1
|
Cheung ST, Do Y, Kim E, Rella A, Goyarts E, Pernodet N, Wong YH. G Protein-Coupled Receptors in Skin Aging. J Invest Dermatol 2025; 145:749-765.e8. [PMID: 39186022 DOI: 10.1016/j.jid.2024.06.1288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 08/27/2024]
Abstract
Skin aging is a complex biological process affected by a plethora of intrinsic and extrinsic factors that alter cutaneous functions through the modulations of signaling pathways and responses. Expressed in various cell types and skin tissue layers, G protein-coupled receptors (GPCRs) play a vital role in regulating skin aging. We have cataloged 156 GPCRs expressed in the skin and reviewed their roles in skin aging, such as pigmentation, loss of elasticity, wrinkles, rough texture, and aging-associated skin disorders. By exploring the GPCRs found in the skin, it may be possible to develop new treatment regimens for aging-associated skin conditions using GPCR ligands.
Collapse
Affiliation(s)
- Suet Ting Cheung
- The Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; The Biotechnology Research Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yelim Do
- The Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; The Biotechnology Research Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Eunah Kim
- The Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; The Biotechnology Research Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Antonella Rella
- Research and Development, The Estée Lauder Companies, New York, New York, USA
| | - Earl Goyarts
- Research and Development, The Estée Lauder Companies, New York, New York, USA
| | - Nadine Pernodet
- Research and Development, The Estée Lauder Companies, New York, New York, USA; Estée Lauder Research Laboratories, Melville, New York, USA
| | - Yung Hou Wong
- The Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; The Biotechnology Research Institute, The Hong Kong University of Science and Technology, Hong Kong, China; Molecular Neuroscience Center, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China; Center for Aging Science, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
2
|
Chen J, Ying Y, Li H, Sha Z, Lin J, Wu Y, Wu Y, Zhang Y, Chen X, Zhang W. Abnormal dental follicle cells: A crucial determinant in tooth eruption disorders (Review). Mol Med Rep 2024; 30:168. [PMID: 39027997 DOI: 10.3892/mmr.2024.13292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
The dental follicle (DF) plays an indispensable role in tooth eruption by regulating bone remodeling through their influence on osteoblast and osteoclast activity. The process of tooth eruption involves a series of intricate regulatory mechanisms and signaling pathways. Disruption of the parathyroid hormone‑related protein (PTHrP) in the PTHrP‑PTHrP receptor signaling pathway inhibits osteoclast differentiation by DF cells (DFCs), thus resulting in obstructed tooth eruption. Furthermore, parathyroid hormone receptor‑1 mutations are linked to primary tooth eruption failure. Additionally, the Wnt/β‑catenin, TGF‑β, bone morphogenetic protein and Hedgehog signaling pathways have crucial roles in DFC involvement in tooth eruption. DFC signal loss or alteration inhibits osteoclast differentiation, affects osteoblast and cementoblast differentiation, and suppresses DFC proliferation, thus resulting in failed tooth eruptions. Abnormal tooth eruption is also associated with a range of systemic syndromes and genetic diseases, predominantly resulting from pathogenic gene mutations. Among these conditions, the following disorders arise due to genetic mutations that disrupt DFCs and impede proper tooth eruption: Cleidocranial dysplasia associated with Runt‑related gene 2 gene mutations; osteosclerosis caused by CLCN7 gene mutations; mucopolysaccharidosis type VI resulting from arylsulfatase B gene mutations; enamel renal syndrome due to FAM20A gene mutations; and dentin dysplasia caused by mutations in the VPS4B gene. In addition, regional odontodysplasia and multiple calcific hyperplastic DFs are involved in tooth eruption failure; however, they are not related to gene mutations. The specific mechanism for this effect requires further investigation. To the best of our knowledge, previous reviews have not comprehensively summarized the syndromes associated with DF abnormalities manifesting as abnormal tooth eruption. Therefore, the present review aims to consolidate the current knowledge on DFC signaling pathways implicated in abnormal tooth eruption, and their association with disorders of tooth eruption in genetic diseases and syndromes, thereby providing a valuable reference for future related research.
Collapse
Affiliation(s)
- Jiahao Chen
- Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Ying Ying
- Department of Child Health, Yongkang Women and Children's Health Hospital, Yongkang, Zhejiang 321300, P.R. China
| | - Huimin Li
- Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Zhuomin Sha
- Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Jiaqi Lin
- Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Yongjia Wu
- Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Yange Wu
- Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Yun Zhang
- Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Xuepeng Chen
- Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Weifang Zhang
- Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
3
|
Jha S, Simonds WF. Molecular and Clinical Spectrum of Primary Hyperparathyroidism. Endocr Rev 2023; 44:779-818. [PMID: 36961765 PMCID: PMC10502601 DOI: 10.1210/endrev/bnad009] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/09/2023] [Accepted: 03/17/2023] [Indexed: 03/25/2023]
Abstract
Recent data suggest an increase in the overall incidence of parathyroid disorders, with primary hyperparathyroidism (PHPT) being the most prevalent parathyroid disorder. PHPT is associated with morbidities (fractures, kidney stones, chronic kidney disease) and increased risk of death. The symptoms of PHPT can be nonspecific, potentially delaying the diagnosis. Approximately 15% of patients with PHPT have an underlying heritable form of PHPT that may be associated with extraparathyroidal manifestations, requiring active surveillance for these manifestations as seen in multiple endocrine neoplasia type 1 and 2A. Genetic testing for heritable forms should be offered to patients with multiglandular disease, recurrent PHPT, young onset PHPT (age ≤40 years), and those with a family history of parathyroid tumors. However, the underlying genetic cause for the majority of patients with heritable forms of PHPT remains unknown. Distinction between sporadic and heritable forms of PHPT is useful in surgical planning for parathyroidectomy and has implications for the family. The genes currently known to be associated with heritable forms of PHPT account for approximately half of sporadic parathyroid tumors. But the genetic cause in approximately half of the sporadic parathyroid tumors remains unknown. Furthermore, there is no systemic therapy for parathyroid carcinoma, a rare but potentially fatal cause of PHPT. Improved understanding of the molecular characteristics of parathyroid tumors will allow us to identify biomarkers for diagnosis and novel targets for therapy.
Collapse
Affiliation(s)
- Smita Jha
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1752, USA
| | - William F Simonds
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1752, USA
| |
Collapse
|
4
|
Yamaguchi T, Hosomichi K, Shirota T, Miyamoto Y, Ono W, Ono N. Primary failure of tooth eruption: Etiology and management. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:258-267. [PMID: 36159186 PMCID: PMC9489741 DOI: 10.1016/j.jdsr.2022.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/01/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
Primary failure of eruption (PFE) is a rare disorder defined as incomplete tooth eruption despite the presence of a clear eruption pathway. PFE is known to be caused by rare variants in the parathyroid hormone 1 receptor gene (PTH1R). Although several PTH1R variants have been reported, the etiology of PFE remains unclear. However, important studies that help elucidate the pathology of PFE have recently been published. The purpose of this review is to summarize current treatment options, clinical symptoms or phenotypes for diagnosis, genetic information including solid evidence in mouse disease models and disease-specific induced pluripotent stem cells, thus approaching the etiology of PFE from the perspective of the latest research.
Collapse
Affiliation(s)
| | - Kazuyoshi Hosomichi
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Tatsuo Shirota
- Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, Tokyo, Japan
| | - Yoichi Miyamoto
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| | - Wanida Ono
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
| | - Noriaki Ono
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
| |
Collapse
|
5
|
Nagata M, English JD, Ono N, Ono W. Diverse stem cells for periodontal tissue formation and regeneration. Genesis 2022; 60:e23495. [PMID: 35916433 PMCID: PMC9492631 DOI: 10.1002/dvg.23495] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 11/10/2022]
Abstract
The periodontium is comprised of multiple units of mineralized and nonmineralized tissues including the cementum on the root surface, the alveolar bone, periodontal ligament (PDL), and the gingiva. PDL contains a variety of cell populations including mesenchymal stem/progenitor cells (MSCs) termed PDLSCs, which contribute to periodontal regeneration. Recent studies utilizing mouse genetic models shed light on the identities of these mesenchymal progenitors in their native environment, particularly regarding how they contribute to homeostasis and repair of the periodontium. The current concept is that mesenchymal progenitors in the PDL are localized to the perivascular niche. Single-cell RNA sequencing (scRNA-seq) analyses reveal heterogeneity and cell-type specific markers of cells in the periodontium, as well as their developmental relationship with precursor cells in the dental follicle. The characteristics of PDLSCs and their diversity in vivo are now beginning to be unraveled thanks to insights from mouse genetic models and scRNA-seq analyses, which aid to uncover the fundamental properties of stem cells in the human PDL. The new knowledge will be highly important for developing more effective stem cell-based regenerative therapies to repair periodontal tissues in the future.
Collapse
Affiliation(s)
- Mizuki Nagata
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| | - Jeryl D. English
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| | - Noriaki Ono
- Department of Diagnostic & Biomedical Sciences, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| | - Wanida Ono
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| |
Collapse
|
6
|
Okumura K, Saito M, Wakabayashi Y. A wild-derived inbred mouse strain, MSM/Ms, provides insights into novel skin tumor susceptibility genes. Exp Anim 2021; 70:272-283. [PMID: 33776021 PMCID: PMC8390311 DOI: 10.1538/expanim.21-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Cancer is one of the most catastrophic human genetic diseases. Experimental animal cancer models are essential for gaining insights into the complex
interactions of different cells and genes in tumor initiation, promotion, and progression. Mouse models have been extensively used to analyze the genetic basis
of cancer susceptibility. They have led to the identification of multiple loci that confer, either alone or in specific combinations, an increased
susceptibility to cancer, some of which have direct translatability to human cancer. Additionally, wild-derived inbred mouse strains are an advantageous
reservoir of novel genetic polymorphisms of cancer susceptibility genes, because of the evolutionary divergence between wild and classical inbred strains. Here,
we review mapped Stmm (skintumor modifier of MSM) loci using a Japanese wild-derived inbred mouse strain, MSM/Ms, and describe recent advances
in our knowledge of the genes responsible for Stmm loci in the 7,12-dimethylbenz(a)anthracene
(DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA) two-stage skin carcinogenesis model.
Collapse
Affiliation(s)
- Kazuhiro Okumura
- Department of Cancer Genome Center, Division of Experimental Animal Research, Chiba Cancer Center Research Institute, 666-2 Nitonacho Chuo-ku, Chiba 260-8717, Japan
| | - Megumi Saito
- Department of Cancer Genome Center, Division of Experimental Animal Research, Chiba Cancer Center Research Institute, 666-2 Nitonacho Chuo-ku, Chiba 260-8717, Japan
| | - Yuichi Wakabayashi
- Department of Cancer Genome Center, Division of Experimental Animal Research, Chiba Cancer Center Research Institute, 666-2 Nitonacho Chuo-ku, Chiba 260-8717, Japan
| |
Collapse
|
7
|
Semenov GA, Linck E, Enbody ED, Harris RB, Khaydarov DR, Alström P, Andersson L, Taylor SA. Asymmetric introgression reveals the genetic architecture of a plumage trait. Nat Commun 2021; 12:1019. [PMID: 33589637 PMCID: PMC7884433 DOI: 10.1038/s41467-021-21340-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 01/20/2021] [Indexed: 01/04/2023] Open
Abstract
Genome-wide variation in introgression rates across hybrid zones offers a powerful opportunity for studying population differentiation. One poorly understood pattern of introgression is the geographic displacement of a trait implicated in lineage divergence from genome-wide population boundaries. While difficult to interpret, this pattern can facilitate the dissection of trait genetic architecture because traits become uncoupled from their ancestral genomic background. We studied an example of trait displacement generated by the introgression of head plumage coloration from personata to alba subspecies of the white wagtail. A previous study of their hybrid zone in Siberia revealed that the geographic transition in this sexual signal that mediates assortative mating was offset from other traits and genetic markers. Here we show that head plumage is associated with two small genetic regions. Despite having a simple genetic architecture, head plumage inheritance is consistent with partial dominance and epistasis, which could contribute to its asymmetric introgression. Hybrid zones are windows into the evolutionary process. Semenov et al. find that the head plumage differences between white wagtail subspecies have a simple genetic basis involving two small genetic regions, in which partially dominant and epistatic interactions help to explain how this sexual signal has become decoupled from other plumage traits.
Collapse
Affiliation(s)
- Georgy A Semenov
- Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.
| | - Ethan Linck
- UNM Biology, University of New Mexico, Albuquerque, NM, Mexico
| | - Erik D Enbody
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | | | - Per Alström
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.,Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.,Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Scott A Taylor
- Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| |
Collapse
|
8
|
Deal KK, Rosebrock JC, Eeds AM, DeKeyser JML, Musser MA, Ireland SJ, May-Zhang AA, Buehler DP, Southard-Smith EM. Sox10-cre BAC transgenes reveal temporal restriction of mesenchymal cranial neural crest and identify glandular Sox10 expression. Dev Biol 2020; 471:119-137. [PMID: 33316258 DOI: 10.1016/j.ydbio.2020.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 12/29/2022]
Abstract
Diversity of neural crest derivatives has been studied with a variety of approaches during embryonic development. In mammals Cre-LoxP lineage tracing is a robust means to fate map neural crest relying on cre driven from regulatory elements of early neural crest genes. Sox10 is an essential transcription factor for normal neural crest development. A variety of efforts have been made to label neural crest derivatives using partial Sox10 regulatory elements to drive cre expression. To date published Sox10-cre lines have focused primarily on lineage tracing in specific tissues or during early fetal development. We describe two new Sox10-cre BAC transgenes, constitutive (cre) and inducible (cre/ERT2), that contain the complete repertoire of Sox10 regulatory elements. We present a thorough expression profile of each, identifying a few novel sites of Sox10 expression not captured by other neural crest cre drivers. Comparative mapping of expression patterns between the Sox10-cre and Sox10-cre/ERT2 transgenes identified a narrow temporal window in which Sox10 expression is present in mesenchymal derivatives prior to becoming restricted to neural elements during embryogenesis. In more caudal structures, such as the intestine and lower urinary tract, our Sox10-cre BAC transgene appears to be more efficient in labeling neural crest-derived cell types than Wnt1-cre. The analysis reveals consistent expression of Sox10 in non-neural crest derived glandular epithelium, including salivary, mammary, and urethral glands of adult mice. These Sox10-cre and Sox10-cre/ERT2 transgenic lines are verified tools that will enable refined temporal and cell-type specific lineage analysis of neural crest derivatives as well as glandular tissues that rely on Sox10 for proper development and function.
Collapse
Affiliation(s)
- Karen K Deal
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jennifer C Rosebrock
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Angela M Eeds
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jean-Marc L DeKeyser
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA; Present address: Northwestern University, Dept. of Pharmacology, USA
| | - Melissa A Musser
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA; Present address: Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
| | - Sara J Ireland
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Aaron A May-Zhang
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Dennis P Buehler
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - E Michelle Southard-Smith
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
9
|
Passarelli MN, Karagas MR, Mott LA, Rees JR, Barry EL, Baron JA. Risk of keratinocyte carcinomas with vitamin D and calcium supplementation: a secondary analysis of a randomized clinical trial. Am J Clin Nutr 2020; 112:1532-1539. [PMID: 33022713 PMCID: PMC7727481 DOI: 10.1093/ajcn/nqaa267] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 08/28/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND It is unknown whether dietary supplementation with vitamin D or calcium prevents keratinocyte carcinomas, also known as nonmelanoma skin cancers. OBJECTIVES This study aimed to determine whether daily vitamin D or calcium supplementation alters the risk of basal cell carcinoma (BCC) or invasive cutaneous squamous cell carcinoma (SCC). METHODS The Vitamin D/Calcium Polyp Prevention Study is a completed multicenter, double-blind, placebo-controlled, partial 2 × 2 factorial, randomized clinical trial of vitamin D, calcium, or both for the prevention of colorectal adenomas. During 2004-2008, a total of 2259 men and women, 45-75 y of age, recently diagnosed with a colorectal adenoma, were randomly assigned to 1000 IU/d of vitamin D3 or placebo and 1200 mg/d of calcium carbonate or placebo for 3 or 5 y, and followed after treatment ended. Reports of incident BCC or SCC were confirmed from pathology records. RESULTS During a median follow-up of 8 y, 200 (9%) participants were diagnosed with BCC and 68 (3%) participants were diagnosed with SCC. BCC incidence was unrelated to treatment with vitamin D compared with no vitamin D (HR: 0.96; 95% CI: 0.73, 1.26), calcium compared with no calcium (HR: 1.01; 95% CI: 0.74, 1.39), and both agents compared with neither (HR: 0.99; 95% CI: 0.65, 1.51). SCC incidence was unrelated to treatment with vitamin D compared with no vitamin D (HR: 0.79; 95% CI: 0.49, 1.27), but there was suggestive evidence of beneficial treatment effects for calcium compared with no calcium (HR: 0.60; 95% CI: 0.36, 1.01) and both agents compared with neither (HR: 0.42; 95% CI: 0.19, 0.91). CONCLUSIONS Calcium alone or in combination with vitamin D may reduce the risk of SCC, but not BCC. This trial was registered at clinicaltrials.gov as NCT00153816.
Collapse
Affiliation(s)
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Leila A Mott
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Judy R Rees
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Elizabeth L Barry
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - John A Baron
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA,Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA,Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
10
|
Nagata M, Ono N, Ono W. Mesenchymal Progenitor Regulation of Tooth Eruption: A View from PTHrP. J Dent Res 2019; 99:133-142. [PMID: 31623502 DOI: 10.1177/0022034519882692] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Tooth eruption is a unique biological process by which highly mineralized tissues emerge into the outer world, and it occurs concomitantly with tooth root formation. These 2 processes have been considered independent phenomena; however, recent studies support the theory that they are indeed intertwined. Dental mesenchymal progenitor cells in the dental follicle lie at the heart of the coupling of these 2 processes, providing a source for diverse mesenchymal cells that support formation of the highly functional tooth root and the periodontal attachment apparatus, while facilitating formation of osteoclasts. These cells are regulated by autocrine signaling by parathyroid hormone-related protein (PTHrP) and its parathyroid hormone/PTHrP receptor PPR. This PTHrP-PPR signaling appears to crosstalk with other signaling pathways and regulates proper cell fates of mesenchymal progenitor cell populations. Disruption of this autocrine PTHrP-PPR signaling in these cells leads to defective formation of the periodontal attachment apparatus, tooth root malformation, and failure of tooth eruption in molars, which essentially recapitulate primary failure of eruption in humans, a rare genetic disorder exclusively affecting tooth eruption. Diversity and distinct functionality of these mesenchymal progenitor cell populations that regulate tooth eruption and tooth root formation are beginning to be unraveled.
Collapse
Affiliation(s)
- M Nagata
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - N Ono
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - W Ono
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
11
|
|
12
|
The parathyroid hormone regulates skin tumour susceptibility in mice. Sci Rep 2017; 7:11208. [PMID: 28894263 PMCID: PMC5593851 DOI: 10.1038/s41598-017-11561-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/22/2017] [Indexed: 02/05/2023] Open
Abstract
Using a forward genetics approach to map loci in a mouse skin cancer model, we previously identified a genetic locus, Skin tumour modifier of MSM 1 (Stmm1) on chromosome 7, conferring strong tumour resistance. Sub-congenic mapping localized Parathyroid hormone (Pth) in Stmm1b. Here, we report that serum intact-PTH (iPTH) and a genetic polymorphism in Pth are important for skin tumour resistance. We identified higher iPTH levels in sera from cancer-resistant MSM/Ms mice compared with susceptible FVB/NJ mice. Therefore, we performed skin carcinogenesis experiments with MSM-BAC transgenic mice (PthMSM-Tg) and Pth knockout heterozygous mice (Pth+/−). As a result, the higher amounts of iPTH in sera conferred stronger resistance to skin tumours. Furthermore, we found that the coding SNP (rs51104087, Val28Met) localizes in the mouse Pro-PTH encoding region, which is linked to processing efficacy and increased PTH secretion. Finally, we report that PTH increases intracellular calcium in keratinocytes and promotes their terminal differentiation. Taken together, our data suggest that Pth is one of the genes responsible for Stmm1, and serum iPTH could serve as a prevention marker of skin cancer and a target for new therapies.
Collapse
|
13
|
Wu HJ, Oh JW, Spandau DF, Tholpady S, Diaz J, Schroeder LJ, Offutt CD, Glick AB, Plikus MV, Koyama S, Foley J. Estrogen modulates mesenchyme-epidermis interactions in the adult nipple. Development 2017; 144:1498-1509. [PMID: 28289136 DOI: 10.1242/dev.141630] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 03/03/2017] [Indexed: 12/26/2022]
Abstract
Maintenance of specialized epidermis requires signals from the underlying mesenchyme; however, the specific pathways involved remain to be identified. By recombining cells from the ventral skin of the K14-PTHrP transgenic mice [which overexpress parathyroid hormone-related protein (PTHrP) in their developing epidermis and mammary glands] with those from wild type, we show that transgenic stroma is sufficient to reprogram wild-type keratinocytes into nipple-like epidermis. To identify candidate nipple-specific signaling factors, we compared gene expression signatures of sorted Pdgfrα-positive ventral K14-PTHrP and wild-type fibroblasts, identifying differentially expressed transcripts that are involved in WNT, HGF, TGFβ, IGF, BMP, FGF and estrogen signaling. Considering that some of the growth factor pathways are targets for estrogen regulation, we examined the upstream role of this hormone in maintaining the nipple. Ablation of estrogen signaling through ovariectomy produced nipples with abnormally thin epidermis, and we identified TGFβ as a negatively regulated target of estrogen signaling. Estrogen treatment represses Tgfβ1 at the transcript and protein levels in K14-PTHrP fibroblasts in vitro, while ovariectomy increases Tgfb1 levels in K14-PTHrP ventral skin. Moreover, ectopic delivery of Tgfβ1 protein into nipple connective tissue reduced epidermal proliferation. Taken together, these results show that specialized nipple epidermis is maintained by estrogen-induced repression of TGFβ signaling in the local fibroblasts.
Collapse
Affiliation(s)
- Hsing-Jung Wu
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Ji Won Oh
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California Irvine, Irvine, CA 92697, USA.,Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, 41944, Korea.,Biomedical Research Institute, Kyungpook National University Hospital, Daegu, 41944, Korea
| | - Dan F Spandau
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sunil Tholpady
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jesus Diaz
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Laura J Schroeder
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Carlos D Offutt
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Adam B Glick
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California Irvine, Irvine, CA 92697, USA
| | - Sachiko Koyama
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - John Foley
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA .,Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
14
|
Veltmaat JM. Prenatal Mammary Gland Development in the Mouse: Research Models and Techniques for Its Study from Past to Present. Methods Mol Biol 2017; 1501:21-76. [PMID: 27796947 DOI: 10.1007/978-1-4939-6475-8_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Mammary gland development starts during prenatal life, when at designated positions along the ventrolateral boundary of the embryonic or fetal trunk, surface ectodermal cells coalesce to form primordia for mammary glands, instead of differentiating into epidermis. With the wealth of genetically engineered mice available as research models, our understanding of the prenatal phase of mammary development has recently greatly advanced. This understanding includes the recognition of molecular and mechanistic parallels between prenatal and postnatal mammary morphogenesis and even tumorigenesis, much of which can moreover be extrapolated to human. This makes the murine embryonic mammary gland a useful model for a myriad of questions pertaining to normal and pathological breast development. Hence, unless indicated otherwise, this review describes embryonic mammary gland development in mouse only, and lists mouse models that have been examined for defects in embryonic mammary development. Techniques that originated in the field of developmental biology, such as explant culture and tissue recombination, were adapted specifically to research on the embryonic mammary gland. Detailed protocols for these techniques have recently been published elsewhere. This review describes how the development and adaptation of these techniques moved the field forward from insights on (comparative) morphogenesis of the embryonic mammary gland to the understanding of tissue and molecular interactions and their regulation of morphogenesis and functional development of the embryonic mammary gland. It is here furthermore illustrated how generic molecular biology and biochemistry techniques can be combined with these older, developmental biology techniques, to address relevant research questions. As such, this review should provide a solid starting point for those wishing to familiarize themselves with this fascinating and important subdomain of mammary gland biology, and guide them in designing a relevant research strategy.
Collapse
Affiliation(s)
- Jacqueline M Veltmaat
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore.
| |
Collapse
|
15
|
Kato A, Suzuki M, Karasawa Y, Sugimoto T, Doi K. Histopathological Study on the PTHrP-Induced Incisor Lesions in Rats. Toxicol Pathol 2016; 31:480-5. [PMID: 14692615 DOI: 10.1080/01926230390224665] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Parathyroid hormone related peptide (PTHrP) was discovered as a causative factor of humoral hypercalcemia of malignancy (HHM). The present study elucidates the histopathological characters of incisor lesions in the HHM rat model. Nude rats were implanted with PTHrP-expressing tumor (LC-6) cells, maintained for 12 weeks, after which the mandibular incisors were collected. Incisor fractures were observed grossly. Microscopically, hypercalcified dentin, dentin niche with osteodentin, and thinning of dentin were observed. Hypercalcified dentin was observed as a basophilic line of calcified dentin without associated odontoblastic changes, whereas dentin niche and thinning of dentin occurred with osteodentin and loss of cell height, respectively. In contrast with hypercalcified dentin, which was distributed throughout the dentin, dentin niche and thinning of dentin were localized to the labial area of the apical and middle region, and to the labial and lingual areas of the middle and incisal region, respectively. These results suggest that hypercalcemia affected the entire calcification process resulting in hypercalcified dentin, and that high PTHrP concentrations affected selective populations of odontoblasts resulting in formation of dentin niche and thinning of dentin. The localization of dentin niche and thinning of dentin also suggest that PTHrP may also be involved odontoblastic development in the rat.
Collapse
Affiliation(s)
- Atsuhiko Kato
- Toxicology Laboratory, Chugai Pharmaceutical Co, Ltd, 1-135 Komakado, Gotemba-shi, Shizuoka 412-8513, Japan.
| | | | | | | | | |
Collapse
|
16
|
Sato E, Muto J, Zhang LJ, Adase CA, Sanford JA, Takahashi T, Nakatsuji T, Usdin TB, Gallo RL. The Parathyroid Hormone Second Receptor PTH2R and its Ligand Tuberoinfundibular Peptide of 39 Residues TIP39 Regulate Intracellular Calcium and Influence Keratinocyte Differentiation. J Invest Dermatol 2016; 136:1449-1459. [PMID: 27000502 DOI: 10.1016/j.jid.2016.02.814] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 02/22/2016] [Accepted: 02/29/2016] [Indexed: 01/02/2023]
Abstract
Genes related to the parathyroid hormone (PTH) influence cutaneous immune defense and development, but the full functions of the PTH family in cutaneous biology remain incompletely understood. In this study, we examined the expression and potential functions of the PTH second receptor (PTH2R) and its ligand, the tuberoinfundibular peptide of 39 residues (TIP39), in the skin. TIP39 and PTH2R mRNA and protein were detectable in both human and mouse skin, and in cultured keratinocytes and adipocytes. TIP39 was observed in the basal layer of human skin, whereas PTH2R was detected in the spinous to granular layer. The subcellular localization of TIP39 in keratinocytes changed during calcium-induced differentiation and shifted to colocalize with PTH2R at the membrane. The addition of recombinant TIP39 to normal human keratinocytes in culture induced an increase in intercellular calcium and triggered aspects of terminal differentiation including decreased keratin-14 and increased involucrin expression. Consistent with these observations, PTH2R(-/-) mice were observed to have increased epidermal thickness. In summary, identification of TIP39 and its receptor in the epidermis reveals an additional PTH family member that is expressed in the skin and may influence keratinocyte function.
Collapse
Affiliation(s)
- Emi Sato
- Department of Dermatology, University of California San Diego, La Jolla, California, USA
| | - Jun Muto
- Department of Dermatology, Aichi Medical University, Nagakute, Aichi, Japan
| | - Ling-Juan Zhang
- Department of Dermatology, University of California San Diego, La Jolla, California, USA
| | - Christopher A Adase
- Department of Dermatology, University of California San Diego, La Jolla, California, USA
| | - James A Sanford
- Department of Dermatology, University of California San Diego, La Jolla, California, USA
| | - Toshiya Takahashi
- Department of Dermatology, University of California San Diego, La Jolla, California, USA
| | - Teruaki Nakatsuji
- Department of Dermatology, University of California San Diego, La Jolla, California, USA
| | - Ted B Usdin
- Section on Fundamental Neuroscience, NIMH National Institute of Mental Health, Bethesda, Maryland, USA
| | - Richard L Gallo
- Department of Dermatology, University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
17
|
Skrok A, Bednarczuk T, Skwarek A, Popow M, Rudnicka L, Olszewska M. The effect of parathyroid hormones on hair follicle physiology: implications for treatment of chemotherapy-induced alopecia. Skin Pharmacol Physiol 2016; 28:213-225. [PMID: 25721772 DOI: 10.1159/000375319] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 01/15/2015] [Indexed: 11/19/2022]
Abstract
Parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP) influence hair follicles through paracrine and intracrine routes. There is significant evidence that PTH and PTHrP influence the proliferation and differentiation of hair follicle cells. The PTH/PTHrP receptor signalling plays an important role in the hair follicle cycle and may induce premature catagen-telogen transition. Transgenic mice with an overexpression or blockade (PTH/PTHrP receptor knockout mice) of PTHrP activity revealed impaired or increased hair growth, respectively. Some findings also suggest that PTHrP may additionally influence the hair cycle by inhibiting angiogenesis. Antagonists of the PTH/PTHrP receptor have been shown to stimulate proliferation of hair follicle cells and hair growth. A hair-stimulating effect of a PTH/PTHrP receptor antagonist applied topically to the skin has been observed in hairless mice, as well as in mice treated with cyclophosphamide. These data indicate that the PTH/PTHrP receptor may serve as a potential target for new (topical) hair growth-stimulating drugs, especially for chemotherapy-induced alopecia.
Collapse
|
18
|
Jiang M, Chen G, Lu N, Zhang Y, Jin S, Karaplis A, Goltzman D, Miao D. Deficiency of the parathyroid hormone-related peptide nuclear localization and carboxyl terminal sequences leads to premature skin ageing partially mediated by the upregulation of p27. Exp Dermatol 2015; 24:847-52. [PMID: 26121068 DOI: 10.1111/exd.12789] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2015] [Indexed: 12/17/2022]
Abstract
We previously reported that deficiency of the PTHrP nuclear localization sequence (NLS) and C-terminus in PTHrP knockin (PTHrP KI) mice resulted in premature ageing of skin. P27, a cyclin-dependent kinase inhibitor, was upregulated in PTHrP KI mice and acted as a downstream target of the PTHrP NLS to regulate the proliferation of vascular smooth muscle cells. To determine the effects of p27 deficiency on premature skin ageing of PTHrP KI mice, we compared the skin phenotypes of PTHrP KI mice to those of p27 knockout (p27(-/-) ) mice and to those of double homozygous p27-deficient and PTHrP KI (p27(-/-) PTHrP KI) mice at 2 weeks age. Compared with wild-type littermates, PTHrP KI mice displayed thinner skin and decreased subcutaneous fat and collagen fibres, decreased skin cell proliferation and increased apoptosis, higher expression of p27, p19 and p53 and lower expression of cyclin E and CDK2, and increased reactive oxygen species levels and decreased antioxidant capacity. Deficiency of p27 in the PTHrP KI mice at least in part corrected the skin premature ageing phenotype resulting in thicker skin and increased subcutaneous fat and collagen. These alternations were associated with higher expression of CDK2 and cyclin E, lower expression of p19 and p53, and enhanced antioxidant capacity with increased skin cell proliferation and inhibition of apoptosis. Our results indicate that the NLS and C-terminus of PTHrP play a critical role in preventing skin from premature ageing that is partially mediated by p27.
Collapse
Affiliation(s)
- Minyue Jiang
- Department of Anatomy, Histology and Embryology, State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guangpei Chen
- Department of Anatomy, Histology and Embryology, State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Na Lu
- Department of Anatomy, Histology and Embryology, State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yongjie Zhang
- Department of Anatomy, Histology and Embryology, State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shulei Jin
- Department of Anatomy, Histology and Embryology, State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Andrew Karaplis
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - David Goltzman
- Calcium Research Laboratory, McGill University Health Centre and Department of Medicine, McGill University, Montreal, QC, Canada
| | - Dengshun Miao
- Department of Anatomy, Histology and Embryology, State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
19
|
Baan M, Kibbe CR, Bushkofsky JR, Harris TW, Sherman DS, Davis DB. Transgenic expression of the human growth hormone minigene promotes pancreatic β-cell proliferation. Am J Physiol Regul Integr Comp Physiol 2015. [PMID: 26202070 DOI: 10.1152/ajpregu.00244.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transgenic mouse models are designed to study the role of specific proteins. To increase transgene expression the human growth hormone (hGH) minigene, including introns, has been included in many transgenic constructs. Until recently, it was thought that the hGH gene was not spliced, transcribed, and translated to produce functional hGH protein. We generated a transgenic mouse with the transcription factor Forkhead box M1 (FoxM1) followed by the hGH minigene, under control of the mouse insulin promoter (MIP) to target expression specifically in the pancreatic β-cell. Expression of FoxM1 in isolated pancreatic islets in vitro stimulates β-cell proliferation. We aimed to investigate the effect of FoxM1 on β-cell mass in a mouse model for diabetes mellitus. However, we found inadvertent coexpression of hGH protein from a spliced, bicistronic mRNA. MIP-FoxM1-hGH mice had lower blood glucose and higher pancreatic insulin content, due to increased β-cell proliferation. hGH signals through the murine prolactin receptor, and expression of its downstream targets tryptophan hydroxylase-1 (Tph1), tryptophan hydroxylase-2 (Tph2), and cytokine-inducible SH2 containing protein (Cish) was increased. Conversely, transcriptional targets of FoxM1 were not upregulated. Our data suggest that the phenotype of MIP-FoxM1-hGH mice is due primarily to hGH activity and that the FoxM1 protein remains largely inactive. Over the past decades, multiple transgenic mouse strains were generated that make use of the hGH minigene to increase transgene expression. Our work suggests that each will need to be carefully screened for inadvertent hGH production and critically evaluated for the use of proper controls.
Collapse
Affiliation(s)
- Mieke Baan
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin; and
| | - Carly R Kibbe
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin; and
| | - Justin R Bushkofsky
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin; and
| | - Ted W Harris
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin; and
| | - Dawn S Sherman
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin; and
| | - Dawn Belt Davis
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin; and William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| |
Collapse
|
20
|
Expansion of specialized epidermis induced by hormonal state and mechanical strain. Mech Dev 2015; 136:73-86. [PMID: 25680535 DOI: 10.1016/j.mod.2015.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 12/08/2014] [Accepted: 01/28/2015] [Indexed: 11/20/2022]
Abstract
In mammals, some sites of specialized skin such as the palms, soles, and lips grow proportionally with the animal. However, other types of specialized skin such as the nipple and anal/genital region are dramatically altered with changes of reproductive status. The specific cell types that mediate the growth of these sites have not been identified. In the mouse, we observed a dramatic expansion of the specialized epidermis of the nipple, coupled to changes in connective tissue and hair shaft density, which we designate as areola formation. During this process thymidine analog uptake was elevated in the epidermis and hair follicles. Although there were no changes in connective tissue cell proliferation, we did observe an altered expression of extracellular matrix genes. In addition, the fibroblasts of the virgin nipple areola and region showed increased transcript and protein levels for estrogen, progesterone, relaxin, and oxytocin relative to those of ventral skin. To determine the role of pregnancy, lactation hormonal milieu, and localized mechanical strain on areola formation, we created models that separated these stimuli and evaluated changes in gross structure, proliferation and protein expression. While modest increases of epidermal proliferation and remodeling of connective tissue occurred as a result of individual stimuli, areola formation required exposure to pregnancy hormones, as well as mechanical strain.
Collapse
|
21
|
Gensure RC. Parathyroid hormone-related peptide and the hair cycle - is it the agonists or the antagonists that cause hair growth? Exp Dermatol 2014; 23:865-7. [DOI: 10.1111/exd.12504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2014] [Indexed: 10/25/2022]
Affiliation(s)
- Robert C. Gensure
- Pediatric Endocrinology; Children's Hospital at Montefiore and Albert Einstein College of Medicine; Bronx NY USA
| |
Collapse
|
22
|
Mozar A, Kondegowda NG, Pollack I, Fenutria R, Vasavada RC. The Role of PTHrP in Pancreatic Beta-Cells and Implications for Diabetes Pathophysiology and Treatment. Clin Rev Bone Miner Metab 2014. [DOI: 10.1007/s12018-014-9168-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Chandramouli A, Hatsell SJ, Pinderhughes A, Koetz L, Cowin P. Gli activity is critical at multiple stages of embryonic mammary and nipple development. PLoS One 2013; 8:e79845. [PMID: 24260306 PMCID: PMC3832531 DOI: 10.1371/journal.pone.0079845] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 09/24/2013] [Indexed: 01/12/2023] Open
Abstract
Gli3 is a transcriptional regulator of Hedgehog (Hh) signaling that functions as a repressor (Gli3R) or activator (Gli3A) depending upon cellular context. Previously, we have shown that Gli3R is required for the formation of mammary placodes #3 and #5. Here, we report that this early loss of Gli3 results in abnormal patterning of two critical regulators: Bmp4 and Tbx3, within the presumptive mammary rudiment (MR) #3 zone. We also show that Gli3 loss leads to failure to maintain mammary mesenchyme specification and loss of epithelial Wnt signaling, which impairs the later development of remaining MRs: MR#2 showed profound evagination and ectopic hairs formed within the presumptive areola; MR#4 showed mild invagination defects and males showed inappropriate retention of mammary buds in Gli3xt/xt mice. Importantly, mice genetically manipulated to misactivate Hh signaling displayed the same phenotypic spectrum demonstrating that the repressor function of Gli3R is essential during multiple stages of mammary development. In contrast, positive Hh signaling occurs during nipple development in a mesenchymal cuff around the lactiferous duct and in muscle cells of the nipple sphincter. Collectively, these data show that repression of Hh signaling by Gli3R is critical for early placodal patterning and later mammary mesenchyme specification whereas positive Hh signaling occurs during nipple development.
Collapse
Affiliation(s)
- Anupama Chandramouli
- Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, United States of America
| | - Sarah J. Hatsell
- Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, United States of America
| | - Alicia Pinderhughes
- Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
| | - Lisa Koetz
- Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
| | - Pamela Cowin
- Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
24
|
Koyama S, Wu HJ, Easwaran T, Thopady S, Foley J. The nipple: a simple intersection of mammary gland and integument, but focal point of organ function. J Mammary Gland Biol Neoplasia 2013; 18:121-31. [PMID: 23674217 DOI: 10.1007/s10911-013-9289-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 04/29/2013] [Indexed: 10/26/2022] Open
Abstract
Having glands that secrete milk to nourish neonatal offspring characterizes all mammals. We provide a brief overview of the development and anatomy of nipples and mammary glands in monotremes, marsupials, and marine mammals, and focus on the nipples and mammary glands in terrestrial eutherian species. We first classify eutherians into three groups: the altricial, precocial, and arboreal types based on their rearing system. We then summarize the physiology of lactation and the cell biology of nipples with specific focus on comparing these in the mouse, cow, and human, which represent the three different groups. Finally we propose that the nipple is an example of specialized epidermis. As specialized epidermis, it is dependent the underlying stroma for development and maintenance in adult life. The development of the nipple and signaling pathways that regulate its formation are described.
Collapse
Affiliation(s)
- Sachiko Koyama
- Medical Sciences, Indiana University School of Medicine, Jordan Hall, Bloomington, IN 47405, USA
| | | | | | | | | |
Collapse
|
25
|
Hiremath M, Wysolmerski J. Parathyroid hormone-related protein specifies the mammary mesenchyme and regulates embryonic mammary development. J Mammary Gland Biol Neoplasia 2013; 18:171-7. [PMID: 23640717 PMCID: PMC3696739 DOI: 10.1007/s10911-013-9283-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/16/2013] [Indexed: 10/26/2022] Open
Abstract
Parathyroid Hormone related Protein (PTHrP) is a critical regulator of mammary gland morphogenesis in the mouse embryo. Loss of PTHrP, or its receptor, PTHR1, results in arrested mammary buds at day 15 of embryonic development (E15). In contrast, overexpression of PTHrP converts the ventral epidermis into hairless nipple skin. PTHrP signaling appears to be critical for mammary mesenchyme specification, which in turn maintains mammary epithelial identity, directs bud outgrowth, disrupts the male mammary rudiment and specifies the formation of the nipple. In the embryonic mammary bud, PTHrP exerts its effects on morphogenesis, in part, through epithelial-stromal crosstalk mediated by Wnt and BMP signaling. Recently, PTHLH has been identified as a strong candidate for a novel breast cancer susceptibility locus, although PTHrP's role in breast cancer has not been clearly defined. The effects of PTHrP on the growth of the embryonic mammary rudiment and its invasion into the dermis may, in turn, have connections to the role of PTHrP in breast cancer.
Collapse
Affiliation(s)
- Minoti Hiremath
- S-128 Department of Biological Sciences, Boise State University, 1910 University Drive, Boise, ID 83725
| | - John Wysolmerski
- Department of Internal Medicine, Yale University School of Medicine, S120 TAC, 300 Cedar Street, New Haven, CT 06520
| |
Collapse
|
26
|
Yan YL, Bhattacharya P, He XJ, Ponugoti B, Marquardt B, Layman J, Grunloh M, Postlethwait JH, Rubin DA. Duplicated zebrafish co-orthologs of parathyroid hormone-related peptide (PTHrP, Pthlh) play different roles in craniofacial skeletogenesis. J Endocrinol 2012; 214:421-35. [PMID: 22761277 PMCID: PMC3718479 DOI: 10.1530/joe-12-0110] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In mammals, parathyroid hormone-related peptide (PTHrP, alias PTH-like hormone (Pthlh)) acts as a paracrine hormone that regulates the patterning of cartilage, bone, teeth, pancreas, and thymus. Beyond mammals, however, little is known about the molecular genetic mechanisms by which Pthlh regulates early development. To evaluate conserved pathways of craniofacial skeletogenesis, we isolated two Pthlh co-orthologs from the zebrafish (Danio rerio) and investigated their structural, phylogenetic, and syntenic relationships, expression, and function. Results showed that pthlh duplicates originated in the teleost genome duplication. Zebrafish pthlha and pthlhb were maternally expressed and showed overlapping and distinct zygotic expression patterns during skeletal development that mirrored mammalian expression domains. To explore the regulation of duplicated pthlh genes, we studied their expression patterns in mutants and found that both sox9a and sox9b are upstream of pthlha in arch and fin bud cartilages, but only sox9b is upstream of pthlha in the pancreas. Morpholino antisense knockdown showed that pthlha regulates both sox9a and sox9b in the pharyngeal arches but not in the brain or otic vesicles and that pthlhb does not regulate either sox9 gene, which is likely related to its highly degraded nuclear localization signal. Knockdown of pthlha but not pthlhb caused runx2b overexpression in craniofacial cartilages and premature bone mineralization. We conclude that in normal cartilage development, sox9 upregulates pthlh, which downregulates runx2, and that the duplicated nature of all three of these genes in zebrafish creates a network of regulation by different co-orthologs in different tissues.
Collapse
Affiliation(s)
- Yi-Lin Yan
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
McCauley LK, Martin TJ. Twenty-five years of PTHrP progress: from cancer hormone to multifunctional cytokine. J Bone Miner Res 2012; 27:1231-9. [PMID: 22549910 PMCID: PMC4871126 DOI: 10.1002/jbmr.1617] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/04/2012] [Accepted: 03/20/2012] [Indexed: 01/30/2023]
Abstract
Twenty-five years ago a "new" protein was identified from cancers that caused hypercalcemia. It was credited for its ability to mimic parathyroid hormone (PTH), and hence was termed parathyroid hormone-related protein (PTHrP). Today it is recognized for its widespread distribution, its endocrine, paracrine, and intracrine modes of action driving numerous physiologic and pathologic conditions, and its central role in organogenesis. The multiple biological activities within a complex molecule with paracrine modulation of adjacent target cells present boundless possibilities. The protein structure of PTHrP has been traced, dissected, and deleted comprehensively and conditionally, yet numerous questions lurk in its past that will carry into the future. Issues of the variable segments of the protein, including the enigmatic nuclear localization sequence, are only recently being clarified. Aspects of PTHrP production and action in the menacing condition of cancer are emerging as dichotomies that may represent intended temporal actions of PTHrP. Relative to PTH, the hormone regulating calcium homeostasis, PTHrP "controls the show" locally at the PTH/PTHrP receptor throughout the body. Great strides have been made in our understanding of PTHrP actions, yet years of exciting investigation and discovery are imminent. © 2012 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Laurie K McCauley
- Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, 1011 N. University Ave., Ann Arbor, MI 48105, USA.
| | | |
Collapse
|
28
|
Malloy PJ, Feldman D. The role of vitamin D receptor mutations in the development of alopecia. Mol Cell Endocrinol 2011; 347:90-6. [PMID: 21693169 PMCID: PMC3196847 DOI: 10.1016/j.mce.2011.05.045] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 05/27/2011] [Accepted: 05/28/2011] [Indexed: 12/22/2022]
Abstract
Hereditary Vitamin D Resistant Rickets (HVDRR) is a rare disease caused by mutations in the vitamin D receptor (VDR). The consequence of defective VDR is the inability to absorb calcium normally in the intestine. This leads to a constellation of metabolic abnormalities including hypocalcemia, secondary hyperparathyroidism and hypophosphatemia that cause the development of rickets at an early age in affected children. An interesting additional abnormality is the presence of alopecia in some children depending on the nature of the VDR mutation. The data indicate that VDR mutations that cause defects in DNA binding, RXR heterodimerization or absence of the VDR cause alopecia while mutations that alter VDR affinity for 1,25(OH)(2)D(3) or disrupt coactivator interactions do not cause alopecia. The cumulative findings indicate that hair follicle cycling is dependent on unliganded actions of the VDR. Further research is ongoing to elucidate the role of the VDR in hair growth and differentiation.
Collapse
Affiliation(s)
- Peter J Malloy
- Stanford University School of Medicine, Stanford, CA 94305-5103, USA
| | | |
Collapse
|
29
|
Parathyroid hormone-related protein is not required for normal ductal or alveolar development in the post-natal mammary gland. PLoS One 2011; 6:e27278. [PMID: 22087279 PMCID: PMC3210770 DOI: 10.1371/journal.pone.0027278] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 10/13/2011] [Indexed: 11/19/2022] Open
Abstract
PTHrP is necessary for the formation of the embryonic mammary gland and, in its absence, the embryonic mammary bud fails to form the neonatal duct system. In addition, PTHrP is produced by the breast during lactation and contributes to the regulation of maternal calcium homeostasis during milk production. In this study, we examined the role of PTHrP during post-natal mammary development. Using a PTHrP-lacZ transgenic mouse, we surveyed the expression of PTHrP in the developing post-natal mouse mammary gland. We found that PTHrP expression is restricted to the basal cells of the gland during pubertal development and becomes expressed in milk secreting alveolar cells during pregnancy and lactation. Based on the previous findings that overexpression of PTHrP in cap and myoepithelial cells inhibited ductal elongation during puberty, we predicted that ablation of native PTHrP expression in the post-natal gland would result in accelerated ductal development. To address this hypothesis, we generated two conditional models of PTHrP-deficiency specifically targeted to the postnatal mammary gland. We used the MMTV-Cre transgene to ablate the floxed PTHrP gene in both luminal and myoepithelial cells and a tetracycline-regulated K14-tTA;tetO-Cre transgene to target PTHrP expression in just myoepithelial and cap cells. In both models of PTHrP ablation, we found that mammary development proceeds normally despite the absence of PTHrP. We conclude that PTHrP signaling is not required for normal ductal or alveolar development.
Collapse
|
30
|
Parathyroid hormone related protein (PTHrP) in tumor progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 720:145-60. [PMID: 21901625 DOI: 10.1007/978-1-4614-0254-1_12] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Parathyroid hormone-related protein (PTHrP) is widely expressed in fetal and adult tissues and is a key regulator for cellular calcium transport and smooth muscle cell contractility, as well as a crucial control factor in cell proliferation, development and differentiation. PTHrP stimulates or inhibits apoptosis in an autocrine/paracrine and intracrine fashion, and is particularly important for hair follicle and bone development, mammary epithelial development and tooth eruption. PTHrP's dysregulated expression has traditionally been associated with oncogenic pathologies as the major causative agent of malignancy-associated hypercalcemia, but recent evidence revealed a driving role in skeletal metastasis progression. Here, we demonstrate that PTHrP is also closely involved in breast cancer initiation, growth and metastasis through mechanisms separate from its bone turnover action, and we suggest that PTHrP as a facilitator of oncogenes would be a novel target for therapeutic purposes.
Collapse
|
31
|
Kiyozumi D, Osada A, Sugimoto N, Weber CN, Ono Y, Imai T, Okada A, Sekiguchi K. Identification of genes expressed during hair follicle induction. J Dermatol 2010; 38:674-9. [PMID: 21352298 DOI: 10.1111/j.1346-8138.2010.01050.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The hair follicle is one of the skin appendages that develops through reciprocal epithelial-mesenchymal interactions. Although a large number of studies have been made on the mechanisms of hair follicle development, the whole molecular mechanism that governs hair follicle development remains poorly defined. To further understand the molecular basis of hair follicle development, it is necessary to identify genes that drive hair morphogenesis. As an initial approach, we attempted to identify gene products associated with mouse hair follicle development. Genes upregulated in the vibrissal hair placodes were screened by polymerase chain reaction (PCR)-based cDNA subtraction. The genes thus isolated were evaluated for their hair development-associated induction and spatiotemporal expression by quantitative reverse-transcription-PCR analysis and whole-mount in situ hybridization, respectively. Finally, we identified four genes whose upregulation and spatiotemporal expression in developing hair follicles were confirmed. Successful identification of novel hair development-associated genes will be informative as clues for further characterization of hair follicle development at the molecular level.
Collapse
Affiliation(s)
- Daiji Kiyozumi
- Sekiguchi Biomatrix Signaling Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency, Aichi Medical University, Aichi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Xu H, Liu QY, Zhang JM, Zhang H, Li GS. Elevation of PTH and PTHrp induced by excessive fluoride in rats on a calcium-deficient diet. Biol Trace Elem Res 2010; 137:79-87. [PMID: 19915804 DOI: 10.1007/s12011-009-8561-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 10/27/2009] [Indexed: 11/30/2022]
Abstract
Study on the role of parathyroid hormone (PTH) and parathyroid hormone-related peptide (PTHrp) in the process of skeletal fluorosis, involved especially in calcium deficiency, is rare. We evaluated the level of serum PTH and mRNA expression of PTHrp in femur when rats were exposed to excessive fluoride with low-calcium diet. Wistar rats (n = 60) was divided into four groups, a control group, fluoride group, low-calcium group, and low-calcium fluoride group. The fluoride groups were treated with fluoride by drinking tap water containing 100 mg F-/L. The low-calcium diet contained 0.05% calcium. Serum was collected in the first, fourth, eighth, and 12th of phase for the detemination of PTH and Ca(2+). RNA extraction from femora was used to analyze the mRNA express of PTHrp, osteopontin (OPN), and osteocalcin (OCN) after 12 weeks of fluoride dosing. Results showed that serum PTH increased gradually with the extension of fluoride exposure, but Ca2+ decreased, both of which embodied a time-dependent relationship. Cotreatment of excessive fluoride with low-calcium diet largely stimulated the secretion of PTH. The low dietary calcium markedly increased mRNA expression of PTHrp in animals with fluoride treatment. Expression of OPN and OCN significantly increased in the rats treated with excessive fluoride and low-calcium diet. We demonstrated that fluoride by itself affected the body's calcium metabolism and stimulate the secretion of PTH. PTH may play an important role in anabolic effect of excessive fluoride on bone turnover of skeletal fluorosis and calcium deficiency exacerbated the action of PTH and PTHrp on the characteristic bone lesion of fluorosis.
Collapse
Affiliation(s)
- Hui Xu
- Department of Endemic Diseases, Jilin University, Changchun, 130021, People's Republic of China.
| | | | | | | | | |
Collapse
|
33
|
Parathyroid Hormone and Parathyroid Hormone–Related Peptide in the Regulation of Calcium Homeostasis and Bone Development. Endocrinology 2010. [DOI: 10.1016/b978-1-4160-5583-9.00056-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Boskey A, Frank A, Fujimoto Y, Spevak L, Verdelis K, Ellis B, Troiano N, Philbrick W, Carpenter T. The PHEX transgene corrects mineralization defects in 9-month-old hypophosphatemic mice. Calcif Tissue Int 2009; 84:126-37. [PMID: 19082853 PMCID: PMC2657219 DOI: 10.1007/s00223-008-9201-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Accepted: 11/21/2008] [Indexed: 01/30/2023]
Abstract
Hypophosphatemia is an X-linked dominant disorder resulting from a mutation in the PHEX gene. While osteoblast-specific expression of the PHEX transgene has been reported to decrease the phosphate wasting associated with the disease in male hypophosphatemic (HYP) mice, there are reports that the mineralization defect is only partially corrected in young animals. To test the hypothesis that osteoblast-specific expression of the PHEX gene for a longer time would correct the mineralization defect, this study examined the bones of 9-month-old male and female HYP mice and their wild-type controls with or without expression of the transgene under a collagen type I promoter. Serum phosphate levels, alkaline phosphatase activity, and FGF23 levels were also measured. Mineral analyses based on wide-angle X-ray diffraction, Fourier transform-infrared (FT-IR) spectroscopy, and FT-IR imaging confirmed the decreased mineral content and increased mineral crystal size in male HYP humerii compared to wild-type males and females with or without the transgene and in female HYP mice with or without the transgene. There was a significant increase in mineral content and a decrease in crystallinity in the HYP males' bones with the transgene, compared to those without. Of interest, expression of the transgene in wild-type animals significantly increased the mineral content in both males and females without having a detectable effect on crystallinity or carbonate content. In contrast to the bones, based on micro-computed tomography and FT-IR imaging, at 9 months there were no significant differences between the HYP and the WT teeth, precluding analysis of the effect of the transgene.
Collapse
Affiliation(s)
- Adele Boskey
- Musculoskeletal Integrity Program, Hospital for Special Surgery, Weill Medical College, Cornell University, 535 East 70th Street, New York, NY 10021, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ahlstrom M, Pekkinen M, Riehle U, Lamberg-Allardt C. Extracellular calcium regulates parathyroid hormone-related peptide expression in osteoblasts and osteoblast progenitor cells. Bone 2008; 42:483-90. [PMID: 18096456 DOI: 10.1016/j.bone.2007.10.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 10/25/2007] [Accepted: 10/26/2007] [Indexed: 01/24/2023]
Abstract
Parathyroid hormone-related peptide (PTHrP) has been shown to have anabolic effects on bone in women with postmenopausal osteoporosis. On the cellular level PTHrP promotes the recruitment of osteogenic cells and prevents apoptotic death of osteoblasts and osteocytes. The calcium concentration is considerably higher in the vicinity of resorbing osteoclasts than in the plasma. Therefore the osteoblasts are likely to be confronted by elevated extracellular calcium concentrations in the areas of resorptive activity. The present study was designed to assess the possibility that extracellular calcium could regulate PTHrP expression in osteoblastic cells. Adult human mesenchymal stem cells (hMSC) were cultured and differentiated by standard methods. The PTHrP release into the culture media was measured by an immunoradiometric assay and the expression of PTHrP, osteocalcin and Runx2 mRNA was assayed by real-time PCR. Increasing the extracellular calcium from 1 mM to 5 mM for 24 h resulted in a 4-6-fold increase in the PTHrP release. PTHrP mRNA was also increased by elevated calcium levels. The effect of calcium stimulation on PTHrP release could be seen within 60 min of treatment. The extracellular calcium sensing receptor (CaR) agonist neomycin mimicked the effects of calcium and the MEK/MAPK inhibitor PD98059 abolished the effect of calcium and neomycin. High extracellular calcium increased the mineralization of hMSC and the expression of osteocalcin, but this effect was not mimicked by neomycin. Our results show that in hMSC, elevated extracellular calcium levels increases both released PTHrP and PTHrP mRNA expression. The effect of calcium on PTHrP can be mimicked by activation of the CaR and can be diminished by inhibition of the MAPK signalling pathway.
Collapse
Affiliation(s)
- Mikael Ahlstrom
- Calcium Research Unit, University of Helsinki, Helsinki, Finland.
| | | | | | | |
Collapse
|
36
|
Jonas E, Schreinemachers HJ, Kleinwächter T, Ün C, Oltmanns I, Tetzlaff S, Jennen D, Tesfaye D, Ponsuksili S, Murani E, Juengst H, Tholen E, Schellander K, Wimmers K. QTL for the heritable inverted teat defect in pigs. Mamm Genome 2008; 19:127-38. [DOI: 10.1007/s00335-007-9086-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 11/28/2007] [Indexed: 10/22/2022]
|
37
|
Hens JR, Dann P, Zhang JP, Harris S, Robinson GW, Wysolmerski J. BMP4 and PTHrP interact to stimulate ductal outgrowth during embryonic mammary development and to inhibit hair follicle induction. Development 2007; 134:1221-30. [PMID: 17301089 DOI: 10.1242/dev.000182] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The mammary glands develop initially as buds arising from the ventral embryonic epidermis. Recent work has shed light on signaling pathways leading to the patterning and formation of the mammary placodes and buds in mouse embryos. Relatively little is known of the signaling pathways that initiate branching morphogenesis and the formation of the ducts from the embryonic buds. Previous studies have shown that parathyroid hormone-related protein (PTHrP; also known as parathyroid hormone-like peptide, Pthlh) is produced by mammary epithelial cells and acts on surrounding mesenchymal cells to promote their differentiation into a mammary-specific dense mesenchyme. As a result of PTHrP signaling, the mammary mesenchyme supports mammary epithelial cell fate, initiates ductal development and patterns the overlying nipple sheath. In this report, we demonstrate that PTHrP acts, in part, by sensitizing mesenchymal cells to BMP signaling. PTHrP upregulates BMP receptor 1A expression in the mammary mesenchyme, enabling it to respond to BMP4, which is expressed within mesenchymal cells underlying the ventral epidermis during mammary bud formation. We demonstrate that BMP signaling is important for outgrowth of normal mammary buds and that BMP4 can rescue outgrowth of PTHrP(-/-) mammary buds. In addition, the combination of PTHrP and BMP signaling is responsible for upregulating Msx2 gene expression within the mammary mesenchyme, and disruption of the Msx2 gene rescues the induction of hair follicles on the ventral surface of mice overexpressing PTHrP in keratinocytes (K14-PTHrP). Our data suggest that PTHrP signaling sensitizes the mammary mesenchyme to the actions of BMP4, triggering outgrowth of the mammary buds and inducing MSX2 expression, which, in turn, leads to lateral inhibition of hair follicle formation within the developing nipple sheath.
Collapse
Affiliation(s)
- Julie R Hens
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520-8020, USA
| | | | | | | | | | | |
Collapse
|
38
|
Eastwood J, Offutt C, Menon K, Keel M, Hrncirova P, Novotny MV, Arnold R, Foley J. Identification of markers for nipple epidermis: changes in expression during pregnancy and lactation. Differentiation 2007; 75:75-83. [PMID: 17244023 DOI: 10.1111/j.1432-0436.2006.00112.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In vertebrates, specific regions of skin crucial for interaction with and manipulation of elements in the environment are characterized by specialized epidermis. Regions of specialized epidermis show distinct patterns of cellular differentiation and express specific keratins that provide an increased ability to withstand mechanical strain. The nipple, which must endure the mechanical strain of nursing, is a type of specialized epidermis. The entire ventral skin of the keratin 14 promoter driven PTHrP mouse provides a model for nipple development. To identify novel markers for this specialized epidermis, we have used two-dimensional (2-D) gels, mass spectrometric protein identification, Western blotting and immunohistochemistry to compare intermediate filament preparations from the nipple-like K14-PTHrP ventral skin to that of wild-type littermates. We identified 64 spots on 2-D gels that were increased in expression in the nipple-like skin of the female K14-PTHrP mouse and 11 spots that were elevated in the wild type. Microsequencing suggested that K17 and epiplakin were among the proteins with the greatest increase in expression in the K14-PTHrP ventral skin. Using Western blots and immunohistochemistry, we evaluated the expression of these proteins as well as K6 in the wild-type nipple, K14-PTHrP ventral skin and wild-type ventral skin. In addition, we found that the expression of K6 was minimally changed in the pregnant and lactating nipple, but the expression of a previously identified marker, K2e, was reduced during lactation. Using a model of the mechanical strain induced by nursing, we found that K2e but not K6 expression was responsive to this condition. The identification of epidermal markers and their expression patterns will provide insight into the cellular differentiation patterns of the nipple and the underlying epidermal-mesenchymal interactions that direct this differentiation.
Collapse
Affiliation(s)
- Jennifer Eastwood
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Diamond AG, Gonterman RM, Anderson AL, Menon K, Offutt CD, Weaver CH, Philbrick WM, Foley J. Parathyroid hormone hormone-related protein and the PTH receptor regulate angiogenesis of the skin. J Invest Dermatol 2006; 126:2127-34. [PMID: 16675960 DOI: 10.1038/sj.jid.5700338] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In developing organs, parathyroid hormone (PTH)/parathyroid hormone-related protein (PTHrP) receptor (PPR) signaling inhibits proliferation and differentiation of mesenchyme-derived cell types resulting in control of morphogenic events. Previous studies using PPR agonists and antagonists as well as transgenic overexpression of the PPR ligand PTHrP have suggested that this ligand receptor combination might regulate the anagen to catagen transition of the hair cycle. To further understand the precise role of PTHrP and the PPR in the hair cycle, we have evaluated hair growth in the traditional K14-PTHrP (KrP) and an inducible bitransgenic PTHrP mice. High levels of PTHrP trangene expression limited to the adult hair cycle resulted in the production of shorter hair shafts. Morphometric analysis indicated that reduced proliferation in the matrix preceded the appearance of thinner hair follicles and shafts during late anagen. CD31 staining revealed that the late anagen hair follicles of the KrP mice were surrounded by reduced numbers of smaller diameter capillaries as compared to controls. Moreover, the fetal skins of the PTHrP and PPR knockouts (KOs) had reciprocal increases in the length, diameter, and density of capillaries. Finally, crossing the KrP transgene onto a thrombospondin-1 KO background reversed the vascular changes as well as the delayed catagen exhibited by these mice. Taken together, these findings suggest that PTHrP's influence on the hair cycle is mediated in part by its effects on angiogenesis.
Collapse
Affiliation(s)
- A Godwin Diamond
- Department of Medical Sciences, Indiana University School of Medicine, Bloomington, 47405, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Studies in humans and in animal models have demonstrated that the receptor-dependent actions of 1,25-dihydroxyvitamin D are required for normal skeletal growth and maturation. Investigations were undertaken to address which consequences of vitamin D receptor deficiency are a direct result of impaired receptor-dependent hormone actions versus being due to metabolic changes. Vitamin D receptor (VDR) knockout mice were therefore generated. Investigations were performed in mice with abnormal mineral ion homeostasis, as well as in mice in which the development of abnormal mineral ion homeostasis was prevented by dietary means. VDR null mice had hypocalcemia, hyperparathyroidism, and hypophosphatemia in the first month of life. Rickets and osteomalacia are observed as well. Institution of a high-calcium, high-phosphorus, lactose-supplemented diet by the third week of life prevents abnormalities in mineral ion homeostasis. The bones of the VDR null mice with normal mineral ion homeostasis are indistinguishable from those of their wild-type littermates. The rachitic changes in the growth plates are also prevented by maintenance of normal mineral ion homeostasis. Investigations into the pathophysiological basis for the growth plate abnormalities in the VDR null mice with abnormal mineral ion homeostasis demonstrated that impaired apoptosis of hypertrophic chondrocytes due to hypophosphatemia was the cause of rachitic changes. Studies investigating the cause of the alopecia demonstrate novel ligand-independent VDR actions in the keratinocyte. The skeletal effects of VDR ablation are therefore indirect and reflect absence of ligand-dependent receptor actions in the intestine. In contrast, the cutaneous phenotype of VDR ablation is a direct consequence of absence of ligand-independent VDR actions in epidermal keratinocytes.
Collapse
Affiliation(s)
- Marie B Demay
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, 50 Blossom St, Boston, MA 02114, USA.
| |
Collapse
|
41
|
Nanashima N, Asano J, Hayakari M, Nakamura T, Nakano H, Yamada T, Shimizu T, Akita M, Fan Y, Tsuchida S. Nuclear localization of STAT5A modified with O-linked N-acetylglucosamine and early involution in the mammary gland of Hirosaki hairless rat. J Biol Chem 2005; 280:43010-6. [PMID: 16227201 DOI: 10.1074/jbc.m509481200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hirosaki hairless rat (HHR) is a mutant strain spontaneously derived from Sprague-Dawley rats (SDR), and its inheritance is autosomal recessive. In addition to hair loss, female HHRs show involution of the mammary gland at an early stage of lactation. In the present study we investigated the mammary gland development in HHR. Morphological examinations revealed that HHR mammary glands are underdeveloped in virgins and exhibit distended alveoli on day 1 of lactation (L1), followed by involution. Milk secretion was observed on L1 in HHR. Whey acidic protein and other proteins were increased in milk of HHR and heterozygous rats on SDS-polyacrylamide gel electrophoresis. Terminal deoxynucleotide transferase-mediated dUTP nick-end labeling assay revealed apoptosis induction in HHRs at an early stage of lactation. By Western blotting, signal transducer and activator of transcription (STAT) 5A levels in cytoplasmic and nuclear fractions of the mammary glands were not different between HHR and SDR on L1 and L7. Nuclear localization of STAT5A in HHR and SDR was confirmed by immunohistochemistry. Tyr-phosphorylated STAT5A was not detected in HHR but was detected in SDR nuclear fractions. Several proteins modified with O-linked N-acetylglucosamine (O-GlcNAc) were detected in HHR nuclear extract on L1, although not in SDR or heterozygous rats by Western blotting. When HHR nuclear extract was applied to wheat germ agglutinin-agarose, a part of STAT5A was recovered in bound fractions. STAT5A of SDR or heterozygous rat nuclei were not bound to the lectin. Electrophoretic mobility shift assay revealed that STAT5A modified with O-GlcNAc is bound to the STAT5-responsive element. These results indicate that the mammary glands of HHR showed terminal differentiation for a short period, followed immediately by involution. In HHR, STAT5A is modified with O-GlcNAc but is not Tyr-phosphorylated. This type of glycosylation is suggested to be involved in the transient activation of STAT5A in HHR.
Collapse
Affiliation(s)
- Naoki Nanashima
- Second Department of Biochemistry, Hirosaki University School of Medicine, Hirosaki 036-8562, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kato A, Suzuki M, Karasawa Y, Sugimoto T, Doi K. PTHrP and PTH/PTHrP receptor 1 expression in odontogenic cells of normal and HHM model rat incisors. Toxicol Pathol 2005; 33:456-64. [PMID: 16036863 DOI: 10.1080/01926230590959604] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Parathyroid hormone related peptide (PTHrP) was discovered as a causative factor of humoral hypercalcemia of malignancy (HHM). We examined PTHrP and its receptor (PTHR1) expression patterns in odontogenic cells in normal and HHM model rat incisors. Nontreated nude rats serving as the normal control and HHM model rats produced by implantation of PTHrP-expressing tumor (LC-6) cells were prepared. HHM rats fractured its incisor, and histopathologically, restrict population of odontoblasts showed findings classified as "shortening of high columnar odontoblasts" and "dentin niche." The incisors were immunostained against PTHrP and PTHR1. In normal rats, PTHrP and PTHR1 colocalized in ameloblasts, cementoblasts, and odontoblastic cells from mesenchymal cells to columnar odontoblasts. In high columnar odontoblasts, PTHrP solely expressed. In the HHM animals, although the expression patterns were identical to those of the normal rats in normal area, the shortened high columnar odontoblasts maintained PTHR1 expression and dentin niche comprising odontoblastic cells expressed both proteins. In the HHM model, the protein expression patterns changed in the odontoblastic cells with histological anomalies, and thus direct relations between the anomalies and PTHrP/PTHR1 axis are suggested.
Collapse
Affiliation(s)
- Atsuhiko Kato
- Safety Assessment Department, Chugai Pharmaceutical Co. Ltd., 1-135 Komakado, Gotemba-shi, Shizuoka 412-8513, Japan.
| | | | | | | | | |
Collapse
|
43
|
Calvi LM, Shin HI, Knight MC, Weber JM, Young MF, Giovannetti A, Schipani E. Constitutively active PTH/PTHrP receptor in odontoblasts alters odontoblast and ameloblast function and maturation. Mech Dev 2005; 121:397-408. [PMID: 15110049 DOI: 10.1016/j.mod.2004.02.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Revised: 01/28/2004] [Accepted: 02/02/2004] [Indexed: 11/15/2022]
Abstract
Parathyroid hormone (PTH)-related protein (PTH-rP) is an important autocrine/paracrine attenuator of programmed cell differentiation whose expression is restricted to the epithelial layer in tooth development. The PTH/PTHrP receptor (PPR) mRNA in contrast is detected in the dental papilla, suggesting that PTHrP and the PPR may modulate epithelial-mesenchymal interactions. To explore the possible interactions, we studied the previously described transgenic mice in which a constitutively active PPR is targeted to osteoblastic cells. These transgenic mice have a vivid postnatal bone and tooth phenotype, with normal tooth eruption but abnormal, widened crowns. Transgene mRNA expression was first detected at birth in the dental papilla and, at 1 week postnatally, in odontoblasts. There was no transgene expression in ameloblasts or in other epithelial structures. Prenatally, transgenic molars and incisors revealed no remarkable change. By the age of 1 week, the dental papilla was widened, with disorganization of the odontoblastic layer and decreased dentin matrix. In addition, the number of cusps was abnormally increased, the ameloblastic layer disorganized, and enamel matrix decreased. Odontoblastic and, surprisingly, ameloblastic cytodifferentiation was impaired, as shown by in situ hybridization and electron microscopy. Interestingly, ameloblastic expression of Sonic Hedgehog, a major determinant of ameloblastic cytodifferentiation, was dramatically altered in the transgenic molars. These data suggest that odontoblastic activation of the PPR may play an important role in terminal odontoblastic and, indirectly, ameloblastic cytodifferentiation, and describe a useful model to study how this novel action of the PPR may modulate mesenchymal/epithelial interactions at later stages of tooth morphogenesis and development.
Collapse
Affiliation(s)
- L M Calvi
- Endocrine Unit, Department of Medicine, University of Rochester School of Medicine, Rochester, NY, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Kobayashi T, Kronenberg HM, Foley J. Reduced expression of the PTH/PTHrP receptor during development of the mammary gland influences the function of the nipple during lactation. Dev Dyn 2005; 233:794-803. [PMID: 15880431 DOI: 10.1002/dvdy.20406] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Signaling by the parathyroid hormone/parathyroid hormone-related protein receptor (Ppr) is necessary for mammary gland development beyond the early induction stage in mice. We used a series of murine models of reduced Ppr expression to determine how diminished receptor signaling influences mammary development. Reduction of Ppr expression to very low levels prevented mammary gland development. A less-severe reduction in Ppr expression permitted progression of mammary gland development beyond the induction stage, but the nipples of these mice were dramatically smaller than those of controls, with altered epidermis and connective tissue. Mothers with reduced expression of Ppr could not successfully nurse pups; however, the lactating glands did produce milk but could not efficiently deliver it. This finding was associated with reduced levels of matrix metalloproteinase-2 and an absence of pregnancy-associated remodeling of connective tissue matrix in the nipple. Reduced smooth muscle appears to underlie the majority of nipple deficiencies in mice with lower levels of the Ppr expression.
Collapse
Affiliation(s)
- Tatsuya Kobayashi
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | | |
Collapse
|
45
|
Mahler B, Gocken T, Brojan M, Childress S, Spandau DF, Foley J. Keratin 2e: a marker for murine nipple epidermis. Cells Tissues Organs 2004; 176:169-77. [PMID: 15118396 DOI: 10.1159/000077033] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2003] [Indexed: 01/11/2023] Open
Abstract
Mesenchyme-derived signals influence the unique keratinization and appendage formation programs in specialized skin regions. Interactions between primary mammary mesenchyme and epidermal cells result in the formation of the nipple; however, it is unclear whether this represents a site of regionally specialized epidermis. We profiled the ultrastructure and keratin expression of the murine nipple, and the ventral skin of the K14-parathyroid hormone-related protein (PTHrP) transgenic mouse, which models nipple formation. We found the murine nipple and ventral K14-PTHrP epidermis display expanded suprabasal and granular layers, as well as a thickened cornified layer compared to ventral skin of wild-type littermates. We also observed increased levels of filaggrin in extracts from the ventral epidermis of the K14-PTHrP mouse when compared to that of wild-type littermates. Keratin 2e, previously reported to be expressed in various specialized epidermal sites in the mouse, is expressed in the nipple and the ventral skin of the K14-PTHrP mouse. Keratinocytes grown from the ventral epidermis of the K14-PTHrP mouse or wild-type littermates exhibited identical expression of epidermal markers in vitro, suggesting that the modulated differentiation profile observed in the nipple or the ventral K14-PTHrP skin was dependent on interactions with fibroblasts. The lack of appendages, altered stratification pattern and expression of a specialized keratin suggests that the murine nipple is an example of regionally specialized epidermis.
Collapse
Affiliation(s)
- Bryon Mahler
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | | | | | | | | | | |
Collapse
|
46
|
Hastings RH. Parathyroid hormone-related protein and lung biology. Respir Physiol Neurobiol 2004; 142:95-113. [PMID: 15450473 DOI: 10.1016/j.resp.2004.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2004] [Indexed: 10/26/2022]
Abstract
Parathyroid hormone-related protein (PTHrP) is expressed in normal and malignant lung and has roles in development, homeostasis, and pathophysiology of injury and cancer. Its effects in developing lung include regulation of branching morphogenesis and type II cell maturation. In adult lung, PTHrP stimulates disaturated phosphatidylcholine secretion, inhibits type II cell growth, and sensitizes them to apoptosis. In lung cancer, PTHrP may play a role in carcinoma progression, or metastasis. The protein could be a useful marker for assessing lung maturity or type II cell function, predicting risk of injury, and detecting lung cancer. PTHrP-based therapies could also prove useful in lung injury and lung cancer.
Collapse
Affiliation(s)
- Randolph H Hastings
- Anesthesiology Service, VA San Diego Healthcare System, University of California, 3350 La Jolla Village Dr., Mailcode 125, San Diego, CA 92161-5085, USA.
| |
Collapse
|
47
|
Pazzaglia S, Mancuso M, Tanori M, Atkinson MJ, Merola P, Rebessi S, Di Majo V, Covelli V, Hahn H, Saran A. Modulation of Patched-Associated Susceptibility to Radiation Induced Tumorigenesis by Genetic Background. Cancer Res 2004; 64:3798-806. [PMID: 15172986 DOI: 10.1158/0008-5472.can-03-3716] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We described previously a basal cell carcinoma (BCC) and medulloblastoma (MB) phenotype for CD1Ptch1(neo67/+) mice exposed to ionizing radiation. Ptch1 heterozygous mice mimic the predisposition to BCC and MB development of patients affected by nevoid BCC syndrome that inherit a mutant Patched (Ptch1) allele. To examine the impact of genetic background on development of BCCs and other tumors we used two outbred mouse lines characterized by extremely high, carcinogenesis-susceptible (Car-S), and low, carcinogenesis-resistant (Car-R), susceptibility to skin carcinogenesis. Crosses between Ptch1(neo67/+) mice and Car-S (F1S) or Car-R mice (F1R) were exposed to ionizing radiation. F1SPtch1(neo67/+) mice were highly susceptible to radiation-induced BCCs, whereas F1RPtch1(neo67/+) mice were completely resistant, indicating that tumor penetrance can be modulated by genetic background. Development of microscopic and macroscopic BCC lesions was influenced by Car-S and Car-R genotypes, suggesting a genetic-background effect on both initiation and progression of BCC. Susceptibility was additionally increased in N2 backcross mice (Car-S x F1SPtch1(neo67/+)), showing a contribution from recessive-acting Car-S modifiers. The modifying effects of Car-S-derived susceptibility alleles were tissue specific. In fact, despite higher susceptibility to BCC induction, Car-S-derived lines had lower MB incidence compared with CD1Ptch1(neo67/+) mice. BCC-associated somatic events were not influenced by genetic background, as shown by similar rate of wild-type Ptch1 loss in BCCs from F1SPtch1(neo67/+) (93%) and CD1Ptch1(neo67/+) mice (100%). Finally, microsatellite analysis of BCCs showed Ptch1 loss through interstitial deletion. These results are relevant to humans, in which BCC is the commonest malignancy, because this model system may be used to study genes modifying BCC development.
Collapse
Affiliation(s)
- Simonetta Pazzaglia
- Biotechnology Unit, ENEA-Ente per le Nuove tecnologie, l'Energia e l'Ambiente, Centro Ricerche Casaccia, Casaccia, Rome, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Michno K, Boras-Granic K, Mill P, Hui CC, Hamel PA. Shh expression is required for embryonic hair follicle but not mammary gland development. Dev Biol 2004; 264:153-65. [PMID: 14623238 DOI: 10.1016/s0012-1606(03)00401-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The embryonic mammary gland and hair follicle are both derived from the ventral ectoderm, and their development depends on a number of common fundamental developmental pathways. While the Hedgehog (Hh) signaling pathway is required for hair follicle morphogenesis, the role of this pathway during embryonic mammary gland development remains undetermined. We demonstrate here that, unlike the hair follicle, both Shh and Ihh are expressed in the developing embryonic mouse mammary rudiment as early as E12.5. In Shh(-/-) embryos, hair follicle development becomes arrested at an early stage, while the mammary rudiment, which continues to express Ihh, develops in a manner indistinguishable from that of wild-type littermates. The five pairs of mammary buds in Shh(-/-) female embryos exhibit normal branching morphogenesis at E16.5, forming a rudimentary ductal structure identical to wild-type embryonic mammary glands. We further demonstrate that loss of Hh signaling causes altered cyclin D1 expression in the embryonic dermal mesenchyme. Specifically, cyclin D1 is expressed at E14.5 principally in the condensed mesenchymal cells of the presumptive hair follicles and in both mesenchymal and epithelial cells of the mammary rudiments in wild-type and Shh-deficient embryos. By E18.5, robust cyclin D1 expression is maintained in mammary rudiments of both wild-type and Shh-deficient embryos. In hair follicles of wild-type embryos by E18.5, cyclin D1 expression switches to follicular epithelial cells. In contrast, strong cyclin D1 expression is observed principally in the mesenchymal cells of arrested hair follicles in Shh(-/-) embryos at E18.5. These data reveal that, despite the common embryonic origin of hair follicles and mammary glands, distinct patterns of Hh-family expression occur in these two tissues. Furthermore, these data suggest that cyclin D1 expression in the embryonic hair follicle is mediated by both Hh-independent and Hh-dependent mechanisms.
Collapse
Affiliation(s)
- Kinga Michno
- Department of Laboratory Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
49
|
Abstract
It is remarkable that phytoplankton and zooplankton have been producing vitamin D for more than 500 million years. The role of vitamin D in lower non-vertebrate life forms is not well understood. However, it is critically important that most vertebrates obtain an adequate source of vitamin D, either from exposure to sunlight or from their diet, in order to develop and maintain a healthy mineralized skeleton. Vitamin D deficiency is an unrecognized epidemic in most adults who are not exposed to adequate sunlight. This can precipitate and exacerbate osteoporosis and cause the painful bone disease osteomalacia. Once vitamin D is absorbed from the diet or made in the skin by the action of sunlight, it is metabolized in the liver to 25-hydroxyvitamin D [25(OH)D] and then in the kidney to 1,25-dihydroxyvitamin D [1,25(OH)2D]. 1,25(OH)2D interacts with its nuclear receptor (VDR) in the intestine and bone in order to maintain calcium homeostasis. The VDR is also present in a wide variety of other tissues. 1,25(OH)2D interacts with these receptors to have a multitude of important physiological effects. In addition, it is now recognized that many tissues, including colon, breast and prostate, have the enzymatic machinery to produce 1,25(OH)2D. The insights into the new biological functions of 1,25(OH)2D in regulating cell growth, modulating the immune system and modulating the renin-angiotensin system provides an explanation for why diminished sun exposure at higher latitudes is associated with increased risk of dying of many common cancers, developing type 1 diabetes and multiple sclerosis, and having a higher incidence of hypertension. Another calciotropic hormone that is also produced in the skin, parathyroid hormone-related peptide, is also a potent inhibitor of squamous cell proliferation. The use of agonists and antagonists for PTHrP has important clinical applications for the prevention and treatment of skin diseases and disorders of hair growth.
Collapse
Affiliation(s)
- Michael F Holick
- Vitamin D Laboratory, Section of Endocrinology, Diabetes and Nutrition, Department of Medicine, Boston University Medical Center, Boston, MA 02118, USA.
| |
Collapse
|
50
|
Sredni B, Gal R, Cohen IJ, Dazard JE, Givol D, Gafter U, Motro B, Eliyahu S, Albeck M, Lander HM, Kalechman Y. Hair growth induction by the tellurium immunomodulator AS101: association with delayed terminal differentiation of follicular keratinocytes and ras‐dependent up‐regulation of KGF expression. FASEB J 2003; 18:400-2. [PMID: 14656992 DOI: 10.1096/fj.03-0552fje] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The synthetic immunomodulator AS101[ammonium trichloro(dioxoethylene-o,o')tellurate] was previously found to protect cancer patients from chemotherapy-induced bone marrow toxicity and alopecia. Here we show that AS101 induces hair growth in nude and normal mice. AS101 possesses the dual ability to both induce anagen and retard spontaneous catagen in the C57BL/6 mouse model. Anagen induced by AS101 is mediated by keratinocyte growth factor (KGF), as it is abrogated both in nude mice co-treated with AS101 plus neutralizing anti KGF antibodies and in AS101-treated transgenic mice expressing a dominant-negative KGF receptor transgene in basal keratinocytes. AS101 up-regulates KGF expression by activating the ras signaling pathway in cultured fibroblasts. AS101-induced delayed catagen is associated with inhibition of terminal differentiation marker expression both in nude and C57BL/6 mice epidermal follicular keratinocytes and in cultures of primary mouse follicular keratinocytes induced to differentiate. This activity is associated with relatively sustained elevation of p21waf. Delayed expression of terminal differentiation markers was not induced by AS101 in follicular keratinocytes from p21waf knockout mice. Because similar results were obtained with cultures of primary human keratinocytes and fibroblasts, preliminary case report studies revealed substantial hair growth when AS101 was topically applied on three adolescents who had remained alopeciac 1-2 years after chemotherapy. The results emphasize the unique mode of action of AS101 and highlight its potential clinical use for treating certain types of alopecia.
Collapse
Affiliation(s)
- Benjamin Sredni
- C.A.I.R. Institute, Faculty of Life Sciences, Bar Ilan University, Ramat Gan, 52900 Israel.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|