S Osada
- Laboratory of Environmental Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
de Jong RN, van der Vliet PC. Mechanism of DNA replication in eukaryotic cells: cellular host factors stimulating adenovirus DNA replication. Gene 1999; 236:1-12. [PMID: 10433960 DOI: 10.1016/s0378-1119(99)00249-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Replication of adenovirus (Ad) DNA depends on interactions between three viral and three cellular proteins. Human transcription factors NFI and Oct-1 recruit the Ad DNA polymerase to the origin of DNA replication as a complex with the Ad protein primer pTP. High affinity and specificity DNA binding to recognition sites in this origin by the transcription factors stimulate and stabilize pre-initiation complex formation to compensate for the low binding specificity of the pTP/pol complex. In this review, we discuss the properties of NFI and Oct-1 and the mechanism by which they enhance initiation of DNA replication. We propose a model that describes the dynamics of initiation and elongation as well as the assembly and disassembly of the pre-initiation complex.
Collapse
Affiliation(s)
- R N de Jong
- Laboratory for Physiological Chemistry and Centre for Biomedical Genetics, Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
30
|
Ortiz L, Aza-Blanc P, Zannini M, Cato AC, Santisteban P. The interaction between the forkhead thyroid transcription factor TTF-2 and the constitutive factor CTF/NF-1 is required for efficient hormonal regulation of the thyroperoxidase gene transcription. J Biol Chem 1999; 274:15213-21. [PMID: 10329730 DOI: 10.1074/jbc.274.21.15213] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The forkhead thyroid-specific transcription factor TTF-2 is the main mediator of thyrotropin and insulin regulation of thyroperoxidase (TPO) gene expression. This function depends on multimerization and specific orientation of its DNA-binding site, suggesting that TTF-2 is part of a complex interaction network within the TPO promoter. This was confirmed by transfection experiments and by protein-DNA interaction studies, which demonstrated that CTF/NF1 proteins bind 10 base pairs upstream of the TTF-2-binding site to enhance its action in hormone-induced expression of the TPO gene. GST pull-down assays showed that TTF-2 physically interacts with CTF/NF1 proteins. In addition, we demonstrate that increasing the distance between both transcription factors binding sites by base pair insertion results in loss of promoter activity and in a drastic decrease on the ability of the promoter to respond to the hormones. CTF/NF1 is a family of transcription factors that contributes to constitutive and cell-type specific gene expression. Originally identified as factors implicated in the replication of adenovirus, this group of proteins (CTF/NF1-A, -B, -C, and -X) is now known to be involved in the regulation of several genes. In contrast to other reports regarding the involvement of these proteins in inducible gene expression, we show here that members of this family of transcription factors are regulated by hormones. With the use of specific CTF/NF1 DNA probes and antibodies we demonstrate that CTF/NF1-C is a thyrotropin-, cAMP-, and insulin-inducible protein. Thus CTF/NF1 proteins do not only mediate hormone-induced gene expression cooperating with TTF-2, but are themselves hormonally regulated. All these findings are clearly of important value in understanding the mechanisms governing the transcription regulation of RNA polymerase II promoters, which often contain binding sites for multiple transcription factors.
Collapse
Affiliation(s)
- L Ortiz
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Facultad de Medicina, Universidad Autónoma de Madrid, Arturo Duperier 4, E-28029 Madrid, Spain
| | | | | | | | | |
Collapse
|
31
|
Lubon H. Transgenic animal bioreactors in biotechnology and production of blood proteins. BIOTECHNOLOGY ANNUAL REVIEW 1999; 4:1-54. [PMID: 9890137 DOI: 10.1016/s1387-2656(08)70066-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The regulatory elements of genes used to target the tissue-specific expression of heterologous human proteins have been studied in vitro and in transgenic mice. Hybrid genes exhibiting the desired performance have been introduced into large animals. Complex proteins like protein C, factor IX, factor VIII, fibrinogen and hemoglobin, in addition to simpler proteins like alpha 1-antitrypsin, antithrombin III, albumin and tissue plasminogen activator have been produced in transgenic livestock. The amount of functional protein secreted when the transgene is expressed at high levels may be limited by the required posttranslational modifications in host tissues. This can be overcome by engineering the transgenic bioreactor to express the appropriate modifying enzymes. Genetically engineered livestock are thus rapidly becoming a choice for the production of recombinant human blood proteins.
Collapse
Affiliation(s)
- H Lubon
- Plasma Derivatives Department, American Red Cross, Rockville, Maryland, USA.
| |
Collapse
|
32
|
Gao B, Kunos G. Cell type-specific transcriptional activation and suppression of the alpha1B adrenergic receptor gene middle promoter by nuclear factor 1. J Biol Chem 1998; 273:31784-7. [PMID: 9822643 DOI: 10.1074/jbc.273.48.31784] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear factor 1 (NF1) has been reported to be a transcriptional activator for some genes and a transcriptional silencer for others. Here we report that in Hep3B cells, cotransfection of NF1/L, NF1/Red1, or NF1/X with the alpha1B adrenergic receptor (alpha1BAR) gene middle (P2) promoter increases P2 activity to more or less the same degree, whereas in DDT1 MF-2 cells cotransfection of NF1/L or NF1/Red1 causes a small but statistically significant decrease in the P2 promoter activity, and NF1/X causes a greater, 70% inhibition. Further experiments using truncated NF1/X mutants indicate that NF1/X contains both positive and negative regulatory domains. The positive domain, located between amino acids 416 and 505, is active in Hep3B cells, whereas the negative domain, located between amino acids 243 and 416, is active in DDT1 MF-2 cells. These functional domains are also capable of regulating transcription when isolated from their natural context and fused into the GAL4 binding domain. Furthermore, NF1 affinity purified from rat liver nuclear extracts copurified with a non-DNA binding protein, which can bind to the P2 promoter of the alpha1BAR gene via interacting with NF1. Taken together, these findings indicate that NF1/X contains both activation and suppression domains that may be recognized and modulated by cell type-specific cofactors. This may be one of the mechanisms whereby NF1 can activate or suppress the expression of different genes, and it may also underlie the tissue-specific regulation of the alpha1B AR gene.
Collapse
MESH Headings
- Animals
- Carcinoma, Hepatocellular
- Chromatography, Affinity
- Cricetinae
- DNA-Binding Proteins/isolation & purification
- DNA-Binding Proteins/metabolism
- Humans
- Kinetics
- Liver/metabolism
- Liver Neoplasms
- Muscle, Smooth
- NFI Transcription Factors
- Nuclear Proteins/metabolism
- Promoter Regions, Genetic
- Rats
- Receptors, Adrenergic, alpha-1/biosynthesis
- Receptors, Adrenergic, alpha-1/genetics
- Regulatory Sequences, Nucleic Acid
- Suppression, Genetic
- Transcription Factors/isolation & purification
- Transcription Factors/metabolism
- Transcriptional Activation
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- B Gao
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298, USA.
| | | |
Collapse
|
33
|
Zhang J, Ding X. Identification and characterization of a novel tissue-specific transcriptional activating element in the 5'-flanking region of the CYP2A3 gene predominantly expressed in rat olfactory mucosa. J Biol Chem 1998; 273:23454-62. [PMID: 9722582 DOI: 10.1074/jbc.273.36.23454] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CYP2A3 is expressed preferentially in rat olfactory mucosa and is believed to play important roles in maintaining cellular homeostasis in the chemosensory tissue. DNase I footprinting analysis revealed a single protected region in the proximal promoter of the CYP2A3 gene with nuclear extracts from olfactory mucosa, but not from liver, lung, kidney, or brain. The core sequence of the binding site, named the nasal predominant transcriptional activating (NPTA) element, is similar to that of nuclear factor 1, but it interacted with unique proteins detected only in the olfactory mucosa in electrophoretic mobility shift assays or on Southwestern blots. The NPTA element is conserved in rat CYP2A3, mouse Cyp2a5, and human CYP2A6 genes and was found to be essential for transcriptional activity of the CYP2A3 promoter in in vitro transcription assays. NPTA-binding proteins were detectable at day 1 and were much more abundant at day 8 than at day 60 after birth. Furthermore, their levels decreased dramatically during chemically induced degeneration of the olfactory epithelium, paralleling the disappearance of CYP2A3 protein, and rebounded to higher than pretreatment levels during recovery. Thus, we have identified a novel transcriptional activation element potentially responsible for the olfactory mucosa-predominant expression of the CYP2A3 gene in rats and orthologous genes in mice and humans.
Collapse
Affiliation(s)
- J Zhang
- Wadsworth Center, New York State Department of Health and the Department of Environmental Health and Toxicology, School of Public Health, State University of New York, Albany, New York 12201-0509, USA
| | | |
Collapse
|
34
|
Gauthier BR. Characterization of a novel liver-specific protein/DNA binding site in the human HMG CoA reductase promoter. Biochem Biophys Res Commun 1998; 247:280-6. [PMID: 9642117 DOI: 10.1006/bbrc.1998.8777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
These studies define a novel binding element (site C) within the human HMG CoA reductase promoter using a combination of in vitro DNase I footprinting and gel mobility shift assays. The factor interacting with site C appears to be restricted to the liver, indicating a possible role for this protein in regulating hepatic expression of the gene. Studies based on competitive gel mobility shift assays and transient co-transfection experiments performed using a reporter construct harbouring the promoter of HMG CoA reductase suggest that the protein binding to site C may belong to the C/EBP family of transcription factors. A factor interacting with this binding element was also identified in human liver nuclear protein extracts.
Collapse
Affiliation(s)
- B R Gauthier
- Cancer Research Laboratories and Department of Biochemistry, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
35
|
Singh MV, Ntambi JM. Nuclear factor 1 is essential for the expression of stearoyl-CoA desaturase 1 gene during preadipocyte differentiation. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1398:148-56. [PMID: 9689914 DOI: 10.1016/s0167-4781(98)00037-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Stearoyl CoA desaturase gene 1 (SCD1) is a delta 9 desaturase that is transcriptionally activated during the differentiation of 3T3-L1 preadipocytes into adipocytes. We have demonstrated that a SCD1/BP region in SCD1 proximal promoter (-114 to -86 bp) is essential for the transcriptional activation of this gene during differentiation. Mutation in this region abolished the basal activity of the proximal promoter of SCD1, and also failed to induce transcription in response to the differentiation cocktail in transfected cells. The SCD1/BP region contains a TGGCA sequence at -90 bp from the transcription start site. Using competitor oligonucleotides and nuclear factor 1 (NF1)-specific antibodies in gel shift assays, we have shown that in preadipocytes, a NF1 protein binds to this TGGCA sequence. On MDI-induced differentiation of preadipocyte into adipocyte, an additional DNA-protein complex appeared. The appearance of a new NF1 complex is related to the differentiation-specific transcriptional activation of the SCD1 gene. This is the first report to show a differentiation-related change in NF1 protein binding during preadipocyte differentiation.
Collapse
Affiliation(s)
- M V Singh
- Department of Biochemistry, University of Wisconsin-Madison 53706, USA
| | | |
Collapse
|
36
|
Stauffer DR, Chukwumezie BN, Wilberding JA, Rosen ED, Castellino FJ. Characterization of transcriptional regulatory elements in the promoter region of the murine blood coagulation factor VII gene. J Biol Chem 1998; 273:2277-87. [PMID: 9442072 DOI: 10.1074/jbc.273.4.2277] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To identify the 5' sequences of the murine coagulation factor VII (fVII) gene that resulted in its efficient transcription, a variety of 5'-flanking sequences up to 7 kilobase pairs upstream of the translation ATG initiation codon were fused to the reporter gene, bacterial chloramphenicol acetyltransferase, and relative expression levels of this gene in mouse Hepa 1-6 cells were determined. It was found that the 5' region extending approximately 85 base pairs (bp) upstream of the transcriptional initiation site served as the minimal DNA region that provided full relative promoter activity for chloramphenicol acetyltransferase expression. This region of the gene also contains consensus sequences for liver-enriched transcription factors, C/EBP beta and HNF4, as well as for the ubiquitous protein factors, AP1, H4TF1, NF1, and Sp1. In vitro DNase I footprinting of the 200-bp proximal region of the promoter with a murine Hepa 1-6 cell nuclear extract revealed a clear footprint of a region corresponding to -80 to -28 bp of the murine fVII gene, suggesting that liver factors interact with this region of the DNA. Competitive gel shift and supershift assays with different synthetic oligonucleotide probes demonstrate that proteins contained in the nuclear extract, identified as C/EBP beta, H4TF1, and HNF4, bind to a region of the murine fVII DNA from 85 to 32 bp upstream of the transcription start site. Purified Sp1 also interacts with this region of the DNA at a site that substantially overlaps, but is not identical to, the H4TF1 binding locus. Binding of Sp1 to the mouse DNA was not observed with the nuclear extract as the source of the transcription factors, suggesting that Sp1 is likely displaced from its binding site by H4TF1 in the crude extract. In vivo dimethyl sulfate footprint analysis confirmed the existence of these sites and additionally revealed two other binding regions slightly upstream of the CCAAT/enhancer-binding protein (C/EBP) binding locus that are homologous to NF1 binding sequences. The data demonstrate that appropriate transcription factor binding sites exist in the proximal promoter region of the murine fVII gene that are consistent with its strong liver-based expression in a highly regulated manner.
Collapse
Affiliation(s)
- D R Stauffer
- Department of Chemistry and Biochemistry, University of Notre Dame, Indiana 46556, USA
| | | | | | | | | |
Collapse
|
37
|
Gao B, Jaffe H, Kunos G. Histone H1 isoforms purified from rat liver bind nonspecifically to the nuclear factor 1 recognition sequence and serve as generalized transcriptional repressors. Mol Cell Biochem 1998; 178:187-96. [PMID: 9546599 DOI: 10.1023/a:1006843514666] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Two polypeptides with molecular masses of 34 and 30 kDa were copurified from rat liver during DNA affinity purification of a sequence-specific transcription factor binding to the footprint II sequence within the P2 promoter of the rat alpha1B adrenergic receptor (alpha1B AR) gene, and were identified by microsequencing their endoproteinase Lys-C-derived peptides as histone H1d and histone H1c, respectively. Histone H1 was previously reported to bind to the nuclear factor 1 (NF1) recognition sequence, although the specificity of this binding has been controversial. Here, DNA mobility shift and supershift assays, DNase I footprinting and mutational analyses indicated that the binding of histone H1 to the NF1 sites located within footprint II of the alpha1B AR gene P2 promoter is nonspecific. Transient cotransfections into Hep3B cells of histone H1d cDNA with CAT constructs containing promoter regions of different genes resulted in generalized and non-specific suppression of CAT activity. The histone H1d-mediated repression of the activities of the alpha1B AR gene P2/CAT or beta2 AR gene P(-186/1307)/CAT constructs was reversed by the cotransfection of a cDNA encoding the sequence-specific transcription factor NF1/X, and the fold increase in CAT activities was similar to that obtained in the absence of histone H1d. These results suggest that sequence-specific transcription factors counteract the histone H1-mediated transcriptional repression in vivo by a true activation, which is different from the in vitro antirepression in histone H1-repressed chromatin templates (Laybourn and Kadonaga, (1991) Science 254: 238-245).
Collapse
Affiliation(s)
- B Gao
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298, USA
| | | | | |
Collapse
|
38
|
Bachurski CJ, Kelly SE, Glasser SW, Currier TA. Nuclear factor I family members regulate the transcription of surfactant protein-C. J Biol Chem 1997; 272:32759-66. [PMID: 9407049 DOI: 10.1074/jbc.272.52.32759] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Transcription of the surfactant protein-C (SP-C) gene is restricted to Type II epithelial cells in the adult lung. We have shown previously that the 0.32-kilobase pair (kb) mouse SP-C promoter is functional in transient transfection assays of the lung epithelial cell-derived cell line, MLE-15, and that thyroid transcription factor 1 (TTF-1) transactivates promoter activity. The 0.32-kb SP-C promoter can be separated into a proximal promoter region (-230 to +18) and an enhancer region (-318 to -230). Three DNase I footprints were mapped in the promoter region (C1 through C3) and two in the enhancer region (C4 and C5). We now show that nuclear factor I (NFI) family members bind to both individual NFI half-sites in footprints C1, C3, and C5, and to a composite site in footprint C4 by competition gel retardation and antibody supershift analyses. Mutational analysis of the 0.32-kb mouse SP-C promoter and transient transfection of MLE-15 cells demonstrated that the NFI binding sites are required for promoter activity in this cell type. Site-specific mutation of the proximal or distal NFI sites drastically reduced transactivation by a co-transfected NFI-A expression vector in HeLa cells. These data indicate that NFI family member(s), binding to sites in both the promoter and enhancer regions, regulate SP-C gene expression in a process independent of TTF-1.
Collapse
Affiliation(s)
- C J Bachurski
- Division of Pulmonary Biology, Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA.
| | | | | | | |
Collapse
|
39
|
Jones PL, Ping D, Boss JM. Tumor necrosis factor alpha and interleukin-1beta regulate the murine manganese superoxide dismutase gene through a complex intronic enhancer involving C/EBP-beta and NF-kappaB. Mol Cell Biol 1997; 17:6970-81. [PMID: 9372929 PMCID: PMC232554 DOI: 10.1128/mcb.17.12.6970] [Citation(s) in RCA: 191] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Manganese superoxide dismutase (MnSOD), a tumor necrosis factor (TNF)-inducible reactive oxygen-scavenging enzyme, protects cells from TNF-mediated apoptosis. To understand how MnSOD is regulated, transient transfections of promoter-reporter gene constructions, in vitro DNA binding assays, and in vivo genomic footprint (IVGF) analysis were carried out on the murine MnSOD gene. The results of this analysis identified a 238-bp region of intron 2 that was responsive to TNF and interleukin-1beta (IL-1). This TNF response element (TNFRE) had the properties of a traditional enhancer element that functioned in an orientation- and position-independent manner. IVGF of the TNFRE revealed TNF- and IL-1-induced factor occupancy of sites that could bind NF-kappaB and C/EBP. The 5' portion of the TNFRE bound C/EBP-beta in vitro and was both necessary and sufficient for TNF responsiveness with the MnSOD promoter or with a heterologous promoter when in an upstream position. The 3' end of the TNFRE bound both NF-kappaB and C/EBP but was not necessary for TNF responsiveness with the MnSOD promoter. However, this 3' portion of the TNFRE was required for the TNFRE to function as a downstream enhancer with a heterologous promoter. These data functionally separate the MnSOD TNFRE into a region responsible for TNF activation and one that mediates induction when it is downstream of a promoter.
Collapse
Affiliation(s)
- P L Jones
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
40
|
Pomerantz KB, Lander HM, Summers B, Robishaw JD, Balcueva E, Hajjar DP. G-protein-mediated signaling in cholesterol-enriched arterial smooth muscle cells. 1. Reduced membrane-associated G-protein content due to diminished isoprenylation of G-gamma subunits and p21ras. Biochemistry 1997; 36:9523-31. [PMID: 9235998 DOI: 10.1021/bi963069l] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mechanisms contributing to altered heterotrimeric G-protein expression and subsequent signaling events during cholesterol accretion have been unexplored. The influence of cholesterol enrichment on G-protein expression was examined in cultured smooth muscle cells that resemble human atherosclerotic cells by exposure to cationized LDL (cLDL). cLDL, which increases cellular free and esterified cholesterol 2-fold and 10-fold, respectively, reduced the cell membrane content of Galphai-1, Galphai-2, Galphai-3, Gq/11, and Galphas. The following evidence supports the premise that the mechanism by which this occurs is due to reduced isoprenylation of the Ggamma-subunit. First, the inhibitory effect of cholesterol enrichment on the membrane content of Galphai subunits was found to be post-transcriptional, since the mRNA steady-state levels of Galphai(1-3) were unchanged following cholesterol enrichment. Second, the membrane expression of alpha and beta subunits was mimicked by cholesterol and 17-ketocholesterol, both of which inhibit HMG-CoA reductase. Third, inhibition of Galphai and Gbeta expression in cholesterol-enriched cells was overcome by mevalonate, the immediate product of HMG-CoA reductase. Fourth, pulse-chase experiments revealed that cholesterol enrichment did not reduce the degradation rate of membrane-associated Galphai subunits. Fifth, cholesterol enrichment also reduced membrane expression of Ggamma-5, Ggamma-7upper; these gamma subunits are responsible for trafficking of the heterotrimeric G-protein complex to the cell membrane as a result of HMG-CoA reductase-dependent post-translational lipid modification (geranylgeranylation) and subsequent membrane association. Cholesterol enrichment did not alter expression of G-gamma-5 mRNA, as assessed by reverse transcriptase polymerase chain reaction, supporting a post-transcriptional defect in Ggamma subunit expression. Fifth, cholesterol enrichment also reduced the membrane content of p21ras (a low molecular weight G-protein requiring farnesylation for membrane targeting) but did not alter the membrane content of the two proteins that do not require isoprenylation for membrane association&sbd;PDGF-receptor or p60-src. Reduced G-protein content in cholesterol-laden cells was reflected by reduced G-protein-mediated signaling events, including ATP-induced GTPase activity, thrombin-induced inhibition of cyclic AMP accumulation, and MAP kinase activity. Collectively, these results demonstrate that cholesterol enrichment reduces G-protein expression and signaling by inhibiting isoprenylation and subsequent membrane targeting. These results provide a molecular basis for altered G-protein-mediated cell signaling processes in cholesterol-enriched cells.
Collapse
Affiliation(s)
- K B Pomerantz
- Department of Medicine, Cornell University Medical College, 1300 York Avenue, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
41
|
Fan Q, Paradon M, Salvat C, Bereziat G, Olivier JL. C/EBP factor suppression of inhibition of type II secreted phospholipase A2 promoter in HepG2 cells: possible role of single-strand binding proteins. Mol Cell Biol 1997; 17:4238-48. [PMID: 9234681 PMCID: PMC232277 DOI: 10.1128/mcb.17.8.4238] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We previously reported that the type II secreted phospholipase A2 (sPLA2) promoter from positions (-326 to +20) ([-326;+20] promoter) is negatively regulated by two adjacent regulatory elements, C (-210 to -176) and D (-247 to -210). This study examines in greater detail the way in which this negative regulation operates. Successive 5' deletions of the [-326;+20] type II sPLA2 promoter indicated that the region upstream of position -195 inhibits the transcription activity sixfold in HepG2 cells but not in HeLa cells. Although the whole [-326;-176] region decreased the activity of a heterologous thymidine kinase promoter, this effect was orientation and position sensitive. C/EBP beta, C/EBP alpha, and C/EBP delta, which bind to element C, prevented the inhibition of promoter activity. Electrophoretic mobility shift experiments identified the binding of NF1-like proteins to the [-225;-218] site, which overlaps an insulin response-like sequence, 5'-TGTTTTG-3'. This sequence bound a factor which also recognized the promoters of the apolipoproteins C-III and A-II. Substitutions preventing the binding of this factor or the NF1-like proteins did not increase the transcription activity, but substitution in the [-217;-204] sequence blocked the transcription inhibition. This sequence did not bind any double-strand binding factor, but its antisense strand is critical for the binding of single-strand binding proteins to the [-232;-191] region. We therefore suggest that these single-strand binding proteins are involved in the inhibitory mechanism.
Collapse
Affiliation(s)
- Q Fan
- URA CNRS 1283, U.F.R. Saint Antoine, Université Pierre et Marie Curie,Paris, France
| | | | | | | | | |
Collapse
|
42
|
Yamada K, Tanaka T, Noguchi T. Members of the nuclear factor 1 family and hepatocyte nuclear factor 4 bind to overlapping sequences of the L-II element on the rat pyruvate kinase L gene promoter and regulate its expression. Biochem J 1997; 324 ( Pt 3):917-25. [PMID: 9210417 PMCID: PMC1218509 DOI: 10.1042/bj3240917] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The L-II element (-149 to -126 bp) in the enhancer unit of the rat pyruvate kinase L (PKL) gene is required for cell-type-specific transcription and induction by carbohydrates. This element was found to bind multiple nuclear proteins with different heat stabilities. A heat-labile factor was shown to be hepatocyte nuclear factor (HNF) 4 by the electrophoretic mobility-shift assay (EMSA) using various competitor DNAs and anti-HNF4 serum. A heat-stable factor was purified from rat liver nuclear extract and was resolved as two protein bands migrating at about 33 kDa on SDS/polyacrylamide gels. Peptide sequence analysis revealed that these proteins were nuclear factor (NF) 1-L and NF1/Red1. The heat-stable factor was also identified as a member of the NF1 family by using various competitor DNAs and anti-NF1 serum in an EMSA. In addition, we found that a factor bound to the accessory site of the rat S14 gene, which is necessary for carbohydrate responsiveness of this gene, was also a member of the NF1 family, raising the possibility that the NF1 family is involved in the carbohydrate regulation of gene transcription by interactions with other proteins. The NF1 family members and HNF4 interacted with overlapping sequences of the L-II element, wherein the 5' half-site was more critical for NF1 binding, and the 3' site was more important for HNF4 binding. Co-transfection of a vector expressing either NF1-L or NF1/Red1 repressed the transcription of the PKL enhancer unit-chloramphenicol acetyltransferase (CAT) fusion gene in HepG2 cells, whereas co-transfection of a vector expressing HNF4 activated the transcription of the same reporter gene. Furthermore NF1 family members antagonized the effect of HNF4 on PKL enhancer unit-CAT fusion gene expression when both expression plasmids were co-transfected. We conclude that NF1 family members and HNF4 regulate transcription of the PKL gene in an opposing manner by binding overlapping sequences of the L-II element.
Collapse
Affiliation(s)
- K Yamada
- Department of Nutrition and Physiological Chemistry, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565, Japan
| | | | | |
Collapse
|
43
|
Liu Y, Bernard HU, Apt D. NFI-B3, a novel transcriptional repressor of the nuclear factor I family, is generated by alternative RNA processing. J Biol Chem 1997; 272:10739-45. [PMID: 9099724 DOI: 10.1074/jbc.272.16.10739] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Nuclear factor I (NFI) proteins constitute a family of sequence-specific transcription factors whose functional diversity is generated through transcription from four different genes (NFI-A, NFI-B, NFI-C, and NFI-X), alternative RNA splicing, and protein heterodimerization. Here we describe a naturally truncated isoform, NFI-B3, which is derived from the human NFI-B gene, in addition to characterizing further human NFI-B1 and NFI-B2, two differentially spliced variants previously isolated from hamster and chicken. Although NFI-B1 and NFI-B2 proteins are translated from an 8. 7-kilobase message, the mRNA for NFI-B3 has a size of only 1.8 kilobases. The NFI-B3 message originates from the failure to excise the first intron downstream of the exons encoding the DNA binding domain and subsequent processing of this transcript at an intron-internal polyadenylation signal. The translation product includes the proposed DNA binding and dimerization domain and terminates after translation of two additional "intron" encoded codons. In SL-2 cells, which are void of endogenous NFI, NFI-B3 by itself had no effect on transcriptional regulation and failed to bind DNA. Coexpression of NFI-B3 with other isoforms of the NFI-B, -C, and -X family, however, led to a strong reduction of transcriptional activation compared with the expression of these factors alone. Gel shift analysis indicated that NFI-B3 disrupts the function of other NFI proteins by reducing their DNA binding activity by heterodimer formation. The efficiency of NFI-B3 heterodimers to bind to DNA correlated with the degree of transcriptional repression. The abundance of NFI-B transcripts varied significantly between different human cell lines and tissues, suggesting a potential involvement of these factors in the complex mechanisms that generate cell type specificity.
Collapse
Affiliation(s)
- Y Liu
- Institute of Molecular and Cell Biology, National University of Singapore, Singapore 119260, USA
| | | | | |
Collapse
|
44
|
Wendler WM, Kremmer E, Förster R, Winnacker EL. Identification of pirin, a novel highly conserved nuclear protein. J Biol Chem 1997; 272:8482-9. [PMID: 9079676 DOI: 10.1074/jbc.272.13.8482] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In this article we describe the molecular cloning of Pirin, a novel highly conserved 32-kDa protein consisting of 290 amino acids. Pirin was isolated by a yeast two-hybrid screen as an interactor of nuclear factor I/CCAAT box transcription factor (NFI/CTF1), which is known to stimulate adenovirus DNA replication and RNA polymerase II-driven transcription. Pirin mRNA is expressed weakly in all human tissues tested. About 15% of all Pirin cDNAs contain a short 34-base pair insertion in their 5'-untranslated regions, indicative of alternative splicing processes. Multiple Pirin transcripts are expressed in skeletal muscle and heart. Western blots and immunoprecipitations employing monoclonal anti-Pirin antibodies reveal that Pirin is a nuclear protein. Moreover, confocal immunofluorescence experiments demonstrate a predominant localization of Pirin within dot-like subnuclear structures. Homology searches using the BLAST algorithm indicate the existence of Pirin homologues in mouse and rat. The N-terminal half of Pirin is significantly conserved between mammals, plants, fungi, and even prokaryotic organisms. Genomic Southern and Western blots demonstrate the presence of Pirin genes and their expression, respectively, in all mammalian cell lines tested. The expression pattern, the concentrated localization in subnuclear structures, and its interaction with NFI/CTF1 in the two-hybrid system classify Pirin as a putative NFI/CTF1 cofactor, which might help to gain new insights in NFI/CTF1 functions.
Collapse
Affiliation(s)
- W M Wendler
- Institut für Biochemie der Ludwig-Maximilians-Universität München, Genzentrum, Feodor-Lynen-Strasse 25, D-81377 München, Germany
| | | | | | | |
Collapse
|
45
|
Shinohara T, Nagashima K, Major EO. Propagation of the human polyomavirus, JCV, in human neuroblastoma cell lines. Virology 1997; 228:269-77. [PMID: 9123834 DOI: 10.1006/viro.1996.8409] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Susceptibility to infection by the human polyomavirus, JCV, is determined by intracellular mechanisms which control transcription and replication. Originally thought to propagate well only in human cells of oligodendroglial lineage, JCV has recently been shown to infect astrocytes, astrogliomas, and a neuroblastoma cell line. The data reported here describe two cell types that have been subcultured from a human neuroblastoma cell line, SK-N-SH. The SH-SY5Y subclone displays neuronal phenotypes and is not susceptible to JCV infection, while the SH-EP subclone displays glial cell phenotypes and is susceptible to infection. Binding of nuclear proteins from the permissive SH-EP cells to the nuclear factor-1 (NF-1) site in the JCV regulatory DNA sequences results in a gel shift pattern that is different from the nonpermissive SH-SY5Y cell proteins. Northern analysis of mRNA for the four classes of NF-1 proteins showed a predominance of the NF-1/X class in SH-EP cells similar to the highly permissive human fetal glial cells. Very low levels of mRNA for NF-1/X were seen in the nonpermissive SH-SY5Y cells, similar to that seen for the nonpermissive HeLa cells. Several other cell lines tested that were permissive for JCV infection also showed synthesis of the NF-1/X class of proteins. SH-EP cells represent a cell line in a glial cell lineage which is susceptible to JCV multiplication. These cells may be a useful cell culture system for the investigation of DNA binding factors which correlates with viral susceptibility.
Collapse
Affiliation(s)
- T Shinohara
- Laboratory of Molecular Medicine and Neuroscience, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
46
|
Kusk P, John S, Fragoso G, Michelotti J, Hager GL. Characterization of an NF-1/CTF family member as a functional activator of the mouse mammary tumor virus long terminal repeat 5' enhancer. J Biol Chem 1996; 271:31269-76. [PMID: 8940131 DOI: 10.1074/jbc.271.49.31269] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The long terminal repeat of the mouse mammary tumor virus restricts virus expression primarily to the mammary epithelium. The extreme 5' end of the long terminal repeat contains an enhancer that has been associated with tissue-specific expression of the virus. A total of six functional cis-acting elements have been identified in the enhancer. Although proteins binding to these elements have been reported, only one has been identified; this factor, mp5, is identical or closely related to the transcription factor AP-2 (Mellentin-Michelotti, J., John, S., Pennie, W. D., Williams, T., and Hager, G. L. (1994) J. Biol. Chem. 269, 31983-31990). The other factors are hitherto unidentified and poorly described. We report here the characterization of another of the six elements, previously referred to as the F3 site (Mink, S., Hartig, E., Jennewein, P., Doppler, W., and Cato, A. C. (1992) Mol. Cell Biol. 12, 4906-4918). We show that the F3 binding activity and AP-2 act synergistically to enhance mouse mammary tumor virus-directed transcription, but only in the presence of glucocorticoid hormone. The F3 element has an NF-1-like half-site, but the activity recognizing this element has binding characteristics distinct from the NF-1/CTF family as well as the rest of the CCAAT-binding proteins. We conclude that the F3 activity represents a new member of the NF-1/CTF family.
Collapse
Affiliation(s)
- P Kusk
- Laboratory of Receptor Biology and Gene Expression, NCI, National Institutes of Health, Bethesda, Maryland 20892-5055, USA.
| | | | | | | | | |
Collapse
|
47
|
Xie YQ, Takimoto K, Pitot HC, Miskimins WK, Lindahl R. Characterization of the rat Class 3 aldehyde dehydrogenase gene promoter. Nucleic Acids Res 1996; 24:4185-91. [PMID: 8932370 PMCID: PMC146258 DOI: 10.1093/nar/24.21.4185] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Class 3 aldehyde dehydrogenase gene (ALDH-3) is differentially expressed. Expression is either constitutive or xenobiotic inducible via an aromatic hydrocarbon (Ah) receptor-mediated pathway, depending upon the tissue. A series of studies were performed to examine the regulation of rat ALDH-3 basal expression. DNase I footprint analysis identified four DNA regions within the proximal 1 kb of the 5' flanking region of rat ALDH-3 which interact with regulatory proteins. Reporter gene and gel mobility shift assays indicate that Sp1-like proteins interact with two proximal DNase I footprinted sites to confer strong promoter activity. Two distal DNase I footprinted sites are found within a region that inhibits rat ALDH-3 promoter activity. This negative region is bound by NF1-like proteins and/or unique proteins. This 1 kb 5' flanking region of rat ALDH-3 may act constitutively in many cell types. In contrast with other Ah receptor regulated genes, no DNA elements or transcription factors acting within this region appear to be involved in regulating xenobiotic-inducible expression of rat ALDH-3.
Collapse
Affiliation(s)
- Y Q Xie
- Department of Biochemistry and Molecular Biology, University of South Dakota School of Medicine, Vermillion 57069, USA
| | | | | | | | | |
Collapse
|
48
|
Gao B, Jiang L, Kunos G. Transcriptional regulation of alpha(1b) adrenergic receptors (alpha(1b)AR) by nuclear factor 1 (NF1): a decline in the concentration of NF1 correlates with the downregulation of alpha(1b)AR gene expression in regenerating liver. Mol Cell Biol 1996; 16:5997-6008. [PMID: 8887629 PMCID: PMC231602 DOI: 10.1128/mcb.16.11.5997] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The 5' upstream region from --490 to --540 (footprint II) within the dominant P2 promoter of the rat alpha(1b) adrenergic receptor (alpha(1b)AR) gene is recognized by a sequence-specific DNA-binding protein (B. Gao, M. S. Spector, and G. Kunos, J. Biol. Chem. 270:5614-5619, 1995). This protein, detectable in Southwestern (DNA-protein) blots of crude nuclear extracts as 32- and 34-kDa bands, has been purified 6,000-fold from rat livers by DEAE-Sepharose, heparin-Sepharose, and DNA affinity chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and UV cross-linking of the purified protein indicated the same molecular mass as that in crude extracts. Methylation interference analysis revealed strong contact with a TTGGCT hexamer and weak contact with a TGGCGT hexamer in the 3' and 5' portions of footprint II, respectively. Nucleotide substitutions within these hexamers significantly reduced protein binding to footprint II and the promoter activity of P2 in Hep3B cells. The purified protein also bound to the nuclear factor 1 (NF1)/CTF consensus sequence, albeit with lower affinity. Gel mobility supershift and Western blotting (immunoblotting) analyses using an antibody against the NF1/CTF protein identified the purified 32- and 34-kDa polypeptides as NF1 or a related protein. Cotransfection into Hep3B cells or primary rat hepatocytes of cDNAs of the NF1-like proteins NF1/L, NF1/X, and NF1/Redl resulted in a three- to fivefold increase in transcription directed by wild-type P2 but not by the mutated P2. Partial hepatectomy markedly decreased the levels of NF1 in the remnant liver and its binding to P2, which paralleled declines in the rate of transcription of the alpha(1b)AR gene and in the steady-state levels of its mRNA. These observations indicate that NF1 activates transcription of the rat alpha(1b)AR gene via interacting with its P2 promoter and that a decline in the expression of NF1 is one of the mechanisms responsible for the reduced expression of the alpha(1b)AR gene during liver regeneration.
Collapse
Affiliation(s)
- B Gao
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298, USA.
| | | | | |
Collapse
|
49
|
Daraselia ND, Tarchevskaya S, Narita JO. The promoter for tomato 3-hydroxy-3-methylglutaryl coenzyme A reductase gene 2 has unusual regulatory elements that direct high-level expression. PLANT PHYSIOLOGY 1996; 112:727-33. [PMID: 8883384 PMCID: PMC157997 DOI: 10.1104/pp.112.2.727] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The promoter region of tomato (Lycopersicon esculentum) 3-hydroxy-3-methylglutaryl coenzyme A reductase gene 2 (HMG2) has been analyzed using the transient expression of HMG2-luciferase fusions in red fruit pericarp. The mRNA for HMG2 accumulates to high level during fruit ripening, in a pattern that coincides with the synthesis of the carotenoid lycopene. Unlike most promoters, the region that is upstream of the HMG2 TATA element is not required for high-level expression. The 180-bp region containing the TATA element, the 5' untranslated region, and the translation start site are comparable in strength of the full-length 35S cauliflower mosaic virus promoter. Pyrimidine-rich sequences present in the 5' untranslated leader are important in regulating expression. Also, the ATG start region has been found to increase translation efficiency by a factor of 4 to 10. An alternative hairpin secondary structure has been identified surrounding the HMG2 initiator ATG, which could participate in the translational regulation of this locus. HMG2 appears to be a novel class of strong plant promoters that incorporate unusual, positive regulators of gene expression.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Carotenoids/biosynthesis
- Codon, Initiator
- Conserved Sequence
- Gene Expression Regulation, Plant
- Genes, Plant
- Genes, Reporter
- Hydroxymethylglutaryl CoA Reductases/biosynthesis
- Hydroxymethylglutaryl CoA Reductases/genetics
- Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent
- Isoenzymes/biosynthesis
- Isoenzymes/genetics
- Lycopene
- Solanum lycopersicum/enzymology
- Solanum lycopersicum/genetics
- Solanum lycopersicum/growth & development
- Molecular Sequence Data
- Nucleic Acid Conformation
- Promoter Regions, Genetic
- Protein Biosynthesis
- RNA, Messenger/analysis
- RNA, Plant/analysis
- Sequence Homology, Amino Acid
- Transcription, Genetic
Collapse
Affiliation(s)
- N D Daraselia
- University of Illinois at Chicago, Laboratory for Molecular Biology 60607, USA
| | | | | |
Collapse
|
50
|
Chou SJ, Lai KN, Chung BC. Characterization of the upstream sequence of the human CYP11A1 gene for cell type-specific expression. J Biol Chem 1996; 271:22125-9. [PMID: 8703023 DOI: 10.1074/jbc.271.36.22125] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The CYP11A1 gene encodes the cholesterol side-chain cleavage enzyme P450scc, which catalyzes the synthesis of steroids from cholesterol. This gene is expressed only in steroidogenic organs such as the adrenal, gonad, placenta, and brain. We have characterized an upstream regulatory element of the human CYP11A1 gene, termed AdE, which contributed to its cell type-specific expression. The AdE sequence contains two protein binding regions, AdE1 and AdE2, which bind many proteins including NF1- and Sp1-like proteins as shown by electrophoretic mobility shift assay, footprinting, competition, antibody supershift, and mutagenesis of the binding sites. When cloned in front of the CYP11A1 promoter or the heterologous thymidine kinase promoter, AdE sequences enhanced expression of the reporter gene in steroidogenic cell lines of the adrenal, gonad, and placental origin but not in nonsteroidogenic cell lines such as COS-1 and Rat-1. The function of AdE1 and AdE2 was lower when present individually than together. The combined action of multiple transcription factors binding to the AdE sequence brings about the final activation of the CYP11A1 gene in a tissue-specific manner.
Collapse
Affiliation(s)
- S J Chou
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan, Republic of China
| | | | | |
Collapse
|