1
|
Huang L, Ho C, Ye X, Gao Y, Guo W, Chen J, Sun J, Wen D, Liu Y, Liu Y, Zhang Y, Li Q. Mechanisms and translational applications of regeneration in limbs: From renewable animals to humans. Ann Anat 2024; 255:152288. [PMID: 38823491 DOI: 10.1016/j.aanat.2024.152288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/08/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND The regenerative capacity of organisms declines throughout evolution, and mammals lack the ability to regenerate limbs after injury. Past approaches to achieving successful restoration through pharmacological intervention, tissue engineering, and cell therapies have faced significant challenges. OBJECTIVES This review aims to provide an overview of the current understanding of the mechanisms behind animal limb regeneration and the successful translation of these mechanisms for human tissue regeneration. RESULTS Particular attention was paid to the Mexican axolotl (Ambystoma mexicanum), the only adult tetrapod capable of limb regeneration. We will explore fundamental questions surrounding limb regeneration, such as how amputation initiates regeneration, how the limb knows when to stop and which parts to regenerate, and how these findings can apply to mammalian systems. CONCLUSIONS Given the urgent need for regenerative therapies to treat conditions like diabetic foot ulcers and trauma survivors, this review provides valuable insights and ideas for researchers, clinicians, and biomedical engineers seeking to facilitate the regeneration process or elicit full regeneration from partial regeneration events.
Collapse
Affiliation(s)
- Lu Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.
| | - Chiakang Ho
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Xinran Ye
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Ya Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Weiming Guo
- Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai 200011, China; National Clinical Research Center for Oral Diseases, Shanghai 200011, China; National Center for Stomatology, Shanghai 200011, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China; Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Julie Chen
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Jiaming Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Dongsheng Wen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Yangdan Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Yuxin Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Yifan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China.
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China.
| |
Collapse
|
2
|
Malaab M, Renaud L, Takamura N, Zimmerman KD, da Silveira WA, Ramos PS, Haddad S, Peters-Golden M, Penke LR, Wolf B, Hardiman G, Langefeld CD, Medsger TA, Feghali-Bostwick CA. Antifibrotic factor KLF4 is repressed by the miR-10/TFAP2A/TBX5 axis in dermal fibroblasts: insights from twins discordant for systemic sclerosis. Ann Rheum Dis 2022; 81:268-277. [PMID: 34750102 PMCID: PMC8758541 DOI: 10.1136/annrheumdis-2021-221050] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/29/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Systemic sclerosis (SSc) is a complex disease of unknown aetiology in which inflammation and fibrosis lead to multiple organ damage. There is currently no effective therapy that can halt the progression of fibrosis or reverse it, thus studies that provide novel insights into disease pathogenesis and identify novel potential therapeutic targets are critically needed. METHODS We used global gene expression and genome-wide DNA methylation analyses of dermal fibroblasts (dFBs) from a unique cohort of twins discordant for SSc to identify molecular features of this pathology. We validated the findings using in vitro, ex vivo and in vivo models. RESULTS Our results revealed distinct differentially expressed and methylated genes, including several transcription factors involved in stem cell differentiation and developmental programmes (KLF4, TBX5, TFAP2A and homeobox genes) and the microRNAs miR-10a and miR-10b which target several of these deregulated genes. We show that KLF4 expression is reduced in SSc dFBs and its expression is repressed by TBX5 and TFAP2A. We also show that KLF4 is antifibrotic, and its conditional knockout in fibroblasts promotes a fibrotic phenotype. CONCLUSIONS Our data support a role for epigenetic dysregulation in mediating SSc susceptibility in dFBs, illustrating the intricate interplay between CpG methylation, miRNAs and transcription factors in SSc pathogenesis, and highlighting the potential for future use of epigenetic modifiers as therapies.
Collapse
Affiliation(s)
- Maya Malaab
- Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ludivine Renaud
- Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Naoko Takamura
- Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kip D Zimmerman
- Biostatistical Sciences and Center for Public Health Genomics, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Willian A da Silveira
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Paula S Ramos
- Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
- Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Sandra Haddad
- Science, Bay Path University, Longmeadow, Massachusetts, USA
| | - Marc Peters-Golden
- Internal Medicine, University of Michigan Michigan Medicine, Ann Arbor, Michigan, USA
| | - Loka R Penke
- Internal Medicine, University of Michigan Michigan Medicine, Ann Arbor, Michigan, USA
| | - Bethany Wolf
- Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Gary Hardiman
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Carl D Langefeld
- Biostatistical Sciences and Center for Public Health Genomics, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Thomas A Medsger
- Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
3
|
HOXC10 upregulation confers resistance to chemoradiotherapy in ESCC tumor cells and predicts poor prognosis. Oncogene 2020; 39:5441-5454. [PMID: 32587398 DOI: 10.1038/s41388-020-1375-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 11/08/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a malignant disease and is a common cause of death in China. By performing an integrative study investigating public databases and clinical samples collected by our group, we found that HOXC10 (homeobox C10) is upregulated in ESCC tumor tissues compared with nontumor tissues and that the upregulation of HOXC10 is correlated with the poor prognosis of patients with ESCC. The enforced expression of HOXC10 promoted ESCC cell proliferation in vitro and in vivo. Our study revealed that HOXC10 could bind the promoter region of human Erb-b2 receptor tyrosine kinase 3 (ERBB3/HER3) and activate the PI3K/AKT pathway. In addition, by immunoprecipitation and mass spectrometry analysis, we found that HOXC10 could bind X-ray repair cross complementing 6 (Ku70) and accelerate the DNA repair mechanism via the nonhomologous end-joining (NHEJ) pathway. We further evaluated HOXC10 expression in ESCC patients receiving adjuvant radiotherapy or platinum-based chemotherapy. The results demonstrate that HOXC10 upregulation predicts the poor prognosis of ESCC patients receiving adjuvant radiotherapy or chemotherapy. Our study reveals that HOXC10 upregulation reflects the poor prognosis of ESCC patients and directs the selection of postoperative therapy regimens.
Collapse
|
4
|
Durston AJ. A Tribute to Lewis Wolpert and His Ideas on the 50th Anniversary of the Publication of His Paper 'Positional Information and the Spatial Pattern of Differentiation'. Evidence for a Timing Mechanism for Setting Up the Vertebrate Anterior-Posterior (A-P) Axis. Int J Mol Sci 2020; 21:E2552. [PMID: 32272563 PMCID: PMC7177403 DOI: 10.3390/ijms21072552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 11/16/2022] Open
Abstract
This article is a tribute to Lewis Wolpert and his ideas on the occasion of the recent 50th anniversary of the publication of his article 'Positional Information and the Spatial Pattern of Differentiation'. This tribute relates to another one of his ideas: his early 'Progress Zone' timing model for limb development. Recent evidence is reviewed showing a mechanism sharing features with this model patterning the main body axis in early vertebrate development. This tribute celebrates the golden era of Developmental Biology.
Collapse
Affiliation(s)
- Antony J Durston
- Institute of Biology, University of Leiden, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| |
Collapse
|
5
|
Durston AJ. Some Questions and Answers About the Role of Hox Temporal Collinearity in Vertebrate Axial Patterning. Front Cell Dev Biol 2019; 7:257. [PMID: 31850338 PMCID: PMC6895010 DOI: 10.3389/fcell.2019.00257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/16/2019] [Indexed: 01/02/2023] Open
Abstract
The vertebrate anterior-posterior (A-P = craniocaudal) axis is evidently made by a timing mechanism. Evidence has accumulated that tentatively identifies the A-P timer as being or involving Hox temporal collinearity (TC). Here, I focus on the two current competing models based on this premise. Common features and points of dissent are examined and a common model is distilled from what remains. This is an attempt to make sense of the literature.
Collapse
|
6
|
HOXD9 promotes the growth, invasion and metastasis of gastric cancer cells by transcriptional activation of RUFY3. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:412. [PMID: 31547840 PMCID: PMC6755711 DOI: 10.1186/s13046-019-1399-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022]
Abstract
Background The transcription factor HOXD9 is one of the members of the HOX family, which plays an important role in neoplastic processes. However, the role of HOXD9 in the growth and metastasis of gastric cancer (GC) remains to be elucidated. Methods In vitro functional role of HOXD9 and RURY3 in GC cells was determined using the TMA-based immunohistochemistry, western blot, EdU incorporation, gelatin zymography, luciferase, chromatin Immunoprecipitation (ChIP) and cell invasion assays. In vivo tumor growth and metastasis were conducted in nude mice. Results HOXD9 is overexpressed in GC cells and tissues. The high expression of HOXD9 was correlated with poor survival in GC patients. Functionally, HOXD9 expression significantly promoted the proliferation, invasion and migration of GC cells. Mechanically, HOXD9 directly associated with the RUFY3 promoter to increase the transcriptional activity of RUFY3. Inhibition of RUFY3 attenuated the proliferation, migration and invasiveness of HOXD9-overexpressing GC cells in vitro and in vivo. Moreover, both HOXD9 and RUFY3 were highly expressed in cancer cells but not in normal gastric tissues, with their expressions being positively correlated. Conclusions The evidence presented here suggests that the HOXD9-RUFY3 axis promotes the development and progression of human GC. Electronic supplementary material The online version of this article (10.1186/s13046-019-1399-1) contains supplementary material, which is available to authorized users.
Collapse
|
7
|
Durston AJ. What are the roles of retinoids, other morphogens, and Hox genes in setting up the vertebrate body axis? Genesis 2019; 57:e23296. [PMID: 31021058 PMCID: PMC6767176 DOI: 10.1002/dvg.23296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/24/2019] [Accepted: 03/29/2019] [Indexed: 01/09/2023]
Abstract
This article is concerned with the roles of retinoids and other known anterior-posterior morphogens in setting up the embryonic vertebrate anterior-posterior axis. The discussion is restricted to the very earliest events in setting up the anterior-posterior axis (from blastula to tailbud stages in Xenopus embryos). In these earliest developmental stages, morphogen concentration gradients are not relevant for setting up this axis. It emerges that at these stages, the core patterning mechanism is timing: BMP-anti BMP mediated time space translation that regulates Hox temporal and spatial collinearities and Hox-Hox auto- and cross- regulation. The known anterior-posterior morphogens and signaling pathways--retinoids, FGF's, Cdx, Wnts, Gdf11 and others--interact with this core mechanism at and after space-time defined "decision points," leading to the separation of distinct axial domains. There are also other roles for signaling pathways. Besides the Hox regulated hindbrain/trunk part of the axis, there is a rostral part (including the anterior part of the head and the extreme anterior domain [EAD]) that appears to be regulated by additional mechanisms. Key aspects of anterior-posterior axial patterning, including: the nature of different phases in early patterning and in the whole process; the specificities of Hox action and of intercellular signaling; and the mechanisms of Hox temporal and spatial collinearities, are discussed in relation to the facts and hypotheses proposed above.
Collapse
|
8
|
Abstract
Hox temporal collinearity (TC) is a mysterious feature of embryogenesis. This article is opportune because of a recent challenge to TC’s existence This challenge is examined and the evidence that TC does exist is presented. Its function is discussed. Temporal collinearity is thought to be important because it lays the basis for Hox spatial collinearity and the vertebrate A-P axial pattern. The time-space translation mechanism whereby this occurs is examined.
Collapse
Affiliation(s)
- A J Durston
- a Institute of Biology , University of Leiden, Sylvius Laboratory , Leiden , Netherlands
| |
Collapse
|
9
|
Durston AJ. Two Tier Hox Collinearity Mediates Vertebrate Axial Patterning. Front Cell Dev Biol 2018; 6:102. [PMID: 30234110 PMCID: PMC6131192 DOI: 10.3389/fcell.2018.00102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/10/2018] [Indexed: 12/04/2022] Open
Abstract
A two tier mechanism mediates Hox collinearity. Besides the familiar collinear chromatin modification within each Hox cluster (nanocollinearity), there is also a macrocollinearity tier. Individual Hox clusters and individual cells are coordinated and synchronized to generate multiscale (macro and nano) collinearity in the early vertebrate embryo. Macro-collinearity is mediated by three non-cell autonomous Hox–Hox interactions. These mediate temporal collinearity in early NOM (non-organizer mesoderm), time space translation where temporal collinearity is translated to spatial collinearity along the early embryo’s main body axis and neural transformation, where Hox expression is copied monospecifically from NOM mesoderm to overlying neurectoderm in the late gastrula. Unlike nanocollinearity, which is Hox cluster restricted, axial macrocollinearity extends into the head and EAD domains, thus covering the whole embryonic anterior-posterior (A-P) axis. EAD: extreme anterior domain, the only A-P axial domain anterior to the head. The whole time space translation mechanism interacts with A-P signaling pathways via “decision points,” separating different domains on the axis.
Collapse
Affiliation(s)
- Antony J Durston
- Faculty of Science, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| |
Collapse
|
10
|
Zhu K, Spaink HP, Durston AJ. Collinear Hox-Hox interactions are involved in patterning the vertebrate anteroposterior (A-P) axis. PLoS One 2017; 12:e0175287. [PMID: 28399140 PMCID: PMC5388487 DOI: 10.1371/journal.pone.0175287] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/23/2017] [Indexed: 02/07/2023] Open
Abstract
Investigating regulation and function of the Hox genes, key regulators of positional identity in the embryo, opened a new vista in developmental biology. One of their most striking features is collinearity: the temporal and spatial orders of expression of these clustered genes each match their 3’ to 5’ order on the chromosome. Despite recent progress, the mechanisms underlying collinearity are not understood. Here we show that ectopic expression of 4 different single Hox genes predictably induces and represses expression of others, leading to development of different predictable specific sections of the body axis. We use ectopic expression in wild-type and noggin—dorsalised (Hox-free) Xenopus embryos, to show that two Hox-Hox interactions are important. Posterior induction (induction of posterior Hox genes by anterior ones: PI), drives Hox temporal collinearity (Hox timer), which itself drives anteroposterior (A-P) patterning. Posterior prevalence (repression of anterior Hox genes by posterior ones: PP) is important in translating temporal to spatial collinearity. We thus demonstrate for the first time that two collinear Hox interactions are important for vertebrate axial patterning. These findings considerably extend and clarify earlier work suggesting the existence and importance of PP and PI, and provide a major new insight into genesis of the body axis.
Collapse
Affiliation(s)
- Kongju Zhu
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Herman P. Spaink
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Antony J. Durston
- Institute of Biology, Leiden University, Leiden, the Netherlands
- * E-mail:
| |
Collapse
|
11
|
An E2F1-HOXB9 transcriptional circuit is associated with breast cancer progression. PLoS One 2014; 9:e105285. [PMID: 25136922 PMCID: PMC4138122 DOI: 10.1371/journal.pone.0105285] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 07/22/2014] [Indexed: 01/29/2023] Open
Abstract
Homeobox B9 (HOXB9), a member of the homeobox gene family, is overexpressed in breast cancer and promotes tumor progression and metastasis by stimulating epithelial-to-mesenchymal transition and angiogenesis within the tumor microenvironment. HOXB9 activates the TGFβ-ATM axis, leading to checkpoint activation and DNA repair, which engenders radioresistance in breast cancer cells. Despite detailed reports of the role of HOXB9 in breast cancer, the factors that regulate HOXB9 transcription have not been extensively examined. Here we uncover an underlying mechanism that may suggest novel targeting strategies for breast cancer treatment. To identify a transcription factor binding site (TFBS) in the HOXB9 promoter region, a dual luciferase reporter assay was conducted. Protein candidates that may directly attach to a TFBS of HOXB9 were examined by Q-PCR, electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation (ChIP), and mutation analysis. A HOXB9 promoter region from -404 to -392 was identified as TFBS, and E2F1 was a potential binding candidate in this region. The induction of HOXB9 expression by E2F1 was observed by Q-PCR in several breast cancer cell lines overexpressing E2F1. The stimulatory effect of E2F1 on HOXB9 transcription and its ability to bind the TFBS were confirmed by luciferase, EMSA and ChIP assay. Immunohistochemical analysis of 139 breast cancer tissue samples revealed a significant correlation between E2F1 and HOXB9 expression (p<0.001). Furthermore, a CDK4/6 inhibitor suppressed E2F1 expression and also reduced expression of HOXB9 and its downstream target genes. Our in vitro analysis identified the TFBS of the HOXB9 promoter region and suggested that E2F1 is a direct regulator of HOXB9 expression; these data support the strong correlation we found between E2F1 and HOXB9 in clinical breast cancer samples. These results suggest that targeting the E2F1/HOXB9 axis may be a novel strategy for the control or prevention of cancer progression and metastasis.
Collapse
|
12
|
Ansari KI, Shrestha B, Hussain I, Kasiri S, Mandal SS. Histone methylases MLL1 and MLL3 coordinate with estrogen receptors in estrogen-mediated HOXB9 expression. Biochemistry 2011; 50:3517-27. [PMID: 21428455 DOI: 10.1021/bi102037t] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Homeobox gene HOXB9 is a critical player in development of mammary gland and sternum and in regulation of renin which is closely linked with blood pressure control. Our studies demonstrated that HOXB9 gene is transcriptionally regulated by estrogen (E2). HOXB9 promoter contains several estrogen-response elements (ERE). Reporter assay based experiments demonstrated that HOXB9 promoter EREs are estrogen responsive. Estrogen receptors ERα and ERβ are essential for E2-mediated transcriptional activation of HOXB9. Chromatin immunoprecipitation assay demonstrated that ERs bind to HOXB9 EREs as a function of E2. Similarly, histone methylases MLL1 and MLL3 also bind to HOXB9 EREs and play a critical role in E2-mediated transcriptional activation of HOXB9. Overall, our studies demonstrated that HOXB9 is an E2-responsive gene and ERs coordinate with MLL1 and MLL3 in E2-mediated transcriptional regulation of HOXB9.
Collapse
Affiliation(s)
- Khairul I Ansari
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, 76019, United States
| | | | | | | | | |
Collapse
|
13
|
|
14
|
Yoshimi T, Hashimoto F, Takahashi S, Takahashi Y. Suppression of embryonic lung branching morphogenesis by antisense oligonucleotides against HOM/C homeobox factors. In Vitro Cell Dev Biol Anim 2010; 46:664-72. [PMID: 20535580 DOI: 10.1007/s11626-010-9322-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 05/23/2010] [Indexed: 11/30/2022]
Abstract
The role of HOM/C homeobox genes on rat embryonic lung branching morphogenesis was investigated using the lung bud explant culture system in an air/liquid interface. Knock down of homeobox b3 and b4 expression by antisense oligonucleotide treatment repressed airway branch formation, while antisense oligonucleotide against homeobox a3 showed no effect. Addition of antisense Hoxb3 oligonucleotide resulted in upregulation of collagen type III mRNA and fibroblast growth factor 10 mRNA, while that of the T-box regulatory factor-4 was decreased. Consequently, expression of Clara cell-specific secretory protein was decreased. These results suggest a critical role for homeobox b3 and b4 genes in lung airway branching morphogenesis.
Collapse
Affiliation(s)
- Tatsuya Yoshimi
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| | | | | | | |
Collapse
|
15
|
O'Brien RN, Shen Z, Tachikawa K, Lee PA, Briggs SP. Quantitative proteome analysis of pluripotent cells by iTRAQ mass tagging reveals post-transcriptional regulation of proteins required for ES cell self-renewal. Mol Cell Proteomics 2010; 9:2238-51. [PMID: 20513800 DOI: 10.1074/mcp.m110.000281] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Embryonic stem cells and embryonal carcinoma cells share two key characteristics: pluripotency (the ability to differentiate into endoderm, ectoderm, and mesoderm) and self-renewal (the ability to grow without change in an untransformed, euploid state). Much has been done to identify and characterize transcription factors that are necessary or sufficient to maintain these characteristics. Oct-4 and Nanog are necessary to maintain pluripotency; they are down-regulated at the mRNA level by differentiation. There may be additional regulatory genes whose mRNA levels are unchanged but whose proteins are destabilized during differentiation. We generated proteome-wide, quantitative profiles of ES and embryonal carcinoma cells during differentiation, replicating a microarray-based study by Aiba et al. (Aiba, K., Sharov, A. A., Carter, M. G., Foroni, C., Vescovi, A. L., and Ko, M. S. (2006) Defining a developmental path to neural fate by global expression profiling of mouse embryonic stem cells and adult neural stem/progenitor cells. Stem Cells 24, 889-895) who triggered differentiation by treatment with 1 μM all-trans-retinoic acid. We identified several proteins whose levels decreased during differentiation in both cell types but whose mRNA levels were unchanged. We confirmed several of these cases by RT-PCR and Western blot. Racgap1 (also known as mgcRacgap) was particularly interesting because it is required for viability of preimplantation embryos and hematopoietic stem cells, and it is also required for differentiation. To confirm our observation that RACGAP-1 declines during retinoic acid-mediated differentiation, we used multiple reaction monitoring, a targeted mass spectrometry-based quantitation method, and determined that RACGAP-1 levels decline by half during retinoic acid-mediated differentiation. We knocked down Racgap-1 mRNA levels using a panel of five shRNAs. This resulted in a loss of self-renewal that correlated with the level of knockdown. We conclude that RACGAP-1 is post-transcriptionally regulated during blastocyst development to enable differentiation by inhibiting ES cell self-renewal.
Collapse
Affiliation(s)
- Robert N O'Brien
- Division of Biological Sciences, University of California San Diego, La Jolla, California 92093-0380, USA
| | | | | | | | | |
Collapse
|
16
|
Winnik S, Klinkert M, Kurz H, Zoeller C, Heinke J, Wu Y, Bode C, Patterson C, Moser M. HoxB5 induces endothelial sprouting in vitro and modifies intussusceptive angiogenesis in vivo involving angiopoietin-2. Cardiovasc Res 2009; 83:558-65. [PMID: 19403561 DOI: 10.1093/cvr/cvp133] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
AIMS Homeobox (Hox) proteins are transcriptional regulators in embryonic patterning, cell differentiation, proliferation, and migration in vertebrates and invertebrates. A growing body of evidence suggests that Hox proteins are involved in endothelial cell regulation. We have shown earlier that HoxB5 upregulates vascular endothelial growth factor receptor-2 and thereby contributes to enhanced endothelial precursor cell differentiation. Here we aim to elucidate the role of HoxB5 in angiogenesis. METHODS AND RESULTS Endothelial cell sprouting was investigated in the human umbilical vein endothelial cell spheroid assay. We investigated in vivo angiogenesis in the chick (Gallus gallus) chorioallantoic membrane assay. Expression profiling of proangiogenic factors was done by quantitative PCR. The angiopoietin-2 (Ang2) promoter and deletion fragments thereof were cloned into the pGL3 reporter system for analysis of transcriptional activity. We observed that HoxB5 enhances endothelial cell sprouting and modulates the expression of adhesion molecules in vitro. Accordingly, we observed a modification of vascular growth by HoxB5 in vivo. The HoxB5 effect is reminiscent of the effects of angiopoietins. We demonstrate that Ang2 is upregulated upon HoxB5 overexpression and that the HoxB5 effect is abolished by the angiopoietin antagonist soluble Tie-2. CONCLUSION HoxB5 has an activating effect on Ang2 that is essential for endothelial cell sprouting and coordinated vascular growth.
Collapse
Affiliation(s)
- Stephan Winnik
- Department of Cardiology, University of Freiburg, Hugstetter Strasse 55, Freiburg 79106, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Gosiengfiao Y, Horvat R, Thompson A. Transcription factors GATA-1 and Fli-1 regulate human HOXA10 expression in megakaryocytic cells. DNA Cell Biol 2007; 26:577-87. [PMID: 17688409 DOI: 10.1089/dna.2007.0575] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
HOXA10 is a member of the HOX family of regulatory genes that are involved in hematopoiesis. Its role in megakaryopoiesis has been suggested by its expression in immature megakaryocytes and by the proliferation of megakaryocyte-primitive blast colonies upon HOXA10 overexpression. We sought to understand the role of HOXA10 in megakaryopoiesis better, by investigating its transcriptional regulation. Analysis of the 5' untranslated region and transfection of promoter/plasmids into human tissue culture cell lines identified transcriptionally active sequences that contain GATA-1 and Ets-1 sites and a putative binding site for its neighboring gene, HOXA11. Gel shift assays confirmed protein-DNA interactions at these sites. Mutation of the GATA-1 and the Ets-1 motifs amplified the expression of HOXA10 in HEL and K562 cells, confirming the importance of these cis-acting elements in regulating HOXA10 expression in megakaryocytic cells. Chromatin immunoprecipitation (ChIP) and chloramphenicol acetyl transferase (CAT) assays confirm that HOXA11 binds to the putative binding site, resulting in repression of HOXA10 expression. These data taken together give insight into the regulation of HOXA10 expression in megakaryocytic differentiation.
Collapse
Affiliation(s)
- Yasmin Gosiengfiao
- Division of Hematology-Oncology-Stem Cell Transplantation, Department of Pediatrics, Children's Memorial Hospital, Feinberg School of Medicine of Northwestern University, Chicago, Illinois 60614, USA
| | | | | |
Collapse
|
18
|
Chadalavada RSV, Korkola JE, Houldsworth J, Olshen AB, Bosl GJ, Studer L, Chaganti RSK. Constitutive gene expression predisposes morphogen-mediated cell fate responses of NT2/D1 and 27X-1 human embryonal carcinoma cells. Stem Cells 2006; 25:771-8. [PMID: 17138961 DOI: 10.1634/stemcells.2006-0271] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Human embryonal carcinoma (EC) cell lines exhibit considerable heterogeneity in their levels of pluripotency. Thus, NT2/D1 cells differentiate into neural lineages upon exposure to all-trans retinoic acid (ATRA) and non-neural epithelial lineages upon exposure to bone morphogenetic protein-2 (BMP-2). In contrast, 27X-1 cells differentiate into extra-embryonic endodermal (ExE) cells upon treatment with either morphogen. To understand the molecular basis for the differential responses of the two cell lines, we performed gene expression profiling at the undifferentiated EC cell line state to identify constitutive differences in gene expression. NT2/D1 cells preferentially expressed transcripts associated with neurectodermal development, whereas 27X-1 cells expressed high levels of transcripts associated with mesendodermal characteristics. We then determined temporal expression profiles of 27X-1 cells during ExE differentiation upon treatment with ATRA and BMP-2 and compared the data with changes in gene expression observed during BMP-2- and ATRA-induced differentiation of NT2/D1 cells. ATRA and BMP-2 induced distinct sets of transcription factors and phenotypic markers in the two EC cell lines, underlying distinct lineage choices. Although 27X-1 differentiation yielded comprehensive gene expression profiles of parietal endodermal lineages, we were able to use the combined analysis of 27X-1 data with data derived from yolk sac tumors for the identification of transcripts associated with visceral endoderm formation. Our results demonstrate constitutive differences in the levels of pluripotency between NT2/D1 and 27X-1 cells that correlate with lineage potential. This study also demonstrates that EC cells can serve as robust models to investigate early lineage choices during both embryonic and extra-embryonic human development.
Collapse
|
19
|
Newman MB, Misiuta I, Willing AE, Zigova T, Karl RC, Borlongan CV, Sanberg PR. Tumorigenicity issues of embryonic carcinoma-derived stem cells: relevance to surgical trials using NT2 and hNT neural cells. Stem Cells Dev 2005; 14:29-43. [PMID: 15725742 DOI: 10.1089/scd.2005.14.29] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cell therapy is a rapidly moving field with new cells, cell lines, and tissue-engineered constructs being developed globally. As these novel cells are further developed for transplantation studies, it is important to understand their safety profiles both prior to and posttransplantation in animals and humans. Embryonic carcinoma-derived cells are considered an important alternative to stem cells. The NTera2/D1 teratocarcinoma cell-line (or NT2-N cells) gives rise to neuron-like cells called hNT neurons after exposure to retinoic acid. NT2 cells form tumors upon transplantation into the rodent. However, when the NT2 cells are treated with retinoic acid to produce hNT cells, they terminally differentiate into post-mitotic neurons with no sign of tumorigenicity. Preliminary human transplantation studies in the brain of stroke patients also demonstrated a lack of tumorigenicity of these cells. This review focuses on the use of hNT neurons in cell transplantation for the treatment in central nervous system (CNS) diseases, disorders, or injuries and on the mechanism involved in retinoic acid exposure, final differentiation state, and subsequent tumorigenicity issues that must be considered prior to widespread clinical use.
Collapse
Affiliation(s)
- Mary B Newman
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida, College of Medicine, Tampa, Fl 33612, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Akin ZN, Nazarali AJ. Hox genes and their candidate downstream targets in the developing central nervous system. Cell Mol Neurobiol 2005; 25:697-741. [PMID: 16075387 PMCID: PMC11529567 DOI: 10.1007/s10571-005-3971-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Accepted: 04/14/2004] [Indexed: 12/14/2022]
Abstract
1. Homeobox (Hox) genes were originally discovered in the fruit fly Drosophila, where they function through a conserved homeodomain as transcriptional regulators to control embryonic morphogenesis. Since then over 1000 homeodomain proteins have been identified in several species. In vertebrates, 39 Hox genes have been identified as homologs of the original Drosophila complex, and like their Drosophila counterparts they are organized within chromosomal clusters. Vertebrate Hox genes have also been shown to play a critical role in embryonic development as transcriptional regulators. 2. Both the Drosophila and vertebrate Hox genes have been shown to interact with various cofactors, such as the TALE homeodomain proteins, in recognition of consensus sequences within regulatory elements of their target genes. These protein-protein interactions are believed to contribute to enhancing the specificity of target gene recognition in a cell-type or tissue- dependent manner. The regulatory activity of a particular Hox protein on a specific regulatory element is highly variable and dependent on its interacting partners within the transcriptional complex. 3. In vertebrates, Hox genes display spatially restricted patterns of expression within the developing CNS, both along the anterioposterior and dorsoventral axis of the embryo. Their restricted gene expression is suggestive of a regulatory role in patterning of the CNS, as well as in cell specification. Determining the precise function of individual Hox genes in CNS morphogenesis through classical mutational analyses is complicated due to functional redundancy between Hox genes. 4. Understanding the precise mechanisms through which Hox genes mediate embryonic morphogenesis requires the identification of their downstream target genes. Although Hox genes have been implicated in the regulation of several pathways, few target genes have been shown to be under their direct regulatory control. Development of methodologies used for the isolation of target genes and for the analysis of putative targets will be beneficial in establishing the genetic pathways controlled by Hox factors. 5. Within the developing CNS various cell adhesion molecules and signaling molecules have been identified as candidate downstream target genes of Hox proteins. These targets play a role in processes such as cell migration and differentiation, and are implicated in contributing to neuronal processes such as plasticity and/or specification. Hence, Hox genes not only play a role in patterning of the CNS during early development, but may also contribute to cell specification and identity.
Collapse
Affiliation(s)
- Z. N. Akin
- Laboratory of Molecular Biology, College of Pharmacy and Nutrition, University of Saskatchewan, 116 Thorvaldson Building, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9 Canada
| | - A. J. Nazarali
- Laboratory of Molecular Biology, College of Pharmacy and Nutrition, University of Saskatchewan, 116 Thorvaldson Building, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9 Canada
| |
Collapse
|
21
|
Barreto G, Borgmeyer U, Dreyer C. The germ cell nuclear factor is required for retinoic acid signaling during Xenopus development. Mech Dev 2003; 120:415-28. [PMID: 12676320 DOI: 10.1016/s0925-4773(03)00018-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The germ cell nuclear factor (GCNF, NR6A1) is a nuclear orphan receptor that functions as a transcriptional repressor and is transiently expressed in mammalian carcinoma cells during retinoic acid (RA) induced neuronal differentiation. During Xenopus laevis development, the spatiotemporal expression pattern of embryonic GCNF (xEmGCNF) suggests a role in anteroposterior specification of the neuroectoderm. Here, we show that RA treatment of Xenopus embryos enhances xEmGCNF expression. Moreover, we present evidence for the relevance of this finding in the context of primary neurogenesis and hindbrain development. During early development of the central nervous system, RA signals promote posterior transformation of the neuroectoderm and increase the number of cells undergoing primary neurogenesis. Our loss-of-function analyses using a xEmGCNF-specific morpholino antisense oligonucleotide indicate that xEmGCNF is required for the effect of RA on primary neurogenesis. This may be caused by transcriptional regulation of the gene encoding the RA-degrading enzyme CYP26, since this gene is derepressed after depletion of xEmGCNF and an antimorph of xEmGCNF directly activates transcription of CYP26, also in absence of protein synthesis. The effect of xEmGCNF knockdown on hindbrain patterning is similar to conditions of reduced RA signaling, which may be caused by a reduction of RAR gamma expression specifically in the presumptive hindbrain.
Collapse
Affiliation(s)
- Guillermo Barreto
- Max-Planck-Institut für Entwicklungsbiologie, Spemannstr. 35/V, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
22
|
Yoshimi T, Takahashi Y, Takahashi S, Miura T. Changes in lung-specific molecular expression during differentiation of hamster embryonic M3E3/C3 cell line. Biochem Cell Biol 2000. [DOI: 10.1139/o00-069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To clarify the differentiation mechanisms of bronchiolar epithelial cells, changes at the transcription level of epithelial cell-specific proteins were examined using M3E3/C3, a cell line derived from hamster fetal lung. During a 9-day incubation period with 24 µg/mL of retinol, the cells became attached to each other and formed large bud-like structures which could be detected with periodic acid-Schiff staining. During the incubation period, the mRNA level of surfactant-associated protein-B significantly increased 2.6- and 5.4-fold higher than cells incubated without retinol on days 3 and 9, respectively. The Clara cell-specific secretory protein mRNA level also increased and peaked at 5.1-fold (P < 0.05) on day 5 compared with control cells. In contrast, mRNA for surfactant-associated protein-C, an alveolar type II cell-specific protein, decreased. Moreover, the expression of the gene for hepatocyte nuclear factor 3α, a putative transactivating factor for lung-related genes, was up-regulated resulting in consistently higher levels (2.4- to 5.6-fold) compared with controls, while those for transmembrane-type mucin-1 and glyceraldehyde-3-phosphate dehydrogenase were constantly expressed during the incubation. The present study confirms that at the gene transcription level M3E3/C3 cells differentiate into Clara-like cells with mucus granules in the presence of retinol.Key words: lung, Clara cell, differentiation, gene transcription, surfactant protein.
Collapse
|
23
|
Giannola DM, Shlomchik WD, Jegathesan M, Liebowitz D, Abrams CS, Kadesch T, Dancis A, Emerson SG. Hematopoietic expression of HOXB4 is regulated in normal and leukemic stem cells through transcriptional activation of the HOXB4 promoter by upstream stimulating factor (USF)-1 and USF-2. J Exp Med 2000; 192:1479-90. [PMID: 11085749 PMCID: PMC2193192 DOI: 10.1084/jem.192.10.1479] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The homeobox genes encode a family of transcription factors that regulate development and postnatal tissue homeostasis. Since HOXB4 plays a key role in regulating the balance between hematopoietic stem cell renewal and differentiation, we studied the molecular regulation of HOXB4 expression in human hematopoietic stem cells. HOXB4 expression in K562 cells is regulated at the level of transcription, and transient transfection defines primary HOXB4 regulatory sequences within a 99-bp 5' promoter. Culture of highly purified human CD34(+) bone marrow cells in thrombopoietin/Flt-3 ligand/stem cell factor induced HOXB4 3-10-fold, whereas culture in granulocyte/macrophage colony-stimulating factor, only increased HOXB4/luciferase expression 20-50%. Mutations within the HOXB4 promoter identified a potential E box binding site (HOX response element [HXRE]-2) as the most critical regulatory sequence, and yeast one hybrid assays evaluating bone marrow and K562 libraries for HXRE-2 interaction identified upstream stimulating factor (USF)-2 and micropthalmia transcription factor (MITF). Electrophoretic mobility shift assay with K562 extracts confirmed that these proteins, along with USF-1, bind to the HOXB4 promoter in vitro. Cotransfection assays in both K562 and CD34(+) cells showed that USF-1 and USF-2, but not MITF, induce the HOXB4 promoter in response to signals stimulating stem cell self-renewal, through activation of the mitogen-activated protein kinase pathway. Thus hematopoietic expression of the human HOXB4 gene is regulated by the binding of USF-1 and USF-2, and this process may be favored by cytokines promoting stem cell self-renewal versus differentiation.
Collapse
Affiliation(s)
- D M Giannola
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Constitutive HOXA5 Expression Inhibits Erythropoiesis and Increases Myelopoiesis From Human Hematopoietic Progenitors. Blood 1999. [DOI: 10.1182/blood.v94.2.519.414k20_519_528] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of the homeobox gene HOXA5 in normal human hematopoiesis was studied by constitutively expressing theHOXA5 cDNA in CD34+ and CD34+CD38− cells from bone marrow and cord blood. By using retroviral vectors that contained both HOXA5and a cell surface marker gene, pure populations of progenitors that expressed the transgene were obtained for analysis of differentiation patterns. Based on both immunophenotypic and morphological analysis of cultures from transduced CD34+ cells, HOXA5expression caused a significant shift toward myeloid differentiation and away from erythroid differentiation in comparison to CD34+ cells transduced with Control vectors (P= .001, n = 15 for immunophenotypic analysis; and P < .0001, n = 19 for morphological analysis). Transduction of more primitive progenitors (CD34+CD38− cells) resulted in a significantly greater effect on differentiation than did transduction of the largely committed CD34+ population (P = .006 for difference between HOXA5 effect on CD34+v CD34+CD38−cells). Erythroid progenitors (burst-forming unit-erythroid [BFU-E]) were significantly decreased in frequency among progenitors transduced with the HOXA5 vector (P = .016, n = 7), with no reduction in total CFU numbers. Clonal analysis of single cells transduced with HOXA5 or control vectors (cultured in erythroid culture conditions) showed that HOXA5expression prevented erythroid differentiation and produced clones with a preponderance of undifferentiated blasts. These studies show that constitutive expression of HOXA5 inhibits human erythropoiesis and promotes myelopoiesis. The reciprocal inhibition of erythropoiesis and promotion of myelopoiesis in the absence of any demonstrable effect on proliferation suggests that HOXA5 diverts differentiation at a mulitpotent progenitor stage away from the erythroid toward the myeloid pathway.
Collapse
|
25
|
Constitutive HOXA5 Expression Inhibits Erythropoiesis and Increases Myelopoiesis From Human Hematopoietic Progenitors. Blood 1999. [DOI: 10.1182/blood.v94.2.519] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The role of the homeobox gene HOXA5 in normal human hematopoiesis was studied by constitutively expressing theHOXA5 cDNA in CD34+ and CD34+CD38− cells from bone marrow and cord blood. By using retroviral vectors that contained both HOXA5and a cell surface marker gene, pure populations of progenitors that expressed the transgene were obtained for analysis of differentiation patterns. Based on both immunophenotypic and morphological analysis of cultures from transduced CD34+ cells, HOXA5expression caused a significant shift toward myeloid differentiation and away from erythroid differentiation in comparison to CD34+ cells transduced with Control vectors (P= .001, n = 15 for immunophenotypic analysis; and P < .0001, n = 19 for morphological analysis). Transduction of more primitive progenitors (CD34+CD38− cells) resulted in a significantly greater effect on differentiation than did transduction of the largely committed CD34+ population (P = .006 for difference between HOXA5 effect on CD34+v CD34+CD38−cells). Erythroid progenitors (burst-forming unit-erythroid [BFU-E]) were significantly decreased in frequency among progenitors transduced with the HOXA5 vector (P = .016, n = 7), with no reduction in total CFU numbers. Clonal analysis of single cells transduced with HOXA5 or control vectors (cultured in erythroid culture conditions) showed that HOXA5expression prevented erythroid differentiation and produced clones with a preponderance of undifferentiated blasts. These studies show that constitutive expression of HOXA5 inhibits human erythropoiesis and promotes myelopoiesis. The reciprocal inhibition of erythropoiesis and promotion of myelopoiesis in the absence of any demonstrable effect on proliferation suggests that HOXA5 diverts differentiation at a mulitpotent progenitor stage away from the erythroid toward the myeloid pathway.
Collapse
|
26
|
Ferreira HB, Zhang Y, Zhao C, Emmons SW. Patterning of Caenorhabditis elegans posterior structures by the Abdominal-B homolog, egl-5. Dev Biol 1999; 207:215-28. [PMID: 10049576 DOI: 10.1006/dbio.1998.9124] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Caenorhabditis elegans body axis, like that of other animals, is patterned by the action of Hox genes. In order to examine the function of one C. elegans Hox gene in depth, we determined the postembryonic expression pattern of egl-5, the C. elegans member of the Abdominal-B Hox gene paralog group, by means of whole-mount staining with a polyclonal antibody. A major site of egl-5 expression and function is in the epithelium joining the posterior digestive tract with the external epidermis. Patterning this region and its derived structures is a conserved function of Abd-B paralog group genes in other animals. Cells that initiate egl-5 expression during embryogenesis are clustered around the presumptive anus. Expression is initiated postembryonically in four additional mesodermal and ectodermal cell lineages or tissues. Once initiated in a lineage, egl-5 expression continues throughout development, suggesting that the action of egl-5 can be regarded as defining a positional cell identity. A variety of cross-regulatory interactions between egl-5 and the next more anterior Hox gene, mab-5, help define the expression domains of their respective gene products. In its expression in a localized body region, function as a marker of positional cell identity, and interactions with another Hox gene, egl-5 resembles Hox genes of other animals. This suggests that C. elegans, in spite of its small cell number and reproducible cell lineages, may not differ greatly from other animals in the way it employs Hox genes for regional specification during development.
Collapse
Affiliation(s)
- H B Ferreira
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, 10461, USA
| | | | | | | |
Collapse
|
27
|
Durston AJ, van der Wees J, Pijnappel WW, Godsave SF. Retinoids and related signals in early development of the vertebrate central nervous system. Curr Top Dev Biol 1998; 40:111-75. [PMID: 9673850 DOI: 10.1016/s0070-2153(08)60366-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- A J Durston
- Netherlands Institute for Developmental Biology, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
28
|
Boudreau N, Andrews C, Srebrow A, Ravanpay A, Cheresh DA. Induction of the angiogenic phenotype by Hox D3. J Biophys Biochem Cytol 1997; 139:257-64. [PMID: 9314544 PMCID: PMC2139816 DOI: 10.1083/jcb.139.1.257] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Angiogenesis is characterized by distinct phenotypic changes in vascular endothelial cells (EC). Evidence is provided that the Hox D3 homeobox gene mediates conversion of endothelium from the resting to the angiogenic/invasive state. Stimulation of EC with basic fibroblast growth factor (bFGF) resulted in increased expression of Hox D3, integrin alphavbeta3, and the urokinase plasminogen activator (uPA). Hox D3 antisense blocked the ability of bFGF to induce uPA and integrin alphavbeta3 expression, yet had no effect on EC cell proliferation or bFGF-mediated cyclin D1 expression. Expression of Hox D3, in the absence of bFGF, resulted in enhanced expression of integrin alphavbeta3 and uPA. In fact, sustained expression of Hox D3 in vivo on the chick chorioallantoic membrane retained EC in this invasive state and prevented vessel maturation leading to vascular malformations and endotheliomas. Therefore, Hox D3 regulates EC gene expression associated with the invasive stage of angiogenesis.
Collapse
MESH Headings
- Animals
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Cell Division/genetics
- Cells, Cultured
- Chick Embryo
- Cyclin D1/biosynthesis
- DNA-Binding Proteins
- Endothelium, Vascular/cytology
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiology
- Fibroblast Growth Factor 2/physiology
- Gene Expression Regulation/physiology
- Genes, Homeobox
- Hemangioendothelioma/etiology
- Hemangioendothelioma/genetics
- Homeodomain Proteins/genetics
- Homeodomain Proteins/physiology
- Humans
- Integrin beta3
- Integrins/biosynthesis
- Integrins/genetics
- Neovascularization, Pathologic/genetics
- Neovascularization, Physiologic/genetics
- Phenotype
- Platelet Membrane Glycoproteins/biosynthesis
- Platelet Membrane Glycoproteins/genetics
- RNA, Messenger/biosynthesis
- Transcription Factors
- Urokinase-Type Plasminogen Activator/biosynthesis
- Urokinase-Type Plasminogen Activator/genetics
Collapse
Affiliation(s)
- N Boudreau
- Department of Immunology and Vascular Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | | | | | |
Collapse
|
29
|
Flagiello D, Gibaud A, Dutrillaux B, Poupon MF, Malfoy B. Distinct patterns of all-trans retinoic acid dependent expression of HOXB and HOXC homeogenes in human embryonal and small-cell lung carcinoma cell lines. FEBS Lett 1997; 415:263-7. [PMID: 9357979 DOI: 10.1016/s0014-5793(97)01118-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The expression patterns of the class I homeogenes HOXB and HOXC clusters in the presence of retinoic acid (RA) were studied in two human small-cell lung cancer (SCLC) cell lines and compared to that of NT2/D1 embryonal carcinoma cells. Contrasting with the sequential 3'-5' induction of the HOX genes observed after RA treatment of embryonic NT2/D1 cells, in the SCLC cells the responding genes (induced or down-regulated) were interspersed with insensitive genes (expressed or unexpressed), while no genomic alteration affected the corresponding clusters. These findings imply that HOX gene regulatory mechanisms are altered in non-embryonic SCLC cells, perhaps reflecting their ability to respond to more diversified stimuli, in relation with their origin from adult tissues.
Collapse
Affiliation(s)
- D Flagiello
- Institut Curie - CNRS, UMR 147, Paris, France
| | | | | | | | | |
Collapse
|
30
|
Zerucha T, Muller JP, Chartrand N, Ekker M. Cross-interactions between two members of the Dlx family of homeobox-containing genes during zebrafish development. Biochem Cell Biol 1997. [DOI: 10.1139/o97-076] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Dlx homeobox genes of vertebrates are transcribed in multiple cells of the embryo with overlapping patterns but often with different onsets of expression. Here we describe the interaction between two dlx genes, dlx3 and dlx4, during zebrafish development. The observation that dlx3 expression precedes that of dlx4 in the otic vesicle led us to investigate whether dlx3 had the ability to control expression of dlx4. Truncated versions of dlx3 were overexpressed in zebrafish embryos and the expression patterns of dlx4 were examined later in development. Overexpression of truncated forms of Dlx3 or of a Dlx3-Dlx2 chimera was found to result in perturbations in dlx4 expression. In addition, cotransfection experiments indicated the ability of Dlx3 to activate transcription through a 1.7-kb fragment of the 5 prime flanking region of dlx4. These results suggest that dlx4 is one of the target genes of dlx3 in embryos and that cross-regulatory interactions between Dlx genes may be one of the mechanisms responsible for their overlapping expression.
Collapse
|
31
|
Barabino SM, Spada F, Cotelli F, Boncinelli E. Inactivation of the zebrafish homologue of Chx10 by antisense oligonucleotides causes eye malformations similar to the ocular retardation phenotype. Mech Dev 1997; 63:133-43. [PMID: 9203137 DOI: 10.1016/s0925-4773(97)00036-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We report the cloning of a zebrafish paired-type homeobox gene, Alx, closely related to the murine Chx10 and the gold fish Vsx-I homeodomain proteins. Alx is first expressed at about 12 h post-fertilization (hpf) when optic vesicles appear. Its expression is restricted to the early retinal neuroepithelium, whereas no signal can be detected in the optic placode. Later, Alx expression follows the differentiation of the neural retina. Inhibition experiments with antisense oligonucleotides resulted in specific eye malformations which are reminiscent of the phenotype of ocular retardation (or) mice, caused by a spontaneous Chx10 mutation. The expression of other developmentally relevant genes such as pax(zf-a), pax(zf-b) and krx-20 was not affected in the antisense treated embryos.
Collapse
Affiliation(s)
- S M Barabino
- DIBIT, H S Raffaele Scientific Institute, Milan, Italy.
| | | | | | | |
Collapse
|
32
|
Kloen P, Visker MH, Olijve W, van Zoelen EJ, Boersma CJ. Cell-type-specific modulation of Hox gene expression by members of the TGF-beta superfamily: a comparison between human osteosarcoma and neuroblastoma cell lines. Biochem Biophys Res Commun 1997; 233:365-9. [PMID: 9144540 DOI: 10.1006/bbrc.1997.6458] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Homeobox gene expression in osteoblast-like cells was investigated using the polymerase chain reaction (PCR). A total of 13 homeobox genes was detected in U-2 OS (human osteosarcoma) and MC3T3-E1 (mouse osteoblast) cells by sequencing cloned PCR products. Using specific primers, a different pattern of Hox gene expression was shown for the neuroblastoma cell line SK-N-SH relative to U-2 OS and MC3T3-E1. Additionally, we showed that expression of HOXC6 in U-2 OS and SK-N-SH was differentially regulated by rhBMP-2, TGF-beta and activin-A. This suggests that specific Hox genes may be target genes for TGF-beta superfamily members, and allows us to further understand the complex functions of these growth factors and how they relate to growth and development.
Collapse
Affiliation(s)
- P Kloen
- Department of Orthopaedic Surgery, Massachusetts General Hospital, and Harvard Medical School, Boston, USA
| | | | | | | | | |
Collapse
|
33
|
Abstract
The Hox homeobox gene family plays a pivotal role in regulating patterning and axial morphogenesis in vertebrates. Molecular characterization of the four Hox clusters has shown that they are evolutionarily related with respect to sequence, organization, and expression, suggesting they arose by duplication and divergence. Transgenic analysis has clearly demonstrated the functional roles of individual genes in a broad range of embryonic tissues, and in compound mutants has addressed the issues of cooperativity and redundancy. There is an emerging picture of the cis-regulatory elements underlying Hox expression, and for the 3' members of the clusters there is a considerable degree of conservation between paralogous genes with respect to their functional roles and regulatory control.
Collapse
Affiliation(s)
- M Maconochie
- Division of Developmental Neurobiology, MRC National Institute for Medical Research, London, United Kingdom
| | | | | | | |
Collapse
|
34
|
Morrison A, Moroni MC, Ariza-McNaughton L, Krumlauf R, Mavilio F. In vitro and transgenic analysis of a human HOXD4 retinoid-responsive enhancer. Development 1996; 122:1895-907. [PMID: 8674428 DOI: 10.1242/dev.122.6.1895] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Expression of vertebrate Hox genes is regulated by retinoids in cell culture and in early embryonic development. We have identified a 185-bp retinoid-responsive transcriptional enhancer 5′ of the human HOXD4 gene, which regulates inducibility of the gene in embryonal carcinoma cells through a pattern of DNA-protein interaction on at least two distinct elements. One of these elements contains a direct repeat mediating ligand-dependent interaction with retinoic acid receptors, and is necessary though not sufficient for the enhancer function. The HOXD4 enhancer directs expression of a lacZ reporter gene in the neural tube of transgenic mouse embryos in a time-regulated and regionally restricted fashion, reproducing part of the anterior neuroectodermal expression pattern of the endogenous Hoxd-4 gene. Administration of retinoic acid to developing embryos causes alterations in the spatial restriction of the transgene expression domain, indicating that the HOXD4 enhancer is also a retinoid-responsive element in vivo. The timing of the retinoic acid response differs from that seen with more 3′ Hox genes, in that it occurs much later. This shows that the temporal window of competence in the ability to respond to retinoic acid differs between Hox genes and can be linked to specific enhancers. Mutations in the direct repeat or in a second element in the enhancer affect both retinoid response in culture and developmental regulation in embryos, suggesting that co-operative interactions between different factors mediate the enhancer activity. These data provide further support for a role of endogenous retinoids in regulation and spatial restriction of Hox gene expression in the central nervous system.
Collapse
Affiliation(s)
- A Morrison
- Laboratory of Developmental Neurobiology, National Institute of Medical Research, London, UK
| | | | | | | | | |
Collapse
|
35
|
Lawrence HJ, Sauvageau G, Humphries RK, Largman C. The role of HOX homeobox genes in normal and leukemic hematopoiesis. Stem Cells 1996; 14:281-91. [PMID: 8724694 DOI: 10.1002/stem.140281] [Citation(s) in RCA: 181] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A sizable amount of new data points to a role for the HOX family of homeobox genes in hematopoiesis. Recent studies have demonstrated that HOXA and HOXB genes are expressed in human CD34+ cells, and are downregulated as cells leave the CD34+ compartment. In addition, expression of certain genes, including HOXB3 and HOXB4, is largely restricted to the long-term culture-initiating cell enriched pool, containing the putative stem cell population. Studies have also shown that HOX genes appear to be important for normal T lymphocyte and activated natural killer cell function. Overexpression of Hox-b4 in transplanted murine marrow cell results in a dramatic expansion of stem cells, while maintaining normal peripheral blood counts. In contrast, overexpression of Hox-a10 resulted in expansion of progenitor pools, accompanied by unique changes in the differentiation patterns of committed progenitors. Overexpression of Hox-a10 or Hox-b8 led to the development of myeloid leukemias, while animals transfected with marrow cells overexpressing Hox-b4 do not appear to develop malignancies. Blockade of HOX gene function using antisense oligonucleotides has revealed that several HOX genes appear to influence either myeloid or erythroid colony formation. Mice homozygous for a targeted disruption of the HOX-a9 gene show reduced numbers of granulocytes and lymphocytes, smaller spleens and thymuses, and reduced numbers of committed progenitors. These studies demonstrate that HOX homeobox genes play a role in both the early stem cell function as well as in later stages of hematopoietic differentiation, and that perturbations of HOX gene expression can be leukemogenic.
Collapse
Affiliation(s)
- H J Lawrence
- Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | | | | | | |
Collapse
|
36
|
Tabata MJ, Kim K, Liu JG, Yamashita K, Matsumura T, Kato J, Iwamoto M, Wakisaka S, Matsumoto K, Nakamura T, Kumegawa M, Kurisu K. Hepatocyte growth factor is involved in the morphogenesis of tooth germ in murine molars. Development 1996; 122:1243-51. [PMID: 8620851 DOI: 10.1242/dev.122.4.1243] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The patterns of gene expression for hepatocyte growth factor (HGF) and its receptor, c-Met, were revealed in the tooth germ of rat mandibular molars using RT-PCR. In situ hybridization demonstrated that the HGF gene was expressed only in the cells of the dental papilla of the tooth germ in vivo. The characteristic temporospatial distribution of HGF and c-Met during germ development was revealed using immunohistochemical studies in vivo. In order to demonstrate the functional role played by HGF in tooth development, HGF translation arrest by antisense phosphorothioate oligodeoxynucleotide (ODN) was carried out in vitro. In the control experiment, explants of tooth germs from embryonic 14 day mice were cultured in a modification of Trowell's system under serum-free and chemically defined conditions for two weeks. Other explants were cultured with 15mer antisense or sense ODN targeted to the HGF mRNA. Both the control and the sense-treated explants showed normal histological structure, as observed in vivo. On the other hand, antisense-treated explants exhibited an abnormal structure in which the enamel organs were surrounded by a thin layer of dentin and dental papilla, appearing ‘inside-out’ compared to the control and sense-treated explants, although the cytodifferentiation of ameloblasts and odontoblasts was not inhibited. The explants treated with recombinant human HGF combined with antisense ODN showed normal development, indicating that exogenous HGF rescued the explants from the abnormal structure caused by antisense ODN. The findings of a BrdU incorporation experiment suggested that the imbalance between the proliferation activity of the inner enamel epithelium and that of the dental papilla caused by HGF translation arrest results in the abnormal structure of the tooth germ. These results indicate that HGF is involved in the morphogenesis of the murine molar.
Collapse
Affiliation(s)
- M J Tabata
- Department of Oral Anatomy and Developmental Biology, Osaka University Faculty of Dentistry, Suita, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The Hox genes are expressed during embryonic development and have a role in specifying antero-posterior positional information. The genes are arranged in four clusters and a colinear relation exists between a gene's position in the cluster and its anterior boundary of expression. Genes with more anterior boundaries are also expressed earlier than genes with more posterior boundaries. Hox genes encode transcription factors; therefore, a model for the coordinate regulation of the genes within the Hox clusters is that Hox gene products regulate their own expression. To test this model, an inducible promoter was used to direct expression of exogenous Hoxa-5 in F9 embryonal carcinoma cells and the effect on endogenous Hox gene expression was measured using RNase protection assays. The production of Hoxa-5 from the expression vector activated a transient and simultaneous expression of other upstream and downstream genes of the same Hox cluster and genes from other clusters. There was an 8-hr delay between the peak of expression from the Hox vector and the endogenous Hox gene response, suggesting that Hox proteins activate other Hox genes indirectly or require additional factors which, in F9 cells, they also induce.
Collapse
Affiliation(s)
- C G Lobe
- Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
38
|
Sauvageau G, Thorsteinsdottir U, Eaves CJ, Lawrence HJ, Largman C, Lansdorp PM, Humphries RK. Overexpression of HOXB4 in hematopoietic cells causes the selective expansion of more primitive populations in vitro and in vivo. Genes Dev 1995; 9:1753-65. [PMID: 7622039 DOI: 10.1101/gad.9.14.1753] [Citation(s) in RCA: 465] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Hox genes were first recognized for their role in embryonic development and may also play important lineage-specific functions in a variety of somatic tissues including the hematopoietic system. We have recently shown that certain members of the Hox A and B clusters, such as HOXB3 and HOXB4, are preferentially expressed in subpopulations of human bone marrow that are highly enriched for the most primitive hematopoietic cell types. To assess the role these genes may play in regulating the proliferation and/or differentiation of such cells, we engineered the overexpression of HOXB4 in murine bone marrow cells by retroviral gene transfer and analyzed subsequent effects on the behavior of various hematopoietic stem and progenitor cell populations both in vitro and in vivo. Serial transplantation studies revealed a greatly enhanced ability of HOXB4-transduced bone marrow cells to regenerate the most primitive hematopoietic stem cell compartment resulting in 50-fold higher numbers of transplantable totipotent hematopoietic stem cells in primary and secondary recipients, compared with serially passaged neo-infected control cells. This heightened expansion in vivo of HOXB4-transduced hematopoietic stem cells was not accompanied by identifiable anomalies in the peripheral blood of these mice. Enhanced proliferation in vitro of day-12 CFU-S and clonogenic progenitors was also documented. These results indicate HOXB4 to be an important regulator of very early but not late hematopoietic cell proliferation and suggest a new approach to the controlled amplification of genetically modified hematopoietic stem cell populations.
Collapse
Affiliation(s)
- G Sauvageau
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada
| | | | | | | | | | | | | |
Collapse
|