1
|
Chen X, Zhang Y, Yin J, Liu C, Xie M, Wang Y, Chen M, Zhang R, Yuan X, Li D, Chen X, Gao X, Cai G, Zhang S, Zhou B, Yang M. Structural basis for the reaction cycle and transport mechanism of human Na +-sulfate cotransporter NaS1 (SLC13A1). SCIENCE ADVANCES 2024; 10:eado6778. [PMID: 39576865 PMCID: PMC11584011 DOI: 10.1126/sciadv.ado6778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024]
Abstract
Sulfate (SO42-) is a pivotal inorganic anion with essential roles in mammalian physiology. NaS1, a member of solute carrier 13 family and divalent anion/sodium symporter family, functions as a Na+-sulfate cotransporter, facilitating sulfate (re)absorption across renal proximal tubule and small intestine epithelia. While previous studies have linked several human disorders to mutations in the NaS1 gene, its transport mechanism remains unclear. Here, we report the cryo-electron microscopy structures of five distinct conformations of the human NaS1 at resolutions of 2.7 to 3.3 angstroms, revealing the substrates recognition mechanism and the conformational change of NaS1 during the Na+-sulfate cotransport cycle. Our studies delineate the molecular basis of the detailed dynamic transport cycle of NaS1. These findings advance the current understanding of the Na+-sulfate cotransport mechanism, human sulfate (re)absorption, and the implications of disease-associated NaS1 mutations.
Collapse
Affiliation(s)
- Xudong Chen
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Youqi Zhang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Jian Yin
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chang Liu
- Beijing Life Science Academy, Beijing 102209, China
| | - Min Xie
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yixue Wang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Meiying Chen
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Rui Zhang
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Xinyi Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - De Li
- Radioisotope Laboratory of Center of Biomedical Analysis, Tsinghua University, Beijing 100084, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Xin Gao
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Sensen Zhang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Boda Zhou
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Maojun Yang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Cryo-EM Facility Center, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
2
|
Chi X, Chen Y, Li Y, Dai L, Zhang Y, Shen Y, Chen Y, Shi T, Yang H, Wang Z, Yan R. Cryo-EM structures of the human NaS1 and NaDC1 transporters revealed the elevator transport and allosteric regulation mechanism. SCIENCE ADVANCES 2024; 10:eadl3685. [PMID: 38552027 PMCID: PMC10980263 DOI: 10.1126/sciadv.adl3685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/26/2024] [Indexed: 04/01/2024]
Abstract
The solute carrier 13 (SLC13) family comprises electrogenic sodium ion-coupled anion cotransporters, segregating into sodium ion-sulfate cotransporters (NaSs) and sodium ion-di- and-tricarboxylate cotransporters (NaDCs). NaS1 and NaDC1 regulate sulfate homeostasis and oxidative metabolism, respectively. NaS1 deficiency affects murine growth and fertility, while NaDC1 affects urinary citrate and calcium nephrolithiasis. Despite their importance, the mechanisms of substrate recognition and transport remain insufficiently characterized. In this study, we determined the cryo-electron microscopy structures of human NaS1, capturing inward-facing and combined inward-facing/outward-facing conformations within a dimer both in apo and sulfate-bound states. In addition, we elucidated NaDC1's outward-facing conformation, encompassing apo, citrate-bound, and N-(p-amylcinnamoyl) anthranilic acid (ACA) inhibitor-bound states. Structural scrutiny illuminates a detailed elevator mechanism driving conformational changes. Notably, the ACA inhibitor unexpectedly binds primarily anchored by transmembrane 2 (TM2), Loop 10, TM11, and TM6a proximate to the cytosolic membrane. Our findings provide crucial insights into SLC13 transport mechanisms, paving the way for future drug design.
Collapse
Affiliation(s)
- Ximin Chi
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Science, Xiamen University, Xiamen 361102, Fujian Province, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang Province, China
| | - Yiming Chen
- Department of Medical Neuroscience, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong Province, China
| | - Yaning Li
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang Province, China
- Department of Biochemistry, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen 518055, Guangdong Province, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lu Dai
- Department of Biochemistry, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen 518055, Guangdong Province, China
| | - Yuanyuan Zhang
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang Province, China
| | - Yaping Shen
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang Province, China
| | - Yun Chen
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang Province, China
- Novoprotein Scientific Inc., Suzhou 215000, China
| | - Tianhao Shi
- Department of Biochemistry, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen 518055, Guangdong Province, China
| | - Haonan Yang
- Department of Biochemistry, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen 518055, Guangdong Province, China
| | - Zilong Wang
- Department of Medical Neuroscience, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong Province, China
| | - Renhong Yan
- Department of Biochemistry, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen 518055, Guangdong Province, China
| |
Collapse
|
3
|
Geertsma ER, Oliver D. SLC26 Anion Transporters. Handb Exp Pharmacol 2024; 283:319-360. [PMID: 37947907 DOI: 10.1007/164_2023_698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Solute carrier family 26 (SLC26) is a family of functionally diverse anion transporters found in all kingdoms of life. Anions transported by SLC26 proteins include chloride, bicarbonate, and sulfate, but also small organic dicarboxylates such as fumarate and oxalate. The human genome encodes ten functional homologs, several of which are causally associated with severe human diseases, highlighting their physiological importance. Here, we review novel insights into the structure and function of SLC26 proteins and summarize the physiological relevance of human members.
Collapse
Affiliation(s)
- Eric R Geertsma
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Dominik Oliver
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, Marburg, Germany.
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Giessen, Marburg, Giessen, Germany.
| |
Collapse
|
4
|
Huang B, Wang H, Yang B. Non-Aquaporin Water Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:331-342. [PMID: 36717505 DOI: 10.1007/978-981-19-7415-1_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Water transport through membrane is so intricate that there are still some debates. AQPs are entirely accepted to allow water transmembrane movement depending on osmotic gradient. Cotransporters and uniporters, however, are also concerned in water homeostasis. UT-B has a single-channel water permeability that is similar to AQP1. CFTR was initially thought as a water channel but now not believed to transport water directly. By cotransporters, such as KCC4, NKCC1, SGLT1, GAT1, EAAT1, and MCT1, water is transported by water osmosis coupling with substrates, which explains how water is transported across the isolated small intestine. This chapter provides information about water transport mediated by other membrane proteins except AQPs.
Collapse
Affiliation(s)
- Boyue Huang
- Laboratory of Neuroscience and Tissue Engineering, Department of Anatomy, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Hongkai Wang
- Northwestern University Interdepartmental Neuroscience Program, Chicago, IL, USA
- Laboratory of Regenerative Rehabilitation and Department of Physical Medicine and Rehabilitation, Shirley Ryan AbilityLab and Northwestern University Feinberg School of Medicine and Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Baoxue Yang
- School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
5
|
Yang X, Yao S, An J, Jin H, Wang H, Tuo B. SLC26A6 and NADC‑1: Future direction of nephrolithiasis and calculus‑related hypertension research (Review). Mol Med Rep 2021; 24:745. [PMID: 34458928 DOI: 10.3892/mmr.2021.12385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/30/2021] [Indexed: 11/06/2022] Open
Abstract
Nephrolithiasis is the most common type of urinary system disease in developed countries, with high morbidity and recurrence rates. Nephrolithiasis is a serious health problem, which eventually leads to the loss of renal function and is closely related to hypertension. Modern medicine has adopted minimally invasive surgery for the management of kidney stones, but this does not resolve the root of the problem. Thus, nephrolithiasis remains a major public health issue, the causes of which remain largely unknown. Researchers have attempted to determine the causes and therapeutic targets of kidney stones and calculus‑related hypertension. Solute carrier family 26 member 6 (SLC26A6), a member of the well‑conserved solute carrier family 26, is highly expressed in the kidney and intestines, and it primarily mediates the transport of various anions, including OXa2‑, HCO3‑, Cl‑ and SO42‑, amongst others. Na+‑dependent dicarboxylate‑1 (NADC‑1) is the Na+‑carboxylate co‑transporter of the SLC13 gene family, which primarily mediates the co‑transport of Na+ and tricarboxylic acid cycle intermediates, such as citrate and succinate, amongst others. Studies have shown that Ca2+ oxalate kidney stones are the most prevalent type of kidney stones. Hyperoxaluria and hypocitraturia notably increase the risk of forming Ca2+ oxalate kidney stones, and the increase in succinate in the juxtaglomerular device can stimulate renin secretion and lead to hypertension. Whilst it is known that it is important to maintain the dynamic equilibrium of oxalate and citrate in the kidney, the synergistic molecular mechanisms underlying the transport of oxalate and citrate across kidney epithelial cells have undergone limited investigations. The present review examines the results from early reports studying oxalate transport and citrate transport in the kidney, describing the synergistic molecular mechanisms of SLC26A6 and NADC‑1 in the process of nephrolithiasis formation. A growing body of research has shown that nephrolithiasis is intricately associated with hypertension. Additionally, the recent investigations into the mediation of succinate via regulation of the synergistic molecular mechanism between the SLC26A6 and NADC‑1 transporters is summarized, revealing their functional role and their close association with the inositol triphosphate receptor‑binding protein to regulate blood pressure.
Collapse
Affiliation(s)
- Xingyue Yang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Shun Yao
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Jiaxing An
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Hai Jin
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Hui Wang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
6
|
Oreschak K, Saba LM, Rafaels N, Ambardekar AV, Deininger KM, PageII R, Lindenfeld J, Aquilante CL. Variants in mycophenolate and CMV antiviral drug pharmacokinetic and pharmacodynamic genes and leukopenia in heart transplant recipients. J Heart Lung Transplant 2021; 40:917-925. [PMID: 34253456 DOI: 10.1016/j.healun.2021.05.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The objective was to assess the relationship between single nucleotide polymorphisms in mycophenolate and cytomegalovirus antiviral drug pharmacokinetic and pharmacodynamic genes and drug-induced leukopenia in adult heart transplant recipients. METHODS This retrospective analysis included n = 148 patients receiving mycophenolate and a cytomegalovirus antiviral drug. In total, 81 single nucleotide polymorphisms in 21 pharmacokinetic and 23 pharmacodynamic genes were selected for investigation. The primary and secondary outcomes were mycophenolate and/or cytomegalovirus antiviral drug-induced leukopenia, defined as a white blood cell count <3.0 × 109/L, in the first six and 12 months post-heart transplant, respectively. RESULTS Mycophenolate and/or cytomegalovirus antiviral drug-induced leukopenia occurred in 20.3% of patients. HNF1A rs1169288 A>C (p.I27L) was associated with drug-induced leukopenia (unadjusted p = 0.002; false discovery rate <20%) in the first six months post-transplant. After adjusting for covariates, HNF1A rs1169288 variant C allele carriers had significantly higher odds of leukopenia compared to A/A homozygotes (odds ratio 6.19; 95% CI 1.97-19.43; p = 0.002). Single nucleotide polymorphisms in HNF1A, SLC13A1, and MBOAT1 were suggestively associated (p < 0.05) with the secondary outcome but were not significant after adjusting for multiple comparisons. CONCLUSION Our data suggest genetic variation may play a role in the development of leukopenia in patients receiving mycophenolate and cytomegalovirus antiviral drugs after heart transplantation. Following replication, pharmacogenetic markers, such as HNF1A rs1169288, could help identify patients at higher risk of drug-induced leukopenia, allowing for more personalized immunosuppressant therapy and cytomegalovirus prophylaxis following heart transplantation.
Collapse
Affiliation(s)
- Kris Oreschak
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, USA
| | - Laura M Saba
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, USA
| | - Nicholas Rafaels
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Amrut V Ambardekar
- Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kimberly M Deininger
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, USA
| | - RobertL PageII
- Department of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, USA
| | - JoAnn Lindenfeld
- Division of Cardiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Christina L Aquilante
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, USA.
| |
Collapse
|
7
|
Willmes DM, Kurzbach A, Henke C, Schumann T, Zahn G, Heifetz A, Jordan J, Helfand SL, Birkenfeld AL. The longevity gene INDY ( I 'm N ot D ead Y et) in metabolic control: Potential as pharmacological target. Pharmacol Ther 2018; 185:1-11. [DOI: 10.1016/j.pharmthera.2017.10.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Scheibener S, Conley JM, Buchwalter D. Sulfate transport kinetics and toxicity are modulated by sodium in aquatic insects. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 190:62-69. [PMID: 28692867 DOI: 10.1016/j.aquatox.2017.06.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/21/2017] [Accepted: 06/25/2017] [Indexed: 06/07/2023]
Abstract
The salinization of freshwater ecosystems is emerging as a major ecological issue. Several anthropogenic causes of salinization (e.g. surface coal mining, hydro-fracking, road de-icing, irrigation of arid lands, etc.) are associated with biodiversity losses in freshwater ecosystems. Because insects tend to dominate freshwater ecology, it is important that we develop a better understanding of how and why different species respond to salinity matrices dominated by different major ions. This study builds upon previous work demonstrating that major ion toxicity to the mayfly Neocloeon triangulifer was apparently due to the ionic composition of water rather than specific conductance. Synthetic waters with low Ca:Mg ratios and high SO4:Na ratios produced toxicity, whereas waters with higher Ca:Mg ratios and lower SO4:Na ratios were not toxic to mayflies at comparable conductivities. Here we used a radiotracer approach to show that Mg did not competitively exclude Ca uptake at environmentally realistic ratios in 4 aquatic insect species. We characterized SO4 uptake kinetics in 5 mayflies and assessed the influence of different ions on SO4 uptake. Dual label experiments show an inverse relationship between SO4 and Na transport rates as SO4 was held constant and Na was increased, suggesting that Na (and not Cl or HCO3) is antagonistic to SO4 transport. Based on this observation, we tested the hypothesis that increasing Na would protect against SO4 induced toxicity in a Na-dependent manner. Increasing Na from 0.7 to 10.9mM improved 96-h survivorship associated with 20.8mM SO4 from 44% to 73% in a concentration dependent manner. However, when Na reached 21.8mM, survivorship decreased to 16%, suggesting that other interactive effects of major ions caused toxicity under those conditions. Thus, the combination of elevated sulfate and low sodium commonly observed in streams affected by mountaintop coal mining has the potential to cause toxicity in sensitive aquatic insects. Overall, it is important that we develop a better understanding of major ion toxicity to effectively mitigate and protect freshwater biodiversity from salinization.
Collapse
Affiliation(s)
- Shane Scheibener
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Justin M Conley
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - David Buchwalter
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
9
|
Huang B, Wang H, Yang B. Water Transport Mediated by Other Membrane Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 969:251-261. [PMID: 28258579 DOI: 10.1007/978-94-024-1057-0_17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Water transport through membrane is so intricate that there are still some debates. (Aquaporins) AQPs are entirely accepted to allow water transmembrane movement depending on osmotic gradient. Cotransporters and uniporters , however, are also concerned in water homeotatsis. Urea transporter B (UT-B) has a single-channel water permeability that is similar to AQP1. Cystic fibrosis transmembrane conductance regulator (CFTR ) was initially thought as a water channel but now not believed to transport water directly. By cotranporters, water is transported by water osmosis coupling with substrates, which explains how water is transported across the isolated small intestine. This chapter provides information about water transport mediated by other membrane proteins except AQPs .
Collapse
Affiliation(s)
- Boyue Huang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Hongkai Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Department of Anatomy, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Baoxue Yang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing, 100191, China.
| |
Collapse
|
10
|
Biber J, Murer H, Mohebbi N, Wagner C. Renal Handling of Phosphate and Sulfate. Compr Physiol 2014; 4:771-92. [DOI: 10.1002/cphy.c120031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Willmes DM, Birkenfeld AL. The Role of INDY in Metabolic Regulation. Comput Struct Biotechnol J 2013; 6:e201303020. [PMID: 24688728 PMCID: PMC3962103 DOI: 10.5936/csbj.201303020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 12/02/2013] [Accepted: 12/02/2013] [Indexed: 01/20/2023] Open
Abstract
Reduced expression of the Indy (I'm Not Dead Yet) gene in D. melanogaster and C. elegans extends longevity. Indy and its mammalian homolog mINDY (Slc13a5, NaCT) are transporters of TCA cycle intermediates, mainly handling the uptake of citrate via the plasma membrane into the cytosol. Deletion of mINDY in mice leads to significant metabolic changes akin to caloric restriction, likely caused by reducing the effects of mINDY-imported citrate on fatty acid and cholesterol synthesis, glucose metabolism and ß-oxidation. This review will provide an overview on different mammalian SLC1 3 family members with a focus on mINDY (SLCl3A5) in glucose and energy metabolism and will highlight the role of mINDY as a putative therapeutic target for the treatment of obesity, non-alcoholic fatty liver disease and type 2 diabetes.
Collapse
Affiliation(s)
- Diana M Willmes
- Department of Endocrinology, Diabetes and Nutrition, Center for Cardiovascular Research, Charité - University School of Medicine, Berlin, Germany
| | - Andreas L Birkenfeld
- Department of Endocrinology, Diabetes and Nutrition, Center for Cardiovascular Research, Charité - University School of Medicine, Berlin, Germany
| |
Collapse
|
12
|
Markovich D. Na+–sulfate cotransporter SLC13A1. Pflugers Arch 2013; 466:131-7. [DOI: 10.1007/s00424-013-1388-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 10/13/2013] [Accepted: 10/15/2013] [Indexed: 02/07/2023]
|
13
|
Abstract
The SLC13 gene family is comprised of five sequence related proteins that are found in animals, plants, yeast and bacteria. Proteins encoded by the SLC13 genes are divided into the following two groups of transporters with distinct anion specificities: the Na(+)-sulfate (NaS) cotransporters and the Na(+)-carboxylate (NaC) cotransporters. Members of this gene family (in ascending order) are: SLC13A1 (NaS1), SLC13A2 (NaC1), SLC13A3 (NaC3), SLC13A4 (NaS2) and SLC13A5 (NaC2). SLC13 proteins encode plasma membrane polypeptides with 8-13 putative transmembrane domains, and are expressed in a variety of tissues. They are all Na(+)-coupled symporters with strong cation preference for Na(+), and insensitive to the stilbene 4, 4'-diisothiocyanatostilbene-2, 2'-disulphonic acid (DIDS). Their Na(+):anion coupling ratio is 3:1, indicative of electrogenic properties. They have a substrate preference for divalent anions, which include tetra-oxyanions for the NaS cotransporters or Krebs cycle intermediates (including mono-, di- and tricarboxylates) for the NaC cotransporters. This review will describe the molecular and cellular mechanisms underlying the biochemical, physiological and structural properties of the SLC13 gene family.
Collapse
Affiliation(s)
- Daniel Markovich
- Molecular Physiology Group, School of Biomedical Sciences, University of Queensland, Brisbane St Lucia, QLD, Australia.
| |
Collapse
|
14
|
Bergeron M, Clémençon B, Hediger M, Markovich D. SLC13 family of Na+-coupled di- and tri-carboxylate/sulfate transporters. Mol Aspects Med 2013; 34:299-312. [DOI: 10.1016/j.mam.2012.12.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 11/16/2012] [Indexed: 12/22/2022]
|
15
|
Ho HTB, Dahlin A, Wang J. Expression Profiling of Solute Carrier Gene Families at the Blood-CSF Barrier. Front Pharmacol 2012; 3:154. [PMID: 22936914 PMCID: PMC3426838 DOI: 10.3389/fphar.2012.00154] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 08/01/2012] [Indexed: 12/12/2022] Open
Abstract
The choroid plexus (CP) is a highly vascularized tissue in the brain ventricles and acts as the blood-cerebrospinal fluid (CSF) barrier (BCSFB). A main function of the CP is to secrete CSF, which is accomplished by active transport of small ions and water from the blood side to the CSF side. The CP also supplies the brain with certain nutrients, hormones, and metal ions, while removing metabolites and xenobiotics from the CSF. Numerous membrane transporters are expressed in the CP in order to facilitate the solute exchange between the blood and the CSF. The solute carrier (SLC) superfamily represents a major class of transporters in the CP that constitutes the molecular mechanisms for CP function. Recently, we systematically and quantitatively examined Slc gene expression in 20 anatomically comprehensive brain areas in the adult mouse brain using high-quality in situ hybridization data generated by the Allen Brain Atlas. Here we focus our analysis on Slc gene expression at the BCSFB using previously obtained data. Of the 252 Slc genes present in the mouse brain, 202 Slc genes were found at detectable levels in the CP. Unsupervised hierarchical cluster analysis showed that the CP Slc gene expression pattern is substantially different from the other 19 analyzed brain regions. The majority of the Slc genes in the CP are expressed at low to moderate levels, whereas 28 Slc genes are present in the CP at the highest levels. These highly expressed Slc genes encode transporters involved in CSF secretion, energy production, and transport of nutrients, hormones, neurotransmitters, sulfate, and metal ions. In this review, the functional characteristics and potential importance of these Slc transporters in the CP are discussed, with particular emphasis on their localization and physiological functions at the BCSFB.
Collapse
Affiliation(s)
- Horace T B Ho
- Department of Pharmaceutics, University of Washington Seattle, WA, USA
| | | | | |
Collapse
|
16
|
Markovich D. Slc13a1 and Slc26a1 KO models reveal physiological roles of anion transporters. Physiology (Bethesda) 2012; 27:7-14. [PMID: 22311966 DOI: 10.1152/physiol.00041.2011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Anion transporters NaS1 (SLC13A1) and Sat1 (SLC26A1) mediate sulfate (re)absorption across renal proximal tubule and small intestinal epithelia, thereby regulating blood sulfate levels. Disruption of murine NaS1 and Sat1 genes leads to hyposulfatemia and hypersulfaturia. Sat1-null mice also exhibit hyperoxalemia, hyperoxaluria, and calcium oxalate urolithiasis. This review will highlight the current pathophysiological features of NaS1- and Sat1-null mice resulting from alterations in circulating sulfate and oxalate anion levels.
Collapse
Affiliation(s)
- Daniel Markovich
- Molecular Physiology Group, School of Biomedical Sciences, University of Queensland, St. Lucia, Australia.
| |
Collapse
|
17
|
Increased lifespan in hyposulfatemic NaS1 null mice. Exp Gerontol 2011; 46:833-5. [PMID: 21651971 DOI: 10.1016/j.exger.2011.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/17/2011] [Accepted: 05/23/2011] [Indexed: 11/23/2022]
Abstract
Sulfate (SO(4)(2-)) plays an important role in mammalian growth and development. In this study, hyposulfatemic NaS1 null (Nas1-/-) mice were used to investigate the consequences of perturbed SO(4)(2-) homeostasis on longevity. Median life spans were increased (by ≈25%) in male and female Nas1-/- mice when compared with Nas1+/+ mice. At 1 yr of age, serum SO(4)(2-) levels remained low in Nas1-/- mice (≈0.16 mM) when compared to Nas1+/+ mice (≈0.96 mM). RT-PCR revealed increased hepatic mRNA levels of Sirt1 (by ≈60%), Cat (by ≈48%), Hdac3 (by ≈22%), Trp53 and Cd55 (by ≈36%) in Nas1-/- mice, genes linked to ageing. Histological analyses of livers from 2 yr old mice revealed neoplasms in >50% of Nas1+/+ mice but not in Nas1-/- mice. This is the first study to report increased lifespan, decreased hepatic tumours and increased hepatic expression of genes linked to ageing in hyposulfatemic Nas1-/- mice, implicating a potential role of SO(4)(2-) in mammalian longevity and cancer.
Collapse
|
18
|
Markovich D. Physiological roles of renal anion transporters NaS1 and Sat1. Am J Physiol Renal Physiol 2011; 300:F1267-70. [PMID: 21490138 DOI: 10.1152/ajprenal.00061.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This review will briefly summarize current knowledge on the renal anion transporters sodium-sulfate cotransporter-1 (NaS1; Slc13a1) and sulfate-anion transporter-1 (Sat1; Slc26a1). NaS1 and Sat1 mediate renal proximal tubular sulfate reabsorption and thereby regulate blood sulfate levels. Sat1 also mediates renal oxalate transport and controls blood oxalate levels. Targeted disruption of murine NaS1 and Sat1 leads to hyposulfatemia and hypersulfaturia. Sat1 null mice also exhibit hyperoxalemia, hyperoxaluria, and calcium oxalate urolithiasis. NaS1 and Sat1 null mice also have other phenotypes that result due to changes in blood sulfate and oxalate levels. Experimental data indicate that NaS1 is essential for maintaining sulfate homeostasis, whereas Sat1 controls both sulfate and oxalate homeostasis in vivo.
Collapse
Affiliation(s)
- Daniel Markovich
- Molecular Physiology Group, School of Biomedical Sciences, Univ. of Queensland, St. Lucia, Australia.
| |
Collapse
|
19
|
Markovich D. Physiological roles of mammalian sulfate transporters NaS1 and Sat1. Arch Immunol Ther Exp (Warsz) 2011; 59:113-6. [PMID: 21298488 DOI: 10.1007/s00005-011-0114-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 10/08/2010] [Indexed: 11/29/2022]
Abstract
This review summarizes the physiological roles of the renal sulfate transporters NaS1 (Slc13a1) and Sat1 (Slc26a1). NaS1 and Sat1 encode renal anion transporters that mediate proximal tubular sulfate reabsorption and thereby regulate blood sulfate levels. Targeted disruption of murine NaS1 and Sat1 leads to hyposulfatemia and hypersulfaturia. Sat1 null mice also exhibit hyperoxalemia, hyperoxaluria and calcium oxalate urolithiasis. Dysregulation of NaS1 and Sat1 leads to hypersulfaturia, hyposulfatemia and liver damage. Loss of Sat1 leads additionally to hyperoxaluria with hyperoxalemia, nephrocalcinosis and calcium oxalate urolithiasis. These data indicate that the renal anion transporters NaS1 and Sat1 are essential for sulfate and oxalate homeostasis, respectively.
Collapse
Affiliation(s)
- Daniel Markovich
- School of Biomedical Sciences, University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
20
|
Strickler MA, Hall JA, Gaiko O, Pajor AM. Functional characterization of a Na(+)-coupled dicarboxylate transporter from Bacillus licheniformis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2489-96. [PMID: 19840771 DOI: 10.1016/j.bbamem.2009.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 09/02/2009] [Accepted: 10/12/2009] [Indexed: 10/20/2022]
Abstract
The Na(+)-coupled dicarboxylate transporter, SdcL, from Bacillus licheniformis is a member of the divalent anion/Na(+) symporter (DASS) family that includes the bacterial Na(+)/dicarboxylate cotransporter SdcS (from Staphyloccocus aureus) and the mammalian Na(+)/dicarboxylate cotransporters, NaDC1 and NaDC3. The transport properties of SdcL produced in Escherichia coli are similar to those of its prokaryotic and eukaryotic counterparts, involving the Na(+)-dependent transport of dicarboxylates such as succinate or malate across the cytoplasmic membrane with a K(m) of approximately 6 microM. SdcL may also transport aspartate, alpha-ketoglutarate and oxaloacetate with low affinity. The cotransport of Na(+) and dicarboxylate by SdcL has an apparent stoichiometry of 2:1, and a K(0.5) for Na(+) of 0.9 mM. Our findings represent the characterization of another prokaryotic protein of the DASS family with transport properties similar to its eukaryotic counterparts, but with a broader substrate specificity than other prokaryotic DASS family members. The broader range of substrates carried by SdcL may provide insight into domains of the protein that allow a more flexible or larger substrate binding pocket.
Collapse
Affiliation(s)
- Melodie A Strickler
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, La Jolla, CA 92093-0718, USA
| | | | | | | |
Collapse
|
21
|
Ueki T, Furuno N, Xu Q, Nitta Y, Kanamori K, Michibata H. Identification and biochemical analysis of a homolog of a sulfate transporter from a vanadium-rich ascidian Ascidia sydneiensis samea. Biochim Biophys Acta Gen Subj 2009; 1790:1295-300. [DOI: 10.1016/j.bbagen.2009.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 03/31/2009] [Accepted: 04/01/2009] [Indexed: 10/20/2022]
|
22
|
Krick W, Schnedler N, Burckhardt G, Burckhardt BC. Ability of sat-1 to transport sulfate, bicarbonate, or oxalate under physiological conditions. Am J Physiol Renal Physiol 2009; 297:F145-54. [DOI: 10.1152/ajprenal.90401.2008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tubular reabsorption of sulfate is achieved by the sodium-dependent sulfate transporter, NaSi-1, located at the apical membrane, and the sulfate-anion exchanger, sat-1, located at the basolateral membrane. To delineate the physiological role of rat sat-1, [35S]sulfate and [14C]oxalate uptake into sat-1-expressing oocytes was determined under various experimental conditions. Influx of [35S]sulfate was inhibited by bicarbonate, thiosulfate, sulfite, and oxalate, but not by sulfamate and sulfide, in a competitive manner with Ki values of 2.7 ± 1.3 mM, 101.7 ± 9.7 μM, 53.8 ± 10.9 μM, and 63.5 ± 38.7 μM, respectively. Vice versa, [14C]oxalate uptake was inhibited by sulfate with a Ki of 85.9 ± 9.5 μM. The competitive type of inhibition indicates that these compounds are most likely substrates of sat-1. Physiological plasma bicarbonate concentrations (25 mM) reduced sulfate and oxalate uptake by more than 75%. Simultaneous application of sulfate, bicarbonate, and oxalate abolished sulfate as well as oxalate uptake. These data and electrophysiological studies using a two-electrode voltage-clamp device provide evidence that sat-1 preferentially works as an electroneutral sulfate-bicarbonate or oxalate-bicarbonate exchanger. In kidney proximal tubule cells, sat-1 likely completes sulfate reabsorption from the ultrafiltrate across the basolateral membrane in exchange for bicarbonate. In hepatocytes, oxalate extrusion is most probably mediated either by an exchange for sulfate or bicarbonate.
Collapse
|
23
|
|
24
|
Dawson PA, Gardiner B, Lee S, Grimmond S, Markovich D. Kidney transcriptome reveals altered steroid homeostasis in NaS1 sulfate transporter null mice. J Steroid Biochem Mol Biol 2008; 112:55-62. [PMID: 18790054 DOI: 10.1016/j.jsbmb.2008.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 06/04/2008] [Accepted: 08/18/2008] [Indexed: 10/21/2022]
Abstract
Sulfate is essential for human growth and development, and circulating sulfate levels are maintained by the NaS1 sulfate transporter which is expressed in the kidney. Previously, we generated a NaS1-null (Nas1(-/-)) mouse which exhibits hyposulfatemia. In this study, we investigated the kidney transcriptome of Nas1(-/-) mice. We found increased (n=25) and decreased (n=60) mRNA levels of genes with functional roles that include sulfate transport and steroid metabolism. Corticosteroid-binding globulin was the most up-regulated gene (110% increase) in Nas1(-/-) mouse kidney, whereas the sulfate anion transporter-1 (Sat1) was among the most down-regulated genes (>or=50% decrease). These findings led us to investigate the circulating and urinary steroid levels of Nas1(-/-) and Nas1(+/+) mice, which revealed reduced blood levels of corticosterone ( approximately 50% decrease), dehydroepiandrosterone (DHEA, approximately 30% decrease) and DHEA-sulfate ( approximately 40% decrease), and increased urinary corticosterone ( approximately 16-fold increase) and DHEA ( approximately 40% increase) levels in Nas1(-/-) mice. Our data suggest that NaS1 is essential for maintaining a normal metabolic state in the kidney and that loss of NaS1 function leads to reduced circulating steroid levels and increased urinary steroid excretion.
Collapse
Affiliation(s)
- Paul Anthony Dawson
- School of Biomedical Sciences, University of Queensland, St. Lucia, QLD, Australia.
| | | | | | | | | |
Collapse
|
25
|
Markovich D, Romano A, Storelli C, Verri T. Functional and structural characterization of the zebrafish Na+-sulfate cotransporter 1 (NaS1) cDNA and gene (slc13a1). Physiol Genomics 2008; 34:256-64. [DOI: 10.1152/physiolgenomics.90234.2008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sulfate plays an essential role during growth, development and cellular metabolism. In this study, we characterized the function and structure of the zebrafish ( Danio rerio) Na+-sulfate cotransporter 1 (NaS1) cDNA and gene ( slc13a1). Zebrafish NaS1 encodes a protein of 583 amino acids with 13 putative transmembrane domains. Expression of zebrafish NaS1 protein in Xenopus oocytes led to Na+-sulfate cotransport, which was significantly inhibited by thiosulfate, selenate, molybdate, and tungstate. Zebrafish NaS1 transport kinetics were: Vmax = 1,731.670 ± 92.853 pmol sulfate/oocyte·hour and Km = 1.414 ± 0.275 mM for sulfate and Vmax = 307.016 ± 32.992 pmol sulfate/oocyte·hour, Km = 24.582 ± 4.547 mM and n (Hill coefficient) = 1.624 ± 0.354 for sodium. Zebrafish NaS1 mRNA is developmentally expressed in embryos from day 1 postfertilization and in the intestine, kidney, brain, and eye of adult zebrafish. The zebrafish NaS1 gene slc13a1 contains 15 exons spanning 8,716 bp. Characterization of the zebrafish NaS1 contributes to a greater understanding of sulfate transporters in a well-defined genetic model and will allow the elucidation of evolutionary and functional relationships among vertebrate sulfate transporters.
Collapse
Affiliation(s)
- Daniel Markovich
- Molecular Biology Lab, School of Biomedical Sciences, University of Queensland, St. Lucia, Australia
| | - Alessandro Romano
- Department of Biological and Environmental Sciences and Technologies, University of Salento (formerly University of Lecce), Lecce, Italy
| | - Carlo Storelli
- Department of Biological and Environmental Sciences and Technologies, University of Salento (formerly University of Lecce), Lecce, Italy
| | - Tiziano Verri
- Department of Biological and Environmental Sciences and Technologies, University of Salento (formerly University of Lecce), Lecce, Italy
| |
Collapse
|
26
|
Lee HJ, Sagawa K, Shi W, Murer H, Morris ME. Hormonal Regulation of Sodium/Sulfate Co-Transport in Renal Epithelial Cells. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1525-1373.2000.22506.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Lee H, Hubbert ML, Osborne TF, Woodford K, Zerangue N, Edwards PA. Regulation of the sodium/sulfate co-transporter by farnesoid X receptor alpha. J Biol Chem 2007; 282:21653-61. [PMID: 17545158 DOI: 10.1074/jbc.m700897200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fxralpha is known to regulate a variety of metabolic processes, including bile acid, cholesterol, and carbohydrate metabolism. In this study, we show direct evidence that Fxralpha is a key player in maintaining sulfate homeostasis. We identified and characterized the sodium/sulfate co-transporter (NaS-1; Slc13a1) as an Fxralpha target gene expressed in the kidney and intestine. Electromobility shift assays, chromatin immunoprecipitation, and promoter reporter studies identified a single functional Fxralpha response element in the second intron of the mouse Slc13a1 gene. Treatment of wild-type mice with GW4064, a synthetic Fxralpha agonist, induced Slc13a1 mRNA in the intestine and kidney. Slc13a1 mRNA was also induced in the kidney and intestine of wild-type, but not Fxralpha-/- mice, after treatment with the hepatotoxin alpha-naphthylisothiocyanate, which is known to result in elevated blood bile acid levels. Finally, we observed a decrease in Slc13a1 mRNA in the kidney and intestine of Fxralpha-/- mice and a corresponding increase in urinary excretion of free sulfates as compared with wild-type mice. These results demonstrate that mouse Slc13a1 is a novel Fxralpha target gene expressed in the kidney and intestine and that in the absence of Fxralpha, mice waste sulfate into the urine. Thus, Fxralpha is necessary for normal sulfate homeostasis in vivo.
Collapse
Affiliation(s)
- Hans Lee
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Sulfate is essential for normal cellular function. The kidney plays a major role in sulfate homeostasis. Sulfate is freely filtered and then undergoes net reabsorption in the proximal tubule. The apical membrane Na(+)/sulfate cotransporter NaS1 (SLC13A1) has a major role in mediating proximal tubule sulfate reabsorption, as demonstrated by the findings of hyposulfatemia and hypersulfaturia in Nas1-null mice. The anion exchanger SAT1 (SLC26A1), the founding member of the SLC26 sulfate transporter family, mediates sulfate exit across the basolateral membrane to complete the process of transtubular sulfate reabsorption. Another member of this family, CFEX (SLC26A6), is present at the apical membrane of proximal tubular cells. It also can transport sulfate by anion exchange, which probably mediates backflux of sulfate into the lumen. Knockout mouse studies have demonstrated a major role of CFEX as an apical membrane Cl(-)/oxalate exchanger that contributes to NaCl reabsorption in the proximal tubule. Several additional SLC26 family members mediate sulfate transport and show some level of renal expression (e.g., SLC26A2, SLC26A7, SLC26A11). Their roles in mediating renal tubular sulfate transport are presently unknown. This paper reviews current data available on the function and regulation of three sulfate transporters (NaS1, SAT1, and CFEX) and their physiological roles in the kidney.
Collapse
Affiliation(s)
- Daniel Markovich
- Department of Physiology and Pharmacology, School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072 Australia.
| | | |
Collapse
|
29
|
Dawson PA, Pirlo KJ, Steane SE, Kunzelmann K, Chien YJ, Markovich D. Molecular cloning and characterization of the mouse Na+ sulfate cotransporter gene (Slc13a4): Structure and expression. Genes Genet Syst 2007; 81:265-72. [PMID: 17038798 DOI: 10.1266/ggs.81.265] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Sulfate is an essential ion required for numerous functions in mammalian physiology. Due to its hydrophilic nature, cells require sulfate transporters on their plasma membranes to allow entry of sulfate into cells. In this study, we identified a new mouse Na(+)-sulfate cotransporter (mNaS2), characterized its tissue distribution and determined its cDNA and gene (Slc13a4) structures. mNaS2 mRNA was expressed in placenta, brain, lung, eye, heart, testis, thymus and liver. The mouse NaS2 cDNA spans 3384 nucleotides and its open frame encodes a protein of 624 amino acids. Slc13a4 maps to mouse chromosome 6B1 and contains 16 exons, spanning over 40 kb in length. Its 5'-flanking region contains CAAT- and GC-box motifs and a number of putative transcription factor binding sites, including GATA-1, MTF-1, STAT6 and HNF4 consensus sequences. This is the first study to define the tissue distribution of mNaS2 and resolve its cDNA and gene structures, which will allow us to investigate mNaS2 gene expression in vivo and determine its role in mammalian physiology.
Collapse
Affiliation(s)
- Paul A Dawson
- School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | | | | | | | | | | |
Collapse
|
30
|
Hall JA, Pajor AM. Functional reconstitution of SdcS, a Na+-coupled dicarboxylate carrier protein from Staphylococcus aureus. J Bacteriol 2007; 189:880-5. [PMID: 17114260 PMCID: PMC1797332 DOI: 10.1128/jb.01452-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Accepted: 11/07/2006] [Indexed: 01/09/2023] Open
Abstract
In Staphylococcus aureus, the transport of dicarboxylates is mediated in part by the Na+-linked carrier protein SdcS. This transporter is a member of the divalent-anion/Na+ symporter (DASS) family, a group that includes the mammalian Na+/dicarboxylate cotransporters NaDC1 and NaDC3. In earlier work, we cloned and expressed SdcS in Escherichia coli and found it to have transport properties similar to those of its eukaryotic counterparts (J. A. Hall and A. M. Pajor, J. Bacteriol. 187:5189-5194, 2005). Here, we report the partial purification and subsequent reconstitution of functional SdcS into liposomes. These proteoliposomes exhibited succinate counterflow activity, as well as Na+ electrochemical-gradient-driven transport. Examination of substrate specificity indicated that the minimal requirement necessary for transport was a four-carbon terminal dicarboxylate backbone and that productive substrate-transporter interaction was sensitive to substitutions at the substrate C-2 and C-3 positions. Further analysis established that SdcS facilitates an electroneutral symport reaction having a 2:1 cation/dicarboxylate ratio. This study represents the first characterization of a reconstituted Na+-coupled DASS family member, thus providing an effective method to evaluate functional, as well as structural, aspects of DASS transporters in a system free of the complexities and constraints associated with native membrane environments.
Collapse
Affiliation(s)
- Jason A Hall
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0645, USA
| | | |
Collapse
|
31
|
Lee S, Dawson PA, Hewavitharana AK, Shaw PN, Markovich D. Disruption of NaS1 sulfate transport function in mice leads to enhanced acetaminophen-induced hepatotoxicity. Hepatology 2006; 43:1241-7. [PMID: 16729303 DOI: 10.1002/hep.21207] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Sulfate is required for detoxification of xenobiotics such as acetaminophen (APAP), a leading cause of liver failure in humans. The NaS1 sulfate transporter maintains blood sulfate levels sufficiently high for sulfonation reactions to work effectively for drug detoxification. In the present study, we identified two loss-of-function polymorphisms in the human NaS1 gene and showed the Nas1-null mouse to be hypersensitive to APAP hepatotoxicity. APAP treatment led to increased liver damage and decreased hepatic glutathione levels in the hyposulfatemic Nas1-null mice compared with that in normosulfatemic wild-type mice. Analysis of urinary APAP metabolites revealed a significantly lower ratio of APAP-sulfate to APAP-glucuronide in the Nas1-null mice. These results suggest hyposulfatemia increases sensitivity to APAP-induced hepatotoxicity by decreasing the sulfonation capacity to metabolize APAP. In conclusion, the results of this study highlight the importance of plasma sulfate level as a key modulator of acetaminophen metabolism and suggest that individuals with reduced NaS1 sulfate transporter function would be more sensitive to hepatotoxic agents.
Collapse
Affiliation(s)
- Soohyun Lee
- School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | | | | | | | | |
Collapse
|
32
|
Quondamatteo F, Krick W, Hagos Y, Krüger MH, Neubauer-Saile K, Herken R, Ramadori G, Burckhardt G, Burckhardt BC. Localization of the sulfate/anion exchanger in the rat liver. Am J Physiol Gastrointest Liver Physiol 2006; 290:G1075-81. [PMID: 16357056 DOI: 10.1152/ajpgi.00492.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Although the sulfate/anion transporter (sat-1; SLC26A1) was isolated from a rat liver cDNA library by expression cloning, localization of sat-1 within the liver and its contribution to the transport of sulfate and organo sulfates have remained unresolved. In situ hybridization and immunohistochemical studies were undertaken to demonstrate the localization of sat-1 in liver tissue. RT-PCR studies on isolated hepatocytes and liver endothelial and stellate cells in culture were performed to test for the presence of sat-1 in these cells. In sulfate uptake and efflux experiments, the substrate specificity of sat-1 was evaluated. Sat-1 mRNA was found in hepatocytes and endothelial cells. Sat-1 protein was localized in sinusoidal membranes and along the borders of hepatocytes. The canalicular region and bile capillaries were not stained. Sulfate uptake was only slightly affected by sulfamoyl diuretics or organo sulfates. Sulfate efflux from sat-1-expressing oocytes was enhanced in the presence of bicarbonate, indicating sulfate/bicarbonate exchange. Estrone sulfate was not transported by sat-1. Sat-1 may be responsible for the uptake of inorganic sulfate from the blood into hepatocytes to enable sulfation reactions. In hepatocytes and endothelial cells, sat-1 may also supply sulfate for proteoglycan synthesis.
Collapse
Affiliation(s)
- Fabio Quondamatteo
- Abteilung Histologie, Georg August Universität Göttingen, Humboldtallee 23, Göttingen 37073, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Joshi AD, Pajor AM. Role of conserved prolines in the structure and function of the Na+/dicarboxylate cotransporter 1, NaDC1. Biochemistry 2006; 45:4231-9. [PMID: 16566597 PMCID: PMC2547120 DOI: 10.1021/bi052064y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Na+/dicarboxylate cotransporter 1 (NaDC1) is a low-affinity transporter for citric acid cycle intermediates such as succinate and citrate. The sequence of NaDC1 contains a number of conserved proline residues in predicted transmembrane helices (TMs) 7 and 10. These transmembrane domains are of particular importance because they may be involved in determining the substrate or cation-binding affinity in NaDC1. Four conserved proline residues in TMs 7 and 10 of rabbit NaDC1 were replaced with alanine to promote ideal alpha helix or glycine to promote free conformation, and the mutant transporters were expressed in the HRPE cell line. Mutations of prolines in TM 10 produced decreased protein expression and activity, whereas mutations of prolines in TM 7 completely abolished protein expression and activity. The chemical chaperone glycerol was found to improve the expression of the Pro-351 mutants in TM 7, suggesting that these mutants had defects in trafficking. The inactive mutant transporters at position 351 could also be rescued by the addition of a proline at a second site. For example, the P351A-F347P mutant had restored activity, although its substrate specificity was altered. We conclude that, in TM 7, Pro-327 may be of particular importance in the function of the transporter, whereas Pro-351 may affect protein targeting. The prolines in TM 10, at positions 523 and 524, may not be directly involved in the transporter function but may be necessary for maintaining structure.
Collapse
Affiliation(s)
- Aditya D. Joshi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-0645
| | - Ana M. Pajor
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-0645
| |
Collapse
|
34
|
Bhargava MM, Kinne-Saffran E, Kinne RKH, Warren RF, Hannafin JA. Characterization of sulfate, proline, and glucose transport systems in anterior cruciate and medial collateral ligament cells. Can J Physiol Pharmacol 2006; 83:1025-30. [PMID: 16391711 DOI: 10.1139/y05-094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study was undertaken to define the nature of key transport processes for sodium, glucose, proline, and sulfate in primary culture of canine anterior cruciate ligament (ACL) and medial collateral ligament (MCL) cells. Uptake studies using radiolabeled isotopes were performed and Na,K-ATPase activity was determined in cell lysates. At 25 degrees C both ACL and MCL cells showed a significant uptake of 86Rb. Ouabain inhibited Rb uptake by 55% in ACL cells and by 60% in MCL cells. The transport activity of Na,K-ATPase in intact cells was calculated to be 57 and 71 nmol.(mg protein)-1.(15 min)-1, respectively. The enzymatic activity of Na,K-ATPase in cell lysates was observed to be 104 for ACL cells and 121 nmol.(mg protein)-1.(15 min)-1 for MCL cells. Cytochalasin B, a known inhibitor of sodium-independent D-glucose transport, completely inhibited D-glucose uptake in ACL and MCL cells. Removal of Na+ or addition of 10-5 mol/L phlorizin, a potent inhibitor of the sodium-D-glucose cotransporter, did not alter D-glucose uptake, suggesting that glucose entered the cells using a sodium-independent pathway. Both ACL and MCL cells exhibited high sulfate uptake that was not altered by replacement of Na+ by N-methyl-D-glucamine, whereas DIDS, an inhibitor of sulfate/anion exchange abolished sulfate uptake in both cell types. Thus, neither cell type seems to possess a sodium-sulfate cotransport system. Rather, sulfate uptake appeared to be mediated by sulfate/anion exchange. Proline was rapidly taken up by ACL and MCL cells and its uptake was reduced by 85% when Na+ was replaced by N-methyl-D-glucamine, indicating that proline entered the cells via sodium-dependent cotransport systems. The data demonstrate that both ACL and MCL cells possess a highly active sodium pump, a secondary active sodium-proline cotransport system, and sodium-independent transport systems for D-glucose and sulfate.
Collapse
Affiliation(s)
- Madhu M Bhargava
- Laboratory for Soft Tissue Research, Hospital for Special Surgery, New York, NY 10021, USA.
| | | | | | | | | |
Collapse
|
35
|
Pajor AM. Molecular properties of the SLC13 family of dicarboxylate and sulfate transporters. Pflugers Arch 2005; 451:597-605. [PMID: 16211368 PMCID: PMC1866268 DOI: 10.1007/s00424-005-1487-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Accepted: 07/06/2005] [Indexed: 01/30/2023]
Abstract
The SLC13 gene family consists of five members in humans, with corresponding orthologs from different vertebrate species. All five genes code for sodium-coupled transporters that are found on the plasma membrane. Two of the transporters, NaS1 and NaS2, carry substrates such as sulfate, selenate and thiosulfate. The other members of the family (NaDC1, NaDC3, and NaCT) are transporters for di- and tri-carboxylates including succinate, citrate and alpha-ketoglutarate. The SLC13 transporters from vertebrates are electrogenic and they produce inward currents in the presence of sodium and substrate. Substrate-independent leak currents have also been described. Structure-function studies have identified the carboxy terminal half of these proteins as the most important for determining function. Transmembrane helices 9 and 10 may form part of the substrate permeation pathway and participate in conformational changes during the transport cycle. This review also discusses new members of the SLC13 superfamily that exhibit both sodium-dependent and sodium-independent transport mechanisms. The Indy protein from Drosophila, involved in determining lifespan, and the plant vacuolar malate transporter are both sodium-independent dicarboxylate transporters, possibly acting as exchangers. The purpose of this review is to provide an update on new advances in this gene family, particularly on structure-function studies and new members of the family.
Collapse
Affiliation(s)
- Ana M Pajor
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
36
|
Miyauchi S, Srinivas SR, Fei YJ, Gopal E, Umapathy NS, Wang H, Conway SJ, Ganapathy V, Prasad PD. Functional characteristics of NaS2, a placenta-specific Na+-coupled transporter for sulfate and oxyanions of the micronutrients selenium and chromium. Placenta 2005; 27:550-9. [PMID: 16129486 DOI: 10.1016/j.placenta.2005.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Revised: 05/06/2005] [Accepted: 05/10/2005] [Indexed: 11/29/2022]
Abstract
NaS2 is a Na+-coupled transporter for sulfate that belongs to the SLC13 gene family. This transporter was originally cloned from high endothelial venule endothelial cells, but nothing is known about the functional characteristics of this transporter except that it transports sulfate in a Na+-coupled manner. Northern blot analysis indicates that NaS2 is expressed most robustly in placenta. In the present study, we cloned NaS2 from rat placenta and characterized its transport function in detail using the Xenopus laevis oocyte expression system. Rat NaS2 consists of 629 amino acids and is highly similar to human NaS2. In situ hybridization studies with mouse placental sections show that NaS2 transcripts are expressed primarily in trophoblasts of the labyrinth zone. The expression of the transporter is confirmed in primary cultures of trophoblasts isolated from human placenta. When expressed in X. laevis oocytes, rat NaS2 mediates Na+-coupled transport of sulfate. The transport of sulfate is inhibited by oxyanions of selenium, chromium, arsenic, molybdenum, and phosphorous, suggesting that the transporter may mediate the transport of these oxyanions in addition to sulfate. The Kt for sulfate is 153+/-30 microM and the Na+:sulfate stoichiometry is 3:1. The transport process is electrogenic as evidenced from the inhibition of the uptake process by K+-induced depolarization. We conclude that NaS2 is a placenta-specific Na+-coupled, electrogenic, transporter for sulfate expressed in trophoblasts and that it is also responsible for the transport of oxyanions of the micronutrients selenium and chromium.
Collapse
Affiliation(s)
- S Miyauchi
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hall JA, Pajor AM. Functional characterization of a Na(+)-coupled dicarboxylate carrier protein from Staphylococcus aureus. J Bacteriol 2005; 187:5189-94. [PMID: 16030212 PMCID: PMC1196027 DOI: 10.1128/jb.187.15.5189-5194.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have cloned and functionally characterized a Na(+)-coupled dicarboxylate transporter, SdcS, from Staphylococcus aureus. This carrier protein is a member of the divalent anion/Na(+) symporter (DASS) family and shares significant sequence homology with the mammalian Na(+)/dicarboxylate cotransporters NaDC-1 and NaDC-3. Analysis of SdcS function indicates transport properties consistent with those of its eukaryotic counterparts. Thus, SdcS facilitates the transport of the dicarboxylates fumarate, malate, and succinate across the cytoplasmic membrane in a Na(+)-dependent manner. Furthermore, kinetic work predicts an ordered reaction sequence with Na(+) (K(0.5) of 2.7 mM) binding before dicarboxylate (K(m) of 4.5 microM). Because this transporter and its mammalian homologs are functionally similar, we suggest that SdcS may serve as a useful model for DASS family structural analysis.
Collapse
Affiliation(s)
- Jason A Hall
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0647, USA.
| | | |
Collapse
|
38
|
Lee A, Dawson PA, Markovich D. NaSi-1 and Sat-1: structure, function and transcriptional regulation of two genes encoding renal proximal tubular sulfate transporters. Int J Biochem Cell Biol 2005; 37:1350-6. [PMID: 15833267 DOI: 10.1016/j.biocel.2005.02.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Accepted: 02/14/2005] [Indexed: 10/25/2022]
Abstract
Sulfate (SO(4)2-) is an important anion regulating many metabolic and cellular processes. Maintenance of SO4(2-) homeostasis occurs in the renal proximal tubule via membrane transport proteins. Two SO(4)2- transporters that have been characterized and implicated in regulating serum SO4(2-) levels are: NaSi-1, a Na+-SO(4)2- cotransporter located at the brush border membrane and Sat-1, a SO4(2-)-anion exchanger located on the basolateral membranes of proximal tubular cells. Unlike Sat-1, for which very few studies have looked at regulation of its expression, NaSi-1 has been shown to be regulated by various hormones and dietary conditions in vivo. To study this further, NaSi-1 (SLC13A1) and Sat-1 (SLC26A1) gene structures were determined and recent studies have characterized their respective gene promoters. This review presents the current understanding of the transcriptional regulation of NaSi-1 and Sat-1, and describes possible pathogenetic implications which arise as a consequence of altered SO(4)2- homeostasis.
Collapse
Affiliation(s)
- Aven Lee
- School of Biomedical Sciences, University of Queensland, Brisbane, Qld 4072, Australia
| | | | | |
Collapse
|
39
|
Dawson PA, Pirlo KJ, Steane SE, Nguyen KA, Kunzelmann K, Chien YJ, Markovich D. The rat Na+-sulfate cotransporter rNaS2: functional characterization, tissue distribution, and gene (slc13a4) structure. Pflugers Arch 2005; 450:262-8. [PMID: 15889308 DOI: 10.1007/s00424-005-1414-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Accepted: 03/16/2005] [Indexed: 11/25/2022]
Abstract
Inorganic sulfate is essential for numerous functions in mammalian physiology. In the present study, we characterized the functional properties of the rat Na+-sulfate cotransporter NaS2 (rNaS2), determined its tissue distribution, and identified its gene (slc13a4) structure. Expression of rNaS2 protein in Xenopus oocytes led to a Na+-dependent transport of sulfate that was inhibited by phosphate, thiosulfate, tungstate, selenate, oxalate, and molybdate, but not by citrate, succinate, or DIDS. Transport kinetics of rNaS2 determined a K(M) for sulfate of 1.26 mM. Na+ kinetics determined a Hill coefficient of n=3.0+/-0.7, suggesting a Na+:SO4 (2-) stoichiometry of 3:1. rNaS2 mRNA was highly expressed in placenta, with lower levels found in the brain and liver. slc13a4 maps to rat chromosome 4 and contains 17 exons, spanning over 46 kb in length. This gene produces two alternatively spliced transcripts, of which the transcript lacking exon 2 is the most abundant form. Its 5' flanking region contains CAAT- and GC-box motifs and a number of putative transcription factor binding sites, including GATA-1, SP1, and AP-2 consensus sequences. This is the first study to characterize rNaS2 transport kinetics, define its tissue distribution, and resolve its gene (slc13a4) structure and 5' flanking region.
Collapse
Affiliation(s)
- Paul A Dawson
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | | | | | | | | | | | | |
Collapse
|
40
|
Nakada T, Zandi-Nejad K, Kurita Y, Kudo H, Broumand V, Kwon CY, Mercado A, Mount DB, Hirose S. Roles of Slc13a1 and Slc26a1 sulfate transporters of eel kidney in sulfate homeostasis and osmoregulation in freshwater. Am J Physiol Regul Integr Comp Physiol 2005; 289:R575-R585. [PMID: 15802556 DOI: 10.1152/ajpregu.00725.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sulfate is required for proper cell growth and development of all organisms. We have shown that the renal sulfate transport system has dual roles in euryhaline eel, namely, maintenance of sulfate homeostasis and osmoregulation of body fluids. To clarify the physiological roles of sulfate transporters in teleost fish, we cloned orthologs of the mammalian renal sulfate transporters Slc13a1 (NaSi-1) and Slc26a1 (Sat-1) from eel (Anguilla japonica) and assessed their functional characteristics, tissue localization, and regulated expression. Full-length cDNAs coding for ajSlc13a1 and ajSlc26a1 were isolated from a freshwater eel kidney cDNA library. Functional expression in Xenopus oocytes revealed the expected sulfate transport characteristics; furthermore, both transporters were inhibited by mercuric chloride. Northern blot analysis, in situ hybridization, and immunohistochemistry demonstrated robust apical and basolateral expression of ajSlc13a1 and ajSlc26a1, respectively, within the proximal tubule of freshwater eel kidney. Expression was dramatically reduced after the transfer of eels from freshwater to seawater; the circulating sulfate concentration in eels was in turn markedly elevated in freshwater compared with seawater conditions (19 mM vs. 1 mM). The reabsorption of sulfate via the apical ajSlc13a1 and basolateral ajSlc26a1 transporters may thus contribute to freshwater osmoregulation in euryhaline eels, via the regulation of circulating sulfate concentration.
Collapse
Affiliation(s)
- Tsutomu Nakada
- Dept. of Biological Sciences, Tokyo Institute of Technology, 4259-B-19 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Markovich D, Regeer RR, Kunzelmann K, Dawson PA. Functional characterization and genomic organization of the human Na(+)-sulfate cotransporter hNaS2 gene (SLC13A4). Biochem Biophys Res Commun 2005; 326:729-34. [PMID: 15607730 DOI: 10.1016/j.bbrc.2004.11.102] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Indexed: 11/17/2022]
Abstract
Sulfate plays an essential role in human growth and development. Here, we characterized the functional properties of the human Na(+)-sulfate cotransporter (hNaS2), determined its tissue distribution, and identified its gene (SLC13A4) structure. Expression of hNaS2 protein in Xenopus oocytes led to a Na(+)-dependent transport of sulfate that was inhibited by thiosulfate, phosphate, molybdate, selenate and tungstate, but not by oxalate, citrate, succinate, phenol red or DIDS. Transport kinetics of hNaS2 determined a K(m) for sulfate of 0.38mM, suggestive of a high affinity sulfate transporter. Na(+) kinetics determined a Hill coefficient of n=1.6+/-0.6, suggesting a Na:SO(4)(2-) stoichiometry of 2:1. hNaS2 mRNA was highly expressed in placenta and testis, with intermediate levels in brain and lower levels found in the heart, thymus, and liver. The SLC13A4 gene contains 16 exons, spanning over 47kb in length. Its 5'-flanking region contains CAAT- and GC-box motifs, and a number of putative transcription factor binding sites, including GATA-1, AP-1, and AP-2 consensus sequences. This is the first study to characterize hNaS2 transport kinetics, define its tissue distribution, and resolve its gene (SLC13A4) structure and 5' flanking region.
Collapse
Affiliation(s)
- Daniel Markovich
- School of Biomedical Sciences, University of Queensland, Brisbane, Qld 4072, Australia.
| | | | | | | |
Collapse
|
42
|
Bolt MJG, Liu W, Qiao G, Kong J, Zheng W, Krausz T, Cs-Szabo G, Sitrin MD, Li YC. Critical role of vitamin D in sulfate homeostasis: regulation of the sodium-sulfate cotransporter by 1,25-dihydroxyvitamin D3. Am J Physiol Endocrinol Metab 2004; 287:E744-9. [PMID: 15165995 DOI: 10.1152/ajpendo.00151.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As the fourth most abundant anion in the body, sulfate plays an essential role in numerous physiological processes. One key protein involved in transcellular transport of sulfate is the sodium-sulfate cotransporter NaSi-1, and previous studies suggest that vitamin D modulates sulfate homeostasis by regulating NaSi-1 expression. In the present study, we found that, in mice lacking the vitamin D receptor (VDR), NaSi-1 expression in the kidney was reduced by 72% but intestinal NaSi-1 levels remained unchanged. In connection with these findings, urinary sulfate excretion was increased by 42% whereas serum sulfate concentration was reduced by 50% in VDR knockout mice. Moreover, levels of hepatic glutathione and skeletal sulfated proteoglycans were also reduced by 18 and 45%, respectively, in the mutant mice. Similar results were observed in VDR knockout mice after their blood ionized calcium levels and rachitic bone phenotype were normalized by dietary means, indicating that vitamin D regulation of NaSi-1 expression and sulfate metabolism is independent of its role in calcium metabolism. Treatment of wild-type mice with 1,25-dihydroxyvitamin D3 or vitamin D analog markedly stimulated renal NaSi-1 mRNA expression. These data provide strong in vivo evidence that vitamin D plays a critical role in sulfate homeostasis. However, the observation that serum sulfate and skeletal proteoglycan levels in normocalcemic VDR knockout mice remained low in the absence of rickets and osteomalacia suggests that the contribution of sulfate deficiency to development of rickets and osteomalacia is minimal.
Collapse
Affiliation(s)
- Merry J G Bolt
- Department of Medicine, University of Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Pelis RM, Renfro JL. Role of tubular secretion and carbonic anhydrase in vertebrate renal sulfate excretion. Am J Physiol Regul Integr Comp Physiol 2004; 287:R491-501. [PMID: 15308498 DOI: 10.1152/ajpregu.00084.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The renal proximal tubule of vertebrates performs an essential role in controlling plasma SO42−concentration ([SO42−]). Although net tubular SO42−reabsorption is the predominate control process in terrestrial vertebrates, a facilitated secretory flux is also present. In contrast, marine teleosts obtain excess SO42−from drinking, and increased plasma [SO42−] is prevented predominately through net tubular secretion. Tubular SO42−secretion is accomplished by at least two electroneutral anion exchange processes in series. Movement of SO42−into the cell across the basolateral membrane is pH dependent, suggesting SO42−/OH−exchange. Luminal HCO3−and Cl−can facilitate SO42−movement out of the cell across the brush-border membrane. The molecular identities of the anion exchangers are unknown but are probably homologues of SO42−transporters in the mammalian SLC26 gene family. In all species tested, glucocorticoids increase renal SO42−excretion. Whereas glucocorticoids downregulate SO42−reabsorptive mechanisms in terrestrial vertebrates, they may also stimulate a mediated secretory flux. In the marine teleost, cortisol increases the level of SO42−/HCO3−exchange at the brush-border membrane, tubular carbonic anhydrase (CA) activity, CAII protein, and a proportion of tubular SO42−secretion that is CA dependent. CA activity is required for about one-half of this net SO42−secretion but is also required for about one-half of the net reabsorption in bird proximal epithelium. A CA-SO42−/anion exchanger metabolon arrangement is proposed that may speed both the secretory and reabsorptive processes.
Collapse
Affiliation(s)
- Ryan M Pelis
- Department of Physiology and Neurobiology, U-4156, University of Connecticut, 3107 Horsebarn Hill Rd., Storrs, CT 06269-4156, USA
| | | |
Collapse
|
44
|
Lee A, Markovich D. Characterization of the human renal Na(+)-sulphate cotransporter gene ( NAS1) promoter. Pflugers Arch 2004; 448:490-9. [PMID: 15197597 DOI: 10.1007/s00424-004-1251-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2004] [Accepted: 02/16/2004] [Indexed: 10/26/2022]
Abstract
Sulphate (SO(4)(2-)) plays an essential role during growth, development, and cellular metabolism. Recently, we have isolated the human renal Na(+)-SO(4)(2-) cotransporter (hNaSi-1) that is implicated in the regulation of serum SO(4)(2-) levels. To gain an insight into hNaSi-1 regulation, our aims were to clone and characterize functionally the hNaSi-1 gene ( NAS1) promoter. We PCR-amplified 3742 bp of the NAS1 5'-flanking region, which is 64% AT-rich and contains numerous putative cis-acting elements. The NAS1 transcription start site was mapped to 25 bp upstream from the translation start site. NAS1 promoter truncations fused to luciferase gene constructs transfected into renal LLC-PK1, MDCK and OK cells allowed us to establish that the first 169 bp of the NAS1 promoter are sufficient for basal transcription. Furthermore, the NAS1 promoter conferred responsiveness to the polycyclic aromatic hydrocarbon 3-methylcholanthrene (3-MC), but not to thyroid hormone (T(3)) or vitamin D [1,25-(OH)(2)D(3)]. Site-directed mutagenesis of the NAS1 promoter identified a functional xenobiotic response element at -2,052, which conferred 3-MC responsiveness. The human NAS1 gene promoter is not responsive to Vitamin D or T(3), unlike the mouse Nas1 promoter with which it shares approximately 40% sequence similarity, but is transactivated by 3-MC, suggesting that the control of renal SO(4)(2-) reabsorption via the regulation of NAS1 transcription may be important for maintaining the sulphation potential for kidney polycyclic aromatic hydrocarbon metabolism.
Collapse
Affiliation(s)
- Aven Lee
- Physiology and Pharmacology, School of Biomedical Sciences, University of Queensland, QLD 4072, Brisbane, Australia
| | | |
Collapse
|
45
|
Regeer RR, Markovich D. A dileucine motif targets the sulfate anion transporter sat-1 to the basolateral membrane in renal cell lines. Am J Physiol Cell Physiol 2004; 287:C365-72. [PMID: 15070814 DOI: 10.1152/ajpcell.00502.2003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The sat-1 transporter mediates sulfate/bicarbonate/oxalate anion exchange in vivo at the basolateral membrane of the kidney proximal tubule. In the present study, we show two renal cell lines [Madin-Darby canine kidney (MDCK) and porcine proximal tubular kidney (LLC-PK1) cells] that similarly target sat-1 exclusively to the basolateral membrane. To identify possible sorting determinants, we generated truncations of the sat-1 cytoplasmic COOH terminus, fused to enhanced green fluorescence protein (EGFP) or the human IL-2 receptor alpha-chain (Tac) protein, and both fusion constructs were transiently transfected into MDCK cells. Confocal microscopy revealed that removal of the last three residues on the sat-1 COOH terminus, a putative PDZ domain, had no effect on basolateral sorting in MDCK cells or on sulfate transport in Xenopus oocytes. Removal of the last 30 residues led to an intracellular expression for the GFP fusion protein and an apical expression for the Tac fusion protein, suggesting that a possible sorting motif lies between the last 3 and 30 residues of the sat-1 COOH terminus. Elimination of a dileucine motif at position 677/678 resulted in the loss of basolateral sorting, suggesting that this motif is required for sat-1 targeting to the basolateral membrane. This posttranslational mechanism may be important for the regulation of sulfate reabsorption and oxalate secretion by sat-1 in the kidney proximal tubule.
Collapse
Affiliation(s)
- Ralf R Regeer
- Department of Physiology and Pharmacology, School of Biomedical Sciences, University of Queensland, St. Lucia, QLD 4072, Australia.
| | | |
Collapse
|
46
|
Aruga S, Pajor AM, Nakamura K, Liu L, Moe OW, Preisig PA, Alpern RJ. OKP cells express the Na-dicarboxylate cotransporter NaDC-1. Am J Physiol Cell Physiol 2004; 287:C64-72. [PMID: 14973148 DOI: 10.1152/ajpcell.00061.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Urinary citrate concentration, a major factor in the formation of kidney stones, is primarily determined by its rate of reabsorption in the proximal tubule. Citrate reabsorption is mediated by the Na-dicarboxylate cotransporter-1 (NaDC-1). The opossum kidney (OKP) cell line possesses many characteristics of the renal proximal tubule. The OKP NaDC-1 (oNaDC-1) cDNA was cloned and encodes a 2.4-kb mRNA. When injected into Xenopus oocytes, the cotransporter is expressed and demonstrates Na-coupled citrate transport with a stoichiometry of >or=3 Na:1 citrate, specificity for di- and tricarboxylates, pH-dependent citrate transport, and pH-independent succinate transport, all characteristics of the other NaDC-1 orthologs. Chronic metabolic acidosis increases proximal tubule citrate reabsorption, leading to profound hypocitraturia and an increased risk for stone formation. Under the conditions studied, endogenous OKP NaDC-1 mRNA abundance is not regulated by changes in media pH. In OKP cells transfected with a green fluorescent protein-oNaDC-1 construct, however, media acidification increases Na-dependent citrate uptake, demonstrating posttranscriptional acid regulation of NaDC-1 activity.
Collapse
Affiliation(s)
- Seiji Aruga
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8856, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Markovich D, Murer H. The SLC13 gene family of sodium sulphate/carboxylate cotransporters. Pflugers Arch 2004; 447:594-602. [PMID: 12915942 DOI: 10.1007/s00424-003-1128-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2002] [Accepted: 06/04/2003] [Indexed: 11/26/2022]
Abstract
The SLC13 gene family consist of five sequence-related members that have been identified in a variety of animals, plants, yeast and bacteria. Proteins encoded by these genes are divided into two functionally unrelated groups: the Na(+)-sulphate (NaS) cotransporters and the Na(+)-carboxylate (NaC) cotransporters. Members of this family include the renal Na(+)-dependent inorganic sulphate transporter-1 (NaSi-1, SLC13A1), the Na(+)-dependent dicarboxylate transporters NaDC-1/SDCT1 (SLC13A2), NaDC-3/SDCT2 (SLC13A3), the sulphate transporter-1 (SUT-1, SLC13A4) and the Na(+)-coupled citrate transporter (NaCT, SLC13A5). The general characteristics of the SLC13 proteins are that they encode multi-spanning proteins with 8-13 transmembrane domains, have a wide tissue distribution with most being expressed in the epithelial cells of the kidney and the gastrointestinal tract. They are Na(+)-coupled symporters, DIDS-insensitive, with strong cation preference for Na(+), with a Na(+):anion coupling ratio of around 3:1 and have a substrate preference for divalent anions, which include tetraoxyanions (for the NaS cotransporters) or Krebs cycle intermediates, including mono-, di-, and tri-carboxylates (for the NaC cotransporters). The purpose of this review is to provide an update on the most recent advances and to summarize the biochemical, physiological and structural aspects of the vertebrate SLC13 gene family.
Collapse
Affiliation(s)
- Daniel Markovich
- Department of Physiology and Pharmacology, School of Biomedical Sciences, University of Queensland, QLD 4072, St. Lucia, Australia.
| | | |
Collapse
|
48
|
Dawson PA, Beck L, Markovich D. Hyposulfatemia, growth retardation, reduced fertility, and seizures in mice lacking a functional NaSi-1 gene. Proc Natl Acad Sci U S A 2003; 100:13704-9. [PMID: 14578452 PMCID: PMC263877 DOI: 10.1073/pnas.2231298100] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2003] [Indexed: 11/18/2022] Open
Abstract
Inorganic sulfate is required for numerous functions in mammalian physiology, and its circulating levels are proposed to be maintained by the Na+-SO42- cotransporter, (NaSi-1). To determine the role of NaSi-1 in sulfate homeostasis and the physiological consequences in its absence, we have generated a mouse lacking a functional NaSi-1 gene, Nas1. Serum sulfate concentration was reduced by >75% in Nas1-/- mice when compared with Nas1+/+ mice. Nas1-/- mice exhibit increased urinary sulfate excretion, reduced renal and intestinal Na+-SO42- cotransport, and a general growth retardation. Nas1-/- mouse body weight was reduced by >20% when compared with Nas1+/+ and Nas1+/- littermates at 2 weeks of age and remained so throughout adulthood. Nas1-/- females had a lowered fertility, with a 60% reduction in litter size. Spontaneous clonic seizures were observed in Nas1-/- mice from 8 months of age. These data demonstrate NaSi-1 is essential for maintaining sulfate homeostasis, and its expression is necessary for a wide range of physiological functions.
Collapse
Affiliation(s)
- Paul A Dawson
- School of Biomedical Sciences, University of Queensland, Brisbane 4072, Australia
| | | | | |
Collapse
|
49
|
Li H, Pajor AM. Mutagenesis of the N-glycosylation site of hNaSi-1 reduces transport activity. Am J Physiol Cell Physiol 2003; 285:C1188-96. [PMID: 12867358 DOI: 10.1152/ajpcell.00162.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The human Na+-sulfate cotransporter (hNaSi-1) belongs to the SLC13 gene family, which also includes the high-affinity Na+-sulfate cotransporter (hSUT-1) and the Na+-dicarboxylate cotransporters (NaDC). In this study, the location and functional role of the N-glycosylation site of hNaSi-1 were studied using antifusion protein antibodies. Polyclonal antibodies against a glutathione S-transferase fusion protein containing a 65-amino acid peptide of hNaSi-1 (GST-Si65) were raised in rabbits, purified, and then used in Western blotting and immunofluorescence experiments. The antibodies recognized native NaSi-1 proteins in pig and rat brush-border membrane vesicles as well as the recombinant proteins expressed in Xenopus oocytes. Wild-type hNaSi-1 and two N-glycosylation site mutant proteins, N591Y and N591A, were functionally expressed and studied in Xenopus oocytes. The apparent mass of N591Y was not affected by treatment with peptide-N-glycosylase F, in contrast to the mass of wild-type hNaSi-1, which was reduced by up to 15 kDa, indicating that Asn591 is the N-glycosylation site. Although the cell surface abundance of the two glycosylation site mutants, N591Y and N591A, was greater than that of wild-type hNaSi-1, both mutants had greatly reduced Vmax, with no change in Km. These results suggest that Asn591 and/or N-glycosylation is critical for transport activity in NaSi-1.
Collapse
Affiliation(s)
- Hongyan Li
- Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston, TX 77555-0641, USA
| | | |
Collapse
|
50
|
Burckhardt BC, Burckhardt G. Transport of organic anions across the basolateral membrane of proximal tubule cells. Rev Physiol Biochem Pharmacol 2003; 146:95-158. [PMID: 12605306 DOI: 10.1007/s10254-002-0003-8] [Citation(s) in RCA: 234] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Renal proximal tubules secrete diverse organic anions (OA) including widely prescribed anionic drugs. Here, we review the molecular properties of cloned transporters involved in uptake of OA from blood into proximal tubule cells and provide extensive lists of substrates handled by these transport systems. Where tested, transporters have been immunolocalized to the basolateral cell membrane. The sulfate anion transporter 1 (sat-1) cloned from human, rat and mouse, transported oxalate and sulfate. Drugs found earlier to interact with sulfate transport in vivo have not yet been tested with sat-1. The Na(+)-dicarboxylate cotransporter 3 (NaDC-3) was cloned from human, rat, mouse and flounder, and transported three Na(+) with one divalent di- or tricarboxylate, such as citric acid cycle intermediates and the heavy metal chelator 2,3-dimercaptosuccinate (succimer). The organic anion transporter 1 (OAT1) cloned from several species was shown to exchange extracellular OA against intracellular alpha-ketoglutarate. OAT1 translocated, e.g., anti-inflammatory drugs, antiviral drugs, beta-lactam antibiotics, loop diuretics, ochratoxin A, and p-aminohippurate. Several OA, including probenecid, inhibited OAT1. Human, rat and mouse OAT2 transported selected anti-inflammatory and antiviral drugs, methotrexate, ochratoxin A, and, with high affinities, prostaglandins E(2) and F(2alpha). OAT3 cloned from human, rat and mouse showed a substrate specificity overlapping with that of OAT1. In addition, OAT3 interacted with sulfated steroid hormones such as estrone-3-sulfate. The driving forces for OAT2 and OAT3, the relative contributions of all OA transporters to, and the impact of transporter regulation by protein kinases on renal drug excretion in vivo must be determined in future experiments.
Collapse
Affiliation(s)
- B C Burckhardt
- Abteilung Vegetative Physiologie und Pathophysiologie, Zentrum Physiologie, Georg-August-Universität Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | | |
Collapse
|