1
|
Rathore U, Purwar M, Vignesh VS, Das R, Kumar AA, Bhattacharyya S, Arendt H, DeStefano J, Wilson A, Parks C, La Branche CC, Montefiori DC, Varadarajan R. Bacterially expressed HIV-1 gp120 outer-domain fragment immunogens with improved stability and affinity for CD4-binding site neutralizing antibodies. J Biol Chem 2018; 293:15002-15020. [PMID: 30093409 DOI: 10.1074/jbc.ra118.005006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 12/20/2022] Open
Abstract
Protein minimization is an attractive approach for designing vaccines against rapidly evolving pathogens such as human immunodeficiency virus, type 1 (HIV-1), because it can help in focusing the immune response toward conserved conformational epitopes present on complex targets. The outer domain (OD) of HIV-1 gp120 contains epitopes for a large number of neutralizing antibodies and therefore is a primary target for structure-based vaccine design. We have previously designed a bacterially expressed outer-domain immunogen (ODEC) that bound CD4-binding site (CD4bs) ligands with 3-12 μm affinity and elicited a modest neutralizing antibody response in rabbits. In this study, we have optimized ODEC using consensus sequence design, cyclic permutation, and structure-guided mutations to generate a number of variants with improved yields, biophysical properties, stabilities, and affinities (KD of 10-50 nm) for various CD4bs targeting broadly neutralizing antibodies, including the germline-reverted version of the broadly neutralizing antibody VRC01. In contrast to ODEC, the optimized immunogens elicited high anti-gp120 titers in rabbits as early as 6 weeks post-immunization, before any gp120 boost was given. Following two gp120 boosts, sera collected at week 22 showed cross-clade neutralization of tier 1 HIV-1 viruses. Using a number of different prime/boost combinations, we have identified a cyclically permuted OD fragment as the best priming immunogen, and a trimeric, cyclically permuted gp120 as the most suitable boosting molecule among the tested immunogens. This study also provides insights into some of the biophysical correlates of improved immunogenicity.
Collapse
Affiliation(s)
- Ujjwal Rathore
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India 560012
| | - Mansi Purwar
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India 560012
| | | | - Raksha Das
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India 560012
| | - Aditya Arun Kumar
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India 560012
| | - Sanchari Bhattacharyya
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India 560012
| | - Heather Arendt
- the International AIDS Vaccine Initiative, Brooklyn, New York 11226, and
| | - Joanne DeStefano
- the International AIDS Vaccine Initiative, Brooklyn, New York 11226, and
| | - Aaron Wilson
- the International AIDS Vaccine Initiative, Brooklyn, New York 11226, and
| | - Christopher Parks
- the International AIDS Vaccine Initiative, Brooklyn, New York 11226, and
| | - Celia C La Branche
- the Department of Surgery, Duke University Medical Center, Durham, North Carolina 27707
| | - David C Montefiori
- the Department of Surgery, Duke University Medical Center, Durham, North Carolina 27707
| | - Raghavan Varadarajan
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India 560012,
| |
Collapse
|
2
|
Singh P. Surface plasmon resonance (SPR) based binding studies of refolded single chain antibody fragments. Biochem Biophys Rep 2018; 14:83-88. [PMID: 29872739 PMCID: PMC5986705 DOI: 10.1016/j.bbrep.2018.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/09/2018] [Accepted: 04/12/2018] [Indexed: 11/25/2022] Open
Abstract
Recent advances in Recombinant antibody technology / Antibody Engineering has given impetus to the genetic manipulation of antibody fragments that has paved the way for better understanding of the structure and functions of immunoglobulins and also has escalated their use in immunotherapy. Bacterial expression system such as Escherichia coli has complemented this technique through the expression of recombinant antibodies. Present communication has attempted to optimize the expression and refolding protocol of single chain fragment variable (ScFv) and single chain antigen binding fragment (ScFab) using E.coli expression system. Efficiency of refolding protocol was validated by structural analysis by CD, native folding by fluorescence and functional analysis by its binding with full length HIV-1 gp120 via SPR. Results show the predominant β–sheet (CD) as secondary structural content and native folding via red shift (tryptophan fluorescence). The single chain fragments have shown good binding with HIV-1 gp120 thus validating the expression and refolding strategy and also reinstating E.coli as model expression system for recombinant antibody engineering. SPR based binding analysis coupled with E.coli based expression and purification will have implication for HIV therapeutics and will set a benchmark for future studies of similar kind. A scFv having VH and VL chains joined through a peptide linker and expressed in E.coli. Functional analysis by SPR show good bindng with full length HIV-1 gp120. Protein engineering facilitated improvised scFv with enhanced affinity and specificity.
Collapse
Affiliation(s)
- Pranveer Singh
- Department of Zoology, Mahatma Gandhi Central University (MGCUB), Motihari 845401, Bihar, India
| |
Collapse
|
3
|
Borowiec M, Gorzkiewicz M, Grzesik J, Walczak-Drzewiecka A, Salkowska A, Rodakowska E, Steczkiewicz K, Rychlewski L, Dastych J, Ginalski K. Towards Engineering Novel PE-Based Immunotoxins by Targeting Them to the Nucleus. Toxins (Basel) 2016; 8:E321. [PMID: 27834892 PMCID: PMC5127118 DOI: 10.3390/toxins8110321] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 12/23/2022] Open
Abstract
Exotoxin A (PE) from Pseudomonas aeruginosa is a bacterial ADP-ribosyltransferase, which can permanently inhibit translation in the attacked cells. Consequently, this toxin is frequently used in immunotoxins for targeted cancer therapies. In this study, we propose a novel modification to PE by incorporating the NLS sequence at its C-terminus, to make it a selective agent against fast-proliferating cancer cells, as a nucleus-accumulated toxin should be separated from its natural substrate (eEF2) in slowly dividing cells. Here, we report the cytotoxic activity and selected biochemical properties of newly designed PE mutein using two cellular models: A549 and HepG2. We also present a newly developed protocol for efficient purification of recombinant PE and its muteins with very high purity and activity. We found that furin cleavage is not critical for the activity of PE in the analyzed cell lines. Surprisingly, we observed increased toxicity of the toxin accumulated in the nucleus. This might be explained by unexpected nuclease activity of PE and its potential ability to cleave chromosomal DNA, which seems to be a putative alternative intoxication mechanism. Further experimental investigations should address this newly detected activity to identify catalytic residues and elucidate the molecular mechanism responsible for this action.
Collapse
Affiliation(s)
- Marta Borowiec
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, Warsaw 02-089, Poland.
| | - Michal Gorzkiewicz
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, Lodz 93-232, Poland.
| | - Joanna Grzesik
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, Warsaw 02-089, Poland.
| | - Aurelia Walczak-Drzewiecka
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, Lodz 93-232, Poland.
| | - Anna Salkowska
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, Lodz 93-232, Poland.
| | | | - Kamil Steczkiewicz
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, Warsaw 02-089, Poland.
| | - Leszek Rychlewski
- BioInfoBank Institute, Sw. Marcin 80/82 r.355, Poznan 61-809, Poland.
| | - Jaroslaw Dastych
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, Lodz 93-232, Poland.
| | - Krzysztof Ginalski
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, Warsaw 02-089, Poland.
| |
Collapse
|
4
|
|
5
|
Antignani A, FitzGerald D. Immunotoxins: the role of the toxin. Toxins (Basel) 2013; 5:1486-502. [PMID: 23965432 PMCID: PMC3760048 DOI: 10.3390/toxins5081486] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 07/30/2013] [Accepted: 08/06/2013] [Indexed: 02/07/2023] Open
Abstract
Immunotoxins are antibody-toxin bifunctional molecules that rely on intracellular toxin action to kill target cells. Target specificity is determined via the binding attributes of the chosen antibody. Mostly, but not exclusively, immunotoxins are purpose-built to kill cancer cells as part of novel treatment approaches. Other applications for immunotoxins include immune regulation and the treatment of viral or parasitic diseases. Here we discuss the utility of protein toxins, of both bacterial and plant origin, joined to antibodies for targeting cancer cells. Finally, while clinical goals are focused on the development of novel cancer treatments, much has been learned about toxin action and intracellular pathways. Thus toxins are considered both medicines for treating human disease and probes of cellular function.
Collapse
Affiliation(s)
- Antonella Antignani
- Authors to whom correspondence should be addressed; E-Mail: (A.A.); (D.F.); Tel.: +1-301-496-9457 (D.F.); Fax: +1-301-402-1344 (D.F.)
| | - David FitzGerald
- Authors to whom correspondence should be addressed; E-Mail: (A.A.); (D.F.); Tel.: +1-301-496-9457 (D.F.); Fax: +1-301-402-1344 (D.F.)
| |
Collapse
|
6
|
Metz S, Panke C, Haas AK, Schanzer J, Lau W, Croasdale R, Hoffmann E, Schneider B, Auer J, Gassner C, Bossenmaier B, Umana P, Sustmann C, Brinkmann U. Bispecific antibody derivatives with restricted binding functionalities that are activated by proteolytic processing. Protein Eng Des Sel 2012; 25:571-80. [PMID: 22976197 PMCID: PMC3449404 DOI: 10.1093/protein/gzs064] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have designed bispecific antibodies that bind one target (anti-Her3) in a bivalent IgG-like manner and contain one additional binding entity (anti-cMet) composed of one V(H) and one V(L) domain connected by a disulfide bond. The molecules are assembled by fusing a V(H,Cys44) domain via flexible connector peptides to the C-terminus of one H-chain (heavy chain), and a V(L,Cys100) to another H-chain. To ensure heterodimerization during expression in mammalian cells, we introduced complementary knobs-into-holes mutations into the different H-chains. The IgG-shaped trivalent molecules carry as third binding entity one disulfide-stabilized Fv (dsFv) without a linker between V(H) and V(L). Tethering the V(H) and V(L) domains at the C-terminus of the C(H)3 domain decreases the on-rates of the dsFv to target antigens without affecting off-rates. Steric hindrance resolves upon removal of one side of the double connection by proteolysis: this improves flexibility and accessibility of the dsFv and fully restores antigen access and affinity. This technology has multiple applications: (i) in cases where single-chain linkers are not desired, dsFvs without linkers can be generated by addition of furin site(s) in the connector that are processed during expression within mammalian cells; (ii) highly active (toxic) entities which affect expression can be produced as inactive dsFvs and subsequently be activated (e.g. via PreScission cleavage) during purification; (iii) entities can be generated which are targeted by the unrestricted binding entity and can be activated by proteases in target tissues. For example, Her3-binding molecules containing linkers with recognition sequences for matrix metalloproteases or urokinase, whose inactivated cMet binding site is activated by proteolytic processing.
Collapse
Affiliation(s)
- Silke Metz
- Roche Pharma Research & Early Development, Large Molecule Research, Nonnenwald 2, D-82372 Penzberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Furusho Y, Miyata M, Matsuyama T, Nagai T, Li H, Akasaki Y, Hamada N, Miyauchi T, Ikeda Y, Shirasawa T, Ide K, Tei C. Novel Therapy for Atherosclerosis Using Recombinant Immunotoxin Against Folate Receptor β-Expressing Macrophages. J Am Heart Assoc 2012; 1:e003079. [PMID: 23130174 PMCID: PMC3487340 DOI: 10.1161/jaha.112.003079] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 06/19/2012] [Indexed: 12/02/2022]
Abstract
Background Folate receptor β (FRβ) is induced during macrophage activation. A recombinant immunotoxin consisting of the truncated Pseudomonas exotoxin A (PE38) conjugated to an anti-FRβ antibody (anti–FRβ-PE38) has been reported to kill activated macrophages in inflammatory diseases. To elucidate the effect of an immunotoxin targeting FRβ on atherosclerosis, we determined the presence of FRβ-expressing macrophages in atherosclerotic lesions and administered the FRβ immunotoxin in apolipoprotein E–deficient mice. Methods and Results The FRβ-expressing macrophages were observed in atherosclerotic lesions of apolipoprotein E–deficient mice. At 15 or 35 weeks of age, the apolipoprotein E–deficient mice were divided into 3 groups and were intravenously administered 0.1 mg/kg of anti–FRβ-PE38 (immunotoxin group), 0.1 mg/kg of PE38 (toxin group), or 0.1 mL of saline (control group) every 3 days, for a total of 5 times for each age group. The mice were analyzed at 21 or 41 weeks of age. Treatment with the immunotoxin resulted in 31% and 22% reductions in atherosclerotic lesions of the 21- and 41-week-old mice, respectively (P<0.05). Administration of immunotoxin reduced the numbers of FRβ- and tumor necrosis factor-α–expressing macrophages, reduced cell proliferation, and increased the number of apoptotic cells (P<0.05). Real-time polymerase chain reaction demonstrated that the expression of FRβ and tumor necrosis factor-α mRNA was significantly decreased in the immunotoxin group (P<0.05). Conclusions These results suggest that FRβ-expressing macrophages exist in the atherosclerotic lesions of apolipoprotein E–deficient mice and that FRβ immunotoxin administration reduces the progression of atherosclerotic lesions in younger and older individuals. The recombinant FRβ immunotoxin targeting activated macrophages could provide a novel therapeutic tool for atherosclerosis. (J Am Heart Assoc. 2012;1:e003079 doi: 10.1161/JAHA.112.003079.)
Collapse
Affiliation(s)
- Yuko Furusho
- Department of Cardiovascular, Respiratory, and Metabolic Medicine, Kagoshima University, Kagoshima, Japan (Y.F., M.M., Y.A., N.H., T. Miyauchi, Y.I., T.S., K.I., C.T.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Holstein MA, Parimal S, McCallum SA, Cramer SM. Mobile phase modifier effects in multimodal cation exchange chromatography. Biotechnol Bioeng 2011; 109:176-86. [DOI: 10.1002/bit.23318] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 08/01/2011] [Accepted: 08/17/2011] [Indexed: 11/11/2022]
|
9
|
Chemical assistance in refolding of bacterial inclusion bodies. Biochem Res Int 2011; 2011:631607. [PMID: 21822494 PMCID: PMC3148444 DOI: 10.1155/2011/631607] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 05/27/2011] [Indexed: 11/17/2022] Open
Abstract
Escherichia coli is one of the most widely used hosts for the production of recombinant proteins but insoluble expression of heterologous proteins is a major bottleneck in production of recombinant proteins in E. coli. In vitro refolding of inclusion body into proteins with native conformations is a solution for this problem but there is a need for optimization of condition for each protein specifically. Several approaches have been described for in vitro refolding; most of them involve the use of additives for assisting correct folding. Cosolutes play a major role in refolding process and can be classified according to their function as aggregation suppressors and folding enhancers. This paper presents a review of additives that are used in refolding process of insoluble recombinant proteins in small scale and industrial processes.
Collapse
|
10
|
Ito L, Shiraki K, Makino M, Hasegawa K, Kumasaka T. Glycine amide shielding on the aromatic surfaces of lysozyme: Implication for suppression of protein aggregation. FEBS Lett 2011; 585:555-60. [DOI: 10.1016/j.febslet.2011.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 12/24/2010] [Accepted: 01/03/2011] [Indexed: 11/26/2022]
|
11
|
Ito L, Shiraki K, Matsuura T, Okumura M, Hasegawa K, Baba S, Yamaguchi H, Kumasaka T. High-resolution X-ray analysis reveals binding of arginine to aromatic residues of lysozyme surface: implication of suppression of protein aggregation by arginine. Protein Eng Des Sel 2010; 24:269-74. [DOI: 10.1093/protein/gzq101] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
12
|
Ternary system of solution additives with arginine and salt for refolding of beta-galactosidase. Protein J 2010; 29:161-6. [PMID: 20213119 DOI: 10.1007/s10930-010-9235-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
(L)-Arginine hydrochloride (Arg HCl) has been used for protein refolding as a universal aggregation suppressor for monomeric proteins. This paper presents an investigation of the refolding of tetrameric beta-galactosidase (beta-gal) using Arg HCl and other salts. In a binary system using only Arg HCl, the refolding yield of beta-gal increased with increasing concentration up to 0.2 M. However, the refolding yield sharply decreased above this concentration, reaching the level below the control yield of 5% at 0.5 M and near zero above 0.75 M, an observation unexpected from monomeric proteins. In a ternary system using both 0.2 M Arg HCl and another salt, the refolding yield increased up to 1.5-fold higher than that in the binary system. These data indicate that aggregation suppressive effects of protein increase with Arg HCl concentration, but also are deleterious to self-association of the protein. This dual nature of Arg HCl effects may have to be taken into account in its application for refolding of oligomeric proteins.
Collapse
|
13
|
|
14
|
B3(Fab)-streptavidin Tetramer Has Higher Binding Avidity than B3(scFv)-streptavidin Tetramer. B KOREAN CHEM SOC 2009. [DOI: 10.5012/bkcs.2009.30.5.1101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Chen J, Liu Y, Wang Y, Ding H, Su Z. Different effects of L-arginine on protein refolding: suppressing aggregates of hydrophobic interaction, not covalent binding. Biotechnol Prog 2009; 24:1365-72. [PMID: 19194951 DOI: 10.1002/btpr.93] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Arginine is one of the most favorable additives in protein refolding. However, arginine does not work for certain disulfide-bond-containing proteins, which is not yet well explained. In this work, refolding of three proteins in the presence of 0-2 M arginine was investigated and compared. Bovine carbonic anhydrase B (CAB), containing no cysteine, was successfully refolded with the help of arginine. The refolding yield could reach almost 100% in the presence of 0.75 M arginine. However, recombinant human colony stimulating factor (rhG-CSF), containing five cysteines, could only achieve 65% refolding yield. The formation of aggregates was found. Blocking of free SH groups of the denatured rhG-CSF by iodoacetamide and subsequently refolding of the protein could reduce the aggregate formation substantially. Further investigation on recombinant green fluorescence protein (GFP), containing two cysteines, also revealed the accumulation of oligomers. The content of oligomers increased with the concentration of arginine, reaching about 30% at 2 M arginine. Comparison of reduced and nonreduced SDS-PAGE revealed that the oligomers were formed through intermolecular disulfide binding. Analysis of the refolding kinetics indicated that intermolecular disulfide bonds were probably formed in the intermediate stage where arginine slowed down the refolding rate and stabilized the intermediates. The accumulated intermediates with unpaired cysteine possessed more chances to react with each other to form oligomers, whereas arginine failed to inhibit disulfide bond formation.
Collapse
Affiliation(s)
- Jing Chen
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | |
Collapse
|
16
|
Shiraki K, Kudou M, Sakamoto R, Yanagihara I, Takagi M. Amino Acid Esters Prevent Thermal Inactivation and Aggregation of Lysozyme. Biotechnol Prog 2008; 21:640-3. [PMID: 15801812 DOI: 10.1021/bp049769w] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Small potent inhibitors of aggregation are eagerly demanded for preventing the inactivation of proteins. This paper shows that amino acid esters (AAEs) prevent heat-induced aggregation and inactivation of hen egg lysozyme. Lysozyme was completely inactivated (<1% original activity) during heat treatment at 98 degrees C for 30 min in a solution containing 0.2 mg/mL lysozyme in 50 mM Na-phosphate buffer (pH 6.5). The residual activities only slightly increased (<5%) in the presence of 100 mM commonly used additives such as arginine, guanidine, urea, and sugars. However, in the presence of 100 mM AAEs, the residual activities were >60% and no aggregates were observed during the heat treatment at 98 degrees C for 30 min. This fact provides new information on the scaffold for designing additives to prevent heat-induced aggregation.
Collapse
Affiliation(s)
- Kentaro Shiraki
- School of Materials Science, Japan Advanced Institute of Science and Technology, Tatsunokuchi, Ishikawa 923-1292, Japan.
| | | | | | | | | |
Collapse
|
17
|
Arginine Increases the Solubility of Coumarin: Comparison with Salting-in and Salting-out Additives. J Biochem 2008; 144:363-9. [DOI: 10.1093/jb/mvn078] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Abstract
AbstractTargeted RNases (TRs) are immunoenzymes with ribonucleases as cytotoxic effector domains, which are less immunogenic as plant or bacterial toxin components of classical immunotoxins. In this study, we show the generation and production of the first entirely human TR (huTR) directed against CD30+ lymphomas. The scFv-Fc-RNase construct was produced in human embryonic kidney (HEK) 293T cells, yielding up to 4 mg/L soluble protein after purification by protein A affinity chromatography. Size exclusion chromatography revealed a homodimer of the predicted molecular mass. Surface plasmon resonance analysis revealed an affinity to CD30 of KD of less than 1 nM for both the scFv-Fc and the scFv-Fc-RNase proteins. Internalization of the scFv-Fc-RNase protein by CD30+ Karpas-299 cells was demonstrated by confocal microscopy. Proliferation of the CD30+ lymphoma cell line Karpas-299 was strongly inhibited by CD30-specific huTR protein (IC50 = 3.3 nM). The huTR is a promising candidate for the immunotherapy of CD30+ lymphomas because of its expected low immunogenicity, good production yields, and potent effector function upon target cell binding and internalization. Its modular design is set to target other internalizing tumor antigens using different antibody domains.
Collapse
|
19
|
Hamada H, Shiraki K. l-Argininamide improves the refolding more effectively than l-arginine. J Biotechnol 2007; 130:153-60. [PMID: 17434637 DOI: 10.1016/j.jbiotec.2007.03.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 02/22/2007] [Accepted: 03/06/2007] [Indexed: 11/24/2022]
Abstract
L-arginine (Arg) is a widely used additive for suppressing protein aggregation during refolding. Systematic screening of Arg analogs provides superior additives that enhance the refolding yield more effectively than Arg. The refolding yield of hen egg lysozyme in the presence of 500 mM L-argininamide (ArgAd) increases 1.7-fold higher than Arg. Thermal unfolding experiments indicate that ArgAd has a greater denaturing effect than Arg. The refolding yield positively relates to the net charge of Arg analogs. Moreover ArgAd was also effective for the refolding of bovine carbonic anhydrase. High potency to increase the refolding yield of ArgAd compared to Arg results from high positive net charge and the denaturing property.
Collapse
Affiliation(s)
- Hiroyuki Hamada
- Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | | |
Collapse
|
20
|
Magnusson MK, Henning P, Myhre S, Wikman M, Uil TG, Friedman M, Andersson KME, Hong SS, Hoeben RC, Habib NA, Ståhl S, Boulanger P, Lindholm L. Adenovirus 5 vector genetically re-targeted by an Affibody molecule with specificity for tumor antigen HER2/neu. Cancer Gene Ther 2007; 14:468-79. [PMID: 17273181 DOI: 10.1038/sj.cgt.7701027] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In order to use adenovirus (Ad) type 5 (Ad5) for cancer gene therapy, Ad needs to be de-targeted from its native receptors and re-targeted to a tumor antigen. A limiting factor for this has been to find a ligand that (i) binds a relevant target, (ii) is able to fold correctly in the reducing environment of the cytoplasm and (iii) when incorporated at an optimal position on the virion results in a virus with a low physical particle to plaque-forming units ratio to diminish the viral load to be administered to a future patient. Here, we present a solution to these problems by producing a genetically re-targeted Ad with a tandem repeat of the HER2/neu reactive Affibody molecule (ZH) in the HI-loop of a Coxsackie B virus and Ad receptor (CAR) binding ablated fiber genetically modified to contain sequences for flexible linkers between the ZH and the knob sequences. ZH is an Affibody molecule specific for the extracellular domain of human epidermal growth factor receptor 2 (HER2/neu) that is overexpressed in inter alia breast and ovarian carcinomas. The virus presented here exhibits near wild-type growth characteristics, infects cells via HER2/neu instead of CAR and represents an important step toward the development of genetically re-targeted adenoviruses with clinical relevance.
Collapse
|
21
|
Kavoosi M, Creagh AL, Kilburn DG, Haynes CA. Strategy for selecting and characterizing linker peptides for CBM9-tagged fusion proteins expressed inEscherichia coli. Biotechnol Bioeng 2007; 98:599-610. [PMID: 17394253 DOI: 10.1002/bit.21396] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The influence of linker design on fusion protein production and performance was evaluated when a family 9 carbohydrate-binding module (CBM9) serves as the affinity tag for recombinant proteins expressed in Escherichia coli. Two bioinformatic strategies for linker design were applied: the first identifies naturally occurring linkers within the proteome of the host organism, the second involves screening peptidases and their known specificities using the bioinformatics software MEROPS to design an artificial linker resistant to proteolysis within the host. Linkers designed using these strategies were compared against traditional poly-glycine linkers. Although widely used, glycine-rich linkers were found by tandem MS data to be susceptible to hydrolysis by E. coli peptidases. The natural (PT)(x)P and MEROPS-designed S(3)N(10) linkers were significantly more stable, indicating both strategies provide a useful approach to linker design. Factor X(a) processing of the fusion proteins depended strongly on linker chemistry, with poly(G) and S(3)N(10) linkers showing the fastest cleavage rates. Luminescence resonance energy transfer studies, used to measure average distance of separation between GFP and Tb(III) bound to a strong calcium-binding site of CBM9, revealed that, for a given linker chemistry, the separation distance increases with increasing linker length. This increase was particularly large for poly(G) linkers, suggesting that this linker chemistry adopts a hydrated, extended configuration that makes it particularly susceptible to proteolysis. Differential scanning calorimetry studies on the PT linker series showed that fusion of CBM9 to GFP did not alter the T(m) of GFP but did result in a destabilization, as seen by both a decrease in T(m) and DeltaH(cal), of CBM9. The degree of destabilization increased with decreasing length of the (PT)(x)P linker such that DeltaT(m) = -8.4 degrees C for the single P linker.
Collapse
Affiliation(s)
- Mojgan Kavoosi
- Michael Smith Laboratories and Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | | | | | |
Collapse
|
22
|
Arakawa T, Ejima D, Tsumoto K, Obeyama N, Tanaka Y, Kita Y, Timasheff SN. Suppression of protein interactions by arginine: a proposed mechanism of the arginine effects. Biophys Chem 2006; 127:1-8. [PMID: 17257734 DOI: 10.1016/j.bpc.2006.12.007] [Citation(s) in RCA: 397] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2006] [Revised: 12/12/2006] [Accepted: 12/12/2006] [Indexed: 11/22/2022]
Abstract
Arginine has been used to suppress protein aggregation and protein-protein or protein-surface interactions during protein refolding and purification. While its biotechnology applications are gradually expanding, the mechanism of these effects of arginine has not been fully elucidated. Arginine is more effective at higher concentrations, an indication of weak interactions with the proteins. The effects of weakly interacting additives, such as arginine, on protein solubility, stability and aggregation have been explained from three different approaches: i.e., (1) the effects of additives on the structure of water, (2) the interactions of additives with the amino acid side chains and peptide bonds and (3) the preferential interactions of additives with the proteins. Here we have examined these properties of arginine and compared with those of other additives, e.g., guanidine hydrochloride (GdnHCl) and certain amino acids and amines. GdnHCl is a strong salting-in agent and denatures proteins, while betaine is a protein stabilizer. Several amino acids and amine compounds, including betaine, which stabilize the proteins, are strongly excluded; i.e., the proteins are preferentially hydrated in these solutions. On the other hand, GdnHCl preferentially binds to the proteins. Arginine is intermediate between these two extreme cases and shows a more complicated pattern of interactions with the proteins. The effects of additives on water structure, e.g., the surface tension of aqueous solution of the additives and the solubility of amino acids in the presence of additives also shed light on the mechanism of the effects of the additives on protein aggregation. While arginine increases the surface tension of water, it favorably interacts with most amino acid side chains and the peptide bonds, a property shared with GdnHCl. Thus, we propose that while arginine is similar to GdnHCl in the amino acid level, arginine interacts with the proteins differently from GdnHCl.
Collapse
Affiliation(s)
- Tsutomu Arakawa
- Alliance Protein Laboratories, Thousand Oaks, CA 91360, United States
| | | | | | | | | | | | | |
Collapse
|
23
|
Onda M, Nagata S, FitzGerald DJ, Beers R, Fisher RJ, Vincent JJ, Lee B, Nakamura M, Hwang J, Kreitman RJ, Hassan R, Pastan I. Characterization of the B cell epitopes associated with a truncated form of Pseudomonas exotoxin (PE38) used to make immunotoxins for the treatment of cancer patients. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2006; 177:8822-34. [PMID: 17142785 DOI: 10.4049/jimmunol.177.12.8822] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recombinant immunotoxins composed of an Ab Fv fragment joined to a truncated portion of Pseudomonas exotoxin A (termed PE38) have been evaluated in clinical trials for the treatment of various human cancers. Immunotoxin therapy is very effective in hairy cell leukemia and also has activity in other hemological malignancies; however, a neutralizing Ab response to PE38 in patients with solid tumors prevents repeated treatments to maximize the benefit. In this study, we analyze the murine Ab response as a model to study the B cell epitopes associated with PE38. Sixty distinct mAbs to PE38 were characterized. Mutual competitive binding of the mAbs indicated the presence of 7 major epitope groups and 13 subgroups. The competition pattern indicated that the epitopes are discrete and could not be reproduced using a computer simulation program that created epitopes out of random surface residues on PE38. Using sera from immunotoxin-treated patients, the formation of human Abs to each of the topographical epitopes was demonstrated. One epitope subgroup, E1a, was identified as the principal neutralizing epitope. The location of each epitope on PE38 was determined by preparing 41 mutants of PE38 in which bulky surface residues were mutated to either alanine or glycine. All 7 major epitope groups and 9 of 13 epitope subgroups were identified by 14 different mutants and these retained high cytotoxic activity. Our results indicate that a relatively small number of discrete immunogenic sites are associated with PE38, most of which can be eliminated by point mutations.
Collapse
Affiliation(s)
- Masanori Onda
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lange C, Patil G, Rudolph R. Ionic liquids as refolding additives: N'-alkyl and N'-(omega-hydroxyalkyl) N-methylimidazolium chlorides. Protein Sci 2005; 14:2693-701. [PMID: 16195554 PMCID: PMC2253306 DOI: 10.1110/ps.051596605] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The purpose of this work was to investigate the influence of a series of N'-alkyl and N'-(omega-hydroxy-alkyl)-N-methylimidazolium chlorides on the renaturation of two model proteins, namely hen egg white lysozyme and the single-chain antibody fragment ScFvOx. All tested ionic liquids acted as refolding enhancers, with varying efficacies and efficiencies. The results of the refolding screening could be interpreted by taking into account the effect of the studied ionic liquids on protein aggregation, together with the systematic variations of their influence on the stability of native proteins in solution. More hydrophobic imidazolium cations carrying longer alkyl chains were increasingly destabilizing, while terminal hydroxylation of the alkyl chain made the salts more compatible with protein stability. The studied ionic liquids can be classified as preferentially bound, slightly to moderately chaotropic cosolvents for proteins.
Collapse
Affiliation(s)
- Christian Lange
- Institut für Biotechnologie, Martin-Luther-Universität Halle/Wittenberg, Kurt-Mothes-Str.3, 06120 Halle (Saale), Germany.
| | | | | |
Collapse
|
25
|
Okanojo M, Shiraki K, Kudou M, Nishikori S, Takagi M. Diamines prevent thermal aggregation and inactivation of lysozyme. J Biosci Bioeng 2005; 100:556-61. [PMID: 16384796 DOI: 10.1263/jbb.100.556] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Accepted: 08/02/2005] [Indexed: 11/17/2022]
Abstract
Protein aggregation is a major obstacle in both biological applications and biomedical fields involving proteins. In this study, we investigated the essential structure of small additives that function as chemical chaperones. Aggregation-suppressing competent additives were 1,3-diaminopropane, 1,4-diaminobutane, and 1,5-diaminopentane, which suppressed aggregation in the given order; whereas no diols or monoamines prevented the thermal aggregation and the inactivation of lysozyme. The heat-inactivation rate of lysozyme with 1,3-diaminopropane was almost identical to that of lysozyme with spermine and arginine ethylester, which are the most prominent additives reported yet.
Collapse
Affiliation(s)
- Masahiro Okanojo
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | | | | | | | | |
Collapse
|
26
|
Ishibashi M, Tsumoto K, Tokunaga M, Ejima D, Kita Y, Arakawa T. Is arginine a protein-denaturant? Protein Expr Purif 2005; 42:1-6. [PMID: 15893471 DOI: 10.1016/j.pep.2005.03.028] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 03/22/2005] [Accepted: 03/28/2005] [Indexed: 11/25/2022]
Abstract
Arginine is a useful solvent additive for many applications, including refolding and solubilization of proteins from insoluble pellets, and suppression of protein aggregation and non-specific adsorption during formulation and purification. However, there is a concern that arginine may be a protein-denaturant, which may limit the expansion of its applications. Such concern arises from the facts that arginine decreases melting temperature and perturbs the spectroscopic properties of certain proteins and contains a guanidinium group, which is a critical chemical structure for denaturing activity of guanidine hydrochloride. Here, we show that although arginine does lower the melting temperatures of certain proteins, the extent is insufficient to cause denaturation of proteins at or below room temperature. The proteins described here show enzymatic activity and folded structure in the presence of arginine, although the local structure around aromatic amino acids is perturbed by arginine. Arginine differs from guandinine hydrochloride in the mode of interactions with proteins, which may be a primary reason why arginine is not a protein-denaturant.
Collapse
Affiliation(s)
- Matsujiro Ishibashi
- Laboratory of Applied and Molecular Microbiology, Faculty of Agriculture, Kagoshima University, Korimoto, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Reddy K RC, Lilie H, Rudolph R, Lange C. L-Arginine increases the solubility of unfolded species of hen egg white lysozyme. Protein Sci 2005; 14:929-35. [PMID: 15741330 PMCID: PMC2253432 DOI: 10.1110/ps.041085005] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
L-Arginine (L-Arg) has been widely used as an enhancer of protein renaturation. The mechanism behind its action is still not fully understood. Using hen egg white lysozyme as a model protein, we present data that clearly demonstrate the suppression of the aggregation of denatured protein by L-Arg. By chemical modification of free cysteines, a series of unfolded lysozyme species were obtained that served as models for unfolded and intermediate states during the process of oxidative refolding. An increased equilibrium solubility of unfolded species and intermediates in the presence of L-Arg seems to be its major mechanism of action.
Collapse
Affiliation(s)
- Ravi Charan Reddy K
- Institut für Biotechnologie, Martin-Luther-Universität Halle/Wittenberg, Kurt-Mothes-Strasse 3, 06120 Halle (Saale), Germany
| | | | | | | |
Collapse
|
28
|
Arakawa T, Philo JS, Tsumoto K, Yumioka R, Ejima D. Elution of antibodies from a Protein-A column by aqueous arginine solutions. Protein Expr Purif 2004; 36:244-8. [PMID: 15249046 DOI: 10.1016/j.pep.2004.04.009] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Revised: 03/11/2004] [Indexed: 10/26/2022]
Abstract
Acidic pH is commonly used to elute antibodies from Protein-A affinity column, although low pH may result in aggregation of the proteins. As an alternative, here arginine was tested as an eluent and compared with a more conventional eluent of citrate. Using purified monoclonal antibodies, recovery of antibodies with 0.1M citrate, pH 3.8, was less than 50% and decreased further as the pH was increased to 4.3. At the same pH, the recovery of antibodies was greatly increased with 0.5M arginine and more so with 2M arginine. Even at pH 5.0, 2M arginine resulted in 31% recovery, although the elution under such condition showed extensive tailing. Such tailing was observed at pH 3.8 when 0.1M citrate was used. Size exclusion analysis indicated that the eluted antibodies were mostly monomeric whether eluted with citrate or arginine. This demonstrates the usefulness of arginine as an efficient eluent for Protein-A chromatography.
Collapse
Affiliation(s)
- Tsutomu Arakawa
- Alliance Protein Laboratories, Inc., 3957 Corte Cancion, Thousand Oaks, CA 91360, USA.
| | | | | | | | | |
Collapse
|
29
|
Xie Q, Guo T, Lu J, Zhou HM. The guanidine like effects of arginine on aminoacylase and salt-induced molten globule state. Int J Biochem Cell Biol 2004; 36:296-306. [PMID: 14643894 DOI: 10.1016/s1357-2725(03)00252-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aminoacylase is a dimeric enzyme containing one Zn(2+) ion per subunit. The arginine (Arg)-induced unfolding of Holo-aminoacylase and Apo-aminoacylase has been studied by measurement of enzyme activity, fluorescence emission spectra and 1-anilino-8-naphthalenesulfonate (ANS) fluorescence spectra. Besides being the most alkaline amino acid, the arginine molecule contains a positively charged guanidine group, similar to guanidine hydrochloride, and has been used in many refolding systems to suppress protein aggregation. Our results showed that arginine caused the inactivation and unfolding of aminoacylase, with no aggregation during denaturation. A comparison between the unfolding of aminoacylase in aqueous and HCl (pH 7.5) arginine solutions indicated that the guanidine group of arginine had protein-denaturing effects similar to those of guanidine hydrochloride, which might help us understand the mechanism by which arginine suppresses incorrect refolding. The results showed that arginine-denatured aminoacylase could be reactivated and refolded correctly, indicating that arginine is as good a denaturant as the guanidine or urea for study of protein unfolding and refolding. Both the intrinsic fluorescence and the ANS fluorescence spectra showed that the arginine-unfolded aminoacylase formed a molten globule state in the presence of KCl, suggesting that intermediates exist during aminoacylase refolding. The results for the Apo-aminoacylase followed were similar to those for the Holo-enzyme, suggesting that Holo- and Apo-aminoacylase might have a similar unfolding and refolding pathway.
Collapse
Affiliation(s)
- Qiang Xie
- Department of Biological Sciences and Biotechnology, Faculty of Science, Tsinghua University, 100084, Beijing, PR China
| | | | | | | |
Collapse
|
30
|
FitzGerald DJ, Kreitman R, Wilson W, Squires D, Pastan I. Recombinant immunotoxins for treating cancer. Int J Med Microbiol 2004; 293:577-82. [PMID: 15149034 DOI: 10.1078/1438-4221-00302] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recombinant immunotoxins are antibody-toxin chimeric molecules that kill cancer cells via binding to a surface antigen, internalization and delivery of the toxin moiety to the cell cytosol. In the cytosol, toxins catalytically inhibit a critical cell function and cause cell death. The antibody portion of the chimera targets antigens that are expressed preferentially on the surface of cancer cells. Truncated versions of either diphtheria toxin (DT) or Pseudomonas exotoxin (PE) can be used to construct fusions with cDNAs encoding antibody fragments or cell-binding ligands. Recombinant immunotoxins are routinely produced in E. coli and purified using standard chromatographic methods. Before they can be evaluated for anticancer activity in humans, recombinant immunotoxins undergo extensive preclinical testing. Immunotoxins must demonstrate cell-killing activity in tissue culture, antitumor activity in an animal model and have favorable pharmacokinetic and toxicity profiles. Candidate molecules with favorable characteristics are then evaluated in clinical trials. Here we report on the initial evaluation of BL22, a recombinant immunotoxin targeted to CD22 expressed on the surface of B-cell malignancies.
Collapse
Affiliation(s)
- David J FitzGerald
- Laboratory of Molecular Biology, CCR, National Cancer Institute, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
31
|
Tsybovsky YI, Kedrov AA, Martsev SP. Independent folding and conformational changes of the barnase module in the VL-barnase immunofusion: calorimetric evidence. FEBS Lett 2003; 557:248-52. [PMID: 14741376 DOI: 10.1016/s0014-5793(03)01509-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although stability is critical for in vivo application of immunotoxins, a thermodynamic description of their folding/stability is still lacking. We applied differential scanning calorimetry (DSC) to RNase-based immunofusion comprising barnase, cytotoxic RNase from Bacillus amyloliquefaciens, fused to the light chain variable domain (VL) of anti-human ferritin antibody F11. By analyzing DSC curves recorded with or without preheating and addition of the barnase-stabilizing ligand guanosine 3'-monophosphate, we (i). assigned two well-resolved thermal transitions to the VL and barnase modules of VL-barnase, (ii). demonstrated independent folding of these two modules, and (iii). showed altered stability of the barnase module, which resulted from the dimeric state of VL-barnase.
Collapse
Affiliation(s)
- Yaroslav I Tsybovsky
- Institute of Bio-Organic Chemistry, National Academy of Sciences of Belarus, Minsk 220141, Belarus
| | | | | |
Collapse
|
32
|
The effects of arginine on refolding of aggregated proteins: not facilitate refolding, but suppress aggregation. Biochem Biophys Res Commun 2003; 304:148-52. [PMID: 12705899 DOI: 10.1016/s0006-291x(03)00578-3] [Citation(s) in RCA: 272] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Arginine is one of the universal reagents that are effective in assisting refolding of recombinant proteins from inclusion bodies. The mechanism of the effects of arginine on refolding has remained, however, to be elucidated. Here we show that arginine does not stabilize proteins against heat treatment, as demonstrated by little change in melting temperature. It does increase reversibility of thermal melting and reduce aggregation under thermal stress. The observations suggest that arginine may not facilitate refolding, but may suppress aggregation of the proteins during refolding.
Collapse
|
33
|
Kim SH. Expression and purification of recombinant immunotoxin--a fusion protein stabilizes a single-chain Fv (scFv) in denaturing condition. Protein Expr Purif 2003; 27:85-9. [PMID: 12509988 DOI: 10.1016/s1046-5928(02)00539-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Carcinoembryonic antigen (CEA) is expressed at greatly increased levels in nearly all human colorectal carcinomas. Anti-CEA antibodies have been proved to be useful for targeting several cancer types known to express CEA. A recombinant immunotoxin was constructed, in which the cell-binding domain of Pseudomonas exotoxin (PE) was replaced with the single-chain Fv (scFv) of anti-CEA monoclonal antibody for targeting to colorectal carcinomas. This single-chain immunotoxin was expressed in E. coli and purified under denaturing condition of 6M guanidine hydrochloride (GuHCl). It was found that the immunotoxin maintains a binding activity in denaturing condition of 6M GuHCl and the fused PE contributes to the stability of immunotoxin in such condition. Dialysis against PBS buffer after purification under 6M GuHCl keeps the binding activity of immunotoxin.
Collapse
Affiliation(s)
- Se-Ho Kim
- Antibody Engineering Lab., Central Research Center of the Korea Green Cross Corp., Gugal-Ri, Giheung-Eup, Yongin City, Kyunggi-Do 449-903, South Korea.
| |
Collapse
|
34
|
Newton DL, Rybak SM. Preparation of recombinant RNase single-chain antibody fusion proteins. Mol Biotechnol 2002; 20:63-76. [PMID: 11876300 DOI: 10.1385/mb:20:1:063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This article describes the construction, expression, and purification of RNase single-chain antibody fusion proteins. To construct a fusion protein, the gene for each moiety, the RNase and the binding ligand, is modified separately to contain complementary DNA encoding a 13 amino acid spacer that separates the RNase from the binding moiety. Appropriate restriction enzyme sites for cloning into the vector are also added. The modified DNA is combined and fused using the PCR technique of splicing by overlap extension (1). The resulting DNA construct is expressed in inclusion bodies in BL21(DE3) bacteria that are specifically engineered for the expression of toxic proteins (2). After isolation and purification of the inclusion bodies, the fusion protein is solubilized, denatured, and renatured. The renatured RNase fusion protein mixture is purified to homogeneity by two chromatography steps. The first column, a CM-Sephadex C-50 or a heparin Sepharose column, eliminates the majority of contaminating proteins while the second column, an affinity column (Ni2+-NTA agarose), results in the final purification of the RNase fusion protein.
Collapse
Affiliation(s)
- Dianne L Newton
- SAIC Frederick, National Cancer Institute-Frederick Cancer Research and Development Center, MD 21702, USA
| | | |
Collapse
|
35
|
|
36
|
Kim GJ, Cheon YH, Kim HS. Directed evolution of a novelN-carbamylase/D-hydantoinase fusion enzyme for functional expression with enhanced stability. Biotechnol Bioeng 2000. [DOI: 10.1002/(sici)1097-0290(20000420)68:2<211::aid-bit10>3.0.co;2-p] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
37
|
Abstract
Overexpression of cloned or synthetic genes in Escherichia coli often results in the formation of insoluble protein inclusion bodies. Within the last decade, specific methods and strategies have been developed for preparing active recombinant proteins from these inclusion bodies. Usually, the inclusion bodies can be separated easily from other cell components by centrifugation, solubilized by denaturants such as guanidine hydrochloride (Gdn-HCl) or urea, and then renatured through a refolding process such as dilution or dialysis. Recent improvements in renaturation procedures have included the inhibition of aggregation during refolding by application of low molecular weight additives and matrix-bound renaturation. These methods have made it possible to obtain high yields of biologically active proteins by taking into account process parameters such as protein concentration, redox conditions, temperature, pH, and ionic strength.
Collapse
Affiliation(s)
- S Misawa
- Pharmaceutical and Biotechnology Laboratory, Japan Energy Corporation, 3-17-35 Niizo-Minami, Toda-shi, Saitama 335-8502, Japan.
| | | |
Collapse
|
38
|
Abstract
Recombinant antibody technology is opening new perspectives for the development of novel therapeutic and diagnostic agents. In this review we focus on advances in the generation of both genetically engineered humanized and fully human monoclonal antibodies. Methods for their production in different expression systems are also discussed.
Collapse
Affiliation(s)
- S M Kipriyanov
- Recombinant Antibody Research Group, German Cancer Research Center, Heidelberg, Germany
| | | |
Collapse
|
39
|
Anderson M, Blowers D, Hewitt N, Hedge P, Breeze A, Hampton I, Taylor I. Refolding, purification, and characterization of a loop deletion mutant of human Bcl-2 from bacterial inclusion bodies. Protein Expr Purif 1999; 15:162-70. [PMID: 10049671 DOI: 10.1006/prep.1998.0996] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This report describes the cloning of recombinant human Bcl-2, in which the putative disordered loop region has been replaced with a flexible linker and the hydrophobic C-terminus has been replaced with a 6xHis tag (Bcl-2(6-32)-AAAA-Bcl-2(86-206)-HHHHHH, abbreviation rhBcl-2; amino acid numbering excludes the initiating methionine). This protein was expressed in Escherichia coli where it accumulated in insoluble form in inclusion bodies. After lysis the washed inclusion bodies were solubilized and an l-arginine assisted protein refolding route was employed to obtain biologically active protein. rhBcl-2 was purified further by nickel chelate chromatography to give protein of >95% purity, with an overall yield of 5 mg per g of E. coli cell paste. Edman sequencing showed that approximately 90% of the rhBcl-2 retained the initiating methionine residue. Analytical size exclusion chromatography suggested that the refolded and purified rhBcl-2 was monomeric in nondenaturing solution. Purified protein had an affinity for a Bax BH3 domain peptide comparable to that for in vivo folded recombinant human Bcl-2 and suppressed caspase activation in a cell-free assay for apoptosis. 1H NMR spectroscopy of rhBcl-2, both free and complexed with the Bax BH3 domain peptide, provided further evidence for the structural and functional integrity of the refolded protein. These findings parallel and extend those of Muchmore et al., who found that a loop deletion mutant of human Bcl-XL retained anti-apoptotic function.
Collapse
Affiliation(s)
- M Anderson
- Cancer & Infection Research Departments, Protein Structure Laboratory, Zeneca Pharmaceuticals, Mereside, Alderley Park, Macclesfield, Cheshire, SK10 4TG, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
40
|
D'alessio KJ, McQueney MS, Brun KA, Orsini MJ, Debouck CM. Expression in Escherichia coli, refolding, and purification of human procathepsin K, an osteoclast-specific protease. Protein Expr Purif 1999; 15:213-20. [PMID: 10049678 DOI: 10.1006/prep.1998.1013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have constructed and optimized a high yielding Escherichia coli expression system to produce glycosylation-free human procathepsin K and have developed conditions for refolding this enzyme. Recombinant human procathepsin K (EC 3.4.22.38) was expressed in E. coli, refolded from inclusion bodies, and further purified by Superdex 75 size-exclusion chromatography. Purified procathepsin K had a [MH]+ of 35,063 Da which is in agreement with the predicted mass of the construct. Amino-terminal sequence analysis matched the predicted sequence with no secondary sequence detected. Purified procathepsin K activated under autocatalytic conditions to a final specific activity of 23 micromol 7-amido-4-methylcoumarin liberated/min/mg of enzyme using the fluorescent peptide substrate benzyloxycarbonyl-phenylalanine-arginine-7-amido-4-methylcoumarin. This expression and refolding procedure yielded 50 mg of purified, glycosylation-free human procathepsin K from 1 liter of E. coli cell culture and enabled the determination of the structure of human procathepsin K at 2.6 A resolution.
Collapse
Affiliation(s)
- K J D'alessio
- Department of Protein Biochemistry, SmithKline Beecham Pharmaceuticals, King of Prussia, Pennsylvania 19406, USA. Karla_J_D'
| | | | | | | | | |
Collapse
|
41
|
Park E, Starzyk RM, McGrath JP, Lee T, George J, Schutz AJ, Lynch P, Putney SD. Production and characterization of fusion proteins containing transferrin and nerve growth factor. J Drug Target 1998; 6:53-64. [PMID: 9769021 DOI: 10.3109/10611869808997881] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To explore the ability to use genetic fusions of transferrin as a carrier for brain targeting and delivery, a series of fusion proteins containing both human nerve growth factor (NGF) and human transferrin was produced in mammalian cells. A protein in which the hinge region from human IgG3 joined the carboxyl terminus of NGF and the amino terminus of transferrin formed a covalent homodimer, bound human transferrin receptor, and retained full NGF in PC12 cells. In contrast, proteins in which polypeptide dimerization was not induced or in which NGF was fused through its amino terminus had greatly reduced NGF activity. The ability to maintain both biologically active NGF and transferrin as part of a fusion protein may offer a novel way to deliver NGF and other neurotrophic factors to the central nervous system.
Collapse
Affiliation(s)
- E Park
- Alkermes, Inc., Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Deonarain MP, Epenetos AA. Design, characterization and anti-tumour cytotoxicity of a panel of recombinant, mammalian ribonuclease-based immunotoxins. Br J Cancer 1998; 77:537-46. [PMID: 9484808 PMCID: PMC2149916 DOI: 10.1038/bjc.1998.87] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bovine seminal ribonuclease (BSRNase) is an unusual member of the ribonuclease superfamily, because of its remarkable anti-tumour and immunosuppressive properties. We describe here the construction, expression, purification and characterization of a panel of six immunotoxins based upon this enzyme and show that we can increase its anti-tumour activity by over 2 x 10(4)-fold. This is achieved by improving tumour cell targeting using a single-chain Fv (scFv) directed against the oncofetal antigen placental alkaline phosphatase. As well as the simple scFv-BSRNase fusion protein, we have constructed five other derivatives with additional peptides designed to improve folding and intracellular trafficking and delivery. We find that the molecule most cytotoxic to antigen (PLAP)-positive cells in vitro is one that contains a C-terminal 'KDEL' endoplasmic reticulum retention signal and a peptide sequence derived from diphtheria toxin. All these molecules are produced in Escherichia coli (E. coli) as insoluble inclusion bodies and require extensive in vitro processing to recover antigen binding and ribonuclease activity. Despite incomplete ribonuclease activity and quaternary assembly, these molecules are promising reagents for specific chemotherapy of cancer and are potentially less harmful and immunogenic than current immunotoxins.
Collapse
Affiliation(s)
- M P Deonarain
- Imperial Cancer Research Fund Oncology Unit, Imperial College School of Medicine at the Hammersmith Hospital, London, UK
| | | |
Collapse
|
43
|
Beaumelle B, Taupiac MP, Lord JM, Roberts LM. Ricin A chain can transport unfolded dihydrofolate reductase into the cytosol. J Biol Chem 1997; 272:22097-102. [PMID: 9268352 DOI: 10.1074/jbc.272.35.22097] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Ricin is a heterodimeric protein toxin. The ricin A chain is able to cross the membrane of intracellular compartments to reach the cytosol where it catalytically inactivates protein synthesis. It is linked via a disulfide bond to the B chain, a galactose-specific lectin, which allows ricin binding at the cell surface and endocytosis. To examine the potential of ricin A to carry proteins into the cytosol and the requirement for unfolding of the passenger protein, we connected mouse dihydrofolate reductase (DHFR) to ricin A by gene fusion via a spacer peptide. DHFR-ricin A expressed in Escherichia coli displayed the biological activities of the parent proteins and associated quantitatively with ricin B to form DHFR-ricin. The resulting toxin was highly cytotoxic to cells (4-8-fold less than recombinant ricin). DHFR-ricin cytotoxicity was inhibited by methotrexate, a DHFR inhibitor stabilizing DHFR-ricin A in a folded conformation. The DHFR moiety of DHFR ricin bound to the plasma membrane. Although methotrexate prevented this binding, it did not significantly affect DHFR-ricin endocytosis, which proceeded via ricin B chain. Intoxication kinetics data and a cell-free translocation assay demonstrated that protection of cells from DHFR-ricin cytotoxicity resulted from a selective inhibition by methotrexate of DHFR-ricin A translocation. We conclude that ricin A is a potential carrier of proteins to the cytosol, provided that the passenger protein is able to unfold for transmembrane transport.
Collapse
Affiliation(s)
- B Beaumelle
- UMR 5539 CNRS, Département Biologie-Santé, Université Montpellier II, France.
| | | | | | | |
Collapse
|
44
|
Zewe M, Rybak SM, Dübel S, Coy JF, Welschof M, Newton DL, Little M. Cloning and cytotoxicity of a human pancreatic RNase immunofusion. IMMUNOTECHNOLOGY : AN INTERNATIONAL JOURNAL OF IMMUNOLOGICAL ENGINEERING 1997; 3:127-36. [PMID: 9237097 DOI: 10.1016/s1380-2933(97)00070-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Immunotoxins based on plant and bacterial proteins are usually very immunogenic. Human ribonucleases could provide an alternative basis for the construction of less immunogenic reagents. Two members of the human RNase family, angiogenin and eosinophil-derived neurotoxin (EDN), have been fused to a single chain antibody against the transferrin receptor, which is known to be internalised by endocytosis. The fusion proteins proved to be very efficient inhibitors of protein synthesis using various cell lines. It is not yet known whether the side effects of angiogenin and EDN will compromise their potential use as immunotoxins. OBJECTIVES The goal of this work was to construct a human immunotoxin with no harmful side effects. Bovine pancreatic ribonuclease has been shown to be as potent as ricin at abolishing protein synthesis on injection into oocytes. We therefore decided to clone its human analogue, which is fairly ubiquitous and per se non-toxic. An immunofusion of human pancreatic RNase with a single chain antibody against the transferrin receptor was tested for its ability to inhibit protein synthesis in three different human tumor cell lines. STUDY DESIGN DNA coding for the human pancreatic RNase was cloned partially from a human fetal brain cDNA library and then completed by PCR using a human placental cDNA library as a template. The RNase gene was then fused with a DNA coding for an single chain antibody against the transferrin receptor (CD71). After expressing the fusion protein in E. coli, the gene product was isolated from inclusion bodies and tested for cytotoxicity. RESULTS This fusion protein inhibited the protein synthesis of three human tumor cell lines derived from a melanoma, a renal carcinoma and a breast carcinoma, with IC50s of 8, 5 and 10 nM, respectively. These values were comparable with those using a similar fusion protein constructed with eosinophil derived neurotoxin (EDN) as the toxic moiety (IC50s of 8, 1.2 and 3 nM, respectively). The slightly lower activities of the human pancreatic RNase-scFv (pancRNase-scFv) with two of the cell lines suggests that fewer molecules are reaching the cytoplasmic compartment, since it was twice as active as EDN-scFv in inhibiting the protein synthesis of a rabbit reticulocyte lysate. CONCLUSION These results demonstrate that the human pancreatic RNase, which is expected to have a very low immunogenic potential in humans with no inherent toxicity, may be a potent cytotoxin for tumor cells after antibody targeting.
Collapse
Affiliation(s)
- M Zewe
- Recombinant Antibody Group, Diagnostics and Experimental Therapy Program, German Cancer Research Center, Heidelberg
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Because regions on the messenger ribonucleic acid differ in the rate at which they are translated by the ribosome and because proteins can fold cotranslationally on the ribosome, a question arises as to whether the kinetics of translation influence the folding events in the growing nascent polypeptide chain. Translationally slow regions were identified on mRNAs for a set of 37 multidomain proteins from Escherichia coli with known three-dimensional structures. The frequencies of individual codons in mRNAs of highly expressed genes from E. coli were taken as a measure of codon translation speed. Analysis of codon usage in slow regions showed a consistency with the experimentally determined translation rates of codons; abundant codons that are translated with faster speeds compared with their synonymous codons were found to be avoided; rare codons that are translated at an unexpectedly higher rate were also found to be avoided in slow regions. The statistical significance of the occurrence of such slow regions on mRNA spans corresponding to the oligopeptide domain termini and linking regions on the encoded proteins was assessed. The amino acid type and the solvent accessibility of the residues coded by such slow regions were also examined. The results indicated that protein domain boundaries that mark higher-order structural organization are largely coded by translationally slow regions on the RNA and are composed of such amino acids that are stickier to the ribosome channel through which the synthesized polypeptide chain emerges into the cytoplasm. The translationally slow nucleotide regions on mRNA possess the potential to form hairpin secondary structures and such structures could further slow the movement of ribosome. The results point to an intriguing correlation between protein synthesis machinery and in vivo protein folding. Examination of available mutagenic data indicated that the effects of some of the reported mutations were consistent with our hypothesis.
Collapse
Affiliation(s)
- T A Thanaraj
- European Molecular Biology Laboratory, Heidelberg, Germany.
| | | |
Collapse
|
46
|
Kuan CT, Pastan I. Improved antitumor activity of a recombinant anti-Lewis(y) immunotoxin not requiring proteolytic activation. Proc Natl Acad Sci U S A 1996; 93:974-8. [PMID: 8577771 PMCID: PMC40014 DOI: 10.1073/pnas.93.3.974] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
B1(dsFv)-PE33 is a recombinant immunotoxin composed of a mutant form of Pseudomonas exotoxin (PE) that does not need proteolytic activation and a disulfide-stabilized Fv fragment of the anti-Lewis(y) monoclonal antibody B1, which recognizes a carbohydrate epitope on human carcinoma cells. In this molecule, amino acids 1-279 of PE are deleted and domain Ib (amino acids 365-394) is replaced by the heavy chain variable region (VH) domain of monoclonal antibody B1. The light chain (VL) domain is connected to the VH domain by a disulfide bond. This recombinant toxin, termed B1(dsFv)-PE33, does not require proteolytic activation and it is smaller than other immunotoxins directed at Lewis(y), all of which require proteolytic activation. Furthermore, it is more cytotoxic to antigen-positive cell lines. B1(dsFv)-PE38 has the highest antitumor activity of anti-Lewis(y) immunotoxins previously constructed. B1(dsFv)-PE33 caused complete regression of tumors when given at 12 micrograms/kg (200 pmol/kg) every other day for three doses, whereas B1(dsFv)-PE38 did not cause regressions at 13 micrograms/kg (200 pmol/kg). By bypassing the need for proteolytic activation and decreasing molecular size we have enlarged the therapeutic window for the treatment of human cancers growing in mice, so that complete remissions are observed at 2.5% of the LD50.
Collapse
Affiliation(s)
- C T Kuan
- Laboratory of Molecular Biology, National Center Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
47
|
Affiliation(s)
- J S Huston
- Creative BioMolecules, Inc., Hopkinton, Massachusetts 01748, USA
| | | | | |
Collapse
|
48
|
Pincus SH, Tolstikov VV. Anti-human immunodeficiency virus immunoconjugates. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1995; 32:205-47. [PMID: 7748796 DOI: 10.1016/s1054-3589(08)61014-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- S H Pincus
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA
| | | |
Collapse
|
49
|
Newton DL, Nicholls PJ, Rybak SM, Youle RJ. Expression and characterization of recombinant human eosinophil-derived neurotoxin and eosinophil-derived neurotoxin-anti-transferrin receptor sFv. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47081-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
50
|
Kreitman RJ, Puri RK, Pastan I. A circularly permuted recombinant interleukin 4 toxin with increased activity. Proc Natl Acad Sci U S A 1994; 91:6889-93. [PMID: 8041715 PMCID: PMC44303 DOI: 10.1073/pnas.91.15.6889] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Fusion of ligands such as growth factors to other proteins often dramatically reduces the affinity of the ligand for its receptor. With recombinant DNA techniques, the attachment point between the two proteins has until now been restricted to either the amino or the carboxyl terminus of the ligand. However, binding may be greatly compromised if both ends are close to the site at which the ligand binds to its receptor. To construct a single-chain growth factor fusion protein with the connection at a new site on the growth factor, we constructed a DNA fragment encoding circularly permuted interleukin 4 (IL4), termed IL4(38-37). This was accomplished by placing a start codon before position 38, connecting codons 1 and 129 with a sequence encoding a peptide linker, and placing a stop codon after codon 37 of IL4. IL4(38-37) was fused via its new carboxyl terminus, Lys37, to a truncated form of Pseudomonas exotoxin. The purified circularly permuted IL4-toxin bound to the IL4 receptor with 10-fold higher affinity than an IL4-toxin in which the toxin was fused to the carboxyl terminus of IL4. Circular permuteins of growth factors can improve the effectiveness of recombinant fusion proteins, because the junction can be moved to a site on the growth factor which allows it to bind with higher affinity.
Collapse
Affiliation(s)
- R J Kreitman
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | | | |
Collapse
|