1
|
Garrido-Mesa J, Brown MA. Antigen-driven T cell responses in rheumatic diseases: insights from T cell receptor repertoire studies. Nat Rev Rheumatol 2025; 21:157-173. [PMID: 39920282 DOI: 10.1038/s41584-025-01218-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 02/09/2025]
Abstract
Advances in T cell receptor (TCR) profiling techniques have substantially improved our ability to investigate T cell responses to antigens that are presented on HLA class I and class II molecules and associations between autoimmune T cells and rheumatic diseases. Early-stage studies in axial spondyloarthritis (axSpA) identified disease-associated T cell clonotypes, benefiting from the relative genetic homogeneity of the disease. However, both the genetic and the T cell immunological landscape are more complex in other rheumatic diseases. The diversity or redundancy in the TCR repertoire, epitope spreading over disease duration, genetic heterogeneity of HLA genes or other loci, and the diversity of epitopes contributing to disease pathogenesis and persistent inflammation are all likely to contribute to this complexity. TCR profiling holds promise for identifying key antigenic drivers and phenotypic T cell states that sustain autoimmunity in rheumatic diseases. Here, we review key findings from TCR repertoire studies in axSpA and other chronic inflammatory rheumatic diseases including psoriatic arthritis, rheumatoid arthritis, systemic lupus erythematosus and Sjögren syndrome. We explore how TCR profiling technologies, if applied to better controlled studies focused on early disease stages and genetically homogeneous subsets, can facilitate disease monitoring and the development of therapeutics targeting autoimmune T cells, their cognate antigens, or their underlying biology.
Collapse
Affiliation(s)
- Jose Garrido-Mesa
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| | - Matthew A Brown
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, UK.
- Genomics England, London, UK.
| |
Collapse
|
2
|
Hart AP, Kotzin JJ, Schulz SW, Dunham JS, Keenan AL, Baker JF, Wells AD, Beiting DP, Laufer TM. Angiotensin receptor blockers modulate the lupus CD4+ T cell epigenome characterized by TNF family-linked signaling. JCI Insight 2024; 10:e176811. [PMID: 39688922 PMCID: PMC11948580 DOI: 10.1172/jci.insight.176811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/13/2024] [Indexed: 12/18/2024] Open
Abstract
In systemic lupus erythematosus (lupus), environmental effects acting within a permissive genetic background lead to autoimmune dysregulation. Dysfunction of CD4+ T cells contributes to pathology by providing help to autoreactive B and T cells, and CD4+ T cell dysfunction coincides with altered DNA methylation and histone modifications of select gene loci. However, chromatin accessibility states of distinct T cell subsets and mechanisms driving heterogeneous chromatin states across patients remain poorly understood. We defined the transcriptome and epigenome of multiple CD4+ T cell populations from patients with lupus and healthy individuals. Most patients with lupus, regardless of disease activity, had enhanced chromatin accessibility bearing hallmarks of inflammatory cytokine signals. Single-cell approaches revealed that chromatin changes extended to naive CD4+ T cells, uniformly affecting naive subpopulations. Transcriptional data and cellular and protein analyses suggested that the TNF family members, TNF-α, LIGHT, and TWEAK, were linked to observed molecular changes and the altered lupus chromatin state. However, we identified a patient subgroup prescribed angiotensin receptor blockers (ARBs), which lacked TNF-linked lupus chromatin accessibility features. These data raise questions about the role of lupus-associated chromatin changes in naive CD4+ T cell activation and differentiation and implicate ARBs in the regulation of disease-driven epigenetic states.
Collapse
Affiliation(s)
- Andrew P. Hart
- Division of Rheumatology, Department of Medicine, and
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jonathan J. Kotzin
- Division of Rheumatology, Department of Medicine, and
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | - Joshua F. Baker
- Division of Rheumatology, Department of Medicine, and
- Division of Rheumatology, Department of Medicine, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
- Center for Clinical Epidemiology and Biostatistics and
| | - Andrew D. Wells
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Pathology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Daniel P. Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Terri M. Laufer
- Division of Rheumatology, Department of Medicine, and
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Rheumatology, Department of Medicine, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Zhou L, Cai SZ, Dong LL. Recent advances in pathogenesis, diagnosis, and therapeutic approaches for digestive system involvement in systemic lupus erythematosus. J Dig Dis 2024; 25:410-423. [PMID: 39317429 DOI: 10.1111/1751-2980.13307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 09/26/2024]
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by the presence of large amounts of autoantibodies and immune complex formation. Because of their atypical clinical symptoms, SLE patients with digestive system involvement may not be recognized or treated precisely and extensively. Clinicians should pay close attention to SLE with digestive system involvement, as these conditions can easily worsen the condition and possibly endanger the patient's life. In this review we summarized the pathogenesis, pathological characteristics, clinical manifestations, diagnosis, and therapies for digestive system involvement in SLE.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shao Zhe Cai
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Ling Li Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
4
|
Ramirez GA, Tassi E, Noviello M, Mazzi BA, Moroni L, Citterio L, Zagato L, Tombetti E, Doglio M, Baldissera EM, Bozzolo EP, Bonini C, Dagna L, Manfredi AA. Histone-Specific CD4 + T Cell Plasticity in Active and Quiescent Systemic Lupus Erythematosus. Arthritis Rheumatol 2024; 76:739-750. [PMID: 38111123 DOI: 10.1002/art.42778] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/31/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
OBJECTIVE The aim of this study was to assess whether circulating histone-specific T cells represent tools for precision medicine in systemic lupus erythematosus (SLE). METHODS Seroprevalence of autoantibodies and HLA-DR beta (DRB) 1 profile were assessed among 185 patients with SLE and combined with bioinformatics and literature evidence to identify HLA-peptide autoepitope couples for ex vivo detection of antigen-specific T cells through flow cytometry. T cell differentiation and polarization was investigated in patients with SLE, patients with Takayasu arteritis, and healthy controls carrying HLA-DRB1*03:01 and/or HLA-DRB1*11:01. SLE Disease Activity Index 2000 and Lupus Low Disease Activity State were used to estimate disease activity and remission. RESULTS Histone-specific CD4+ T cells were selectively detected in patients with SLE. Among patients with a history of anti-DNA antibodies, 77% had detectable histone-specific T cells, whereas 50% had lymphocytes releasing cytokines or upregulating activation markers after in vitro challenge with histone peptide antigens. Histone-specific regulatory and effector T helper (Th) 1-, Th2-, and atypical Th1/Th17 (Th1*)-polarized cells were significantly more abundant in patients with SLE with quiescent disease. In contrast, total Th1-, Th2-, and Th1*-polarized and regulatory T cells were similarly represented between patients and controls or patients with SLE with active versus quiescent disease. Histone-specific effector memory T cells accumulated in the blood of patients with quiescent SLE, whereas total effector memory T cell counts did not change. Immunosuppressants were associated with expanded CD4+ histone-specific naive T (TN) and terminally differentiated T cells. CONCLUSION Histone-specific T cells are selectively detected in patients with SLE, and their concentration in the blood varies with disease activity, suggesting that they represent innovative tools for patient stratification and therapy.
Collapse
Affiliation(s)
- Giuseppe A Ramirez
- Università Vita-Salute San Raffaele, Milan, and IRCCS Ospedale San Raffaele, Milan, Italy
| | | | | | | | - Luca Moroni
- Università Vita-Salute San Raffaele, Milan, and IRCCS Ospedale San Raffaele, Milan, Italy
| | | | | | | | | | | | | | - Chiara Bonini
- Università Vita-Salute San Raffaele, Milan, and IRCCS Ospedale San Raffaele, Milan, Italy
| | - Lorenzo Dagna
- Università Vita-Salute San Raffaele, Milan, and IRCCS Ospedale San Raffaele, Milan, Italy
| | - Angelo A Manfredi
- Università Vita-Salute San Raffaele, Milan, and IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
5
|
Furment MM, Perl A. Immmunometabolism of systemic lupus erythematosus. Clin Immunol 2024; 261:109939. [PMID: 38382658 DOI: 10.1016/j.clim.2024.109939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/26/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Systemic lupus erythematosus (SLE) is a potentially fatal chronic autoimmune disease which is underlain by complex dysfunction of the innate and adaptive immune systems. Although a series of well-defined genetic and environmental factors have been implicated in disease etiology, neither the development nor the persistence of SLE is well understood. Given that several disease susceptibility genes and environmental factors interact and influence inflammatory lineage specification through metabolism, the field of immunometabolism has become a forefront of cutting edge research. Along these lines, metabolic checkpoints of pathogenesis have been identified as targets of effective therapeutic interventions in mouse models and validated in clinical trials. Ongoing studies focus on mitochondrial oxidative stress, activation of the mechanistic target of rapamycin, calcium signaling, glucose utilization, tryptophan degradation, and metabolic cross-talk between gut microbiota and the host immune system.
Collapse
Affiliation(s)
- Marlene Marte Furment
- Departments of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York 13210, United States of America
| | - Andras Perl
- Departments of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York 13210, United States of America; Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York 13210, United States of America; Microbiology and Immunology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York 13210, United States of America.
| |
Collapse
|
6
|
Zhao AY, Unterman A, Abu Hussein N, Sharma P, Flint J, Yan X, Adams TS, Justet A, Sumida TS, Zhao J, Schupp JC, Raredon MSB, Ahangari F, Zhang Y, Buendia-Roldan I, Adegunsoye A, Sperling AI, Prasse A, Ryu C, Herzog E, Selman M, Pardo A, Kaminski N. Peripheral Blood Single-Cell Sequencing Uncovers Common and Specific Immune Aberrations in Fibrotic Lung Diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558301. [PMID: 37786685 PMCID: PMC10541583 DOI: 10.1101/2023.09.20.558301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Rationale and Objectives The extent and commonality of peripheral blood immune aberrations in fibrotic interstitial lung diseases are not well characterized. In this study, we aimed to identify common and distinct immune aberrations in patients with idiopathic pulmonary fibrosis (IPF) and fibrotic hypersensitivity pneumonitis (FHP) using cutting-edge single-cell profiling technologies. Methods Single-cell RNA sequencing was performed on patients and healthy controls' peripheral blood and bronchoalveolar lavage samples using 10X Genomics 5' gene expression and V(D)J profiling. Cell type composition, transcriptional profiles, cellular trajectories and signaling, and T and B cell receptor repertoires were studied. The standard Seurat R pipeline was followed for cell type composition and differential gene expression analyses. Transcription factor activity was imputed using the DoRothEA-VIPER algorithm. Pseudotime analyses were conducted using Monocle3, while RNA velocity analyses were performed with Velocyto, scVelo, and CellRank. Cell-cell connectomics were assessed using the Connectome R package. V(D)J analyses were conducted using CellRanger and Immcantation frameworks. Across all analyses, disease group differences were assessed using the Wilcoxon rank-sum test. Measurements and Main Results 327,990 cells from 83 samples were profiled. Overall, changes in monocytes were common to IPF and FHP, whereas lymphocytes exhibited disease-specific aberrations. Both diseases displayed enrichment of CCL3 hi /CCL4 hi CD14+ monocytes (p<2.2e-16) and S100A hi CD14+ monocytes (p<2.2e-16) versus controls. Trajectory and RNA velocity analysis suggested that pro-fibrotic macrophages observed in BAL originated from peripheral blood monocytes. Lymphocytes exhibited disease-specific aberrations, with CD8+ GZMK hi T cells and activated B cells primarily enriched in FHP patients. V(D)J analyses revealed unique T and B cell receptor complementarity-determining region 3 (CDR3) amino acid compositions (p<0.05) in FHP and significant IgA enrichment in IPF (p<5.2e-7). Conclusions We identified common and disease-specific immune mechanisms in IPF and FHP; S100A hi monocytes and SPP1 hi macrophages are common to IPF and FHP, whereas GMZK hi T lymphocytes and T and B cell receptor repertoires were unique in FHP. Our findings open novel strategies for the diagnosis and treatment of IPF and FHP.
Collapse
|
7
|
Niebel D, de Vos L, Fetter T, Brägelmann C, Wenzel J. Cutaneous Lupus Erythematosus: An Update on Pathogenesis and Future Therapeutic Directions. Am J Clin Dermatol 2023; 24:521-540. [PMID: 37140884 PMCID: PMC10157137 DOI: 10.1007/s40257-023-00774-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2023] [Indexed: 05/05/2023]
Abstract
Lupus erythematosus comprises a spectrum of autoimmune diseases that may affect various organs (systemic lupus erythematosus [SLE]) or the skin only (cutaneous lupus erythematosus [CLE]). Typical combinations of clinical, histological and serological findings define clinical subtypes of CLE, yet there is high interindividual variation. Skin lesions arise in the course of triggers such as ultraviolet (UV) light exposure, smoking or drugs; keratinocytes, cytotoxic T cells and plasmacytoid dendritic cells (pDCs) establish a self-perpetuating interplay between the innate and adaptive immune system that is pivotal for the pathogenesis of CLE. Therefore, treatment relies on avoidance of triggers and UV protection, topical therapies (glucocorticosteroids, calcineurin inhibitors) and rather unspecific immunosuppressive or immunomodulatory drugs. Yet, the advent of licensed targeted therapies for SLE might also open new perspectives in the management of CLE. The heterogeneity of CLE might be attributable to individual variables and we speculate that the prevailing inflammatory signature defined by either T cells, B cells, pDCs, a strong lesional type I interferon (IFN) response, or combinations of the above might be suitable to predict therapeutic response to targeted treatment. Therefore, pretherapeutic histological assessment of the inflammatory infiltrate could stratify patients with refractory CLE for T-cell-directed therapies (e.g. dapirolizumab pegol), B-cell-directed therapies (e.g. belimumab), pDC-directed therapies (e.g. litifilimab) or IFN-directed therapies (e.g. anifrolumab). Moreover, Janus kinase (JAK) and spleen tyrosine kinase (SYK) inhibitors might broaden the therapeutic armamentarium in the near future. A close interdisciplinary exchange with rheumatologists and nephrologists is mandatory for optimal treatment of lupus patients to define the best therapeutic strategy.
Collapse
Affiliation(s)
- Dennis Niebel
- Department of Dermatology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Luka de Vos
- Department of Dermatology, University Hospital Bonn, 53127, Bonn, Germany
| | - Tanja Fetter
- Department of Dermatology, University Hospital Bonn, 53127, Bonn, Germany
| | | | - Jörg Wenzel
- Department of Dermatology, University Hospital Bonn, 53127, Bonn, Germany.
| |
Collapse
|
8
|
Rampoldi F, Donato E, Ullrich L, Deseke M, Janssen A, Demera A, Sandrock I, Bubke A, Juergens AL, Swallow M, Sparwasser T, Falk C, Tan L, Trumpp A, Prinz I. γδ T cells license immature B cells to produce a broad range of polyreactive antibodies. Cell Rep 2022; 39:110854. [PMID: 35613579 DOI: 10.1016/j.celrep.2022.110854] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 03/03/2022] [Accepted: 05/02/2022] [Indexed: 11/03/2022] Open
Abstract
Immature autoreactive B cells are present in all healthy individuals, but it is unclear which signals are required for their maturation into antibody-producing cells. Inducible depletion of γδ T cells show that direct interaction between γδ T cells and immature B cells in the spleen support an "innate" transition to mature B cells with a broad range of antigen specificities. IL-4 production of γδ T cells and cell-to-cell contact via CD30L support B cell maturation and induce genes of the unfolded protein response and mTORC1 signaling. Eight days after in vivo depletion of γδ T cells, increased numbers of B cells are already stuck in the transitional phase and express increased levels of IgD and CD21. Absence of γδ T cells leads also to reduced levels of serum anti-nuclear autoantibodies, making γδ T cells an attractive target to treat autoimmunity.
Collapse
Affiliation(s)
- Francesca Rampoldi
- Institute of Immunology, Hannover Medical School, Hannover 30625, Germany; Institute of Medical Microbiology and Hygiene and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany
| | - Elisa Donato
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg 69120, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM GmbH), Heidelberg 69120, Germany
| | - Leon Ullrich
- Institute of Immunology, Hannover Medical School, Hannover 30625, Germany
| | - Malte Deseke
- Institute of Immunology, Hannover Medical School, Hannover 30625, Germany
| | - Anika Janssen
- Institute of Immunology, Hannover Medical School, Hannover 30625, Germany
| | - Abdi Demera
- Institute of Immunology, Hannover Medical School, Hannover 30625, Germany
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover 30625, Germany
| | - Anja Bubke
- Institute of Immunology, Hannover Medical School, Hannover 30625, Germany
| | - Anna-Lena Juergens
- Institute of Immunology, Hannover Medical School, Hannover 30625, Germany
| | - Maxine Swallow
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research; a Joint Venture Between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover 30625, Germany
| | - Tim Sparwasser
- Institute of Medical Microbiology and Hygiene and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany; Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research; a Joint Venture Between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover 30625, Germany
| | - Christine Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover 30625, Germany
| | - Likai Tan
- Institute of Immunology, Hannover Medical School, Hannover 30625, Germany; Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg 69120, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM GmbH), Heidelberg 69120, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover 30625, Germany; Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany.
| |
Collapse
|
9
|
Abstract
Unconventional T cells are a diverse and underappreciated group of relatively rare lymphocytes that are distinct from conventional CD4+ and CD8+ T cells, and that mainly recognize antigens in the absence of classical restriction through the major histocompatibility complex (MHC). These non-MHC-restricted T cells include mucosal-associated invariant T (MAIT) cells, natural killer T (NKT) cells, γδ T cells and other, often poorly defined, subsets. Depending on the physiological context, unconventional T cells may assume either protective or pathogenic roles in a range of inflammatory and autoimmune responses in the kidney. Accordingly, experimental models and clinical studies have revealed that certain unconventional T cells are potential therapeutic targets, as well as prognostic and diagnostic biomarkers. The responsiveness of human Vγ9Vδ2 T cells and MAIT cells to many microbial pathogens, for example, has implications for early diagnosis, risk stratification and targeted treatment of peritoneal dialysis-related peritonitis. The expansion of non-Vγ9Vδ2 γδ T cells during cytomegalovirus infection and their contribution to viral clearance suggest that these cells can be harnessed for immune monitoring and adoptive immunotherapy in kidney transplant recipients. In addition, populations of NKT, MAIT or γδ T cells are involved in the immunopathology of IgA nephropathy and in models of glomerulonephritis, ischaemia-reperfusion injury and kidney transplantation.
Collapse
|
10
|
Datta SK. Harnessing Tolerogenic Histone Peptide Epitopes From Nucleosomes for Selective Down-Regulation of Pathogenic Autoimmune Response in Lupus (Past, Present, and Future). Front Immunol 2021; 12:629807. [PMID: 33936042 PMCID: PMC8080879 DOI: 10.3389/fimmu.2021.629807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
Autoantigen-directed tolerance can be induced by certain nucleosomal histone peptide epitope/s in nanomolar dosage leading to sustained remission of disease in mice with spontaneous SLE. By contrast, lupus is accelerated by administration of intact (whole) histones, or whole nucleosomes in microparticles from apoptotic cells, or by post-translationally acetylated histone-peptides. Low-dose therapy with the histone-peptide epitopes simultaneously induces TGFβ and inhibits IL-6 production by DC in vivo, especially pDC, which then induce CD4+CD25+ Treg and CD8+ Treg cells that suppress pathogenic autoimmune response. Both types of induced Treg cells are FoxP3+ and act by producing TGFβ at close cell-to-cell range. No anaphylactic adverse reactions, or generalized immunosuppression have been detected in mice injected with the peptides, because the epitopes are derived from evolutionarily conserved histones in the chromatin; and the peptides are expressed in the thymus during ontogeny, and their native sequences have not been altered. The peptide-induced Treg cells can block severe lupus on adoptive transfer reducing inflammatory cell reaction and infiltration in the kidney. In Humans, similar potent Treg cells are generated by the histone peptide epitopes in vitro in lupus patients’ PBMC, inhibiting anti-dsDNA autoantibody and interferon production. Furthermore, the same types of Treg cells are generated in lupus patients who are in very long-term remission (2-8 years) after undergoing autologous hematopoietic stem cell transplantation. These Treg cells are not found in lupus patients treated conventionally into clinical remission (SLEDAI of 0); and consequently they still harbor pathogenic autoimmune cells, causing subclinical damage. Although antigen-specific therapy with pinpoint accuracy is suitable for straight-forward organ-specific autoimmune diseases, Systemic Lupus is much more complex. The histone peptide epitopes have unique tolerogenic properties for inhibiting Innate immune cells (DC), T cells and B cell populations that are both antigen-specifically and cross-reactively involved in the pathogenic autoimmune response in lupus. The histone peptide tolerance is a natural and non-toxic therapy suitable for treating early lupus, and also maintaining lupus patients after toxic drug therapy. The experimental steps, challenges and possible solutions for successful therapy with these peptide epitopes are discussed in this highly focused review on Systemic Lupus.
Collapse
Affiliation(s)
- Syamal K Datta
- Department of Medicine, Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
11
|
Reduction in the percentage of circulating variable delta 2 T cells in systemic lupus erythematosus. Clin Immunol 2020; 220:108577. [PMID: 32858205 DOI: 10.1016/j.clim.2020.108577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 11/24/2022]
|
12
|
Shao M, He J, Zhang R, Zhang X, Yang Y, Li C, Liu X, Sun X, Li Z. Interleukin-2 Deficiency Associated with Renal Impairment in Systemic Lupus Erythematosus. J Interferon Cytokine Res 2020; 39:117-124. [PMID: 30721117 DOI: 10.1089/jir.2018.0016] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Impaired interleukin-2 (IL-2) production was reported in systemic lupus erythematosus (SLE). The aim of this study was to investigate the clinical relevance of serum IL-2 and therapeutic effects of recombinant IL-2 (rIL-2) in SLE, especially in lupus nephritis (LN). Decreased serum IL-2 was found in patients with active LN (P = 0.014) and correlated with 24-h urine protein excretion (r = -0.281, P = 0.026). Compared with LN patients with decreased levels of serum IL-2, patients with increased levels had better remission rate (P = 0.041). Furthermore, patients with exogenous low-dose IL-2 supplement demonstrated better improved nephritis and higher remission rate (55.56%, P = 0.058) than those with conventional therapy. In addition, the percentages of regulator T (Treg) cells expanded in LN patients with low-dose recombinant human IL-2 treatment (P = 0.007), especially in LN patients achieving remission (P = 0.010). IL-2 deficiency is associated with renal impairment that can be improved by exogenous IL-2 supplement.
Collapse
Affiliation(s)
- Miao Shao
- 1 Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,2 Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Jing He
- 1 Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,2 Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Ruijun Zhang
- 1 Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,2 Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Xia Zhang
- 1 Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,2 Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Yue Yang
- 1 Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,2 Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Chun Li
- 1 Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,2 Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Xiaoyun Liu
- 3 Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Xiaolin Sun
- 1 Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,2 Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Zhanguo Li
- 1 Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,2 Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China.,4 Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
13
|
Bank I. The Role of Gamma Delta T Cells in Autoimmune Rheumatic Diseases. Cells 2020; 9:E462. [PMID: 32085540 PMCID: PMC7072729 DOI: 10.3390/cells9020462] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 02/07/2023] Open
Abstract
Autoimmune rheumatic diseases (ARDs), affecting ~1-1.5% of all humans, are associated with considerable life long morbidity and early mortality. Early studies in the 1990s showed numerical changes of the recently discovered γδ T cells in the peripheral blood and in affected tissues of patients with a variety of ARDs, kindling interest in their role in the immuno-pathogenesis of these chronic inflammatory conditions. Indeed, later studies applied rapid developments in the understanding of γδ T cell biology, including antigens recognized by γδ T cells, their developmental programs, states of activation, and cytokine production profiles, to analyze their contribution to the pathological immune response in these disorders. Here we review the published studies addressing the role of γδ T in the major autoimmune rheumatic diseases, including rheumatoid arthritis, juvenile idiopathic arthritis, ankylosing spondylitis, systemic lupus erythematosus and scleroderma, and animal models thereof. Due to their unique properties spanning adaptive and innate immune functions, the ever deeper understanding of this unique T cell population is shedding new light on the pathogenesis of, while potentially enabling new therapeutic approaches to, these diseases.
Collapse
Affiliation(s)
- Ilan Bank
- Rheumatology Unit, Autoimmunity Center, Sheba Medical Center, Tel-Hashomer 52621, Israel
| |
Collapse
|
14
|
The Progress of Investigating the CD137-CD137L Axis as a Potential Target for Systemic Lupus Erythematosus. Cells 2019; 8:cells8091044. [PMID: 31500130 PMCID: PMC6770642 DOI: 10.3390/cells8091044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 12/30/2022] Open
Abstract
Costimulatory molecules facilitate cross-talks among leukocytes via mutual stimulatory and inhibitory signalling, contributing to diverse immunological outcomes in normal physiological responses and pathological conditions. Systemic lupus erythematosus (SLE) is a complex multi-systemic autoimmune condition in which cellular communication through the involvement of costimulatory molecules is crucial in driving proinflammatory responses from the stage of autoantigen presentation to the subsequent process of pathogenic autoantibody production. While the physiology of the costimulatory systems including OX40-OX40L, CD28/CTLA-4-CD80/86, ICOS-B7RP1 and CD70-CD27 has been relatively well studied in SLE, recent data on the immunopathology of the CD137-CD137 ligand (CD137L) system in murine lupus models and patients with SLE highlight the critical role of this costimulatory system in initiating and perpetuating the diverse clinical and serological phenotypes of SLE. CD137, a membrane-bound receptor which belongs to the tumour necrosis factor receptor superfamily, is mainly expressed on activated T cells. Activation of the CD137 receptor via its interaction with CD137L which is expressed on antigen present cells (APC) including B cells, triggers bi-directional signalling; that is, signalling through CD137 as well as signalling through CD137L (reverse signalling), which further activates T cells and polarizes them to the Th1/Tc1 pathway. Further, via reverse CD137L signalling it enhances differentiation and maturation of the APC, particularly of dendritic cells, which subsequently drive proinflammatory cytokine production. In this review, recent data including our experience in the manipulation of CD137L signalling pertaining to the pathophysiology of SLE will be critically reviewed. More in-depth understanding of the biology of the CD137-CD137L co-stimulation system opens an opportunity to identify new prognostic biomarkers and the design of novel therapeutic approaches for advancing the management of SLE.
Collapse
|
15
|
Soni C, Reizis B. Self-DNA at the Epicenter of SLE: Immunogenic Forms, Regulation, and Effects. Front Immunol 2019; 10:1601. [PMID: 31354738 PMCID: PMC6637313 DOI: 10.3389/fimmu.2019.01601] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 06/26/2019] [Indexed: 12/12/2022] Open
Abstract
Self-reactive B cells generated through V(D)J recombination in the bone marrow or through accrual of random mutations in secondary lymphoid tissues are mostly purged or edited to prevent autoimmunity. Yet, 10–20% of all mature naïve B cells in healthy individuals have self-reactive B cell receptors (BCRs). In patients with serologically active systemic lupus erythematosus (SLE) the percentage increases up to 50%, with significant self-DNA reactivity that correlates with disease severity. Endogenous or self-DNA has emerged as a potent antigen in several autoimmune disorders, particularly in SLE. However, the mechanism(s) regulating or preventing anti-DNA antibody production remain elusive. It is likely that in healthy subjects, DNA-reactive B cells avoid activation due to the unavailability of endogenous DNA, which is efficiently degraded through efferocytosis and various DNA-processing proteins. Genetic defects, physiological, and/or pathological conditions can override these protective checkpoints, leading to autoimmunity. Plausibly, increased availability of immunogenic self-DNA may be the key initiating event in the loss of tolerance of otherwise quiescent DNA-reactive B cells. Indeed, mutations impairing apoptotic cell clearance pathways and nucleic acid metabolism-associated genes like DNases, RNases, and their sensors are known to cause autoimmune disorders including SLE. Here we review the literature supporting the idea that increased availability of DNA as an immunogen or adjuvant, or both, may cause the production of pathogenic anti-DNA antibodies and subsequent manifestations of clinical disease such as SLE. We discuss the main cellular players involved in anti-DNA responses; the physical forms and sources of immunogenic DNA in autoimmunity; the DNA-protein complexes that render DNA immunogenic; the regulation of DNA availability by intracellular and extracellular DNases and the autoimmune pathologies associated with their dysfunction; the cytosolic and endosomal sensors of immunogenic DNA; and the cytokines such as interferons that drive auto-inflammatory and autoimmune pathways leading to clinical disease. We propose that prevention of DNA availability by aiding extracellular DNase activity could be a viable therapeutic modality in controlling SLE.
Collapse
Affiliation(s)
- Chetna Soni
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| | - Boris Reizis
- Department of Pathology, New York University School of Medicine, New York, NY, United States.,Department of Medicine, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
16
|
γδ T cells control humoral immune response by inducing T follicular helper cell differentiation. Nat Commun 2018; 9:3151. [PMID: 30089795 PMCID: PMC6082880 DOI: 10.1038/s41467-018-05487-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/11/2018] [Indexed: 01/04/2023] Open
Abstract
γδ T cells have many known functions, including the regulation of antibody responses. However, how γδ T cells control humoral immunity remains elusive. Here we show that complete Freund's adjuvant (CFA), but not alum, immunization induces a subpopulation of CXCR5-expressing γδ T cells in the draining lymph nodes. TCRγδ+CXCR5+ cells present antigens to, and induce CXCR5 on, CD4 T cells by releasing Wnt ligands to initiate the T follicular helper (Tfh) cell program. Accordingly, TCRδ-/- mice have impaired germinal center formation, inefficient Tfh cell differentiation, and reduced serum levels of chicken ovalbumin (OVA)-specific antibodies after CFA/OVA immunization. In a mouse model of lupus, TCRδ-/- mice develop milder glomerulonephritis, consistent with decreased serum levels of lupus-related autoantibodies, when compared with wild type mice. Thus, modulation of the γδ T cell-dependent humoral immune response may provide a novel therapy approach for the treatment of antibody-mediated autoimmunity.
Collapse
|
17
|
Huang N, Perl A. Metabolism as a Target for Modulation in Autoimmune Diseases. Trends Immunol 2018; 39:562-576. [PMID: 29739666 DOI: 10.1016/j.it.2018.04.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/21/2018] [Accepted: 04/18/2018] [Indexed: 12/20/2022]
Abstract
Metabolic pathways are now well recognized as important regulators of immune differentiation and activation, and thus influence the development of autoimmune diseases such as systemic lupus erythematosus (SLE). The mechanistic target of rapamycin (mTOR) has emerged as a key sensor of metabolic stress and an important mediator of proinflammatory lineage specification. Metabolic pathways control the production of mitochondrial reactive oxygen species (ROS), which promote mTOR activation and also modulate the antigenicity of proteins, lipids, and DNA, thus placing ROS at the heart of metabolic disturbances during pathogenesis of SLE. Therefore, we review here the pathways that control ROS production and mTOR activation and identify targets for safe therapeutic modulation of the signaling network that underlies autoimmune diseases, focusing on SLE.
Collapse
Affiliation(s)
- Nick Huang
- Departments of Medicine, Microbiology and Immunology, Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, College of Medicine, Syracuse, NY 13210, USA
| | - Andras Perl
- Departments of Medicine, Microbiology and Immunology, Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, College of Medicine, Syracuse, NY 13210, USA.
| |
Collapse
|
18
|
Mo WX, Yin SS, Chen H, Zhou C, Zhou JX, Zhao LD, Fei YY, Yang HX, Guo JB, Mao YJ, Huang LF, Zheng WJ, Zhang W, Zhang JM, He W, Zhang X. Chemotaxis of Vδ2 T cells to the joints contributes to the pathogenesis of rheumatoid arthritis. Ann Rheum Dis 2017; 76:2075-2084. [PMID: 28866647 PMCID: PMC5705844 DOI: 10.1136/annrheumdis-2016-211069] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/26/2017] [Accepted: 07/26/2017] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To explore the role of Vδ2 T cells in the pathogenesis of rheumatoid arthritis (RA). METHODS Sixty-eight patients with RA, 21 patients with osteoarthritis and 21 healthy controls were enrolled in the study. All patients with RA fulfilled the 2010 American College of Rheumatology/European League Against Rheumatism criteria for RA. Peripheral Vδ2T population, chemokine receptor expression and proinflammatory cytokine secretion were quantified by flow cytometry. The infiltration of Vδ2 T cells within the synovium was examined by immunohistochemistry and flow cytometry. The effect of tumour necrosis factor (TNF)-α and interleukin (IL)-6 on Vδ2 T migration was determined by flow cytometry and transwell migration assay. RESULTS Peripheral Vδ2T cells, but not Vδ1 T cells, were significantly lower in patients with RA, which was negatively correlated with disease activity gauged by Disease Activity Score in 28 joints. Vδ2 T cells from RA accumulated in the synovium and produced high levels of proinflammatory cytokines including interferon-γ and IL-17. Phenotypically, Vδ2 T cells from RA showed elevated chemotaxis potential and expressed high levels of chemokine receptors CCR5 and CXCR3, which was driven by increased serum TNF-α through nuclear factor kappa B signalling. In vivo, TNF-α neutralising therapy dramatically downregulated CCR5 and CXCR3 on Vδ2 T cells and repopulated the peripheral Vδ2 T cells in patients with RA. CONCLUSIONS High levels of TNF-α promoted CCR5 and CXCR3 expression in Vδ2 T cells from RA, which potentially infiltrated into the synovium and played crucial roles in the pathogenesis of RA. Targeting Vδ2 T cells might be a potential approach for RA.
Collapse
Affiliation(s)
- Wen-Xiu Mo
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Ministry of Education Key Laboratory, Beijing, China
| | - Shan-Shan Yin
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Ministry of Education Key Laboratory, Beijing, China
| | - Hua Chen
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Ministry of Education Key Laboratory, Beijing, China
| | - Chen Zhou
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Ministry of Education Key Laboratory, Beijing, China
| | - Jia-Xin Zhou
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Ministry of Education Key Laboratory, Beijing, China
| | - Li-Dan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Ministry of Education Key Laboratory, Beijing, China
| | - Yun-Yun Fei
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Ministry of Education Key Laboratory, Beijing, China
| | - Hua-Xia Yang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Ministry of Education Key Laboratory, Beijing, China
| | - Jing-Bo Guo
- Department of Traditional Chinese Medicine, 256th Clinical Department of Bethune International Peace Hospital of PLA, Shijiazhuang, China
| | - Yu-Jia Mao
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Lin-Fang Huang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Ministry of Education Key Laboratory, Beijing, China
| | - Wen-Jie Zheng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Ministry of Education Key Laboratory, Beijing, China
| | - Wen Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Ministry of Education Key Laboratory, Beijing, China
| | - Jian-Min Zhang
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Wei He
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Xuan Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Ministry of Education Key Laboratory, Beijing, China
| |
Collapse
|
19
|
Dai H, He F, Tsokos GC, Kyttaris VC. IL-23 Limits the Production of IL-2 and Promotes Autoimmunity in Lupus. THE JOURNAL OF IMMUNOLOGY 2017. [PMID: 28646040 DOI: 10.4049/jimmunol.1700418] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The IL-23/IL-17 pathway is important in multiple autoimmune diseases, but its effect on lupus pathology remains unclear, with opposing trials in murine models of the disease. In this study, we show a disease activity-related upregulation of serum IL-23 and IL-23 receptor in patients with systemic lupus erythematosus (SLE) as compared with healthy controls. When added in SLE T cell in vitro cultures, IL-23 induced IL-17 and limited IL-2 production, whereas T follicular helper and double negative (DN) T cells significantly expanded. To further dissect the role of IL-23 in the expression of autoimmunity and related pathology, we generated IL-23 receptor-deficient MRL.lpr mice. These IL-23R-/-MRL.lpr mice displayed attenuated lupus nephritis with a striking decrease in the accumulation of DN T cells in the kidneys and secondary lymphoid organs. Moreover, T cells from IL-23R-/-MRL.lpr mice produced increased amounts of IL-2 and reduced amounts of IL-17 compared with T cells from wild type animals. In vitro IL-23 treatment promoted IL-17 production and downregulated IL-2 production. The IL-23R-/-MRL.lpr had fewer T follicular helper cells, B cells, and plasma cells, leading to decreased production of anti-dsDNA Abs. Our results show that IL-23 accounts for the main aspects of human and murine lupus including the expansion of DN T cells, decreased IL-2, and increased IL-17 production. We propose that blockade of IL-23 should have a therapeutic value in patients with SLE.
Collapse
Affiliation(s)
- Hong Dai
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston 02215, MA
| | - Fan He
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston 02215, MA
| | - George C Tsokos
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston 02215, MA
| | - Vasileios C Kyttaris
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston 02215, MA
| |
Collapse
|
20
|
Ramos-Martínez E, Lascurain R, Tenorio EP, Sánchez-González A, Chávez-Rueda K, Chávez-Sánchez L, Jara-Quezada LJ, Chávez-Sánchez R, Zenteno E, Blanco-Favela F. Differential Expression of O-Glycans in CD4(+) T Lymphocytes from Patients with Systemic Lupus Erythematosus. TOHOKU J EXP MED 2017; 240:79-89. [PMID: 27600584 DOI: 10.1620/tjem.240.79] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
T cells from patients with systemic lupus erythematosus (SLE) show a decreased activation threshold and increased apoptosis. These processes seem to be regulated by glycosylated molecules on the T cell surface. Here, we determined through flow cytometry the expression of mucin-type O-glycans on T helper cells in peripheral blood mononuclear cells (PBMC) from 23 SLE patients and its relation with disease activity. We used lectins specific for the disaccharide Gal-GalNAc, such as Amaranthus leucocarpus lectin (ALL), Artocarpus integrifolia lectin (jacalin) and Arachis hypogaea lectin (peanut agglutinin, PNA), as well as lectins for sialic acid such as Sambucus nigra agglutinin (SNA) and Maakia amurensis agglutinin (MAA). The results showed that ALL, but not jacalin or PNA, identified significant differences in O-glycan expression on T helper cells from active SLE patients (n = 10). Moreover, an inverse correlation was found between the frequency of T helper cells recognized by ALL and SLE Disease Activity Index (SLEDAI) score in SLE patients. In contrast, SNA and MAA lectins did not identify any differences between CD4(+) T cells from SLE patients. There was no difference in the recognition by ALL on activated T helper cells and T regulatory (Treg) cells. Our findings point out that activation of SLE disease diminishes the expression of O-glycans in T helper cells; ALL could be considered as a marker to determine activity of the disease.
Collapse
Affiliation(s)
- Edgar Ramos-Martínez
- Unidad de Investigación Médica en Inmunología, Hospital de Pediatría, Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social (IMSS)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Suárez-Fueyo A, Bradley SJ, Klatzmann D, Tsokos GC. T cells and autoimmune kidney disease. Nat Rev Nephrol 2017; 13:329-343. [PMID: 28287110 DOI: 10.1038/nrneph.2017.34] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glomerulonephritis is traditionally considered to result from the invasion of the kidney by autoantibodies and immune complexes from the circulation or following their formation in situ, and by cells of the innate and the adaptive immune system. The inflammatory response leads to the proliferation and dysfunction of cells of the glomerulus, and invasion of the interstitial space with immune cells, resulting in tubular cell malfunction and fibrosis. T cells are critical drivers of autoimmunity and related organ damage, by supporting B-cell differentiation and antibody production or by directly promoting inflammation and cytotoxicity against kidney resident cells. T cells might become activated by autoantigens in the periphery and become polarized to secrete inflammatory cytokines before entering the kidney where they have the opportunity to expand owing to the presence of costimulatory molecules and activating cytokines. Alternatively, naive T cells could enter the kidney where they become activated after encountering autoantigen and expand locally. As not all individuals with a peripheral autoimmune response to kidney antigens develop glomerulonephritis, the contribution of local kidney factors expressed or produced by kidney cells is probably of crucial importance. Improved understanding of the biochemistry and molecular biology of T cells in patients with glomerulonephritis offers unique opportunities for the recognition of treatment targets for autoimmune kidney disease.
Collapse
Affiliation(s)
- Abel Suárez-Fueyo
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, CLS-937, Boston, Massachusetts 02215, USA
| | - Sean J Bradley
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, CLS-937, Boston, Massachusetts 02215, USA
| | - David Klatzmann
- Sorbonne Universités, Pierre and Marie Curie University, INSERM UMR_S 959, 83 Boulevard de l'Hôpital, F-75013, Paris, France.,AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Clinical Investigation Center in Biotherapy and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), 83 boulevard de l'Hôpital, F-75013, Paris, France
| | - George C Tsokos
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, CLS-937, Boston, Massachusetts 02215, USA
| |
Collapse
|
22
|
Liu H, Zheng T, Mao Y, Xu C, Wu F, Bu L, Mou X, Zhou Y, Yuan G, Wang S, Zhou T, Chen D, Mao C. γδ Τ cells enhance B cells for antibody production in Hashimoto's thyroiditis, and retinoic acid induces apoptosis of the γδ Τ cell. Endocrine 2016; 51:113-22. [PMID: 25994301 DOI: 10.1007/s12020-015-0631-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/12/2015] [Indexed: 01/06/2023]
Abstract
TCR γδ(+) Τ cells are important in the pathogenesis of inflammatory and autoimmune conditions. This study investigated the effect of γδ T cells on autoantibody production in patients with Hashimoto's thyroiditis (HT). A total of 148 subjects were enrolled, including 99 patients with HT, 5 with simple goiters, and 44 healthy controls. Peripheral blood and thyroid mononuclear cells were subjected to flow cytometric analysis. Thyroid tissues underwent immunofluorescent staining and immunohistochemistry for γδ T cells and anti-thyroid antibody detection. Antibody production was measured by ELISA and automated chemiluminescent immunoassays. And activation and apoptosis of peripheral blood γδT cells and B cells were measured by flow cytometric analysis. The percentage of γδ T cells were greater in thyroid tissue from HT patients than that of goiter patients (n = 5, 5.33 ± 1.20 vs. 2.07 ± 0.44 %; P < 0.05), with the Vδ1(+) γδ T cell subset especially dominant. Frequencies of CD69 (8.42 ± 1.08 vs. 1.60 ± 0.38 %, P < 0.001), HLA-DR (58.12 ± 6.36 vs. 37.82 ± 3.70 %, P < 0.05), CD40L (1.58 ± 0.35 vs. 0.15 ± 0.05 %, P < 0.01), and ICOS (2.78 ± 0.66 vs. 0.28 ± 0.13 %, P < 0.01) expressed on γδ T cells from HT patients (n = 19) were significantly increased compared with those of healthy controls (n = 15). More importantly, γδ T cells from HT patients enhanced B cells for antibody production, and all-trans retinoic acid (ATRA) treatment inhibited the effect by inducing apoptosis of γδ Τ cells. γδ Τ cells appear to play an important role in the pathogenesis of HT, and ATRA might be an effective regulator for HT patients.
Collapse
Affiliation(s)
- Hongli Liu
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
- Institute of Oncology, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
- Department of Laboratory Medicine, Nantong Tumor Hospital, Nantong, 226361, China
| | - Tingting Zheng
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
- Institute of Oncology, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Yufei Mao
- Department of Laboratory Immunology, Jiangsu University School of Medicine, Zhenjiang, 212001, China
| | - Chengcheng Xu
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
- Institute of Oncology, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Fei Wu
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
- Institute of Oncology, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Ling Bu
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
- Institute of Oncology, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Xiao Mou
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
- Institute of Oncology, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Yuepeng Zhou
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
- Institute of Oncology, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Guoyue Yuan
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Shengjun Wang
- Department of Laboratory Immunology, Jiangsu University School of Medicine, Zhenjiang, 212001, China
| | - Tong Zhou
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Deyu Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
- Institute of Oncology, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Chaoming Mao
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China.
- Institute of Oncology, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China.
| |
Collapse
|
23
|
Abstract
Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease characterized by a loss of tolerance to multiple endogenous antigens. SLE etiology remains largely unknown, despite recent insight into the immunopathogenesis of the disease. T cells are important in the development of the disease by amplifying the immune response and contributing to organ damage. Aberrant signaling, cytokine secretion, and tissue homing displayed by SLE T cells have been extensively studied and the underlying pathogenic molecular mechanisms are starting to be elucidated. T-cell-targeted treatments are being explored in SLE patients. This review is an update on the T-cell abnormalities and related therapeutic options in SLE.
Collapse
Affiliation(s)
- D Comte
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - M P Karampetsou
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - G C Tsokos
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Qiao G, Yang L, Li Z, Williams JW, Zhang J. A77 1726, the active metabolite of leflunomide, attenuates lupus nephritis by promoting the development of regulatory T cells and inhibiting IL-17-producing double negative T cells. Clin Immunol 2015; 157:166-74. [DOI: 10.1016/j.clim.2015.01.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 01/20/2015] [Indexed: 12/20/2022]
|
25
|
Tyler CJ, Doherty DG, Moser B, Eberl M. Human Vγ9/Vδ2 T cells: Innate adaptors of the immune system. Cell Immunol 2015; 296:10-21. [PMID: 25659480 DOI: 10.1016/j.cellimm.2015.01.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/25/2014] [Accepted: 01/14/2015] [Indexed: 12/11/2022]
Abstract
Unconventional T cells are gaining center stage as important effector and regulatory cells that orchestrate innate and adaptive immune responses. Human Vγ9/Vδ2 T cells are amongst the best understood unconventional T cells, as they are easily accessible in peripheral blood, can readily be expanded and manipulated in vitro, respond to microbial infections in vivo and can be exploited for novel tumor immunotherapies. We here review findings that suggest that Vγ9/Vδ2 T cells, and possibly other unconventional human T cells, play an important role in bridging innate and adaptive immunity by promoting the activation and differentiation of various types of antigen-presenting cells (APCs) and even turning into APCs themselves, and thereby pave the way for antigen-specific effector responses and long-term immunological memory. Although the direct physiological relevance for most of these mechanisms still needs to be demonstrated in vivo, these findings may have implications for novel therapies, diagnostic tests and vaccines.
Collapse
Affiliation(s)
- Christopher J Tyler
- Cardiff Institute of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Derek G Doherty
- Department of Immunology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Bernhard Moser
- Cardiff Institute of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Matthias Eberl
- Cardiff Institute of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
26
|
Shen L, Zhang H, Caimol M, Benike CJ, Chakravarty EF, Strober S, Engleman EG. Invariant natural killer T cells in lupus patients promote IgG and IgG autoantibody production. Eur J Immunol 2014; 45:612-23. [PMID: 25352488 DOI: 10.1002/eji.201444760] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 09/08/2014] [Accepted: 10/22/2014] [Indexed: 12/22/2022]
Abstract
IgG autoantibodies, including antibodies to double-stranded DNA (dsDNA), are pathogenic in systemic lupus erythematosus (SLE), but the mechanisms controlling their production are not understood. To assess the role of invariant natural killer T (iNKT) cells in this process, we studied 44 lupus patients. We took advantage of the propensity of PBMCs from patients with active disease to spontaneously secrete IgG in vitro. Despite the rarity of iNKT cells in lupus blood (0.002-0.05% of CD3-positive T cells), antibody blockade of the conserved iNKT TCR or its ligand, CD1d, or selective depletion of iNKT cells, inhibited spontaneous secretion of total IgG and anti-dsDNA IgG by lupus PBMCs. Addition of anti-iNKT or anti-CD1d antibody to PBMC cultures also reduced the frequency of plasma cells, suggesting that lupus iNKT cells induce B-cell maturation. Like fresh iNKT cells, expanded iNKT-cell lines from lupus patients, but not healthy subjects, induced autologous B cells to secrete antibodies, including IgG anti-dsDNA. This activity was inhibited by anti-CD40L antibody, as well as anti-CD1d antibody, confirming a role for CD40L-CD40 and TCR-CD1d interactions in lupus iNKT-cell-mediated help. These results reveal a critical role for iNKT cells in B-cell maturation and autoantibody production in patients with lupus.
Collapse
Affiliation(s)
- Lei Shen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Kato H, Perl A. Mechanistic target of rapamycin complex 1 expands Th17 and IL-4+ CD4-CD8- double-negative T cells and contracts regulatory T cells in systemic lupus erythematosus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:4134-44. [PMID: 24683191 PMCID: PMC3995867 DOI: 10.4049/jimmunol.1301859] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The mechanistic target of rapamycin (mTOR) is activated in CD4(-)CD8(-) double-negative (DN) T cells and its blockade is therapeutic in systemic lupus erythematosus (SLE) patients. Murine studies showed the involvement of mTOR complex 1 (mTORC1) and 2 (mTORC2) in the differentiation of Th1/Th17 cells and Th2 cells, respectively. In this study, we investigated the roles of mTORC1 and mTORC2 in T cell lineage development in SLE and matched healthy control (HC) subjects. mTORC1 activity was increased, whereas mTORC2 was reduced, as assessed by phosphorylation of their substrates phosphorylated S6 kinase 1 or phosphorylated S6 ribosomal protein and phosphorylated Akt, respectively. Rapamycin inhibited mTORC1 and enhanced mTORC2. IL-4 expression was increased in freshly isolated CD8(+) lupus T cells (SLE: 8.09 ± 1.93%, HC: 3.61 ± 0.49%; p = 0.01). DN T cells had greater IL-4 expression than CD4(+) or CD8(+) T cells of SLE patients after 3-d in vitro stimulation, which was suppressed by rapamycin (control: 9.26 ± 1.48%, rapamycin: 5.03 ± 0.66%; p < 0.001). GATA-3 expression was increased in CD8(+) lupus T cells (p < 0.01) and was insensitive to rapamycin treatment. IFN-γ expression was reduced in all lupus T cell subsets (p = 1.0 × 10(-5)) and also resisted rapamycin. IL-17 expression was increased in CD4(+) lupus T cells (SLE: 3.62 ± 0.66%, HC: 2.29 ± 0.27%; p = 0.019), which was suppressed by rapamycin (control: 3.91 ± 0.79%, rapamycin: 2.22 ± 0.60%; p < 0.001). Frequency of regulatory T cells (Tregs) was reduced in SLE (SLE: 1.83 ± 0.25%, HC: 2.97 ± 0.27%; p = 0.0012). Rapamycin inhibited mTORC1 in Tregs and promoted their expansion. Neutralization of IL-17, but not IL-4, also expanded Tregs in SLE and HC subjects. These results indicate that mTORC1 expands IL-4(+) DN T and Th17 cells, and contracts Tregs in SLE.
Collapse
Affiliation(s)
- Hiroshi Kato
- Division of Rheumatology, Departments of Medicine, Microbiology and Immunology, and Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York 13210
| | - Andras Perl
- Division of Rheumatology, Departments of Medicine, Microbiology and Immunology, and Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York 13210
| |
Collapse
|
28
|
Stricher F, Macri C, Ruff M, Muller S. HSPA8/HSC70 chaperone protein: structure, function, and chemical targeting. Autophagy 2013; 9:1937-54. [PMID: 24121476 DOI: 10.4161/auto.26448] [Citation(s) in RCA: 290] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
HSPA8/HSC70 protein is a fascinating chaperone protein. It represents a constitutively expressed, cognate protein of the HSP70 family, which is central in many cellular processes. In particular, its regulatory role in autophagy is decisive. We focused this review on HSC70 structure-function considerations and based on this, we put a particular emphasis on HSC70 targeting by small molecules and peptides in order to develop intervention strategies that deviate some of HSC70 properties for therapeutic purposes. Generating active biomolecules regulating autophagy via its effect on HSC70 can effectively be designed only if we understand the fine relationships between HSC70 structure and functions.
Collapse
Affiliation(s)
- François Stricher
- CNRS; Institut de Biologie Moléculaire et Cellulaire; Immunopathologie et Chimie Thérapeutique/Laboratory of Excellence Medalis; Strasbourg, France
| | | | | | | |
Collapse
|
29
|
Richard EM, Thiyagarajan T, Bunni MA, Basher F, Roddy PO, Siskind LJ, Nietert PJ, Nowling TK. Reducing FLI1 levels in the MRL/lpr lupus mouse model impacts T cell function by modulating glycosphingolipid metabolism. PLoS One 2013; 8:e75175. [PMID: 24040398 PMCID: PMC3769295 DOI: 10.1371/journal.pone.0075175] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 08/13/2013] [Indexed: 01/01/2023] Open
Abstract
Systemic Lupus erythematosus (SLE) is an autoimmune disease caused, in part, by abnormalities in cells of the immune system including B and T cells. Genetically reducing globally the expression of the ETS transcription factor FLI1 by 50% in two lupus mouse models significantly improves disease measures and survival through an unknown mechanism. In this study we analyze the effects of reducing FLI1 in the MRL/lpr lupus prone model on T cell function. We demonstrate that adoptive transfer of MRL/lpr Fli1+/+ or Fli1+/- T cells and B cells into Rag1-deficient mice results in significantly decreased serum immunoglobulin levels in animals receiving Fli1+/- lupus T cells compared to animals receiving Fli1+/+ lupus T cells regardless of the genotype of co-transferred lupus B cells. Ex vivo analyses of MRL/lpr T cells demonstrated that Fli1+/- T cells produce significantly less IL-4 during early and late disease and exhibited significantly decreased TCR-specific activation during early disease compared to Fli1+/+ T cells. Moreover, the Fli1+/- T cells expressed significantly less neuraminidase 1 (Neu1) message and decreased NEU activity during early disease and significantly decreased levels of glycosphingolipids during late disease compared to Fli1+/+ T cells. FLI1 dose-dependently activated the Neu1 promoter in mouse and human T cell lines. Together, our results suggest reducing FLI1 in lupus decreases the pathogenicity of T cells by decreasing TCR-specific activation and IL-4 production in part through the modulation of glycosphingolipid metabolism. Reducing the expression of FLI1 or targeting the glycosphingolipid metabolic pathway in lupus may serve as a therapeutic approach to treating lupus.
Collapse
Affiliation(s)
- Erin Morris Richard
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Thirumagal Thiyagarajan
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Marlene A. Bunni
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Fahmin Basher
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Patrick O. Roddy
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Leah J. Siskind
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States of America
| | - Paul J. Nietert
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Tamara K. Nowling
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
30
|
Lai ZW, Borsuk R, Shadakshari A, Yu J, Dawood M, Garcia R, Francis L, Tily H, Bartos A, Faraone SV, Phillips P, Perl A. Mechanistic target of rapamycin activation triggers IL-4 production and necrotic death of double-negative T cells in patients with systemic lupus erythematosus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:2236-46. [PMID: 23913957 PMCID: PMC3777662 DOI: 10.4049/jimmunol.1301005] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The mechanistic target of rapamycin (mTOR) is recognized as a sensor of mitochondrial dysfunction and effector of T cell lineage development; however, its role in autoimmunity, including systemic lupus erythematosus, remains unclear. In this study, we prospectively evaluated mitochondrial dysfunction and mTOR activation in PBLs relative to the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) during 274 visits of 59 patients and 54 matched healthy subjects. Partial least square-discriminant analysis identified 15 of 212 parameters that accounted for 70.2% of the total variance and discriminated lupus and control samples (p < 0.0005); increased mitochondrial mass of CD3(+)/CD4(-)/CD8(-) double-negative (DN) T cells (p = 1.1 × 10(-22)) and FOXP3 depletion in CD4(+)/CD25(+) T cells were top contributors (p = 6.7 × 10(-7)). Prominent necrosis and mTOR activation were noted in DN T cells during 15 visits characterized by flares (SLEDAI increase ≥ 4) relative to 61 visits of remission (SLEDAI decrease ≥ 4). mTOR activation in DN T cells was also noted at preflare visits of SLE patients relative to those with stable disease or healthy controls. DN lupus T cells showed increased production of IL-4, which correlated with depletion of CD25(+)/CD19(+) B cells. Rapamycin treatment in vivo blocked the IL-4 production and necrosis of DN T cells, increased the expression of FOXP3 in CD25(+)/CD4(+) T cells, and expanded CD25(+)/CD19(+) B cells. These results identify mTOR activation to be a trigger of IL-4 production and necrotic death of DN T cells in patients with SLE.
Collapse
Affiliation(s)
- Zhi-Wei Lai
- Division of Rheumatology, Department of Medicine, College of Medicine, Upstate Medical University, State University of New York, Syracuse, NY 13210, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Yamashita T, Ochi H, Ishizu N, Ohyagi Y, Mori Y, Arahata S, Ohshima K, Kira JI. [A case of myositis associated with clonal expansion of γδ T cells in peripheral blood and bone marrow]. Rinsho Shinkeigaku 2013; 52:227-33. [PMID: 22531654 DOI: 10.5692/clinicalneurol.52.227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We report a 45-year-old man with myositis associated with clonal expansion of γδ T cells. He was referred to our hospital because of slowly progressive (over 10 years) muscle weakness. On neurological examination, weakness and muscle atrophy were noted in the proximal upper and lower limbs. The level of creatinine kinase (CK) was 1,436 U/L. Neutropenia and monoclonal gammopathy were found in the peripheral blood. Flow cytometric analysis of peripheral blood and bone marrow revealed proliferation of CD3(+)CD4(-)CD8(+) and CD3(+)CD4(-)CD8(-) γδ T cells, and Southern blotting demonstrated a clonally rearranged T-cell receptor Jγ gene in peripheral blood and bone marrow. A biopsy of the right quadriceps muscle showed variations in muscle fiber size, and endomysial mononuclear cell infiltration. The expression of MHC Class I antigen was increased on the surfaces of most of muscle fibers, and TCRδ1 positive-lymphocytes invaded nonnecrotic muscle fiber. After starting treatment with cyclosporin A and steroids, his muscle weakness gradually ameliorated, the CK level decreased and neutrophils increased. Although reports of myositis associated with clonal expansion of γδ T cells are extremely rare, the present case suggests that γδ T cells might play a role in mediating myositis.
Collapse
Affiliation(s)
- Taiji Yamashita
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Michishita Y, Hirokawa M, Fujishima N, Abe Y, Fujishima M, Guo YM, Ubukawa K, Liu J, Yoshioka T, Kameoka Y, Saitoh H, Tagawa H, Takahashi N, Sawada K. CDR3-independent expansion of Vδ1 T lymphocytes in acquired chronic pure red cell aplasia. Immunol Lett 2013; 150:23-9. [DOI: 10.1016/j.imlet.2012.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 12/10/2012] [Accepted: 12/13/2012] [Indexed: 01/09/2023]
|
33
|
Kater L, Gmelig-Meyling FHJ, Derksen RHWM, Faille HB. Immunopathogenesis and Therapy of Systemic Lupus Erythematosus. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/bf03259309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Benahmed F, Ely S, Lu TT. Lymph node vascular-stromal growth and function as a potential target for controlling immunity. Clin Immunol 2012; 144:109-16. [PMID: 22717771 PMCID: PMC3932544 DOI: 10.1016/j.clim.2012.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 04/30/2012] [Accepted: 05/03/2012] [Indexed: 12/16/2022]
Abstract
Lymphadenopathy occurs in many autoimmune and inflammatory diseases, and vascular proliferation is a common feature in the enlarged lymph nodes. The lymph node vasculature plays critical roles in delivering immune cells as well as oxygen and micronutrients, and therefore represents a potential target for therapeutic manipulation of immunity. In this review, we discuss recent insights made in understanding the growth and function of the vascular and associated stromal compartment in immune-stimulated lymph nodes and the potential utility of altering this process in autoimmune diseases.
Collapse
Affiliation(s)
- Fairouz Benahmed
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021, USA.
| | | | | |
Collapse
|
35
|
Caccamo N, Todaro M, La Manna MP, Sireci G, Stassi G, Dieli F. IL-21 regulates the differentiation of a human γδ T cell subset equipped with B cell helper activity. PLoS One 2012; 7:e41940. [PMID: 22848667 PMCID: PMC3405033 DOI: 10.1371/journal.pone.0041940] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 06/27/2012] [Indexed: 11/21/2022] Open
Abstract
Vγ9Vδ2 T lymphocytes recognize nonpeptidic antigens without presentation by MHC molecules and display pleiotropic features. Here we report that coculture of Vγ9Vδ2 cells with phosphoantigen and IL-21 leads to selective expression of the transcription repressor Bcl-6 and polarization toward a lymphocyte subset displaying features of follicular B-helper T (TFH) cells. TFH-like Vγ9Vδ2 cells have a predominant central memory (CD27+CD45RA−) phenotype and express ICOS, CD40L and CXCR5. Upon antigen activation, they secrete IL-4, IL-10 and CXCL13, and provide B-cell help for antibody production in vitro. Our findings delineate a subset of human Vγ9Vδ2 lymphocytes, which, upon interaction with IL-21-producing CD4 TFH cells and B cells in secondary lymphoid organs, is implicated in the production of high affinity antibodies against microbial pathogens.
Collapse
Affiliation(s)
- Nadia Caccamo
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università degli Studi di Palermo, Palermo, Italy
| | - Matilde Todaro
- Dipartimento di Discipline Chirurgiche ed Oncologiche, Università degli Studi di Palermo, Palermo, Italy
| | - Marco P. La Manna
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università degli Studi di Palermo, Palermo, Italy
| | - Guido Sireci
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università degli Studi di Palermo, Palermo, Italy
| | - Giorgio Stassi
- Dipartimento di Discipline Chirurgiche ed Oncologiche, Università degli Studi di Palermo, Palermo, Italy
| | - Francesco Dieli
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università degli Studi di Palermo, Palermo, Italy
- * E-mail:
| |
Collapse
|
36
|
Kang HK, Chiang MY, Ecklund D, Zhang L, Ramsey-Goldman R, Datta SK. Megakaryocyte progenitors are the main APCs inducing Th17 response to lupus autoantigens and foreign antigens. THE JOURNAL OF IMMUNOLOGY 2012; 188:5970-80. [PMID: 22561152 DOI: 10.4049/jimmunol.1200452] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In search of autoantigen-presenting cells that prime the pathogenic autoantibody-inducing Th cells of lupus, we found that CD41(+)CD151(+) cells among Lineage(-) (Lin(-)) CD117(+) (c-Kit(+)) CX3CR1(-) splenocytes depleted of known APCs were most proficient in presenting nuclear autoantigens from apoptotic cells to induce selectively an autoimmune Th17 response in different lupus-prone mouse strains. The new APCs have properties resembling megakaryocyte and/or bipotent megakaryocyte/erythroid progenitors of bone marrow, hence they are referred to as MM cells in this study. The MM cells produce requisite cytokines, but they require contact for optimal Th17 induction upon nucleosome feeding, and can induce Th17 only before undergoing differentiation to become c-Kit(-)CD41(+) cells. The MM cells expand up to 10-fold in peripheral blood of lupus patients and 49-fold in spleens of lupus mice preceding disease activity; they accelerate lupus in vivo and break tolerance in normal mice, inducing autoimmune Th17 cells. MM cells also cause Th17 skewing to foreign Ag in normal mice without Th17-polarizing culture conditions. Several molecules in MM cells are targets for blocking of autoimmunization. This study advances our understanding of lupus pathogenesis and Th17 differentiation biology by characterizing a novel category of APC.
Collapse
Affiliation(s)
- Hee-Kap Kang
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
37
|
Chyou S, Tian S, Ekland EH, Lu TT. Normalization of the lymph node T cell stromal microenvironment in lpr/lpr mice is associated with SU5416-induced reduction in autoantibodies. PLoS One 2012; 7:e32828. [PMID: 22412930 PMCID: PMC3295768 DOI: 10.1371/journal.pone.0032828] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 02/05/2012] [Indexed: 12/03/2022] Open
Abstract
The vascular-stromal elements of lymph nodes can play important roles in regulating the activities of the lymphocytes within. During model immune responses, the vascular-stromal compartment has been shown to undergo proliferative expansion and functional alterations. The state of the vascular-stromal compartment and the potential importance of this compartment in a spontaneous, chronic model of autoimmunity have not been well studied. Here, we characterize the vascular expansion in MRL-lpr/lpr lymph nodes and attempt to ask whether inhibiting this expansion can interfere with autoantibody generation. We show that characteristics of vascular expansion in enlarging MRL-lpr/lpr lymph nodes resemble that of the VEGF-dependent expansion that occurs in wild-type mice after model immunization. Surprisingly, treatment with SU5416, an inhibitor of VEGF and other receptor tyrosine kinases, did not have sustained effects in inhibiting vascular growth, but attenuated the anti-dsDNA response and altered the phenotype of the double negative T cells that are expanded in these mice. In examining for anatomic correlates of these immunologic changes, we found that the double negative T cells are localized within ectopic follicles around a central B cell patch and that these T cell-rich areas lack the T zone stromal protein ER-TR7 as well as other elements of a normal T zone microenvironment. SU5416 treatment disrupted these follicles and normalized the association between T zone microenvironmental elements and T cell-rich areas. Recent studies have shown a regulatory role for T zone stromal elements. Thus, our findings of the association of anti-dsDNA responses, double negative T cell phenotype, and altered lymphocyte microenvironment suggest the possibility that lymphocyte localization in ectopic follicles protects them from regulation by T zone stromal elements and functions to maintain autoimmune responses. Potentially, altering the lymphocyte microenvironment that is set up by the vascular-stromal compartment can be a means by which to control undesired autoimmune responses.
Collapse
Affiliation(s)
- Susan Chyou
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, United States of America
| | - Sha Tian
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, United States of America
| | - Eric H. Ekland
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, United States of America
| | - Theresa T. Lu
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, United States of America
- Pediatric Rheumatology, Hospital for Special Surgery, New York, New York, United States of America
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| |
Collapse
|
38
|
Activity of Childhood Lupus Nephritis is Linked to Altered T Cell and Cytokine Homeostasis. J Clin Immunol 2012; 32:477-87. [DOI: 10.1007/s10875-011-9637-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Accepted: 12/13/2011] [Indexed: 10/14/2022]
|
39
|
Bansal RR, Mackay CR, Moser B, Eberl M. IL-21 enhances the potential of human γδ T cells to provide B-cell help. Eur J Immunol 2011; 42:110-9. [PMID: 22009762 DOI: 10.1002/eji.201142017] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 09/14/2011] [Accepted: 10/13/2011] [Indexed: 12/18/2022]
Abstract
Vγ9/Vδ2 T cells are a minor subset of T cells in human blood and differ from all other lymphocytes by their specific responsiveness to (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), a metabolite produced by a large range of microbial pathogens. Vγ9/Vδ2 T cells can be skewed towards distinct effector functions, in analogy to, and beyond, the emerging plasticity of CD4(+) T cells. As such, depending on the microenvironment, Vγ9/Vδ2 T cells can assume features reminiscent of Th1, Th2, Th17 and Treg cells as well as professional APCs. We here demonstrate that Vγ9/Vδ2 T cells express markers associated with follicular B helper T (T(FH) ) cells when stimulated with HMB-PP in the presence of IL-21. HMB-PP induces upregulation of IL-21R on Vγ9/Vδ2 T cells. In return, IL-21 plays a co-stimulatory role in the expression of the B-cell-attracting chemokine CXCL13, the CXCL13 receptor CXCR5 and the inducible co-stimulator by activated Vγ9/Vδ2 T cells, and enhances their potential to support antibody production by B cells. The interaction between HMB-PP-responsive Vγ9/Vδ2 T cells, IL-21-producing T(FH) cells and B cells in secondary lymphoid tissues is likely to impact on the generation of high affinity, class-switched antibodies in microbial infections.
Collapse
Affiliation(s)
- Raj R Bansal
- Department of Infection, Immunity and Biochemistry, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | | | | |
Collapse
|
40
|
Kyttaris VC, Zhang Z, Kampagianni O, Tsokos GC. Calcium signaling in systemic lupus erythematosus T cells: a treatment target. ARTHRITIS AND RHEUMATISM 2011; 63:2058-66. [PMID: 21437870 PMCID: PMC3128171 DOI: 10.1002/art.30353] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) T cells display a hyperactive calcineurin/NF-AT pathway. The aim of this study was to determine whether this pathway is responsible for the aberrant SLE T cell function and to test the effectiveness of the recently recognized calcineurin inhibitor dipyridamole in limiting SLE-related pathology. METHODS T cells and mononuclear cells were isolated from the peripheral blood of SLE patients and healthy individuals. Murine cells were isolated from the spleens and lymph nodes of lupus-prone MRL/lpr mice and control MRL/MpJ mice. Cells were treated in vitro with tacrolimus, dipyridamole, or control. MRL/lpr mice were injected intraperitoneally with 50 mg/kg of dipyridamole 3 times a week for 3 weeks. RESULTS MRL/lpr T cells, especially CD3+CD4-CD8- cells, displayed a robust calcium influx upon activation and increased levels of NF-ATc1. MRL/lpr T cells (both CD4+ and CD3+CD4-CD8- cells) provided help to B cells to produce immunoglobulin in a calcineurin-dependent manner. Dipyridamole treatment of SLE T cells significantly inhibited CD154 expression, interferon-γ, interleukin-17 (IL-17), and IL-6 production, and T cell-dependent B cell immunoglobulin secretion. Treatment of MRL/lpr mice with dipyridamole alleviated lupus nephritis and prevented the appearance of skin ulcers. CONCLUSION NF-AT activation is a key step in the activation of SLE T cells and the production of immunoglobulin. Dipyridamole inhibits SLE T cell function and improves pathologic changes of the disease in lupus-prone mice. We propose that dipyridamole can be used in treatment regimens for patients with SLE.
Collapse
Affiliation(s)
- Vasileios C Kyttaris
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | |
Collapse
|
41
|
Deng GM, Liu L, Kyttaris VC, Tsokos GC. Lupus serum IgG induces skin inflammation through the TNFR1 signaling pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:7154-61. [PMID: 20483718 PMCID: PMC2926650 DOI: 10.4049/jimmunol.0902514] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by high autoantibody levels and multiorgan tissue damage, including kidney and skin. Cutaneous manifestations are frequent in patients with SLE, yet the etiology and pathogenesis of skin injury in SLE remains unclear. We reasoned that lupus serum containing high levels of autoreactive Ig contributes to skin injury. In this article, we report that serum from SLE patients and lupus-prone mice induces skin inflammation following intradermal injection into normal mice. Lupus serum depleted of IgG failed to cause skin inflammation. Monocytes, but not lymphocytes, were found to be crucial in the development of lupus serum-induced skin inflammation, and lupus serum IgG induced monocyte differentiation into dendritic cells (DCs). TNF-alpha and TNFR1, but not TNFR2, were required for the development of lupus serum-induced skin inflammation. TNFR1, not TNFR2, represented the main molecule expressed in the skin lesions caused by injected lupus serum. Our studies demonstrated that lupus serum IgG causes skin injury by involving the TNFR1 signaling pathway and monocyte differentiation to DCs. Accordingly, disruption of the TNFR1-mediated signaling pathway and blockade of DC generation may prove to be of therapeutic value in patients with cutaneous lupus erythematosus.
Collapse
Affiliation(s)
- Guo-Min Deng
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
42
|
Bendersky A, Markovits N, Bank I. Vγ9+ γδ T cells in systemic sclerosis patients are numerically and functionally preserved and induce fibroblast apoptosis. Immunobiology 2010; 215:380-94. [DOI: 10.1016/j.imbio.2009.05.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 05/26/2009] [Accepted: 05/30/2009] [Indexed: 02/06/2023]
|
43
|
Abstract
Systemic lupus erythematosus (SLE) persists as a chronic inflammatory autoimmune disease and is characterized by the production of autoantibodies and immune complexes that affect multiple organs. The underlying mechanism that triggers and sustains disease are complex and involve certain susceptibility genes and environmental factors. There have been several immune mediators linked to SLE including cytokines and chemokines that have been reviewed elsewhere [ 1-3 ]. A number of articles have reviewed the role of B cells and T cells in SLE [ 4-10 ]. Here, we focus on the role of dendritic cells (DC) and innate immune factors that may regulate autoreactive B cells.
Collapse
Affiliation(s)
- Heather M Seitz
- Johnson County Community College, Science Division, Overland Park, Kansas, USA
| | | |
Collapse
|
44
|
Abstract
Systemic lupus erythematosus (SLE) is a disease characterized by inappropriate response to self-antigens. Genetic, environmental and hormonal factors are believed to contribute to the development of the disease. We think of SLE pathogenesis as occurring in three phases of variable duration. A series of regulatory failures during the ontogeny of the immune system lead to the emergence of auto-reactive clones and the production of auto-antibodies (phase I). As the immune response to self-antigens broadens, the auto-antibody repertoire is enriched (phase II) and clinical manifestations eventually ensue (phase III). The final result is tissue damage that if not treated will lead to the functional failure of such important organs as the kidney and brain.
Collapse
Affiliation(s)
- Vasileios C Kyttaris
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
45
|
Mustafa A, Holladay SD, Goff M, Witonsky S, Kerr R, Weinstein DA, Karpuzoglu-Belgin E, Gogal RM. Developmental exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin alters postnatal T cell phenotypes and T cell function and exacerbates autoimmune lupus in 24-week-old SNF1 mice. BIRTH DEFECTS RESEARCH. PART A, CLINICAL AND MOLECULAR TERATOLOGY 2009; 85:828-36. [PMID: 19572409 PMCID: PMC2760641 DOI: 10.1002/bdra.20603] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Untreated, more than 95% of female SWR x NZB: F(1) (SNF(1)) mice spontaneously develop a fatal lupus-like glomerulonephritis by 8 months-of-age, while disease onset in males is much slower. METHODS : Timed-pregnant SNF(1) mice (10 per treatment) were exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on gestational day (GD) 12 by oral maternal gavage with 0, 40, or 80 microg/kg TCDD. RESULTS Offspring of the TCDD-exposed dams showed numerous alterations in T lineage cells at 24 weeks-of-age. Females but not males showed decreased CD4(+)8(+) and increased CD4(-)8(-) thymocytes. Females also showed increased autoreactive CD4(+)Vbeta17(a+) axillary and inguinal lymph node T cells. Concanavalin A-stimulated splenocytes from prenatal TCDD-treated mice produced decreased interleukin 17 (IL-17) in the females while males showed increased IL-2 and IFN-gamma, and diminished IL-4. Mitogen-stimulated pan-lymphoproliferative responses were significantly increased across sex by TCDD. Anti-IgG and anti-C3 immune complex deposition in kidneys was present in the males after TCDD, and visibly worsened in females. CONCLUSIONS Developmental TCDD exposure can permanently alter T lymphopoiesis in autoimmune-prone SNF1 mice. The alteration profile is beyond the classic immune suppression response, to also include exacerbation and induction of a lupuslike autoimmune disease.
Collapse
Affiliation(s)
- Amjad Mustafa
- Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences & Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University Blacksburg, VA 24060-0442
| | - Steven D. Holladay
- Department of Anatomy and Radiology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-7382
| | - Matthew Goff
- Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences & Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University Blacksburg, VA 24060-0442
| | - Sharon Witonsky
- Department of Large Animal Clinical Sciences, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University Blacksburg, VA 24060-0442
| | - Richard Kerr
- Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences & Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University Blacksburg, VA 24060-0442
| | - Danielle A. Weinstein
- Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences & Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University Blacksburg, VA 24060-0442
| | | | - Robert M. Gogal
- Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences & Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University Blacksburg, VA 24060-0442
- Department of Anatomy and Radiology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-7382
| |
Collapse
|
46
|
Zhang Z, Kyttaris VC, Tsokos GC. The role of IL-23/IL-17 axis in lupus nephritis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:3160-9. [PMID: 19657089 PMCID: PMC2766304 DOI: 10.4049/jimmunol.0900385] [Citation(s) in RCA: 237] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
T cells that express IL-17 infiltrate the kidneys of patients with systemic lupus erythematosus. A significant proportion of these cells are CD3(+)CD4(-)CD8(-) double-negative T cells. In this study, we show that double-negative T cells from MRL/lpr mice express high amounts of IL-17 and that as disease progressively worsens, the expression of IL-17 and of IL-23 receptor in lymphocytes from these mice increases. Lymph node cells from lupus-prone mice, but not control mice, treated in vitro with IL-23 induce nephritis when transferred to non-autoimmune, lymphocyte-deficient Rag-1(-/-) mice. Kidney specimens from these recipient mice show significant Ig and complement deposition. The data indicate that an aberrantly active IL-23/IL-17 axis contributes to the development of nephritis in lupus-prone mice.
Collapse
Affiliation(s)
| | | | - George C. Tsokos
- Division of Rheumatology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215
| |
Collapse
|
47
|
Mustafa A, Holladay SD, Witonsky S, Zimmerman K, Reilly CM, Sponenberg DP, Weinstein DA, Karpuzoglu E, Gogal RM. Gestational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin disrupts B-cell lymphopoiesis and exacerbates autoimmune disease in 24-week-old SNF1 mice. Toxicol Sci 2009; 112:133-43. [PMID: 19666959 DOI: 10.1093/toxsci/kfp177] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Female SNF(1) hybrid mice spontaneously develop an immune complex-mediated glomerulonephritis as early as 24 weeks of age, whereas the disease onset in males is much slower. Further, a rise in concentration of glomerulus-specific autoantibodies via autoreactive B cells is critical to progression of the disease in this strain. Environmental factors contributing to the onset or degree of such autoimmunity are of interest yet poorly understood. In the present study, time-pregnant SWR x NZB dams (10/treatment) were gavaged on gestational 12 with 40 or 80 mg/kg 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and the SNF(1) offspring were evaluated at 24 weeks of age. Bone marrow B220(low)CD24(-)AA4.1(+) committed B lineage progenitors were increased in female offspring by TCDD, however, committed progenitors and pro-B cells were decreased in males. Splenic marginal zone B cells (CD21(hi)CD24(low-int)) were decreased and follicular B cells (CD21(int)CD24(low)) were increased across sex by prenatal TCDD, whereas transitional-2 B cells (CD21(int)CD24(hi)) and (CD23(low-int) CD1(low-int)) were decreased in males only. Antibodies to double-stranded DNA were significantly increased across sex by TCDD. Anti-IgG and anti-C3 immune complex renal deposition was visibly worsened in females, and present in TCDD-treated males. These data suggest that developmental exposure to TCDD permanently and differentially alters humoral immune function by sex, and exacerbates a type III hypersensitivity lupus-like autoimmune disease in genetically predisposed mice.
Collapse
Affiliation(s)
- Amjad Mustafa
- Center for Molecular Medicine and Infectious, Diseases, Department of Biomedical Sciences & Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060-0442, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Yang P, Zhang Y, Ping L, Gao XM. Apoptosis of murine lupus T cells induced by the selective cyclooxygenase-2 inhibitor celecoxib: Molecular mechanisms and therapeutic potential. Int Immunopharmacol 2007; 7:1414-21. [PMID: 17761345 DOI: 10.1016/j.intimp.2007.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 06/26/2007] [Accepted: 06/27/2007] [Indexed: 11/22/2022]
Abstract
Upregulation of cyclooxygenase (COX)-2 in T cells from patients with systemic lupus erythematosus (SLE) is associated with their resistance to functional inactivation (anergy) and to activation-induced cell death through apoptosis. It has been demonstrated that celecoxib, a selective COX-2 inhibitor, can enhance apoptosis of human lupus T cells. The present study was undertaken to investigate whether COX-2 expression is also upregulated in T cells from the lupus-prone BXBS strain of mice and if murine lupus is modified by celecoxib. COX-2 expression was detected in splenic T cells from 6 month-old male BXSB mice (murine lupus T cells) but not in T cells from 2 month-old male or 6-month-old female BXSB or in 6-month-old male C57BL/6 mice, indicating a strong correlation between COX-2 expression in T cells and lupus manifestation in mice. Celecoxib treatment induced apoptosis of murine lupus T cells in vitro, which was inhibited by z-VAD-fmk, a pan-caspase inhibitor. In the murine lupus T cells treated with celecoxib, procaspases 3 and 9, but not procaspase 8, were activated. In addition, celecoxib treatment decreased the mitochondrial membrane potential of murine lupus T cells. These data combine to suggest that celecoxib mainly uses the mitochondrial pathway rather than FADD pathway to trigger apoptosis of COX-2 expressing murine lupus T cells. Intragastric administration of celecoxib (40 mg/kg/day for 60 days) in 6-month-old male BXSB mice effectively limited the production of serum antibodies against dsDNA. Our data suggest that celecoxib may have a beneficial effect in treating autoimmune diseases such as SLE through inducing apoptosis of autoreactive T cells.
Collapse
Affiliation(s)
- Peng Yang
- Department of Immunology, Peking University Health Science Center, Peking University, Beijing 100083, China
| | | | | | | |
Collapse
|
49
|
Vinay DS, Choi JH, Kim JD, Choi BK, Kwon BS. Role of endogenous 4-1BB in the development of systemic lupus erythematosus. Immunology 2007; 122:394-400. [PMID: 17608689 PMCID: PMC2266025 DOI: 10.1111/j.1365-2567.2007.02653.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is characterized by the production of autoantibodies directed against nuclear antigens including nucleosomes and DNA. To determine the role of T-cell costimulatory molecule 4-1BB in the regulation of SLE, MRL-Fas(lpr) (lpr) mice deficient in 4-1BB (lpr/4-1BB(-/-)) were generated and their disease phenotype was compared to that of control lpr mice. The main finding of this study is that the lpr/4-1BB(-/-) mice had more pronounced skin lesions which appeared earlier, increased lymphadenopathy, increased renal damage, and higher mortality than 4-1BB-intact control lpr mice. The increased severity of lesions in lpr/4-1BB(-/-) mice was closely associated with increases in CD4(+) T, CD3(+) B220(+) double-negative T cells, serum immunoglobulin, anti-dsDNA autoantibodies, and tissue immunoglobulin deposits. These data suggest that the 4-1BB-4-1BB ligand signalling pathway plays an important role in SLE and that deletion of 4-1BB confers susceptibility to lpr mice, leading to accelerated induction of disease and early mortality.
Collapse
Affiliation(s)
- Dass S Vinay
- LSU Eye Center, Louisiana State University Health Sciences Center School of Medicine, New Orleans, LA, USA
| | | | | | | | | |
Collapse
|
50
|
Vermijlen D, Ellis P, Langford C, Klein A, Engel R, Willimann K, Jomaa H, Hayday AC, Eberl M. Distinct cytokine-driven responses of activated blood gammadelta T cells: insights into unconventional T cell pleiotropy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 178:4304-14. [PMID: 17371987 PMCID: PMC3915340 DOI: 10.4049/jimmunol.178.7.4304] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human Vgamma9/Vdelta2 T cells comprise a small population of peripheral blood T cells that in many infectious diseases respond to the microbial metabolite, (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), expanding to up to 50% of CD3(+) cells. This "transitional response," occurring temporally between the rapid innate and slower adaptive response, is widely viewed as proinflammatory and/or cytolytic. However, increasing evidence that different cytokines drive widely different effector functions in alphabeta T cells provoked us to apply cDNA microarrays to explore the potential pleiotropy of HMB-PP-activated Vgamma9/Vdelta2 T cells. The data and accompanying validations show that the related cytokines, IL-2, IL-4, or IL-21, each drive proliferation and comparable CD69 up-regulation but induce distinct effector responses that differ from prototypic alphabeta T cell responses. For example, the Th1-like response to IL-2 also includes expression of IL-5 and IL-13 that conversely are not induced by IL-4. The data identify specific molecules that may mediate gammadelta T cell effects. Thus, IL-21 induces a lymphoid-homing phenotype and high, unexpected expression of the follicular B cell-attracting chemokine CXCL13/BCA-1, suggesting a novel follicular B-helper-like T cell that may play a hitherto underappreciated role in humoral immunity early in infection. Such broad plasticity emphasizes the capacity of gammadelta T cells to influence the nature of the immune response to different challenges and has implications for the ongoing clinical application of cytokines together with Vgamma9/Vdelta2 TCR agonists.
Collapse
Affiliation(s)
- David Vermijlen
- Peter Gorer Department of Immunobiology, King’s College London, London, United Kingdom
- Institute for Medical Immunology, Université Libre de Bruxelles Gosselies, Belgium
| | - Peter Ellis
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Cordelia Langford
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Anne Klein
- Biochemisches Institut, Infektiologie, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Rosel Engel
- Biochemisches Institut, Infektiologie, Justus-Liebig-Universität Giessen, Giessen, Germany
- Institut für Klinische Chemie und Pathobiochemie, Universitätsklinikum Giessen und Marburg, Giessen, Germany
| | | | - Hassan Jomaa
- Biochemisches Institut, Infektiologie, Justus-Liebig-Universität Giessen, Giessen, Germany
- Institut für Klinische Chemie und Pathobiochemie, Universitätsklinikum Giessen und Marburg, Giessen, Germany
| | - Adrian C. Hayday
- Peter Gorer Department of Immunobiology, King’s College London, London, United Kingdom
| | - Matthias Eberl
- Biochemisches Institut, Infektiologie, Justus-Liebig-Universität Giessen, Giessen, Germany
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| |
Collapse
|