1
|
Diaz-Barreiro A, Talabot-Ayer D, Huard A, Cereghetti G, Tonacini J, Maillasson M, Francés-Monerris A, Mortier E, Palmer G. Full-length and N-terminally truncated recombinant interleukin-38 variants are similarly inefficient in antagonizing interleukin-36 and interleukin-1 receptors. Cell Commun Signal 2025; 23:34. [PMID: 39833821 PMCID: PMC11744908 DOI: 10.1186/s12964-025-02035-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/08/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Interleukin (IL)-38 is an IL-1 family cytokine that was proposed to exert anti-inflammatory effects. However, its mechanisms of action are not well understood and the identity of the IL-38 receptor(s) remains debated. Proposed candidates include the IL-1 receptor (IL-1R1), the IL-36 receptor (IL-36R) and the orphan receptor IL-1RAPL1. Yet, in literature, IL-38 is often presented as an IL-36R antagonist. METHODS The N-terminus of the IL-38 protein produced in a human keratinocyte cell line and of endogenous epidermal IL-38 isolated from healthy human skin was characterized by mass spectrometry. The effects of various recombinant forms of IL-38 on IL-36R- and IL-1R1-mediated responses were assessed in IL-36R HEK Blue reporter cells and in a normal human keratinocyte cell line. IL-8 and IL-6 production was quantified by ELISA. Binding of recombinant IL-38 proteins to the IL-36R was assessed by surface plasmon resonance. RESULTS Analysis of its native N-terminus revealed that the IL-38 protein produced by human keratinocytes starts at cysteine 2. In cell-based assays, neither full-length amino acid 2-152 IL-38 nor two N-terminally truncated forms of the protein showed efficient antagonist activity on IL-36R- and IL-1R1-mediated responses. The recombinant IL-38 proteins bound to the IL-36R with only moderate affinity, which may provide a mechanistic explanation for inefficient IL-36R antagonism. CONCLUSIONS Our results argue against meaningful inhibitory effects of any of the recombinant IL-38 variants tested on IL-36R or IL-1R1-mediated responses. The mechanisms underlying reported anti-inflammatory effects of IL-38 are thus still unclear, but seem unlikely to be mediated by classical IL-36R or IL-1R1 antagonism.
Collapse
Affiliation(s)
- Alejandro Diaz-Barreiro
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1 rue Michel-Servet, Geneva, CH-1211, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
| | - Dominique Talabot-Ayer
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1 rue Michel-Servet, Geneva, CH-1211, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
| | - Arnaud Huard
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1 rue Michel-Servet, Geneva, CH-1211, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
| | - Gea Cereghetti
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Jenna Tonacini
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1 rue Michel-Servet, Geneva, CH-1211, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
| | - Mike Maillasson
- Nantes Université, CNRS, Inserm, CRCI 2 NA, Nantes, France
- Nantes Université, Centre Hospitalo-Universitaire (CHU) Nantes, Inserm, CNRS, SFR Bonamy, UMS BioCore, Imp@ct Platform, Inserm, Nantes, France
| | | | - Erwan Mortier
- Nantes Université, CNRS, Inserm, CRCI 2 NA, Nantes, France
- Nantes Université, Centre Hospitalo-Universitaire (CHU) Nantes, Inserm, CNRS, SFR Bonamy, UMS BioCore, Imp@ct Platform, Inserm, Nantes, France
| | - Gaby Palmer
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1 rue Michel-Servet, Geneva, CH-1211, Switzerland.
- Geneva Centre for Inflammation Research, Geneva, Switzerland.
| |
Collapse
|
2
|
Zhukova JV, Lopatnikova JA, Alshevskaya AA, Sennikov SV. Molecular mechanisms of regulation of IL-1 and its receptors. Cytokine Growth Factor Rev 2024; 80:59-71. [PMID: 39414547 DOI: 10.1016/j.cytogfr.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/18/2024]
Abstract
Interleukin 1 (IL-1) is a pro-inflammatory cytokine that plays a key role in the development and regulation of nonspecific defense and specific immunity. However, its regulatory influence extends beyond inflammation and impacts a range of immune and non-immune processes. The involvement of IL-1 in numerous biological processes, including modulation of inflammation, necessitates strict regulation at multiple levels. This review focuses on these regulatory processes and discusses their underlying mechanisms. IL-1 activity is controlled at various levels, including receptor binding, gene transcription, expression as inactive proforms, and regulated post-translational processing and secretion. Regulation at the level of the receptor expression - alternative splicing, tissue-specific isoforms, and gene polymorphism - is also crucial to IL-1 functional activity. Understanding these regulatory features of IL-1 will not only continue to shape future research directions but will also highlight promising therapeutic strategies to modulate the biological effects of IL-1.
Collapse
Affiliation(s)
- J V Zhukova
- Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology" (RIFCI), Novosibirsk 630099, Russia; Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - J A Lopatnikova
- Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology" (RIFCI), Novosibirsk 630099, Russia; Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - A A Alshevskaya
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - S V Sennikov
- Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology" (RIFCI), Novosibirsk 630099, Russia; Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia.
| |
Collapse
|
3
|
Kim DH, Lee WW. IL-1 Receptor Dynamics in Immune Cells: Orchestrating Immune Precision and Balance. Immune Netw 2024; 24:e21. [PMID: 38974214 PMCID: PMC11224669 DOI: 10.4110/in.2024.24.e21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 07/09/2024] Open
Abstract
IL-1, a pleiotropic cytokine with profound effects on various cell types, particularly immune cells, plays a pivotal role in immune responses. The proinflammatory nature of IL-1 necessitates stringent control mechanisms of IL-1-mediated signaling at multiple levels, encompassing transcriptional and translational regulation, precursor processing, as well as the involvement of a receptor accessory protein, a decoy receptor, and a receptor antagonist. In T-cell immunity, IL-1 signaling is crucial during both the priming and effector phases of immune reactions. The fine-tuning of IL-1 signaling hinges upon two distinct receptor types; the functional IL-1 receptor (IL-1R) 1 and the decoy IL-1R2, accompanied by ancillary molecules such as the IL-1R accessory protein (IL-1R3) and IL-1R antagonist. IL-1R1 signaling by IL-1β is critical for the differentiation, expansion, and survival of Th17 cells, essential for defense against extracellular bacteria or fungi, yet implicated in autoimmune disease pathogenesis. Recent investigations emphasize the physiological importance of IL-1R2 expression, particularly in its capacity to modulate IL-1-dependent responses within Tregs. The precise regulation of IL-1R signaling is indispensable for orchestrating appropriate immune responses, as unchecked IL-1 signaling has been implicated in inflammatory disorders, including Th17-mediated autoimmunity. This review provides a thorough exploration of the IL-1R signaling complex and its pivotal roles in immune regulation. Additionally, it highlights recent advancements elucidating the mechanisms governing the expression of IL-1R1 and IL-1R2, underscoring their contributions to fine-tuning IL-1 signaling. Finally, the review briefly touches upon therapeutic strategies targeting IL-1R signaling, with potential clinical applications.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Won-Woo Lee
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea
- Seoul National University Cancer Research Institute, Seoul 03080, Korea
- Institute of Endemic Diseases and Ischemic/Hypoxic Disease Institute, Seoul National University Medical Research Center, Seoul 03080, Korea
- Seoul National University Hospital Biomedical Research Institute, Seoul 03080, Korea
| |
Collapse
|
4
|
Jing Q, Liu X, Lv Z, Xue D. IL27 and IL1RN are causally associated with acute pancreatitis: a Mendelian randomization study. Aging (Albany NY) 2024; 16:8572-8584. [PMID: 38742942 PMCID: PMC11164491 DOI: 10.18632/aging.205825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/16/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND The interleukin (IL) plays a role in the development of acute pancreatitis (AP). However, the specific IL in AP has not been fully revealed. Therefore, the association between prospective IL and AP was studied via Mendelian randomization (MR). METHODS The HUGO Gene nomenclature committee (HGNC) database provided 47 interleukin related genes (ILRGs). ILRGs and differentially expressed genes (DEGs) from GSE194331 were overlapped to create differently expressed ILRGs (DE-ILRGs). The integrative epidemiology unit (IEU) open genome-wide association study (GWAS) database provided exposure and outcome datasets. Univariate MR (UVMR) analysis using MR-Egger, IVW, simple mode, and weighted mode was done. UVMR results were verified using sensitivity analysis. Drug prediction, MVMR analysis, and PPI network development were also performed. RESULTS Six DE-ILRGs were obtained. IL27 and IL1RN were substantially causally linked with AP by UVMR analysis (OR = 0.926, P < 0.001 and OR = 1.031, P = 0.023). Our sensitivity analysis showed the dependability of our results. Direct effect of IL27 was suggested by MVMR analysis. In the cytokine receptor binding pathway, IL27 and IL1RN interacted with IL36G and IL1R2. TAE-684, ARQ-680, and 12 other IL1RN and 14 IL27 medications were predicted. CONCLUSIONS IL1RN was identified as a risk factor for acute pancreatitis (AP), but IL27 was found to be a protective factor for AP.
Collapse
Affiliation(s)
- Qingxu Jing
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical, University, Harbin 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xuxu Liu
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical, University, Harbin 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Zhenyi Lv
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical, University, Harbin 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Dongbo Xue
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical, University, Harbin 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| |
Collapse
|
5
|
Chen L, Ding L, Wang X, Huang Y, Gao SJ. Activation of glucocorticoid receptor signaling inhibits KSHV-induced inflammation and tumorigenesis. mBio 2024; 15:e0301123. [PMID: 38117084 PMCID: PMC10790708 DOI: 10.1128/mbio.03011-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
IMPORTANCE Kaposi's sarcoma (KS) is the most common cancer in HIV-infected patients caused by Kaposi's sarcoma-associated herpesvirus (KSHV) infection. Hyperinflammation is the hallmark of KS. In this study, we have shown that KSHV mediates hyperinflammation by inducing IL-1α and suppressing IL-1Ra. Mechanistically, KSHV miRNAs and vFLIP induce hyperinflammation by activating the NF-κB pathway. A common anti-inflammatory agent dexamethasone blocks KSHV-induced hyperinflammation and tumorigenesis by activating glucocorticoid receptor signaling to suppress IL-1α and induce IL-1Ra. This work has identified IL-1-mediated inflammation as a potential therapeutic target and dexamethasone as a potential therapeutic agent for KSHV-induced malignancies.
Collapse
Affiliation(s)
- Luping Chen
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ling Ding
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xian Wang
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yufei Huang
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shou-Jiang Gao
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Chen L, Ding L, Wang X, Huang Y, Gao SJ. Activation of glucocorticoid receptor signaling inhibits KSHV-induced inflammation and tumorigenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566578. [PMID: 38014281 PMCID: PMC10680621 DOI: 10.1101/2023.11.10.566578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Hyperinflammation is the hallmark of Kaposi's sarcoma (KS), the most common cancer in AIDS patients caused by Kaposi's sarcoma-associated herpesvirus (KSHV) infection. However, the role and mechanism of induction of inflammation in KS remain unclear. In a screening for inhibitors of KSHV-induced oncogenesis, over half of the identified candidates were anti-inflammatory agents including dexamethasone functions by activating glucocorticoid receptor (GR) signaling. Here, we examined the mechanism mediating KSHV-induced inflammation. We found that numerous inflammatory pathways were activated in KSHV-transformed cells. Particularly, interleukin-1 alpha (IL-1α) and IL-1 receptor antagonist (IL-1Ra) from the IL-1 family were the most induced and suppressed cytokines, respectively. We found that KSHV miRNAs mediated IL-1α induction while both miRNAs and vFLIP mediated IL-1Ra suppression. Furthermore, GR signaling was inhibited in KSHV-transformed cells, which was mediated by vFLIP and vCyclin. Dexamethasone treatment activated GR signaling, and inhibited cell proliferation and colony formation in soft agar of KSHV-transformed cells but had a minimal effect on matched primary cells. Consequently, dexamethasone suppressed the initiation and growth of KSHV-induced tumors in mice. Mechanistically, dexamethasone suppressed IL-1α but induced IL-1Ra expression. Treatment with recombinant IL-1α protein rescued the inhibitory effect of dexamethasone while overexpression of IL-1Ra caused a weak growth inhibition of KSHV-transformed cells. Furthermore, dexamethasone induced IκBα expression resulting in inhibition of NF-κB pathway and IL-1α expression. These results reveal an important role of IL-1 pathway in KSHV-induced inflammation and oncogenesis, which can be inhibited by dexamethasone-activated GR signaling, and identify IL-1-mediated inflammation as a potential therapeutic target for KSHV-induced malignancies.
Collapse
Affiliation(s)
- Luping Chen
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ling Ding
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xian Wang
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yufei Huang
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shou-Jiang Gao
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
Ding Y, Yi J, Wang J, Sun Z. Interleukin-1 receptor antagonist: a promising cytokine against human squamous cell carcinomas. Heliyon 2023; 9:e14960. [PMID: 37025835 PMCID: PMC10070157 DOI: 10.1016/j.heliyon.2023.e14960] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Inflammation, especially chronic inflammation, is closely linked to tumor development. As essential chronic inflammatory cytokines, the interleukin family plays a key role in inflammatory infections and malignancies. The interleukin-1 (IL-1) receptor antagonist (IL1RA), as a naturally occurring receptor antagonist, is the first discovered and can compete with IL-1 in binding to the receptor. Recent studies have revealed the association of the polymorphisms in IL1RA with an increased risk of squamous cell carcinomas (SCCs), including squamous cell carcinoma of the head and neck (SCCHN), cervical squamous cell carcinoma, cutaneous squamous cell carcinoma (cSCC), esophageal squamous cell carcinoma (ESCC), and bronchus squamous cell carcinoma. Here, we reviewed the antitumor potential of IL1RA as an IL-1-targeted inhibitor.
Collapse
Affiliation(s)
- Yujie Ding
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Yi
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinxin Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhida Sun
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
- Corresponding author. Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
8
|
Talabot-Ayer D, Diaz-Barreiro A, Modarressi A, Palmer G. Epigenetic remodeling of downstream enhancer regions is linked to selective expression of the IL1F10 gene in differentiated human keratinocytes. Gene 2022; 842:146800. [PMID: 35961432 DOI: 10.1016/j.gene.2022.146800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/02/2022] [Accepted: 08/05/2022] [Indexed: 11/04/2022]
Abstract
Interleukin (IL)-38, encoded by the IL1F10 gene, is a member of the IL-1 family of cytokines. IL-38 is constitutively expressed in epithelia in healthy humans, and in particular in epidermal keratinocytes in the skin. IL-38 expression is closely correlated with keratinocyte differentiation. The aim of this study was to further characterize the regulation of IL1F10 expression and the mechanisms involved in its selective induction in differentiated human keratinocytes. We observed coordinated expression of two IL1F10 transcripts, transcribed from two different promoters, upon differentiation of primary human keratinocytes. Using ENCODE datasets and ChIP-qPCR on ex vivo isolated normal human epidermis, we identified regulatory regions located downstream of the IL1F10 gene, which displayed features of differentiated keratinocyte-specific enhancers. Expression of the IL1F10 gene was linked to changes in the epigenetic landscape at these downstream enhancer regions in human epidermis. Overexpression of the transcription factors KLF4 and TAp63β in an immortalized normal human keratinocyte (iNHK) cell line promoted the expression of mRNA encoding the differentiation markers keratin 10 and involucrin, and of IL1F10. ChIP-qPCR experiments indicated that KLF4 and TAp63β overexpression also modified the chromatin state of the proximal downstream enhancer region, suggesting a role for KLF4 and TAp63β in directly or indirectly regulating IL1F10 transcription. In conclusion, expression of the IL1F10 gene in differentiated keratinocytes in normal human epidermis involves coordinated transcription from two promoters and is linked to epigenetic remodeling of enhancer regions located downstream of the gene.
Collapse
Affiliation(s)
- Dominique Talabot-Ayer
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alejandro Diaz-Barreiro
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ali Modarressi
- Division of Plastic, Reconstructive & Aesthetic Surgery, Department of Surgery, Geneva University Hospitals, Geneva, Switzerland
| | - Gaby Palmer
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
9
|
Rood JE, Behrens EM. Inherited Autoinflammatory Syndromes. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 17:227-249. [PMID: 34699263 DOI: 10.1146/annurev-pathmechdis-030121-041528] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Autoinflammation describes a collection of diverse diseases caused by indiscriminate activation of the immune system in an antigen-independent manner. The rapid advancement of genetic diagnostics has allowed for the identification of a wide array of monogenic causes of autoinflammation. While the clinical picture of these syndromes is diverse, it is possible to thematically group many of these diseases under broad categories that provide insight into the mechanisms of disease and therapeutic possibilities. This review covers archetypical examples of inherited autoinflammatory diseases in five major categories: inflammasomopathy, interferonopathy, unfolded protein/cellular stress response, relopathy, and uncategorized. This framework can suggest where future work is needed to identify other genetic causes of autoinflammation, what types of diagnostics need to be developed to care for this patient population, and which options might be considered for novel therapeutic targeting. Expected final online publication date for the Annual Review of Pathology: Mechanisms of Disease, Volume 17 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Julia E Rood
- Division of Rheumatology, Children's Hospital of Philadelphia, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Edward M Behrens
- Division of Rheumatology, Children's Hospital of Philadelphia, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
10
|
Niklander SE, Murdoch C, Hunter KD. IL-1/IL-1R Signaling in Head and Neck Cancer. FRONTIERS IN ORAL HEALTH 2021; 2:722676. [PMID: 35048046 PMCID: PMC8757896 DOI: 10.3389/froh.2021.722676] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/04/2021] [Indexed: 01/22/2023] Open
Abstract
Decades ago, the study of cancer biology was mainly focused on the tumor itself, paying little attention to the tumor microenvironment (TME). Currently, it is well recognized that the TME plays a vital role in cancer development and progression, with emerging treatment strategies focusing on different components of the TME, including tumoral cells, blood vessels, fibroblasts, senescent cells, inflammatory cells, inflammatory factors, among others. There is a well-accepted relationship between chronic inflammation and cancer development. Interleukin-1 (IL-1), a potent pro-inflammatory cytokine commonly found at tumor sites, is considered one of the most important inflammatory factors in cancer, and has been related with carcinogenesis, tumor growth and metastasis. Increasing evidence has linked development of head and neck squamous cell carcinoma (HNSCC) with chronic inflammation, and particularly, with IL-1 signaling. This review focuses on the most important members of the IL-1 family, with emphasis on how their aberrant expression can promote HNSCC development and metastasis, highlighting possible clinical applications.
Collapse
Affiliation(s)
- Sven E. Niklander
- Unidad de Patología y Medicina Oral, Facultad de Odontologia, Universidad Andres Bello, Viña del Mar, Chile
| | - Craig Murdoch
- Unit of Oral and Maxillofacial Medicine, Pathology and Surgery, School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Keith D. Hunter
- Unit of Oral and Maxillofacial Medicine, Pathology and Surgery, School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
- Oral Biology and Pathology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
11
|
Schneider L, Liu J, Zhang C, Azoitei A, Meessen S, Zheng X, Cremer C, Gorzelanny C, Kempe-Gonzales S, Brunner C, Wezel F, Bolenz C, Gunes C, John A. The Role of Interleukin-1-Receptor-Antagonist in Bladder Cancer Cell Migration and Invasion. Int J Mol Sci 2021; 22:ijms22115875. [PMID: 34070905 PMCID: PMC8198563 DOI: 10.3390/ijms22115875] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 11/30/2022] Open
Abstract
Background: The interleukin-1-receptor antagonist IL1RA (encoded by the IL1RN gene) is a potent competitive antagonist to interleukin-1 (IL1) and thereby is mainly involved in the regulation of inflammation. Previous data indicated a role of IL1RA in muscle-invasive urothelial carcinoma of the bladder (UCB) as well as an IL1-dependent decrease in tissue barrier function, potentially contributing to cancer cell invasion. Objective: Based on these observations, here we investigated the potential roles of IL1RA, IL1A, and IL1B in bladder cancer cell invasion in vitro. Methods: Cell culture, real-time impedance sensing, invasion assays (Boyden chamber, pig bladder model), qPCR, Western blot, ELISA, gene overexpression. Results: We observed a loss of IL1RA expression in invasive, high-grade bladder cancer cell lines T24, UMUC-3, and HT1197 while IL1RA expression was readily detectable in the immortalized UROtsa cells, the non-invasive bladder cancer cell line RT4, and in benign patient urothelium. Thus, we modified the invasive human bladder cancer cell line T24 to ectopically express IL1RA, and measured changes in cell migration/invasion using the xCELLigence Real-Time-Cell-Analysis (RTCA) system and the Boyden chamber assay. The real-time observation data showed a significant decrease of cell migration and invasion in T24 cells overexpressing IL1RA (T24-IL1RA), compared to cells harboring an empty vector (T24-EV). Concurrently, tumor cytokines, e.g., IL1B, attenuated the vascular endothelial barrier, which resulted in a reduction of the Cell Index (CI), an impedance-based dimensionless unit. This reduction could be reverted by the simultaneous incubation with IL1RA. Moreover, we used an ex vivo porcine organ culture system to evaluate cell invasion capacity and showed that T24-IL1RA cells showed significantly less invasive capacity compared to parental T24 cells or T24-EV. Conclusions: Taken together, our results indicate an inverse correlation between IL1RA expression and tumor cell invasive capacity and migration, suggesting that IL1RA plays a role in bladder carcinogenesis, while the exact mechanisms by which IL1RA influences tumor cells migration/invasion remain to be clarified in future studies. Furthermore, we confirmed that real-time impedance sensing and the porcine ex vivo organ culture methods are powerful tools to discover differences in cancer cell migration and invasion.
Collapse
Affiliation(s)
- Lisa Schneider
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (L.S.); (J.L.); (C.Z.); (A.A.); (S.M.); (X.Z.); (C.C.); (F.W.); (C.B.); (A.J.)
| | - Junnan Liu
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (L.S.); (J.L.); (C.Z.); (A.A.); (S.M.); (X.Z.); (C.C.); (F.W.); (C.B.); (A.J.)
| | - Cheng Zhang
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (L.S.); (J.L.); (C.Z.); (A.A.); (S.M.); (X.Z.); (C.C.); (F.W.); (C.B.); (A.J.)
| | - Anca Azoitei
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (L.S.); (J.L.); (C.Z.); (A.A.); (S.M.); (X.Z.); (C.C.); (F.W.); (C.B.); (A.J.)
| | - Sabine Meessen
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (L.S.); (J.L.); (C.Z.); (A.A.); (S.M.); (X.Z.); (C.C.); (F.W.); (C.B.); (A.J.)
| | - Xi Zheng
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (L.S.); (J.L.); (C.Z.); (A.A.); (S.M.); (X.Z.); (C.C.); (F.W.); (C.B.); (A.J.)
| | - Catharina Cremer
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (L.S.); (J.L.); (C.Z.); (A.A.); (S.M.); (X.Z.); (C.C.); (F.W.); (C.B.); (A.J.)
| | | | - Sybille Kempe-Gonzales
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Hospital, 89075 Ulm, Germany; (S.K.-G.); (C.B.)
| | - Cornelia Brunner
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Hospital, 89075 Ulm, Germany; (S.K.-G.); (C.B.)
| | - Felix Wezel
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (L.S.); (J.L.); (C.Z.); (A.A.); (S.M.); (X.Z.); (C.C.); (F.W.); (C.B.); (A.J.)
| | - Christian Bolenz
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (L.S.); (J.L.); (C.Z.); (A.A.); (S.M.); (X.Z.); (C.C.); (F.W.); (C.B.); (A.J.)
| | - Cagatay Gunes
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (L.S.); (J.L.); (C.Z.); (A.A.); (S.M.); (X.Z.); (C.C.); (F.W.); (C.B.); (A.J.)
- Correspondence: ; Tel.: +49-731-500-58019
| | - Axel John
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (L.S.); (J.L.); (C.Z.); (A.A.); (S.M.); (X.Z.); (C.C.); (F.W.); (C.B.); (A.J.)
| |
Collapse
|
12
|
Martin P, Goldstein JD, Mermoud L, Diaz-Barreiro A, Palmer G. IL-1 Family Antagonists in Mouse and Human Skin Inflammation. Front Immunol 2021; 12:652846. [PMID: 33796114 PMCID: PMC8009184 DOI: 10.3389/fimmu.2021.652846] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/22/2021] [Indexed: 12/23/2022] Open
Abstract
Interleukin (IL)-1 family cytokines initiate inflammatory responses, and shape innate and adaptive immunity. They play important roles in host defense, but excessive immune activation can also lead to the development of chronic inflammatory diseases. Dysregulated IL-1 family signaling is observed in a variety of skin disorders. In particular, IL-1 family cytokines have been linked to the pathogenesis of psoriasis and atopic dermatitis. The biological activity of pro-inflammatory IL-1 family agonists is controlled by the natural receptor antagonists IL-1Ra and IL-36Ra, as well as by the regulatory cytokines IL-37 and IL-38. These four anti-inflammatory IL-1 family members are constitutively and highly expressed at steady state in the epidermis, where keratinocytes are a major producing cell type. In this review, we provide an overview of the current knowledge concerning their regulatory roles in skin biology and inflammation and their therapeutic potential in human inflammatory skin diseases. We further highlight some common misunderstandings and less well-known observations, which persist in the field despite recent extensive interest for these cytokines.
Collapse
Affiliation(s)
- Praxedis Martin
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jérémie D. Goldstein
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Loïc Mermoud
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alejandro Diaz-Barreiro
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Gaby Palmer
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
13
|
Niklander SE, Crane HL, Darda L, Lambert DW, Hunter KD. The role of icIL-1RA in keratinocyte senescence and development of the senescence-associated secretory phenotype. J Cell Sci 2021; 134:jcs.252080. [PMID: 33526711 DOI: 10.1242/jcs.252080] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/13/2021] [Indexed: 12/27/2022] Open
Abstract
There is compelling evidence that senescent cells, through the senescence-associated secretory phenotype (SASP), can promote malignant transformation and invasion. Interleukin-1 (IL-1) is a key mediator of this cytokine network, but the control of its activity in the senescence programme has not been elucidated. IL-1 signalling is regulated by IL-1RA, which has four variants. Here, we show that expression of intracellular IL-1RA type 1 (icIL-1RA1), which competitively inhibits binding of IL-1 to its receptor, is progressively lost during oral carcinogenesis ex vivo and that the pattern of expression is associated with keratinocyte replicative fate in vitro We demonstrate that icIL-1RA1 is an important regulator of the SASP in mortal cells, as CRISPR/Cas9-mediated icIL-1RA1 knockdown in normal and mortal dysplastic oral keratinocytes is followed by increased IL-6 and IL-8 secretion, and rapid senescence following release from RhoA-activated kinase inhibition. Thus, we suggest that downregulation of icIL-1RA1 in early stages of the carcinogenesis process can enable the development of a premature and deregulated SASP, creating a pro-inflammatory state in which cancer is more likely to arise.
Collapse
Affiliation(s)
- Sven E Niklander
- Unit of Oral and Maxillofacial Medicine, Pathology and Surgery, University of Sheffield, Sheffield S10 2TA, UK.,Departamento de Cirugia y Patologia Oral, Facultad de Odontologia, Universidad Andres Bello, 2520000 Viña del Mar, Chile
| | - Hannah L Crane
- Unit of Oral and Maxillofacial Medicine, Pathology and Surgery, University of Sheffield, Sheffield S10 2TA, UK
| | - Lav Darda
- Unit of Oral and Maxillofacial Medicine, Pathology and Surgery, University of Sheffield, Sheffield S10 2TA, UK
| | - Daniel W Lambert
- Unit of Oral and Maxillofacial Medicine, Pathology and Surgery, University of Sheffield, Sheffield S10 2TA, UK
| | - Keith D Hunter
- Unit of Oral and Maxillofacial Medicine, Pathology and Surgery, University of Sheffield, Sheffield S10 2TA, UK .,Oral Biology and Pathology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
14
|
Firinu D, Arba M, Vincenzoni F, Iavarone F, Costanzo G, Cabras T, Castagnola M, Messana I, Del Giacco SR, Sanna MT. Proteomic Analysis of the Acid-Insoluble Fraction of Whole Saliva from Patients Affected by Different Forms of Non-histaminergic Angioedema. J Clin Immunol 2020; 40:840-850. [PMID: 32519288 DOI: 10.1007/s10875-020-00802-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/01/2020] [Indexed: 01/17/2023]
Abstract
We analyzed by bidimensional electrophoresis the acid-insoluble fraction of saliva from three classes of angioedema patients and a healthy control group, highlighting significant variations of several normalized spot volumes. Characterization of the corresponding proteins was performed by in-gel tryptic digestion of the spots, followed by high-resolution HPLC-ESI-MS/MS analysis of tryptic mixtures. By this strategy, 16 differentially-expressed proteins among two or more groups were identified. We found higher concentration of proteins involved in immune response (interleukin-1 receptor antagonist and annexin A1), and of moonlighting proteins acting as plasminogen receptors (glyceraldehyde-3-phosphate dehydrogenase, α-enolase, and annexin A2) in patients affected by the idiopathic non-histaminergic or hereditary angioedema with unknown origin with respect to healthy controls. These data provide new information on the molecular basis of these less characterized types of angioedema. Graphical Abstract Graphical Abstract.
Collapse
Affiliation(s)
- Davide Firinu
- Dept of Medical Sciences and Public Health, University of Cagliari, 09042, Monserrato, CA, Italy.
| | - Morena Arba
- Dept of Life and Environmental Sciences, University of Cagliari, 09042, Monserrato, CA, Italy
| | - Federica Vincenzoni
- Dept of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of Sacred Heart, Rome, Italy
- Agostino Gemelli Foundation University Hospital IRCCS, Rome, Italy
| | - Federica Iavarone
- Dept of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of Sacred Heart, Rome, Italy
- Agostino Gemelli Foundation University Hospital IRCCS, Rome, Italy
| | - Giulia Costanzo
- Dept of Medical Sciences and Public Health, University of Cagliari, 09042, Monserrato, CA, Italy
| | - Tiziana Cabras
- Dept of Life and Environmental Sciences, University of Cagliari, 09042, Monserrato, CA, Italy
| | - Massimo Castagnola
- Proteomics Lab. IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano, 64 00143, Rome, Italy
| | - Irene Messana
- Istituto di Scienze e Tecnologie Chimiche, "Giulio Natta" Consiglio Nazionale delle Ricerche L.go F. Vito 1, 00168, Roma, Italy
| | - Stefano R Del Giacco
- Dept of Medical Sciences and Public Health, University of Cagliari, 09042, Monserrato, CA, Italy
| | - Maria T Sanna
- Dept of Life and Environmental Sciences, University of Cagliari, 09042, Monserrato, CA, Italy
| |
Collapse
|
15
|
Martin P, Palmer G, Rodriguez E, Palomo J, Lemeille S, Goldstein J, Gabay C. Intracellular IL-1 Receptor Antagonist Isoform 1 Released from Keratinocytes upon Cell Death Acts as an Inhibitor for the Alarmin IL-1α. THE JOURNAL OF IMMUNOLOGY 2020; 204:967-979. [PMID: 31932497 DOI: 10.4049/jimmunol.1901074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/25/2019] [Indexed: 01/26/2023]
Abstract
The inflammatory effects of IL-1α/β are controlled by IL-1R antagonist (IL-1Ra). One IL-1Ra isoform is secreted, whereas three other isoforms (intracellular IL-1Ra [icIL-1Ra] 1, 2, and 3) are supposed to remain intracellular because of the absence of a signal peptide. In contrast to the well-characterized function of the secreted isoform, the biological role of the intracellular isoforms remains largely unclear. icIL-1Ra1 represents the major isoform in keratinocytes. We created icIL-1Ra1-/- mice and investigated the role of icIL-1Ra1 in Aldara (5% imiquimod)-induced psoriasis-like skin inflammation. Naive icIL-1Ra1-/- mice bred habitually and exhibited a normal phenotype. icIL-1Ra1 deficiency aggravated Aldara-induced skin inflammation, as demonstrated by increased ear thickness and increased mRNA levels of key proinflammatory cytokines. No intracellular effect of icIL-1Ra1 could be detected in isolated keratinocytes using RNA-sequencing analysis; however, Aldara treatment led to caspase 1/11-, caspase 8-, and RIPK3-independent keratinocyte cell death accompanied by the release of both icIL-1Ra1 and IL-1α. Furthermore, blocking IL-1α attenuated the clinical severity of Aldara-induced ear thickening in icIL-1Ra1-/- mice. Our data suggest that upon keratinocyte damage icIL-1Ra1 acts extracellularly as an antagonist of the alarmin IL-1α to immediately counteract its inflammatory effects.
Collapse
Affiliation(s)
- Praxedis Martin
- Department of Pathology and Immunology, School of Medicine, University of Geneva, 1211 Geneva 4, Switzerland; and.,Division of Rheumatology, Department of Internal Medicine Specialties, University Hospitals, 1211 Geneva 4, Switzerland
| | - Gaby Palmer
- Department of Pathology and Immunology, School of Medicine, University of Geneva, 1211 Geneva 4, Switzerland; and.,Division of Rheumatology, Department of Internal Medicine Specialties, University Hospitals, 1211 Geneva 4, Switzerland
| | - Emiliana Rodriguez
- Department of Pathology and Immunology, School of Medicine, University of Geneva, 1211 Geneva 4, Switzerland; and.,Division of Rheumatology, Department of Internal Medicine Specialties, University Hospitals, 1211 Geneva 4, Switzerland
| | - Jennifer Palomo
- Department of Pathology and Immunology, School of Medicine, University of Geneva, 1211 Geneva 4, Switzerland; and.,Division of Rheumatology, Department of Internal Medicine Specialties, University Hospitals, 1211 Geneva 4, Switzerland
| | - Sylvain Lemeille
- Department of Pathology and Immunology, School of Medicine, University of Geneva, 1211 Geneva 4, Switzerland; and
| | - Jérémie Goldstein
- Department of Pathology and Immunology, School of Medicine, University of Geneva, 1211 Geneva 4, Switzerland; and.,Division of Rheumatology, Department of Internal Medicine Specialties, University Hospitals, 1211 Geneva 4, Switzerland
| | - Cem Gabay
- Department of Pathology and Immunology, School of Medicine, University of Geneva, 1211 Geneva 4, Switzerland; and .,Division of Rheumatology, Department of Internal Medicine Specialties, University Hospitals, 1211 Geneva 4, Switzerland
| |
Collapse
|
16
|
Talabot-Ayer D, Mermoud L, Borowczyk J, Drukala J, Wolnicki M, Modarressi A, Boehncke WH, Brembilla N, Palmer G. Interleukin-38 interacts with destrin/actin-depolymerizing factor in human keratinocytes. PLoS One 2019; 14:e0225782. [PMID: 31770407 PMCID: PMC6879167 DOI: 10.1371/journal.pone.0225782] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/12/2019] [Indexed: 01/20/2023] Open
Abstract
Interleukin (IL)-38 is a member of the IL-1 family of cytokines, which was proposed to exert anti-inflammatory effects. IL-38 is constitutively expressed in the skin, where keratinocytes are the main producing cells. Little information is currently available concerning IL-38 biology. Here, we investigated the subcellular localization and interaction partners of the IL-38 protein in human keratinocytes. IL-38 expression was reduced in primary keratinocytes grown in monolayer (2D) cultures. We thus used IL-38 overexpressing immortalized normal human keratinocytes (NHK/38) to study this cytokine in cell monolayers. In parallel, differentiation of primary human keratinocytes in an in vitro reconstructed human epidermis (RHE) 3D model allowed us to restore endogenous IL-38 expression. In NHK/38 cells and in RHE, IL-38 was mainly cell-associated, rather than released into culture supernatants. Intracellular IL-38 was preferentially, although not exclusively, cytoplasmic. Similarly, in normal human skin sections, IL-38 was predominantly cytoplasmic in the epidermis and essentially excluded from keratinocyte nuclei. A yeast two-hybrid screen identified destrin/actin-depolymerizing factor (DSTN) as a potential IL-38-interacting molecule. Co-immunoprecipitation and proximity ligation assay confirmed this interaction. We further observed partial co-localization of IL-38 and DSTN in NHK/38 cells. Endogenous IL-38 and DSTN were also co-expressed in all epidermal layers in RHE and in normal human skin. Finally, IL-38 partially co-localized with F-actin in NHK/38 cells, in particular along the cortical actin network and in filopodia. In conclusion, IL-38 is found predominantly in the cytoplasm of human keratinocytes, where it interacts with DSTN. The functional relevance of this interaction remains to be investigated.
Collapse
Affiliation(s)
- Dominique Talabot-Ayer
- Department of Pathology-Immunology, University of Geneva School of Medicine, Geneva, Switzerland
- Division of Rheumatology, Department of Internal Medicine Specialties, University Hospitals, Geneva, Switzerland
| | - Loïc Mermoud
- Department of Pathology-Immunology, University of Geneva School of Medicine, Geneva, Switzerland
- Division of Rheumatology, Department of Internal Medicine Specialties, University Hospitals, Geneva, Switzerland
| | - Julia Borowczyk
- Department of Pathology-Immunology, University of Geneva School of Medicine, Geneva, Switzerland
- Division of Dermatology and Venereology, University Hospitals, Geneva, Switzerland
| | - Justyna Drukala
- Cell Bank, Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Cracow, Poland
| | - Michal Wolnicki
- Department of Pediatric Urology, Jagiellonian University Medical College, Cracow, Poland
| | - Ali Modarressi
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospitals of Geneva, University of Geneva School of Medicine, Geneva, Switzerland
| | - Wolf-Henning Boehncke
- Department of Pathology-Immunology, University of Geneva School of Medicine, Geneva, Switzerland
- Division of Dermatology and Venereology, University Hospitals, Geneva, Switzerland
| | - Nicolo Brembilla
- Department of Pathology-Immunology, University of Geneva School of Medicine, Geneva, Switzerland
- Division of Dermatology and Venereology, University Hospitals, Geneva, Switzerland
| | - Gaby Palmer
- Department of Pathology-Immunology, University of Geneva School of Medicine, Geneva, Switzerland
- Division of Rheumatology, Department of Internal Medicine Specialties, University Hospitals, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
17
|
Kutzner TJ, Higuero AM, Süßmair M, Kopitz J, Hingar M, Díez-Revuelta N, Caballero GG, Kaltner H, Lindner I, Abad-Rodríguez J, Reusch D, Gabius HJ. How presence of a signal peptide affects human galectins-1 and -4: Clues to explain common absence of a leader sequence among adhesion/growth-regulatory galectins. Biochim Biophys Acta Gen Subj 2019; 1864:129449. [PMID: 31678146 DOI: 10.1016/j.bbagen.2019.129449] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 01/22/2023]
Abstract
BACKGROUND Galectins are multifunctional effectors, which all share absence of a signal sequence. It is not clear why galectins belong to the small set of proteins, which avoid the classical export route. METHODS Products of recombinant galectin expression in P. pastoris were analyzed by haemagglutination, gel filtration and electrophoresis and lectin blotting as well as mass spectrometry on the level of tryptic peptides and purified glycopeptides(s). Density gradient centrifugation and confocal laser scanning microscopy facilitated localization in transfected human and rat cells, proliferation assays determined activity as growth mediator. RESULTS Directing galectin-1 to the classical secretory pathway in yeast produces N-glycosylated protein that is active. It cofractionates and -localizes with calnexin in human cells, only Gal-4 is secreted. Presence of N-glycan(s) reduces affinity of cell binding and growth regulation by Gal-1. CONCLUSIONS Folding and activity of a galectin are maintained in signal-peptide-directed routing, N-glycosylation occurs. This pathway would deplete cytoplasm and nucleus of galectin, presence of N-glycans appears to interfere with lattice formation. GENERAL SIGNIFICANCE Availability of glycosylated galectins facilitates functional assays to contribute to explain why galectins invariably avoid classical routing for export.
Collapse
Affiliation(s)
- Tanja J Kutzner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Alonso M Higuero
- Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Martina Süßmair
- Pharma Biotech Development Penzberg, Roche Diagnostics GmbH, 82777 Penzberg, Germany
| | - Jürgen Kopitz
- Department of Applied Tumor Biology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Michael Hingar
- Pharma Biotech Development Penzberg, Roche Diagnostics GmbH, 82777 Penzberg, Germany
| | - Natalia Díez-Revuelta
- Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Gabriel García Caballero
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Herbert Kaltner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Ingo Lindner
- Pharma Biotech Development Penzberg, Roche Diagnostics GmbH, 82777 Penzberg, Germany
| | - José Abad-Rodríguez
- Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda s/n, 45071 Toledo, Spain.
| | - Dietmar Reusch
- Pharma Biotech Development Penzberg, Roche Diagnostics GmbH, 82777 Penzberg, Germany.
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 Munich, Germany.
| |
Collapse
|
18
|
Spinello A, Vecile E, Abbate A, Dobrina A, Magistrato A. How Can Interleukin-1 Receptor Antagonist Modulate Distinct Cell Death Pathways? J Chem Inf Model 2019; 59:351-359. [PMID: 30586302 DOI: 10.1021/acs.jcim.8b00565] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Multiple mechanisms of cell death exist (apoptosis, necroptosis, pyroptosis) and the subtle balance of several distinct proteins and inhibitors tightly regulates the cell fate toward one or the other pathway. Here, by combining coimmunoprecipitation, enzyme assays, and molecular simulations, we ascribe a new role, within this entangled regulatory network, to the interleukin-1 receptor antagonist (IL-1Ra). Our study enlightens that IL-1Ra, which usually inhibits the inflammatory effects of IL-1α/β by binding to IL-1 receptor, under advanced pathological states prevents apoptosis and/or necroptosis by noncompetitively inhibiting the activity of caspase-8 and -9. Consensus docking, followed by cumulative 10 μs of molecular dynamics simulations unprecedentedly reveal that IL-1Ra binds both caspases at their dimeric interface, preventing, in this manner, the formation of their catalytically/signaling active form. The resulting IL-1Ra/caspase-8(9) adducts are stabilized by hydrophobic and by few key hydrogen bonding interactions, formed by residues fully conserved across distinct caspases (-3, -6, -7, -8, and -9), and closely resemble the binding mode of the caspases inhibitors XIAP (X-linked inhibitor of apoptosis) and c-FLIP (cellular FLICE-like inhibitory protein). Tight regulation of the different forms of cell death has a major impact on distinct human illnesses (i.e., cancer, neurodegeneration, ischemic injury, atherosclerosis, viral/bacterial infections, and immune reaction). Hence, our study, pinpointing IL-1Ra as new actor of the intricate cell death regulatory network and gaining an atomic-scale understanding of its mechanism may open new avenues toward innovative therapeutic strategies to tackle major human diseases.
Collapse
Affiliation(s)
- Angelo Spinello
- CNR-IOM-Democritos c/o International School for Advanced Studies (SISSA) , via Bonomea 265 , 34136 , Trieste , Italy
| | - Elena Vecile
- Department of Life Sciences , University of Trieste , via Giorgieri 1 , I-34127 , Trieste , Italy
| | - Antonio Abbate
- Victoria Johnson Research Laboratory and VCU Pauley Heart Center , Virginia Commonwealth University , 1200 E Broad St , PO Box 980281, Richmond , Virginia United States of America
| | - Aldo Dobrina
- Department of Life Sciences , University of Trieste , via Giorgieri 1 , I-34127 , Trieste , Italy
| | - Alessandra Magistrato
- CNR-IOM-Democritos c/o International School for Advanced Studies (SISSA) , via Bonomea 265 , 34136 , Trieste , Italy
| |
Collapse
|
19
|
Affiliation(s)
- B.J.G. Pereira
- Department of Medicine, New England Medical Center, Tufts University School of Medicine, Boston - USA
| | - C.A. Dinarello
- Department of Medicine, New England Medical Center, Tufts University School of Medicine, Boston - USA
| |
Collapse
|
20
|
Pilat C, Krüger K, Frech T, Mooren FC. Exercise-induced cytokine changes in antigen stimulated whole-blood cultures compared to serum. J Immunol Methods 2016; 440:58-66. [PMID: 27876507 DOI: 10.1016/j.jim.2016.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/16/2016] [Accepted: 11/16/2016] [Indexed: 01/10/2023]
Abstract
Strenuous exercise is followed by an elevation of many cytokines with inflammation regulating properties. Since most cytokines act at pico- or nanomolar concentrations many investigations failed to detect their concentrations in vivo. Hence, the aim of this study was to evaluate the significance of cytokine measurements (IL-1β, TNF-α, IL-1ra, IL-6, CCL2 and CXCL8) in a stimulated whole-blood culture (sWBC) compared to serum with respect to their exercise-induced kinetics and detection rates. 40 male volunteers (age: 25,5±4,3years, BMI: 24,00±2,24, VO2peak: 46,9±4,1mL/kg×min) performed 60min of intensive bicycle exercise (80% VO2peak). Blood samples were taken before and for up to 24h after exercise. All cytokines were determined by a multiplex ELISA. There were weak to moderate correlations between cytokines in sWBC and serum. While exercise did not affect pro-inflammatory cytokines in serum, in sWBC only IL-1β was increased 1.2-fold at 3h (p<0,05). All other cytokines increased both in sWBC and serum. The detection rate was superior in sWBC vs serum for most cytokines. Exercise-induced cytokine kinetics in sWBC do not reflect systemic changes. Both approaches provide a synergistic insight into inflammatory processes on the cytokine level.
Collapse
Affiliation(s)
- C Pilat
- Department of Sports Medicine, Justus-Liebig-University, Kugelberg 62, 35394 Gießen, Germany.
| | - K Krüger
- Department of Sports Medicine, Justus-Liebig-University, Kugelberg 62, 35394 Gießen, Germany
| | - T Frech
- Department of Sports Medicine, Justus-Liebig-University, Kugelberg 62, 35394 Gießen, Germany
| | - F C Mooren
- Department of Sports Medicine, Justus-Liebig-University, Kugelberg 62, 35394 Gießen, Germany
| |
Collapse
|
21
|
Kwak A, Lee Y, Kim H, Kim S. Intracellular interleukin (IL)-1 family cytokine processing enzyme. Arch Pharm Res 2016; 39:1556-1564. [DOI: 10.1007/s12272-016-0855-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/01/2016] [Indexed: 12/23/2022]
|
22
|
Bou-Dargham MJ, Khamis ZI, Cognetta AB, Sang QXA. The Role of Interleukin-1 in Inflammatory and Malignant Human Skin Diseases and the Rationale for Targeting Interleukin-1 Alpha. Med Res Rev 2016; 37:180-216. [PMID: 27604144 DOI: 10.1002/med.21406] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 07/19/2016] [Accepted: 07/23/2016] [Indexed: 12/11/2022]
Abstract
Inflammation plays a major role in the induction and progression of several skin diseases. Overexpression of the major epidermal proinflammatory cytokines interleukin (IL) 1 alpha (IL-1α) and 1 beta (IL-1β) is positively correlated with symptom exacerbation and disease progression in psoriasis, atopic dermatitis, neutrophilic dermatoses, skin phototoxicity, and skin cancer. IL-1β and the interleukin-1 receptor I (IL-1RI) have been used as a therapeutic target for some autoinflammatory skin diseases; yet, their system-wide effects limit their clinical usage. Based on the local effects of extracellular IL-1α and its precursor, pro-IL-1α, we hypothesize that this isoform is a promising drug target for the treatment and prevention of many skin diseases. This review provides an overview on IL-1α and IL-β functions, and their contribution to inflammatory and malignant skin diseases. We also discuss the current treatment regimens, and ongoing clinical trials, demonstrating the potential of targeting IL-1α, and not IL-1β, as a more effective strategy to prevent or treat the onset and progression of various skin diseases.
Collapse
Affiliation(s)
- Mayassa J Bou-Dargham
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306.,Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306
| | - Zahraa I Khamis
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306.,Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306.,Department of Chemistry and Biochemistry, Lebanese University, Faculty of Sciences, Hadath-Beirut, Lebanon
| | - Armand B Cognetta
- Dermatology Associates of Tallahassee and Division of Dermatology, Florida State University College of Medicine, Tallahassee, FL, 32308
| | - Qing-Xiang Amy Sang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306.,Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306
| |
Collapse
|
23
|
Ghivizzani SC, Gouze E, Watson RS, Saran J, Kay JD, Bush ML, Levings PP, Gouze JN. Interleukin-1 in Rheumatoid Arthritis: Its Inhibition by IL-1Ra and Anakinra. J Pharm Technol 2016. [DOI: 10.1177/875512250702300205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objective: To review the biology of interleukin-1 (IL-1) in the pathogenesis of rheumatoid arthritis (RA), as well as the biology of its natural inhibitor, IL receptor antagonist (IL-1Ra), and the clinical efficacy and safety of the recombinant form, anakinra. Data Sources: A MEDLINE search (1966–January 2007) of English-language articles was conducted using the key words anakinra, arthritis, clinical trial, interleukin-1 receptor antagonist, and Kineret. Study Selection and Data Extraction: Over 79 research articles and literature reviews were used to compile a discussion of the biology of IL-1 and IL-1Ra. Ten of these articles were selected to discuss the clinical safety and efficacy of anakinra. Data Synthesis: In RA, IL-1 primarily acts locally to mediate erosion of cartilage and bone. IL-1Ra serves to modulate its activity through competitive inhibition of cellular receptors. Administration of anakinra to animals with experimental arthritis reduced inflammation and joint damage. In clinical trials, anakinra was reasonably well tolerated; however, injection site reactions were frequent and there was a slight increased risk of serious infection. Alone or in combination with methotrexate, anakinra significantly reduced the symptoms and clinical signs of RA at the American College of Rheumatology 20% response level. However, no additive benefit was observed following coadministration with etanercept, a soluble tumor necrosis factor antagonist, and anakinra had no beneficial effect in patients that failed treatment with etanercept. Conclusions: Laboratory studies have indicated that IL-1 is primarily responsible for cartilage destruction and bone erosion in RA. The selective inhibition of IL-1 through administration of anakinra may offer symptomatic relief of RA in some patients.
Collapse
Affiliation(s)
- Steven C Ghivizzani
- STEVEN C GHIVIZZANI PhD, Associate Professor, Department of Orthopaedics and Rehabilitation, College of Medicine, University of Florida, Gainesville, FL
| | - Elvire Gouze
- ELVIRE GOUZE PhD, Assistant Research Professor, Department of Orthopaedics and Rehabilitation, College of Medicine, University of Florida
| | - Rachael S Watson
- RACHAEL S WATSON BS, Graduate Student, Department of Orthopaedics and Rehabilitation, College of Medicine, University of Florida
| | - Jeetpaul Saran
- JEETPAUL SARAN MD, Postdoctoral Fellow, Department of Orthopaedics and Rehabilitation, College of Medicine, University of Florida
| | - Jesse D Kay
- JESSE D KAY BS, Graduate Student, Department of Orthopaedics and Rehabilitation, College of Medicine, University of Florida
| | - Marsha L Bush
- MARSHA L BUSH BS, Graduate Student, Department of Orthopaedics and Rehabilitation, College of Medicine, University of Florida
| | - Padraic P Levings
- PADRAIC P LEVINGS PhD, Postdoctoral Fellow, Department of Orthopaedics and Rehabilitation, College of Medicine, University of Florida
| | - Jean-Noel Gouze
- JEAN-NOEL GOUZE PhD, Assistant Research Professor, Department of Orthopaedics and Rehabilitation, College of Medicine, University of Florida
| |
Collapse
|
24
|
Interleukin-1 Family Cytokines in Liver Diseases. Mediators Inflamm 2015; 2015:630265. [PMID: 26549942 PMCID: PMC4624893 DOI: 10.1155/2015/630265] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/27/2015] [Indexed: 02/06/2023] Open
Abstract
The gene encoding IL-1 was sequenced more than 30 years ago, and many related cytokines, such as IL-18, IL-33, IL-36, IL-37, IL-38, IL-1 receptor antagonist (IL-1Ra), and IL-36Ra, have since been identified. IL-1 is a potent proinflammatory cytokine and is involved in various inflammatory diseases. Other IL-1 family ligands are critical for the development of diverse diseases, including inflammatory and allergic diseases. Only IL-1Ra possesses the leader peptide required for secretion from cells, and many ligands require posttranslational processing for activation. Some require inflammasome-mediated processing for activation and release, whereas others serve as alarmins and are released following cell membrane rupture, for example, by pyroptosis or necroptosis. Thus, each ligand has the proper molecular process to exert its own biological functions. In this review, we will give a brief introduction to the IL-1 family cytokines and discuss their pivotal roles in the development of various liver diseases in association with immune responses. For example, an excess of IL-33 causes liver fibrosis in mice via activation and expansion of group 2 innate lymphoid cells to produce type 2 cytokines, resulting in cell conversion into pro-fibrotic M2 macrophages. Finally, we will discuss the importance of IL-1 family cytokine-mediated molecular and cellular networks in the development of acute and chronic liver diseases.
Collapse
|
25
|
Kaenel P, Hahnewald S, Wotzkow C, Strange R, Andres AC. Overexpression of EphB4 in the mammary epithelium shifts the differentiation pathway of progenitor cells and promotes branching activity and vascularization. Dev Growth Differ 2014; 56:255-75. [PMID: 24635767 DOI: 10.1111/dgd.12126] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 02/02/2014] [Accepted: 02/04/2014] [Indexed: 01/16/2023]
Abstract
Postnatally, the mammary gland undergoes continuous morphogenesis and thereby is especially prone to malignant transformation. Thus, the maintenance of the epithelium depends on a tight control of stem cell recruitment. We have previously shown that epithelial overexpression of the EphB4 receptor results in defective mammary epithelial development and conferred a metastasizing tumor phenotype on experimental mouse mammary tumors accompanied by a preponderance of progenitor cells. To analyze the effect of EphB4 overexpression on mammary epithelial cell fate, we have used Fluorescence Activated Cell Sorting (FACS) analyses to quantify epithelial sub-populations and repopulation assays of cleared fat pads to investigate their regenerative potential. These experiments revealed that deregulated EphB4 expression leads to an augmentation of bi-potent progenitor cells and to a shift of the differentiation pathway towards the luminal lineage. The analyses of the ductal outgrowths indicated that EphB4 overexpression leads to enforced branching activity, impedes ductal differentiation and stimulates angiogenesis. To elucidate the mechanisms forwarding EphB4 signals, we have compared the expression profile of defined cell populations between EphB4 transgene and wild type mammary glands concentrating on the wnt signaling pathway and on genes implicated in cell migration. With respect to wnt signaling, the progenitor cell population was the most affected, whereas the stem cell-enriched population showed the most pronounced deregulation of migration-associated genes. Thus, the luminal epithelial EphB4 signaling contributes, most likely via wnt signaling, to the regulation of migration and cell fate of early progenitors and is involved in the determination of branching points along the ductal tree.
Collapse
Affiliation(s)
- Philip Kaenel
- Department of Clinical Research, University of Bern, Tiefenaustrasse 120c, CH-3004, Bern, Switzerland
| | | | | | | | | |
Collapse
|
26
|
Corradi A, Bajetto A, Cozzolino F, Rubartelli A. Production and secretion of interleukin 1 receptor antagonist in monocytes and keratinocytes. Cytotechnology 2012; 11:S50-2. [PMID: 22358708 DOI: 10.1007/bf00746053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
IL-1 receptor antagonist (IL-1ra) is a newly described member of the IL-1 family, isolated from supernatants of Ig stimulated monocytes, that binds competitively to IL-1 receptors without stimulating target cells (1-3). Also epithelial cells produce IL-1ra in a form which lacks a secretory signal sequence (4).Here we have compared the biosynthesis and secretion of IL-1ra in monocytes and keratinocytes. Our data show that monocytes produce two molecular forms of IL-1ra, of 18 Kd and 23 Kd respectively, which differ in the degree of glycosylation. Both forms are secreted via the "classical" endoplasmic reticulum (ER)-Golgi secretory pathway. By contrast keratinocytes produce IL-1ra in a molecular form of 20 Kd, which is not N-glycosylated: 20 Kd IL-1ra is detectable in supernatants of keratinocytes, although in small amounts. The presence of IL-1ra in keratinocytes cultures fluids is not inhibited by Brefeldin A (BFA), suggesting a possible secretion through the leaderless secretory pathway.
Collapse
Affiliation(s)
- A Corradi
- Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | | | | | | |
Collapse
|
27
|
Gibson MS, Fife M, Bird S, Salmon N, Kaiser P. Identification, cloning, and functional characterization of the IL-1 receptor antagonist in the chicken reveal important differences between the chicken and mammals. THE JOURNAL OF IMMUNOLOGY 2012; 189:539-50. [PMID: 22689884 DOI: 10.4049/jimmunol.1103204] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The human IL-1 family contains 11 genes encoded at three separate loci. Nine, including IL-1R antagonist (IL-1RN), are present at a single locus on chromosome 2, whereas IL-18 and IL-33 lie on chromosomes 11 and 9, respectively. There are currently only two known orthologs in the chicken, IL-1β and IL-18, which are encoded on chromosomes 22 and 24, respectively. Two novel chicken IL-1 family sequences were identified from expressed sequence tag libraries, representing secretory and intracellular (icIL-1RN) structural variants of the IL-1RN gene, as seen in mammals. Two further putative splice variants (SVs) of both chicken IL-1RN (chIL-1RN) structural variants were also isolated. Alternative splicing of human icIL-1RN gives three different transcripts; there are no known SVs for human secretory IL-1RN. The chicken icIL-1RN SVs differ from those found in human icIL-1RN in terms of the rearrangements involved. In mammals, IL-1RN inhibits IL-1 activity by physically occupying the IL-1 type I receptor. Both full-length structural variants of chIL-1RN exhibited biological activity similar to their mammalian orthologs in a macrophage cell line bioassay. The four SVs, however, were not biologically active. The chicken IL-1 family is more fragmented in the genome than those of mammals, particularly in that the large multigene locus seen in mammals is absent. This suggests differential evolution of the family since the divergence of birds and mammals from a common ancestor, and makes determination of the full repertoire of chicken IL-1 family members more challenging.
Collapse
Affiliation(s)
- Mark S Gibson
- Institute for Animal Health, Compton, Berkshire RG20 7NN, UK.
| | | | | | | | | |
Collapse
|
28
|
Lamacchia C, Rodriguez E, Palmer G, Vesin C, Seemayer CA, Rubbia-Brandt L, Gabay C. Mice deficient in hepatocyte-specific IL-1Ra show delayed resolution of concanavalin A-induced hepatitis. Eur J Immunol 2012; 42:1294-303. [DOI: 10.1002/eji.201142204] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Céline Lamacchia
- Division of Rheumatology; University Hospital and Department of Pathology and Immunology; University of Geneva School of Medicine; Geneva Switzerland
| | - Emiliana Rodriguez
- Division of Rheumatology; University Hospital and Department of Pathology and Immunology; University of Geneva School of Medicine; Geneva Switzerland
| | - Gaby Palmer
- Division of Rheumatology; University Hospital and Department of Pathology and Immunology; University of Geneva School of Medicine; Geneva Switzerland
| | - Christian Vesin
- Department of Cellular Physiology and Metabolism; University of Geneva School of Medicine; Geneva Switzerland
| | | | - Laura Rubbia-Brandt
- Division of Clinical Pathology; University Hospital and Department of Pathology and Immunology; University of Geneva School of Medicine; Geneva Switzerland
| | - Cem Gabay
- Division of Rheumatology; University Hospital and Department of Pathology and Immunology; University of Geneva School of Medicine; Geneva Switzerland
| |
Collapse
|
29
|
Lamacchia C, Rodriguez E, Palmer G, Vigne S, Martin P, Talabot-Ayer D, Seemayer CA, Gabay C. Articular inflammation is controlled by myeloid cell-derived interleukin 1 receptor antagonist during the acute phase of arthritis in mice. Ann Rheum Dis 2012; 71:281-7. [PMID: 22072017 DOI: 10.1136/annrheumdis-2011-200429] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVES To define the cell type (myeloid vs other cells) specific effect of interleukin 1 (IL-1) receptor antagonist (IL-1Ra) deficiency on the acute inflammatory phase of arthritis. METHODS Arthritis was induced by K/BxN serum transfer in wild-type (WT), IL-1Ra-deficient (IL-1Ra(-/-)) and conditional knockout mice. In the latter, IL-1Ra production was specifically targeted in myeloid cells (IL-1Ra(ΔM)) or in both hepatocytes and myeloid cells (IL-1Ra(ΔH+M)). Arthritis severity was clinically evaluated and ankle sections were scored for synovial inflammation and cartilage erosion. Quantitative RT-PCR, western blot and immunohistochemical analyses measured expression, localisation and cellular sources of the different IL-1Ra isoforms in arthritic joints. RESULTS Total and myeloid cell-specific IL-1Ra deficiency was associated with increased arthritis severity, although disease incidence was similar to that of WT mice. Increased clinical scores were associated with exacerbated synovial inflammation. All IL-1Ra isoforms, except for intracellular (ic)IL-1Ra2, were expressed in arthritic joints of WT mice. In contrast, production of secreted (s)IL-1Ra and icIL-1Ra3 isoforms was markedly decreased in arthritic joints of both IL-1Ra(ΔM) and IL-1Ra(ΔH+M) mice. Immunohistochemical and western blot analyses suggested that the icIL-1Ra1 isoform is produced primarily by synovial fibroblasts. CONCLUSION Myeloid cell-derived IL-1Ra, including both sIL-1Ra and icIL-1Ra3 isoforms, controls articular inflammation during the acute phase of K/BxN serum transfer-induced arthritis.
Collapse
Affiliation(s)
- Céline Lamacchia
- Division of Rheumatology, University Hospitals of Geneva, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Sanders AE, Maixner W, Nackley AG, Diatchenko L, By K, Miller VE, Slade GD. Excess risk of temporomandibular disorder associated with cigarette smoking in young adults. THE JOURNAL OF PAIN 2012; 13:21-31. [PMID: 22036516 PMCID: PMC3249502 DOI: 10.1016/j.jpain.2011.08.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/23/2011] [Accepted: 08/01/2011] [Indexed: 12/19/2022]
Abstract
UNLABELLED Evidence suggests that the effect of cigarette smoking on chronic pain is stronger in younger than older adults. This case-control study investigated whether age modified an effect of smoking on temporomandibular disorder (TMD) in 299 females aged 18 to 60 years. It also investigated the extent to which this relationship was explained by psychological profile, inflammatory response, and allergy. Cases were defined using the Research Diagnostic Criteria for Temporomandibular Disorders based on clinical examination. Psychological profile was evaluated using standardized instruments. Inflammatory response was evaluated with 11 cytokines isolated in plasma. History of allergy conditions was self-reported. Odds ratios (ORs) for the effect of smoking were calculated using binary logistic regression. Stratified analyses and the likelihood ratio test examined effect modification by smoking. Compared with nonsmokers, ever smokers aged <30 years had higher odds of TMD (OR = 4.14, 95% CI: 1.57, 11.35) than older adults (OR = 1.23, 95% CI: .55, 2.78) (P (effect modification) = .038). Adjustment for psychological profile, cytokines, and history of allergy-like conditions attenuated the effect by 45% to statistical nonsignificance. The main finding was reproduced with secondary analyses of 2 nationally representative surveys of adults conducted in the US and Australia. PERSPECTIVE This study showed that smoking was associated with TMD risk in females, but only in young adulthood. It replicated this finding in 2 nationally representative surveys of females in the US and Australia. Findings may alert clinicians to recognize that smoking is a concern for TMD in younger female patients.
Collapse
Affiliation(s)
- Anne E Sanders
- Department of Dental Ecology, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7450, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Akdis M, Burgler S, Crameri R, Eiwegger T, Fujita H, Gomez E, Klunker S, Meyer N, O'Mahony L, Palomares O, Rhyner C, Ouaked N, Quaked N, Schaffartzik A, Van De Veen W, Zeller S, Zimmermann M, Akdis CA. Interleukins, from 1 to 37, and interferon-γ: receptors, functions, and roles in diseases. J Allergy Clin Immunol 2011; 127:701-21.e1-70. [PMID: 21377040 DOI: 10.1016/j.jaci.2010.11.050] [Citation(s) in RCA: 571] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 11/11/2010] [Accepted: 11/12/2010] [Indexed: 12/17/2022]
Abstract
Advancing our understanding of mechanisms of immune regulation in allergy, asthma, autoimmune diseases, tumor development, organ transplantation, and chronic infections could lead to effective and targeted therapies. Subsets of immune and inflammatory cells interact via ILs and IFNs; reciprocal regulation and counter balance among T(h) and regulatory T cells, as well as subsets of B cells, offer opportunities for immune interventions. Here, we review current knowledge about ILs 1 to 37 and IFN-γ. Our understanding of the effects of ILs has greatly increased since the discoveries of monocyte IL (called IL-1) and lymphocyte IL (called IL-2); more than 40 cytokines are now designated as ILs. Studies of transgenic or knockout mice with altered expression of these cytokines or their receptors and analyses of mutations and polymorphisms in human genes that encode these products have provided important information about IL and IFN functions. We discuss their signaling pathways, cellular sources, targets, roles in immune regulation and cellular networks, roles in allergy and asthma, and roles in defense against infections.
Collapse
Affiliation(s)
- Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research, University of Zurich, Davos, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Sahoo A, Im SH. Interleukin and Interleukin Receptor Diversity: Role of Alternative Splicing. Int Rev Immunol 2010; 29:77-109. [DOI: 10.3109/08830180903349651] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
33
|
Luheshi NM, Rothwell NJ, Brough D. Dual functionality of interleukin-1 family cytokines: implications for anti-interleukin-1 therapy. Br J Pharmacol 2010; 157:1318-29. [PMID: 19681864 PMCID: PMC2765320 DOI: 10.1111/j.1476-5381.2009.00331.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Dysregulated inflammation contributes to disease pathogenesis in both the periphery and the brain. Cytokines are coordinators of inflammation and were originally defined as secreted mediators, released from expressing cells to activate plasma membrane receptors on responsive cells. However, a group of cytokines is now recognized as having dual functionality. In addition to their extracellular effects, these cytokines act inside the nuclei of cytokine-expressing or cytokine-responsive cells. Interleukin-1 (IL-1) family cytokines are key pro-inflammatory mediators, and blockade of the IL-1 system in inflammatory diseases is an attractive therapeutic goal. All current therapies target IL-1 extracellular actions. Here we review evidence that suggests IL-1 family members have dual functionality. Several IL-1 family members have been detected inside the nuclei of IL-1-expressing or IL-1-responsive cells, and intranuclear IL-1 is reported to regulate gene transcription and mRNA splicing. However, further work is required to determine the impact of IL-1 intranuclear actions on disease pathogenesis. The intranuclear actions of IL-1 family members represent a new and potentially important area of IL-1 biology and may have implications for the future development of anti-IL-1 therapies.
Collapse
Affiliation(s)
- N M Luheshi
- Faculty of Life Sciences, University of Manchester, Manchester, UK.
| | | | | |
Collapse
|
34
|
Torres P, de Vos AF, van der Gaag R, Kijlstra A. Expression of the interleukin 1 receptor antagonist in the normal human cornea. Ocul Immunol Inflamm 2009; 2:217-22. [DOI: 10.3109/09273949409057079] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
35
|
Na HY, Mazumdar K, Moon HJ, Chang S, Seong SY. TLR4-independent and PKR-dependent interleukin 1 receptor antagonist expression upon LPS stimulation. Cell Immunol 2009; 259:33-40. [PMID: 19559408 DOI: 10.1016/j.cellimm.2009.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 05/19/2009] [Accepted: 05/22/2009] [Indexed: 12/14/2022]
Abstract
Dendritic cells (DCs) induce innate immune responses by recognizing bacterial LPS through TLR4 receptor complexes. In this study, we compared gene expression profiles of TLR4 knockout (TLR4(neg)) DCs and wild type (TLR4(pos)) DCs after stimulating with LPS. We found that the expression of various inflammatory genes by LPS were TLR4-independent. Among them, interleukin 1 receptor antagonist (IL-1rn) was of particular interest since IL-1rn is a potent natural inhibitor of proinflammatory IL-1. Using RT-PCR, real-time PCR, immunoblotting and ELISA, we demonstrated that IL-1rn was induced by DCs stimulated with LPS in the absence of TLR4. 2-Aminopurine, a pharmacological PKR inhibitor, completely abrogated LPS-induced expression of IL-1rn in TLR4(neg) DCs, suggesting that LPS-induced TLR4-independent expression of IL-1rn might be mediated by PKR pathways. Considering that IL-1rn is a physiological inhibitor of IL-1, TLR4-independent and PKR-dependent pathways might be crucial in counter-balancing proinflammatory effector functions of DCs resulted from TLR4-dependent activation by LPS.
Collapse
Affiliation(s)
- Hye Young Na
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
36
|
Asirvatham AJ, Magner WJ, Tomasi TB. miRNA regulation of cytokine genes. Cytokine 2009; 45:58-69. [PMID: 19121586 PMCID: PMC3129852 DOI: 10.1016/j.cyto.2008.11.010] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 10/23/2008] [Accepted: 11/19/2008] [Indexed: 12/19/2022]
Abstract
In this review we discuss specific examples of regulation of cytokine genes and focus on a new mechanism involving post-transcriptional regulation via miRNAs. The post-transcriptional regulation of cytokine genes via the destabilizing activity of AU-rich elements [AREs] and miRNAs is a pre-requisite for regulating the half-life of many cytokines and achieving the temporal and spatial distributions required for regulation of these genes.
Collapse
Affiliation(s)
- Ananthi J. Asirvatham
- Roswell Park Cancer Institute, Laboratory of Molecular Medicine, Department of Immunology, Elm & Carlton Streets, Buffalo, NY 14263, USA
| | - William J. Magner
- Roswell Park Cancer Institute, Laboratory of Molecular Medicine, Department of Immunology, Elm & Carlton Streets, Buffalo, NY 14263, USA
| | - Thomas B. Tomasi
- Roswell Park Cancer Institute, Laboratory of Molecular Medicine, Department of Immunology, Elm & Carlton Streets, Buffalo, NY 14263, USA
- Departments of Medicine and Microbiology & Immunology, State University of New York, School of Medicine and Biomedical Sciences, Buffalo, NY 14214, USA
| |
Collapse
|
37
|
Raga F, Casañ EM, Bonilla-Musoles F. Gonadotropin-releasing hormone (GnRH)-I regulation of interleukin (IL)-1b and IL-1 receptor antagonist expression in cultured human endometrial stromal cells. J Obstet Gynaecol Res 2008; 34:464-72. [DOI: 10.1111/j.1447-0756.2008.00737.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Suyama Y, Kubota Y, Ninomiya T, Shirasuna K. Immunohistochemical analysis of interleukin-1α, its type I receptor and antagonist in keratocystic odontogenic tumors. J Oral Pathol Med 2008; 37:560-4. [DOI: 10.1111/j.1600-0714.2008.00667.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Shamji MF, Betre H, Kraus VB, Chen J, Chilkoti A, Pichika R, Masuda K, Setton LA. Development and characterization of a fusion protein between thermally responsive elastin-like polypeptide and interleukin-1 receptor antagonist: sustained release of a local antiinflammatory therapeutic. ACTA ACUST UNITED AC 2007; 56:3650-61. [PMID: 17968946 DOI: 10.1002/art.22952] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Interleukin-1 receptor antagonist (IL-1Ra) has been evaluated for the intraarticular treatment of osteoarthritis. Such administration of proteins may have limited utility because of their rapid clearance and short half-life in the joint. The fusion of a drug to elastin-like polypeptides (ELPs) promotes the formation of aggregating particles that form a "drug depot" at physiologic temperatures, a phenomenon intended to prolong the presence of the drug. The purpose of this study was to develop an injectable drug depot composed of IL-1Ra and ELP domains and to evaluate the properties and bioactivity of the recombinant ELP-IL-1Ra fusion protein. METHODS Fusion proteins between IL-1Ra and 2 distinct sequences and molecular weights of ELP were overexpressed in Escherichia coli. Environmental sensitivity was demonstrated by turbidity and dynamic light scattering as a function of temperature. IL-1Ra domain activity was evaluated by surface plasmon resonance, and in vitro antagonism of IL-1-mediated lymphocyte and thymocyte proliferation, as well as IL-1-induced tumor necrosis factor alpha (TNFalpha) expression and matrix metalloproteinase 3 (MMP-3) and ADAMTS-4 messenger RNA expression in human intervertebral disc fibrochondrocytes. IL-1Ra immunoreactivity was assessed before and after proteolytic degradation of the ELP partner. RESULTS Both fusion proteins underwent supramolecular aggregation at subphysiologic temperatures and slowly resolubilized at 37 degrees C. Interaction with IL-1 receptor was slower in association but equivalent in dissociation as compared with the commercial antagonist. Anti-IL-1 activity was demonstrated by inhibition of lymphocyte and thymocyte proliferation and by decreased TNFalpha expression and ADAMTS-4 and MMP-3 transcription by fibrochondrocytes. ELP domain proteolysis liberated a peptide of comparable size and immunoreactivity as the commercial IL-1Ra. This peptide was more bioactive against lymphocyte proliferation, nearly equivalent to the commercial antagonist. CONCLUSION The ELP-IL-1Ra fusion protein proved to retain the characteristic ELP inverse phase-transitioning behavior as well as the bioactivity of the IL-1Ra domain. This technology represents a novel drug carrier designed to prolong the presence of bioactive peptides following intraarticular delivery.
Collapse
|
40
|
Grundtman C, Salomonsson S, Dorph C, Bruton J, Andersson U, Lundberg IE. Immunolocalization of interleukin-1 receptors in the sarcolemma and nuclei of skeletal muscle in patients with idiopathic inflammatory myopathies. ACTA ACUST UNITED AC 2007; 56:674-87. [PMID: 17265504 DOI: 10.1002/art.22388] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Interleukin-1 (IL-1) acts via its receptors to induce gene expression that mediates protein synthesis involved in inflammation. Increased expression of IL-1alpha and IL-1beta in muscle tissue from patients with polymyositis and dermatomyositis has been demonstrated. It is not known whether the reciprocal IL-1 receptors are expressed in human muscle tissue. The purpose of this study was to investigate the expression of IL-1 receptors and their ligands in muscle tissue from patients with myositis and from healthy controls. METHODS Muscle biopsy tissues from 10 patients with polymyositis or dermatomyositis and 7 healthy control subjects were investigated by immunohistochemistry using antibodies against IL-1 receptor type I (IL-1RI), IL-1RII, IL-1alpha, IL-1beta, and IL-1 receptor antagonist (IL-1Ra). Quantification was performed by computerized image analysis, and localization of expression was determined by double staining using immunofluorescence and confocal microscopy. RESULTS In tissue samples from the patients, IL-1RI and IL-1RII were expressed in muscle fibers, inflammatory cells, and endothelial cells. Expression in muscle fibers was localized to the sarcolemma and nuclei. IL-1alpha was expressed in endothelial cells and inflammatory cells, whereas IL-1beta and IL-1Ra were expressed only in inflammatory cells. Expression of the two IL-1 receptors and their ligands was significantly higher in patients than in controls. IL-1 receptor expression on muscle fibers was most pronounced in the vicinity of cells expressing IL-1alpha and IL-1beta. CONCLUSION The increased expression of IL-1 receptor and the colocalization with reciprocal ligands in patients with myositis but not in healthy controls support the hypothesis of a crucial role of IL-1 in the pathogenesis of polymyositis and dermatomyositis.
Collapse
Affiliation(s)
- Cecilia Grundtman
- Rheumatology Research Unit, Karolinska University Hospital Solna and Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
41
|
Isoda K, Ohsuzu F. The effect of interleukin-1 receptor antagonist on arteries and cholesterol metabolism. J Atheroscler Thromb 2006; 13:21-30. [PMID: 16505588 DOI: 10.5551/jat.13.21] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
This review summarizes both the structure and function of IL-1 receptor antagonist (IL-1Ra), and relates our new findings, particularly those obtained in IL-1Ra-deficient mice (IL-1Ra(-/-)), to the role of IL-1Ra in arterial diseases and cholesterol metabolism. IL-1Ra(-/-) mice show an increase in neointima-formation after arterial injury. Heterozygosity in the IL-1Ra gene against the apolipoprotein E-deficient background revealed a role for IL-1 in promoting atherogenic cell signaling and that the larger lesions of IL-1Ra(-/-) mice are enriched in macrophages and depleted of smooth muscle cells. Furthermore, IL-1Ra(-/-) mice developed severe fatty livers and hypercholesteroremia following 20 weeks on a atherogenic diet compared to WT mice. Taken together, these results suggest that IL-1Ra plays important roles in restenosis after angioplasty, the development of atherosclerosis, and the metabolism of cholesterol in vivo.
Collapse
Affiliation(s)
- Kikuo Isoda
- Internal Medicine I, National Defense Medical College, Tokorozawa, Saitama, Japan.
| | | |
Collapse
|
42
|
Abstract
Complications of allogeneic hematopoietic stem cell transplantation (HSCT) remain barriers to its wider application for a variety of diseases. Graft-versus-host disease (GVHD) is the major cause of morbidity and mortality following allogeneic HSCT. GVHD can be considered an exaggerated, undesirable manifestation of a normal inflammatory mechanism, in which donor lymphocytes encounter foreign antigens in a milieu that fosters inflammation. Recent advances in the study of cytokine networks, chemokine gradients, and the direct mediators of cellular cytotoxicity have led to improved understanding of this complex syndrome. The pathophysiology of acute GVHD can be considered as a three-step process in which the innate and adaptive immune systems interact: (1) tissue damage to the recipient by the radiation/chemotherapy pretransplant conditioning regimen; (2) donor T-cell activation and clonal expansion; and (3) cellular and inflammatory factors. Here we review the immunologic interactions that cause clinical GVHD and discuss the risk factors and prophylactic strategies for acute GVHD according to this model.
Collapse
Affiliation(s)
- James L M Ferrara
- University of Michigan Medical School, Ann Arbor, MI 48109-0942, USA.
| | | |
Collapse
|
43
|
Kanangat S, Postlethwaite AE, Higgins GC, Hasty KA. Novel functions of intracellular IL-1ra in human dermal fibroblasts: implications in the pathogenesis of fibrosis. J Invest Dermatol 2006; 126:756-65. [PMID: 16456536 DOI: 10.1038/sj.jid.5700097] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Intracellular IL-1 receptor antagonist (icIL-1ra) is reportedly involved in functions independent of blocking IL-1 receptor signaling. Fibroblasts derived from the involved skin of patients with systemic sclerosis (SSc) are predominantly of the myofibroblast phenotype, with higher levels of icIL-1ra compared to normal skin fibroblasts. We examined the effect of overexpression of icIL-1ra on the phenotype and function of normal fibroblasts with respect to the expression of alpha smooth muscle actin (alpha-SMA), a specific marker for myofibroblasts, and plasminogen activator inhibitor (PAI), a protein involved in fibrogenesis and expressed at higher levels in myofibroblasts, and the production of collagenase (matrix metalloproteinase-1 (MMP-1)), the major enzyme involved in the degradation of native collagen in the skin. Normal human foreskin fibroblasts overexpressing icIL-1ra showed higher levels of alpha-SMA and PAI and had lower levels of collagenase and MMP-1 mRNA induced by inflammatory cytokines. By contrast, levels of mRNA for tissue inhibitor of metalloproteinase-1 in the transfected cells were not different from the control cells. Pretreatment of the ic-IL-1ra-transfected cells with antisense oligonucleotide directed against the mRNA of icIL-1ra restored MMP-1 expression induced by stimulation with IL-1beta. Our data indicate novel functions for icIL-1ra, which might be relevant to the genesis of fibrotic diseases such as SSc.
Collapse
Affiliation(s)
- Siva Kanangat
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | |
Collapse
|
44
|
Ishida Y, Kondo T, Kimura A, Matsushima K, Mukaida N. Absence of IL-1 receptor antagonist impaired wound healing along with aberrant NF-kappaB activation and a reciprocal suppression of TGF-beta signal pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2006; 176:5598-5606. [PMID: 16622029 DOI: 10.4049/jimmunol.176.9.5598] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Although enhanced expression of IL-1 family proteins, including IL-1alpha, IL-1beta, and IL-1 receptor antagonist (IL-1ra) during wound healing has been observed, the pathophysiological roles of these factors, particularly IL-1ra, still remain elusive. We explored skin wound-healing processes in IL-1ra-deficient mice. Compared to wild-type (WT) mice, IL-1ra-deficient mice exhibited impaired wound healing, as evidenced by attenuated collagen deposition and delayed neovascularization. In contrast, neutrophil recruitment was significantly exaggerated, with the augmented expression of IL-1s, TNF-alpha, and CXC chemokines, MIP-2 and KC, in IL-1ra-deficient mice compared with WT mice. Because the transcription of these proinflammatory cytokines and CXC chemokines requires the activation of NF-kappaB, a major target of IL-1- and TNF-alpha-mediated signal pathway, we examined the activation states of NF-kappaB. Nuclear translocation of NF-kappaB p65 was significantly enhanced and prolonged in IL-1ra-deficient mice, compared to that in WT mice. The cross-talk between NF-kappaB and TGF-beta-mediated signals has been proposed based on in vitro observations. Indeed, compared to WT mice, the amounts of total and phosphorylated Smad2 and Smad3 were decreased with a reciprocal increase in the amount of Smad7 in skin wound sites of IL-1ra-deficient mice. Moreover, the gene expression of vascular endothelial growth factor, a target gene of TGF-beta1, was decreased in IL-1ra-deficient mice. Thus, the absence of IL-1ra may suppress TGF-beta-mediated signaling pathway, which is crucial for collagen deposition and vascular endothelial growth factor-mediated neovascularization in wound healing.
Collapse
Affiliation(s)
- Yuko Ishida
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimidera, Wakayama 641-8509, Japan
| | | | | | | | | |
Collapse
|
45
|
Evans I, Dower SK, Francis SE, Crossman DC, Wilson HL. Action of intracellular IL-1Ra (Type 1) is independent of the IL-1 intracellular signalling pathway. Cytokine 2006; 33:274-80. [PMID: 16564702 DOI: 10.1016/j.cyto.2006.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 12/16/2005] [Accepted: 02/07/2006] [Indexed: 11/30/2022]
Abstract
The balance between IL-1 and its naturally occurring inhibitor IL-1 receptor antagonist (IL-1ra) is critical in determining the inflammatory response. Four splice variants of the IL-1ra gene have been identified; one secreted (sIL-1ra) and three intracellular (icIL-1ra1-3). The biological roles of the intracellular isoforms remain largely unclear. We wished to determine whether icIL-1ra1 had intracellular functions regulating IL-1 signalling. Signalling was determined using an NF-kappaB reporter assay measuring induction of the IL-8 promoter in transfected cells. Over-expression of icIL-1ra1 in HeLa cells had no effect on IL-1 stimulated IL-8 activity. In contrast over-expression of sIL-ra significantly attenuated IL-1 activity. In addition, transfection of icIL-1ra1 in HeLa cells did not cause inhibition of IL-8 promoter activity following over-expression of the IL-1 signalling components MyD88, IRAK-1, TRAF-6, Ikappakappabeta or RelA. This implies that icIL-1ra1 does not act to alter IL-1 mediated intracellular signalling in this system. We investigated whether ATP and/or over-expression of the P2X7 receptor caused icIL-1ra1 inhibition of IL-1beta mediated IL-8 reporter activation, by permitting its release. In HeLa cells, no effect of icIL-1ra1 was observed in ATP stimulated and/or P2X7 transfected cells, compared to a significant inhibition in sIL-1ra transfected cells. However, in endothelial cells stimulated with ATP, the released fraction was effective in attenuating IL-1beta activation of the IL-8 reporter. These results suggest that icIL-1ra1 does not act at an intracellular level to alter IL-1 mediated signalling, and is effective in inhibiting IL-1 responses only when released in an ATP-dependent and cell type specific manner.
Collapse
Affiliation(s)
- Iona Evans
- Section of Functional Genomics, Division of Genomic Medicine, Royal Hallamshire Hospital, Glossop Road, Sheffield, S10 2JF, UK
| | | | | | | | | |
Collapse
|
46
|
Jacques C, Gosset M, Berenbaum F, Gabay C. The role of IL-1 and IL-1Ra in joint inflammation and cartilage degradation. VITAMINS AND HORMONES 2006; 74:371-403. [PMID: 17027524 DOI: 10.1016/s0083-6729(06)74016-x] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interleukin (IL)-1 is a cytokine that plays a major role in inflammatory responses in the context of infections and immune-mediated diseases. IL-1 refers to two different cytokines, termed IL-1alpha and IL-1beta, produced from two genes. IL-1alpha and IL-1beta are produced by different cell types following stimulation by bacterial products, cytokines, and immune complexes. Monocytes/macrophages are the primary source of IL-1beta. Both cytokines do not possess leader peptide sequences and do not follow a classical secretory pathway. IL-1alpha is mainly cell associated, whereas IL-1beta can be released from activated cells after cleavage of its amino-terminal region by caspase-1. IL-1 is present in the synovial tissue and fluids of patients with rheumatoid arthritis. Several in vitro studies have shown that IL-1 stimulates the production of mediators such as prostaglandin E(2), nitric oxide, cytokines, chemokines, and adhesion molecules that are involved in articular inflammation. Furthermore, IL-1 stimulates the synthesis and activity of matrix metalloproteinases and other enzymes involved in cartilage destruction in rheumatoid arthritis and osteoarthritis. The effects of IL-1 are inhibited in vitro and in vivo by natural inhibitors such as IL-1 receptor antagonist and soluble receptors. IL-1 receptor antagonist belongs to the IL-1 family of cytokines and binds to IL-1 receptors but does not induce any intracellular response. IL-1 receptor antagonist inhibits the effect of IL-1 by blocking its interaction with cell surface receptors. The use of IL-1 inhibitors in experimental models of inflammatory arthritis and osteoarthritis has provided a strong support for the role of IL-1 in the pathogeny of these diseases. Most importantly, these findings have been confirmed in clinical trials in patients with rheumatic diseases. Additional strategies aimed to block the effect of IL-1 are tested in clinical trials.
Collapse
Affiliation(s)
- Claire Jacques
- UMR 7079 CNRS, Physiology and Physiopathology Laboratory, University Paris 6, Paris, 75252 Cedex 5, France
| | | | | | | |
Collapse
|
47
|
Schröder AK, von der Ohe M, Fleischer D, Rink L, Uciechowski P. Differential synthesis of two interleukin-1 receptor antagonist variants and interleukin-8 by peripheral blood neutrophils. Cytokine 2005; 32:246-53. [PMID: 16343927 DOI: 10.1016/j.cyto.2005.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 10/21/2005] [Accepted: 10/24/2005] [Indexed: 11/19/2022]
Abstract
With a short lifespan and containing only few ribosomes and endoplasmic reticulum structures, neutrophils are thought to have a limited capacity for protein synthesis. We here show that peripheral blood polymorphonuclear neutrophils (PMN) are able react to stimulants with differential production of two interleukin (IL)-1 receptor antagonist (IL-1ra) isoforms, secreted IL-1ra (sIL-1ra) and the 16kDa intracellular form of IL-1ra (icIL-1ra3), as well as IL-8. Neutrophils of a high purity and with a low degree of preactivation upregulate mRNA and de novo synthesize protein of both IL-1ra variants and IL-8 in response to granulocyte-macrophage colony-stimulating factor and lipopolysaccharide. The cytokines are differentially regulated and distributed in two intracellular compartments. In comparison with peripheral blood mononuclear cells (PBMC), PMN produce distinctly more sIL-1ra but significantly less IL-8. This may indicate an anti-inflammatory role, enabling PMN to antagonize proinflammatory signals. It is therefore possible that PMN play an important role in immune regulation by counteracting a dysregulation of the inflammatory process.
Collapse
Affiliation(s)
- Anja K Schröder
- Institute of Immunology, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany
| | | | | | | | | |
Collapse
|
48
|
Iwasaki LR, Crouch LD, Tutor A, Gibson S, Hukmani N, Marx DB, Nickel JC. Tooth movement and cytokines in gingival crevicular fluid and whole blood in growing and adult subjects. Am J Orthod Dentofacial Orthop 2005; 128:483-91. [PMID: 16214631 DOI: 10.1016/j.ajodo.2004.03.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2003] [Revised: 03/01/2004] [Accepted: 03/01/2004] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Tooth movement has been studied largely with respect to the force required for tipping when pressure distribution varies along the length of the periodontal ligament. But important factors for effective canine translation include the nature and magnitude of applied stress and the patient's cell biology. The purpose of this research was to test 3 hypotheses: (1) the velocity of tooth translation (v(t)) is related to applied stress and growth status, (2) a threshold of stress accounts for the lag phase, and (3) v(t) is correlated with the ratio (AI) of 2 cytokines (IL-1beta, IL-1RA) measured in gingival crevicular fluid (GCF) and stimulated whole blood (SWB). METHODS Continuous maxillary canine retraction stresses of 13 kPa and 4, 26, or 52 kPa were applied bilaterally in 6 growing and 4 adult subjects for 84 days. Dental models and GCF samples were collected at 1- to 14-day intervals. Cytokines were measured in GCF and SWB cell cultures. RESULTS V(t) was positively related to stress and was higher in growing subjects (P = .001). It was also related to AI(GCF) in growers (R2= 0.56) and nongrowers (R2= 0.72). Canines moved with 52 kPa showed a lag phase, and postlag phase AI(GCF) was twice that of lag phase AI(GCF). Mean v(t) and associated AI(GCF) during the postlag phase were nearly double the values for canines moved with 13 and 26 kPa. SWB production of cytokines was dose-dependent. For growing subjects, SWB IL-1RA was correlated with v(t) (R = 0.70-0.72), and AI(SWB) and IL-1beta concentrations were correlated with AI(GCF) (R = 0.73-0.78). CONCLUSIONS V(t) varied with growth status and stresses < or = 52 kPa; stresses of < 52 kPa showed no lag phase; and equivalent stresses yielded subject-dependent differences in v(t), which correlated with cytokines in GCF and SWB.
Collapse
Affiliation(s)
- Laura R Iwasaki
- Department of Oral Biology and Department of Growth and Development, University of Nebraska Medical Center, College of Dentistry, Lincoln, NE 68583-0755, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Huang HY, Chan SH, Wu CH, Wang CW, Lai CH, Soong YK. Interleukin-1 system messenger ribonucleic acid and protein expression in human fallopian tube may be associated with ectopic pregnancy. Fertil Steril 2005; 84:1484-92. [PMID: 16275248 DOI: 10.1016/j.fertnstert.2005.05.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2004] [Revised: 05/05/2005] [Accepted: 05/05/2005] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To investigate the interleukin-1 (IL-1) system mRNA and protein expression in human fallopian tubes with ectopic pregnancies. DESIGN A controlled study. SETTING Clinical and academic research setting in a university medical center. PATIENT(S) Women undergoing salpingectomy for fallopian tube with ectopic pregnancy and women undergoing tubal ligation. INTERVENTION(S) Paired segments of human fallopian tubes containing an ectopic pregnancy and parafallopian tube segments adjacent to the ectopic pregnancy were collected from five women undergoing laparoscopic salpingectomy. Segments of fallopian tubes from four women undergoing tubal ligation were used as control tissues. Quantitative competitive polymerase chain reaction (QC-PCR) and immunohistochemistry were performed. MAIN OUTCOME MEASURE(S) The differences of IL-1 system mRNA and the ratio of IL-1beta to IL-1 receptor antagonist (IL-1ra) in both fallopian tubes with ectopic pregnancies and normal controls were analyzed. RESULT(S) A complete IL-1 system mRNA and protein expression was identified in both fallopian tubes with ectopic pregnancies and normal controls. As QC-PCR demonstrated, IL-1beta mRNA expression was decreased, and IL-1ra and IL-1 receptor type 1 were increased in fallopian tubes with ectopic pregnancies in comparison with normal control tubes. In para-ectopic tubes, IL-1 receptor type 1 mRNA was statistically significantly increased in comparison with normal controls. There was a lower ratio of IL-1beta to IL-1ra at mRNA in fallopian tubes with ectopic pregnancies. CONCLUSION(S) These results suggest that an inappropriate ratio of IL-1beta to IL-1ra and a higher expression of its receptor in fallopian tubes may possibly be implicated to the implantation of an ectopic pregnancy in the oviduct.
Collapse
Affiliation(s)
- Hong-Yuan Huang
- Department of Obstetrics and Gynecology, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan.
| | | | | | | | | | | |
Collapse
|
50
|
Vassina E, Leverkus M, Yousefi S, Braathen LR, Simon HU, Simon D. Increased Expression and a Potential Anti-Inflammatory Role of TRAIL in Atopic Dermatitis. J Invest Dermatol 2005; 125:746-52. [PMID: 16185275 DOI: 10.1111/j.0022-202x.2005.23878.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis of many transformed but also of non-transformed cells. In addition, TRAIL receptor activation has been reported to activate non-apoptotic signaling pathways. Here, we report an increased expression of TRAIL in peripheral blood T cells and monocytes from patients with atopic dermatitis (AD) compared with control individuals. High TRAIL expression was also observed in skin-infiltrating T cells of AD patients. Topical tacrolimus treatment reduced the total number of T cells in the skin, but the relative proportion of TRAIL-positive cells within both CD4+ and CD8+ cell populations did not change. TRAIL was demonstrated to induce the expression of interleukin-1 receptor antagonist (IL-1Ra) in keratinocytes in a caspase-independent manner in vitro. Moreover, increased expression of IL-1Ra was observed in keratinocytes of AD lesional skin. These data suggest that TRAIL-expressing inflammatory skin cells may contribute to the epidermal activation of the IL-1Ra gene in AD.
Collapse
|