1
|
Zhou L, Luo M, Hong P, Leroux S, Chen F, Wang S. Energy transfer efficiency rather than productivity determines the strength of aquatic trophic cascades. Ecology 2025; 106:e4482. [PMID: 39604056 DOI: 10.1002/ecy.4482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/22/2024] [Accepted: 09/17/2024] [Indexed: 11/29/2024]
Abstract
Trophic cascades are important determinants of food web dynamics and functioning, yet mechanisms accounting for variation in trophic cascade strength remain elusive. Here, we used food chain models and a mesocosm experiment (phytoplankton-zooplankton-shrimp) to disentangle the relative importance of two energetic processes driving trophic cascades: primary productivity and energy transfer efficiency. Food chain models predicted that the strength of trophic cascades was increased as the energy transfer efficiency between herbivore and predator (predator efficiency) increased, while its relationship with primary productivity was relatively weak. These model predictions were confirmed by a mesocosm experiment, which showed that the strength of trophic cascade increased with predator efficiency but remained unaffected by nutrient supply rate or primary productivity. Combined, our results indicate that the efficiency of energy transfer along the food chain, rather than the total amount of energy fixed by primary producers, determines the strength of trophic cascades. Our study provides an integrative perspective to reconcile energetic and population dynamics in food webs, which has implications for both ecological research and ecosystem management.
Collapse
Affiliation(s)
- Libin Zhou
- Institute of Ecology, Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Mingyu Luo
- Institute of Ecology, Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Pubin Hong
- Institute of Ecology, Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Shawn Leroux
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Feizhou Chen
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Shaopeng Wang
- Institute of Ecology, Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
2
|
Debray R, Conover A, Koskella B. Phages indirectly maintain tomato plant pathogen defense through regulation of the commensal microbiome. ISME COMMUNICATIONS 2025; 5:ycaf065. [PMID: 40356878 PMCID: PMC12066413 DOI: 10.1093/ismeco/ycaf065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 04/14/2025] [Accepted: 04/14/2025] [Indexed: 05/15/2025]
Abstract
As parasites of bacteria, phages can regulate microbiome diversity and composition and may therefore affect susceptibility to pathogens and disease. Many infectious diseases are associated with altered bacteriophage communities, but observational studies alone do not allow us to determine when altered phage community composition is a contributor to disease risk, a response to infection, or simply an indicator of dysbiosis. To address this question directly, we used size-selective filtration to deplete plant-associated microbial communities of phages, then challenged plants with the bacterial pathogen Pseudomonas syringae. Plants with phage-depleted microbiomes were more susceptible to infection, an effect that could not be explained by direct effects of the phage communities on either P. syringae or the plant host. Moreover, the presence of phages was most impactful when the phage communities were isolated from neighboring field locations rather than from the same host plant as the bacteria, possibly suggesting that moderate rates of lysis maintain a community structure that is most resistant to pathogen invasion. Overall, our results support the idea that phage communities contribute to plant defenses by modulating the microbiome.
Collapse
Affiliation(s)
- Reena Debray
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Department of Integrative Biology, University of California, Berkeley, 94720 Berkeley, CA, United States
| | - Asa Conover
- Department of Integrative Biology, University of California, Berkeley, 94720 Berkeley, CA, United States
| | - Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, 94720 Berkeley, CA, United States
| |
Collapse
|
3
|
Zuschin M, Nawrot R, Dengg M, Gallmetzer I, Haselmair A, Kowalewski M, Scarponi D, Wurzer S, Tomašových A. Human-driven breakdown of predator-prey interactions in the northern Adriatic Sea. Proc Biol Sci 2024; 291:20241303. [PMID: 39317324 PMCID: PMC11421925 DOI: 10.1098/rspb.2024.1303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/13/2024] [Accepted: 08/20/2024] [Indexed: 09/26/2024] Open
Abstract
Long-term baseline data that allow tracking how predator-prey interactions have responded to intensifying human impacts are often lacking. Here, we assess temporal changes in benthic community composition and interactions between drilling predatory gastropods and their molluscan prey using the Holocene fossil record of the shallow northern Adriatic Sea, which is characterized by a long history of human transformation. Molluscan assemblages differ between the Isonzo and Po prodelta, but both show consistent temporal trends in the abundance of dominant species. Samples of mollusc prey collected at high stratigraphic resolution indicate that drilling frequencies have drastically declined in the Po prodelta since the mid-twentieth century, while a weaker trend in the more condensed sediments of the Isonzo prodelta is not statistically significant. The decrease in drilling predation intensity and the community turnover are linked to the loss of predatory gastropods and the increased relative abundance of less-preferred prey during the most recent decades. Our results align with data showing the substantial depletion of marine resources at higher trophic levels in the region and indicate that the strong simplification of the food web initiated in the late nineteenth century accelerated further since the mid-twentieth century.
Collapse
Affiliation(s)
- Martin Zuschin
- Department of Palaeontology, University of Vienna, Josef-Holaubek-Platz 2, Vienna1090, Austria
| | - Rafał Nawrot
- Department of Palaeontology, University of Vienna, Josef-Holaubek-Platz 2, Vienna1090, Austria
| | - Markus Dengg
- Otago Regional Council, Dunedin9010, New Zealand
| | - Ivo Gallmetzer
- Third Zoological Department, Natural History Museum Vienna, Burgring 7, Vienna1010, Austria
| | - Alexandra Haselmair
- Department of Palaeontology, University of Vienna, Josef-Holaubek-Platz 2, Vienna1090, Austria
| | - Michał Kowalewski
- Florida Museum of Natural History, University of Florida, 1659 Museum Road, Gainesville, 32611FL, USA
| | - Daniele Scarponi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Sandra Wurzer
- Department of Palaeontology, University of Vienna, Josef-Holaubek-Platz 2, Vienna1090, Austria
| | - Adam Tomašových
- Earth Science Institute, Slovak Academy of Sciences, Dúbravska cesta 9, 84005 Bratislava, Slovakia
| |
Collapse
|
4
|
Li Y, Schmid B, Schuldt A, Li S, Wang MQ, Fornoff F, Staab M, Guo PF, Anttonen P, Chesters D, Bruelheide H, Zhu CD, Ma K, Liu X. Multitrophic arthropod diversity mediates tree diversity effects on primary productivity. Nat Ecol Evol 2023; 7:832-840. [PMID: 37106157 DOI: 10.1038/s41559-023-02049-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023]
Abstract
Forests sustain 80% of terrestrial biodiversity and provide essential ecosystem services. Biodiversity experiments have demonstrated that plant diversity correlates with both primary productivity and higher trophic diversity. However, whether higher trophic diversity can mediate the effects of plant diversity on productivity remains unclear. Here, using 5 years of data on aboveground herbivorous, predatory and parasitoid arthropods along with tree growth data within a large-scale forest biodiversity experiment in southeast China, we provide evidence of multidirectional enhancement among the diversity of trees and higher trophic groups and tree productivity. We show that the effects of experimentally increased tree species richness were consistently positive for species richness and abundance of herbivores, predators and parasitoids. Richness effects decreased as trophic levels increased for species richness and abundance of all trophic groups. Multitrophic species richness and abundance of arthropods were important mediators of plant diversity effects on tree productivity, suggesting that optimizing forest management for increased carbon capture can be more effective when the diversity of higher trophic groups is promoted in concert with that of trees.
Collapse
Affiliation(s)
- Yi Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Bernhard Schmid
- Department of Geography, Remote Sensing Laboratories, University of Zurich, Zurich, Switzerland
| | - Andreas Schuldt
- Forest Nature Conservation, University of Göttingen, Göttingen, Germany
| | - Shan Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Ming-Qiang Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Felix Fornoff
- Chair of Nature Conservation and Landscape Ecology, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
| | - Michael Staab
- Ecological Networks, Technical University of Darmstadt, Darmstadt, Germany
| | - Peng-Fei Guo
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Perttu Anttonen
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Douglas Chesters
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Helge Bruelheide
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Chao-Dong Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Keping Ma
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Zhejiang Qianjiangyuan Forest Biodiversity National Observation and Research Station, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- China National Botanical Garden, Beijing, China.
| | - Xiaojuan Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- Zhejiang Qianjiangyuan Forest Biodiversity National Observation and Research Station, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- China National Botanical Garden, Beijing, China.
| |
Collapse
|
5
|
Lyberger K, Schoener TW, Schreiber SJ. Effects of size selection versus density dependence on life histories: A first experimental probe. Ecol Lett 2021; 24:1467-1473. [PMID: 33963637 DOI: 10.1111/ele.13767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/31/2021] [Indexed: 11/30/2022]
Abstract
When prey experience size-based harvesting by predators, they are not only subject to selection due to larger individuals being preferentially harvested but also selection due to reductions in population density. Density-dependent selection represents one of the most basic interactions between ecology and evolution. Yet, the reduction in density associated with exploitation has not been tested as a possible driving force of observed evolutionary changes in populations harvested size-dependently. Using an artificial selection experiment with a mixture of Daphnia clones, we partition the evolutionary effects of size-based harvesting into the effects of removing large individuals and the effects of lowering the population density. We show that both size selection and density-dependent selection are significant drivers of life-history evolution. Importantly, these drivers affected different life-history traits with size-selective harvesting selecting for slower juvenile growth rates and a larger size at maturity, and low-density selecting for reduced reproductive output.
Collapse
Affiliation(s)
- Kelsey Lyberger
- Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, Davis, CA, USA
| | - Thomas W Schoener
- Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, Davis, CA, USA
| | - Sebastian J Schreiber
- Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, Davis, CA, USA
| |
Collapse
|
6
|
Hungate BA, Marks JC, Power ME, Schwartz E, van Groenigen KJ, Blazewicz SJ, Chuckran P, Dijkstra P, Finley BK, Firestone MK, Foley M, Greenlon A, Hayer M, Hofmockel KS, Koch BJ, Mack MC, Mau RL, Miller SN, Morrissey EM, Propster JR, Purcell AM, Sieradzki E, Starr EP, Stone BWG, Terrer C, Pett-Ridge J. The Functional Significance of Bacterial Predators. mBio 2021; 12:e00466-21. [PMID: 33906922 PMCID: PMC8092244 DOI: 10.1128/mbio.00466-21] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
Predation structures food webs, influences energy flow, and alters rates and pathways of nutrient cycling through ecosystems, effects that are well documented for macroscopic predators. In the microbial world, predatory bacteria are common, yet little is known about their rates of growth and roles in energy flows through microbial food webs, in part because these are difficult to quantify. Here, we show that growth and carbon uptake were higher in predatory bacteria compared to nonpredatory bacteria, a finding across 15 sites, synthesizing 82 experiments and over 100,000 taxon-specific measurements of element flow into newly synthesized bacterial DNA. Obligate predatory bacteria grew 36% faster and assimilated carbon at rates 211% higher than nonpredatory bacteria. These differences were less pronounced for facultative predators (6% higher growth rates, 17% higher carbon assimilation rates), though high growth and carbon assimilation rates were observed for some facultative predators, such as members of the genera Lysobacter and Cytophaga, both capable of gliding motility and wolf-pack hunting behavior. Added carbon substrates disproportionately stimulated growth of obligate predators, with responses 63% higher than those of nonpredators for the Bdellovibrionales and 81% higher for the Vampirovibrionales, whereas responses of facultative predators to substrate addition were no different from those of nonpredators. This finding supports the ecological theory that higher productivity increases predator control of lower trophic levels. These findings also indicate that the functional significance of bacterial predators increases with energy flow and that predatory bacteria influence element flow through microbial food webs.IMPORTANCE The word "predator" may conjure images of leopards killing and eating impala on the African savannah or of great white sharks attacking elephant seals off the coast of California. But microorganisms are also predators, including bacteria that kill and eat other bacteria. While predatory bacteria have been found in many environments, it has been challenging to document their importance in nature. This study quantified the growth of predatory and nonpredatory bacteria in soils (and one stream) by tracking isotopically labeled substrates into newly synthesized DNA. Predatory bacteria were more active than nonpredators, and obligate predators, such as Bdellovibrionales and Vampirovibrionales, increased in growth rate in response to added substrates at the base of the food chain, strong evidence of trophic control. This work provides quantitative measures of predator activity and suggests that predatory bacteria-along with protists, nematodes, and phages-are active and important in microbial food webs.
Collapse
Affiliation(s)
- Bruce A Hungate
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Jane C Marks
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Mary E Power
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, USA
| | - Egbert Schwartz
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Kees Jan van Groenigen
- Department of Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Steven J Blazewicz
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Peter Chuckran
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Paul Dijkstra
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Brianna K Finley
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Mary K Firestone
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, USA
| | - Megan Foley
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Alex Greenlon
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Michaela Hayer
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
| | - Kirsten S Hofmockel
- Pacific Northwest National Laboratory, Richland, Washington, USA
- Department of Agronomy, Iowa State University, Ames, Iowa, USA
| | - Benjamin J Koch
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Michelle C Mack
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Rebecca L Mau
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Samantha N Miller
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
| | - Ember M Morrissey
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Jeffrey R Propster
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Alicia M Purcell
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Ella Sieradzki
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, USA
| | - Evan P Starr
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Bram W G Stone
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
| | - César Terrer
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| |
Collapse
|
7
|
Gerke M, Hübner D, Schneider J, Winkelmann C. Can top-down effects of cypriniform fish be used to mitigate eutrophication effects in medium-sized European rivers? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142547. [PMID: 33035985 DOI: 10.1016/j.scitotenv.2020.142547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 05/12/2023]
Abstract
Eutrophication seriously threatens the ecological quality and biodiversity of running waters. In nutrient-enriched streams and shallow rivers, eutrophication leads to excessive periphyton growth and, in turn, biological clogging, oxygen depletion in the hyporheic zone and finally a reduction in the hyporheic habitat quality. Top-down control of the food-web by manipulating fish stocks, similar to the biomanipulation successfully applied in lakes, offers a promising approach to mitigating the effects of eutrophication in shallow rivers, especially those in which major reductions in nutrient input are not feasible. We conducted a reach-scale experiment over 4 years in a medium-sized eutrophic river to assess whether the top-down effects of two important large European cypriniform fish species, herbivorous common nase (Chondrostoma nasus) and omnivorous European chub (Squalius cephalus), would mitigate the effects of eutrophication. The enhancement of fish stocks was expected to reduce biological clogging, via the top-down control of periphyton by benthic grazing and enhanced bioturbation, thus increasing oxygen availability in the hyporheic zone as well as water exchange between the surface water and the hyporheic zone. As expected, enhancing the stocks of nase and chub increased both oxygen availability and vertical exchange flux of water in the upper layer of the hyporheic zone. However, periphyton biomass (chlorophyll a) was significantly reduced only in deeper pool habitat. Thus, while experimental biomanipulation in a shallow river significantly mitigated the effects of eutrophication in the hyporheic zone, top-down effects on periphyton biomass were rather small. Overall, to our knowledge, our results provide first evidence that the biomanipulation achieved by enhancing herbivorous and omnivorous fish stocks has the potential to mitigate the effects of eutrophication in medium-sized European rivers.
Collapse
Affiliation(s)
- Madlen Gerke
- University of Koblenz-Landau, Institute for Integrated Natural Sciences, Koblenz, Germany
| | - Dirk Hübner
- Bürogemeinschaft für fisch- und gewässerökologische Studien, Marburg, Germany
| | - Jörg Schneider
- Bürogemeinschaft für fisch- und gewässerökologische Studien, Frankfurt, Germany
| | - Carola Winkelmann
- University of Koblenz-Landau, Institute for Integrated Natural Sciences, Koblenz, Germany.
| |
Collapse
|
8
|
Oliveira AGD, Peláez O, Agostinho AA. The effectiveness of protected areas in the Paraná-Paraguay basin in preserving multiple facets of freshwater fish diversity under climate change. NEOTROPICAL ICHTHYOLOGY 2021. [DOI: 10.1590/1982-0224-2021-0034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract Our objective was to evaluate the effectiveness of protected areas (PAs) in the Paraná-Paraguay basin on multiple facets of ichthyofauna, both currently and in future climate change scenarios, based on reaching the 17% of conserved terrestrial and inland water defined by Aichi Target 11. Analyses were carried out vis-à-vis a distribution of 496 native species, modeling for the present and for the future, and in moderate and pessimistic scenarios of greenhouse gases. We calculated species richness, functional richness, and phylogenetic diversity, overlapping the combination of these facets with the PAs. The results indicate that the current PAs of the Paraná-Paraguay basin are not efficient in protecting the richest areas of ichthyofauna in their multiple facets. While there is a larger overlap between PAs and the richest areas in phylogenetic diversity, the values are too low (2.37%). Currently, the overlap between PAs and areas with larger species richness, functional richness, and phylogenetic diversity is only 1.48%. Although this value can increase for future projections, the values of the indices decrease substantially. The relevant aquatic environments, biological communities, and climate change should be considered as part of the systematic planning of PAs that take into consideration the terrestrial environments and their threats.
Collapse
|
9
|
Bogotá-Gregory JD, Lima FCT, Correa SB, Silva-Oliveira C, Jenkins DG, Ribeiro FR, Lovejoy NR, Reis RE, Crampton WGR. Biogeochemical water type influences community composition, species richness, and biomass in megadiverse Amazonian fish assemblages. Sci Rep 2020; 10:15349. [PMID: 32948815 PMCID: PMC7501869 DOI: 10.1038/s41598-020-72349-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/26/2020] [Indexed: 11/09/2022] Open
Abstract
Amazonian waters are classified into three biogeochemical categories by dissolved nutrient content, sediment type, transparency, and acidity-all important predictors of autochthonous and allochthonous primary production (PP): (1) nutrient-poor, low-sediment, high-transparency, humic-stained, acidic blackwaters; (2) nutrient-poor, low-sediment, high-transparency, neutral clearwaters; (3) nutrient-rich, low-transparency, alluvial sediment-laden, neutral whitewaters. The classification, first proposed by Alfred Russel Wallace in 1853, is well supported but its effects on fish are poorly understood. To investigate how Amazonian fish community composition and species richness are influenced by water type, we conducted quantitative year-round sampling of floodplain lake and river-margin habitats at a locality where all three water types co-occur. We sampled 22,398 fish from 310 species. Community composition was influenced more by water type than habitat. Whitewater communities were distinct from those of blackwaters and clearwaters, with community structure correlated strongly to conductivity and turbidity. Mean per-sampling event species richness and biomass were significantly higher in nutrient-rich whitewater floodplain lakes than in oligotrophic blackwater and clearwater river-floodplain systems and light-limited whitewater rivers. Our study provides novel insights into the influences of biogeochemical water type and ecosystem productivity on Earth's most diverse aquatic vertebrate fauna and highlights the importance of including multiple water types in conservation planning.
Collapse
Affiliation(s)
| | - Flávio C T Lima
- Museu de Zoologia da Universidade Estadual de Campinas, Cidade Universitária, Campinas, São Paulo, 13083-863, Brazil
| | - Sandra B Correa
- Department of Wildlife, Fisheries and Aquaculture, Mississippi State University, Box 9680, Starkville, MS, 39762, USA
| | - Cárlison Silva-Oliveira
- Instituto Nacional de Pesquisas da Amazonia, Coleção de Peixes, Av. André Araújo, 2936, Petrópolis, Manaus, Amazonas, 69.067-375, Brazil
| | - David G Jenkins
- Department of Biology, University of Central Florida, 4100 Libra Dr, Orlando, FL, 32816, USA
| | - Frank R Ribeiro
- Coleção Ictiológica da Universidade Federal do Oeste do Pará. Campus Amazônia, Avenida Mendonça Furtado, 2946, Fátima, Santarém, Pará, CEP 68040-470, Brazil
| | - Nathan R Lovejoy
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Roberto E Reis
- Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga 6681, Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
| | - William G R Crampton
- Department of Biology, University of Central Florida, 4100 Libra Dr, Orlando, FL, 32816, USA.
| |
Collapse
|
10
|
Hening A, Nguyen DH. Persistence in Stochastic Lotka–Volterra Food Chains with Intraspecific Competition. Bull Math Biol 2018; 80:2527-2560. [DOI: 10.1007/s11538-018-0468-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 07/10/2018] [Indexed: 11/30/2022]
|
11
|
Jäger CG, Hagemann J, Borchardt D. Can nutrient pathways and biotic interactions control eutrophication in riverine ecosystems? Evidence from a model driven mesocosm experiment. WATER RESEARCH 2017; 115:162-171. [PMID: 28279937 DOI: 10.1016/j.watres.2017.02.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/31/2017] [Accepted: 02/26/2017] [Indexed: 06/06/2023]
Abstract
Ecological theory predicts that the relative importance of benthic to planktonic primary production usually changes along the rivers' continuum from a predomination of benthic algae in lower stream orders to a predomination of planktonic algae at higher orders. Underlying mechanisms driving the interaction between algae in these habitats, its controlling factors and consequences for riverine ecosystems are, however, only partly understood. We present a mechanistic analysis of the governing ecological processes using a simplified, numerical model and examine how abiotic factors and biotic interactions influence benthic and planktonic algae by changing resource competition. We compare the outcome of the model with the results of a factorial mesocosm experiment mimicking the parameter spaces of the model. The results show a remarkable similarity with regard to the temporal development of benthic and pelagic algal biomass and shifting dominance patterns. In particular we analyse the effects of the pathways of nutrient supply (upwelling from the hyporheic zone, direct supply to the surface water, or via both pathways) and grazing in a gradient of river depths. Our results show that detachment of benthic algae, sinking of planktonic algae and the pathway of nutrient supply are key processes determining the respective algal biomass distributions particularly in shallow and intermediate deep systems. Increasing nutrient supply increases algal biomasses, but does not change the general pattern of the interactions. Decreasing light supply decreases the dominance of planktonic algae, but increases dissolved nutrients. At intermediate to high grazing rates algal biomass can be controlled by grazers, but however, at high grazing rates, dissolved nutrients accumulate in the surface water. Our results indicate that nutrient pathways, resource competition and internal control by grazing need to be considered explicitly for the understanding and explanation of eutrophication phenomena in riverine ecosystems. As a consequence, ecologically effective eutrophication management of running water systems has to go beyond the control of nutrient emissions or the achievement of limiting threshold values in the receiving waters, but requires the consideration of the nutrient pathways (surface water versus groundwater) and the shifting biological controls from lower to higher order stream ecosystems.
Collapse
Affiliation(s)
- Christoph G Jäger
- Department of Aquatic Ecosystems Analysis and Management, Helmholtz Centre for Environmental Research - UFZ, Magdeburg, Germany.
| | - Jeske Hagemann
- Department of Aquatic Ecosystems Analysis and Management, Helmholtz Centre for Environmental Research - UFZ, Magdeburg, Germany.
| | - Dietrich Borchardt
- Department of Aquatic Ecosystems Analysis and Management, Helmholtz Centre for Environmental Research - UFZ, Magdeburg, Germany.
| |
Collapse
|
12
|
Verberk WCEP, Durance I, Vaughan IP, Ormerod SJ. Field and laboratory studies reveal interacting effects of stream oxygenation and warming on aquatic ectotherms. GLOBAL CHANGE BIOLOGY 2016; 22:1769-78. [PMID: 26924811 PMCID: PMC5324560 DOI: 10.1111/gcb.13240] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 01/15/2016] [Accepted: 01/22/2016] [Indexed: 05/20/2023]
Abstract
Aquatic ecological responses to climatic warming are complicated by interactions between thermal effects and other environmental stressors such as organic pollution and hypoxia. Laboratory experiments have demonstrated how oxygen limitation can set heat tolerance for some aquatic ectotherms, but only at unrealistic lethal temperatures and without field data to assess whether oxygen shortages might also underlie sublethal warming effects. Here, we test whether oxygen availability affects both lethal and nonlethal impacts of warming on two widespread Eurasian mayflies, Ephemera danica, Müller 1764 and Serratella ignita (Poda 1761). Mayfly nymphs are often a dominant component of the invertebrate assemblage in streams, and play a vital role in aquatic and riparian food webs. In the laboratory, lethal impacts of warming were assessed under three oxygen conditions. In the field, effects of oxygen availability on nonlethal impacts of warming were assessed from mayfly occurrence in 42 293 UK stream samples where water temperature and biochemical oxygen demand were measured. Oxygen limitation affected both lethal and sublethal impacts of warming in each species. Hypoxia lowered lethal limits by 5.5 °C (±2.13) and 8.2 °C (±0.62) for E. danica and S. ignita respectively. Field data confirmed the importance of oxygen limitation in warmer waters; poor oxygenation drastically reduced site occupancy, and reductions were especially pronounced under warm water conditions. Consequently, poor oxygenation lowered optimal stream temperatures for both species. The broad concordance shown here between laboratory results and extensive field data suggests that oxygen limitation not only impairs survival at thermal extremes but also restricts species abundance in the field at temperatures well below upper lethal limits. Stream oxygenation could thus control the vulnerability of aquatic ectotherms to global warming. Improving water oxygenation and reducing pollution can provide key facets of climate change adaptation for running waters.
Collapse
Affiliation(s)
- Wilco C E P Verberk
- Department of Animal Ecology and Physiology, Radboud University Nijmegen, Heyendaalseweg, 135, 6525 AJ, Nijmegen, The Netherlands
| | - Isabelle Durance
- Catchment Research Group, Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Ian P Vaughan
- Catchment Research Group, Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Steve J Ormerod
- Catchment Research Group, Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| |
Collapse
|
13
|
Wootton JT. Effects of birds on sea urchins and algae: A lower-intertidal trophic cascade. ECOSCIENCE 2016. [DOI: 10.1080/11956860.1995.11682299] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Gaylord B, Kroeker KJ, Sunday JM, Anderson KM, Barry JP, Brown NE, Connell SD, Dupont S, Fabricius KE, Hall-Spencer JH, Klinger T, Milazzo M, Munday PL, Russell BD, Sanford E, Schreiber SJ, Thiyagarajan V, Vaughan MLH, Widdicombe S, Harley CDG. Ocean acidification through the lens of ecological theory. Ecology 2015; 96:3-15. [PMID: 26236884 DOI: 10.1890/14-0802.1] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ocean acidification, chemical changes to the carbonate system of seawater, is emerging as a key environmental challenge accompanying global warming and other human-induced perturbations. Considerable research seeks to define the scope and character of potential outcomes from this phenomenon, but a crucial impediment persists. Ecological theory, despite its power and utility, has been only peripherally applied to the problem. Here we sketch in broad strokes several areas where fundamental principles of ecology have the capacity to generate insight into ocean acidification's consequences. We focus on conceptual models that, when considered in the context of acidification, yield explicit predictions regarding a spectrum of population- and community-level effects, from narrowing of species ranges and shifts in patterns of demographic connectivity, to modified consumer-resource relationships, to ascendance of weedy taxa and loss of species diversity. Although our coverage represents only a small fraction of the breadth of possible insights achievable from the application of theory, our hope is that this initial foray will spur expanded efforts to blend experiments with theoretical approaches. The result promises to be a deeper and more nuanced understanding of ocean acidification'and the ecological changes it portends.
Collapse
|
15
|
Kwon YS, Bae MJ, Hwang SJ, Kim SH, Park YS. Predicting potential impacts of climate change on freshwater fish in Korea. ECOL INFORM 2015. [DOI: 10.1016/j.ecoinf.2014.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Ward CL, McCann KS, Rooney N. HSS revisited: multi-channel processes mediate trophic control across a productivity gradient. Ecol Lett 2015; 18:1190-1197. [DOI: 10.1111/ele.12498] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/25/2015] [Accepted: 07/27/2015] [Indexed: 11/27/2022]
Affiliation(s)
- Colette L. Ward
- Department of Integrative Biology; University of Guelph; Guelph ON Canada N1G 2W1
- National Center for Ecological Analysis and Synthesis; University of California, Santa Barbara; 735 State Street, Suite 300 Santa Barbara CA 93101-5504 USA
| | - Kevin S. McCann
- Department of Integrative Biology; University of Guelph; Guelph ON Canada N1G 2W1
| | - Neil Rooney
- School of Environmental Sciences; University of Guelph; Guelph ON Canada N1G 2W1
- Saugeen Ojibway Nation; R. R. #5 Wiarton ON Canada N0H 2T0
| |
Collapse
|
17
|
Reciprocal transplant reveals trade-off of resource quality and predation risk in the field. Oecologia 2015; 179:117-27. [DOI: 10.1007/s00442-015-3324-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/15/2015] [Indexed: 11/26/2022]
|
18
|
Nifong JC, Layman CA, Silliman BR. Size, sex and individual-level behaviour drive intrapopulation variation in cross-ecosystem foraging of a top-predator. J Anim Ecol 2014; 84:35-48. [PMID: 25327480 DOI: 10.1111/1365-2656.12306] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 10/07/2014] [Indexed: 11/28/2022]
Abstract
Large-bodied, top-predators are often highly mobile, with the potential to provide important linkages between spatially distinct food webs. What biological factors contribute to variation in cross-ecosystem movements, however, have rarely been examined. Here, we investigated how ontogeny (body size), sex and individual-level behaviour impacts intrapopulation variation in cross-ecosystem foraging (i.e. between freshwater and marine systems), by the top-predator Alligator mississippiensis. Field surveys revealed A. mississippiensis uses marine ecosystems regularly and are abundant in estuarine tidal creeks (from 0·3 to 6·3 individuals per km of creek, n = 45 surveys). Alligator mississippiensis captured in marine/estuarine habitats were significantly larger than individuals captured in freshwater and intermediate habitats. Stomach content analysis (SCA) showed that small juveniles consumed marine/estuarine prey less frequently (6·7% of individuals) than did large juveniles (57·8%), subadult (73%), and adult (78%) size classes. Isotopic mixing model analysis (SIAR) also suggests substantial variation in use of marine/estuarine prey resources with differences among and within size classes between sexes and individuals (range of median estimates for marine/estuarine diet contribution = 0·05-0·76). These results demonstrate the importance of intrapopulation characteristics (body size, sex and individual specialization) as key determinants of the strength of predator-driven ecosystem connectivity resulting from cross-ecosystem foraging behaviours. Understanding the factors, which contribute to variation in cross-ecosystem foraging behaviours, will improve our predictive understanding of the effects of top-predators on community structure and ecosystem function.
Collapse
Affiliation(s)
- James C Nifong
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Craig A Layman
- Department of Applied Ecology, North Carolina State University, Chapel Hill, NC, USA
| | - Brian R Silliman
- Division of Marine Sciences and Conservation, Nicholas School of the Environment, Duke University, Beaufort, NC, USA
| |
Collapse
|
19
|
Peckarsky BL, McIntosh AR, Álvarez M, Moslemi JM. Nutrient limitation controls the strength of behavioral trophic cascades in high elevation streams. Ecosphere 2013. [DOI: 10.1890/es13.00084.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
20
|
Estes JA, Brashares JS, Power ME. Predicting and Detecting Reciprocity between Indirect Ecological Interactions and Evolution. Am Nat 2013; 181 Suppl 1:S76-99. [DOI: 10.1086/668120] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Hammock BG, Wetzel WC. The relative importance of drift causes for stream insect herbivores across a canopy gradient. OIKOS 2013. [DOI: 10.1111/j.1600-0706.2013.00319.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Wootton JT. River food web response to large-scale riparian zone manipulations. PLoS One 2013; 7:e51839. [PMID: 23284786 PMCID: PMC3527445 DOI: 10.1371/journal.pone.0051839] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Accepted: 10/23/2012] [Indexed: 11/18/2022] Open
Abstract
Conservation programs often focus on select species, leading to management plans based on the autecology of the focal species, but multiple ecosystem components can be affected both by the environmental factors impacting, and the management targeting, focal species. These broader effects can have indirect impacts on target species through the web of interactions within ecosystems. For example, human activity can strongly alter riparian vegetation, potentially impacting both economically-important salmonids and their associated river food web. In an Olympic Peninsula river, Washington state, USA, replicated large-scale riparian vegetation manipulations implemented with the long-term (>40 yr) goal of improving salmon habitat did not affect water temperature, nutrient limitation or habitat characteristics, but reduced canopy cover, causing reduced energy input via leaf litter, increased incident solar radiation (UV and PAR) and increased algal production compared to controls. In response, benthic algae, most insect taxa, and juvenile salmonids increased in manipulated areas. Stable isotope analysis revealed a predominant contribution of algal-derived energy to salmonid diets in manipulated reaches. The experiment demonstrates that riparian management targeting salmonids strongly affects river food webs via changes in the energy base, illustrates how species-based management strategies can have unanticipated indirect effects on the target species via the associated food web, and supports ecosystem-based management approaches for restoring depleted salmonid stocks.
Collapse
Affiliation(s)
- J Timothy Wootton
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
23
|
Response of fish communities to various environmental variables across multiple spatial scales. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2012. [PMID: 23202766 PMCID: PMC3506418 DOI: 10.3390/ijerph9103629] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A better understanding of the relative importance of different spatial scale determinants on fish communities will eventually increase the accuracy and precision of their bioassessments. Many studies have described the influence of environmental variables on fish communities on multiple spatial scales. However, there is very limited information available on this topic for the East Asian monsoon region, including Korea. In this study, we evaluated the relationship between fish communities and environmental variables at multiple spatial scales using self-organizing map (SOM), random forest, and theoretical path models. The SOM explored differences among fish communities, reflecting environmental gradients, such as a longitudinal gradient from upstream to downstream, and differences in land cover types and water quality. The random forest model for predicting fish community patterns that used all 14 environmental variables was more powerful than a model using any single variable or other combination of environmental variables, and the random forest model was effective at predicting the occurrence of species and evaluating the contribution of environmental variables to that prediction. The theoretical path model described the responses of different species to their environment at multiple spatial scales, showing the importance of altitude, forest, and water quality factors to fish assemblages.
Collapse
|
24
|
Wootton JT. Effects of timber harvest on river food webs: physical, chemical and biological responses. PLoS One 2012; 7:e43561. [PMID: 22957030 PMCID: PMC3434149 DOI: 10.1371/journal.pone.0043561] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Accepted: 07/26/2012] [Indexed: 11/18/2022] Open
Abstract
I compared physical, chemical and biological characteristics of nine rivers running through three timber harvest regimes to investigate the effects of land use on river ecosystems, to determine whether these corresponded to changes linked with downstream location, and to compare the response of different types of indicator variables. Physical variables changed with downstream location, but varied little with timber harvest. Most chemical variables increased strongly with timber harvest, but not with downstream location. Most biological variables did not vary systematically with either timber harvest or downstream location. Dissolved organic carbon did not vary with timber harvest or downstream location, but correlated positively with salmonid abundance. Nutrient manipulations revealed no general pattern of nutrient limitation with timber harvest or downstream location. The results suggest that chemical variables most reliably indicate timber harvest impact in these systems. The biological variables most relevant to human stakeholders were surprisingly insensitive to timber harvest, however, apparently because of decoupling from nutrient responses and unexpectedly weak responses by physical variables.
Collapse
Affiliation(s)
- J Timothy Wootton
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America.
| |
Collapse
|
25
|
Cascading predator control interacts with productivity to determine the trophic level of biomass accumulation in a benthic food web. Ecol Res 2011. [DOI: 10.1007/s11284-011-0889-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Finlay JC. Stream size and human influences on ecosystem production in river networks. Ecosphere 2011. [DOI: 10.1890/es11-00071.1] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
27
|
References. COMMUNITY ECOL 2011. [DOI: 10.1002/9781444341966.refs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Sakai M, Natuhara Y, Imanishi A, Imai K, Kato M. Indirect effects of excessive deer browsing through understory vegetation on stream insect assemblages. POPUL ECOL 2011. [DOI: 10.1007/s10144-011-0278-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
|
30
|
Effenberger M, Diehl S, Gerth M, Matthaei CD. Patchy bed disturbance and fish predation independently influence the distribution of stream invertebrates and algae. J Anim Ecol 2011; 80:603-14. [PMID: 21323920 DOI: 10.1111/j.1365-2656.2011.01807.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Michael Effenberger
- Department Biology II, Aquatic Ecology, University of Munich (LMU), Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | | | | | | |
Collapse
|
31
|
Walsh MR, Fraser DF, Bassar RD, Reznick DN. The direct and indirect effects of guppies: implications for life‐history evolution in
Rivulus hartii. Funct Ecol 2010. [DOI: 10.1111/j.1365-2435.2010.01786.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthew R. Walsh
- Department of Biology, University of California, Riverside, California 92521, USA
| | - Douglas F. Fraser
- Department of Biology, Siena College, Loudonville, New York 12211, USA
| | - Ronald D. Bassar
- Department of Biology, University of California, Riverside, California 92521, USA
| | - David N. Reznick
- Department of Biology, University of California, Riverside, California 92521, USA
| |
Collapse
|
32
|
Cronin JP, Tonsor SJ, Carson WP. A simultaneous test of trophic interaction models: which vegetation characteristic explains herbivore control over plant community mass? Ecol Lett 2010; 13:202-12. [DOI: 10.1111/j.1461-0248.2009.01420.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Anderson C, Cabana G. Anthropogenic alterations of lotic food web structure: evidence from the use of nitrogen isotopes. OIKOS 2009. [DOI: 10.1111/j.1600-0706.2009.17368.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Abstract
There are three hypothesized controls on food-chain length (FCL): energy supply (or "resource availability"), ecosystem size and disturbance (or "environmental variation"). In this article, the evidence for controls on FCL in freshwater ecosystems is evaluated. First, the various ways FCL can be measured are defined. Food-chain length typically is estimated as (1) connectance-based FCL--an average connectance between basal resources and top consumers, (2) functional FCL--by experimental determination of functionally significant effects of a top predator on lower trophic-level biomass patterns, and (3) realized FCL--an average connectance measure weighted by energy flow between basal consumers and the consumer occupying the maximum trophic position in the food web. Second, all evidence for relationships between the three hypothetical controls and FCL in freshwater ecosystems are evaluated. The review includes studies from streams, lakes, ponds, wetlands, phytotelmata, and experimental containers. Surprisingly, few studies of FCL in freshwaters that test the same suite of controls using the same methods are found. Equally compelling results arise from case studies based on functional, realized, and connectance-based measures of FCL. Third, 10 rules of thumb that could increase similarity of future studies, thereby facilitating synthesis across systems, are suggested. Fourth, it is discussed how FCL influences the concentration of contaminants in large-bodied animals (many of which are consumed by humans) as well as the efficacy of biocontrol applications in agriculture. Finally, there is a discussion of the potential relationships between global climate change, hydrology, and FCL in freshwaters.
Collapse
Affiliation(s)
- John L Sabo
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287-4501, USA.
| | | | | |
Collapse
|
35
|
Kiffney PM. Response of lotic producer and consumer trophic levels to gradients of resource supply and predation pressure. OIKOS 2008. [DOI: 10.1111/j.0030-1299.2008.16584.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Härri SA, Krauss J, Müller CB. Natural enemies act faster than endophytic fungi in population control of cereal aphids. J Anim Ecol 2008; 77:605-11. [DOI: 10.1111/j.1365-2656.2008.01373.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Gruner DS, Smith JE, Seabloom EW, Sandin SA, Ngai JT, Hillebrand H, Harpole WS, Elser JJ, Cleland EE, Bracken MES, Borer ET, Bolker BM. A cross-system synthesis of consumer and nutrient resource control on producer biomass. Ecol Lett 2008; 11:740-55. [PMID: 18445030 DOI: 10.1111/j.1461-0248.2008.01192.x] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nutrient availability and herbivory control the biomass of primary producer communities to varying degrees across ecosystems. Ecological theory, individual experiments in many different systems, and system-specific quantitative reviews have suggested that (i) bottom-up control is pervasive but top-down control is more influential in aquatic habitats relative to terrestrial systems and (ii) bottom-up and top-down forces are interdependent, with statistical interactions that synergize or dampen relative influences on producer biomass. We used simple dynamic models to review ecological mechanisms that generate independent vs. interactive responses of community-level biomass. We calibrated these mechanistic predictions with the metrics of factorial meta-analysis and tested their prevalence across freshwater, marine and terrestrial ecosystems with a comprehensive meta-analysis of 191 factorial manipulations of herbivores and nutrients. Our analysis showed that producer community biomass increased with fertilization across all systems, although increases were greatest in freshwater habitats. Herbivore removal generally increased producer biomass in both freshwater and marine systems, but effects were inconsistent on land. With the exception of marine temperate rocky reef systems that showed positive synergism of nutrient enrichment and herbivore removal, experimental studies showed limited support for statistical interactions between nutrient and herbivory treatments on producer biomass. Top-down control of herbivores, compensatory behaviour of multiple herbivore guilds, spatial and temporal heterogeneity of interactions, and herbivore-mediated nutrient recycling may lower the probability of consistent interactive effects on producer biomass. Continuing studies should expand the temporal and spatial scales of experiments, particularly in understudied terrestrial systems; broaden factorial designs to manipulate independently multiple producer resources (e.g. nitrogen, phosphorus, light), multiple herbivore taxa or guilds (e.g. vertebrates and invertebrates) and multiple trophic levels; and - in addition to measuring producer biomass - assess the responses of species diversity, community composition and nutrient status.
Collapse
Affiliation(s)
- Daniel S Gruner
- Department of Entomology, University of Maryland, College Park, MD 20742, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Aunapuu M, Dahlgren J, Oksanen T, Grellmann D, Oksanen L, Olofsson J, Rammul U, Schneider M, Johansen B, Hygen HO. Spatial Patterns and Dynamic Responses of Arctic Food Webs Corroborate the Exploitation Ecosystems Hypothesis (EEH). Am Nat 2008; 171:249-62. [PMID: 18197777 DOI: 10.1086/524951] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Maano Aunapuu
- Department of Ecology and Environmental Science, Umeå University, SE-90187 Umeå, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Anderson C, Cabana G. Estimating the trophic position of aquatic consumers in river food webs using stable nitrogen isotopes. ACTA ACUST UNITED AC 2007. [DOI: 10.1899/0887-3593(2007)26[273:ettpoa]2.0.co;2] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
W. Fox J. The dynamics of top-down and bottom-up effects in food webs of varying prey diversity, composition, and productivity. OIKOS 2007. [DOI: 10.1111/j.0030-1299.2007.15280.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Greenwood JL, Rosemond AD, Wallace JB, Cross WF, Weyers HS. Nutrients stimulate leaf breakdown rates and detritivore biomass: bottom-up effects via heterotrophic pathways. Oecologia 2006; 151:637-49. [PMID: 17146682 DOI: 10.1007/s00442-006-0609-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Accepted: 11/02/2006] [Indexed: 10/23/2022]
Abstract
Most nutrient enrichment studies in aquatic systems have focused on autotrophic food webs in systems where primary producers dominate the resource base. We tested the heterotrophic response to long-term nutrient enrichment in a forested, headwater stream. Our study design consisted of 2 years of pretreatment data in a reference and treatment stream and 2 years of continuous nitrogen (N) + phosphorus addition to the treatment stream. Studies were conducted with two leaf species that differed in initial C:N, Rhododendron maximum (rhododendron) and Acer rubrum (red maple). We determined the effects of nutrient addition on detrital resources (leaf breakdown rates, litter C:N and microbial activity) and tested whether nutrient enrichment affected macroinvertebrate consumers via increased biomass. Leaf breakdown rates were ca. 1.5 and 3x faster during the first and second years of enrichment, respectively, in the treatment stream for both leaf types. Microbial respiration rates of both leaf types were 3x higher with enrichment, and macroinvertebrate biomass associated with leaves increased ca. 2-3x with enrichment. The mass of N in macroinvertebrate biomass relative to leaves tended to increase with enrichment up to 6x for red maple and up to 44x for rhododendron leaves. Lower quality (higher C:N) rhododendron leaves exhibited greater changes in leaf nutrient content and macroinvertebrate response to nutrient enrichment than red maple leaves, suggesting a unique response by different leaf species to nutrient enrichment. Nutrient concentrations used in this study were moderate and equivalent to those in streams draining watersheds with altered land use. Thus, our results suggest that similarly moderate levels of enrichment may affect detrital resource quality and subsequently lead to altered energy and nutrient flow in detrital food webs.
Collapse
Affiliation(s)
- Jennifer L Greenwood
- Department of Biological Sciences, 247 Brehm Hall, University of Tennessee at Martin, Martin, TN 38238, USA.
| | | | | | | | | |
Collapse
|
43
|
Richards LA, Coley PD. Seasonal and habitat differences affect the impact of food and predation on herbivores: a comparison between gaps and understory of a tropical forest. OIKOS 2006. [DOI: 10.1111/j.2006.0030-1299.15043.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
44
|
Bishop MJ, Kelaher BP, Smith MPL, York PH, Booth DJ. Ratio-dependent response of a temperate Australian estuarine system to sustained nitrogen loading. Oecologia 2006; 149:701-8. [PMID: 16845540 DOI: 10.1007/s00442-006-0481-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Accepted: 06/07/2006] [Indexed: 11/26/2022]
Abstract
Classical resource- and the less studied ratio-dependent models of predator-prey relationships provide divergent predictions as to the sustained ecological effects of bottom-up forcing. While resource-dependent models, which consider only instantaneous prey density in modelling predator responses, predict community responses that are dependent on the number of trophic levels in a system, ratio-dependent models, which consider the number of prey per consumer, predict proportional increase in each level irrespective of chain length. The two models are only subtly different for systems with two or three trophic levels but in the case of four trophic levels, predict opposite effects of enrichment on primary producers. Despite the poor discriminatory power of tests of the models in systems with two or three trophic levels, field tests in estuarine and marine systems with four trophic levels have been notably absent. Sampling of phytoplankton, macroinvertebrates, invertebrate-feeding fishes, piscivorous fishes in Kooloonbung Creek, Hastings River estuary, eastern Australia, subject to over 20 years of sewage discharge, revealed increased abundances in all four trophic levels at the disturbed location relative to control sites. Increased abundance of phytoplankton at the disturbed site was counter to the predictions of resource-dependent models, which posit a reduction in the first trophic level in response to enrichment. By contrast, the increase in abundance of this first trophic level and the proportionality of increases in abundances of each of the four trophic groups to nitrogen loading provided strong support for ratio dependency. This first evidence of ratio dependence in an estuarine system with four trophic levels not only demonstrates the applicability of ecological theory which seeks to simplify the complexity of systems, but has implications for management. Although large nutrient inputs frequently induce mortality of invertebrates and fish, we have shown that smaller inputs may in fact enhance biomass of all trophic levels.
Collapse
Affiliation(s)
- Melanie J Bishop
- Department of Environmental Sciences, Institute for Water and Environmental Resource Management, University of Technology, P.O. Box 123, Broadway, Sydney, NSW, 2007, Australia.
| | | | | | | | | |
Collapse
|
45
|
Cadotte MW, Fortner AM, Fukami T. The effects of resource enrichment, dispersal, and predation on local and metacommunity structure. Oecologia 2006; 149:150-7. [PMID: 16639564 DOI: 10.1007/s00442-006-0426-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Accepted: 03/23/2006] [Indexed: 10/24/2022]
Abstract
Community structure is the observable outcome of numerous processes. We conducted a laboratory experiment using a microbial model system to disentangle effects of nutrient enrichment, dispersal, and predation on prey species richness and predator abundance at local and metacommunity scales. Prey species included: Chilomonas sp., Colpidium striatum, Colpoda cucullus, Paramecium tetraurelia, P. caudatum, Philodina sp., Spirostomum sp., Tetrahymena thermophila, and Uronema sp., and Stentor coeruleus was the predator used. We hypothesized that: (1) increased basal resources should maintain greater species richness and higher predator abundance; (2) dispersal should maintain greater species richness; and (3) predation should reduce species richness, especially in the high resource treatments relative to no-predator treatments. Our results support all three hypotheses. Further, we show that dispersal affects richness at the local community scale but not at the metacommunity scale. However, predation seems to have major effects at both the local and metacommunity scale. Overall, our results show that effects of resource enrichment, dispersal, and predation were mostly additive rather than interactive, indicating that it may be sometimes easier to understand their effects than generally thought due to complex interactive effects.
Collapse
Affiliation(s)
- Marc W Cadotte
- Complex Systems Group, Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA.
| | | | | |
Collapse
|
46
|
Meissner K, Muotka T. The role of trout in stream food webs: integrating evidence from field surveys and experiments. J Anim Ecol 2006; 75:421-33. [PMID: 16637995 DOI: 10.1111/j.1365-2656.2006.01063.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. We evaluated the effects of brown trout on boreal stream food webs using field surveys and enclosure/exclosure experiments. Experimental results were related to prey preference of uncaged trout in the same stream, as well as to a survey of macroinvertebrate densities in streams with vs. without trout. Finally, we assessed the generality of our findings by examining salmonid predation on three groups of macroinvertebrate prey (chironomid midges, epibenthic grazers, invertebrate predators) in a meta-analysis. 2. In a preliminary experiment, invertebrate predators showed a strong negative response to trout, whereas chironomids benefited from trout presence. In the main experiment, trout impact increased with prey size. Trout had the strongest effect on invertebrate predators and cased caddis larvae, whereas Baetis mayfly and chironomid larvae were unaffected. Trout impact on the largest prey seemed mainly consumptive, because prey emigration rates were low and independent of fish presence. Despite strong effects on macroinvertebrates, trout did not induce a trophic cascade on periphyton. Uncaged trout showed a strong preference for the largest prey items (predatory invertebrates and aerial prey), whereas Baetis mayflies and chironomids were avoided by trout. 3. Densities of invertebrate predators were significantly higher in troutless streams. Baetis mayflies also were less abundant in trout streams, whereas densities of chironomids were positively, although non-significantly, related to trout presence. Meta-analysis showed a strong negative impact of trout on invertebrate predators, a negative but variable impact on mobile grazers (mainly mayfly larvae) and a slightly positive impact on chironomid larvae. 4. Being size-selective predators, salmonid fishes have a strong impact on the largest prey types available, and this effect spans several domains of scale. Discrepancies between our experimental findings and those from the field survey and meta-analysis show, however, that for most lotic prey, small-scale experiments do not reflect fish impact reliably at stream-wide scales. 5. Our findings suggest that small-scale experiments will be useful only if the experimental results are evaluated carefully against natural history information about the experimental system and interacting species across a wide array of spatial scales.
Collapse
Affiliation(s)
- Kristian Meissner
- Department of Biology and Oulanka Research Station, University of Oulu, PO Box 3000, 90014 University of Oulu, Finland.
| | | |
Collapse
|
47
|
Van Bael SA, Brawn JD. The direct and indirect effects of insectivory by birds in two contrasting Neotropical forests. Oecologia 2006; 145:658-668. [PMID: 16315345 DOI: 10.1007/s00442-005-0134-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A goal among community ecologists is to predict when and where trophic cascades occur. For example, several studies have shown that forest birds can limit arthropod abundances on trees, but indirect effects of bird predation (i.e. decreased arthropod damage to trees) are not always observed and their context is not well understood. Because productivity is one factor that is expected to influence trophic cascades, we compared the extent to which birds indirectly limit herbivore damage to trees in two lowland Neotropical forests that differed in seasonality of leaf production and rainfall. We compared the effects of bird predation on local arthropod densities and on damage to foliage through a controlled experiment using bird exclosures in the canopy and understory of two forests. We found that birds decreased local arthropod densities and leaf damage in the canopy of the drier site during periods of high leaf production, but not in the wetter forest where leaf production was low and sporadic throughout the year. Birds had no effect on arthropod abundances and leaf damage in the understory where leaf production and turnover rates were low. In support of these experimental interpretations, although we observed that arthropod densities were similar at the two sites, bird densities and the rate at which birds captured arthropods were greater at the drier, seasonally productive site. The influence of top-down predation by birds in limiting herbivorous insects appears to be conditional and most important when the production and turnover of leaves are comparatively high.
Collapse
Affiliation(s)
- S A Van Bael
- Dept. of Animal Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | | |
Collapse
|
48
|
Katano O, Nakamura T, Yamamoto S. Intraguild indirect effects through trophic cascades between stream-dwelling fishes. J Anim Ecol 2006; 75:167-75. [PMID: 16903054 DOI: 10.1111/j.1365-2656.2005.01032.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. To examine the strength and role of indirect effects through trophic cascades by omnivorous fish on algal biomass in streams, we introduced one of four fish species (ayu Plecoglossus altivelis altivelis, pike gudgeon Pseudogobio esocinus esocinus, Japanese dace Tribolodon hakonensis and pale chub Zacco platypus) in experimental pools. We also investigated the indirect effects of gudgeon, dace and chub on the growth of ayu. 2. We chose the four fish species across a continuum of omnivory. Ayu fed mainly on benthic algae, and gudgeon predominantly on invertebrates. Dace and chub fed on both algae and invertebrates, but dace preyed on invertebrates more than chub. 3. The presence of gudgeon, dace and chub reduced the number of algal-feeding invertebrates and increased the algal biomass through trophic cascades. Consequently, ayu growth rate over the experimental period in pools with one of the three fish species was 25.9-44.1 times greater than the growth rate in pools with only ayu. 4. The positive indirect effect on ayu growth was large for gudgeon and dace and small for chub, whereas the addition of ayu reduced ayu growth considerably due to intraspecific competition. 5. The relative intensity of indirect effects on ayu growth through trophic cascades was predictable from the food overlap between ayu and the other fishes. However, the similar strength of indirect effects by gudgeon and dace that fed differently on algae and invertebrates suggests that feeding behaviour, prey preference and trait-mediated indirect interactions were also important in the prediction.
Collapse
Affiliation(s)
- Osamu Katano
- National Research Institute of Fisheries Science, Fisheries Research Agency, Komaki, Ueda, Nagano 386-0031, Japan.
| | | | | |
Collapse
|
49
|
Wootton JT, Emmerson M. Measurement of Interaction Strength in Nature. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2005. [DOI: 10.1146/annurev.ecolsys.36.091704.175535] [Citation(s) in RCA: 332] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- J. Timothy Wootton
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637;
| | - Mark Emmerson
- Department of Zoology, Ecology, and Plant Sciences, University College Cork, Cork, Ireland;
| |
Collapse
|
50
|
SHURIN JONATHANB, SEABLOOM ERICW. The strength of trophic cascades across ecosystems: predictions from allometry and energetics. J Anim Ecol 2005. [DOI: 10.1111/j.1365-2656.2005.00999.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|