1
|
Rohlfes N, Radhakrishnan R, Singh PK, Bedwell GJ, Engelman AN, Dharan A, Campbell EM. The nuclear localization signal of CPSF6 governs post-nuclear import steps of HIV-1 infection. PLoS Pathog 2025; 21:e1012354. [PMID: 39823525 PMCID: PMC11844840 DOI: 10.1371/journal.ppat.1012354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 02/21/2025] [Accepted: 01/05/2025] [Indexed: 01/19/2025] Open
Abstract
The early stages of HIV-1 infection include the trafficking of the viral core into the nucleus of infected cells. However, much remains to be understood about how HIV-1 accomplishes nuclear import and the consequences of the import pathways utilized on nuclear events. The host factor cleavage and polyadenylation specificity factor 6 (CPSF6) assists HIV-1 nuclear localization and post-entry integration targeting. Here, we used a CPSF6 truncation mutant lacking a functional nuclear localization signal (NLS), CPSF6-358, and appended heterologous NLSs to rescue nuclear localization. We show that some, but not all, NLSs drive CPSF6-358 into the nucleus. Interestingly, we found that some nuclear localized CPSF6-NLS chimeras supported inefficient HIV-1 infection. We found that HIV-1 still enters the nucleus in these cell lines but fails to traffic to speckle-associated domains (SPADs). Additionally, we show that HIV-1 fails to efficiently integrate in these cell lines. Collectively, our results demonstrate that the NLS of CPSF6 facilitates steps of HIV-1 infection subsequent to nuclear import and additionally identify the ability of canonical NLS sequences to influence cargo localization in the nucleus following nuclear import.
Collapse
Affiliation(s)
- Nicholas Rohlfes
- Integrative Cell Biology Graduate Program, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Rajalingam Radhakrishnan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Parmit K. Singh
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gregory J. Bedwell
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alan N. Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Adarsh Dharan
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Edward M. Campbell
- Integrative Cell Biology Graduate Program, Loyola University Chicago, Maywood, Illinois, United States of America
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, United States of America
| |
Collapse
|
2
|
Chameettachal A, Mustafa F, Rizvi TA. Understanding Retroviral Life Cycle and its Genomic RNA Packaging. J Mol Biol 2023; 435:167924. [PMID: 36535429 DOI: 10.1016/j.jmb.2022.167924] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Members of the family Retroviridae are important animal and human pathogens. Being obligate parasites, their replication involves a series of steps during which the virus hijacks the cellular machinery. Additionally, many of the steps of retrovirus replication are unique among viruses, including reverse transcription, integration, and specific packaging of their genomic RNA (gRNA) as a dimer. Progress in retrovirology has helped identify several molecular mechanisms involved in each of these steps, but many are still unknown or remain controversial. This review summarizes our present understanding of the molecular mechanisms involved in various stages of retrovirus replication. Furthermore, it provides a comprehensive analysis of our current understanding of how different retroviruses package their gRNA into the assembling virions. RNA packaging in retroviruses holds a special interest because of the uniqueness of packaging a dimeric genome. Dimerization and packaging are highly regulated and interlinked events, critical for the virus to decide whether its unspliced RNA will be packaged as a "genome" or translated into proteins. Finally, some of the outstanding areas of exploration in the field of RNA packaging are highlighted, such as the role of epitranscriptomics, heterogeneity of transcript start sites, and the necessity of functional polyA sequences. An in-depth knowledge of mechanisms that interplay between viral and cellular factors during virus replication is critical in understanding not only the virus life cycle, but also its pathogenesis, and development of new antiretroviral compounds, vaccines, as well as retroviral-based vectors for human gene therapy.
Collapse
Affiliation(s)
- Akhil Chameettachal
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates. https://twitter.com/chameettachal
| | - Farah Mustafa
- Department of Biochemistry, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates; Zayed bin Sultan Center for Health Sciences (ZCHS), United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Tahir A Rizvi
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates; Zayed bin Sultan Center for Health Sciences (ZCHS), United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
3
|
Mullins JI, Frenkel LM. Clonal Expansion of Human Immunodeficiency Virus-Infected Cells and Human Immunodeficiency Virus Persistence During Antiretroviral Therapy. J Infect Dis 2017; 215:S119-S127. [PMID: 28520966 DOI: 10.1093/infdis/jiw636] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The latent HIV-1 reservoir in blood decays very slowly, even during prolonged suppression of viral replication by antiretroviral therapy (ART). Mechanisms for reservoir persistence include replenishment through low-level viral replication, longevity and homeostatic proliferation of memory T cells, and most recently appreciated, clonal expansion of HIV-infected cells. Clonally expanded cells make up a large and increasing fraction of the residual infected cell population on ART, and insertion of HIV proviruses into certain host cellular genes has been associated with this proliferation. That the vast majority of proviruses are defective clouds our assessment of the degree to which clonally expanded cells harbor infectious viruses, and thus the extent to which they contribute to reservoirs relevant to curing infection. This review summarizes past studies that have defined our current understanding and the gaps in our knowledge of the mechanisms by which proviral integration and clonal expansion sustain the HIV reservoir.
Collapse
Affiliation(s)
- James I Mullins
- Departments of Microbiology, Medicine, Global Health and Laboratory Medicine, University of Washington, Seattle, WA, US
| | - Lisa M Frenkel
- Departments of Pediatrics, Medicine, Global Health and Laboratory Medicine, University of Washington, Seattle, WA, US.,Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, US
| |
Collapse
|
4
|
Abstract
The integration of a DNA copy of the viral RNA genome into host chromatin is the defining step of retroviral replication. This enzymatic process is catalyzed by the virus-encoded integrase protein, which is conserved among retroviruses and LTR-retrotransposons. Retroviral integration proceeds via two integrase activities: 3'-processing of the viral DNA ends, followed by the strand transfer of the processed ends into host cell chromosomal DNA. Herein we review the molecular mechanism of retroviral DNA integration, with an emphasis on reaction chemistries and architectures of the nucleoprotein complexes involved. We additionally discuss the latest advances on anti-integrase drug development for the treatment of AIDS and the utility of integrating retroviral vectors in gene therapy applications.
Collapse
Affiliation(s)
- Paul Lesbats
- Clare Hall Laboratories, The Francis Crick Institute , Blanche Lane, South Mimms, EN6 3LD, U.K
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School , 450 Brookline Avenue, Boston, Massachusetts 02215 United States
| | - Peter Cherepanov
- Clare Hall Laboratories, The Francis Crick Institute , Blanche Lane, South Mimms, EN6 3LD, U.K.,Imperial College London , St-Mary's Campus, Norfolk Place, London, W2 1PG, U.K
| |
Collapse
|
5
|
Kok YL, Vongrad V, Shilaih M, Di Giallonardo F, Kuster H, Kouyos R, Günthard HF, Metzner KJ. Monocyte-derived macrophages exhibit distinct and more restricted HIV-1 integration site repertoire than CD4(+) T cells. Sci Rep 2016; 6:24157. [PMID: 27067385 PMCID: PMC4828718 DOI: 10.1038/srep24157] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/21/2016] [Indexed: 11/09/2022] Open
Abstract
The host genetic landscape surrounding integrated HIV-1 has an impact on the fate of the provirus. Studies analysing HIV-1 integration sites in macrophages are scarce. We studied HIV-1 integration site patterns in monocyte-derived macrophages (MDMs) and activated CD4(+) T cells derived from seven antiretroviral therapy (ART)-treated HIV-1-infected individuals whose cells were infected ex vivo with autologous HIV-1 isolated during the acute phase of infection. A total of 1,484 unique HIV-1 integration sites were analysed. Their distribution in the human genome and genetic features, and the effects of HIV-1 integrase polymorphisms on the nucleotide selection specificity at these sites were indistinguishable between the two cell types, and among HIV-1 isolates. However, the repertoires of HIV-1-hosting gene clusters overlapped to a higher extent in MDMs than in CD4(+) T cells. The frequencies of HIV-1 integration events in genes encoding HIV-1-interacting proteins were also different between the two cell types. Lastly, HIV-1-hosting genes linked to clonal expansion of latently HIV-1-infected CD4(+) T cells were over-represented in gene hotspots identified in CD4(+) T cells but not in those identified in MDMs. Taken together, the repertoire of genes targeted by HIV-1 in MDMs is distinct from and more restricted than that of CD4(+) T cells.
Collapse
Affiliation(s)
- Yik Lim Kok
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Valentina Vongrad
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Mohaned Shilaih
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Francesca Di Giallonardo
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Biological Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Herbert Kuster
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Roger Kouyos
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Huldrych F Günthard
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Karin J Metzner
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Serrao E, Cherepanov P, Engelman AN. Amplification, Next-generation Sequencing, and Genomic DNA Mapping of Retroviral Integration Sites. J Vis Exp 2016. [PMID: 27023428 DOI: 10.3791/53840] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Retroviruses exhibit signature integration preferences on both the local and global scales. Here, we present a detailed protocol for (1) generation of diverse libraries of retroviral integration sites using ligation-mediated PCR (LM-PCR) amplification and next-generation sequencing (NGS), (2) mapping the genomic location of each virus-host junction using BEDTools, and (3) analyzing the data for statistical relevance. Genomic DNA extracted from infected cells is fragmented by digestion with restriction enzymes or by sonication. After suitable DNA end-repair, double-stranded linkers are ligated onto the DNA ends, and semi-nested PCR is conducted using primers complementary to both the long terminal repeat (LTR) end of the virus and the ligated linker DNA. The PCR primers carry sequences required for DNA clustering during NGS, negating the requirement for separate adapter ligation. Quality control (QC) is conducted to assess DNA fragment size distribution and adapter DNA incorporation prior to NGS. Sequence output files are filtered for LTR-containing reads, and the sequences defining the LTR and the linker are cropped away. Trimmed host cell sequences are mapped to a reference genome using BLAT and are filtered for minimally 97% identity to a unique point in the reference genome. Unique integration sites are scrutinized for adjacent nucleotide (nt) sequence and distribution relative to various genomic features. Using this protocol, integration site libraries of high complexity can be constructed from genomic DNA in three days. The entire protocol that encompasses exogenous viral infection of susceptible tissue culture cells to integration site analysis can therefore be conducted in approximately one to two weeks. Recent applications of this technology pertain to longitudinal analysis of integration sites from HIV-infected patients.
Collapse
Affiliation(s)
- Erik Serrao
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute
| | | | - Alan N Engelman
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute;
| |
Collapse
|
7
|
van der Sluis RM, van Montfort T, Centlivre M, Schopman NCT, Cornelissen M, Sanders RW, Berkhout B, Jeeninga RE, Paxton WA, Pollakis G. Quantitation of HIV-1 DNA with a sensitive TaqMan assay that has broad subtype specificity. J Virol Methods 2012; 187:94-102. [PMID: 23059551 DOI: 10.1016/j.jviromet.2012.09.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 09/04/2012] [Accepted: 09/10/2012] [Indexed: 11/30/2022]
Abstract
The increasing diversity of HIV-1 isolates makes virus quantitation challenging, especially when diverse isolates co-circulate in a geographical area. Measuring the HIV-1 DNA levels in cells has become a valuable practical tool for fundamental and clinical research. A quantitative HIV-1 DNA assay was developed based on TaqMan(®) technology. Primers that target the highly conserved LTR region were designed to detect a broad array of HIV-1 variants, including viral isolates from many subtypes, with high sensitivity. Introduction of a pre-amplification step prior to the TaqMan(®) reaction allowed the specific amplification of fully reverse transcribed viral DNA. Execution of the pre-amplification step with a second primer set enables for the exclusive quantitation of the 2-LTR circular HIV-1 DNA form.
Collapse
Affiliation(s)
- Renée M van der Sluis
- Laboratory of Experimental Virology, Department of Medical Microbiology, Centre for Infection and Immunity Amsterdam, Academic Medical Centre, University of Amsterdam, Meibergdreef 15, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Retroviruses are distinguished from other viruses by two characteristic steps in the viral replication cycle. The first is reverse transcription, which results in the production of a double-stranded DNA copy of the viral RNA genome, and the second is integration, which results in covalent attachment of the DNA copy to host cell DNA. The initial catalytic steps of the integration reaction are performed by the virus-encoded integrase (IN) protein. The chemistry of the IN-mediated DNA breaking and joining steps is well worked out, and structures of IN-DNA complexes have now clarified how the overall complex assembles. Methods developed during these studies were adapted for identification of IN inhibitors, which received FDA approval for use in patients in 2007. At the chromosomal level, HIV integration is strongly favored in active transcription units, which may promote efficient viral gene expression after integration. HIV IN binds to the cellular factor LEDGF/p75, which promotes efficient infection and tethers IN to favored target sites. The HIV integration machinery must also interact with many additional host factors during infection, including nuclear trafficking and pore proteins during nuclear entry, histones during initial target capture, and DNA repair proteins during completion of the DNA joining steps. Models for some of the molecular mechanisms involved have been proposed, but important details remain to be clarified.
Collapse
Affiliation(s)
- Robert Craigie
- Molecular Virology Section, NIDDK, National Institutes of Health, Bethesda, Maryland, USA.
| | | |
Collapse
|
9
|
LEDGF/p75-independent HIV-1 replication demonstrates a role for HRP-2 and remains sensitive to inhibition by LEDGINs. PLoS Pathog 2012; 8:e1002558. [PMID: 22396646 PMCID: PMC3291655 DOI: 10.1371/journal.ppat.1002558] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 01/16/2012] [Indexed: 12/30/2022] Open
Abstract
Lens epithelium–derived growth factor (LEDGF/p75) is a cellular cofactor of HIV-1 integrase (IN) that interacts with IN through its IN binding domain (IBD) and tethers the viral pre-integration complex to the host cell chromatin. Here we report the generation of a human somatic LEDGF/p75 knockout cell line that allows the study of spreading HIV-1 infection in the absence of LEDGF/p75. By homologous recombination the exons encoding the LEDGF/p75 IBD (exons 11 to 14) were knocked out. In the absence of LEDGF/p75 replication of laboratory HIV-1 strains was severely delayed while clinical HIV-1 isolates were replication-defective. The residual replication was predominantly mediated by the Hepatoma-derived growth factor related protein 2 (HRP-2), the only cellular protein besides LEDGF/p75 that contains an IBD. Importantly, the recently described IN-LEDGF/p75 inhibitors (LEDGINs) remained active even in the absence of LEDGF/p75 by blocking the interaction with the IBD of HRP-2. These results further support the potential of LEDGINs as allosteric integrase inhibitors. Like other viruses, HIV has a limited genome and needs to exploit the machinery of the host cell to complete its replication cycle. The elucidation of virus-host interactions not only sheds light on pathogenesis but also provides opportunities in a limited number of cases to develop novel antiviral drugs. A prototypical example is the interaction between the cellular protein LEDGF/p75 and HIV-1 integrase (IN). Here we generated a human somatic LEDGF/p75 knockout cell line to demonstrate that HIV-1 replication is highly dependent on its cofactor. We show that the residual replication of laboratory strains is predominantly mediated by a LEDGF/p75-related protein, HRP-2. Interestingly, the recently developed HIV-1 IN inhibitors that target the LEDGF/p75-IN interaction interface, LEDGINs, remain active even in the absence of LEDGF/p75. We demonstrate that LEDGINs efficiently block the interaction between IN and HRP-2. In case HIV-1 would be able to bypass LEDGF/p75-dependent replication using HRP-2 as an alternative tether, LEDGINs would remain fully active.
Collapse
|
10
|
Wayengera M. On the general theory of the origins of retroviruses. Theor Biol Med Model 2010; 7:5. [PMID: 20158888 PMCID: PMC2830970 DOI: 10.1186/1742-4682-7-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 02/16/2010] [Indexed: 11/10/2022] Open
Abstract
Background The order retroviridae comprises viruses based on ribonucleic acids (RNA). Some, such as HIV and HTLV, are human pathogens. Newly emerged human retroviruses have zoonotic origins. As far as has been established, both repeated infections (themselves possibly responsible for the evolution of viral mutations (Vm) and host adaptability (Ha)); along with interplay between inhibitors and promoters of cell tropism, are needed to effect retroviral cross-species transmissions. However, the exact modus operadi of intertwine between these factors at molecular level remains to be established. Knowledge of such intertwine could lead to a better understanding of retrovirology and possibly other infectious processes. This study was conducted to derive the mathematical equation of a general theory of the origins of retroviruses. Methods and results On the basis of an arbitrarily non-Euclidian geometrical "thought experiment" involving the cross-species transmission of simian foamy virus (sfv) from a non-primate species Xy to Homo sapiens (Hs), initially excluding all social factors, the following was derived. At the port of exit from Xy (where the species barrier, SB, is defined by the Index of Origin, IO), sfv shedding is (1) enhanced by two transmitting tensors (Tt), (i) virus-specific immunity (VSI) and (ii) evolutionary defenses such as APOBEC, RNA interference pathways, and (when present) expedited therapeutics (denoted e2D); and (2) opposed by the five accepting scalars (At): (a) genomic integration hot spots, gIHS, (b) nuclear envelope transit (NMt) vectors, (c) virus-specific cellular biochemistry, VSCB, (d) virus-specific cellular receptor repertoire, VSCR, and (e) pH-mediated cell membrane transit, (↓pH CMat). Assuming As and Tt to be independent variables, IO = Tt/As. The same forces acting in an opposing manner determine SB at the port of sfv entry (defined here by the Index of Entry, IE = As/Tt). Overall, If sfv encounters no unforeseen effects on transit between Xy and Hs, then the square root of the combined index of sfv transmissibility (√|RTI|) is proportional to the product IO* IE (or ~Vm* Ha* ∑Tt*∑As*Ω), where Ω is the retrovirological constant and ∑ is a function of the ratio Tt/As or As/Tt for sfv transmission from Xy to Hs. Conclusions I present a mathematical formalism encapsulating the general theory of the origins of retroviruses. It summarizes the choreography for the intertwined interplay of factors influencing the probability of retroviral cross-species transmission: Vm, Ha, Tt, As, and Ω.
Collapse
Affiliation(s)
- Misaki Wayengera
- Unit of Theoretical Biology, Division of Molecular Pathology, Department of Pathology, School of Biomedical Sciences, College of Health Sciences, Makerere University, PO Box 7072, Kampala, Uganda.
| |
Collapse
|
11
|
A sequence similar to tRNA 3 Lys gene is embedded in HIV-1 U3-R and promotes minus-strand transfer. Nat Struct Mol Biol 2009; 17:83-9. [PMID: 19966801 PMCID: PMC2802660 DOI: 10.1038/nsmb.1687] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Accepted: 09/04/2009] [Indexed: 11/21/2022]
Abstract
We identified a sequence embedded in the U3/R region of HIV-1 RNA that is highly complementary to human tRNA3Lys. The free energy of annealing to tRNA3Lys is significantly lower for this sequence and the primer-binding site than for other similar length viral sequences. The only interruption in complementarity is a 29-nucleotide segment inserted where a tRNA intron would be expected. The insert contains the TATA box for viral RNA transcription. The embedded sequence includes a nine-nucleotide segment previously reported to aid minus strand transfer by binding the primer tRNA3Lys. Reconstituting transfer in vitro, we show that including segments from the embedded sequence in the acceptor template, beyond the nine nucleotides, further increases transfer efficiency. We propose that a tRNA3Lys gene was incorporated during HIV-1 evolution and retained largely intact because of its roles in transcription and strand transfer.
Collapse
|
12
|
Blanco JCG, Pletneva LM, Wieczorek L, Khetawat D, Stantchev TS, Broder CC, Polonis VR, Prince GA. Expression of Human CD4 and chemokine receptors in cotton rat cells confers permissiveness for productive HIV infection. Virol J 2009; 6:57. [PMID: 19442298 PMCID: PMC2689193 DOI: 10.1186/1743-422x-6-57] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 05/14/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Current small animal models for studying HIV-1 infection are very limited, and this continues to be a major obstacle for studying HIV-1 infection and pathogenesis, as well as for the urgent development and evaluation of effective anti-HIV-1 therapies and vaccines. Previously, it was shown that HIV-1 can infect cotton rats as indicated by development of antibodies against all major proteins of the virus, the detection of viral cDNA in spleen and brain of challenged animals, the transmission of infectious virus, albeit with low efficiency, from animal to animal by blood, and an additional increase in the mortality in the infected groups. RESULTS Using in vitro experiments, we now show that cotton rat cell lines engineered to express human receptor complexes for HIV-1 (hCD4 along with hCXCR4 or hCCR5) support virus entry, viral cDNA integration, and the production of infectious virus. CONCLUSION These results further suggest that the development of transgenic cotton rats expressing human HIV-1 receptors may prove to be useful small animal model for HIV infection.
Collapse
Affiliation(s)
- Jorge C G Blanco
- Virion Systems Inc,, 9610 Medical Center Drive, Suite 100, Rockville, Maryland 20850, USA.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Yang SH, Cheng PH, Sullivan RT, Thomas JW, Chan AWS. Lentiviral integration preferences in transgenic mice. Genesis 2009; 46:711-8. [PMID: 18821598 DOI: 10.1002/dvg.20435] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lentiviral gene transfer has a significant impact on the development of biomedical research. One of the most important features of lentiviruses is the capability to infect both dividing and nondividing cells. However, little is known whether integration preference exists, specifically in early embryos. An in-depth genome analysis on 112 independent lentiviral integration sites from 43 transgenic founder mice was performed to determine if there are preferable sites for lentiviral integration in early embryonic genome. Our results demonstrated that lentiviruses were biased in integrating within intragenic regions, especially in the introns. However, no integration preference was found associated with specific chromosomes, repetitive elements, or CpG islands, nor was there any preference for integrating at close proximity to transcription start sites. Our findings suggested that lentiviruses were biased to integrate into the intragenic regions of early embryonic genome of mouse.
Collapse
Affiliation(s)
- Shang-Hsun Yang
- Division of Neuroscience, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road N.E., Atlanta, GA 30329, USA
| | | | | | | | | |
Collapse
|
14
|
Agbottah E, Deng L, Dannenberg LO, Pumfery A, Kashanchi F. Effect of SWI/SNF chromatin remodeling complex on HIV-1 Tat activated transcription. Retrovirology 2006; 3:48. [PMID: 16893449 PMCID: PMC1570494 DOI: 10.1186/1742-4690-3-48] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Accepted: 08/07/2006] [Indexed: 01/03/2023] Open
Abstract
Background Human immunodeficiency virus type 1 (HIV-1) is the etiologic agent of acquired immunodeficiency virus (AIDS). Following entry into the host cell, the viral RNA is reverse transcribed into DNA and subsequently integrated into the host genome as a chromatin template. The integrated proviral DNA, along with the specific chromatinized environment in which integration takes place allows for the coordinated regulation of viral transcription and replication. While the specific roles of and interplay between viral and host proteins have not been fully elucidated, numerous reports indicate that HIV-1 retains the ability for self-regulation via the pleiotropic effects of its viral proteins. Though viral transcription is fully dependent upon host cellular factors and the state of host activation, recent findings indicate a complex interplay between viral proteins and host transcription regulatory machineries including histone deacetylases (HDACs), histone acetyltransferases (HATs), cyclin dependent kinases (CDKs), and histone methyltransferases (HMTs). Results Here, we describe the effect of Tat activated transcription at the G1/S border of the cell cycle and analyze the interaction of modified Tat with the chromatin remodeling complex, SWI/SNF. HIV-1 LTR DNA reconstituted into nucleosomes can be activated in vitro using various Tat expressing extracts. Optimally activated transcription was observed at the G1/S border of the cell cycle both in vitro and in vivo, where chromatin remodeling complex, SWI/SNF, was present on the immobilized LTR DNA. Using a number of in vitro binding as well as in vivo chromatin immunoprecipitation (ChIP) assays, we detected the presence of both BRG1 and acetylated Tat in the same complex. Finally, we demonstrate that activated transcription resulted in partial or complete removal of the nucleosome from the start site of the LTR as evidenced by a restriction enzyme accessibility assay. Conclusion We propose a model where unmodified Tat is involved in binding to the CBP/p300 and cdk9/cyclin T1 complexes facilitating transcription initiation. Acetylated Tat dissociates from the TAR RNA structure and recruits bromodomain-binding chromatin modifying complexes such as p/CAF and SWI/SNF to possibly facilitate transcription elongation.
Collapse
Affiliation(s)
- Emmanuel Agbottah
- The George Washington University Medical Center, Department of Biochemistry and Molecular Biology, Washington, DC 20037, USA
| | - Longwen Deng
- The George Washington University Medical Center, Department of Biochemistry and Molecular Biology, Washington, DC 20037, USA
| | - Luke O Dannenberg
- The George Washington University Medical Center, Department of Biochemistry and Molecular Biology, Washington, DC 20037, USA
| | - Anne Pumfery
- Seton Hall University, Department of Biology, South Orange, NJ 07079, USA
| | - Fatah Kashanchi
- The George Washington University Medical Center, Department of Biochemistry and Molecular Biology, Washington, DC 20037, USA
- The Institute for Genomic Research (TIGR), Rockville, MD 20850, USA
| |
Collapse
|
15
|
Nakayama M, Quang ND, Matsumoto K, Shibata T, Ito F, Kawasaki K. RECQ5/QE DNA Helicase Interacts with Retrotransposon mdg3 gag, an HIV Nucleocapsid-Related Protein. ACTA ACUST UNITED AC 2006. [DOI: 10.1248/jhs.52.24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Minoru Nakayama
- Department of Biochemistry and Molecular Biology, Saitama University
- Cellular and Molecular Biology Laboratory, RIKEN
| | | | - Kouji Matsumoto
- Department of Biochemistry and Molecular Biology, Saitama University
| | | | - Fumiaki Ito
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Katsumi Kawasaki
- Cellular and Molecular Biology Laboratory, RIKEN
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University
| |
Collapse
|
16
|
Crise B, Li Y, Yuan C, Morcock DR, Whitby D, Munroe DJ, Arthur LO, Wu X. Simian immunodeficiency virus integration preference is similar to that of human immunodeficiency virus type 1. J Virol 2005; 79:12199-204. [PMID: 16160146 PMCID: PMC1211548 DOI: 10.1128/jvi.79.19.12199-12204.2005] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Accepted: 07/05/2005] [Indexed: 01/19/2023] Open
Abstract
Simian immunodeficiency virus (SIV) is a useful model for studying human immunodeficiency virus (HIV) pathogenesis and vaccine efficacy. As with all other retroviruses, integration is a necessary step in the replication cycle of SIV. The location of the retrovirus integration site is known to impact on viral gene expression, establishment of viral latency, and other aspects of the replication cycle of a retrovirus. In this study, 148 SIV provirus integration sites were sequenced and mapped in the human genome. Our analysis showed that SIV integration, like that of HIV type 1 (HIV-1), exhibited a strong preference for actively transcribed regions in the genome (A. R. Schroder et al., Cell 110:521-529, 2002) and no preference for the CpG islands or transcription start sites, in contrast to observations for murine leukemia virus (X. Wu et al., Science 300:1749-1751, 2003). The parallel integration target site preferences of SIV and HIV-1 suggest that these lentiviruses may share similar mechanisms for target site selection and that SIV serves as an accurate model of HIV-1 with respect to integration.
Collapse
Affiliation(s)
- Bruce Crise
- AIDS Vaccine Program, Scientific Application International Corporation-Frederick, National Cancer Institute at Frederick, Frederick, MD 21701, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Weinberger LS, Burnett JC, Toettcher JE, Arkin AP, Schaffer DV. Stochastic gene expression in a lentiviral positive-feedback loop: HIV-1 Tat fluctuations drive phenotypic diversity. Cell 2005; 122:169-82. [PMID: 16051143 DOI: 10.1016/j.cell.2005.06.006] [Citation(s) in RCA: 467] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Revised: 03/08/2005] [Accepted: 06/01/2005] [Indexed: 11/19/2022]
Abstract
HIV-1 Tat transactivation is vital for completion of the viral life cycle and has been implicated in determining proviral latency. We present an extensive experimental/computational study of an HIV-1 model vector (LTR-GFP-IRES-Tat) and show that stochastic fluctuations in Tat influence the viral latency decision. Low GFP/Tat expression was found to generate bifurcating phenotypes with clonal populations derived from single proviral integrations simultaneously exhibiting very high and near zero GFP expression. Although phenotypic bifurcation (PheB) was correlated with distinct genomic integration patterns, neither these patterns nor other extrinsic cellular factors (cell cycle/size, aneuploidy, chromatin silencing, etc.) explained PheB. Stochastic computational modeling successfully accounted for PheB and correctly predicted the dynamics of a Tat mutant that were subsequently confirmed by experiment. Thus, Tat stochastics appear sufficient to generate PheB (and potentially proviral latency), illustrating the importance of stochastic fluctuations in gene expression in a mammalian system.
Collapse
Affiliation(s)
- Leor S Weinberger
- Biophysics Graduate Group, The Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA.
| | | | | | | | | |
Collapse
|
18
|
Johnson CN, Levy LS. Matrix attachment regions as targets for retroviral integration. Virol J 2005; 2:68. [PMID: 16111492 PMCID: PMC1198263 DOI: 10.1186/1743-422x-2-68] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Accepted: 08/19/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The randomness of retroviral integration has been debated for many years. Recent evidence indicates that integration site selection is not random, and that it is influenced by both viral and cellular factors. To study the role of DNA structure in site selection, retroviral integration near matrix attachment regions (MARs) was analyzed for three different groups of retroviruses. The objective was to assess whether integration near MARs may be a factor for integration site selection. RESULTS Results indicated that MLV, SL3-3 MuLV, HIV-1 and HTLV-1 integrate preferentially near MARs, specifically within 2-kilobases (kb). In addition, a preferential position and orientation relative to the adjacent MAR was observed for each virus. Further analysis of SL3-3 MuLV insertions in common integration sites (CISs) demonstrated a higher frequency of integration near MARs and an orientation preference that was not observed for integrations outside CISs. CONCLUSION These findings contribute to a growing body of evidence indicating that retroviral integration is not random, that MARs influence integration site selection for some retroviruses, and that integration near MARs may have a role in the insertional activation of oncogenes by gammaretroviruses.
Collapse
Affiliation(s)
- Chassidy N Johnson
- Department of Microbiology & Immunology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana, 70112, USA
| | - Laura S Levy
- Department of Microbiology & Immunology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana, 70112, USA
| |
Collapse
|
19
|
Narezkina A, Taganov KD, Litwin S, Stoyanova R, Hayashi J, Seeger C, Skalka AM, Katz RA. Genome-wide analyses of avian sarcoma virus integration sites. J Virol 2004; 78:11656-63. [PMID: 15479807 PMCID: PMC523270 DOI: 10.1128/jvi.78.21.11656-11663.2004] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The chromosomal features that influence retroviral integration site selection are not well understood. Here, we report the mapping of 226 avian sarcoma virus (ASV) integration sites in the human genome. The results show that the sites are distributed over all chromosomes, and no global bias for integration site selection was detected. However, RNA polymerase II transcription units (protein-encoding genes) appear to be favored targets of ASV integration. The integration frequency within genes is similar to that previously described for murine leukemia virus but distinct from the higher frequency observed with human immunodeficiency virus type 1. We found no evidence for preferred ASV integration sites over the length of genes and immediate flanking regions. Microarray analysis of uninfected HeLa cells revealed that the expression levels of ASV target genes were similar to the median level for all genes represented in the array. Although expressed genes were targets for integration, we found no preference for integration into highly expressed genes. Our results provide a more detailed description of the chromosomal features that may influence ASV integration and support the idea that distinct, virus-specific mechanisms mediate integration site selection. Such differences may be relevant to viral pathogenesis and provide utility in retroviral vector design.
Collapse
Affiliation(s)
- Anna Narezkina
- Fox Chase Cancer Center, Institute for Cancer Research, 333 Cottman Ave., Philadelphia, PA 19111-2497, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Suzuki Y, Misawa N, Sato C, Ebina H, Masuda T, Yamamoto N, Koyanagi Y. Quantitative analysis of human immunodeficiency virus type 1 DNA dynamics by real-time PCR: integration efficiency in stimulated and unstimulated peripheral blood mononuclear cells. Virus Genes 2003; 27:177-88. [PMID: 14501196 DOI: 10.1023/a:1025732728195] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We established a set of real-time PCR assay to accurately quantify human immunodeficiency virus type 1 (HIV-1) DNA in infected cells. Using this assay we were able to measure the strong-stop, full-length/ 1-LTR circle, 2-LTR circle, and integrated forms of viral DNA, and the data provided was quite consistent with the characteristics of mutant viruses in early phase of infection. Since our assay is particularly applicable to quantify the integrated DNA in small scale of samples, we measured the level of integrated DNA in wild-type virus (WT)- or Vpr-defective virus (deltaVpr)-infected peripheral blood mononuclear cells (PBMC), and examined whether quiescent condition of the PBMC influences integration step of HIV-1. Under stimulating condition approximately 25% of total viral DNA was in integrated form in either WT- or DeltaVpr-infected cells. In contrast, under unstimulated condition the level of integration efficiency was not significantly reduced in WT-infected cells, while this efficiency was severely impaired in the absence of vpr gene. This result clearly demonstrated a crucial role of the Vpr for nuclear localization and subsequent integration of viral DNA in nondividing cells. Therefore, our assay is useful for analyzing the events in early phase of HIV-1 infection under various conditions.
Collapse
Affiliation(s)
- Youichi Suzuki
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Mack KD, Jin X, Yu S, Wei R, Kapp L, Green C, Herndier B, Abbey NW, Elbaggari A, Liu Y, McGrath MS. HIV insertions within and proximal to host cell genes are a common finding in tissues containing high levels of HIV DNA and macrophage-associated p24 antigen expression. J Acquir Immune Defic Syndr 2003; 33:308-20. [PMID: 12843741 DOI: 10.1097/00126334-200307010-00004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
HIV integration within host cell genomic DNA is a requisite step of the viral infection cycle. Yet, characteristics of the sites of provirus integration within the host genome remain obscure. The authors present evidence that in diseased tissues showing a high level of HIV DNA and macrophage-associated HIV p24 antigen expression from end stage forms of HIV disease, HIV-1 integration sites were favored within genes and transcriptionally active host cell genomic loci. Using an inverse PCR (IPCR) technique that identified dominant integrated forms of HIV, clonal IPCR products were isolated from AIDS dementia, AIDS lymphoma, and angioimmunoblastic lymphadenopathy tissues. Thirty of 34 disease-associated HIV-1 insertions were identified within annotated and hypothetical genes, an unexpected but highly nonrandom genetic coding region association (p <.026). The 1% sensitivity thresholds used for HIV IPCR suggested some form of selective expansion of cells containing these HIV proviruses. Consistent with this interpretation were the HIV-1 insertion sites identified within introns of genes that encoded for factors associated with signal transduction, apoptosis, and transcription regulation. In addition, HIV-1 proviruses were frequently found proximal to genes that encoded for receptor-associated, signal transduction-associated, transcription-associated, and translation-associated proteins. HIV-1 integration within host cell genomic DNA potentially represents a significant insertional mutagenic event. In certain cases, provirus insertions may mediate the dysregulation of specific gene expression events, providing mechanisms contributing to the pathogenesis associated with certain AIDS-related diseases.
Collapse
Affiliation(s)
- K D Mack
- SLIL Biomedical Corporation, Menlo Park, California, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Quivy V, Van Lint C. Diversity of acetylation targets and roles in transcriptional regulation: the human immunodeficiency virus type 1 promoter as a model system. Biochem Pharmacol 2002; 64:925-34. [PMID: 12213588 DOI: 10.1016/s0006-2952(02)01152-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Persuasive evidence has accumulated that reversible acetylation of proteins is key post-translational modification regulating transcription in eukaryotes. Deacetylase inhibitors (such as trichostatin A) modulate the expression of approximately 2% of all cellular genes. We and others have demonstrated a marked transcriptional activation of the human immunodeficiency virus type 1 (HIV-1) promoter in response to deacetylase inhibitors. Deacetylation events seem to be an important mechanism of HIV-1 transcriptional repression during latency, whereas acetylation events play critical functional roles in HIV-1 reactivation from latency. These deacetylation/acetylation events are implicated in chromatin remodeling of the viral promoter region, as well as in modulating the functional properties of cellular and viral transcription factors binding to this promoter region. Thereby, the HIV-1 promoter constitutes a unique regulatory model system to study the complex relationship between acetylation processes and transcriptional activity.
Collapse
Affiliation(s)
- Vincent Quivy
- Institut de Biologie et de Médecine Moléculaires (IBMM), Service de Chimie Biologique, Laboratoire de Virologie Moléculaire, Université Libre de Bruxelles, rue des Profs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | | |
Collapse
|
23
|
Schröder ARW, Shinn P, Chen H, Berry C, Ecker JR, Bushman F. HIV-1 integration in the human genome favors active genes and local hotspots. Cell 2002; 110:521-9. [PMID: 12202041 DOI: 10.1016/s0092-8674(02)00864-4] [Citation(s) in RCA: 1334] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A defining feature of HIV replication is integration of the proviral cDNA into human DNA. The selection of chromosomal targets for integration is crucial for efficient viral replication, but the mechanism is poorly understood. Here we describe mapping of 524 sites of HIV cDNA integration on the human genome sequence. Genes were found to be strongly favored as integration acceptor sites. Global analysis of cellular transcription indicated that active genes were preferential integration targets, particularly genes that were activated in cells after infection by HIV-1. Regional hotspots for integration were also found, including a 2.4 kb region containing 1% of sites. These data document unexpectedly strong biases in integration site selection and suggest how selective targeting promotes aggressive HIV replication.
Collapse
Affiliation(s)
- Astrid R W Schröder
- Infectious Disease Laboratory, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
24
|
Kaminski JM, Huber MR, Summers JB, Ward MB. Design of a nonviral vector for site-selective, efficient integration into the human genome. FASEB J 2002; 16:1242-7. [PMID: 12153992 DOI: 10.1096/fj.02-0127hyp] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Gene therapy in eukaryotes has met many obstacles. Research into the design of suitable nonviral vectors has been slow. To our knowledge, no nonviral vector has been proposed that allows for the possibility of highly efficient, site-selective integration into the genome of mammalian cells. On the basis of prior studies investigating the components necessary for transposon, retrovirus-like retrotransposon, and retroviral integration, we propose a nonviral system that would potentially allow for site-selective, efficient integration into the mammalian genome. Transposons have been developed that can transform a variety of cell lines. For example, the Sleeping Beauty transposon (SB) can transform a wide range of vertebrate cells from fish to human, and it mediates stable integration and long-term transgene expression in mice. However, the efficiency of transposition varies significantly among cell lines, suggesting the possible involvement of host factors in SB transposition. Here, we propose the use of a chimeric transposase (i.e., transposase-host DNA binding domain) to bypass the potential requirement of a host DNA-directing factor (or factors) for efficient, site-selective integration. We also discuss another potential method of docking the transposon-based vector adjacent to the host DNA, utilizing repetitive sequences for homologous recombination to promote efficient site-selective integration, as well as other site-selective nonviral approaches.
Collapse
Affiliation(s)
- Joseph M Kaminski
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA.
| | | | | | | |
Collapse
|
25
|
Bushman FD. Integration site selection by lentiviruses: biology and possible control. Curr Top Microbiol Immunol 2002; 261:165-77. [PMID: 11892246 DOI: 10.1007/978-3-642-56114-6_8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Retroviruses integrate into naked DNA in a generally sequence nonspecific fashion, but closer study reveals a variety of forces that influence target site selection. Primary sequence of the target plays a small but detectable role. Proteins bound to target DNA can inhibit integration by blocking access of integration complexes or stimulate integration by distorting DNA. An important example of the latter is DNA distortion in nucleosomal DNA. In vivo integration has not yet been convincingly shown to be biased in favor of any identifiable sequence features, though this could still change in future studies. Many applications of retroviral vectors could be facilitated by targeting integration in vivo to predetermined sites. Towards this end, several groups have studied the properties of fusions of integrase proteins to sequence-specific DNA-binding domains. To date such studies establish that targeting can work well in reactions in vitro, but a variety of obstacles complicate applications in vivo. However, naturally occurring retrotransposons do carry out highly targeted integration using retrovirus-like integrase proteins, fueling long-term hopes for targeting with retroviral integrases as well.
Collapse
Affiliation(s)
- F D Bushman
- Infectious Disease Laboratory, Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
26
|
Jordan A, Defechereux P, Verdin E. The site of HIV-1 integration in the human genome determines basal transcriptional activity and response to Tat transactivation. EMBO J 2001; 20:1726-38. [PMID: 11285236 PMCID: PMC145503 DOI: 10.1093/emboj/20.7.1726] [Citation(s) in RCA: 373] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Because of the heterogeneity of chromatin, the site of integration of human immunodeficiency virus (HIV) in the genome could have dramatic effects on its transcriptional activity. We have used an HIV-1-derived retroviral vector, in which the green fluorescent protein is under the control of the HIV promoter, to generate by infection 34 Jurkat clonal cell lines each containing a single integration of the HIV-1 vector. In the absence of Tat, a 75-fold difference in expression level between the highest and lowest expressing clones was observed. Basal promoter activity was low in 80% of the clones and moderate to high in the remaining 20% of clones. We found that differences in expression levels are due to the integration site and are not controlled by DNA methylation or histone acetylation. Tat activated transcription in each clone, and an inverse correlation was observed between basal transcriptional activity and inducibility by Tat. These observations demonstrate that the chromatin environment influences basal HIV gene expression and that the HIV Tat protein activates transcription independently of the chromatin environment.
Collapse
Affiliation(s)
- Albert Jordan
- Gladstone Institute of Virology and Immunology and Department of Medicine, University of California, San Francisco, CA 94141, USA Corresponding author e-mail:
| | - Patricia Defechereux
- Gladstone Institute of Virology and Immunology and Department of Medicine, University of California, San Francisco, CA 94141, USA Corresponding author e-mail:
| | - Eric Verdin
- Gladstone Institute of Virology and Immunology and Department of Medicine, University of California, San Francisco, CA 94141, USA Corresponding author e-mail:
| |
Collapse
|
27
|
Lawoko A, Johansson B, Rabinayaran D, Pipkorn R, Blomberg J. Increased immunoglobulin G, but not M, binding to endogenous retroviral antigens in HIV-1 infected persons. J Med Virol 2000; 62:435-44. [PMID: 11074471 DOI: 10.1002/1096-9071(200012)62:4<435::aid-jmv7>3.0.co;2-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The modes of interaction between products of human endogenous retroviral (HERV) sequences and the immune system are largely unknown. In HIV infected persons, an exogenous retrovirus adds further complexity to the situation. Therefore, 14 synthetic peptides with sequences derived from conserved regions of various endogenous retroviruses (ERVs) and from related exogenous retroviruses were used to search for IgG and IgM antibodies that bind to such antigens in 15 HIV-1 seropositive and 17 seronegative immunosuppressed patients. IgG binding to three peptides, namely, the C-terminal half of murine leukemia virus (MLV) capsid protein, the conserved portion of HERV-H transmembrane protein, and the Pol region of human mouse mammary tumor virus (MMTV)-like (HML3) sequence, was observed in both groups. Binding was, however, more frequent and more firm in HIV-1 positive samples (P<0.0001, Wilcoxon rank sum test). IgM binding to the same peptides showed no significant differentiation between the two groups of patients. Binding to both immunoglobulin isotypes was sometimes variable over time in both groups. No correlation of either IgG or IgM peptide binding with progression to AIDS in HIV-1 infected individuals was observed. Inhibition studies using analogous endogenous and exogenous retroviral peptides, including HIV-1, demonstrated specificity of the IgG antibodies for a narrow range of MLV- and MMTV-like retroviral antigens, and excluded cross-reactivity of antibodies to HIV-1 as a cause of these observations. Thus, unlike IgG, IgM binding to retroviral antigens was ubiquitous. It is suggested that anti-HERV IgM belong to a class of natural antibodies and might serve as primers in the mediation of humoral immune responses to more or less related exogenous retroviruses. Increased IgG binding in HIV-1 infected individuals could result from such priming, or reflect higher HERV antigen expression.
Collapse
Affiliation(s)
- A Lawoko
- Department of Medical Sciences, Section of Virology, Uppsala Academic Hospital, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
28
|
Bornstein J, Zarfati D, Fruchter O, Goldshmid N, Abramovici H. A repetitive DNA sequence that characterizes human papillomavirus integration site into the human genome is present in vulvar vestibulitis. Eur J Obstet Gynecol Reprod Biol 2000; 89:173-6. [PMID: 10725578 DOI: 10.1016/s0301-2115(99)00209-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine the DNA sequence of polymerase chain reaction (PCR) products obtained from surgical specimens of patients with severe vulvar vestibulitis, in order to identify and type the human papillomavirus (HPV)-DNA associated with vulvar vestibulitis. STUDY DESIGN Fifty three women, referred for dyspareunia and diagnosed as having severe vestibulitis, underwent perineoplasty operation consisting of surgical removal of the sensitive vestibule. PCR analysis using L1 HPV primer was performed, and DNA sequencing of the samples that were found to contain HPV-DNA was undertaken, using the dideoxy chain termination method. RESULTS Using PCR, HPV-DNA was detected in 31 of 53 tissue specimens (58%). DNA sequencing of 12 HPV-positive PCR products revealed extensive homology to human Alu consensus sequence, albeit not to any known HPV sequence. CONCLUSIONS The presence of interspersed, repetitive-DNA sequence Alu, which is known to be the preferred site for HPV integration into human genome, in the PCR product reinforces previous observations, suggesting that HPV may have a role in the pathogenesis of vulvar vestibulitis. It further implies a possible integration of the HPV into human DNA in these cases.
Collapse
Affiliation(s)
- J Bornstein
- The Gynecologic Research Laboratory, Colposcopy Unit, Department of Obstetrics and Gynecology, Carmel Medical Center and Rappaport Faculty of Medicine, Hatechnion, Haifa, Israel.
| | | | | | | | | |
Collapse
|
29
|
Affiliation(s)
- F D Bushman
- Infectious Disease Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| |
Collapse
|
30
|
Magnano AR, Giordano R, Moscufo N, Baccetti B, Spadafora C. Sperm/DNA interaction: integration of foreign DNA sequences in the mouse sperm genome. J Reprod Immunol 1998; 41:187-96. [PMID: 10213310 DOI: 10.1016/s0165-0378(98)00058-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Foreign DNA is spontaneously taken up by mouse epididymal sperm cells and is further internalized into nuclei. The interaction and/or internalization of the exogenous DNA triggers the activation of sperm endogenous nucleases which mediate rearrangements of the internalized DNA. Foreign DNA sequences are found to be tightly bound to the sperm nuclear scaffold, and to undergo a recombination process with the sperm chromosomal DNA. Sequence analysis of randomly selected clones from a library of sperm genomic DNA transformed with pSV2CAT plasmid showed that foreign sequences were integrated in a unique site of the sperm genome. Preliminary results suggest that the integration process is mediated by a retrotranscription step.
Collapse
Affiliation(s)
- A R Magnano
- Institute of General Biology, Center for the Study of Germinal Cells, CNR, Siena, Italy
| | | | | | | | | |
Collapse
|
31
|
Rynditch AV, Zoubak S, Tsyba L, Tryapitsina-Guley N, Bernardi G. The regional integration of retroviral sequences into the mosaic genomes of mammals. Gene 1998; 222:1-16. [PMID: 9813219 DOI: 10.1016/s0378-1119(98)00451-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have reviewed here three sets of data concerning the integration of retroviral sequences in the mammalian genome: (i) our experimental localization of a number of proviruses integrated in isochores characterized by different GC levels; (ii) results from other laboratories on the localization of retroviral sequences in open chromatin regions and/or next to CpG islands; and (iii) our compositional analysis of genes located in the neighborhood of integrated retroviral sequences. The three sets of data have provided a very consistent picture in that a compartmentalized, isopycnic integration of expressed proviruses appears to be the rule ('isopycnic' refers to the compositional match between viral and host sequences around the integration site). The results reviewed here suggest that: (i) integration of proviral sequences is targeted initially towards 'open chromatin regions'; while these exist in both GC-rich and GC-poor isochores, the 'open chromatin regions' of GC-rich isochores are the main targets for integration of retroviral sequences because of their much greater abundance; (ii) isopycnicity is associated with stability of integration; indeed, even non-expressed integrated retroviral sequences tend to show an isopycnic localization in the genome; (iii) transcription of integrated viral sequences (like transcription of host genes) appears to be associated, as a rule, with an isopycnic localization, as indicated by transcribed sequences that show an isopycnic integration and act in trans; (iv) selection plays a role in the choice of specific sites within an isopycnic region; in exceptional cases [such as mouse mammary tumor virus (MMTV) activating GC-rich oncogenes], selection may override isopycnicity.
Collapse
Affiliation(s)
- A V Rynditch
- Laboratoire de Génétique Moléculaire, Institut Jacques Monod, 2 Place Jussieu, 75005, Paris, France
| | | | | | | | | |
Collapse
|
32
|
Hansen MS, Carteau S, Hoffmann C, Li L, Bushman F. Retroviral cDNA integration: mechanism, applications and inhibition. GENETIC ENGINEERING 1998; 20:41-61. [PMID: 9666555 DOI: 10.1007/978-1-4899-1739-3_3] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- M S Hansen
- Infectious Disease Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
33
|
Carteau S, Hoffmann C, Bushman F. Chromosome structure and human immunodeficiency virus type 1 cDNA integration: centromeric alphoid repeats are a disfavored target. J Virol 1998; 72:4005-14. [PMID: 9557688 PMCID: PMC109628 DOI: 10.1128/jvi.72.5.4005-4014.1998] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Integration of retroviral cDNA into host chromosomal DNA is an essential and distinctive step in viral replication. Despite considerable study, the host determinants of sites for integration have not been fully clarified. To investigate integration site selection in vivo, we used two approaches. (i) We have analyzed the host sequences flanking 61 human immunodeficiency virus type 1 (HIV-1) integration sites made by experimental infection and compared them to a library of 104 control sequences. (ii) We have also analyzed HIV-1 integration frequencies near several human repeated-sequence DNA families, using a repeat-specific PCR-based assay. At odds with previous reports from smaller-scale studies, we found no strong biases either for or against integration near repetitive sequences such as Alu or LINE-1 elements. We also did not find a clear bias for integration in transcription units as proposed previously, although transcription units were found somewhat more frequently near integration sites than near controls. However, we did find that centromeric alphoid repeats were selectively absent at integration sites. The repeat-specific PCR-based assay also indicated that alphoid repeats were disfavored for integration in vivo but not as naked DNA in vitro. Evidently the distinctive DNA organization at centromeres disfavors cDNA integration. We also found a weak consensus sequence for host DNA at integration sites, and assays of integration in vitro indicated that this sequence is favored as naked DNA, revealing in addition an influence of target primary sequence.
Collapse
Affiliation(s)
- S Carteau
- Infectious Disease Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | |
Collapse
|
34
|
Scheuring UJ, Corbeil J, Mosier DE, Theofilopoulos AN. Early modification of host cell gene expression induced by HIV-1. AIDS 1998; 12:563-70. [PMID: 9583595 DOI: 10.1097/00002030-199806000-00004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Characterization of the effects of infection with HIV-1 on cellular gene expression. DESIGN AND METHODS Differential RNA display was applied to compare uninfected and HIV-1LAI-infected CEM cells 24 h post-inoculation. Differential bands were selected, cloned and several clones per band were sequenced. RNase protection assay was used to confirm differential display findings in HIV-1LAI-infected CEM cells as well as in another T-cell line (H9) infected with a different strain (HIV-1 SF33) RESULTS Twelve differentially expressed bands, six up- and six downregulated in HIV-infected cells compared with controls, were selected. Four of the six upregulated bands were HIV transcripts. RNase protection assay of the remaining eight bands confirmed differential expression of four genes, including induction of a mariner transposase and moesin as well as suppression of alpha-nascent polypeptide-associated complex and mitochondrial heat shock protein 75 in HIV-1-infected cell cultures. Furthermore, a significant increase of glioma pathogenesis-related protein was found by RNase protection assay. CONCLUSIONS Based on this initial limited differential display analysis, it was estimated that expression of 3% of the host genes was altered by HIV-1. Amongst the identified gene modifications, the induction of a mariner transposase may alter cellular gene expression itself, whilst the enhanced expression of glioma pathogenesis-related protein suggests a role in the host cell response to viral infection. The increase in moesin may facilitate viral budding and uptake. Furthermore, the suppression of alpha-nascent polypeptide-associated complex may promote translocation of HIV-1 polypeptides into the endoplasmic reticulum, whereas the downregulation of mitochondrial heat shock protein 75 may contribute to a cytopathic effect on mitochondria and possibly impairs antigen presentation.
Collapse
Affiliation(s)
- U J Scheuring
- Department of Immunology, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
35
|
Chun TW, Stuyver L, Mizell SB, Ehler LA, Mican JA, Baseler M, Lloyd AL, Nowak MA, Fauci AS. Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. Proc Natl Acad Sci U S A 1997; 94:13193-7. [PMID: 9371822 PMCID: PMC24285 DOI: 10.1073/pnas.94.24.13193] [Citation(s) in RCA: 1481] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Although highly active antiretroviral therapy (HAART) in the form of triple combinations of drugs including protease inhibitors can reduce the plasma viral load of some HIV-1-infected individuals to undetectable levels, it is unclear what the effects of these regimens are on latently infected CD4+ T cells and what role these cells play in the persistence of HIV-1 infection in individuals receiving such treatment. The present study demonstrates that highly purified CD4+ T cells from 13 of 13 patients receiving HAART with an average treatment time of 10 months and with undetectable (<500 copies HIV RNA/ml) plasma viremia by a commonly used bDNA assay carried integrated proviral DNA and were capable of producing infectious virus upon cellular activation in vitro. Phenotypic analysis of HIV-1 produced by activation of latently infected CD4+ T cells revealed the presence in some patients of syncytium-inducing virus. In addition, the presence of unintegrated HIV-1 DNA in infected resting CD4+ T cells from patients receiving HAART, even those with undetectable plasma viremia, suggests persistent active virus replication in vivo.
Collapse
Affiliation(s)
- T W Chun
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Nahreini P, Mathews MB. Transduction of the human immunodeficiency virus type 1 promoter into human chromosomal DNA by adeno-associated virus: effects on promoter activity. Virology 1997; 234:42-50. [PMID: 9234945 DOI: 10.1006/viro.1997.8623] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Transcription of the human immunodeficiency virus type 1 (HIV-1) genome takes place after integration of the provirus into human chromosomal DNA. HIV transcription is known to be modulated by viral and cellular factors but the influence of flanking chromosomal sequences on proviral gene expression has not been well defined. To investigate the activity of the integrated HIV promoter, we exploited the ability of recombinant adeno-associated virus (AAV-2) to transfer and stably integrate genes into the human genome at random or site-specifically. Chimeric AAV vectors were constructed containing an HIV-CAT reporter cassette; some vectors also contained the neomycin resistance gene to facilitate the isolation of positive clones. HeLa cells were infected with recombinant AAV, in some instances together with wild-type virus as a source of AAV rep function. We isolated 25 clones of G418-resistant cells which carried the integrated HIV-CAT cassette, generally occupying unique sites that did not correspond to the AAV-specific region of chromosome 19. The HIV promoter was transcriptionally active in most of the clones. Basal promoter activity varied substantially among the clones, and its responsivity to the HIV transactivator Tat was also variable. The integrated HIV promoter was transactivated to comparable degrees by the one-exon form and two-exon form of Tat. These findings provide evidence that the transcriptional activity of the HIV promoter can be greatly influenced by the site of proviral insertion.
Collapse
Affiliation(s)
- P Nahreini
- Cold Spring Harbor Laboratory, New York 11724, USA.
| | | |
Collapse
|
37
|
Stevens SW, Griffith JD. Sequence analysis of the human DNA flanking sites of human immunodeficiency virus type 1 integration. J Virol 1996; 70:6459-62. [PMID: 8709282 PMCID: PMC190680 DOI: 10.1128/jvi.70.9.6459-6462.1996] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) tagged with the Escherichia coli supF gene has been used to clone integrated HIV-1 proviruses. Sequence analysis of the 600 to 800 bp of human DNA adjacent to 29 clones revealed a propensity for HIV-1 to integrate near the Alu class of human repetitive elements.
Collapse
Affiliation(s)
- S W Stevens
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill 27599-7295, USA
| | | |
Collapse
|
38
|
Sonza S, Maerz A, Deacon N, Meanger J, Mills J, Crowe S. Human immunodeficiency virus type 1 replication is blocked prior to reverse transcription and integration in freshly isolated peripheral blood monocytes. J Virol 1996; 70:3863-9. [PMID: 8648722 PMCID: PMC190263 DOI: 10.1128/jvi.70.6.3863-3869.1996] [Citation(s) in RCA: 183] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Peripheral blood monocytes are resistant to productive human immunodeficiency virus type 1 (HIV-1) infection in vitro immediately after isolation. No viral cDNA (either early or late transcripts) was detected by PCR in monocytes exposed to virus on the day of isolation. In contrast, in monocytes cultured for as little as 1 day, initiated and completed reverse transcripts were readily detectable within 24 h of infection with both HIV-1(Ba-L) and primary isolates. The levels of initiated, partially completed, and completed viral DNA copies found 24 h after infection increased progressively with time in culture before infection. Unlike quiescent T lymphocytes, there appeared to be no block or delay in the integration of viral DNA into the genome of susceptible cultured monocytes. With an Alu-PCR method designed to specifically detect proviral DNA being used, integration events were found within 24 h of infection in monocytes cultured for a day or more after isolation. No integration signal was found in freshly isolated monocytes up to 7 days following exposure to the virus. Cloning and sequencing of Alu-PCR-amplified DNA confirmed integration in HIV-1-infected cultured monocytes. Our finding that in vitro replication of HIV-1 is clearly blocked prior to the initiation of reverse transcription in freshly isolated peripheral blood monocytes suggests that these cells may not be susceptible to infection in vivo. Further studies to clarify this possibility and the nature of the block to infection should provide useful information for treatment strategies against HIV-1.
Collapse
Affiliation(s)
- S Sonza
- AIDS Pathogenesis Unit, Macfarlane Burnet Centre for Medical Research, Melbourne, Australia.
| | | | | | | | | | | |
Collapse
|
39
|
Bor YC, Bushman FD, Orgel LE. In vitro integration of human immunodeficiency virus type 1 cDNA into targets containing protein-induced bends. Proc Natl Acad Sci U S A 1995; 92:10334-8. [PMID: 7479779 PMCID: PMC40791 DOI: 10.1073/pnas.92.22.10334] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Integration of human immunodeficiency virus type 1 cDNA into a target DNA can be strongly influenced by the conformation of the target. For example, integration in vitro is sometimes favored in target DNAs containing sequence-directed bends or DNA distortions caused by bound proteins. We have analyzed the effect of DNA bending by studying integration into two well-characterized protein-DNA complexes: Escherichia coli integration host factor (IHF) protein bound to a phage IHF site, and the DNA binding domain of human lymphoid enhancer factor (LEF) bound to a LEF site. Both of these proteins have previously been reported to bend DNA by approximately 140 degrees. Binding of IHF greatly increases the efficiency of in vitro integration at hotspots within the IHF site. We analyzed a series of mutants in which the IHF site was modified at the most prominent hotspot. We found that each variant still displayed enhanced integration upon IHF binding. Evidently the local sequence is not critical for formation of an IHF hotspot. LEF binding did not create preferred sites for integration. The different effects of IHF and LEF binding can be rationalized in terms of the different proposed conformations of the two protein-DNA complexes.
Collapse
Affiliation(s)
- Y C Bor
- Salk Institute for Biological Studies, San Diego, CA 92186-8500, USA
| | | | | |
Collapse
|
40
|
Clarke JR, Robinson DS, Coker RJ, Miller RF, Mitchell DM. AIDS and the lung: update 1995. 4. Role of the human immunodeficiency virus within the lung. Thorax 1995; 50:567-76. [PMID: 7597675 PMCID: PMC1021233 DOI: 10.1136/thx.50.5.567] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- J R Clarke
- Department of Virology, St Mary's Hospital, London
| | | | | | | | | |
Collapse
|