1
|
Fonteles CSR, Finnell RH, George TM, Harshbarger RJ. Craniosynostosis: current conceptions and misconceptions. AIMS GENETICS 2021. [DOI: 10.3934/genet.2016.1.99] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractCranial bones articulate in areas called sutures that must remain patent until skull growth is complete. Craniosynostosis is the condition that results from premature closure of one or more of the cranial vault sutures, generating facial deformities and more importantly, skull growth restrictions with the ability to severely affect brain growth. Typically, craniosynostosis can be expressed as an isolated event, or as part of syndromic phenotypes. Multiple signaling mechanisms interact during developmental stages to ensure proper and timely suture fusion. Clinical outcome is often a product of craniosynostosis subtypes, number of affected sutures and timing of premature suture fusion. The present work aimed to review the different aspects involved in the establishment of craniosynostosis, providing a close view of the cellular, molecular and genetic background of these malformations.
Collapse
Affiliation(s)
- Cristiane Sá Roriz Fonteles
- Finnell Birth Defects Research Laboratory, Dell Pediatric Research Institute, The University of Texas at Austin, USA
| | - Richard H. Finnell
- Finnell Birth Defects Research Laboratory, Dell Pediatric Research Institute, The University of Texas at Austin, USA
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, USA
| | - Timothy M. George
- Pediatric Neurosurgery, Dell Children's Medical Center, Professor, Department of Surgery, Dell Medical School, Austin, TX, USA
| | - Raymond J. Harshbarger
- Plastic Surgery, Craniofacial Team at the Dell Children's Medical Center of Central Texas, Austin, USA
| |
Collapse
|
2
|
Alan E, Liman N. The distribution and immunolocalization of fibroblast growth factors (FGFs) in the rat oviduct during early pregnancy and the post-partum period. Anat Histol Embryol 2021; 50:645-657. [PMID: 33772852 DOI: 10.1111/ahe.12672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/28/2021] [Accepted: 03/15/2021] [Indexed: 11/29/2022]
Abstract
The mammalian oviduct provides a favourable environment for several reproductive processes, including ovum transport, sperm capacitation, fertilization and pre-implantation embryonic development. This environment is regulated by cyclic ovarian steroids, that is oestrogen, and growth factors. Fibroblast growth factors (FGFs) regulate the differentiation and growth of various cell types in the female genital tract. This study aimed to determine the localization of FGF1, FGF2, FGF receptor 1 (FGFR1) and 2 (FGFR2) in the rat oviduct, by immunohistochemistry, on day 5 of pregnancy and post-partum days 1, 3 and 5, and to demonstrate the possible functions of these proteins during early pregnancy and the post-partum period. On all examination days, cytoplasmic and nuclear FGF1 immunoreactivity was detected in the epithelium lining the infundibulum, ampulla and isthmus of the oviduct. Immunoreactivity was much stronger in the basal bodies of the cilia on the epithelium lining the infundibulum and ampulla. FGF1 immunoreactivity was also detected in stromal cells, myocytes and endothelial cells. Cytoplasmic FGF2 immunoreactivity was observed in the tunica muscularis, vascular myocytes and endothelial cells. While strong cytoplasmic FGF2 immunoreactions were observed in the stromal cells of the lamina propria, the luminal epithelium, some stromal cells and smooth muscle cells displayed a rather weak FGFR1 and FGFR2 immunoreactivity. Immunoreaction intensity did not differ between the periods examined. This study shows that FGF1, FGF2, FGFR1 and FGFR2 are produced by rat oviduct cells during pregnancy and the post-partum period, and reproductive physiology is regulated not only by hormonal mechanisms, but also by growth factors.
Collapse
Affiliation(s)
- Emel Alan
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Narin Liman
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
3
|
|
4
|
Fan TP, Su YH. FGF signaling repertoire of the indirect developing hemichordate Ptychodera flava. Mar Genomics 2015; 24 Pt 2:167-75. [PMID: 26232261 DOI: 10.1016/j.margen.2015.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/20/2015] [Accepted: 07/20/2015] [Indexed: 02/05/2023]
Abstract
Fibroblast growth factors (FGFs) are a group of ligands that play multiple roles during development by transducing signals through FGF receptors (FGFRs) to downstream factors. At least 22 FGF ligands and 4 receptors have been identified in vertebrates, while six to eight FGF ligands and a single FGFR are present in invertebrate chordates, such as tunicates and amphioxus. The chordate FGFs can be categorized into at least seven subfamilies, and the members of which expanded during the evolution of early vertebrates. In contrast, only one FGF and two FGFRs have been found in sea urchins. Thus, it is unclear whether the FGF subfamilies duplicated in the lineage leading to the chordates, or sea urchins lost several fgf genes. Analyses of the FGF signaling repertoire in hemichordates, which together with echinoderms form the closest group to the chordates, may provide insights into the evolution of FGF signaling in deuterostomes. In this study, we identified five FGFs and three FGFRs from Ptychodera flava, an indirect-developing hemichordate acorn worm. Phylogenetic analyses revealed that hemichordates possess a conserved FGF8/17/18 in addition to several putative hemichordate-specific FGFs. Analyses of sequence similarity and protein domain organizations suggested that the sea urchin and hemichordate FGFRs arose from independent lineage-specific duplications. Furthermore, the acorn worm fgf and fgfr genes were demonstrated to be expressed during P. flava embryogenesis. These results set the foundations for further functional studies of FGF signaling in hemichordates and provided insights into the evolutionary history of the FGF repertoire.
Collapse
Affiliation(s)
- Tzu-Pei Fan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan; Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Yi-Hsien Su
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan; Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
5
|
Mohanan V, Temburni MK, Kappes JC, Galileo DS. L1CAM stimulates glioma cell motility and proliferation through the fibroblast growth factor receptor. Clin Exp Metastasis 2012; 30:507-20. [DOI: 10.1007/s10585-012-9555-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 11/17/2012] [Indexed: 02/07/2023]
|
6
|
Yanai M, Tatsumi N, Hasunuma N, Katsu K, Endo F, Yokouchi Y. FGF signaling segregates biliary cell-lineage from chick hepatoblasts cooperatively with BMP4 and ECM components in vitro. Dev Dyn 2008; 237:1268-83. [PMID: 18393311 DOI: 10.1002/dvdy.21520] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Intrahepatic bile ducts (IHBDs) are indispensable for transporting bile secreted from hepatocytes to the hepatic duct. The biliary epithelial cells (BECs) of the IHBD arise from bipotent hepatoblasts around the portal vein, suggesting the portal mesenchyme is essential for their development. However, except for Notch or Activin/TGF-beta signaling molecules, it is not known which molecules regulate IHBD development. Here, we found that FGF receptors and BMP4 are specifically expressed in the developing IHBD and the hepatic mesenchyme, respectively. Using a mesenchyme-free culture of liver bud, we showed that bFGF and FGF7 induce the hepatoblasts to differentiate into BECs, and that BMP4 enhances bFGF-induced BEC differentiation. The extracellular matrix (ECM) components in the hepatic mesenchyme induced BEC differentiation. Forced expression of a constitutively active form of the FGF receptor partially induced BEC differentiation markers in vivo. These data strongly suggest that bFGF and FGF7 promote BEC differentiation cooperatively with BMP4 and ECMs in vivo.
Collapse
Affiliation(s)
- Masaaki Yanai
- Division of Pattern Formation, Department of Organogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Seyed M, Dimario JX. Fibroblast growth factor receptor 1 gene expression is required for cardiomyocyte proliferation and is repressed by Sp3. J Mol Cell Cardiol 2008; 44:510-9. [PMID: 18275970 DOI: 10.1016/j.yjmcc.2007.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 12/18/2007] [Accepted: 12/18/2007] [Indexed: 01/10/2023]
Abstract
Fibroblast growth factor receptor 1 (FGFR1) is the only high-affinity FGFR in the vertebrate myocardium. FGFR1 is a tyrosine kinase receptor and has a non-redundant role in proliferation and differentiation of cardiomyocytes during embryogenesis. Results presented here demonstrate that FGFR1 gene expression declines as neonatal cardiomyocytes develop into adult cardiomyocytes. Furthermore, silencing FGFR1 gene expression reduced neonatal cardiomyocyte proliferation, indicating that FGFR1 gene expression is required for the optimal proliferative capacity of cardiomyocytes. To determine the mechanism that governs FGFR1 gene expression in cardiomyocytes, sequence analysis of the proximal mouse FGFR1 promoter identified a potential binding site for Sp transcription factors. Mutation of this site increased FGFR1 promoter activity compared to the wild-type promoter, indicating the presence of a negative transcriptional regulator of the FGFR1 promoter at this site in cardiomyocytes. Sp3 expression in neonatal cardiomyocytes and Drosophila SL2 cells reduced FGFR1 promoter activity in a dose-dependent manner. Western blots and immunocytochemistry indicated that Sp3 was present in the nuclear and cytoplasmic compartments of neonatal cardiomyocytes. Chromatin-immunoprecipitation studies verified that endogenous Sp3 in cardiomyocytes interacts with the FGFR1 promoter. Transient chromatin-immunoprecipitation studies using wild-type and mutated FGFR1 promoter constructs in SL2 cells identified the specific Sp3 binding site within the FGFR1 promoter. These studies implicate Sp3 as a negative transcriptional regulator of FGFR1 promoter activity in cardiomyocytes and as a suppressor of cardiomyocyte proliferation.
Collapse
Affiliation(s)
- Mahdie Seyed
- Department of Cell Biology and Anatomy, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, Illinois 60064, USA
| | | |
Collapse
|
8
|
Mohammadi M, Olsen SK, Ibrahimi OA. Structural basis for fibroblast growth factor receptor activation. Cytokine Growth Factor Rev 2005; 16:107-37. [PMID: 15863029 DOI: 10.1016/j.cytogfr.2005.01.008] [Citation(s) in RCA: 548] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
FGF signaling plays a ubiquitous role in human biology as a regulator of embryonic development, homeostasis and regenerative processes. In addition, aberrant FGF signaling leads to diverse human pathologies including skeletal, olfactory, and metabolic disorders as well as cancer. FGFs execute their pleiotropic biological actions by binding, dimerizing and activating cell surface FGF receptors (FGFRs). Proper regulation of FGF-FGFR binding specificity is essential for the regulation of FGF signaling and is achieved through primary sequence variations among the 18 FGFs and seven FGFRs. The severity of human skeletal syndromes arising from mutations that violate FGF-FGFR specificity is a testament to the importance of maintaining precision in FGF-FGFR specificity. The discovery that heparin/heparan sulfate (HS) proteoglycans are required for FGF signaling led to numerous models for FGFR dimerization and heralded one of the most controversial issues in FGF signaling. Recent crystallographic analyses have led to two fundamentally different models for FGFR dimerization. These models differ in both the stoichiometry and minimal length of heparin required for dimerization, the quaternary arrangement of FGF, FGFR and heparin in the dimer, and in the mechanism of 1:1 FGF-FGFR recognition and specificity. In this review, we provide an overview of recent structural and biochemical studies used to differentiate between the two crystallographic models. Interestingly, the structural and biophysical analyses of naturally occurring pathogenic FGFR mutations have provided the most compelling and unbiased evidences for the correct mechanisms for FGF-FGFR dimerization and binding specificity. The structural analyses of different FGF-FGFR complexes have also shed light on the intricate mechanisms determining FGF-FGFR binding specificity and promiscuity and also provide a plausible explanation for the molecular basis of a large number craniosynostosis mutations.
Collapse
Affiliation(s)
- Moosa Mohammadi
- Department of Pharmacology, New York University School of Medicine, 550 First Avenue, MSB 425, New York, NY 10016, USA.
| | | | | |
Collapse
|
9
|
Caldwell MA, Garcion E, terBorg MG, He X, Svendsen CN. Heparin stabilizes FGF-2 and modulates striatal precursor cell behavior in response to EGF. Exp Neurol 2004; 188:408-20. [PMID: 15246840 DOI: 10.1016/j.expneurol.2004.05.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Revised: 03/24/2004] [Accepted: 05/05/2004] [Indexed: 10/26/2022]
Abstract
Fibroblast and epidermal growth factors (FGF-2 and EGF) are powerful mitogens for neural precursor cells isolated from the developing striatum and grown as neurospheres. However, questions remain as to the exact role of each of these molecules, and how the proteoglycan heparin may modify their behavior. Here, we show that FGF-2 is remarkably unstable in culture media, but that heparin could completely prevent its degradation, which led to faster cell growth rates. In addition, heparin significantly increased the number of cells within the E14 striatum responding to a brief pulse of FGF-2. In contrast, EGF was unable to stimulate the growth of E14 striatal precursors. However, EGF could induce the division of E18 striatal precursors as neurospheres and acted synergistically with FGF-2. FGF-2/heparin neurospheres generated significantly more neurons than EGF neurospheres. Interestingly, the addition of heparin to EGF neurospheres, which had no effects on EGF stability or growth rates, increased the numbers of neurons generated to that seen for FGF-2/heparin neurospheres. EGF neurospheres were found to produce FGF-2, but addition of heparin did not affect its concentration within cells or in the medium suggesting this released FGF-2 may already be bound to a proteoglycan. In addition, expanding cells with EGF plus heparin in the presence of an FGF-2 blocker did not have a significant effect on the number of neurons generated confirming that the increase in neuronal number is through a mechanism which is independent of FGF-2.
Collapse
Affiliation(s)
- Maeve A Caldwell
- Centre for Brain Repair, Cambridge University Forvie Site, Robinson Way, CB2 2PY, UK.
| | | | | | | | | |
Collapse
|
10
|
Matsumoto K, Nishihara S, Kamimura M, Shiraishi T, Otoguro T, Uehara M, Maeda Y, Ogura K, Lumsden A, Ogura T. The prepattern transcription factor Irx2, a target of the FGF8/MAP kinase cascade, is involved in cerebellum formation. Nat Neurosci 2004; 7:605-12. [PMID: 15133517 DOI: 10.1038/nn1249] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2003] [Accepted: 03/22/2004] [Indexed: 02/07/2023]
Abstract
The cerebellum develops from the rhombic lip of the rostral hindbrain and is organized by fibroblast growth factor 8 (FGF8) expressed by the isthmus. Here we report characterization of Irx2, a member of the Iroquois (Iro) and Irx class of homeobox genes, that is expressed in the presumptive cerebellum. When Irx2 is misexpressed with Fgf8a in the chick midbrain, the midbrain develops into cerebellum in conjunction with repression of Otx2 and induction of Gbx2. During this event, signaling by the FGF8 and mitogen-activated protein (MAP) kinase cascade modulates the activity of Irx2 by phosphorylation. Our data identify a link between the isthmic organizer and Irx2, thereby shedding light on the roles of Iro and Irx genes, which are conserved in both vertebrates and invertebrates.
Collapse
Affiliation(s)
- Ken Matsumoto
- Department of Developmental Neurobiology, Institute of Development, Aging and Cancer, Tohoku University 4-1, Seiryo, Aoba, Sendai 980-8575, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kameshita I, Tsuge T, Kinashi T, Kinoshita S, Sueyoshi N, Ishida A, Taketani S, Shigeri Y, Tatsu Y, Yumoto N, Okazaki K. A new approach for the detection of multiple protein kinases using monoclonal antibodies directed to the highly conserved region of protein kinases. Anal Biochem 2003; 322:215-24. [PMID: 14596830 DOI: 10.1016/j.ab.2003.08.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To explore the protein kinase family enzymes expressed in cells, we attempted to generate antibodies that could detect a wide variety of protein kinases. For the production of such antibodies, synthetic peptides corresponding to amino acid sequences of a highly conserved subdomain (subdomain VIB) of the protein kinase family were used for immunization. Among the various peptide antigens, a peptide with 16 amino acids, CVVHRDLKPENLLLAS, effectively produced polyclonal antibodies with broad cross-reactivities to protein kinases. Two monoclonal antibodies, designated M8C and M1C, detected a variety of protein kinases such as calmodulin-dependent protein kinase II, calmodulin-dependent protein kinase IV, cAMP-dependent protein kinase, and mitogen-activated protein kinases, on Western blotting. The antibodies also immunoprecipitated various protein kinases in cell extracts. Furthermore, these antibodies could be used for detection of positive clones in the expression cloning of various protein kinases. Among 39 positive clones obtained from mouse brain cDNA library, 36 clones were identified as cDNA clones for various known and novel protein serine/threonine kinases, suggesting that the antibodies reacted highly specifically with various protein kinases. These results indicate that the present monoclonal antibodies directed to multiple protein kinases will be a powerful tool for the detection of a variety of known and novel protein kinases in cells.
Collapse
Affiliation(s)
- Isamu Kameshita
- Department of Life Sciences, Kagawa University, Kagawa 761-0795, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Marics I, Padilla F, Guillemot JF, Scaal M, Marcelle C. FGFR4 signaling is a necessary step in limb muscle differentiation. Development 2002; 129:4559-69. [PMID: 12223412 DOI: 10.1242/dev.129.19.4559] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In chick embryos, most if not all, replicating myoblasts present within the skeletal muscle masses express high levels of the FGF receptor FREK/FGFR4, suggesting an important role for this molecule during myogenesis. We examined FGFR4 function during myogenesis, and we demonstrate that inhibition of FGFR4, but not FGFR1 signaling, leads to a dramatic loss of limb muscles. All muscle markers analyzed (such as Myf5, MyoD and the embryonic myosin heavy chain) are affected. We show that inhibition of FGFR4 signal results in an arrest of muscle progenitor differentiation, which can be rapidly reverted by the addition of exogenous FGF, rather than a modification in their proliferative capacities. Conversely, over-expression of FGF8 in somites promotes FGFR4 expression and muscle differentiation in this tissue. Together, these results demonstrate that in vivo, myogenic differentiation is positively controlled by FGF signaling, a notion that contrasts with the general view that FGF promotes myoblast proliferation and represses myogenic differentiation. Our data assign a novel role to FGF8 during chick myogenesis and demonstrate that FGFR4 signaling is a crucial step in the cascade of molecular events leading to terminal muscle differentiation.
Collapse
Affiliation(s)
- Irène Marics
- Developmental Biology Institute of Marseille, Laboratoire de Génétique et de Physiologie du Développement (LGPD), University Aix-Marseille II, Campus de Luminy, Case 907, 13288 Marseille Cedex 09, France
| | | | | | | | | |
Collapse
|
13
|
Praul CA, Ford BC, Leach RM. Effect of fibroblast growth factors 1, 2, 4, 5, 6, 7, 8, 9, and 10 on avian chondrocyte proliferation. J Cell Biochem 2002; 84:359-66. [PMID: 11787065 DOI: 10.1002/jcb.1300] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It has been demonstrated that fibroblast growth factor receptors are key regulators of endochondral bone growth. However, it has not been determined what fibroblast growth factor ligand(s) (FGFs) are important in this process. This study sought to determine whether FGFs 1, 2, 4, 5, 6, 7, 8, 9, and 10 were capable of stimulating avian chondrocyte proliferation in vitro. We have found that FGFs 2, 4, and 9 strongly stimulate avian chondrocyte proliferation while FGFs 6 and 8 stimulate proliferation to a lesser extent. RT-PCR indicates that FGF-2 and FGF-4 are expressed in the postnatal avian epiphyseal growth plate (EGP) while FGF-8 and FGF-9 are not. Thus, FGF-2 and FGF-4 stimulate chondrocyte proliferation and are both present in the EGP. This suggests that FGF-2 and FGF-4 may be important ligands, in vivo, for the regulation of endochondral bone growth. These observations coupled with our observation that multiple avian FGF receptors (Cek1, Cek2, Cek3, and FREK) are expressed in proliferative chondrocytes highlights the complexity of FGF signaling pathways in postnatal endochondral bone growth.
Collapse
Affiliation(s)
- Craig A Praul
- Department of Poultry Science, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
14
|
Parakati R, DiMario JX. Sp1- and Sp3-mediated transcriptional regulation of the fibroblast growth factor receptor 1 gene in chicken skeletal muscle cells. J Biol Chem 2002; 277:9278-85. [PMID: 11756440 DOI: 10.1074/jbc.m108411200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of the fibroblast growth factor receptor 1 (FGFR1) gene in skeletal muscle is positively regulated in proliferating myoblasts and declines during differentiation. We have characterized the cis-regulatory elements in the proximal region of the FGFR1 promoter which render positive transcriptional activity. Multiple elements between -69 and -14 activate the FGFR1 promoter. Myoblast transfections revealed that potential Sp transcription factor binding sites are required for promoter activity. Electromobility shift assays indicated that myoblast nuclear proteins specifically bind to these cis-elements and that differentiated myotube nuclear extracts do not form these same complexes. In addition, Southwestern blot analysis detected binding of the most proximal Sp motif to a Sp1-like protein present in myoblast nuclear extracts but not in myotubes. In corroboration, Sp1 and Sp3 proteins were detected only in myoblasts and not in differentiated myotubes. Finally, transfection of Drosophila SL2 cells showed that Sp1 is a positive regulator of FGFR1 promoter activity and that Sp3 is a coactivator via the proximal Sp binding sites. These studies demonstrate that the FGFR1 promoter is activated by Sp transcription factors in proliferating myoblasts and demonstrate at least part of the mechanism by which FGFR1 gene expression is down-regulated in differentiated muscle fibers.
Collapse
Affiliation(s)
- Rajini Parakati
- Department of Cell Biology and Anatomy, Chicago Medical School, North Chicago, Illinois 60064, USA
| | | |
Collapse
|
15
|
Mina M, Wang YH, Ivanisevic AM, Upholt WB, Rodgers B. Region- and stage-specific effects of FGFs and BMPs in chick mandibular morphogenesis. Dev Dyn 2002; 223:333-52. [PMID: 11891984 DOI: 10.1002/dvdy.10056] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The mandibular processes are specified as at least two independent functional regions: two large lateral regions where morphogenesis is dependent on fibroblast growth factor (FGF)-8 signaling, and a small medial region where morphogenesis is independent of FGF-8 signaling. To gain insight into signaling pathways that may be involved in morphogenesis of the medial region, we have examined the roles of pathways regulated by FGFs and bone morphogenetic proteins (BMPs) in morphogenesis of the medial and lateral regions of the developing chick mandible. Our results show that, unlike in the lateral region, the proliferation and growth of the mesenchyme in the medial region is dependent on signals derived from the overlying epithelium. We also show that medial and lateral mandibular mesenchyme respond differently to exogenous FGFs and BMPs. FGF-2 and FGF-4 can mimic many of the effects of mandibular epithelium from the medial region, including supporting the expression of Msx genes, outgrowth of the mandibular processes and elongation of Meckel's cartilage. On the other hand, laterally placed FGF beads did not induce ectopic expression of Msx genes and did not affect the growth of the mandibular processes. These functional studies, together with our tissue distribution studies, suggest that FGF-mediated signaling (other than FGF-8), through interactions with FGF receptor-2 and downstream target genes including Msx genes, is part of the signaling pathway that mediates the growth-promoting interactions in the medial region of the developing mandible. Our observations also suggest that BMPs play multiple stage- and region-specific roles in mandibular morphogenesis. In this study, we show that exogenous BMP-7 applied to the lateral region at early stages of development (stage 20) caused apoptosis, ectopic expression of Msx genes, and inhibited outgrowth of the mandibular processes and the formation of Meckel's cartilage. Our additional experiments suggest that the differences between the effects of BMP-7 on lateral mandibular mesenchyme at stage 20 and previously reported results at stage 23 (Wang et al., [1999] Dev. Dyn. 216:320-335) are related to differences in stages of differentiation in that BMP-7 promotes apoptosis in undifferentiated lateral mandibular mesenchyme, whereas it promotes chondrogenesis at later stages of development. We also showed that, unlike mandibular epithelium and medially placed FGF beads, medially placed BMP-7 did not support outgrowth of the isolated mesenchyme and at stage 20 induced the formation of a duplicated rod of cartilage extending from the body of Meckel's cartilage. These observations suggest that BMPs do not play essential roles in growth-promoting interactions in the medial region of the developing mandible. However, BMP-mediated signaling is a part of the signaling pathways regulating chondrogenesis of the mandibular mesenchyme.
Collapse
Affiliation(s)
- Mina Mina
- Department of Pediatric Dentistry, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | | | | | | | | |
Collapse
|
16
|
Patel SG, DiMario JX. Two distal Sp1-binding cis-elements regulate fibroblast growth factor receptor 1 (FGFR1) gene expression in myoblasts. Gene 2001; 270:171-80. [PMID: 11404014 DOI: 10.1016/s0378-1119(01)00478-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Skeletal myoblast cell proliferation and subsequent differentiation are dependent on developmentally regulated expression of the fibroblast growth factor receptor 1 (FGFR1) gene. We have previously reported the isolation and initial characterization of the chicken FGFR1 gene (cek1) promoter. Both distal and proximal regions of the promoter were identified as necessary for developmentally regulated transcriptional activity in proliferating myoblasts, including its down-regulation in differentiated muscle fibers in vitro. Here we report detailed characterization of the molecular mechanism regulating FGFR1 promoter activity via the distal promoter region in proliferating myoblasts. This region was identified as a 242 base pair segment located greater than 1 kilobase upstream from the start of transcription that conferred increased transcriptional activity to a minimal thymidine kinase promoter. This segment contains two Sp1 binding sites. Site directed mutagenesis and transfection studies indicated that both Sp1 sites are functional and both are required for FGFR1 promoter activity. Furthermore, Sp1 binding to the two sites was synergistic enhancing FGFR1 promoter activity. The specificity of Sp1 binding to the two distal promoter cis-elements was verified by electromobility shift and transfection assays employing an Sp1 expression construct. Differences in myoblast versus fibroblast-specific protein-DNA complex formation at these sites correlated with high promoter activity in myoblasts and significantly reduced promoter activity in fibroblasts. These studies for the first time establish a molecular mechanism regulating FGFR1 gene expression during myoblast proliferation.
Collapse
Affiliation(s)
- S G Patel
- Department of Cell Biology and Anatomy, Finch University of Health Sciences/The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | | |
Collapse
|
17
|
Sasaki E, Etches RJ. Expression of protein tyrosine kinases and stem cell factor in chicken blastodermal cells. Poult Sci 2001; 80:161-71. [PMID: 11233004 DOI: 10.1093/ps/80.2.161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chicken blastodermal cells (CBC) from Stage X embryos, which were isolated from newly laid, fertile, unincubated eggs, are pluripotent cells and can produce somatic and germline chimeras when injected into recipient stage X embryos. The CBC retain their pluripotential ability for up to 7 d in vitro. The molecular mechanisms that control proliferation and differentiation of CBC are largely unknown, although protein tyrosine kinases (PTK) are known to play important roles in these processes in similar cells. To understand better the molecular mechanisms of proliferation and differentiation in CBC, expression profiles of PTK and stem cell factor (SCF) were analyzed by reverse transcription polymerase chain reaction (RT-PCR) using gene-specific and degenerate oligonucleotide primers. Seventeen distinct PTK, including 14 receptor-type and 3 nonreceptor-type PTK and SCF were identified by RT-PCR. Expression of all of the genes was confirmed by northern blot analysis. The northern blot analysis showed that all probes hybridized with one or more transcripts at various expression levels. The expression of the 17 PTK and SCF genes in CBC suggests that they might play a role in signal transduction pathways that control the proliferation or differentiation in CBC.
Collapse
Affiliation(s)
- E Sasaki
- Animal and Poultry Science, University of Guelph, Ontario, Canada
| | | |
Collapse
|
18
|
Bodo M, Baroni T, Carinci F, Becchetti E, Conte C, Bellucci C, Pezzetti F, Calvitti M, Bellocchio S, Stabellini G, Carinci P. Interleukin secretion, proteoglycan and procollagen alpha(1)(I) gene expression in Crouzon fibroblasts treated with basic fibroblast growth factor. Cytokine 2000; 12:1280-3. [PMID: 10930313 DOI: 10.1006/cyto.1999.0730] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study provides the first evidence that fibroblasts obtained from patients affected by Crouzon syndrome, a rare craniosynostosis, despite mutations in the high-affinity bFGF receptor retain their capacity to respond to bFGF. The growth factor reduces IL-1 secretion, downregulates biglycan and procollagen alpha(1)(I), and increases betaglycan expression. Since betaglycan is a co-receptor for bFGF signalling, an alternative signal transduction pathway is suggested in Crouzon fibroblasts, to explain the documented changes in ECM macromolecule production.
Collapse
Affiliation(s)
- M Bodo
- Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Università di Perugia, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Osteoblastic culture models, experimental, and clinical models have revealed that bone growth factors influence cellular activity. Growth factors including bone morphogenetic proteins, transforming growth factor beta, platelet-derived growth factor, insulin-like growth factors I and II, and acidic and basic fibroblast growth factors, are powerful tools for fracture healing and bone grafting. Understanding the role that bone growth factors play in bone repair is necessary to apply these factors in a clinical setting.
Collapse
Affiliation(s)
- S N Khan
- SpineCare Institute, Hospital for Special Surgery, New York, New York 10021, USA
| | | | | |
Collapse
|
20
|
Flanagan-Steet H, Hannon K, McAvoy MJ, Hullinger R, Olwin BB. Loss of FGF receptor 1 signaling reduces skeletal muscle mass and disrupts myofiber organization in the developing limb. Dev Biol 2000; 218:21-37. [PMID: 10644408 DOI: 10.1006/dbio.1999.9535] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The identities of extracellular growth factors that regulate skeletal muscle development in vivo are largely unknown. We asked if FGFs, which act as repressors of myogenesis in culture, play a similar role in vivo by ectopically expressing in the developing limb a truncated FGF receptor 1 (dnFGFR1) that acts as a dominant negative mutant. Hind limbs and the adjacent somites of Hamburger and Hamilton (HH) stage 17 chickens were infected with a replication-competent RCAS virus encoding dnFGFR1. By ED5, the virus had spread extensively within the limb and the adjacent somites with little rostral or caudal expansion of the infection along the axial midline. Viral infection and mutant receptor expression were coincident as revealed by the distribution of a viral coat protein and an HA epitope tag present on the carboxy terminus of dnFGFR1. Within 48 h following injection of dnFGFR1, we could detect no obvious changes in skeletal muscle precursor cell migration into the hind limb as compared to control limbs infected with an empty RCAN virus. However, by 3 days following infection of RCAS-dnFGFR1 virus, the level of skeletal muscle-specific myosin heavy chain was decreased and the expression pattern altered, suggesting disruption of skeletal muscle development. Two striking muscular phenotypes were observed in dnFGFR1-expressing limbs, including an average loss of 30% in skeletal muscle wet weight and a 50% decrease in myofiber density. At all ages examined the loss of skeletal muscle mass was accompanied by a loss of myoblasts and an unexpected concomitant loss of fibroblasts. Consistent with these observations, explants of infected cells revealed a reduction in the number of myonuclei in myotubes. Although the myofiber density per unit area was decreased over 50% compared to controls there were no detectable effects on myofiber diameter. The loss in myofiber density was, however, accompanied by an increase in the space surrounding individual myofibers and a generalized loss of myofiber integrity. It is noteworthy that long-bone development was unaffected by RCAS-dnFGFR1 infection, suggesting that FGFR2 and FGFR3 signaling was not disrupted. Our data provide conclusive evidence that FGFR1 signaling is necessary to maintain myoblast number and plays a role in myofiber organization.
Collapse
Affiliation(s)
- H Flanagan-Steet
- Department of Molecular Biology, University of Colorado, Boulder, Colorado, 80309, USA
| | | | | | | | | |
Collapse
|
21
|
Patel SG, Funk PE, DiMario JX. Regulation of avian fibroblast growth factor receptor 1 (FGFR-1) gene expression during skeletal muscle differentiation. Gene 1999; 237:265-76. [PMID: 10524258 DOI: 10.1016/s0378-1119(99)00278-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myogenic cell proliferation and differentiation are regulated by a fibroblast growth factor (FGF) signal transduction cascade mediated by a high-affinity fibroblast growth factor receptor (FGFR). Exogenous FGF added to myogenic cultures has a mitogenic effect promoting myoblast proliferation while repressing differentiation. We have examined the regulation of the FGFR-1 gene (cek-1) in avian myogenic cultures by immunocytochemistry and Northern blot analysis. FGFR-1 protein was readily detected in undifferentiated myoblast cultures and was significantly reduced in differentiated muscle fiber cultures. Similarly, FGFR-1 mRNA was 2.5-fold more abundant in myoblast cultures than in differentiated cultures. To define the molecular mechanism regulating FGFR-1 gene expression in proliferating myoblasts and post-mitotic muscle fibers, we have isolated and partially characterized the avian FGFR-1 gene promoter. Transfection of FGFR-1 promoter-chloramphenicol acetyltransferase gene constructs into myogenic cultures identified two regions regulating expression of this gene in myoblasts. A distal region of 2226 bp conferred a high level of expression in myoblasts. This region functioned in an orientation-dependent manner and interacted with a promoter element(s) in a proximal 1058 bp promoter region to direct transcription. Deletion analysis revealed a 78 bp region that confers a high level of cek1 promoter activity in myoblasts. This DNA segment also contains Spl binding sites and interacts with a component in myoblast nuclear protein extracts. The proximal promoter region alone demonstrated no activity in directing transcription in either myoblasts or muscle fibers. Using the full-length promoter, gene expression was significantly decreased in differentiated muscle fibers relative to undifferentiated myoblasts indicating that the promoter-reporter gene constructs contain elements regulating expression of the endogenous FGFR-1 gene in both myoblasts and muscle fibers.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cell Differentiation/genetics
- Chick Embryo
- Chloramphenicol O-Acetyltransferase/genetics
- Chloramphenicol O-Acetyltransferase/metabolism
- Cloning, Molecular
- Deoxyribonucleases, Type II Site-Specific/genetics
- Deoxyribonucleases, Type II Site-Specific/metabolism
- Down-Regulation
- Fibroblast Growth Factors/genetics
- Fibroblast Growth Factors/metabolism
- Gene Expression Regulation, Developmental
- Genes, Reporter
- Immunohistochemistry/methods
- Molecular Sequence Data
- Muscle, Skeletal/cytology
- Muscle, Skeletal/embryology
- Muscle, Skeletal/physiology
- Promoter Regions, Genetic
- RNA, Messenger
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, Fibroblast Growth Factor, Type 1
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Regulatory Sequences, Nucleic Acid
- Transcription, Genetic
Collapse
Affiliation(s)
- S G Patel
- Finch University of Health Sciences/The Chicago Medical School, Department of Cell Biology and Anatomy, North Chicago, IL 60064, USA
| | | | | |
Collapse
|
22
|
Bodo M, Baroni T, Carinci F, Becchetti E, Bellucci C, Conte C, Pezzetti F, Evangelisti R, Tognon M, Carinci P. A regulatory role of fibroblast growth factor in the expression of decorin, biglycan, betaglycan and syndecan in osteoblasts from patients with Crouzon's syndrome. Eur J Cell Biol 1999; 78:323-30. [PMID: 10384983 DOI: 10.1016/s0171-9335(99)80066-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Bone development is controlled by the autocrine and/or paracrine effects of regulatory molecules. We previously showed that the phenotype of fibroblasts obtained from patients affected by Crouzon's syndrome, an autosomal dominant disease characterized by pathological skull bone development, differed from that of normal cells and was regulated by interleukin treatments. The changes in the relative concentrations of extracellular macromolecules (glycosaminoglycans-GAG, collagen and fibronectin) were associated with abnormal interleukin secretion that affected the microenvironment where the osteogenic processes take place. Mutations in human fibroblast growth factor receptors are now thought to be involved in Crouzon's syndrome. Since coactivation of interleukins and basic fibroblast growth factor (bFGF) is probably implicated in morphogenetic and osteogenic processes and heparan sulphate proteoglycans have a critical role in regulating bFGF activity, the phenotypes of normal and Crouzon osteoblasts were studied and the effects of bFGF on the expression of bFGF, procollagen alpha1 (I), and proteoglycan (PG) genes for biglycan, decorin, betaglycan and syndecan analyzed. Specific human cDNA probes were used to screen the relative levels of mRNA by Northern analysis. Spontaneous or bFGF-modulated release of interleukins was also assayed. The bFGF gene transcript was detected only in Crouzon osteoblasts. We showed for the first time that Crouzon osteoblasts, despite a mutation in the FGF receptor, still responded to exogenous bFGE In fact, the growth factor induced changes in the GAG profile and in the levels of mRNA coding for PG and procollagen alpha1 (I) and down-regulated heparan sulfate GAG chains. ELISA showed that bFGF-induced interleukin secretion differed in normal and Crouzon osteoblasts. The observed differences in PG core protein, procollagen alpha1 (I) and bFGF could be associated with the Crouzon bone phenotype and also should provide further understanding on the molecular basis of the diseased state of bone.
Collapse
Affiliation(s)
- M Bodo
- Dipartimento di Morfologia ed Embriologia, Università di Ferrara, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhu X, Sasse J, Lough J. Evidence that FGF receptor signaling is necessary for endoderm-regulated development of precardiac mesoderm. Mech Ageing Dev 1999; 108:77-85. [PMID: 10366041 DOI: 10.1016/s0047-6374(99)00003-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Endoderm cells in the heart forming region (HFR endoderm) of stage 6 chicken embryos are required to support the proliferation and terminal differentiation of precardiac mesoderm cells in vitro. The endoderm's effect can be substituted by growth factors, including members of the fibroblast growth factor (FGF) family. However, direct implication of FGFs in this process requires evidence that inhibition of FGF signaling interferes with proliferation and/or terminal differentiation. This report examines the consequences of treating endoderm/precardiac mesoderm co-explants with agents that inactivate FGF receptors. Using sodium chlorate, which prevents FGF ligand-receptor interaction, it was observed that the percentage of S-phase precardiac mesoderm cells was markedly reduced, suggesting that cell proliferation was inhibited. To more specifically affect FGF signaling, the explants were treated with an antibody that recognizes an extracellular domain of FGF receptor-1 (FGFR-1). This treatment similarly inhibited cell proliferation. Although both agents modestly delayed cardiac myocyte differentiation as indicated by the contractile function, expression of alpha-sarcomeric actin was not affected. These findings provide additional evidence that an intact FGF signaling pathway is required during heart development.
Collapse
Affiliation(s)
- X Zhu
- Department of Cell Biology, Neurobiology and Anatomy and Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee 53226, USA
| | | | | |
Collapse
|
24
|
Galzie Z, Kinsella AR, Smith JA. Fibroblast growth factors and their receptors. Biochem Cell Biol 1998. [PMID: 9599656 DOI: 10.1139/o97-091] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Fibroblast growth factors (FGFs) represent a group of polypeptide mitogens eliciting a wide variety of responses depending upon the target cell type. The knowledge of the cell surface receptors mediating the effects of FGFs has recently expanded remarkably. The complexity of the FGF family and the FGF-induced responses is reflected in the diversity and redundancy of the FGF receptors. In this review, a number of biochemical characteristics and biological properties of the FGF family and its receptors are described and their expression both in normal tissues and in tumours is discussed. Finally we speculate on the targetting of growth inhibition agents to tumours through FGF receptors.
Collapse
Affiliation(s)
- Z Galzie
- Department of Surgery, University of Liverpool, U.K
| | | | | |
Collapse
|
25
|
Praul CA, Brubaker KD, Leach RM, Gay CV. Detection of endogenous biotin-containing proteins in bone and cartilage cells with streptavidin systems. Biochem Biophys Res Commun 1998; 247:312-4. [PMID: 9642122 DOI: 10.1006/bbrc.1998.8757] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
When utilizing streptavidin systems with Western blots of chondrocyte, osteoblast and osteoclast lysates, proteins of the molecular weights 116 kDa, 75 kDa and 67 kDa were observed to be bound by streptavidin alone. Streptavidin binding could not be blocked by pre-incubation with an RGD containing peptide. The same proteins were bound by ExtrAvidin which lacks the RGD sequence present in streptavidin. Pre-incubation with free biotin completely abolished the binding of both streptavidin and ExtrAvidin. The three proteins observed are believed to be the biotin containing carboxylases: pyruvate carboxylase, 3-methylcrotonyl carboxylase, and propionyl carboxylase. The findings of this study underscore the need to apply vigorous controls to distinguish between endogenous biotinylated proteins and biotin used as a means to amplify avidin detection systems since a wide variety of proteins with relevance to bone and cartilage biology have molecular weights similar to the biotin carboxylases.
Collapse
Affiliation(s)
- C A Praul
- Department of Poultry Science, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
26
|
Abstract
The Eph receptors are the largest known family of receptor tyrosine kinases. Initially all of them were identified as orphan receptors without known ligands, and their specific functions were not well understood. During the past few years, a corresponding family of ligands has been identified, called the ephrins, and specific functions have now been identified in neural development. The ephrins and Eph receptors are implicated as positional labels that may guide the development of neural topographic maps. They have also been implicated in pathway selection by axons, the guidance of cell migration, and the establishment of regional pattern in the nervous system. The ligands are anchored to cell surfaces, and most of the functions so far identified can be interpreted as precise guidance of cell or axon movement. This large family of ligands and receptors may make a major contribution to the accurate spatial patterning of connections and cell position in the nervous system.
Collapse
Affiliation(s)
- J G Flanagan
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
27
|
Wilke TA, Gubbels S, Schwartz J, Richman JM. Expression of fibroblast growth factor receptors (FGFR1, FGFR2, FGFR3) in the developing head and face. Dev Dyn 1997; 210:41-52. [PMID: 9286594 DOI: 10.1002/(sici)1097-0177(199709)210:1<41::aid-aja5>3.0.co;2-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Fibroblast growth factors may play an important role in the differential growth of the skull, brain, and facial prominences. In order to understand the role of FGFs in vivo, we have analyzed the competency of head mesenchyme to respond to FGFs via expression of the high affinity receptors FGFR1, 2, and 3. Receptor transcripts, especially those of FGFR2 and FGFR3, were localized to specific regions of the head. We raise the possibilities of particular receptor-ligand combinations and the possible functions of these interactions in the morphogenesis of the head, face, and brain. Finally, we discuss the relationship between FGF receptor expression in the chicken and the phenotypes of FGF receptor mutations in humans.
Collapse
Affiliation(s)
- T A Wilke
- Department of Oral Health Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
28
|
Rohrer B, Tao J, Stell WK. Basic fibroblast growth factor, its high- and low-affinity receptors, and their relationship to form-deprivation myopia in the chick. Neuroscience 1997; 79:775-87. [PMID: 9219941 DOI: 10.1016/s0306-4522(97)00042-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Form deprivation myopia in chickens is a widely accepted model to study visually-regulated postnatal ocular growth. Recently we showed that basic fibroblast growth factor-2 provides a "stop" signal for the growing eye. To understand further its action, we have localized basic fibroblast growth factor-2 and its low- and high-affinity receptors in the chicken eye, and determined the localization of basic fibroblast growth factor receptors in the inner plexiform layer with respect to that of neurotransmitter systems known to play a role in form-deprivation myopia. By immunocytochemistry and in situ hybridization, two complementary methods, we found that nearly all cells in the retina, and scleral chondrocytes, contain basic fibroblast growth factor-2 protein and messenger RNA as well as high-affinity basic fibroblast growth factor receptor protein and messenger RNA. Immunocytochemical localization of basic fibroblast growth factor-2 binding sites (a high resolution alternative to autoradiography), combined with N-glycanase and heparitinase treatment or heparin competition, revealed additional binding sites in specific synaptic layers of the inner plexiform layer and low-affinity binding sites in the choroid and optic fibre layer. Some binding sites in the synaptic layers were found to co-stratify with neurites of dopamine-, vasoactive intestinal polypeptide- or enkephalin-containing amacrine cells, suggesting that basic fibroblast growth factor-2 could modulate synaptic transmission to or from these cells. Form deprivation did not affect the levels of basic fibroblast growth factor receptor-1 messenger RNA in retina/retinal pigment epithelium/choroid (Northern blotting), but it abolished the decrease in amount of extractable basic fibroblast growth factor normally observed in the dark (Western blotting). The results are discussed with respect to previous findings on basic fibroblast growth factor-2 and basic fibroblast growth factor receptor-1 localization in the avian and other vertebrate eyes, and their relevance to form-deprivation myopia. The widespread distribution of basic fibroblast growth factor-2 and its receptor makes it impossible to predict which cells might mediate the action of basic fibroblast growth factor-2 in form-deprivation myopia. However, the alteration in amounts of extractable retinal basic fibroblast growth factor-2 in form-deprived, dark-adapted retinas, in which basic fibroblast growth factor-2 probably serves as a "stop" signal for ocular growth, is consistent with a role for basic fibroblast growth factor-2 in the regulation of ocular growth.
Collapse
Affiliation(s)
- B Rohrer
- Department of Anatomy, University of Calgary, Alberta, Canada
| | | | | |
Collapse
|
29
|
Saxena SP, Fan T, Li M, Israels ED, Israels LG. A novel role for vitamin K1 in a tyrosine phosphorylation cascade during chick embryogenesis. J Clin Invest 1997; 99:602-7. [PMID: 9045861 PMCID: PMC507841 DOI: 10.1172/jci119202] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The development of the embryo is dependent upon a highly coordinated repertoire of cell division, differentiation, and migration. Protein-tyrosine phosphorylation plays a pivotal role in the regulation of these processes. Vitamin K-dependent gamma-carboxylated proteins have been identified as ligands for a unique family (Tyro 3 and 7) of receptor tyrosine kinases (RTKs) with transforming ability. The involvement of vitamin K metabolism and function in two well characterized birth defects, warfarin embryopathy and vitamin K epoxide reductase deficiency, suggests that developmental signals from K-dependent pathways may be required for normal embryogenesis. Using a chick embryogenesis model, we now demonstrate the existence of a vitamin K1-dependent protein-tyrosine phosphorylation cascade involving c-Eyk, a member of the Tyro 12 family, and key intracellular proteins, including focal adhesion kinase (pp125FAK), paxillin, and pp60src. This cascade is sensitive to alteration in levels or metabolism of vitamin K1. These findings provide a major clue as to why, in the mammalian (and human) fetus, the K-dependent proteins are maintained in an undercarboxylated state, even to the point of placing the newborn at hemorrhagic risk. The precise regulation of vitamin K1-dependent regulatory pathways would appear to be critical for orderly embryogenesis.
Collapse
Affiliation(s)
- S P Saxena
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Canada.
| | | | | | | | | |
Collapse
|
30
|
Mammary stem cells in normal development and cancer. Stem Cells 1997. [DOI: 10.1016/b978-012563455-7/50008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
31
|
Yoshioka H, Ohuchi H, Ishimaru Y, Ishikawa T, Nohno T, Saigo K, Noji S. A Drosophila receptor-type tyrosine kinase (DFR1) acts as a fibroblast growth factor receptor in Xenopus embryos. Dev Growth Differ 1996. [DOI: 10.1046/j.1440-169x.1996.t01-5-00005.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Abstract
A novel, low molecular weight, intracellular isoform of FGF receptor-1 (FGFR-1) was identified in embryonic chicken tissues using several antibodies specific for different domains of FGF receptors. This low molecular weight isoform differs from the previously characterized isoforms of FGFR-1 in that it contains little or no carbohydrate. Furthermore, in contrast to the other isoforms of FGFR-1, this novel isoform is located exclusively intracellularly. However, it is capable of binding 125I-FGF-2 and it possesses intrinsic kinase activity. Pulse-chase experiments indicate that this isoform of FGFR-1 is not simply a precursor to glycosylated FGFR-1 since it can be detected long after the appearance of glycosylated FGFR-1 in the cells. These results suggest that the novel FGFR-1 isoform plays a role in regulating FGF activity distinct from cell surface, glycosylated FGFR-1. The possible roles of this FGFR-1 variant in FGF signaling are discussed.
Collapse
Affiliation(s)
- P A Maher
- Department of Cell Biology, Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
33
|
Kunz S, Ziegler U, Kunz B, Sonderegger P. Intracellular signaling is changed after clustering of the neural cell adhesion molecules axonin-1 and NgCAM during neurite fasciculation. J Cell Biol 1996; 135:253-67. [PMID: 8858178 PMCID: PMC2121033 DOI: 10.1083/jcb.135.1.253] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Neural cell adhesion molecules of the immunoglobulin/fibronectin type III family on axons have been implicated in promotion of neurite outgrowth, fasciculation, and the mediation of specific cell adhesion. The present study demonstrates that two of these molecules on dorsal root ganglion neurons are associated with distinct protein kinases, axonin-1 with the src-related nonreceptor tyrosine kinase fyn and NgCAM with a casein kinase II-related activity and a serine/ threonine kinase related to S6 kinase. When neurites grew without contacts involving axonin-1 and NgCAM, strong fyn kinase activity was associated with axonin-1, whereas the NgCAM-associated kinase activities were low. Clustering of axonin-1 with NgCAM induced by the formation of cell-cell contacts correlated with a reduction of the axonin-1-associated fyn activity and an increased phosphorylation of NgCAM by the associated casein kinase II-related activity. Thus, axonin-1 and NgCAM trigger distinctive intracellular signals during in vitro differentiation depending on their state of association.
Collapse
Affiliation(s)
- S Kunz
- Institute of Biochemistry, University of Zurich, Switzerland
| | | | | | | |
Collapse
|
34
|
Song H, Wang Y, Goetinck PF. Fibroblast growth factor 2 can replace ectodermal signaling for feather development. Proc Natl Acad Sci U S A 1996; 93:10246-9. [PMID: 8816784 PMCID: PMC38369 DOI: 10.1073/pnas.93.19.10246] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The initiation and morphogenesis of cutaneous appendages depend on a series of reciprocal signaling events between the epithelium and mesenchyme of the embryonic skin. In the development of feather germs, early dermal signals induce the formation of epidermal placodes that in turn signal the mesoderm to form dermal condensations immediately beneath them. We find a spatially and temporally restricted pattern of transcription for the genes that encode fibroblast growth factor (FGF) 2 and FGF receptor (FGFR) 1 in developing feather germs of the chicken embryo. FGF-2 expression is restricted to the epidermal placodes, whereas FGFR-1 expression is limited to the dermal condensations. Transcription of these genes could not be detected in skins of scaleless (sc/sc) embryos that fail to develop feathers as a result of an ectodermal defect. Treatment of sc/sc skins with FGF-2 results in the formation of feathers at the site of application of the growth factor and the induced feathers express FGFR-1 in their dermal condensations. Thus, we have established FGF-2 as an epidermal signal in early feather germ formation. The observation that FGF-2 can rescue the mutant phenotype of sc/sc embryos suggests that FGF-2 either is, or is downstream from, the signal that the sc/sc mutant ectoderm fails to generate.
Collapse
Affiliation(s)
- H Song
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown 02129, USA
| | | | | |
Collapse
|
35
|
Bateman A, Chothia C. Outline structures for the extracellular domains of the fibroblast growth factor receptors. NATURE STRUCTURAL BIOLOGY 1995; 2:1068-74. [PMID: 8846218 DOI: 10.1038/nsb1295-1068] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Fibroblast growth factor receptors (FGFRs) have three extracellular domains that belong to the immunoglobulin superfamily. We have determined the outline structures for these domains on the basis of their homology to the I set molecule telokin. The outline structures describe the relative positions of residues in each domain; their major secondary structures, and the extent to which residues are accessible to the solvent. They also provide the basis of a coherent description of the change in recognition properties that occur when the IIIb and IIIc exons are switched and of the effects of mutations in FGFRs that cause genetic diseases.
Collapse
Affiliation(s)
- A Bateman
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | |
Collapse
|
36
|
Achen MG, Clauss M, Schnürch H, Risau W. The non-receptor tyrosine kinase Lyn is localised in the developing murine blood-brain barrier. Differentiation 1995; 59:15-24. [PMID: 7589891 DOI: 10.1046/j.1432-0436.1995.5910015.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The blood-brain barrier, formed by brain endothelium, is critical for brain function. The development of the blood-brain barrier involves brain angiogenesis and endothelial cell differentiation, processes which require active signal transduction pathways. The differentiation of brain endothelial cells to the "blood-brain-barrier phenotype" involves cytoskeletal changes which modulate the tightness of the barrier. In order to identify signal transduction proteins involved in blood-brain barrier development, cDNA from bovine and murine brain endothelial cells was used in a polymerase chain reaction for cloning of DNA encoding Src homology 3 domains. Src homology 3 domains are structural domains found in many signal transduction proteins. These domains often mediate interaction of signaling proteins with the cytoskeleton and therefore may play a role in the regulation of the cytoskeletal changes which occur during blood-brain-barrier development. Unexpectedly, all bovine and murine clones analyzed from polymerase chain reactions encoded the Src homology 3 domain of one protein, namely the non-receptor tyrosine kinase, Lyn, which is involved in signal transduction in cells of the hemopoietic system. In situ hybridization analyses confirmed the presence of lyn mRNA in developing blood vessels in embryonic and early post-natal mouse brain, but not in endothelium outside the brain. In bovine brain endothelial cells in primary culture, p53lyn is highly abundant and present in two forms which have different patterns of tyrosine phosphorylation. These data suggest that Lyn may be involved in transduction of growth and differentiation signals required for blood-brain-barrier development.
Collapse
Affiliation(s)
- M G Achen
- Max-Planck-Institut für physiologische und klinische Forschung, W.G. Kerckhoff-Institut, Abteilung molekulare Zellbiologie, Bad Nauheim, Germany
| | | | | | | |
Collapse
|
37
|
Sugi Y, Sasse J, Barron M, Lough J. Developmental expression of fibroblast growth factor receptor-1 (cek-1; flg) during heart development. Dev Dyn 1995; 202:115-25. [PMID: 7734730 DOI: 10.1002/aja.1002020203] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Previous work in this laboratory has indicated that fibroblast growth factor-2 (FGF-2; bFGF) regulates the initial stages of avian heart development in paracrine and autocrine fashion (Parlow et al. [1991] Dev. Biol. 146:139-147; Sugi et al. [1993] Dev. Biol. 157:28-37). Because these findings inferred the presence of a functional receptor for fibroblast growth factor (FGFR), we have immunochemically assessed the appearance of FGFR-1 (cek-1; flg) during development. Using a peptide-generated antibody, Western blots of total embryonic proteins revealed that FGFR-1 was barely detectable at pre-heart stages, followed by sequential increases in relative abundance that peaked at stage 24, followed by a decline at days 7-14. Western blots of proteins from isolated embryonic hearts demonstrated a similar developmental pattern, except that FGFR-1 expression was not decreased at later stages. The presence of FGFR-1 mRNA was verified by reverse transcription/polymerase chain reaction (RT/PCR) amplification. Immunohistochemical examination revealed punctate deposits of FGFR-1 in the precardiac endoderm at stage 6, followed by detection in the endoderm, foregut, and pre-cardiac splanchnic mesoderm at stage 8 and in the newly formed myocardium at the heart tube stage (9/10). By stage 13, FGFR-1 staining was observed only in the myocardium, a pattern which persisted at least until stage 30 (day 7), after which only isolated hearts were examined. After stage 30, staining was diminished in the ventricle, but not in the atrium. Staining of cardiac endothelial cells was not observed at any stage. A functional role for FGFR-1 was indicated by experiments in which anti-FGFR-1, but not pre-absorbed antiserum, retarded proliferation and multilayering of cardiogenic cells in an in vitro model of cardiac morphogenesis.
Collapse
Affiliation(s)
- Y Sugi
- Department of Cellular Biology and Anatomy, Medical College of Wisconsin, Milwaukee 53226, USA
| | | | | | | |
Collapse
|
38
|
Mima T, Ueno H, Fischman DA, Williams LT, Mikawa T. Fibroblast growth factor receptor is required for in vivo cardiac myocyte proliferation at early embryonic stages of heart development. Proc Natl Acad Sci U S A 1995; 92:467-71. [PMID: 7831312 PMCID: PMC42761 DOI: 10.1073/pnas.92.2.467] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In birds and mammals, cardiac myocytes terminate mitotic activity in the neonatal period and regeneration of cardiac muscle does not occur after myocardial injury in adult hearts. Even embryonic myocytes, which actively proliferate in vivo, quickly lose mitotic activity when placed in cell culture. Several growth factors, including fibroblast growth factor (FGF), have been documented in embryonic hearts and some have been shown to influence myocyte terminal differentiation in culture. However, none of these growth factors have been shown to reactivate cell division in postmitotic myocytes nor have their in vivo functions been defined satisfactorily. To clarify the role of FGF signaling in heart growth, we prepared two retroviral vectors capable of suppressing (i) functions of FGF receptors (FGFRs) with a dominant-negative mutant of receptor type 1 (FGFR1) or (ii) the translation of endogenous FGFR1 by transcribing its antisense RNA. Both vectors inhibited myocyte proliferation and/or survival during the first week of chicken embryonic development but had much less effect after the second week. No apparent alteration of myocyte growth was observed after overexpression of full-length FGFR1. These results suggest that receptor-coupled FGF signaling regulates cardiac myocyte growth during tubular stages of cardiogenesis but that myocyte growth becomes FGF-independent after the second week of embryogenesis.
Collapse
Affiliation(s)
- T Mima
- Department of Cell Biology and Anatomy, Cornell University Medical College, New York, NY 10021
| | | | | | | | | |
Collapse
|
39
|
Abstract
Fibroblast growth factors (FGF) are expressed at high levels in the central nervous system (CNS), however their function in the CNS is not well understood. The immortalized neuronal cell line (BK1), derived from a transgenic mouse central nervous system tumor, expresses high levels of FGF receptor 1 (FGFR1) and demonstrates both morphologic and biochemical changes when treated with basic FGF (FGF-2). We have derived subclones of BK1 cells with varying degrees of FGF responsiveness by transfecting either a wild type (FRW) or a truncated (FRX) form of FGFR1. Cells expressing high levels of FGFR1 rapidly and uniformly respond to FGF, while cells expressing FRX fail to respond to FGF, either morphologically or by the expression of molecular markers. These BK1 subclones will prove useful to study FGFR mediated signal transduction and FGFR responsive genes in a CNS derived cell. These studies also demonstrate that a dominant negative FGF receptor can be used as a tool to elucidate the function of FGF in the central nervous system.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Brain Neoplasms/pathology
- Cross-Linking Reagents/metabolism
- DNA Probes
- Electrophoresis, Polyacrylamide Gel
- Fibroblast Growth Factor 2/metabolism
- Fibroblast Growth Factor 2/pharmacology
- Gene Expression
- Genetic Markers
- Genetic Vectors
- Mice
- Mice, Transgenic
- Neurons/cytology
- Neurons/metabolism
- Receptor Protein-Tyrosine Kinases
- Receptor, Fibroblast Growth Factor, Type 1
- Receptors, Fibroblast Growth Factor/biosynthesis
- Receptors, Fibroblast Growth Factor/chemistry
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/metabolism
- Signal Transduction
- Transfection
- Tumor Cells, Cultured/cytology
- Tumor Cells, Cultured/metabolism
Collapse
Affiliation(s)
- N Benvenisty
- Department of Genetics, Hebrew University of Jerusalem, Israel
| | | |
Collapse
|
40
|
Muenke M, Schell U, Hehr A, Robin NH, Losken HW, Schinzel A, Pulleyn LJ, Rutland P, Reardon W, Malcolm S. A common mutation in the fibroblast growth factor receptor 1 gene in Pfeiffer syndrome. Nat Genet 1994; 8:269-74. [PMID: 7874169 DOI: 10.1038/ng1194-269] [Citation(s) in RCA: 412] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Pfeiffer syndrome (PS) is one of the classic autosomal dominant craniosynostosis syndromes with craniofacial anomalies and characteristic broad thumbs and big toes. We have previously mapped one of the genes for PS to the centromeric region of chromosome 8 by linkage analysis. Here we present evidence that mutations in the fibroblast growth factor receptor-1 (FGFR1) gene, which maps to 8p, cause one form of familial Pfeiffer syndrome. A C to G transversion in exon 5, predicting a proline to arginine substitution in the putative extracellular domain, was identified in all affected members of five unrelated PS families but not in any unaffected individuals. FGFR1 therefore becomes the third fibroblast growth factor receptor to be associated with an autosomal dominant skeletal disorder.
Collapse
Affiliation(s)
- M Muenke
- Children's Hospital of Philadelphia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Quarto N, Amalric F. Heparan sulfate proteoglycans as transducers of FGF-2 signalling. J Cell Sci 1994; 107 ( Pt 11):3201-12. [PMID: 7699017 DOI: 10.1242/jcs.107.11.3201] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fibroblast growth factor-2 (FGF-2) low-affinity binding sites, heparan sulfate proteoglycans (HSPGs), function as modulators of FGF-2 activity. It is noteworthy that HSPG binding protects FGF-2 from denaturation and proteolytic degradation, provides a matrix-bound or cell-surface reservoir of this factor for the cells and is required for the activation of FGF high-affinity receptors. In our study we investigated the biological meaning of FGF-2 internalization mediated through its low-affinity binding sites, HSPGs. Using as model system L6 myoblasts lacking endogenous FGF receptors (FGFRs), we demonstrated that these cells internalize FGF-2 efficiently through an HSPG-mediated pathway. FGF-2 internalization occurring through HSPGs was paralleled by an increase in the activity of urokinase plasminogen activator (u-PA). The u-PA-inducing activity of FGF-2 was strictly correlated to its internalization, as chlorate treatment, which causes a strong inhibition of FGF-2 internalization, abrogated the u-PA-inducing activity of FGF-2. In addition, expression of functional FGF high-affinity receptors (FGFR-1) did not enhance u-PA in L6 myoblasts upon FGF-2 stimulation. According to our results we propose that FGF-2 internalization mediated through HSPGs may transduce FGF-2 signalling such as u-PA-activity stimulation. Thus, HSPGs may act as direct transducers of FGF signalling and indeed, different FGF-signalling pathways must exist.
Collapse
Affiliation(s)
- N Quarto
- Laboratoire de Biologie Moléculaire Eucaryote, CNRS, Toulouse, France
| | | |
Collapse
|
42
|
Hanneken A, Ying W, Ling N, Baird A. Identification of soluble forms of the fibroblast growth factor receptor in blood. Proc Natl Acad Sci U S A 1994; 91:9170-4. [PMID: 8090787 PMCID: PMC44769 DOI: 10.1073/pnas.91.19.9170] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have purified three acidic (FGF-1) and basic (FGF-2) fibroblast growth factor binding proteins (FGF-BP1, FGF-BP2, and FGF-BP3) from human plasma and calf serum and demonstrate the presence of these circulating FGF-BPs in blood. Each are truncated forms of the high-affinity FGF receptor (FGFR-1). FGF-BP1 and FGF-BP2 have estimated molecular masses of 70-85 kDa and 55-60 kDa, respectively, and are detected by using 125I-labeled FGF-2 ligand blotting. Immunoblotting with four distinct antibodies to FGFR-1 reveals that FGF-BP1 and FGF-BP2 are immunologically and biochemically related to the extracellular domain of FGFR-1. Reverse-phase HPLC chromatography resolves FGF-BP2 into two proteins with estimated molecular masses of 55 kDa and 60 kDa. Protein sequencing of the amino terminus of FGF-BP2 and FGF-BP3 reveals identity with the extracellular domain of the two-IgG-loop form of human FGFR-1. The FGF-BPs do not require heparin to bind FGF-2 on affinity columns, but heparin does enhance their recovery from blood. These FGF-BPs may play an important physiological role in regulating the biological activity of FGF and the other members of the FGF family of growth factors.
Collapse
Affiliation(s)
- A Hanneken
- Department of Molecular and Cellular Growth Biology, Whittier Institute for Diabetes and Endocrinology, La Jolla, CA 92037
| | | | | | | |
Collapse
|
43
|
Pantoliano MW, Horlick RA, Springer BA, Van Dyk DE, Tobery T, Wetmore DR, Lear JD, Nahapetian AT, Bradley JD, Sisk WP. Multivalent ligand-receptor binding interactions in the fibroblast growth factor system produce a cooperative growth factor and heparin mechanism for receptor dimerization. Biochemistry 1994; 33:10229-48. [PMID: 7520751 DOI: 10.1021/bi00200a003] [Citation(s) in RCA: 204] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The binding interactions for the three primary reactants of the fibroblast growth factor (FGF) system, basic FGF (bFGF), an FGF receptor, FGFR1, and the cofactor heparin/heparan sulfate (HS), were explored by isothermal titrating calorimetry, ultracentrifugation, and molecular modeling. The binding reactions were first dissected into three binary reactions: (1) FGFR1 + bFGF<==>FGFR1/bFGF, K1 = 41 (+/- 12) nM; (2) FGFR1 + HS<==>FGFR1/HS, K2 = 104 (+/- 17) microM; and (3) bFGF + HS<==>bFGF/HS, K3 = 470 (+/- 20) nM, where HS = low MW heparin, approximately 3 kDa. The first, binding of bFGF to FGFR1 in the absence of HS, was found to be a simple binary binding reaction that is enthalpy dominated and characterized by a single equilibrium constant, K1. The conditional reactions of bFGF and FGFR1 in the presence of heparin were then examined under conditions that saturate only the bFGF heparin site (1.5 equiv of HS/bFGF) or saturate the HS binding sites of both bFGF and FGFR1 (1.0 mM HS). Both 3-and 5-kDa low MW heparins increased the affinity for FGFR1 binding to bFGF by approximately 10-fold (Kd = 4.9 +/- 2.0 nM), relative to the reaction with no HS. In addition, HS, at a minimum of 1.5 equiv/bFGF, induced a second FGFR1 molecule to bind to another lower affinity secondary site on bFGF (K4 = 1.9 +/- 0.7 microM) in an entropy-dominated reaction to yield a quaternary complex containing two FGFR1, one bFGF, and at least one HS. Molecular weight estimates by analytical ultracentrifugation of such fully bound complexes were consistent with this proposed composition. To understand these binding reactions in terms of structural components of FGFR1, a three-dimensional model of FGFR1 was constructed using segment match modeling. Electrostatic potential calculations confirmed that an elongated cluster, approximately 15 x 35 A, of nine cationic residues focused positive potential (+2kBT) to the solvent-exposed beta-sheet A, B, E, C' surface of the D(II) domain model, strongly implicating this locus as the HS binding region of FGFR1. Structural models for HS binding to FGFR1, and HS binding to bFGF, were built individually and then assembled to juxtapose adjacent binding sites for receptor and HS on bFGF, against matching proposed growth factor and HS binding sites on FGFR1. The calorimetric binding results and the molecular modeling exercises suggest that bFGF and HS participate in a concerted bridge mechanism for the dimerization of FGFR1 in vitro and presumably for mitogenic signal transduction in vivo.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- M W Pantoliano
- Crystallography and Biophysical Chemistry Group, Du Pont Merck Pharmaceutical Company, Wilmington, Delaware 19880
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Suzui H, Hoshimaru M, Takahashi JA, Kikuchi H, Fukumoto M, Ohta M, Itoh N, Hatanaka M. Immunohistochemical reactions for fibroblast growth factor receptor in arteries of patients with moyamoya disease. Neurosurgery 1994; 35:20-4; discussion 24-5. [PMID: 7936147 DOI: 10.1227/00006123-199407000-00003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The cause of moyamoya disease remains unknown, and pathophysiological mechanisms remain uncertain. Basic fibroblast growth factor (FGF) is a pluripotent polypeptide that has been shown to play roles in angiogenesis, tumorigenesis and many other processes. In a previous study, we demonstrated immunohistochemically that the amount of basic FGF was increased above normal in the superficial temporal artery (STA) of patients with moyamoya disease. To clarify the function of basic FGF in moyamoya disease, we have performed an immunohistochemical study of the STA using a polyclonal antihuman FGF receptor antibody and also have tested immunohistochemical reactions for basic FGF. Twelve surgical specimens of the STA from patients with moyamoya disease were studied. Twelve specimens of the STA from skin flaps of patients with other neurological diseases were also investigated for comparison. The sections of the STA from patients with moyamoya disease showed dense and strong FGF receptor and basic FGF immunoreactivity in endothelial cells, in cells scattered in the thickened intima, and in smooth muscle cells in the media. In contrast, the sections of the STA of control patients showed faint basic FGF immunoreactivity. The statistical analysis revealed a significant difference of basic FGF immunoreactivity between moyamoya disease and other neurological diseases (chi 2 = 23; P = 0.0001). Moderately intense FGF receptor immunoreactivity was observed in most control patients. However, the statistical analysis revealed a significant difference of FGF receptor immunoreactivity between moyamoya disease and other neurological diseases (chi 2 = 13.382; P = 0.0012).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- H Suzui
- Department of Neurosurgery, Kyoto University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Immunohistochemical Reactions for Fibroblast Growth Factor Receptor in Arteries of Patients with Moyamoya Disease. Neurosurgery 1994. [DOI: 10.1097/00006123-199407000-00003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
46
|
Marcelle C, Eichmann A, Halevy O, Bréant C, Le Douarin NM. Distinct developmental expression of a new avian fibroblast growth factor receptor. Development 1994; 120:683-94. [PMID: 8162862 DOI: 10.1242/dev.120.3.683] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have cloned a new member of the fibroblast growth factor receptor family from avian embryonic RNA. The FREK (for fibroblast growth factor receptor-like embryonic kinase) primary transcript can be alternatively spliced in a tissue- and stage-specific manner to give rise to molecules containing either two or three Ig-like domains. During elongating primitive streak stages, FREK is expressed in the rostral and lateral epiblast and in the Hensen's node. From 2.5 days of development (E 2.5) on, it is expressed in various ectoderm- and mesoderm-derived structures. Most striking is FREK expression in the skeletal muscle lineage. It is highly expressed in the early myotome and, at later stages, in all skeletal muscles of the embryo. From E9 to hatching, FREK expression in the muscles decreases dramatically but is maintained in satellite cells of adult muscles. FREK transcript is elevated upon addition of basic fibroblast growth factor to serum-starved satellite cells. From this study, we conclude: (1) that the structure and pattern of expression of FREK set it apart from other cloned fibroblast growth factor receptors (FGFR) and suggest that FREK is a new member of that family; (2) that FREK may play multiple roles in early avian development, including a specialized role in the early differentiation of skeletal muscle.
Collapse
Affiliation(s)
- C Marcelle
- Institut d'Embryologie Cellulaire et Moléculaire, Collège de France, CNRS, Nogent Sur Marne
| | | | | | | | | |
Collapse
|
47
|
Abstract
Many oncogenes encode protein tyrosine kinases (PTKs). Oncogenic mutations of these genes invariably result in constitutive activation of these PTKs. Autophosphorylation of the PTKs and tyrosine phosphorylation of their cellular substrates are essential events for transmission of the mitogenic signal into cells. The recent discovery of the characteristic amino acid sequences, of the src homology domains 2 and 3 (SH2 and SH3), and extensive studies on proteins containing the SH2 and SH3 domains have revealed that protein tyrosine-phosphorylation of PTKs provides phosphotyrosine sites for SH2 binding and allows extracellular signals to be relayed into the nucleus through a chain of protein-protein interactions mediated by the SH2 and SH3 domains. Studies on oncogenes, PTKs and SH2/SH3-containing proteins have made a tremendous contribution to our understanding of the mechanisms for the control of cell growth, oncogenesis, and signal transduction. This review is intended to provide an outline of the most recent progress in the study of signal transduction by PTKs. Copyright 1994 S. Karger AG, Basel
Collapse
Affiliation(s)
- D. Liu
- Department of Microbiology, The Mount Sinai School of Medicine, New York, N.Y., USA
| | | |
Collapse
|
48
|
Bugra K, Pollard H, Charton G, Moreau J, Ben-Ari Y, Khrestchatisky M. aFGF, bFGF and flg mRNAs show distinct patterns of induction in the hippocampus following kainate-induced seizures. Eur J Neurosci 1994; 6:58-66. [PMID: 7510570 DOI: 10.1111/j.1460-9568.1994.tb00247.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We report that kainic acid-induced seizures lead to marked increases in mRNAs encoding basic and acidic fibroblast growth factors (bFGF and aFGF, respectively) and flg, one of their receptors, in the rat hippocampus. Anticonvulsant pretreatment inhibits the up-regulation of these mRNAs. The observed increase in flg mRNA levels involves the pyramidal cells of all hippocampal subfields and the granular cells of the dentate gyrus. The increased expression of aFGF and bFGF mRNAs is limited to neuron populations that are resistant to seizure-induced injury, the granular cells of dentate gyrus and pyramidal cells of CA1 region, respectively. The results suggest that the increase in the FGFs and flg may play pivotal roles in neuron survival and in long-term changes occurring in the hippocampus following seizure activity.
Collapse
Affiliation(s)
- K Bugra
- Unité INSERM 29, Paris, France
| | | | | | | | | | | |
Collapse
|
49
|
Maciag T, Zhan X, Garfinkel S, Friedman S, Prudovsky I, Jackson A, Wessendorf J, Hu X, Gamble S, Shi J. Novel mechanisms of fibroblast growth factor 1 function. RECENT PROGRESS IN HORMONE RESEARCH 1994; 49:105-23. [PMID: 7511824 DOI: 10.1016/b978-0-12-571149-4.50009-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- T Maciag
- Department of Molecular Biology, Holland Laboratory, American Red Cross, Rockville, Maryland 20855
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Chaudhuri MM, Moscatelli D, Basilico C. Involvement of the conserved acidic amino acid domain of FGF receptor 1 in ligand-receptor interaction. J Cell Physiol 1993; 157:209-16. [PMID: 8227155 DOI: 10.1002/jcp.1041570202] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The fibroblast growth factor receptor 1 (flg) contains eight acidic amino acids between the first and second immunoglobulin domain. This report examines the role of the acidic domain in the interaction of the flg receptor with its ligands. We observed a marked inhibition of binding of bFGF to the receptor when the acidic domain was completely deleted, but mutants with two and four amino acids deleted (flg delta A2 and flg delta A4, respectively) still bound the ligand. After addition of a bifunctional cross-linking reagent, cross-linked complexes (between bFGF and receptor) with the expected size were observed in cells expressing mutants lacking two or four acidic residues, but not in cells expressing mutants lacking six or eight acidic residues. Immunoprecipitation with anti-flg antibody followed by electrophoresis produced a band of 90 Kd in tunicamycin-treated cells expressing the mutant as well as the wild-type receptors, indicating that the inhibition of binding was not due to defective expression of the protein. The ability of flg delta A8 to mediate a mitogenic response to FGFs was also greatly reduced when this mutated receptor was expressed in receptor-negative cells. The effect of replacing the acidic amino acids with lysine residues was also studied. Binding of bFGF to cells transfected with a plasmid encoding a mutated protein with four amino acid substitutions was totally inhibited, but an eight amino acid substitution did not alter ligand binding to the receptor. In this case the mutation with four amino acids substitution caused a drastic impairment of protein expression. Thus the acidic domain of the FGFR-1 plays an essential role in receptor function, either because it is important for a stable protein configuration or for ligand-receptor interaction.
Collapse
Affiliation(s)
- M M Chaudhuri
- Department of Microbiology, New York University Medical Center, New York 10016
| | | | | |
Collapse
|