1
|
Ulengin-Talkish I, Cyert MS. A cellular atlas of calcineurin signaling. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119366. [PMID: 36191737 PMCID: PMC9948804 DOI: 10.1016/j.bbamcr.2022.119366] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
Intracellular Ca2+ signals are temporally controlled and spatially restricted. Signaling occurs adjacent to sites of Ca2+ entry and/or release, where Ca2+-dependent effectors and their substrates co-localize to form signaling microdomains. Here we review signaling by calcineurin, the Ca2+/calmodulin regulated protein phosphatase and target of immunosuppressant drugs, Cyclosporin A and FK506. Although well known for its activation of the adaptive immune response via NFAT dephosphorylation, systematic mapping of human calcineurin substrates and regulators reveals unexpected roles for this versatile phosphatase throughout the cell. We discuss calcineurin function, with an emphasis on where signaling occurs and mechanisms that target calcineurin and its substrates to signaling microdomains, especially binding of cognate short linear peptide motifs (SLiMs). Calcineurin is ubiquitously expressed and regulates events at the plasma membrane, other intracellular membranes, mitochondria, the nuclear pore complex and centrosomes/cilia. Based on our expanding knowledge of localized CN actions, we describe a cellular atlas of Ca2+/calcineurin signaling.
Collapse
Affiliation(s)
| | - Martha S Cyert
- Department of Biology, Stanford University, Stanford, CA 94035, United States.
| |
Collapse
|
2
|
Yadav Y, Dey CS. Ser/Thr phosphatases: One of the key regulators of insulin signaling. Rev Endocr Metab Disord 2022; 23:905-917. [PMID: 35697962 DOI: 10.1007/s11154-022-09727-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/18/2022] [Indexed: 10/18/2022]
Abstract
Protein phosphorylation is an important post-translational modification that regulates several cellular processes including insulin signaling. The evidences so far have already portrayed the importance of balanced actions of kinases and phosphatases in regulating the insulin signaling cascade. Therefore, elucidating the role of both kinases and phosphatases are equally important. Unfortunately, the role of phosphatases is less studied as compared to kinases. Since brain responds to insulin and insulin signaling is reported to be crucial for many neuronal processes, it is important to understand the role of neuronal insulin signaling regulators. Ser/Thr phosphatases seem to play significant roles in regulating neuronal insulin signaling. Therefore, in this review, we discussed the involvement of Ser/Thr phosphatases in regulating insulin signaling and insulin resistance in neuronal system at the backdrop of the same phosphatases in peripheral insulin sensitive tissues.
Collapse
Affiliation(s)
- Yamini Yadav
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Chinmoy Sankar Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India.
| |
Collapse
|
3
|
Ulengin-Talkish I, Parson MAH, Jenkins ML, Roy J, Shih AZL, St-Denis N, Gulyas G, Balla T, Gingras AC, Várnai P, Conibear E, Burke JE, Cyert MS. Palmitoylation targets the calcineurin phosphatase to the phosphatidylinositol 4-kinase complex at the plasma membrane. Nat Commun 2021; 12:6064. [PMID: 34663815 PMCID: PMC8523714 DOI: 10.1038/s41467-021-26326-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/29/2021] [Indexed: 11/25/2022] Open
Abstract
Calcineurin, the conserved protein phosphatase and target of immunosuppressants, is a critical mediator of Ca2+ signaling. Here, to discover calcineurin-regulated processes we examined an understudied isoform, CNAβ1. We show that unlike canonical cytosolic calcineurin, CNAβ1 localizes to the plasma membrane and Golgi due to palmitoylation of its divergent C-terminal tail, which is reversed by the ABHD17A depalmitoylase. Palmitoylation targets CNAβ1 to a distinct set of membrane-associated interactors including the phosphatidylinositol 4-kinase (PI4KA) complex containing EFR3B, PI4KA, TTC7B and FAM126A. Hydrogen-deuterium exchange reveals multiple calcineurin-PI4KA complex contacts, including a calcineurin-binding peptide motif in the disordered tail of FAM126A, which we establish as a calcineurin substrate. Calcineurin inhibitors decrease PI4P production during Gq-coupled GPCR signaling, suggesting that calcineurin dephosphorylates and promotes PI4KA complex activity. In sum, this work discovers a calcineurin-regulated signaling pathway which highlights the PI4KA complex as a regulatory target and reveals that dynamic palmitoylation confers unique localization, substrate specificity and regulation to CNAβ1.
Collapse
Affiliation(s)
| | - Matthew A H Parson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Meredith L Jenkins
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Jagoree Roy
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Alexis Z L Shih
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Nicole St-Denis
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, University of Toronto, Toronto, Canada
- High-Fidelity Science Communications, Summerside, PE, Canada
| | - Gergo Gulyas
- Section on Molecular Signal Transduction, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Tamas Balla
- Section on Molecular Signal Transduction, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, University of Toronto, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Péter Várnai
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Elizabeth Conibear
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
- Department of Biochemistry, The University of British Columbia, Vancouver, BC, Canada
| | - Martha S Cyert
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
4
|
Buddawong T, Asuvapongpatana S, Senapin S, McDougall C, Weerachatyanukul W. Characterization of calcineurin A and B genes in the abalone, Haliotis diversicolor, and their immune response role during bacterial infection. PeerJ 2020; 8:e8868. [PMID: 32296603 PMCID: PMC7151749 DOI: 10.7717/peerj.8868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/09/2020] [Indexed: 11/20/2022] Open
Abstract
Calcineurin (CN) is known to be involved in many biological processes, particularly, the immune response mechanism in many invertebrates. In this study, we characterized both HcCNA and HcCNB genes in Haliotis diversicolor, documented their expression in many tissues, and discerned their function as immune responsive genes against Vibrio parahaemolyticus infection. Similar to other mollusk CNs, the HcCNA gene lacked a proline-rich domain and comprised only one isoform of its catalytic unit, in contrast to CNs found in mammals. HcCNB was highly conserved in both sequence and domain architecture. Quantitative PCR and in situ hybridization revealed that the genes were broadly expressed and were not restricted to tissues traditionally associated with immune function. Upon infection of H. diversicolor with V. parahaemolyticus (a bacteria that causes serious disease in crustaceans and mollusks), both HcCNA and HcCNB genes were highly up-regulated at the early phase of bacterial infection. HcCNB was expressed significantly higher than HcCNA in response to bacterial challenge, suggesting its independent or more rapid response to bacterial infection. Together, the two CN genes are unique in their gene structure (particular HcCNA) and distribution in mollusk species and likely function as immune responsive genes along with many other genes that are enhanced in the early phase of V. parahaemolyticus infection in abalone.
Collapse
Affiliation(s)
- Tiranan Buddawong
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, Thailand
| | - Somluk Asuvapongpatana
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, Thailand
| | - Saengchan Senapin
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Ratchathewi, Bangkok, Thailand.,National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Klongluang, Pathumthani, Thailand
| | - Carmel McDougall
- Australian Rivers Institute, Griffith University, Nathan, Queensland, Australia
| | | |
Collapse
|
5
|
Yu H, He L, Li ZQ, Li N, Ou-Yang YY, Huang GH. Altering of host larval (Spodoptera exigua) calcineurin activity in response to ascovirus infection. PEST MANAGEMENT SCIENCE 2020; 76:1048-1059. [PMID: 31515935 DOI: 10.1002/ps.5615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Calcineurin (CaN) is involved in numerous cellular processes and Ca2+ -dependent signal transduction pathways. According to our previous transcriptome studies, thousands of host larval (Spodoptera exigua) transcripts were downregulated after the infection of Heliothis virescent ascovirus 3h (HvAV-3h), while the Spodoptera exigua calcineurin genes (SeCaNs) were significantly upregulated. To understand the regulation of SeCaNs in S. exigua larvae during the infection of HvAV-3h, the functions of CaN subunit A (SeCaN-SubA) and CaN binding protein (SeCaN-BP) were analysed. RESULTS The in vitro assays indicated that the bacterial expressed SeCaN-SubA is an acid phosphatase, but no phosphatase activity was detected with the purified SeCaN-BP. The transcription level of SeCaN-SubA was upregulated after HvAV-3h infection and the CaN activity was significantly increased after HvAV-3h infection in S. exigua larvae. Interestingly, the SeCaN-BP transcripts were only detectable in the HvAV-3h infected larvae. Further immunoblotting results consistently agree with those obtained by qPCR, indicating that the infection of HvAV-3h causes the upregulated expression of SeCaN-SubA and the appearance of SeCaN-BP. An interaction between the cleaved SeCaN-SubA and SeCaN-BP was detected by co-immunoprecipitation assays, and the expression of SeCaN-BP in Spodoptera frugiperda-9 (Sf9) cells can help to increase the CaN activity of SeCaN-SubA. Further investigations with CaN inhibitors suggested that HvAV-3h. Further investigations with CaN inhibitors suggested that the inhibition on host larval CaN activity can also inhibit the viral replication of HvAV-3h. CONCLUSION The increase in CaN activity caused by HvAV-3h infection might be due to the upregulation of SeCaN-SubA and the induced expression of SeCaN-BP, and increased CaN activity is essential for ascoviral replication. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huan Yu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, P.R. China
- College of Plant Protection, Hunan Agricultural University, Changsha, P.R. China
| | - Lei He
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, P.R. China
- College of Plant Protection, Hunan Agricultural University, Changsha, P.R. China
| | - Zi-Qi Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, P.R. China
- College of Plant Protection, Hunan Agricultural University, Changsha, P.R. China
| | - Ni Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, P.R. China
- College of Plant Protection, Hunan Agricultural University, Changsha, P.R. China
| | - Yi-Yi Ou-Yang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, P.R. China
- College of Plant Protection, Hunan Agricultural University, Changsha, P.R. China
| | - Guo-Hua Huang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, P.R. China
- College of Plant Protection, Hunan Agricultural University, Changsha, P.R. China
| |
Collapse
|
6
|
Tang Z, Yang Y, Zhang J, Fu W, Lin Y, Su G, Li Y, Meng W, Li X, Xie X. Quantitative Proteomic Analysis and Evaluation of the Potential Prognostic Biomarkers in Cholangiocarcinoma. J Cancer 2019; 10:3985-3999. [PMID: 31417643 DOI: 10.7150/jca.29354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 05/28/2019] [Indexed: 12/13/2022] Open
Abstract
Background & Aims: Cholangiocarcinoma (CCA) patients have poor outcomes since the late diagnosis limits the benefits of surgery therapy and curative treatment options. The present study was designed to screen the biomarkers for CCA patients. Methods: Quantitative iTRAQ proteomic analysis was used to identify differentially expressed proteins between CCA and pericarcineous tissue. We examined the expression profile of PRDX2, BGN, LUM, and PPP3CA in CCA tissue using immunohistochemistry. We further investigated the correlation between PPP3CA expression and the survival of CCA patients (n=91). Results: 2,886 confidential proteins were identified by using the iTRAQ technique, 233 of which were differentially expressed. PRDX2, BGN, PPP3CA, and LUM were expressed in CCA tissue, whereas they were not expressed in choledocal cyst tissue except for LUM. PPP3CA was expressed in the cytoplasm of carcinoma cells in 22 cases (24.2%) of 91 CCA patients. Patients with PPP3CA-positive expression showed a significantly shorter survival period than did non-expressing patients (P = 0.030). The univariate analysis showed that tumor size (P = 0.002), vascular invasion (P = 0.001), histological grading (P = 0.011), and PPP3CA expression (P = 0.033) were statistically significant risk factors affecting the prognosis of CCA patients. The multivariate analysis demonstrated PPP3CA expression (P = 0.009) and vascular invasion (P = 0.012) were statistically significant independent risk factors of CCA patients. Conclusions: The results suggested that the expression of PPP3CA in CCA patients is a new independent factor for poor prognosis and a useful prognostic predictor for patients with CCA.
Collapse
Affiliation(s)
- Zengwei Tang
- The First Clinical Medical School of Lanzhou University, Lanzhou 730000, China
| | - Yuan Yang
- The First Clinical Medical School of Lanzhou University, Lanzhou 730000, China
| | - Jinduo Zhang
- The First Clinical Medical School of Lanzhou University, Lanzhou 730000, China.,Department of Special Minimally Invasive Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Wenkang Fu
- The First Clinical Medical School of Lanzhou University, Lanzhou 730000, China
| | - Yanyan Lin
- Department of Special Minimally Invasive Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Gang Su
- School of Basic Medical Sciences, Institute of Genetics, Lanzhou University, Lanzhou 730000, China
| | - Yan Li
- Cleveland Clinic, Department of Inflammation and Immunity, Cleveland OHIO 44195, USA
| | - Wenbo Meng
- The First Clinical Medical School of Lanzhou University, Lanzhou 730000, China.,Department of Special Minimally Invasive Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Xun Li
- The First Clinical Medical School of Lanzhou University, Lanzhou 730000, China.,The second department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Xiaodong Xie
- School of Basic Medical Sciences, Institute of Genetics, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
7
|
Francis CE, Bai Y. Differential expression of cyclosporine A-Induced calcineurin isoform-specific matrix metalloproteinase 9 (MMP-9) in renal fibroblasts. Biochem Biophys Res Commun 2018; 503:2549-2554. [PMID: 30007437 DOI: 10.1016/j.bbrc.2018.07.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 01/19/2023]
Abstract
Long-term treatment with the potent immunosuppressive drug cyclosporine A (CsA) results in chronic nephrotoxicity. Its immunosuppressive properties are due to the inhibition of the calcium- and calmodulin-dependent phosphatase protein calcineurin A (CnA) which has three catalytic isoforms. Of those, the CnAα and β isoforms are ubiquitously expressed, particularly in the kidney. Additionally, chronic nephrotoxicity has been associated with an imbalance of extracellular matrix (ECM) synthesis and degradation resulting in an accumulation of ECM molecules. This study evaluates whether the expressions of matrix metalloproteinases (MMP-2 and MMP-9) induced by CsA are calcineurin isoform specific. Wild-type (WT), CnAα knockout (CnAα-/-) and CnAβ knockout (CnAβ-/-) kidney fibroblast cell lines (an in vitro innovative tool that was previously created in our lab) were treated with CsA at 10 ng/ml for 48 h. ELISA analysis demonstrated that the CsA-induced secretion profile of MMP-9 was highest in CnAα-/- cells and lowest in CnAβ-/- cells vs. WT cells. In contrast, CsA did not induce an increase in MMP-2 protein levels in WT, CnAα-/- nor CnAβ-/- renal fibroblasts. These results indicate that MMP-9 secretion is CnA-isoform specific, i.e. the CnAβ isoform contributes to the CsA-induced upregulation of MMP-9 while the CnAα does not. As such, understanding the role of calcineurin A isoforms in the regulation of the homeostasis of ECM degradation in the kidney after long-term CsA treatment needs to be further investigated.
Collapse
Affiliation(s)
- Cynthia E Francis
- Department of Pharmaceutical Science, School of Pharmacy, Philadelphia College of Osteopathic Medicine, Suwanee, GA, USA.
| | - Yun Bai
- Department of Pharmaceutical Science, School of Pharmacy, Philadelphia College of Osteopathic Medicine, Suwanee, GA, USA.
| |
Collapse
|
8
|
Bond R, Ly N, Cyert MS. The unique C terminus of the calcineurin isoform CNAβ1 confers non-canonical regulation of enzyme activity by Ca 2+ and calmodulin. J Biol Chem 2017; 292:16709-16721. [PMID: 28842480 PMCID: PMC5633132 DOI: 10.1074/jbc.m117.795146] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/17/2017] [Indexed: 11/06/2022] Open
Abstract
Calcineurin, the conserved Ca2+/calmodulin-regulated phosphatase and target of immunosuppressants, plays important roles in the circulatory, nervous, and immune systems. Calcineurin activity strictly depends on Ca2+ and Ca2+-bound calmodulin (Ca2+/CaM) to relieve autoinhibition of the catalytic subunit (CNA) by its C terminus. The C terminus contains two regulatory domains, the autoinhibitory domain (AID) and calmodulin-binding domain (CBD), which block the catalytic center and a conserved substrate-binding groove, respectively. However, this mechanism cannot apply to CNAβ1, an atypical CNA isoform generated by alternative 3'-end processing, whose divergent C terminus shares the CBD common to all isoforms, but lacks the AID. We present the first biochemical characterization of CNAβ1, which is ubiquitously expressed and conserved in vertebrates. We identify a distinct C-terminal autoinhibitory four-residue sequence in CNAβ1, 462LAVP465, which competitively inhibits substrate dephosphorylation. In vitro and cell-based assays revealed that the CNAβ1-containing holoenzyme, CNβ1, is autoinhibited at a single site by either of two inhibitory regions, CBD and LAVP, which block substrate access to the substrate-binding groove. We found that the autoinhibitory segment (AIS), located within the CBD, is progressively removed by Ca2+ and Ca2+/CaM, whereas LAVP remains engaged. This regulatory strategy conferred higher basal and Ca2+-dependent activity to CNβ1, decreasing its dependence on CaM, but also limited maximal enzyme activity through persistence of LAVP-mediated autoinhibiton during Ca2+/CaM stimulation. These regulatory properties may underlie observed differences between the biological activities of CNβ1 and canonical CNβ2. Our insights lay the groundwork for further studies of CNβ1, whose physiological substrates are currently unknown.
Collapse
Affiliation(s)
- Rachel Bond
- From the Department of Biology, Stanford University, Stanford, California 94305-5020
| | - Nina Ly
- From the Department of Biology, Stanford University, Stanford, California 94305-5020
| | - Martha S Cyert
- From the Department of Biology, Stanford University, Stanford, California 94305-5020
| |
Collapse
|
9
|
Gómez-Salinero JM, López-Olañeta MM, Ortiz-Sánchez P, Larrasa-Alonso J, Gatto A, Felkin LE, Barton PJR, Navarro-Lérida I, Del Pozo MÁ, García-Pavía P, Sundararaman B, Giovinazo G, Yeo GW, Lara-Pezzi E. The Calcineurin Variant CnAβ1 Controls Mouse Embryonic Stem Cell Differentiation by Directing mTORC2 Membrane Localization and Activation. Cell Chem Biol 2016; 23:1372-1382. [PMID: 27746127 DOI: 10.1016/j.chembiol.2016.09.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 08/28/2016] [Accepted: 09/02/2016] [Indexed: 12/11/2022]
Abstract
Embryonic stem cells (ESC) have the potential to generate all the cell lineages that form the body. However, the molecular mechanisms underlying ESC differentiation and especially the role of alternative splicing in this process remain poorly understood. Here, we show that the alternative splicing regulator MBNL1 promotes generation of the atypical calcineurin Aβ variant CnAβ1 in mouse ESCs (mESC). CnAβ1 has a unique C-terminal domain that drives its localization mainly to the Golgi apparatus by interacting with Cog8. CnAβ1 regulates the intracellular localization and activation of the mTORC2 complex. CnAβ1 knockdown results in delocalization of mTORC2 from the membrane to the cytoplasm, inactivation of the AKT/GSK3β/β-catenin signaling pathway, and defective mesoderm specification. In summary, here we unveil the structural basis for the mechanism of action of CnAβ1 and its role in the differentiation of mESCs to the mesodermal lineage.
Collapse
Affiliation(s)
- Jesús M Gómez-Salinero
- Myocardial Pathophysiology Program, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Marina M López-Olañeta
- Myocardial Pathophysiology Program, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Paula Ortiz-Sánchez
- Myocardial Pathophysiology Program, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Javier Larrasa-Alonso
- Myocardial Pathophysiology Program, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Alberto Gatto
- Myocardial Pathophysiology Program, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Leanne E Felkin
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Paul J R Barton
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK; NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London SW7 2AZ, UK
| | - Inmaculada Navarro-Lérida
- Vascular Pathophysiology Program, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Miguel Ángel Del Pozo
- Vascular Pathophysiology Program, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Pablo García-Pavía
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro Majadahonda, 28222 Madrid, Spain
| | - Balaji Sundararaman
- Sanford Consortium for Regenerative Medicine, University of California San Diego (UCSD), La Jolla, CA 92037, USA
| | - Giovanna Giovinazo
- Pluripotent Cell Technology Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Gene W Yeo
- Sanford Consortium for Regenerative Medicine, University of California San Diego (UCSD), La Jolla, CA 92037, USA
| | - Enrique Lara-Pezzi
- Myocardial Pathophysiology Program, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain; National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
10
|
Gabrovska PN, Smith RA, Haupt LM, Griffiths LR. Investigation of two Wnt signalling pathway single nucleotide polymorphisms in a breast cancer-affected Australian population. Twin Res Hum Genet 2012; 14:562-7. [PMID: 22506312 DOI: 10.1375/twin.14.6.562] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In the mammary gland, Wnt signals are strongly implicated in initial development of the mammary rudiments and in the ductal branching and alveolar morphogenesis that occurs during pregnancy. Previously, we identified two Wnt signaling pathway-implicated genes, PPP3CA and MARK4, as having a role in more aggressive and potentially metastatic breast tumors. In this study, we examined two SNPs within PPP3CA and MARK4 in an Australian case-control study population for a potential role in human breast cancers. 182 cases and 180 controls were successfully genotyped for the PPP3CA SNP (rs2850328) and 182 cases and 177 controls were successfully genotyped for the MARK4 SNP (rs2395) using High Resolution Melt (HRM) analysis. Genotypes of randomly selected samples for both SNPs were validated by dye terminator sequencing. Chi-square tests were performed to determine any significant differences in the genotype and allele frequencies between the cases and controls. Chi-square analysis showed no statistically significant difference (p > .05) for genotype frequencies between cases and controls for rs2850328 (chi2 = 1.2, p = .5476) or rs2395 (chi2 = .3, p = .8608). Similarly, no statistical difference was observed for allele frequencies for rs2850328 (chi2 = .68, p = .4108) or rs2395 (chi2 = .02, p = .893). Even though an association of the polymorphisms rs2850328 and rs2395 and breast cancer was not detected in our case-control study population, other variants within the PPP3CA and MARK4 genes may still be associated with breast cancer, as both genes are implicated with processes involved in the disease as well as their mutual partaking in the Wnt signaling pathway.
Collapse
Affiliation(s)
- Plamena N Gabrovska
- Genomics Research Centre, Griffith Health Institute, Griffith University, Australia
| | | | | | | |
Collapse
|
11
|
Palgrave CJ, Gilmour L, Lowden CS, Lillico SG, Mellencamp MA, Whitelaw CBA. Species-specific variation in RELA underlies differences in NF-κB activity: a potential role in African swine fever pathogenesis. J Virol 2011; 85:6008-14. [PMID: 21450812 PMCID: PMC3126315 DOI: 10.1128/jvi.00331-11] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 03/15/2011] [Indexed: 12/22/2022] Open
Abstract
African swine fever virus (ASFV) is a highly infectious disease of domestic pigs, with virulent isolates causing a rapidly fatal hemorrhagic fever. In contrast, the porcine species endogenous to Africa tolerate infection. The ability of the virus to persist in one host while killing another genetically related host implies that disease severity may be, in part, modulated by host genetic variation. To complement transcription profiling approaches to identify the underlying genetic variation in the host response to ASFV, we have taken a candidate gene approach based on known signaling pathways that interact with the virus-encoded immunomodulatory protein A238L. We report the sequencing of these genes from different pig species and the identification and initial in vitro characterization of polymorphic variation in RELA (p65; v-rel reticuloendotheliosis viral oncogene homolog A), the major component of the NF-κB transcription factor. Warthog RELA and domestic pig RELA differ at three amino acids. Transient cell transfection assays indicate that this variation is reflected in reduced NF-κB activity in vitro for warthog RELA but not for domestic pig RELA. Induction assays indicate that warthog RELA and domestic pig RELA are elevated essentially to the same extent. Finally, mutational studies indicate that the S531P site conveys the majority of the functional variation between warthog RELA and domestic pig RELA. We propose that the variation in RELA identified between the warthog and domestic pig has the potential to underlie the difference between tolerance and rapid death upon ASFV infection.
Collapse
Affiliation(s)
- Christopher J. Palgrave
- Veterinary Pathology Unit, Division of Veterinary Clinical Sciences, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Veterinary Centre, Roslin, Midlothian EH25 9RG, United Kingdom
- Division of Developmental Biology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, United Kingdom
| | - Linzi Gilmour
- Division of Developmental Biology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, United Kingdom
| | - C. Stewart Lowden
- Veterinary Health Research Pty Ltd., Trevenna Rd., West Armidale, NSW 2350, Australia
| | - Simon G. Lillico
- Division of Developmental Biology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, United Kingdom
| | | | - C. Bruce A. Whitelaw
- Division of Developmental Biology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, United Kingdom
| |
Collapse
|
12
|
Involvement of calcineurin in ischemic myocardial damage. Int J Angiol 2011. [DOI: 10.1007/s00547-005-2005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
13
|
Fujimura A, Michiue H, Nishiki TI, Ohmori I, Wei FY, Matsui H, Tomizawa K. Expression of a constitutively active calcineurin encoded by an intron-retaining mRNA in follicular keratinocytes. PLoS One 2011; 6:e17685. [PMID: 21423799 PMCID: PMC3056713 DOI: 10.1371/journal.pone.0017685] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 02/07/2011] [Indexed: 11/18/2022] Open
Abstract
Hair growth is a highly regulated cyclical process. Immunosuppressive immunophilin ligands such as cyclosporin A (CsA) and FK506 are known as potent hair growth modulatory agents in rodents and humans that induce active hair growth and inhibit hair follicle regression. The immunosuppressive effectiveness of these drugs has been generally attributed to inhibition of T cell activation through well-characterized pathways. Specifically, CsA and FK506 bind to intracellular proteins, principally cyclophilin A and FKBP12, respectively, and thereby inhibit the phosphatase calcineurin (Cn). The calcineurin (Cn)/NFAT pathway has an important, but poorly understood, role in the regulation of hair follicle development. Here we show that a novel-splicing variant of calcineurin Aß CnAß-FK, which is encoded by an intron-retaining mRNA and is deficient in the autoinhibitory domain, is predominantly expressed in mature follicular keratinocytes but not in the proliferating keratinocytes of rodents. CnAß-FK was weakly sensitive to Ca(2+) and dephosphorylated NFATc2 under low Ca(2+) levels in keratinocytes. Inhibition of Cn/NFAT induced hair growth in nude mice. Cyclin G2 was identified as a novel target of the Cn/NFATc2 pathway and its expression in follicular keratinocytes was reduced by inhibition of Cn/NFAT. Overexpression of cyclin G2 arrested the cell cycle in follicular keratinocytes in vitro and the Cn inhibitor, cyclosporin A, inhibited nuclear localization of NFATc2, resulting in decreased cyclin G2 expression in follicular keratinocytes of rats in vivo. We therefore suggest that the calcineurin/NFAT pathway has a unique regulatory role in hair follicle development.
Collapse
Affiliation(s)
- Atsushi Fujimura
- Department of Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroyuki Michiue
- Department of Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tei-ichi Nishiki
- Department of Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Iori Ohmori
- Department of Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Fan-Yan Wei
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hideki Matsui
- Department of Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- PREST, Japan Science Technology Agency (JST), Kawaguchi, Japan
- * E-mail:
| |
Collapse
|
14
|
Abstract
It has been a long journey since tautomycin (TTM) was isolated in 1987 and the discovery that it inhibited protein phosphatase 1 (PP1) more strongly than PP2A until finally the cocrystal structure of TTM and PP1 was presented early in 2009. The fact that TTM shows preference to inhibit PP1 over PP2A makes this compound unique among the known PP1 and PP2A inhibitors. A number of groups were involved in work aiming to unravel TTM's interactions with PP1 and by doing so hoping to disentangle the secrets as to why TTM is a better inhibitor of PP1 than PP2A. This Focus Review looks back at the work conducted with TTM in order to establish its point of interaction with PP1 prior to X-ray structure. Finally the conclusions before the X-ray structure are compared with the real situation.
Collapse
Affiliation(s)
- Magne O Sydnes
- Laboratory of Organic Chemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | | |
Collapse
|
15
|
Chiocco MJ, Zhu X, Walther D, Pletnikova O, Troncoso JC, Uhl GR, Liu QR. Fine mapping of calcineurin (PPP3CA) gene reveals novel alternative splicing patterns, association of 5'UTR trinucleotide repeat with addiction vulnerability, and differential isoform expression in Alzheimer's disease. Subst Use Misuse 2010; 45:1809-26. [PMID: 20590401 PMCID: PMC3031160 DOI: 10.3109/10826084.2010.482449] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Fine mapping of calcineurin (PPP3CA) gene identified single nucleotide polymorphisms (SNPs) and simple sequence repeat polymorphisms that are associated with addiction vulnerability. A trinucleotide repeat marker, located in the 5'untranslated region (5'UTR) of the PPP3CA mRNA, exhibited significantly different genotype and allele frequencies between abusers and controls in the NIDA African-American sample. The polymorphism showed allelic-specific expression in mRNA extracted from postmortem brain specimens. Novel alternatively spliced isoforms of PPP3CA were identified and their expressions were found altered in brain regions of postmortem Alzheimer's disease patients. These data underscore the importance of calcineurin gene in the molecular mechanism of addiction and Alzheimer's diseases.
Collapse
Affiliation(s)
- Matthew J Chiocco
- Molecular Neurobiology Branch, NIH-IRP, NIDA, DHHS, Baltimore, MD 21224, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Bales JW, Ma X, Yan HQ, Jenkins LW, Dixon CE. Regional calcineurin subunit B isoform expression in rat hippocampus following a traumatic brain injury. Brain Res 2010; 1358:211-20. [PMID: 20713027 DOI: 10.1016/j.brainres.2010.08.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 08/09/2010] [Accepted: 08/09/2010] [Indexed: 02/02/2023]
Abstract
Calcineurin subunit isoforms are implicated in long term potentiation, long term depression, and structural plasticity. Calcineurin inhibitors benefit axonal damage, cellular dysfunction, and cognitive outcomes in animal models of traumatic brain injury (TBI). Distribution of the catalytic calcineurin A subunit is altered and calcineurin activity increased following fluid percussion injury. Alterations in calcineurin subunit A isoform distribution within the hippocampus also occur post controlled cortical impact (CCI) demonstrating a reduction in catalytic subunit distribution in CA1-2 dendritic fields. Furthermore the effect of TBI on the regulatory subunit, calcineurin B, is unknown. Understanding the role of both subunits is necessary to effectively target alterations in calcineurin signaling as current calcineurin inhibitors, such as cyclosporin A and FK-506, rely upon binding sites on both subunits for complete inhibition. The effect of moderate CCI on the expression and distribution of calcineurin B isoforms within the hippocampus was examined at 2h and 2weeks post injury. Calcineurin B isoforms showed increased expression throughout the CA1 and CA2 while there was a decrease in expression within the ipsilateral dentate gyrus. Alterations in CnB isoform expression within the CA1, CA1-2, and dentate gyrus have significant implications for persistent hippocampal dysfunction following TBI. Regional changes in regulatory subunit expression may alter the effect of calcineurin inhibitors regionally following a traumatic brain injury.
Collapse
Affiliation(s)
- James W Bales
- Brain Trauma Research Center, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | | | |
Collapse
|
17
|
The functional role of calcineurin in hypertrophy, regeneration, and disorders of skeletal muscle. J Biomed Biotechnol 2010; 2010:721219. [PMID: 20379369 PMCID: PMC2850156 DOI: 10.1155/2010/721219] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 02/09/2010] [Indexed: 12/27/2022] Open
Abstract
Skeletal muscle uses calcium as a second messenger to respond and adapt to environmental stimuli. Elevations in intracellular calcium levels activate calcineurin, a serine/threonine phosphatase, resulting in the expression of a set of genes involved in the maintenance, growth, and remodeling of skeletal muscle. In this review, we discuss the effects of calcineurin activity on hypertrophy, regeneration, and disorders of skeletal muscle. Calcineurin is a potent regulator of muscle remodeling, enhancing the differentiation through upregulation of myogenin or MEF2A and downregulation of the Id1 family and myostatin. Foxo may also be a downstream candidate for a calcineurin signaling molecule during muscle regeneration. The strategy of controlling the amount of calcineurin may be effective for the treatment of muscular disorders such as DMD, UCMD, and LGMD. Activation of calcineurin produces muscular hypertrophy of the slow-twitch soleus muscle but not fast-twitch muscles.
Collapse
|
18
|
Kilka S, Erdmann F, Migdoll A, Fischer G, Weiwad M. The proline-rich N-terminal sequence of calcineurin Abeta determines substrate binding. Biochemistry 2009; 48:1900-10. [PMID: 19154138 DOI: 10.1021/bi8019355] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three different genes of catalytic subunit A of the Ca(2+)-dependent serine/threonine protein phosphatase calcineurin (CaN) are encoded in the human genome forming heterodimers with regulatory subunit B. Even though physiological roles of CaN have been investigated extensively, less is known about the specific functions of the different catalytic isoforms. In this study, all human CaN holoenzymes containing either the alpha, beta, or gamma isoform of the catalytic subunit (CaN alpha, beta, or gamma, respectively) were expressed for the first time. Comparative kinetic analysis of the dephosphorylation of five specific CaN substrates provided evidence that the distinct isoforms of the catalytic subunit confer substrate specificities to the holoenzymes. CaN alpha dephosphorylates the transcription factor Elk-1 with 7- and 2-fold higher catalytic efficiencies than the beta and gamma isoforms, respectively. CaN gamma exhibits the highest k(cat)/K(m) value for DARPP-32, whereas the catalytic efficiencies for the dephosphorylation of NFAT and RII peptide were 3- and 5-fold lower, respectively, when compared with the other isoforms. Elk-1 and NFAT reporter gene activity measurements revealed even more pronounced substrate preferences of CaNA isoforms. Moreover, kinetic analysis demonstrated that CaN beta exhibits for all tested protein substrates the lowest K(m) values. Enzymatic characterization of the CaN beta(P14G/P18G) variant as well as the N-terminal truncated form CaN beta(22-524) revealed that the proline-rich sequence of CaN beta is involved in substrate recognition. CaN beta(22-524) exhibits an at least 4-fold decreased substrate affinity and a 5-fold increased turnover number. Since this study demonstrates that all CaN isoforms display the same cytoplasmic subcellular distribution and are expressed in each tested cell line, differences in substrate specificities may determine specific physiological functions of the distinct isoforms.
Collapse
Affiliation(s)
- Susann Kilka
- Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, D-06120 Halle/Saale, Germany
| | | | | | | | | |
Collapse
|
19
|
Li C, Huang J, Li S, Fan W, Hu Y, Wang Q, Zhu F, Xie L, Zhang R. Cloning, characterization and immunolocalization of two subunits of calcineurin from pearl oyster (Pinctada fucata). Comp Biochem Physiol B Biochem Mol Biol 2009; 153:43-53. [DOI: 10.1016/j.cbpb.2009.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 01/13/2009] [Accepted: 01/13/2009] [Indexed: 01/11/2023]
|
20
|
Cramer RA, Perfect BZ, Pinchai N, Park S, Perlin DS, Asfaw YG, Heitman J, Perfect JR, Steinbach WJ. Calcineurin target CrzA regulates conidial germination, hyphal growth, and pathogenesis of Aspergillus fumigatus. EUKARYOTIC CELL 2008; 7:1085-97. [PMID: 18456861 PMCID: PMC2446674 DOI: 10.1128/ec.00086-08] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2008] [Accepted: 04/17/2008] [Indexed: 11/20/2022]
Abstract
The calcineurin pathway is a critical signal transduction pathway in fungi that mediates growth, morphology, stress responses, and pathogenicity. The importance of the calcineurin pathway in fungal physiology creates an opportunity for the development of new antifungal therapies that target this critical signaling pathway. In this study, we examined the role of the zinc finger transcription factor Crz1 homolog (CrzA) in the physiology and pathogenicity of the opportunistic human fungal pathogen Aspergillus fumigatus. Genetic replacement of the crzA locus in A. fumigatus resulted in a strain with significant defects in conidial germination, polarized hyphal growth, cell wall structure, and asexual development that are similar to but with differences from defects seen in the A. fumigatus DeltacnaA (calcineurin A) strain. Like the DeltacnaA strain, the DeltacrzA strain was incapable of causing disease in an experimental persistently neutropenic inhalational murine model of invasive pulmonary aspergillosis. Our results suggest that CrzA is an important downstream effector of calcineurin that controls morphology in A. fumigatus, but additional downstream effectors that mediate calcineurin signal transduction are likely present in this opportunistic fungal pathogen. In addition, the importance of CrzA to the production of disease is critical, and thus CrzA is an attractive fungus-specific antifungal target for the treatment of invasive aspergillosis.
Collapse
Affiliation(s)
- Robert A Cramer
- Duke University Medical Center, Box 3499, Pediatric Infectious Diseases, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lara-Pezzi E, Winn N, Paul A, McCullagh K, Slominsky E, Santini MP, Mourkioti F, Sarathchandra P, Fukushima S, Suzuki K, Rosenthal N. A naturally occurring calcineurin variant inhibits FoxO activity and enhances skeletal muscle regeneration. J Cell Biol 2007; 179:1205-18. [PMID: 18086917 PMCID: PMC2140042 DOI: 10.1083/jcb.200704179] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 11/19/2007] [Indexed: 11/22/2022] Open
Abstract
The calcium-activated phosphatase calcineurin (Cn) transduces physiological signals through intracellular pathways to influence the expression of specific genes. Here, we characterize a naturally occurring splicing variant of the CnAbeta catalytic subunit (CnAbeta1) in which the autoinhibitory domain that controls enzyme activation is replaced with a unique C-terminal region. The CnAbeta1 enzyme is constitutively active and dephosphorylates its NFAT target in a cyclosporine-resistant manner. CnAbeta1 is highly expressed in proliferating myoblasts and regenerating skeletal muscle fibers. In myoblasts, CnAbeta1 knockdown activates FoxO-regulated genes, reduces proliferation, and induces myoblast differentiation. Conversely, CnAbeta1 overexpression inhibits FoxO and prevents myotube atrophy. Supplemental CnAbeta1 transgene expression in skeletal muscle leads to enhanced regeneration, reduced scar formation, and accelerated resolution of inflammation. This unique mode of action distinguishes the CnAbeta1 isoform as a candidate for interventional strategies in muscle wasting treatment.
Collapse
Affiliation(s)
- Enrique Lara-Pezzi
- European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Campus Buzzatti-Traverso, Monterotondo-Scalo, 00016 Rome, Italy
- Harefield Heart Science Centre, Imperial College London, Middlesex UB9 6JH, England, UK
| | - Nadine Winn
- European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Campus Buzzatti-Traverso, Monterotondo-Scalo, 00016 Rome, Italy
| | - Angelika Paul
- European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Campus Buzzatti-Traverso, Monterotondo-Scalo, 00016 Rome, Italy
| | - Karl McCullagh
- MRC Functional Genetics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, England, UK
| | - Esfir Slominsky
- European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Campus Buzzatti-Traverso, Monterotondo-Scalo, 00016 Rome, Italy
| | - Maria Paola Santini
- European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Campus Buzzatti-Traverso, Monterotondo-Scalo, 00016 Rome, Italy
- Harefield Heart Science Centre, Imperial College London, Middlesex UB9 6JH, England, UK
| | - Foteini Mourkioti
- European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Campus Buzzatti-Traverso, Monterotondo-Scalo, 00016 Rome, Italy
| | - Padmini Sarathchandra
- Harefield Heart Science Centre, Imperial College London, Middlesex UB9 6JH, England, UK
| | - Satsuki Fukushima
- Harefield Heart Science Centre, Imperial College London, Middlesex UB9 6JH, England, UK
| | - Ken Suzuki
- Harefield Heart Science Centre, Imperial College London, Middlesex UB9 6JH, England, UK
| | - Nadia Rosenthal
- European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Campus Buzzatti-Traverso, Monterotondo-Scalo, 00016 Rome, Italy
- Harefield Heart Science Centre, Imperial College London, Middlesex UB9 6JH, England, UK
| |
Collapse
|
22
|
Liu YL, Fann CSJ, Liu CM, Chang CC, Yang WC, Hung SI, Yu SL, Hwang TJ, Hsieh MH, Liu CC, Tsuang MM, Wu JY, Jou YS, Faraone SV, Tsuang MT, Chen WJ, Hwu HG. More evidence supports the association of PPP3CC with schizophrenia. Mol Psychiatry 2007; 12:966-74. [PMID: 17339875 DOI: 10.1038/sj.mp.4001977] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Calcineurin is a calcium/calmodulin-dependent protein phosphatase composed of two subunits, a regulatory subunit of calcineurin B (CNB) and a catalytic subunit of calcineurin A (CNA). PPP3CC is the gamma isoform of CNA located at the chromosome 8p21.3 region. To evaluate the association between PPP3CC and schizophrenia in the Taiwanese population, 10 single nucleotide polymorphism (SNP) markers across the gene were genotyped by the method of MALDI-TOF in 218 schizophrenia families with at least two affected siblings. One SNP (rs2272080) located around the exon 1 untranslated region was nominally associated with schizophrenia (P=0.024) and significantly associated with the expression of PPP3CC in lymphoblast cell line; the TT and TG genotype had significantly higher relative expression levels than the GG genotype (P=0.0012 and 0.015, respectively). In further endophenotype stratification, the single locus of rs2272080 and the haplotypes of both two-SNP haplotype (rs7833266-rs2272080) and seven-SNP haplotype (rs2461491-rs2469758-rs2461489-rs2469770-rs2449340-rs1482337-rs2252471) showed significant associations with the subgroup of schizophrenia with deficits of the sustained attention as tested by the continuous performance test (CPT, P<0.05) and the executive functioning as tested by the Wisconsin Card Sorting Test (WCST, P<0.05). The results suggest that PPP3CC gene may be a true susceptibility gene for schizophrenia.
Collapse
Affiliation(s)
- Y L Liu
- Division of Mental Health and Substance Abuse Research, National Health Research Institutes, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yoo SA, Park BH, Yoon HJ, Lee JY, Song JH, Kim HA, Cho CS, Kim WU. Calcineurin modulates the catabolic and anabolic activity of chondrocytes and participates in the progression of experimental osteoarthritis. ACTA ACUST UNITED AC 2007; 56:2299-311. [PMID: 17599750 DOI: 10.1002/art.22731] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVE To determine whether intracellular calcineurin (Cn), a calcium-activated phosphatase, regulates the anabolic and catabolic activities of chondrocytes, and is a potential target in the treatment of osteoarthritis (OA). METHODS CnA expression was examined in cartilage tissue samples and cultured chondrocytes from OA patients, using immunohistochemistry and Western blot analysis, respectively. Concentrations of matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases 1 (TIMP-1) in the culture supernatants were determined using enzyme-linked immunosorbent assay. Levels of nitric oxide (NO) and type II collagen (CII) were measured using the Griess reaction and Western blot analysis, respectively. In addition, the pathologic role of Cn was examined in an in vivo model in which experimental OA was induced in mice by injecting type VII collagenase into the knee joints. RESULTS CnA was highly expressed in the chondrocytes of lesional OA cartilage. Cyclosporin A (CSA), a Cn inhibitor, inhibited spontaneous and interleukin-1beta-stimulated production of NO, MMP-1, and MMP-3 in chondrocytes. However, CSA increased the levels of production of CII, TIMP-1, and transforming growth factor beta. Similar changes in MMP-1, NO, and CII expression levels in chondrocytes were observed after the targeted inhibition of Cn by overexpression of calcineurin binding protein 1, a natural Cn antagonist. Moreover, in the mouse model, animals treated with CSA showed a significant decrease in both the extent and the severity of cartilage damage, which were assessed macroscopically and microscopically, compared with vehicle-treated animals. CONCLUSION These results suggest that CnA is critically involved in the catabolic and anabolic activities of chondrocytes as well as in the progression of experimental OA. Targeted inhibition of CnA may be an effective treatment strategy for OA.
Collapse
Affiliation(s)
- Seung-Ah Yoo
- Catholic University of Korea, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
24
|
FLIRI HANS, BAUMANN GOETZ, ENZ ALBERT, KALLEN JUERG, LUYTEN MARCEL, MIKOL VINCENT, MOVVA RAO, QUESNIAUX VALERIE, SCHREIER MAX, WALKINSHAW MALCOLM, WENGER ROLAND, ZENKE GERHARD, ZURINI MAURO. Cyclosporins. Ann N Y Acad Sci 2006. [DOI: 10.1111/j.1749-6632.1993.tb17141.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Yoo SA, Park BH, Park GS, Koh HS, Lee MS, Ryu SH, Miyazawa K, Park SH, Cho CS, Kim WU. Calcineurin is expressed and plays a critical role in inflammatory arthritis. THE JOURNAL OF IMMUNOLOGY 2006; 177:2681-90. [PMID: 16888030 DOI: 10.4049/jimmunol.177.4.2681] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Calcineurin is a calcium-activated phosphatase to mediate lymphocyte activation and neuron signaling, but its role in inflammatory arthritis remains largely unknown. In this study, we demonstrate that calcineurin was highly expressed in the lining layer, infiltrating leukocytes, and endothelial cells of rheumatoid synovium. The basal expression levels of calcineurin were higher in the cultured synoviocytes of rheumatoid arthritis patients than those of osteoarthritis patients. The calcineurin activity in the synoviocytes was increased by the stimulation with proinflammatory cytokines such as IL-1beta and TNF-alpha. Moreover, rheumatoid arthritis synoviocytes had an enlarged intracellular Ca(2+) store and showed a higher degree of [Ca(2+)](i) release for calcineurin activity than osteoarthritis synoviocytes when stimulated with either TNF-alpha or phorbol myristate acetate. IL-10, an anti-inflammatory cytokine, failed to increase the Ca(2+) and calcineurin activity. The targeted inhibition of calcineurin by the overexpression of calcineurin-binding protein 1, a natural calcineurin antagonist, inhibited the production of IL-6 and matrix metalloproteinase-2 by rheumatoid synoviocytes in a similar manner to the calcineurin inhibitor, cyclosporin A. Moreover, the abundant calcineurin expression was found in the invading pannus in the joints of mice with collagen-induced arthritis. In these mice, calcineurin activity in the cultured synovial and lymph node cells correlated well with the severity of arthritis, but which was suppressed by cyclosporin A treatment. Taken together, our data suggest that the abnormal activation of Ca(2+) and calcineurin in the synoviocytes may contribute to the pathogenesis of chronic arthritis and thus provide a potential target for controlling inflammatory arthritis.
Collapse
Affiliation(s)
- Seung-Ah Yoo
- Department of Internal Medicine, Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Xiang B, Liu P, Jiang G, Zou K, Yi F, Yang S, Wei Q. The catalytically active domain in the A subunit of calcineurin. Biol Chem 2004; 384:1429-34. [PMID: 14669985 DOI: 10.1515/bc.2003.158] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Calcineurin (CaN) is a heterodimer composed of a catalytic subunit A (CaNA) and a regulatory subunit B (CaNB). We report here an active truncated mutation of the rat CaNAdelta that contains only the catalytic domain (residues 1-347, also known as a/CaNA). The p-nitrophenyl phosphatase activity and protein phosphatase activity of a/CaNA were higher than that of CaNA. Both p-nitrophenyl phosphatase activity and protein phosphatase activity of a/CaNA were unaffected by CaM and the B-subunit; the B-subunit and CaM have relatively little effect on p-nitrophenyl phosphatase activity and a crucial effect on protein phosphatase activity of CaNA. Mn2+ and Ni2+ ions effeciently activated CaNA. The Km of a/CaNA was about 16 mM, and the k(cat) of a/CaNA was 10.03 s(-1) using pNPP as substrate. With RII peptide as a substrate, the Km of a/CaNA was about 21 microM and the k(cat) of a/CaNA was 0.51 s(-1). The optimum reaction temperature was about 45 degrees C, and the optimum reaction pH was about 7.2. Our results indicate that a/CaNA is the catalytic core of CaNA, and CaN and the B-subunit binding domain itself might play roles in the negative regulation of the phosphatase activity of CaN. The results provide the basis for future studies on the catalytic domain of CaN.
Collapse
Affiliation(s)
- Benqiong Xiang
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Beijing 100875, PR China
| | | | | | | | | | | | | |
Collapse
|
27
|
Tanimukai H, Grundke-Iqbal I, Iqbal K. Inhibitors of protein phosphatase-2A: topography and subcellular localization. ACTA ACUST UNITED AC 2004; 126:146-56. [PMID: 15249138 DOI: 10.1016/j.molbrainres.2004.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2004] [Indexed: 11/27/2022]
Abstract
The mRNA and protein expressions of I1(PP2A) and I2(PP2A), the two inhibitors of protein phosphatase 2A (PP2A) were investigated in adult rat brain. The rat brain and human brain inhibitors showed similar molecular weights by Western blots. The cDNA probes for human brain I1(PP2A) and I2(PP2A) readily hybridized with the corresponding mRNAs of rat brain inhibitors in Northern blots. We detected 3.7 and 2.1 kb transcripts of I1(PP2A) and 2.9 and 2.0 kb transcripts of I2(PP2A) in rat brain. In situ hybridization revealed that the mRNAs of the two inhibitors were mainly localized in neurons. Strong expression of both I1(PP2A) and I2(PP2A) mRNAs were observed in the olfactory bulb, hippocampal pyramidal and dentate granule cell layers, and cerebellar Purkinje cell, granular and molecular layers. Moderate expression of I1(PP2A) and I2(PP2A) mRNAs were observed in the cerebral cortex, caudate putamen, thalamus, hypothalamus, amygdala and pontine nucleus. The expression of I1(PP2A) and I2(PP2A) and as well as of PP-2A was also investigated by immunohistochemistry using antibodies to each protein. The distribution patterns of the two inhibitor proteins were similar to those of their corresponding mRNAs and to the expression of PP-2A. While PP-2A was localized to neuronal perikarya, I1(PP2A) was observed both in the neuronal cytoplasm and the nucleus. I2(PP2A) had mainly nuclear localization but it could also be seen in the neuronal cytoplasm. All three proteins were also expressed in the neuropil. These studies suggest that PP-2A activity is probably regulated by I1(PP2A) and I2(PP2A) in the adult mammalian central nervous system, and that these inhibitors are conserved between rat and human brains.
Collapse
Affiliation(s)
- Hitoshi Tanimukai
- New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY, 10314, USA
| | | | | |
Collapse
|
28
|
Fukunaga J, Yamaai T, Yamachika E, Ishiwari Y, Tsujigiwa H, Sawaki K, Lee YJ, Ueno T, Kirino S, Mizukawa N, Takagi S, Nagai N, Sugahara T. Expression of osteoclast differentiation factor and osteoclastogenesis inhibitory factor in rat osteoporosis induced by immunosuppressant FK506. Bone 2004; 34:425-31. [PMID: 15003790 DOI: 10.1016/j.bone.2003.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2001] [Revised: 06/13/2002] [Accepted: 05/29/2003] [Indexed: 10/26/2022]
Abstract
Immunosuppressant drugs are currently required by transplant recipients for the remainder of their lives, despite the many adverse effects associated with these therapies. Acute osteoporosis is one such effect, and a reproducible osteoporosis model has been established through the administration of the immunosuppressant drug FK506 in rats. The cause of this osteoporosis has been shown to be abnormal osteoclast proliferation, altering the process of bone remodeling. However, the reasons why FK506 induces osteoclast proliferation and whether this process is mediated by cytokine changes or an increase in bone resorption factors have been unclear. An investigation was therefore conducted focusing on the recent discoveries of osteoclast differentiation factor (ODF) and osteoclastogenesis inhibitory factor (OCIF). These factors led to elucidation of the osteoclast differentiation-maturation mechanism. An osteoporosis model was produced in rats utilizing intramuscular FK506 injection (1 mg/kg) for 28 consecutive days. Trabecular bone resorption was observed inferior to enchondral ossification in the FK506 group, and tartrate resistant acid phosphatase (TRAP) staining revealed a clear increase in osteoclasts at the site of enchondral ossification, relative to the control group. Real-time PCR and in situ hybridization (ISH) demonstrated minimal differences in OCIF expression between control and the treatment groups. However, Real-time PCR revealed clearly increased ODF expression in the treatment group. ODF expression was also shown to be increased in the treatment group using ISH. This was histologically consistent with a region of osteoclast proliferation inferior to enchondral ossification. The results of this study support the hypothesis that FK506-mediated osteoporosis occurs by action of the drug on osteoclasts, promoting expression of ODF messenger ribonucleic acid (mRNA) and thus prompting osteoclast differentiation and maturation.
Collapse
Affiliation(s)
- J Fukunaga
- Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine and Dentistry, Okayama 700-8525, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Perrino BA, Wilson AJ, Ellison P, Clapp LH. Substrate selectivity and sensitivity to inhibition by FK506 and cyclosporin A of calcineurin heterodimers composed of the alpha or beta catalytic subunit. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:3540-8. [PMID: 12135494 DOI: 10.1046/j.1432-1033.2002.03040.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The calcineurin (CaN) alpha and beta catalytic subunit isoforms are coexpressed within almost all cell types. The enzymatic properties of CaN heterodimers comprised of the regulatory B subunit (CnB) with either the alpha or beta catalytic subunit were compared using in vitro phosphatase assays. CaN containing the alpha isoform (CnA alpha) has lower K(m) and higher V(max) values than CaN containing the beta isoform (CnA beta) toward the PO4-RII, PO4-DARPP-32(20-38) peptides, and p-nitrophenylphosphate (pNPP). CaN heterodimers containing the alpha or beta catalytic subunit isoform displayed identical calmodulin dissociation rates. Similar inhibition curves for each CaN heterodimer were obtained with the CaN autoinhibitory peptide (CaP) and cyclophilin A/cyclosporin A (CyPA/CsA) using each peptide substrate at K(m) concentrations, except for a five- to ninefold higher IC50 value measured for CaN containing the beta isoform with p-nitrophenylphosphate as substrate. No difference in stimulation of phosphatase activity toward p-nitrophenylphosphate by FKBP12/FK506 was observed. At low concentrations of FKBP12/FK506, CaN containing the alpha isoform is more sensitive to inhibition than CaN containing the beta isoform using the phosphopeptide substrates. Higher concentrations of FKBP12/FK506 are required for maximal inhibition of beta CaN using PO4-DARPP-32(20-38) as substrate. The functional differences conferred upon CaN by the alpha or beta catalytic subunit isoforms suggest that the alpha:beta and CaN:substrate ratios may determine the levels of CaN phosphatase activity toward specific substrates within tissues and specific cell types. These findings also indicate that the alpha and beta catalytic subunit isoforms give rise to substrate-dependent differences in sensitivity toward FKBP12/FK506.
Collapse
Affiliation(s)
- Brian A Perrino
- Department of Physiology & Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA.
| | | | | | | |
Collapse
|
30
|
Reuter A, Mi J, Sehrsam I, Ludolph AC, Völkel H. A novel calcineurin splice variant that modifies calcineurin activity. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:5955-60. [PMID: 11722584 DOI: 10.1046/j.0014-2956.2001.02551.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Calcineurin is a Ca(2+)/calmodulin dependent phosphoprotein phosphatase implicated in a wide range of disorders. Here, we report the cloning of a novel calcineurin A alpha splice variant that lacks both the catalytic and calcineurin B binding domains. Biochemical analysis revealed a stimulating effect on calcineurin activity at low calcium concentrations as well as protein-protein interaction with the catalytic calcineurin holoenzyme. By Western blot analysis, expression of similar short splice variants could be seen in the spinal cord of an animal model of familial amyotrophic lateral sclerosis, suggesting a role of these new variants in motor neuron disease.
Collapse
Affiliation(s)
- A Reuter
- Department of Neurology, University of Ulm, Germany.
| | | | | | | | | |
Collapse
|
31
|
Juvvadi PR, Arioka M, Nakajima H, Kitamoto K. Cloning and sequence analysis of cnaA gene encoding the catalytic subunit of calcineurin from Aspergillus oryzae. FEMS Microbiol Lett 2001; 204:169-74. [PMID: 11682197 DOI: 10.1111/j.1574-6968.2001.tb10881.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Calcineurin has been implicated in ion-homeostasis, stress adaptation in yeast and for hyphal growth in filamentous fungi. Genomic DNA and cDNA encoding the catalytic subunit of calcineurin (cnaA) were isolated from Aspergillus oryzae. The cnaA open reading frame extended to 1727 bp and encoded a putative protein of 514 amino acids. Comparative analysis of the nucleotide sequence of cnaA genomic DNA and cDNA confirmed the presence of three introns and a highly conserved calmodulin binding domain. The deduced amino acid sequence was homologous to calcineurin A from Aspergillus nidulans (92%), Neurospora crassa (84%), human (67%), Saccharomyces cerevisiae (58%) and Schizosaccharomyces pombe (54%). Further, A. oryzae cnaA cDNA complemented S. cerevisiae calcineurin disruptant strain (Deltacmp1 Deltacmp2), which was not viable in the presence of high concentrations of NaCl (1.2 M) and at alkaline pH 8.5.
Collapse
Affiliation(s)
- P R Juvvadi
- Department of Biotechnology, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-Ku, 113-8657 Tokyo, Japan
| | | | | | | |
Collapse
|
32
|
Ye J, Shi X. Gene expression profile in response to chromium-induced cell stress in A549 cells. Mol Cell Biochem 2001; 222:189-97. [PMID: 11678601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Chromium (Cr) is a trace element required for life. Biological activities of Cr are complicated and remain to be fully investigated. It is known that the valence of Cr plays an important role in the biological activities of Cr. For example, Cr (VI) is classified as a metal carcinogen, but Cr (III) is widely used as a nutritional supplement. Establishment of a gene expression profile for Cr-induced cellular response is necessary to facilitate investigation of the biological activities of Cr. In the present study, a large-scale gene expression analysis was conducted using RNA of human lung epithelial cells after in vitro exposure to Cr (VI). Utilizing high-density oligonucleotide arrays representing 2400 genes, we observed that expression of 150 genes was up-regulated, and that of 70 genes were down-regulated by Cr (VI). Functional analysis of these responsive genes led to an outline of potential biological activities of Cr in six aspects. The gene expression profile reveals that Cr may involves in redox stress, calcium mobilization, energy metabolism, protein synthesis, cell cycle regulation and carcinogenesis in the cell. The results provide a critical clue for understanding molecular mechanisms of the biological activities of Cr.
Collapse
Affiliation(s)
- J Ye
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | | |
Collapse
|
33
|
Rider V, Abdou NI. Gender differences in autoimmunity: molecular basis for estrogen effects in systemic lupus erythematosus. Int Immunopharmacol 2001; 1:1009-24. [PMID: 11407298 DOI: 10.1016/s1567-5769(01)00046-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that occurs primarily in women (9:1 compared to men). Estrogen is a female sex hormone that acts on target cells through specific receptor proteins and alters the rate of transcription of target genes. Experiments in our laboratory have shown that calcineurin steady-state mRNA levels and phosphatase activity increase when estrogen is cultured with SLE T cells. This estrogen-dependent increase is dose-dependent, hormone-specific and temporally regulated. Estrogen receptor antagonism by ICI 182,780 inhibits the increase in calcineurin mRNA and phosphatase activity, while cycloheximide has no effect suggesting that new protein synthesis is not required. Reverse transcription and polymerase chain amplification indicate that estrogen receptor-alpha and estrogen-beta are expressed in human T cells. However, calcineurin does not respond to estrogen stimulation in T cells from normal females, males and lupus males. Taken together, these results indicate a differential function of the estrogen receptor in women with lupus. A model is proposed that suggests estrogen, acting through the estrogen receptor, enhances T cell activation in women with lupus resulting in amplified T-B cells interactions, B cell activation and autoantibody production.
Collapse
Affiliation(s)
- V Rider
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA.
| | | |
Collapse
|
34
|
Nakazawa A, Usuda N, Matsui T, Hanai T, Matsushita S, Arai H, Sasaki H, Higuchi S. Localization of calcineurin in the mature and developing retina. J Histochem Cytochem 2001; 49:187-95. [PMID: 11156687 DOI: 10.1177/002215540104900206] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We studied the localization of calcineurin by immunoblotting analysis and immunohistochemistry as a first step in clarifying the role of calcineurin in the retina. Rat, bovine, and human retinal tissues were examined with subtype-nonspecific and subtype-specific antibodies for the A alpha and A beta isoforms of its catalytic subunit. In mature retinas of the three species, calcineurin was localized mainly in the cell bodies of ganglion cells and the cells in the inner nuclear layer, in which amacrine cells were distinctively positive. The calcineurin A alpha and A beta isoforms were differentially localized in the nucleus and the cytoplasm of the ganglion cell, respectively. Calcineurin was also present in developing rat retinas, in which the ganglion cells were consistently positive for it. The presence of calcineurin across mammalian species and regardless of age shown in the present study may reflect its importance in visual function and retinal development, although its function in the retina has not yet been clarified. (J Histochem Cytochem 49:187-195, 2001)
Collapse
Affiliation(s)
- A Nakazawa
- Department of Anatomy II, Fujita Health University School of Medicine, Aichi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Saneyoshi T, Kume S, Natsume T, Mikoshiba K. Molecular cloning and expression profile of Xenopus calcineurin A subunit(1). BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1499:164-170. [PMID: 11118649 DOI: 10.1016/s0167-4889(00)00083-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We have cloned a cDNA encoding a catalytic subunit of calcineurin (CnA) expressed in Xenopus oocytes. The deduced amino acid sequence indicates 96.3% and 96.8% identities with the mouse and human CnAalpha isoforms, respectively. Xenopus CnA (XCnA) RNA and protein are expressed as maternal and throughout development. Recombinant XCnA protein interacted with calmodulin in the presence of Ca(2+). Deletion of calmodulin binding domain and auto-inhibitory domain revealed calcium independent phosphatase activity, thereby showing that XCnA is likely to be modulated by both calmodulin and calcium.
Collapse
Affiliation(s)
- T Saneyoshi
- Department of Molecular Neurobiology, Institute of Medical Science, The University of Tokyo, Japan
| | | | | | | |
Collapse
|
36
|
Abstract
Calcineurin is a eukaryotic Ca(2+)- and calmodulin-dependent serine/threonine protein phosphatase. It is a heterodimeric protein consisting of a catalytic subunit calcineurin A, which contains an active site dinuclear metal center, and a tightly associated, myristoylated, Ca(2+)-binding subunit, calcineurin B. The primary sequence of both subunits and heterodimeric quaternary structure is highly conserved from yeast to mammals. As a serine/threonine protein phosphatase, calcineurin participates in a number of cellular processes and Ca(2+)-dependent signal transduction pathways. Calcineurin is potently inhibited by immunosuppressant drugs, cyclosporin A and FK506, in the presence of their respective cytoplasmic immunophilin proteins, cyclophilin and FK506-binding protein. Many studies have used these immunosuppressant drugs and/or modern genetic techniques to disrupt calcineurin in model organisms such as yeast, filamentous fungi, plants, vertebrates, and mammals to explore its biological function. Recent advances regarding calcineurin structure include the determination of its three-dimensional structure. In addition, biochemical and spectroscopic studies are beginning to unravel aspects of the mechanism of phosphate ester hydrolysis including the importance of the dinuclear metal ion cofactor and metal ion redox chemistry, studies which may lead to new calcineurin inhibitors. This review provides a comprehensive examination of the biological roles of calcineurin and reviews aspects related to its structure and catalytic mechanism.
Collapse
Affiliation(s)
- F Rusnak
- Section of Hematology Research and Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | |
Collapse
|
37
|
Aramburu J, Rao A, Klee CB. Calcineurin: from structure to function. CURRENT TOPICS IN CELLULAR REGULATION 2000; 36:237-95. [PMID: 10842755 DOI: 10.1016/s0070-2137(01)80011-x] [Citation(s) in RCA: 232] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- J Aramburu
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
38
|
Brogan IJ, Pravica V, Hutchinson IV. Genetic conservation of the immunophilin-binding domains of human calcineurin A1 and A2. Transpl Immunol 2000; 8:139-41. [PMID: 11005320 DOI: 10.1016/s0966-3274(00)00020-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Calcineurin a calmodulin-dependent phosphatase plays a critical role in calcium-dependent activation of T-lymphocytes and is the major target for the inhibitory actions of the immunosuppressive drugs Tacrolimus (FK506) and Cyclosporin A (CsA). Calcineurin is a dimeric protein consisting of distinct A (catalytic) and B (regulatory) subunits. In humans two separate genes, CNA1 and CNA2, encode the calcineurin A (CNA) subunit. The region of CNA that interacts with Calcineurin B, calmodulin, and immunosuppressive drugs bound to their receptors--the immunophilins--has been identified to amino acids 281-414 (Greengard P, Allen PB, Nairin AC. Beyond the dopamine receptor: the DARPP-32/protein phosphatase-1 cascade. Neuron 1999;23:435). Our working hypothesis was that the differences in patient response to calcineurin inhibitors could be a consequence of inherited variations within their CNA genes. Single-strand conformational polymorphism (SSCP) analysis of cDNAs derived from the coding region for amino acids 281-414 of CNA1 and CNA2 in 32 healthy Caucasians did not detect polymorphic variations within these genes. These results suggest that this region is highly conserved and cannot account for individual variation in response of patients to FK506 and CsA treatment.
Collapse
Affiliation(s)
- I J Brogan
- Immunology Research Group, School of Biological Sciences, University of Manchester, UK.
| | | | | |
Collapse
|
39
|
Bandyopadhyay A, Shin DW, Kim DH. Regulation of ATP-induced calcium release in COS-7 cells by calcineurin. Biochem J 2000; 348 Pt 1:173-81. [PMID: 10794729 PMCID: PMC1221051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Experiments were conducted to examine the role of calcineurin in regulating Ca(2+) fluxes in mammalian cells. In COS-7 cells, increasing concentrations (1-10 microM) of ATP triggered intracellular Ca(2+) release in a dose-dependent manner. Treatment of the cells with calcineurin inhibitors such as cyclosporin A (CsA), deltamethrin and FK506 resulted in an enhancement of ATP-induced intracellular Ca(2+) release. Measurement of calcineurin-specific phosphatase activity in vitro demonstrated a high level of endogenous calcineurin activities in COS-7 cells, which was effectively inhibited by the addition of deltamethrin or CsA. The expression of constitutively active calcineurin (CnADeltaCaMAI) inhibited the ATP-induced increase in intracellular Ca(2+) concentration ([Ca(2+)](i)), in both the presence and the absence of extracellular Ca(2+). These results suggest that the constitutively active calcineurin prevented Ca(2+) release from the intracellular stores. In the calcineurin-transfected cells, treatment with CsA restored the calcineurin-mediated inhibition of intracellular Ca(2+) release. Protein kinase C-mediated phosphorylation of Ins(1,4,5)P(3) receptor [Ins(1,4,5)P(3)R] was partly inhibited by the extracts prepared from the vector-transfected cells and completely inhibited by those from cells co-transfected with CnADeltaCaMAI and calcineurin B. On the addition of 10 microM CsA, the inhibited phosphorylation of Ins(1,4,5)P(3)R was restored in both the vector-transfected cells and the calcineurin-transfected cells. These results show direct evidence that Ca(2+) release through Ins(1, 4,5)P(3)R in COS-7 cells is regulated by calcineurin-mediated dephosphorylation.
Collapse
Affiliation(s)
- A Bandyopadhyay
- Department of Life Science, Kwangju Institute of Science and Technology, Kwangju, Korea
| | | | | |
Collapse
|
40
|
Herzig S, Neumann J. Effects of serine/threonine protein phosphatases on ion channels in excitable membranes. Physiol Rev 2000; 80:173-210. [PMID: 10617768 DOI: 10.1152/physrev.2000.80.1.173] [Citation(s) in RCA: 208] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This review deals with the influence of serine/threonine-specific protein phosphatases on the function of ion channels in the plasma membrane of excitable tissues. Particular focus is given to developments of the past decade. Most of the electrophysiological experiments have been performed with protein phosphatase inhibitors. Therefore, a synopsis is required incorporating issues from biochemistry, pharmacology, and electrophysiology. First, we summarize the structural and biochemical properties of protein phosphatase (types 1, 2A, 2B, 2C, and 3-7) catalytic subunits and their regulatory subunits. Then the available pharmacological tools (protein inhibitors, nonprotein inhibitors, and activators) are introduced. The use of these inhibitors is discussed based on their biochemical selectivity and a number of methodological caveats. The next section reviews the effects of these tools on various classes of ion channels (i.e., voltage-gated Ca(2+) and Na(+) channels, various K(+) channels, ligand-gated channels, and anion channels). We delineate in which cases a direct interaction between a protein phosphatase and a given channel has been proven and where a more complex regulation is likely involved. Finally, we present ideas for future research and possible pathophysiological implications.
Collapse
Affiliation(s)
- S Herzig
- Institut für Pharmakologie, Universität Köln, Köln, Germany.
| | | |
Collapse
|
41
|
Cardenas ME, Cruz MC, Del Poeta M, Chung N, Perfect JR, Heitman J. Antifungal activities of antineoplastic agents: Saccharomyces cerevisiae as a model system to study drug action. Clin Microbiol Rev 1999; 12:583-611. [PMID: 10515904 PMCID: PMC88926 DOI: 10.1128/cmr.12.4.583] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recent evolutionary studies reveal that microorganisms including yeasts and fungi are more closely related to mammals than was previously appreciated. Possibly as a consequence, many natural-product toxins that have antimicrobial activity are also toxic to mammalian cells. While this makes it difficult to discover antifungal agents without toxic side effects, it also has enabled detailed studies of drug action in simple genetic model systems. We review here studies on the antifungal actions of antineoplasmic agents. Topics covered include the mechanisms of action of inhibitors of topoisomerases I and II; the immunosuppressants rapamycin, cyclosporin A, and FK506; the phosphatidylinositol 3-kinase inhibitor wortmannin; the angiogenesis inhibitors fumagillin and ovalicin; the HSP90 inhibitor geldanamycin; and agents that inhibit sphingolipid metabolism. In general, these natural products inhibit target proteins conserved from microorganisms to humans. These studies highlight the potential of microorganisms as screening tools to elucidate the mechanisms of action of novel pharmacological agents with unique effects against specific mammalian cell types, including neoplastic cells. In addition, this analysis suggests that antineoplastic agents and derivatives might find novel indications in the treatment of fungal infections, for which few agents are presently available, toxicity remains a serious concern, and drug resistance is emerging.
Collapse
Affiliation(s)
- M E Cardenas
- Department of Genetics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
42
|
Ogris E, Mudrak I, Mak E, Gibson D, Pallas DC. Catalytically inactive protein phosphatase 2A can bind to polyomavirus middle tumor antigen and support complex formation with pp60(c-src). J Virol 1999; 73:7390-8. [PMID: 10438829 PMCID: PMC104266 DOI: 10.1128/jvi.73.9.7390-7398.1999] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interaction between the heterodimeric form of protein phosphatase 2A (PP2A) and polyomavirus middle T antigen (MT) is required for the subsequent assembly of a transformation-competent MT complex. To investigate the role of PP2A catalytic activity in MT complex formation, we undertook a mutational analysis of the PP2A 36-kDa catalytic C subunit. Several residues likely to be involved in the dephosphorylation mechanism were identified and mutated. The resultant catalytically inactive C subunit mutants were then analyzed for their ability to associate with a cellular (B subunit) or a viral (MT) B-type subunit. Strikingly, while all of the inactive mutants were severely impaired in their interaction with B subunit, most of these mutants formed complexes with polyomavirus MT. These findings indicate a potential role for these catalytically important residues in complex formation with cellular B subunit, but not in complex formation with MT. Transformation-competent MT is known to associate with, and modulate the activity of, several cellular proteins, including pp60(c-src) family kinases. To determine whether association of MT with an active PP2A A-C heterodimer is necessary for subsequent association with pp60(c-src), catalytically inactive C subunits were examined for their ability to form complexes containing pp60(c-src) in MT-expressing cells. Two catalytically inactive C subunit mutants that efficiently formed complexes with MT also formed complexes that included an active pp60(c-src) kinase, demonstrating that PP2A activity is not essential in cis in MT complexes for subsequent pp60(c-src) association.
Collapse
Affiliation(s)
- E Ogris
- Division of Cellular and Molecular Biology, Dana-Farber Cancer Institute, Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
43
|
Morioka M, Hamada J, Ushio Y, Miyamoto E. Potential role of calcineurin for brain ischemia and traumatic injury. Prog Neurobiol 1999; 58:1-30. [PMID: 10321795 DOI: 10.1016/s0301-0082(98)00073-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Calcineurin belongs to the family of Ca2+/calmodulin-dependent protein phosphatase, protein phosphatase 2B. Calcineurin is the only protein phosphatase which is regulated by a second messenger, Ca2+. Furthermore, calcineurin is highly localized in the central nervous system, especially in those neurons vulnerable to ischemic and traumatic insults. For these reasons, calcineurin is considered to play important roles in neuron-specific functions. Recently, on the basis of the finding that FK506 and cyclosporin A serve as calcineurin-specific inhibitors, this enzyme has become the subject of much study. It is clear that calcineurin is involved in many neuronal (or non-neuronal) functions such as neurotransmitter release, regulation of receptor functions, signal transduction systems, neurite outgrowth, gene expression and neuronal cell death. In this review, we describe the calcineurin functions, functions of the substrates, and the pathogenesis of traumatic and ischemic insults, and we discuss the potential role of calcineurin. There are many similarities in traumatic and ischemic pathogenesis of the brain in which the release of excessive glutamate is followed by an intracellular Ca2+ increase. However, the intracellular cascade which leads to neuronal cell death after the release of excess Ca2+ is unclear. Although calcineurin is thought to be a key toxic enzyme on the basis of studies using immunosuppressants (FK506 or cyclosporin A), many of the functions of the substrates for calcineurin protect against neuronal cell death. We concluded that calcineurin is a bi-directional enzyme for neuronal cell death, having protective and toxic actions, and the balance of the bi-directional effects may be important in ischemic and traumatic pathogenesis.
Collapse
Affiliation(s)
- M Morioka
- Department of Neurosurgery, Kumamoto University School of Medicine, Japan.
| | | | | | | |
Collapse
|
44
|
Abstract
Calcineurin is a serine-threonine specific Ca(2+)-calmodulin-activated protein phosphatase that is conserved from yeast to humans. Remarkably, this enzyme is the common target for two novel and structurally unrelated immunosuppressive antifungal drugs, cyclosporin A and FK506. Both drugs form complexes with abundant intracellular binding proteins, cyclosporin A with cyclophilin A and FK506 with FKBP 12, which bind to and inhibit calcineurin. The X-ray structure of an FKPB12-FK506-calcineurin AB ternary complex reveals that FKBP12-FK506 binds in a hydophobic groove between the calcineurin A catalytic and the regulatory B subunit, in accord with biochemical and genetic studies on inhibitor action. Calcineurin plays a key role in regulating the transcription factor NF-AT during T-cell activation, and in mediating responses of microorganisms to cation stress. These findings highlight the potential of yeast genetic studies to define novel drug targets and elucidate conserved elements of signal transduction cascades.
Collapse
Affiliation(s)
- C S Hemenway
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, USA
| | | |
Collapse
|
45
|
Gao ZH, Zhong G. Calcineurin B- and calmodulin-binding preferences identified with phage-displayed peptide libraries. Gene X 1999; 228:51-9. [PMID: 10072758 DOI: 10.1016/s0378-1119(99)00007-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Calcineurin B (CnB) and calmodulin (CaM) are two structurally similar but functionally distinct 'EF-hand' Ca2+-binding proteins. CnB is the regulatory subunit of the CaM-stimulated protein phosphatase, calcineurin. CaM is a unique multifunctional protein that interacts with and modulates the activity of many target proteins. CnB and CaM are both required for the full activation of the phosphatase activity of calcineurin and are not interchangeable. The two proteins recognize distinct binding sites on calcineurin A subunit (CnA) and perform different functions. Phage-displayed peptide libraries (pIII and pVIII libraries) were screened with CnB and CaM to isolate peptides that could then be compared to determine if there were binding preferences of the two proteins. The Ca2+-dependent binding of phage-displayed peptides to CnB and CaM is specifically blocked by synthetic peptides derived from the CnB-binding domain of CnA and the CaM-binding domain of myosin light chain kinase respectively. Both CnB- and CaM-binding peptides have a high content of tryptophan and leucine, but CnB-binding peptides are more hydrophobic than CaM-binding peptides. CnB-binding peptides are negatively charged with clusters of hydrophobic residues rich in phenylalanine, whereas the CaM-binding peptides are positively charged and often contain an Arg/Lys-Trp motif. The binding preferences identified with peptide libraries are consistent with the features of the CnB-binding domains of all CnA isoforms and the CaM-binding domains of CaM targets.
Collapse
Affiliation(s)
- Z H Gao
- Laboratory of Biochemistry, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
46
|
Leach KL. Protein Kinases and Phosphatases in Cellular Signaling. Compr Physiol 1998. [DOI: 10.1002/cphy.cp070110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Furuse M, Nagase Y, Tsubouchi H, Murakami-Murofushi K, Shibata T, Ohta K. Distinct roles of two separable in vitro activities of yeast Mre11 in mitotic and meiotic recombination. EMBO J 1998; 17:6412-25. [PMID: 9799249 PMCID: PMC1170966 DOI: 10.1093/emboj/17.21.6412] [Citation(s) in RCA: 218] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
UNLABELLED In Saccharomyces cerevisiae, Mre11 protein is involved in both double-strand DNA break (DSB) repair and meiotic DSB formation. Here, we report the correlation of nuclease and DNA-binding activities of Mre11 with its functions in DNA repair and meiotic DSB formation. Purified Mre11 bound to DNA efficiently and was shown to have Mn2+-dependent nuclease activities. A point mutation in the N-terminal phosphoesterase motif (Mre11D16A) resulted in the abolition of nuclease activities but had no significant effect on DNA binding. The wild-type level of nuclease activity was detected in a C-terminal truncated protein (Mre11DeltaC49), although it had reduced DNA-binding activity. Phenotypes of the corresponding mutations were also analyzed. The mre11D16A mutation conferred methyl methanesulfonate-sensitivity to mitotic cells and caused the accumulation of unprocessed meiotic DSBs. The mre11DeltaC49 mutant exhibited almost wild-type phenotypes in mitosis. However, in meiosis, no DSB formation could be detected and an aberrant chromatin configuration was observed at DSB sites in the mre11DeltaC49 mutant. These results indicate that Mre11 has two separable functional domains: the N-terminal nuclease domain required for DSB repair, and the C-terminal dsDNA-binding domain essential to its meiotic functions such as chromatin modification and DSB formation. KEYWORDS DNA binding/double-strand break repair/DSB formation/Mre11/nuclease
Collapse
Affiliation(s)
- M Furuse
- Cellular and Molecular Biology Laboratory, The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama 351-0198, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Rider V, Foster RT, Evans M, Suenaga R, Abdou NI. Gender differences in autoimmune diseases: estrogen increases calcineurin expression in systemic lupus erythematosus. CLINICAL IMMUNOLOGY AND IMMUNOPATHOLOGY 1998; 89:171-80. [PMID: 9787119 DOI: 10.1006/clin.1998.4604] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Systemic lupus erythematosus (SLE) predominantly affects women (9:1 compared to men) of childbearing age and often decreases its intensity in postmenopausal women, suggesting that sex hormones play a role in its pathogenesis. Comparison of steady-state levels of calcineurin mRNA using RNase protection assays revealed increased calcineurin expression in response to estradiol in cultured T cells from nine female lupus patients. Calcineurin mRNA levels did not increase significantly in T cells from eight age-matched normal control female volunteers. Estrogen-dependent calcineurin mRNA increased in a dose-dependent fashion, while progesterone and dexamethasone did not increase calcineurin mRNA in patient cells. Lupus T cell calcineurin mRNA increased in response to estradiol at 6 h but not at 3 h. Calcineurin phosphatase activity increased in lupus T cell extracts after incubation of cells with estradiol, while phosphatase activity in normal T cells was unaffected by estrogen. Calcineurin expression in T cells from patients with vasculitis and rheumatoid arthritis taking medications similar to those taken by the lupus patients was unaffected by estradiol. This study provides the first evidence for a molecular marker of estrogen action in lupus patients and suggests that estrogen-dependent changes in lupus T cell calcineurin could alter proinflammatory cytokine gene regulation and T-B cell interactions.
Collapse
Affiliation(s)
- V Rider
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri, 64110, USA
| | | | | | | | | |
Collapse
|
49
|
Takeuchi M, Fujisawa H. New alternatively spliced variants of calmodulin-dependent protein kinase II from rabbit liver. Gene 1998; 221:107-15. [PMID: 9852955 DOI: 10.1016/s0378-1119(98)00422-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Polymerase chain reaction analysis revealed four alternatively spliced variants of each of the gamma and delta isoforms of calmodulin-dependent protein kinase II (CaM-kinase II) in rabbit liver. Among the four variants of the gamma isoform, two were novel ones, designated as CaM-kinase II gamma-H and gamma-I. The gamma-I variant possessed both of the two deletable exons; D2a and D2b, which had never been found together in any variant. Sequence analysis of the gamma-I indicated that the D2a was upstream of the D2b and that they were contiguous with each other in the gamma-I. Among the four variants of the delta isoform, two were also novel ones, designated as CaM-kinase II delta-11 and delta-12, and the other two were the already-reported ones, delta-2 and delta-6. The delta-11 and delta-12 were identical to the delta-2 and delta-6, respectively, except that three bases (CAG) located at a splicing junction was deleted in the delta-11 and delta-12, suggesting two splicing sites of a single intron. Thus, the diverse splicing patterns may produce many more variants than those so far considered.
Collapse
Affiliation(s)
- M Takeuchi
- Department of Biochemistry, Asahikawa Medical College, Hokkaido, Japan
| | | |
Collapse
|
50
|
Lukyanetz EA, Piper TP, Sihra TS. Calcineurin involvement in the regulation of high-threshold Ca2+ channels in NG108-15 (rodent neuroblastoma x glioma hybrid) cells. J Physiol 1998; 510 ( Pt 2):371-85. [PMID: 9705990 PMCID: PMC2231037 DOI: 10.1111/j.1469-7793.1998.371bk.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. We examined the relationship between calcineurin (protein phosphatase 2B (PP2B) and voltage-operated Ca2+ channels (VOCCs) in NG108-15 cells. PP2B expression in NG108-15 cells was altered by transfection with plasmid constructs containing a full length cDNA of human PP2B beta(3) in sense (CN-15) and antisense (CN-21) orientation. 2. Confocal immunocytochemical localization showed that in wild-type cells, PP2B immunoreactivity is uniformly distributed in undifferentiated cells and located at the inner surface of soma membrane and neurites in differentiated cells. 3. To test the Ca2+ dependence of the VOCC, we used high-frequency stimulation (HFS). The L- and N-type VOCCs decreased by 37 and 52%, respectively, whereas the T-type current was only marginally sensitive to this procedure. FK-506 (2 microM), a specific blocker of PP2B, reduced the inhibition of L- and N-type VOCCs induced by HFS by 30 and 33%, respectively. 4. In CN-15-transfected cells overexpressing PP2B, total high-voltage-activated (HVA) VOCCs were suppressed by about 60% at a test potential of +20 mV. Intracellular addition of EGTA or FK-506 into CN-15-transfected cells induced an up to 5-fold increase of HVA VOCCs. 5. These findings indicate that PP2B activity does not influence the expression of HVA Ca2+ channels, but modulates their function by Ca(2+)-dependent dephosphorylation. Thus HVA VOCCs, in a phosphorylated state under control conditions, are downregulated by PP2B upon stimulation, with the major effect on N-type VOCCs.
Collapse
Affiliation(s)
- E A Lukyanetz
- Department of Pharmacology, Royal Free Hospital School of Medicine, London, UK.
| | | | | |
Collapse
|