1
|
Jiang Y, Adhikari D, Li C, Zhou X. Spatiotemporal regulation of maternal mRNAs during vertebrate oocyte meiotic maturation. Biol Rev Camb Philos Soc 2023; 98:900-930. [PMID: 36718948 DOI: 10.1111/brv.12937] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 02/01/2023]
Abstract
Vertebrate oocytes face a particular challenge concerning the regulation of gene expression during meiotic maturation. Global transcription becomes quiescent in fully grown oocytes, remains halted throughout maturation and fertilization, and only resumes upon embryonic genome activation. Hence, the oocyte meiotic maturation process is largely regulated by protein synthesis from pre-existing maternal messenger RNAs (mRNAs) that are transcribed and stored during oocyte growth. Rapidly developing genome-wide techniques have greatly expanded our insights into the global translation changes and possible regulatory mechanisms during oocyte maturation. The storage, translation, and processing of maternal mRNAs are thought to be regulated by factors interacting with elements in the mRNA molecules. Additionally, posttranscriptional modifications of mRNAs, such as methylation and uridylation, have recently been demonstrated to play crucial roles in maternal mRNA destabilization. However, a comprehensive understanding of the machineries that regulate maternal mRNA fate during oocyte maturation is still lacking. In particular, how the transcripts of important cell cycle components are stabilized, recruited at the appropriate time for translation, and eliminated to modulate oocyte meiotic progression remains unclear. A better understanding of these mechanisms will provide invaluable insights for the preconditions of developmental competence acquisition, with important implications for the treatment of infertility. This review discusses how the storage, localization, translation, and processing of oocyte mRNAs are regulated, and how these contribute to oocyte maturation progression.
Collapse
Affiliation(s)
- Yanwen Jiang
- College of Animal Science, Jilin University, 5333 Xian Road, Changchun, 130062, China
| | - Deepak Adhikari
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, 19 Innovation Walk, Melbourne, VIC, 3800, Australia
| | - Chunjin Li
- College of Animal Science, Jilin University, 5333 Xian Road, Changchun, 130062, China
| | - Xu Zhou
- College of Animal Science, Jilin University, 5333 Xian Road, Changchun, 130062, China
| |
Collapse
|
2
|
Hu KL, Zhao H, Chang HM, Yu Y, Qiao J. Kisspeptin/Kisspeptin Receptor System in the Ovary. Front Endocrinol (Lausanne) 2017; 8:365. [PMID: 29354093 PMCID: PMC5758547 DOI: 10.3389/fendo.2017.00365] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/13/2017] [Indexed: 12/26/2022] Open
Abstract
Kisspeptins are a family of neuropeptides that are critical for initiating puberty and regulating ovulation in sexually mature females via the central control of the hypothalamic-pituitary-gonadal axis. Recent studies have shown that kisspeptin and its receptor kisspeptin receptor (KISS1R) are expressed in the mammalian ovary. Convincing evidence indicates that kisspeptins can activate a wide variety of signals via its binding to KISS1R. Experimental data gathered recently suggest a putative role of kisspeptin signaling in the direct control of ovarian function, including follicular development, oocyte maturation, steroidogenesis, and ovulation. Dysregulation or naturally occurring mutations of the kisspeptin/KISS1R system may negatively affect the ovarian function, leading to reproductive pathology or female infertility. A comprehensive understanding of the expression, actions, and underlying molecular mechanisms of this system in the human ovary is essential for novel approaches to therapeutic and diagnostic interventions in reproductive diseases and infertility.
Collapse
Affiliation(s)
- Kai-Lun Hu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Hongcui Zhao
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- *Correspondence: Hongcui Zhao, ; Yang Yu,
| | - Hsun-Ming Chang
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yang Yu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- *Correspondence: Hongcui Zhao, ; Yang Yu,
| | - Jie Qiao
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
3
|
James W. Towards Gene-Inhibition Therapy: A Review of Progress and Prospects in the Field of Antiviral Antisense Nucleic Acids and Ribozymes. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/095632029100200401] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Antisense RNA and its derivatives may provide the basis for highly selective gene inhibition therapies of virus infections. In this review, I concentrate on advances made in the study of antisense RNA and ribozymes during the last five years and their implications for the development of such therapies. It appears that antisense RNAs synthesized at realistic levels within the cell can be much more effective inhibitors than originally supposed. Looking at those experiments that enable comparisons to be made, it seems that inhibitory antisense RNAs are not those that are complementary to particular sites within mRNAs but those that are able to make stable duplexes with their targets, perhaps by virtue of their secondary structure and length. The inclusion of ribozyme sequences within antisense RNAs confers RNA-cleaving activity upon them in vitro and possibly in cells, thereby offering the possibility of markedly increasing their therapeutic potential. The varieties of natural ribozyme and their adaptation as artificial catalysts are reviewed. The implications of these developments for antiviral therapy are discussed.
Collapse
Affiliation(s)
- W. James
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, U.K
| |
Collapse
|
4
|
Reyes JM, Ross PJ. Cytoplasmic polyadenylation in mammalian oocyte maturation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 7:71-89. [PMID: 26596258 DOI: 10.1002/wrna.1316] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 10/02/2015] [Accepted: 10/07/2015] [Indexed: 12/21/2022]
Abstract
Oocyte developmental competence is the ability of the mature oocyte to be fertilized and subsequently drive early embryo development. Developmental competence is acquired by completion of oocyte maturation, a process that includes nuclear (meiotic) and cytoplasmic (molecular) changes. Given that maturing oocytes are transcriptionally quiescent (as are early embryos), they depend on post-transcriptional regulation of stored transcripts for protein synthesis, which is largely mediated by translational repression and deadenylation of transcripts within the cytoplasm, followed by recruitment of specific transcripts in a spatiotemporal manner for translation during oocyte maturation and early development. Motifs within the 3' untranslated region (UTR) of messenger RNA (mRNA) are thought to mediate repression and downstream activation by their association with binding partners that form dynamic protein complexes that elicit differing effects on translation depending on cell stage and interacting proteins. The cytoplasmic polyadenylation (CP) element, Pumilio binding element, and hexanucleotide polyadenylation signal are among the best understood motifs involved in CP, and translational regulation of stored transcripts as their binding partners have been relatively well-characterized. Knowledge of CP in mammalian oocytes is discussed as well as novel approaches that can be used to enhance our understanding of the functional and contributing features to transcript CP and translational regulation during mammalian oocyte maturation. WIREs RNA 2016, 7:71-89. doi: 10.1002/wrna.1316 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Juan M Reyes
- Department of Animal Science, University of California, Davis, CA, USA
| | - Pablo J Ross
- Department of Animal Science, University of California, Davis, CA, USA
| |
Collapse
|
5
|
Saadeldin IM, Koo OJ, Kang JT, Kwon DK, Park SJ, Kim SJ, Moon JH, Oh HJ, Jang G, Lee BC. Paradoxical effects of kisspeptin: it enhances oocyte in vitro maturation but has an adverse impact on hatched blastocysts during in vitro culture. Reprod Fertil Dev 2012; 24:656-68. [PMID: 22697116 DOI: 10.1071/rd11118] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 07/30/2011] [Indexed: 12/20/2022] Open
Abstract
Kisspeptin (Kp) is best known as a multifunctional peptide with roles in reproduction, the cardiovascular system and cancer. In the present study the expression of kisspeptin hierarchy elements (KISS1, GNRH1 and LHB) and their receptors (KISS1R, GNRHR and LHCGR, respectively) in porcine ovary and in cumulus-oocyte complexes (COCs) were investigated, as were its effects on the in vitro maturation (IVM) of oocytes and their subsequent ability to sustain preimplantation embryo competence after parthenogenetic electrical activation. Kp system elements were expressed and affected IVM of oocytes when maturation medium was supplemented with 10(-6)M Kp. Oocyte maturation, maternal gene expression (MOS, GDF9 and BMP15), blastocyst formation rate, blastocyst hatching and blastocyst total cell count were all significantly increased when oocytes were matured in medium containing Kp compared with the control group (without Kp). A Kp antagonist (p234) at 4×10(-6)M interfered with this hierarchy but did not influence the threshold effect of gonadotrophins on oocyte maturation. FSH was critical and permissive to Kp action on COCs by increasing the relative expression of KISS1R. In contrast, Kp significantly increased apoptosis, the expression of pro-apoptotic gene, BAK1, and suppressed trophoblast outgrowths from hatched blastocysts cultured on feeder cells. The present study provides the first functional evidence of the Kp hierarchy in porcine COCs and its role in enhancing oocyte maturation and subsequent developmental competence in an autocrine-paracrine manner. However, Kp supplementation may have a harmful impact on cultured hatched blastocysts reflecting systemic or local regulation during the critical early period of embryonic development.
Collapse
Affiliation(s)
- Islam M Saadeldin
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 151-742, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Mos in the oocyte: how to use MAPK independently of growth factors and transcription to control meiotic divisions. JOURNAL OF SIGNAL TRANSDUCTION 2010; 2011:350412. [PMID: 21637374 PMCID: PMC3101788 DOI: 10.1155/2011/350412] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 11/01/2010] [Indexed: 01/12/2023]
Abstract
In many cell types, the mitogen-activated protein kinase (MAPK) also named extracellular signal-regulated kinase (ERK) is activated in response to a variety of extracellular growth factor-receptor interactions and leads to the transcriptional activation of immediate early genes, hereby influencing a number of tissue-specific biological activities, as cell proliferation, survival and differentiation. In one specific cell type however, the female germ cell, MAPK does not follow this canonical scheme. In oocytes, MAPK is activated independently of growth factors and tyrosine kinase receptors, acts independently of transcriptional regulation, plays a crucial role in controlling meiotic divisions, and is under the control of a peculiar upstream regulator, the kinase Mos. Mos was originally identified as the transforming gene of Moloney murine sarcoma virus and its cellular homologue was the first proto-oncogene to be molecularly cloned. What could be the specific roles of Mos that render it necessary for meiosis? Which unique functions could explain the evolutionary cost to have selected one gene to only serve for few hours in one very specific cell type? This review discusses the original features of MAPK activation by Mos and the roles of this module in oocytes.
Collapse
|
7
|
Zhang DX, Cui XS, Kim NH. Involvement of polyadenylation status on maternal gene expression during in vitro maturation of porcine oocytes. Mol Reprod Dev 2009; 76:881-9. [PMID: 19479986 DOI: 10.1002/mrd.21056] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
During mammalian oocyte maturation, protein synthesis is mainly controlled through cytoplasmic polyadenylation of stored maternal mRNAs. In this study, the role of polyadenylation modification of maternal transcripts in pig oocytes was investigated by adding cordycepin (3'-dA), a potent polyadenylation inhibitor, to the culture medium of porcine oocytes maturing in vitro. 3'-dA significantly prevented cumulus expansion regardless of the concentration used, and inhibited pig oocyte maturation in a dose-dependent manner. Further, 3'-dA 1 microg/ml-treated MII oocytes experienced significantly lower rates of cleavage (29%) and blastocyst formation (15.35%) compared to control MII oocytes (58.6% and 35.3%, respectively). Western blotting revealed that the activity of mitogen-activated protein kinase (MAPK) and p34(cdc2) was significantly decreased in oocytes and cumulus cells treated with 3'-dA at a concentration of 1 microg/ml or greater. To further explore the underlying molecular mechanisms, expression patterns and polyadenylation states of four important genes, C-mos, cyclin B, GDF9 and BMP15, were studied as representative maternal transcripts by real-time PCR and the PAT assay. 3'-dA at concentrations above 1 microg/ml significantly prevented polyadenylation and caused aberrant expression of C-mos and GDF9 during oocyte maturation. These results suggest that polyadenylation inhibitor blocked pig oocyte maturation in vitro by one or more of the following actions: (1) inactivation of MAPK and MPF in oocytes, especially at the late stages (MI and MII); (2) prevention of cumulus cell expansion through inactivation of cellular MAPK; and (3) inhibition of the maternal mRNA polyadenylation process, which in reverse, disrupted the maternal mRNA patterns in pig oocytes' maturation in vitro.
Collapse
Affiliation(s)
- Ding-Xiao Zhang
- Department of Animal Sciences, Chungbuk National University, Cheongju, Chungbuk 361-763 Korea, Cheongju, 361-763 South Korea
| | | | | |
Collapse
|
8
|
Jones KT. Meiosis in oocytes: predisposition to aneuploidy and its increased incidence with age. Hum Reprod Update 2007; 14:143-58. [PMID: 18084010 DOI: 10.1093/humupd/dmm043] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mammalian oocytes begin meiosis in the fetal ovary, but only complete it when fertilized in the adult reproductive tract. This review examines the cell biology of this protracted process: from entry of primordial germ cells into meiosis to conception. The defining feature of meiosis is two consecutive cell divisions (meiosis I and II) and two cell cycle arrests: at the germinal vesicle (GV), dictyate stage of prophase I and at metaphase II. These arrests are spanned by three key events, the focus of this review: (i) passage from mitosis to GV arrest during fetal life, regulated by retinoic acid; (ii) passage through meiosis I and (iii) completion of meiosis II following fertilization, both meiotic divisions being regulated by cyclin-dependent kinase (CDK1) activity. Meiosis I in human oocytes is associated with an age-related high rate of chromosomal mis-segregation, such as trisomy 21 (Down's syndrome), resulting in aneuploid conceptuses. Although aneuploidy is likely to be multifactorial, oocytes from older women may be predisposed to be becoming aneuploid as a consequence of an age-long decline in the cohesive ties holding chromosomes together. Such loss goes undetected by the oocyte during meiosis I either because its ability to respond and block division also deteriorates with age, or as a consequence of being inherently unable to respond to the types of segregation defects induced by cohesion loss.
Collapse
Affiliation(s)
- Keith T Jones
- Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle, Framlington Place, Newcastle, NE2 4HH, UK.
| |
Collapse
|
9
|
Abstract
CPEB is a sequence-specific RNA-binding protein that regulates polyadenylation-induced translation. In Cpeb knockout mice, meiotic progression is disrupted at pachytene due to inhibited translation of synaptonemal complex protein mRNAs. To assess the function of CPEB after pachytene, we used the zona pellucida 3 (Zp3) promoter to generate transgenic mice expressing siRNA that induce the destruction of Cpeb mRNA. Oocytes from these animals do not develop normally; they undergo parthenogenetic cell division in the ovary, exhibit abnormal polar bodies, are detached from the cumulus granulosa cell layer, and display spindle and nuclear anomalies. In addition, many follicles contain apoptotic granulosa cells. CPEB binds several oocyte mRNAs, including Smad1, Smad5, spindlin, Bub1b, Mos, H1foo, Obox1, Dnmt1o, TiParp, Trim61 and Gdf9, a well described oocyte-expressed growth factor that is necessary for follicle development. In Cpeb knockdown oocytes, Gdf9 RNA has a shortened poly(A) tail and reduced expression. These data indicate that CPEB controls the expression of Gdf9 mRNA, which in turn is necessary for oocyte-follicle development. Finally, several phenotypes, i.e. progressive oocyte loss and infertility, elicited by the knockdown of CPEB in oocytes resemble those of the human premature ovarian failure syndrome.
Collapse
Affiliation(s)
- Waldemar J Racki
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
10
|
Abstract
Mammalian eggs arrest at metaphase of the second meiotic division (MetII). Sperm break this arrest by inducing a series of Ca2+spikes that last for several hours. During this time cell cycle resumption is induced, sister chromatids undergo anaphase and the second polar body is extruded. This is followed by decondensation of the chromatin and the formation of pronuclei. Ca2+spiking is both the necessary and solely sufficient sperm signal to induce full egg activation. How MetII arrest is established, how the Ca2+spiking is induced and how the signal is transduced into cell cycle resumption are the topics of this review. Although the roles of most components of the signal transduction pathway remain to be fully investigated, here I present a model in which a sperm-specific phospholipase C (PLCζ) generates Ca2+spikes to activate calmodulin-dependent protein kinase II and so switch on the Anaphase-Promoting Complex/Cyclosome (APC/C). APC/C activation leads to securin and cyclin B1 degradation and in so doing allows sister chromatids to be segregated and to decondense.
Collapse
Affiliation(s)
- Keith T Jones
- Institute for Cell and Molecular Biosciences, The Medical School, Framlington Place, University of Newcastle, Newcastle, NE2 4HH, UK.
| |
Collapse
|
11
|
Sugiura K, Naito K, Endo T, Tojo H. Study of germinal vesicle requirement for the normal kinetics of maturation/M-phase-promoting factor activity during porcine oocyte maturation. Biol Reprod 2005; 74:593-600. [PMID: 16319287 DOI: 10.1095/biolreprod.105.046375] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Mammalian immature oocytes contain large nuclei referred to as germinal vesicles (GVs). The translocation of maturation/M-phase promoting factor (MPF) into GVs just before the activation of MPF has been reported in several species. To examine whether the GV is required for MPF activation in mammalian oocytes, porcine immature oocytes were enucleated and their MPF activity and CCNB (also known as cyclin B) levels were investigated. The activation of MPF at the start of maturation was detected at normal levels in enucleated oocytes, whereas reactivation to induce the second meiosis was not observed. Although protein synthesis was found to be normal both qualitatively and quantitatively, even in the absence of the nucleus, CCNB1 did not sufficiently accumulate in the enucleated oocytes. The defects in the enucleated oocytes were reversed by the injection of GV material into the enucleated oocytes. Furthermore, the inhibition of CCNB1 degradation revealed drastic accumulation of CCNB1, indicating active synthesis of CCNB1 in enucleated oocytes. The mitogen-activated protein kinase cascade remained unaffected by enucleation. These results indicate that GV is not required for the activation of MPF during the first meiosis, but that it is required for the second meiosis because of its promotion of CCNB1 accumulation.
Collapse
Affiliation(s)
- Koji Sugiura
- Department of Animal Resource Sciences, Graduate School of Agricultural Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
12
|
Takakura I, Naito K, Iwamori N, Yamashita M, Kume S, Tojo H. Inhibition of mitogen activated protein kinase activity induces parthenogenetic activation and increases cyclin B accumulation during porcine oocyte maturation. J Reprod Dev 2005; 51:617-26. [PMID: 16034193 DOI: 10.1262/jrd.17034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The inhibition of mitogen activated protein kinase (MAPK) activation during porcine oocyte maturation leads to decreased maturation promoting factor (MPF) activity and to the induction of parthenogenetic activation. In the present study, in order to analyze the mechanism underlying the suppression of MPF activity in MAPK-inhibited porcine oocytes, we injected mRNA of SASA-MEK, a dominant negative MAPK kinase, or antisense RNA of c-mos, a MAPK kinase kinase, into immature porcine oocyte cytoplasm. The injection of SASA-MEK mRNA or c-mos antisense RNA inhibited the MAPK activity partially or completely, respectively, decreased the MPF activity slightly or significantly, respectively, and induced parthenogenetic activation in 17.1% or 96.6% of mature oocytes, respectively, although no parthenogenetic activation was observed in the control oocytes. Immunoblotting experiments revealed that cyclin B accumulation in these MAPK-suppressed porcine oocytes was increased significantly after 50 h of culture and that a considerable amount of MPF was converted into inactive pre-MPF by hyperphosphorylation. These results indicate that the inhibition of MAPK activity in porcine oocytes did not promote cyclin B degradation but rather suppressed it; also the decrease in MPF activity in MAPK-suppressed porcine oocytes correlated with the conversion of active MPF into inactive pre-MPF.
Collapse
Affiliation(s)
- Ikuko Takakura
- Department of Applied Genetics, Graduate School of Agriculture and Life Science University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Hahn KL, Johnson J, Beres BJ, Howard S, Wilson-Rawls J. Lunatic fringe null female mice are infertile due to defects in meiotic maturation. Development 2005; 132:817-28. [PMID: 15659488 DOI: 10.1242/dev.01601] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have demonstrated that Notch genes are expressed in developing mammalian ovarian follicles. Lunatic fringe is an important regulator of Notch signaling. In this study, data are presented that demonstrate that radical fringe and lunatic fringe are expressed in the granulosa cells of developing follicles. Lunatic fringe null female mice were found to be infertile. Histological analysis of the lunatic fringe-deficient ovary demonstrated aberrant folliculogenesis. Furthermore, oocytes from these mutants did not complete meiotic maturation. This is a novel observation because this is the first report describing a meiotic defect that results from mutations in genes that are expressed in the somatic granulosa cells and not the oocytes. This represents a new role for the Notch signaling pathway and lunatic fringe in mammalian folliculogenesis.
Collapse
Affiliation(s)
- Katherine L Hahn
- Molecular and Cellular Graduate Program, Arizona State University, Tempe, AZ 85284-4501, USA
| | | | | | | | | |
Collapse
|
14
|
Kanzler B, Haas-Assenbaum A, Haas I, Morawiec L, Huber E, Boehm T. Morpholino oligonucleotide-triggered knockdown reveals a role for maternal E-cadherin during early mouse development. Mech Dev 2004; 120:1423-32. [PMID: 14654215 DOI: 10.1016/j.mod.2003.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report that gene silencing via intracytoplasmic microinjections of morpholino-modified antisense oligonucleotides is an effective and reproducible method to study both maternal and zygotic gene functions during early and late stages of mouse preimplantation development. The zygotic expression of the beta-geo transgene in the ROSA26 mouse strain could be inhibited until at least the early blastula stages. Thus morpholino-triggered gene inactivation appears to be a useful method to study the functional role of genes in preimplantation development. Using this approach, we have investigated a potential role of maternal expression of Cdh1, the gene encoding the cell-adhesion molecule E-cadherin. Inhibition of translation of maternal E-cadherin mRNA causes a developmental arrest at the two-cell stage. BrUTP incorporation assays indicated that this developmental defect cannot be explained by a general failure in transcriptional activity. This defect is reversible since E-cadherin mRNA can rescue the affected embryos, suggesting that a functional adhesion complex, present at the junction between blastomeres, is a prerequisite for the normal development of the mouse preimplantation embryo. Our study thus reveals a previously unanticipated role of maternal E-cadherin during early stages of mouse development.
Collapse
Affiliation(s)
- Benoît Kanzler
- Max-Planck Institute of Immunobiology, Stübeweg 51, D-79108 Freiburg, Germany.
| | | | | | | | | | | |
Collapse
|
15
|
Zilz A, Cooper GM. A binding site for germ cell nuclear factor within c-mos regulatory sequences. Mol Reprod Dev 2004; 67:55-64. [PMID: 14648874 DOI: 10.1002/mrd.20006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The proto-oncogene c-mos is specifically expressed in male and female germ cells. Previous studies have shown that the orphan nuclear receptor chicken ovalbumin upstream promoter transcription factor (COUP-TF) contributes to the repression of c-mos in somatic cells by binding to an inverted hexamer repeat within the c-mos regulatory region. In the present study, we demonstrate that another nuclear receptor superfamily member, germ cell nuclear factor (GCNF), binds to a sequence overlapping the c-mos COUP-TF binding site. Electrophoretic mobility shift assays with recombinant GCNF and both wild-type and mutant c-mos oligonucleotides demonstrated the binding of GCNF to an extended half site, CCAAGTTCA, which overlaps the first hexamer of the COUP-TF binding site. Transient transfection assays in NIH 3T3 cells further demonstrated that GCNF fused to a VP16 activation domain stimulated transcription from reporter constructs containing the c-mos GCNF binding site. Since GCNF is expressed in male and female germ cells at the same stages of development at which c-mos is transcribed, these results suggest that GCNF may serve as a regulator of c-mos transcription. Mol. Reprod. Dev. 67: 55-64, 2004.
Collapse
Affiliation(s)
- Alexandra Zilz
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | | |
Collapse
|
16
|
Fan HY, Sun QY. Involvement of mitogen-activated protein kinase cascade during oocyte maturation and fertilization in mammals. Biol Reprod 2003; 70:535-47. [PMID: 14613897 DOI: 10.1095/biolreprod.103.022830] [Citation(s) in RCA: 229] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) is a family of Ser/Thr protein kinases that are widely distributed in eukaryotic cells. Studies in the last decade revealed that MAPK cascade plays pivotal roles in regulating the meiotic cell cycle progression of oocytes. In mammalian species, activation of MAPK in cumulus cells is necessary for gonadotropin-induced meiotic resumption of oocytes, while MAPK activation is not required for spontaneous meiotic resumption. After germinal vesicle breakdown (GVBD), MAPK is involved in the regulation of microtubule organization and meiotic spindle assembly. The activation of this kinase is essential for the maintenance of metaphase II arrest, while its inactivation is a prerequisite for pronuclear formation after fertilization or parthenogenetic activation. MAPK cascade interacts extensively with other protein kinases such as maturation-promoting factor, protein kinase A, protein kinase C, and calmodulin-dependent protein kinase II, as well as with protein phosphatases in oocyte meiotic cell cycle regulation. The cross talk between MAPK cascade and other protein kinases is discussed. The review also addresses unsolved problems and discusses future directions.
Collapse
Affiliation(s)
- Heng-Yu Fan
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, P. R. China
| | | |
Collapse
|
17
|
Varani S, Matzuk MM. Phenotypic effects of knockout of oocyte-specific genes. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2003:63-79. [PMID: 12402540 DOI: 10.1007/978-3-662-04960-0_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Affiliation(s)
- S Varani
- Baylor College of Medicine, Department of Pathology, One Baylor Plaza, Houston, TX 77030, USA.
| | | |
Collapse
|
18
|
Van Oekelen D, Luyten WHML, Leysen JE. Ten years of antisense inhibition of brain G-protein-coupled receptor function. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2003; 42:123-42. [PMID: 12738054 DOI: 10.1016/s0165-0173(03)00153-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Antisense oligonucleotides (AOs) are widely used as tools for inhibiting gene expression in the mammalian central nervous system. Successful gene suppression has been reported for different targets such as neurotransmitter receptors, neuropeptides, ion channels, trophic factors, cytokines, transporters, and others. This illustrates their potential for studying the expression and function of a wide range of proteins. AOs may even find therapeutic applications and provide an attractive strategy for intervention in diseases of the central nervous system (CNS). However, a lack of effectiveness and/or specificity could be a major drawback for research or clinical applications. Here we provide a critical overview of the literature from the past decade on AOs for the study of G-protein-coupled receptors (GPCRs). The following aspects will be considered: mechanisms by which AOs exert their effects, types of animal model system used, detection of antisense action, effects of AO design and delivery characteristics, non-antisense effects and toxicological properties, controls used in antisense studies to assess specificity, and our results (failures and successes). Although the start codon of the mRNA is the most popular region (46%) to target by AOs, targeting the coding region of GPCRs is almost as common (41%). Moreover, AOs directed to the coding region of the GPCR mRNA induce the highest reductions in receptor levels. To resist degradation by nucleases, the modified phosphorothioate AO (S-AO) is the most widely used and effective oligonucleotide. However, the end-capped phosphorothioate AOs (ECS-AOs) are increasingly used due to possible toxic and non-specific effects of the S-AO. Other parameters affecting the activity of a GPCR-targeting AO are the length (mostly an 18-, 20- or 21-mer) and the GC-content (mostly varying from 30 to 80%). Interestingly, one-third of the AOs successfully targeting GPCRs possess a GC/AT ratio of 61-70%. AO-induced reductions in GPCR expression levels and function range typically from 21 to 40% and 41 to 50%, respectively. In contrast to many antisense reviews, we therefore conclude that the functional activity of a GPCR after AO treatment correlates mostly with the density of the target receptors (maximum factor 2). However, AOs are no simple tools for experimental use in vivo. Despite successful results in GPCR research, no general guidelines exist for designing a GPCR-targeting AO or, in general, for setting up a GPCR antisense experiment. It seems that the correct choice of a GPCR targeting AO can only be ascertained empirically. This disadvantage of antisense approaches results mostly from incomplete knowledge about the internalisation and mechanism of action of AOs. Together with non-specific effects of AOs and the difficulties of assessing target specificity, this makes the use of AOs a complex approach from which conclusions must be drawn with caution. Further antisense research has to be carried out to ensure the adequate use of AOs for studying GPCR function and to develop antisense as a valuable therapeutic modality.
Collapse
Affiliation(s)
- Dirk Van Oekelen
- Discovery Research, Janssen Research Foundation, B-2340 Beerse, Belgium
| | | | | |
Collapse
|
19
|
Josefsberg LBY, Galiani D, Lazar S, Kaufman O, Seger R, Dekel N. Maturation-promoting factor governs mitogen-activated protein kinase activation and interphase suppression during meiosis of rat oocytes. Biol Reprod 2003; 68:1282-90. [PMID: 12606439 DOI: 10.1095/biolreprod.102.006882] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Meiosis is a particular example of a cell cycle, characterized by two successive divisions without an intervening interphase. Resumption of meiosis in oocytes is associated with activation of maturation-promoting factor (MPF) and mitogen-activated protein kinase (MAPK). The activity of MPF declines during the transition between the two meiotic divisions, whereas the activity of MAPK is sustained. Attempts to disclose the interplay between these key regulators of meiosis in both amphibian and mammalian oocytes generated contradictory results. Furthermore, the enzyme that governs the suppression of interphase in mammals is still unidentified. To our knowledge, we provide herein the first demonstration in a mammalian system that inhibition of MPF at reinitiation of meiosis abrogated Mos expression and MAPK activation. We also show that oocytes, in which reactivation of MPF at completion of the first telophase was prevented, exhibited an interphase nucleus with decondensed chromosomes. Inhibition of MAPK did not interfere with the progression to the second meiotic metaphase but, rather, resulted in parthenogenic activation. We conclude that in rat oocytes, MPF regulates MAPK activation and its timely reactivation prevents the oocytes from entering interphase.
Collapse
|
20
|
Tunquist BJ, Maller JL. Under arrest: cytostatic factor (CSF)-mediated metaphase arrest in vertebrate eggs. Genes Dev 2003; 17:683-710. [PMID: 12651887 DOI: 10.1101/gad.1071303] [Citation(s) in RCA: 188] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Brian J Tunquist
- The Howard Hughes Medical Institute and Department of Pharmacology, University of Colorado School of Medicine, Denver, CO 80262, USA
| | | |
Collapse
|
21
|
Affiliation(s)
- Ekaterina Voronina
- Department of Molecular and Cell Biology, Brown University, 69 Brown St, Providence, RI 02912, USA
| | | |
Collapse
|
22
|
Allard P, Champigny MJ, Skoggard S, Erkmann JA, Whitfield ML, Marzluff WF, Clarke HJ. Stem-loop binding protein accumulates during oocyte maturation and is not cell-cycle-regulated in the early mouse embryo. J Cell Sci 2002; 115:4577-86. [PMID: 12415002 PMCID: PMC5115915 DOI: 10.1242/jcs.00132] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The stem-loop binding protein (SLBP) binds to the 3' end of histone mRNA and participates in 3'-processing of the newly synthesized transcripts, which protects them from degradation, and probably also promotes their translation. In proliferating cells, translation of SLBP mRNA begins at G1/S and the protein is degraded following DNA replication. These post-transcriptional mechanisms closely couple SLBP expression to S-phase of the cell cycle, and play a key role in restricting synthesis of replication-dependent histones to S-phase. In contrast to somatic cells, replication-dependent histone mRNAs accumulate and are translated independently of DNA replication in oocytes and early embryos. We report here that SLBP expression and activity also differ in mouse oocytes and early embryos compared with somatic cells. SLBP is present in oocytes that are arrested at prophase of G2/M, where it is concentrated in the nucleus. Upon entry into M-phase of meiotic maturation, SLBP begins to accumulate rapidly, reaching a very high level in mature oocytes arrested at metaphase II. Following fertilization, SLBP remains abundant in the nucleus and the cytoplasm throughout the first cell cycle, including both G1 and G2 phases. It declines during the second and third cell cycles, reaching a relatively low level by the late 4-cell stage. SLBP can bind the histone mRNA-stem-loop at all stages of the cell cycle in oocytes and early embryos, and it is the only stem-loop binding activity detectable in these cells. We also report that SLBP becomes phosphorylated rapidly following entry into M-phase of meiotic maturation through a mechanism that is sensitive to roscovitine, an inhibitor of cyclin-dependent kinases. SLBP is rapidly dephosphorylated following fertilization or parthenogenetic activation, and becomes newly phosphorylated at M-phase of mitosis. Phosphorylation does not affect its stem-loop binding activity. These results establish that, in contrast to Xenopus, mouse oocytes and embryos contain a single SLBP. Expression of SLBP is uncoupled from S-phase in oocytes and early embryos, which indicates that the mechanisms that impose cell-cycle-regulated expression of SLBP in somatic cells do not operate in oocytes or during the first embryonic cell cycle. This distinctive pattern of SLBP expression may be required for accumulation of histone proteins required for sperm chromatin remodelling and assembly of newly synthesized embryonic DNA into chromatin.
Collapse
Affiliation(s)
- Patrick Allard
- Departments of Obstetrics and Gynecology and Biology, McGill University, Montreal, Quebec, Canada H3A 1A1
| | - Marc J. Champigny
- Departments of Obstetrics and Gynecology and Biology, McGill University, Montreal, Quebec, Canada H3A 1A1
| | - Sarah Skoggard
- Departments of Obstetrics and Gynecology and Biology, McGill University, Montreal, Quebec, Canada H3A 1A1
| | - Judith A. Erkmann
- Department of Biochemistry and Biophysics and Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michael L. Whitfield
- Department of Biochemistry and Biophysics and Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - William F. Marzluff
- Department of Biochemistry and Biophysics and Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Hugh J. Clarke
- Departments of Obstetrics and Gynecology and Biology, McGill University, Montreal, Quebec, Canada H3A 1A1
- Department of Medicine, McGill University, Montreal, Quebec, Canada H3A 1A1
- Author for correspondence ()
| |
Collapse
|
23
|
Dupré A, Jessus C, Ozon R, Haccard O. Mos is not required for the initiation of meiotic maturation in Xenopus oocytes. EMBO J 2002; 21:4026-36. [PMID: 12145203 PMCID: PMC126146 DOI: 10.1093/emboj/cdf400] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In Xenopus oocytes, the c-mos proto-oncogene product has been proposed to act downstream of progesterone to control the entry into meiosis I, the transition from meiosis I to meiosis II, which is characterized by the absence of S phase, and the metaphase II arrest seen prior to fertilization. Here, we report that inhibition of Mos synthesis by morpholino antisense oligonucleotides does not prevent the progesterone-induced initiation of Xenopus oocyte meiotic maturation, as previously thought. Mos-depleted oocytes complete meiosis I but fail to arrest at metaphase II, entering a series of embryonic-like cell cycles accompanied by oscillations of Cdc2 activity and DNA replication. We propose that the unique and conserved role of Mos is to prevent mitotic cell cycles of the female gamete until the fertilization in Xenopus, starfish and mouse oocytes.
Collapse
Affiliation(s)
| | | | | | - Olivier Haccard
- Laboratoire de Biologie du Développement, UMR–CNRS 7622, Université Pierre et Marie Curie, boîte 24, 4 place Jussieu, 75252 Paris cedex 05, France
Corresponding author e-mail:
| |
Collapse
|
24
|
Abstract
The c-mos protooncogene, which is expressed predominantly in male and female germ cells, is crucial for normal oocyte meiosis and female fertility in mice. Inactivation of c-mos results in abnormal oocyte development and leads to ovarian cysts and tumors in vivo. In contrast to the severe effects of c-mos ablation in females, targeted inactivation of c-mos has not been reported to affect spermatogenesis in male mice. However, previously reported studies of male c-mos(-/-) mice have been limited to histological analyses of testes and in vivo matings, both of which are relatively insensitive indicators of sperm production and function. Therefore, we assayed sperm function of c-mos(-/-) males under in vitro conditions to determine whether the absence of Mos during development affected sperm production or fertilizing ability. We found no significant differences between the number of sperm collected from c-mos(-/-) and wild type mice. Additionally, sperm from c-mos(-/-) and c-mos(+/+) males performed equally well in assays of in vitro fertilization (IVF) and fertilization-associated events including zona pellucida (ZP) penetration, sperm/egg plasma membrane fusion, and sperm chromatin remodeling. Therefore, we suggest that the function of Mos in spermatogenesis is either not related to the ultimate fertilizing potential of the sperm, or else the absence of Mos is masked by a redundant kinase.
Collapse
Affiliation(s)
- Vera S Gross
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
25
|
Proikas-Cezanne T, Stabel S, Riethmacher D. Identification of protein tyrosine phosphatase 1B and casein as substrates for 124-v-Mos. BMC BIOCHEMISTRY 2002; 3:6. [PMID: 12022922 PMCID: PMC102758 DOI: 10.1186/1471-2091-3-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2002] [Accepted: 04/04/2002] [Indexed: 11/10/2022]
Abstract
BACKGROUND The mos proto-oncogene encodes a cytoplasmic serine/threonine-specific protein kinase with crucial function during meiotic cell division in vertebrates. Based on oncogenic amino acid substitutions the viral derivative, 124-v-Mos, displays constitutive protein kinase activity and functions independent of unknown upstream effectors of mos protein kinase. We have utilized this property of 124-v-Mos and screened for novel mos substrates in immunocomplex kinase assays in vitro. RESULTS We generated recombinant 124-v-Mos using the baculovirus expression system in Spodoptera frugiperda cells and demonstrated constitutive kinase activity by the ability of 124-v-Mos to auto-phosphorylate and to phosphorylate vimentin, a known substrate of c-Mos. Using this approach we analyzed a panel of acidic and basic substrates in immunocomplex protein kinase assays and identified novel in vitro substrates for 124-v-Mos, the protein tyrosine phosphatase 1B (PTP1B), alpha-casein and beta-casein. We controlled mos-specific phosphorylation of PTP1B and casein in comparative assays using a synthetic kinase-inactive 124-v-Mos mutant and further, tryptic digests of mos-phosphorylated beta-casein identified a phosphopeptide specifically targeted by wild-type 124-v-Mos. Two-dimensional phosphoamino acid analyses showed that 124-v-mos targets serine and threonine residues for phosphorylation in casein at a 1:1 ratio but auto-phosphorylation occurs predominantly on serine residues. CONCLUSION The mos substrates identified in this study represent a basis to approach the identification of the mos-consensus phosphorylation motif, important for the development of specific inhibitors of the Mos protein kinase.
Collapse
Affiliation(s)
- Tassula Proikas-Cezanne
- Temple University, Fels Institute for Cancer Research and Molecular Biology, Philadelphia PA USA
- Max-Delbrueck-Laboratory, Max-Planck-Institute, Cologne Germany
| | - Silvia Stabel
- Max-Delbrueck-Laboratory, Max-Planck-Institute, Cologne Germany
| | - Dieter Riethmacher
- Max-Delbrueck-Laboratory, Max-Planck-Institute, Cologne Germany
- Zentrum fuer Molekulare Neurobiologie, Universitaet Hamburg, Hamburg Germany
| |
Collapse
|
26
|
Bodart JF, Flament S, Vilain JP. Metaphase arrest in amphibian oocytes: interaction between CSF and MPF sets the equilibrium. Mol Reprod Dev 2002; 61:570-4. [PMID: 11891929 DOI: 10.1002/mrd.10112] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Jean-François Bodart
- Laboratoire de Biologie du Développement, Régulation Ionique et Moléculaire du Cycle Cellulaire, UPRES EA 1033, Université de Lille 1, Villeneuve d'Ascq, France.
| | | | | |
Collapse
|
27
|
Tay J, Richter JD. Germ cell differentiation and synaptonemal complex formation are disrupted in CPEB knockout mice. Dev Cell 2001; 1:201-13. [PMID: 11702780 DOI: 10.1016/s1534-5807(01)00025-9] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
CPEB is a sequence-specific RNA binding protein that regulates translation during vertebrate oocyte maturation. Adult female CPEB knockout mice contained vestigial ovaries that were devoid of oocytes; ovaries from mid-gestation embryos contained oocytes that were arrested at the pachytene stage. Male CPEB null mice also contained germ cells arrested at pachytene. The germ cells from the knockout mice harbored fragmented chromatin, suggesting a possible defect in homologous chromosome adhesion or synapsis. Two CPE-containing synaptonemal complex protein mRNAs, which interact with CPEB in vitro and in vivo, contained shortened poly(A) tails and mostly failed to sediment with polysomes in the null mice. Synaptonemal complexes were not detected in these animals. CPEB therefore controls germ cell differentiation by regulating the formation of the synaptonemal complex.
Collapse
Affiliation(s)
- J Tay
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester 01655, USA
| | | |
Collapse
|
28
|
Hodgman R, Tay J, Mendez R, Richter JD. CPEB phosphorylation and cytoplasmic polyadenylation are catalyzed by the kinase IAK1/Eg2 in maturing mouse oocytes. Development 2001; 128:2815-22. [PMID: 11526086 DOI: 10.1242/dev.128.14.2815] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In both vertebrates and invertebrates, the expression of several maternal mRNAs is regulated by cytoplasmic polyadenylation. In Xenopus oocytes, where most of the biochemical details of this process have been examined, polyadenylation is controlled by CPEB, a sequence-specific RNA binding protein. The activity of CPEB, which is to recruit cleavage and polyadenylation specificity factor (CPSF) and poly(A) polymerase (PAP) into an active cytoplasmic polyadenylation complex, is controlled by Eg2-catalyzed phosphorylation. Soon after CPEB phosphorylation and resulting polyadenylation take place, the interaction between maskin, a CPEB-associated factor, and eIF4E, the cap-binding protein, is destroyed, which results in the recruitment of mRNA into polysomes. Polyadenylation also occurs in maturing mouse oocytes, although the biochemical events that govern the reaction in these cells are not known. In this study, we have examined the phosphorylation of CPEB and have assessed the necessity of this protein for polyadenylation in maturing mouse oocytes. Immunohistochemistry has revealed that all the factors that control polyadenylation and translation in Xenopus oocytes (CPEB, CPSF, PAP, maskin, and IAK1, the murine homologue of Eg2) are also present in the cytoplasm of mouse oocytes. After the induction of maturation, a kinase is activated that phosphorylates CPEB on a critical regulatory residue, an event that is essential for CPEB activity. A peptide that competitively inhibits the activity of IAK1/Eg2 blocks the progression of meiosis in injected oocytes. Finally, a CPEB protein that acts as a dominant negative mutation because it cannot be phosphorylated by IAK1/Eg2, prevents cytoplasmic polyadenylation. These data indicate that cytoplasmic polyadenylation in mouse oocytes is mediated by IAK1/Eg2-catalyzed phosphorylation of CPEB.
Collapse
Affiliation(s)
- R Hodgman
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | |
Collapse
|
29
|
Hashiba Y, Asada Y, Heikinheimo O, Lanzendorf SE, Mizutani S. Microinjection of antisense c-mos oligonucleotides prevents the progression of meiosis in human and hamster oocytes. Fertil Steril 2001; 76:143-7. [PMID: 11438333 DOI: 10.1016/s0015-0282(01)01821-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To investigate the role of c-mos proto-oncogene in the progression of meiosis in human and hamster oocytes. DESIGN Controlled basic research study. SETTING Assisted reproduction units at medical institutions. PATIENT(S) Consenting in vitro fertilization patients. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Maturation to metaphase II (MII) 24 hours following microinjection of prophase I (PI) hamster oocytes with antisense (AS) and sense (S) c-mos oligonucleotides. Control oocytes (C) injected with medium or left uninjected (UI). In human oocytes, maturation to metaphase II was also measured except culture was extended to 48 hours and the sense group was omitted. RESULT(S) The percentage of hamster oocytes reaching metaphase II after 24 hours was as follows: 1.5% (1 of 65) for the antisense group; 63.1% (41 of 65) in the sense group; 66.1% (41 of 62) in the control group; and 69.3% (52 of 75) in the uninjected group. The percentage of human oocytes at metaphase II was 33.3% (4 of 12) in the antisense group, 83.3% (10 of 12) in the control group, and 82.8% (24 of 29) in the uninjected group. CONCLUSION(S) These results demonstrate that injection of c-mos antisense oligonucleotide significantly inhibits the progression of meiosis in hamster (P=.0001) and human (P=.05) oocytes. Thus, c-mos proto-oncogene may be one of the critical regulators of meiosis in these two species.
Collapse
Affiliation(s)
- Y Hashiba
- Department of Obstetrics and Gynecology, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan
| | | | | | | | | |
Collapse
|
30
|
Gandolfi TA, Gandolfi F. The maternal legacy to the embryo: cytoplasmic components and their effects on early development. Theriogenology 2001; 55:1255-76. [PMID: 11327683 DOI: 10.1016/s0093-691x(01)00481-2] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
RNA molecules and proteins are accumulated in the oocyte cytoplasm during its growth phase and are used to sustain the early phases of embryonic development before embryo DNA transcription begins. This makes the oocyte a very special cell, quite different from somatic cells where RNA and proteins usually undergo a rapid turnover. To enable the storage and timely use of such stored molecules, various mechanisms are effective in the oocyte and are gradually being elucidated. Our understanding of such mechanisms is important for constantly improving therapy for human and animal reproductive disorders as well as for understanding the process of nuclear reprogramming during cloning procedure or stem cell generation. This review focuses on the various aspects of these regulatory processes in an attempt to give an overview of the present knowledge on post-transcriptional and post-translational mechanisms taking place during oocyte maturation and early development. Mechanisms such as cytoplasmic regulation of the poly(A) tail, RNA localization and protein phosphorylation are described in some detail. Because most data are available from lower species these are presented together with appropriate reference to the mammalian oocyte when data are known, or when important differences have been described.
Collapse
Affiliation(s)
- T A Gandolfi
- Department of Endocrinology, University of Milan, Italy.
| | | |
Collapse
|
31
|
Azuma T, Ikeda S, Kondo T, Imai H, Yamada M. Ethylenediamine-N,N,N',N'-tetraacetic acid induces parthenogenetic activation of porcine oocytes at the germinal vesicle stage, leading to formation of blastocysts. Biol Reprod 2001; 64:647-53. [PMID: 11159369 DOI: 10.1095/biolreprod64.2.647] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The present study showed that treatment with a cell membrane-impermeable metal ion chelator, EDTA, of porcine oocytes at the germinal vesicle (GV) stage collected from follicles 2-6 mm in diameter induced artificial activation followed by formation of a pronucleus (PN). When the oocytes were cultured for 48 h in medium containing 0.1 to 2 mM EDTA disodium salt (Na-EDTA), they were activated to form PN, and the maximum PN formation rate (63%, n = 68) was achieved in oocytes cultured with 1 mM Na-EDTA. More than 90% of oocytes activated by 1 mM Na-EDTA treatment formed 1 PN without emission of the first and the second polar bodies (PB). This result suggests that EDTA at 1 mM may force the maturing (meiosis I) oocytes to form a PN without chromosome segregation. When oocytes at the GV stage that had been cultured with 1 mM Na-EDTA for 48 h were further cultured in 0.4% BSA-containing NCSU23 medium for 144 h, blastocysts that appeared to be morphologically normal were formed at the rate of 10%, whereas no blastocysts were formed from oocytes that had not been cultured with Na-EDTA. Next we examined the effects of Ca2+, Zn2+, Fe3+, or Cu2+-saturated EDTA (Ca-EDTA, Zn-EDTA, Fe-EDTA, and Cu-EDTA, respectively), and a Ca2+-specific chelator, EGTA, at a concentration of 1 mM. The Ca-EDTA, Fe-EDTA, and Cu-EDTA, but not Zn-EDTA or EGTA, had the ability to activate the oocytes. From these results, it is suggested that extracellular chelation of Zn2+ with EDTA of maturing (meiosis I) porcine oocytes results in parthenogenetic activation of the oocytes, which induces PN formation followed by development to blastocysts.
Collapse
Affiliation(s)
- T Azuma
- Laboratory of Reproductive Physiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
32
|
Tachibana K, Tanaka D, Isobe T, Kishimoto T. c-Mos forces the mitotic cell cycle to undergo meiosis II to produce haploid gametes. Proc Natl Acad Sci U S A 2000; 97:14301-6. [PMID: 11121036 PMCID: PMC18913 DOI: 10.1073/pnas.97.26.14301] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The meiotic cycle reduces ploidy through two consecutive M phases, meiosis I and meiosis II, without an intervening S phase. To maintain ploidy through successive generations, meiosis must be followed by mitosis after the recovery of diploidy by fertilization. However, the coordination from meiotic to mitotic cycle is still unclear. Mos, the c-mos protooncogene product, is a key regulator of meiosis in vertebrates. In contrast to the previous observation that Mos functions only in vertebrate oocytes that arrest at meiotic metaphase II, here we isolate the first invertebrate mos from starfish and show that Mos functions also in starfish oocytes that arrest after the completion of meiosis II but not at metaphase II. In the absence of Mos, meiosis I is followed directly by repeated embryonic mitotic cycles, and its reinstatement restores meiosis II and subsequent cell cycle arrest. These observations imply that after meiosis I, oocytes have a competence to progress through the embryonic mitotic cycle, but that Mos diverts the cell cycle to execute meiosis II and remains to restrain the return to the mitotic cycle. We propose that a role of Mos that is conserved in invertebrate and vertebrate oocytes is not to support metaphase II arrest but to prevent the meiotic/mitotic conversion after meiosis I until fertilization, directing meiosis II to ensure the reduction of ploidy.
Collapse
Affiliation(s)
- K Tachibana
- Laboratory of Cell and Developmental Biology, Graduate School of Bioscience, Tokyo Institute of Technology, Japan
| | | | | | | |
Collapse
|
33
|
Abstract
Antisense oligonucleotides (ONs) have several properties that make them attractive as therapeutic agents. Hybridization of antisense ONs to their complementary nucleic acid sequences by Watson-Crick base pairing is a highly selective and efficient process. Design of therapeutic antisense agents can be made more rationally as compared to most traditional drugs, i.e., they can be designed on the basis of target RNA sequences and their secondary structures. Despite these advantages, the design and use of antisense ONs as therapeutic agents are still faced with several obstacles. One major obstacle is their inefficient cellular uptake and poor accessibility to target sites. In this article, we will discuss key barriers affecting ON delivery and approaches to overcome these barriers. Current methods of ON delivery will be reviewed with an emphasis on novel non-endocytic methods of delivery. ONs are taken up by cells via an endocytic process. The process of ON release from endosomes is a very inefficient process and, hence, ONs end up being degraded in the endosomes. Thus, ONs do not reach their intended site of action in the cytoplasm or nucleus. Delivery systems ensuring a cytoplasmic delivery of ONs have the potential to increase the amount of ON reaching the target. Here, we shall examine various ON delivery methods that bypass the endosomal pathway. The advantages and disadvantages of these methods compared to other existing methods of ON delivery will be discussed.
Collapse
Affiliation(s)
- S Dokka
- West Virginia University, Department of Basic Pharmaceutical Sciences, School of Pharmacy, P.O. Box 9530, Morgantown, WV 26506, USA
| | | |
Collapse
|
34
|
Svoboda P, Stein P, Hayashi H, Schultz RM. Selective reduction of dormant maternal mRNAs in mouse oocytes by RNA interference. Development 2000; 127:4147-56. [PMID: 10976047 DOI: 10.1242/dev.127.19.4147] [Citation(s) in RCA: 282] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Specific mRNA degradation mediated by double-stranded RNA (dsRNA), which is termed RNA interference (RNAi), is a useful tool with which to study gene function in several systems. We report here that in mouse oocytes, RNAi provides a suitable and robust approach to study the function of dormant maternal mRNAs. Mos (originally known as c-mos) and tissue plasminogen activator (tPA, Plat) mRNAs are dormant maternal mRNAs that are recruited during oocyte maturation; translation of Mos mRNA results in the activation of MAP kinase. dsRNA directed towards Mos or Plat mRNAs in mouse oocytes effectively results in the specific reduction of the targeted mRNA in both a time- and concentration-dependent manner. Moreover, dsRNA is more potent than either sense or antisense RNAs. Targeting the Mos mRNA results in inhibiting the appearance of MAP kinase activity and can result in parthenogenetic activation. Mos dsRNA, therefore, faithfully phenocopies the Mos null mutant. Targeting the Plat mRNA with Plat dsRNA results in inhibiting production of tPA activity. Finally, effective reduction of the Mos and Plat mRNA is observed with stoichiometric amounts of Mos and Plat dsRNA, respectively.
Collapse
Affiliation(s)
- P Svoboda
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA
| | | | | | | |
Collapse
|
35
|
Abstract
In maturing mouse oocytes, protein synthesis is required for meiotic maturation subsequent to germinal vesicle breakdown (GVBD). While the number of different proteins that must be synthesized for this progression to occur is unknown, at least one of them appears to be cyclin B1, the regulatory subunit of M-phase-promoting factor. Here, we investigate the mechanism of cyclin B1 mRNA translational control during mouse oocyte maturation. We show that the U-rich cytoplasmic polyadenylation element (CPE), a cis element in the 3' UTR of cyclin B1 mRNA, mediates translational repression in GV-stage oocytes. The CPE is also necessary for cytoplasmic polyadenylation, which stimulates translation during oocyte maturation. The injection of oocytes with a cyclin B1 antisense RNA, which probably precludes the binding of a factor to the CPE, delays cytoplasmic polyadenylation as well as the transition from GVBD to metaphase II. CPEB, which interacts with the cyclin B1 CPE and is present throughout meiotic maturation, becomes phosphorylated at metaphase I. These data indicate that CPEB is involved in both the repression and the stimulation of cyclin B1 mRNA and suggest that the phosphorylation of this protein could be involved in regulating its activity.
Collapse
Affiliation(s)
- J Tay
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | |
Collapse
|
36
|
Siddiqi I, Ganesh G, Grossniklaus U, Subbiah V. The dyad gene is required for progression through female meiosis in Arabidopsis. Development 2000; 127:197-207. [PMID: 10654613 DOI: 10.1242/dev.127.1.197] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In higher plants the gametophyte consists of a gamete in association with a small number of haploid cells, specialized for sexual reproduction. The female gametophyte or embryo sac, is contained within the ovule and develops from a single cell, the megaspore which is formed by meiosis of the megaspore mother cell. The dyad mutant of Arabidopsis, described herein, represents a novel class among female sterile mutants in plants. dyad ovules contain two large cells in place of an embryo sac. The two cells represent the products of a single division of the megaspore mother cell followed by an arrest in further development of the megaspore. We addressed the question of whether the division of the megaspore mother cell in the mutant was meiotic or mitotic by examining the expression of two markers that are normally expressed in the megaspore mother cell during meiosis. Our observations indicate that in dyad, the megaspore mother cell enters but fails to complete meiosis, arresting at the end of meiosis 1 in the majority of ovules. This was corroborated by a direct observation of chromosome segregation during division of the megaspore mother cell, showing that the division is a reductional and not an equational one. In a minority of dyad ovules, the megaspore mother cell does not divide. Pollen development and male fertility in the mutant is normal, as is the rest of the ovule that surrounds the female gametophyte. The embryo sac is also shown to have an influence on the nucellus in wild type. The dyad mutation therefore specifically affects a function that is required in the female germ cell precursor for meiosis. The identification and analysis of mutants specifically affecting female meiosis is an initial step in understanding the molecular mechanisms underlying early events in the pathway of female reproductive development.
Collapse
Affiliation(s)
- I Siddiqi
- Centre for Cellular and Molecular Biology, Hyderabad, India.
| | | | | | | |
Collapse
|
37
|
Lin HB, Jurk M, Gulick T, Cooper GM. Identification of COUP-TF as a transcriptional repressor of the c-mos proto-oncogene. J Biol Chem 1999; 274:36796-800. [PMID: 10593989 DOI: 10.1074/jbc.274.51.36796] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The c-mos proto-oncogene is specifically expressed in the male and female germ cells of the mouse and other vertebrates. We previously identified a 15-base pair sequence element (B2) as the binding site of a candidate repressor of c-mos transcription in somatic cells. In the present study, we used the yeast one-hybrid system to isolate HeLa cell cDNAs encoding proteins that specifically bound to the c-mos B2 element. Nucleotide sequencing identified several of the clones isolated in this screen as the orphan nuclear receptors COUP-TFI and COUP-TFII. A COUP-TF-binding site was then identified within the B2 sequence. Complexes formed between purified COUP-TFs and the c-mos B2 probe comigrated in electrophoretic mobility shift assays with those formed using whole nuclear extracts of NIH 3T3 or HeLa cells. Moreover, the complexes formed with NIH 3T3 nuclear extracts and B2 probe were supershifted with antibody against COUP-TF, identifying COUP-TF as the candidate repressor previously detected in these somatic cell extracts. Substitution of a consensus COUP-TF-binding site for the c-mos negative regulatory element suppressed expression from the c-mos promoter in transfected somatic cells, demonstrating the functional activity of COUP-TF as a repressor of c-mos transcription.
Collapse
Affiliation(s)
- H B Lin
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
38
|
Lenormand JL, Dellinger RW, Knudsen KE, Subramani S, Donoghue DJ. Speedy: a novel cell cycle regulator of the G2/M transition. EMBO J 1999; 18:1869-77. [PMID: 10202150 PMCID: PMC1171272 DOI: 10.1093/emboj/18.7.1869] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Stage VI Xenopus oocytes are suspended at the G2/M transition of meiosis I, and represent an excellent system for the identification and examination of cell cycle regulatory proteins. Essential cell cycle regulators such as MAPK, cyclins and mos have the ability to induce oocyte maturation, causing the resumption of the cell cycle from its arrested state. We have identified the product of a novel Xenopus gene, Speedy or Spy1, which is able to induce rapid maturation of Xenopus oocytes, resulting in the induction of germinal vesicle breakdown (GVBD) and activation of M-phasepromoting factor (MPF). Spy1 activates the MAPK pathway in oocytes, and its ability to induce maturation is dependent upon this pathway. Spy1-induced maturation occurs much more rapidly than maturation induced by other cell cycle regulators including progesterone, mos or Ras, and does not require any of these proteins or hormones, indicating that Spy1-induced maturation proceeds through a novel regulatory pathway. In addition, we have shown that Spy1 physically interacts with cdk2, and prematurely activates cdk2 kinase activity. Spy1 therefore represents a novel cell cycle regulatory protein, inducing maturation through the activation of MAPK and MPF, and also leading to the premature activation of cdk2.
Collapse
Affiliation(s)
- J L Lenormand
- Department of Chemistry and Biochemistry, Center for Molecular Genetics, University of California, San Diego, La Jolla, CA 92093-0367, USA
| | | | | | | | | |
Collapse
|
39
|
Murakami MS, Copeland TD, Vande Woude GF. Mos positively regulates Xe-Wee1 to lengthen the first mitotic cell cycle of Xenopus. Genes Dev 1999; 13:620-31. [PMID: 10072389 PMCID: PMC316506 DOI: 10.1101/gad.13.5.620] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Several key developmental events occur in the first mitotic cell cycle of Xenopus; consequently this cycle has two gap phases and is approximately 60-75 min in length. In contrast, embryonic cycles 2-12 consist only of S and M phases and are 30 min in length. Xe-Wee1 and Mos are translated and degraded in a developmentally regulated manner. Significantly, both proteins are present in the first cell cycle. We showed previously that the expression of nondegradable Mos, during early interphase, delays the onset of M phase in the early embryonic cell cycles. Here we report that Xe-Wee1 is required for the Mos-mediated M-phase delay. We find that Xe-Wee1 tyrosine autophosphorylation positively regulates Xe-Wee1 and is only detected in the first 30 min of the first cell cycle. The level and duration of Xe-Wee1 tyrosine phosphorylation is elevated significantly when the first cell cycle is elongated with nondegradable Mos. Importantly, we show that the tyrosine phosphorylation of Xe-Wee1 is required for the Mos-mediated M-phase delay. These findings indicate that Mos positively regulates Xe-Wee1 to generate the G2 phase in the first cell cycle and establish a direct link between the MAPK signal transduction pathway and Wee1 in vertebrates.
Collapse
Affiliation(s)
- M S Murakami
- Advanced Bioscience Laboratories (ABL)-Basic Research Program, National Cancer Institute-Frederick Cancer Research and Development Center, Frederick, Maryland 21702 USA
| | | | | |
Collapse
|
40
|
Vorlaufer E, Peters JM. Regulation of the cyclin B degradation system by an inhibitor of mitotic proteolysis. Mol Biol Cell 1998; 9:1817-31. [PMID: 9658173 PMCID: PMC25421 DOI: 10.1091/mbc.9.7.1817] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The initiation of anaphase and exit from mitosis depend on the anaphase-promoting complex (APC), which mediates the ubiquitin-dependent proteolysis of anaphase-inhibiting proteins and mitotic cyclins. We have analyzed whether protein phosphatases are required for mitotic APC activation. In Xenopus egg extracts APC activation occurs normally in the presence of protein phosphatase 1 inhibitors, suggesting that the anaphase defects caused by protein phosphatase 1 mutation in several organisms are not due to a failure to activate the APC. Contrary to this, the initiation of mitotic cyclin B proteolysis is prevented by inhibitors of protein phosphatase 2A such as okadaic acid. Okadaic acid induces an activity that inhibits cyclin B ubiquitination. We refer to this activity as inhibitor of mitotic proteolysis because it also prevents the degradation of other APC substrates. A similar activity exists in extracts of Xenopus eggs that are arrested at the second meiotic metaphase by the cytostatic factor activity of the protein kinase mos. In Xenopus eggs, the initiation of anaphase II may therefore be prevented by an inhibitor of APC-dependent ubiquitination.
Collapse
Affiliation(s)
- E Vorlaufer
- Research Institute of Molecular Pathology, A-1030 Vienna, Austria
| | | |
Collapse
|
41
|
Yang Y, Pham CD, Vuyyuru VB, Liu H, Arlinghaus RB, Singh B. Evidence of a functional interaction between serine 3 and serine 25 Mos phosphorylation sites. A dominant inhibitory role of serine 25 phosphorylation on Mos protein kinase. J Biol Chem 1998; 273:15946-53. [PMID: 9632642 DOI: 10.1074/jbc.273.26.15946] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Recently, we identified the major in vivo phosphorylation site on v-Mos as Ser-56, which is phosphorylated by cyclic AMP dependent protein kinase (PKA). Others have shown that c-Mos phosphorylation at Ser-3 (equivalent to Ser-34 in v-Mos) is important for the interaction of c-Mos with its substrate MEK and for its stability and cytostatic factor activity in eggs. To investigate the role of Ser-56 phosphorylation, we generated site-directed mutants of v-Mos that would mimic phosphorylation in terms of charge at positions 56 and 34. After mutating serine (S) residues with alanine (A) or glutamic acid (E) in different combinations, various v-Mos mutants were expressed in a rabbit reticulocyte lysate in vitro translation system and in COS-1 or NIH/3T3 cells. The effect of mutations on Mos function was evaluated by in vitro protein kinase assays and by the ability of Mos to cause neoplastic transformation of NIH/3T3 cells. The S56E but not the S56A mutation inhibited v-Mos kinase activity suggesting that Ser-56 phosphorylation has an inhibitory role. As predicted from Xenopus c-Mos studies, S34A but not S34E mutation inhibited v-Mos activity. Studies with the double mutants showed that the S56E mutation but not S56A mutation inhibited v-Mos kinase activity of both S34A and S34E mutants. Interestingly, the S56A mutation blocked the inhibitory effect of the S34A mutation on v-Mos kinase suggesting that in c-Mos the corresponding serine (Ser-25) can influence the regulation of c-Mos by Ser-3. Results showing inhibition of v-Mos kinase activity of the S34E mutant by the S56E mutation is significant as it suggests that doubly phosphorylated Mos at these residues would be inactive. Because residues corresponding to both v-Mos Ser-34 and Ser-56 are evolutionarily conserved in c-Mos, the kinase activity of c-Mos during meiosis may also be regulated in the same manner as v-Mos kinase activity.
Collapse
Affiliation(s)
- Y Yang
- Department of Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
The newly cloned gene Spin encodes a 30-kDa protein, a well-defined abundant molecule found in mouse oocytes and early embryos. This protein SPIN undergoes metaphase-specific phosphorylation and binds to the spindle. To understand the role of SPIN in oocyte meiosis, oocytes were treated with drugs that affect the cell cycle by activating or inactivating specific kinases. The posttranslational modification of SPIN in the treated oocytes was then investigated by one- and two-dimensional gel electrophoresis. Modification of SPIN is inhibited by treatment with 6-dimethylaminopurine (DMAP), suggesting that SPIN is phosphorylated by a serine-threonine kinase. Furthermore, SPIN from cycloheximide-treated oocytes that lack detectable MAP kinase activity is only partially phosphorylated, indicating that SPIN may be phosphorylated by the MOS/MAP kinase pathway. To confirm this observation, SPIN was analyzed in Mos-null mutant mice lacking MAP kinase activity. Normal posttranslational modification of SPIN did not occur in Mos-null mutant oocytes. In addition, there is reduced association of SPIN with the metaphase I spindle in Mos-null mutant oocytes, as determined by immunohistochemical analysis. These findings suggest that SPIN is a substrate in the MOS/ MAP kinase pathway and further that this phosphorylation of SPIN may be essential for its interaction with the spindle.
Collapse
Affiliation(s)
- B Oh
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA.
| | | | | | | | | |
Collapse
|
43
|
Désiré L, Courtois Y, Jeanny JC. Suppression of fibroblast growth factors 1 and 2 by antisense oligonucleotides in embryonic chick retinal cells in vitro inhibits neuronal differentiation and survival. Exp Cell Res 1998; 241:210-21. [PMID: 9633530 DOI: 10.1006/excr.1998.4048] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As retinal histogenesis proceeds there is a pronounced increase in the expression of fibroblast growth factor (FGF), reaching its maximum in the mature retina and largely in terminal differentiated retinal neurons. Recent in vivo evidence suggests that exogenous FGF functions as a differentiation and survival factor for a wide variety of cell types including CNS neurons and that endogenous FGF may perform similar functions. We have examined the consequences of selectively and independently inhibiting FGF1 or FGF2 expression using antisense oligonucleotides in embryonic chick retinal cells, differentiating in vitro. Whether FGF1 or FGF2 expression was inhibited the results were the same: a marked reduction in neuronal photoreceptor cells differentiation, an increase in programmed cell death, but no effects on cell proliferation. Even although these two related factors promote the same final effect on retinal cells, namely, neuronal differentiation and survival, their normal combined activities or levels appear to be important in achieving this effect. Stimulation with either exogenous FGF1 or FGF2 served to increase endogenous levels of both FGF1 and FGF2 and reversed the effects of antisense blockade of either FGF1 or FGF2. Our data suggest that although other sources of FGF exist within the eye, the function of endogenous FGF in differentiating retinal neurons may be to stimulate their differentiation and promote their survival.
Collapse
Affiliation(s)
- L Désiré
- Développement, vieillissement et pathologie de la rétine, INSERM U. 450, affiliée CNRS, Paris, France
| | | | | |
Collapse
|
44
|
Abstract
Usually, oocyte meiosis reinitiation appears as a two step process during which release from the prophase block is followed by a second arrest in metaphase I or II. In this review, we will examine the mechanisms required to maintain the metaphase arrest and stabilize MPF activity at this stage. Then, we will analyse the processes required to exit from the metaphase block. These may drive the cells forward to the metaphase-anaphase transition, as a result of fertilization, activation or protein synthesis inhibition. Instead, inhibiting protein phosphorylation drives the oocyte back to interphase. All these treatments result in derepression of DNA synthesis.
Collapse
Affiliation(s)
- P Colas
- Department of Molecular Biology, Massachusetts General Hospital, Boston 02114, USA
| | | |
Collapse
|
45
|
Abstract
The mos proto-oncogene-encoded serine/threonine protein kinase plays a key cell cycle-regulatory role during meiosis. The Mos protein is required for the activation and stabilisation of M phase-promoting factor MPF. As a component of a large multiprotein complex known as the cytostatic factor (CSF), Mos is involved in causing metaphase II arrest of eggs in vertebrates. Upon expression in somatic cells, Mos causes cell cycle perturbations resulting in cytotoxicity and neoplastic transformation. All the known biological activities of Mos are mediated through activation of the mitogen activated protein (MAP) kinase pathway. Here we discuss the interrelationship between Mos and other cell cycle regulators.
Collapse
Affiliation(s)
- B Singh
- Department of Molecular Pathology, University of Texas M. D. Anderson Cancer Center, Houston 77030, USA
| | | |
Collapse
|
46
|
Hirao Y, Eppig JJ. Analysis of the mechanism(s) of metaphase I arrest in strain LT mouse oocytes: participation of MOS. Development 1997; 124:5107-13. [PMID: 9362468 DOI: 10.1242/dev.124.24.5107] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Oocytes of almost all vertebrates become arrested at metaphase II to await fertilization. Arrest is achieved with the participation of a protein complex known as cytostatic factor (CSF) that stabilizes histone H1 kinase activity. MOS and mitogen-activated protein kinase (MAPK) are important components of CSF. Strain LT/Sv mice, and strains related to LT/Sv, produce a high percentage of atypical oocytes that are arrested at metaphase I when normal oocytes have progressed to metaphase II. The potential role of MOS in metaphase I arrest was investigated using strain LT/Sv and LT-related recombinant inbred strains, LTXBO and CX8-4. MOS and MAPK are produced and functional in maturing LT oocytes. Two experimental paradigms were used to reduce or delete MOS in LT oocytes and assess effects on metaphase I arrest. First, sense and antisense Mos oligonucleotides were microinjected into metaphase I-arrested oocytes. Antisense, but not sense, Mos oligonucleotides promoted the activation of metaphase I-arrested oocytes. Second, mice carrying a Mos null mutation were crossed with LT mice, the null mutation was backcrossed three times to LT mice, and Mos(+/−) N3 mice were intercrossed to produce Mos(−/−), Mos(+/−) and Mos(+/+) N3F1 mice. Oocytes of all three Mos genotypes of N3F1 mice sustained meiotic arrest for 17 hours indicating that metaphase I arrest is not initiated by a MOS-dependent mechanism. However, unlike Mos(+/+) and Mos(+/−) CX8-4 N3F1 oocytes, metaphase I arrest of Mos(−/−) CX8-4 N3F1 oocytes was not sustained after 17 hours and became reversed gradually. These results, like the antisense Mos oligonucleotide microinjection experiments, suggest that MOS participates in sustaining metaphase I arrest in LT oocytes.
Collapse
Affiliation(s)
- Y Hirao
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | |
Collapse
|
47
|
Abstract
Ovarian teratomas develop in Mos-/- mutant mice produced by homologous recombination. These teratomas are probably derived from oocytes that undergo spontaneous parthenogenetic activation within the ovaries. However, it is not clear how the activated eggs develop into teratomas since embryonic development beyond the four-cell stage was not observed either in vitro or in vivo. In this study, Mos-/- parthenotes derived from in vitro-matured oocytes were cultured using a recently developed medium, KSOM/AA, which promotes a high frequency of preimplantation development by normal embryos. In total, 5% of the Mos-/- oocytes developed to the blastocyst stage. Preimplantation-like and early postimplantation-like embryos were observed in the ovaries of 60-63-day-old Mos-/- mice. These observations support the hypothesis that Mos-/- teratomas are derived from parthenogenetically activated oocytes that undergo early embryonic development up to early postimplantation-like stages within the ovaries. Aberrant meiotic divisions commonly observed in Mos-/- oocytes in vitro may adversely affect preimplantation development and reduce the frequency of blastocyst formation even under the best culture conditions.
Collapse
Affiliation(s)
- Y Hirao
- Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | |
Collapse
|
48
|
Duesbery NS, Choi T, Brown KD, Wood KW, Resau J, Fukasawa K, Cleveland DW, Vande Woude GF. CENP-E is an essential kinetochore motor in maturing oocytes and is masked during mos-dependent, cell cycle arrest at metaphase II. Proc Natl Acad Sci U S A 1997; 94:9165-70. [PMID: 9256453 PMCID: PMC23089 DOI: 10.1073/pnas.94.17.9165] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
CENP-E, a kinesin-like protein that is known to associate with kinetochores during all phases of mitotic chromosome movement, is shown here to be a component of meiotic kinetochores as well. CENP-E is detected at kinetochores during metaphase I in both mice and frogs, and, as in mitosis, is relocalized to the midbody during telophase. CENP-E function is essential for meiosis I because injection of an antibody to CENP-E into mouse oocytes in prophase completely prevented progression of those oocytes past metaphase I. Beyond this, CENP-E is modified or masked during the natural, Mos-dependent, cell cycle arrest that occurs at metaphase II, although it is readily detectable at the kinetochores in metaphase II oocytes derived from mos-deficient (MOS-/-) mice that fail to arrest at metaphase II. This must reflect a masking of some CENP-E epitopes, not the absence of CENP-E, in meiosis II because a different polyclonal antibody raised to the tail of CENP-E detects CENP-E at kinetochores of metaphase II-arrested eggs and because CENP-E reappears in telophase of mouse oocytes activated in the absence of protein synthesis.
Collapse
Affiliation(s)
- N S Duesbery
- ABL-Basic Research Program, National Cancer Institute-Frederick Cancer Research and Development Center, P.O. Box B, Frederick, MD 21702-1201, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Pichon C, Freulon I, Midoux P, Mayer R, Monsigny M, Roche AC. Cytosolic and nuclear delivery of oligonucleotides mediated by an amphiphilic anionic peptide. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 1997; 7:335-43. [PMID: 9303185 DOI: 10.1089/oli.1.1997.7.335] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Antisense oligonucleotides (ODN) were easily introduced into the cytosol of mammalian cells on permeabilization of the plasma membrane by an amphiphilic anionic peptide. The E5CA peptide (GLFEAIAEFIEGGWEGLIEGCA) is an E5 peptide analog derived from the N-terminal segment of the HA2 subunit of influenza virus hemagglutinin. This peptide undergoes a conformational change when the pH shifts from neutral to around 6.0, inducing a transient permeabilization of the plasma membrane. In the presence of the E5CA peptide at pH close to 6.0, fluoresceinylated ODN were rapidly taken up by cells and diffused into the nucleus. The uptake of ODN was dependent on the E5CA peptide concentration and on the duration of the incubation at low pH, as shown by confocal microscopy and flow cytometry analyses. This procedure is suitable for loading adherent cells as well as nonadherent cells with single-stranded or double-stranded ODN. Under optimal conditions, a high percentage of cells were nuclei loaded, and the viability was not affected. This method makes use of a well-defined chemical product without the requirement of any special equipment. It will be useful to study the interactions of single-stranded or double-stranded ODN used as antisense, antigenes, or decoys.
Collapse
Affiliation(s)
- C Pichon
- Centre de Biophysique Moléculaire, CNRS, Orléans, France
| | | | | | | | | | | |
Collapse
|
50
|
Hanai K, Suganuma N, Kikkawa F, Furuhashi M, Tomoda Y. Effects of gonadotropin, estrogen, and progesterone on c-mos gene expression in mouse oocytes in vivo and in vitro. J Obstet Gynaecol Res 1997; 23:389-97. [PMID: 9311182 DOI: 10.1111/j.1447-0756.1997.tb00863.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To analyze the effects of gonadotropin and ovarian steroid hormones on the gene expression of c-mos in mouse oocytes. METHODS The changes of c-mos messenger RNA (mRNA) levels in oocytes were examined after the administration of pregnant mare's serum gonadotropin (PMSG) in vivo, or after incubation with estrogen and/or progesterone in vitro. Five IU PMSG was injected intraperitoneally to female immature mice, and human chorionic gonadotropin was also injected intraperitoneally 48 hours after the PMSG injection, with or without mating with male mice. The oocytes were collected from follicles or oviducts at 24, 30, 36, 42, 48, 60, 72, and 84 hours after the injection. The RNAs were extracted from 5 oocytes at each time point, and a reverse-transcription polymerase chain reaction using specific primers to c-mos DNA was performed to measure the relative amount of c-mos mRNA. RESULTS The c-mos mRNA in oocytes at 36 hours after the injection was 2.7 times higher than that at 24 hours. The c-mos mRNA level gradually decreased thereafter, and after ovulation the level was only 1/10 of the peak level. When the oocytes that were retrieved 24 hours after PMSG injection were incubated with 800 ng/ml estradiol 17-beta or 600 ng/ml progesterone for 120 minutes, the c-mos gene expression was significantly suppressed or stimulated, respectively, in comparison with the absence of these substances. CONCLUSION Although the regulatory mechanism of c-mos gene expression in oocytes is still unclear because the result obtained from the in vitro study, that estrogen suppressed the c-mos gene expression directly, was inconsistent with the result of the in vivo study, that increases of both c-mos mRNA and estrogen occurred simultaneously with PMSG stimulation in the early phase of preovulatory oocytes, our present study revealed that gonadotropin and steroid hormones might affect c-mos gene expression in mouse oocytes indirectly and/or directly.
Collapse
MESH Headings
- Animals
- Dose-Response Relationship, Drug
- Estradiol/blood
- Estradiol/pharmacology
- Female
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Developmental/genetics
- Genes, mos/drug effects
- Genes, mos/genetics
- Gonadotropins, Equine/pharmacology
- Humans
- Male
- Mice
- Mice, Inbred BALB C
- Oocytes/cytology
- Oocytes/drug effects
- Oocytes/physiology
- Pregnancy
- Progesterone/blood
- Progesterone/pharmacology
- RNA, Messenger/analysis
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- Time Factors
Collapse
Affiliation(s)
- K Hanai
- Department of Obstetrics and Gynecology, Nagoya University School of Medicine, Japan
| | | | | | | | | |
Collapse
|