1
|
Schmalen A, Kammerl IE, Meiners S, Noessner E, Deeg CA, Hauck SM. A Lysine Residue at the C-Terminus of MHC Class I Ligands Correlates with Low C-Terminal Proteasomal Cleavage Probability. Biomolecules 2023; 13:1300. [PMID: 37759700 PMCID: PMC10527444 DOI: 10.3390/biom13091300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/10/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
The majority of peptides presented by MHC class I result from proteasomal protein turnover. The specialized immunoproteasome, which is induced during inflammation, plays a major role in antigenic peptide generation. However, other cellular proteases can, either alone or together with the proteasome, contribute peptides to MHC class I loading non-canonically. We used an immunopeptidomics workflow combined with prediction software for proteasomal cleavage probabilities to analyze how inflammatory conditions affect the proteasomal processing of immune epitopes presented by A549 cells. The treatment of A549 cells with IFNγ enhanced the proteasomal cleavage probability of MHC class I ligands for both the constitutive proteasome and the immunoproteasome. Furthermore, IFNγ alters the contribution of the different HLA allotypes to the immunopeptidome. When we calculated the HLA allotype-specific proteasomal cleavage probabilities for MHC class I ligands, the peptides presented by HLA-A*30:01 showed characteristics hinting at a reduced C-terminal proteasomal cleavage probability independently of the type of proteasome. This was confirmed by HLA-A*30:01 ligands from the immune epitope database, which also showed this effect. Furthermore, two additional HLA allotypes, namely, HLA-A*03:01 and HLA-A*11:01, presented peptides with a markedly reduced C-terminal proteasomal cleavage probability. The peptides eluted from all three HLA allotypes shared a peptide binding motif with a C-terminal lysine residue, suggesting that this lysine residue impairs proteasome-dependent HLA ligand production and might, in turn, favor peptide generation by other cellular proteases.
Collapse
Affiliation(s)
- Adrian Schmalen
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Martinsried, 82152 Planegg, Germany
- Core Facility—Metabolomics and Proteomics Core, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), 80939 Munich, Germany
| | - Ilona E. Kammerl
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians-University, Helmholtz Center Munich, Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
| | - Silke Meiners
- Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), 23845 Borstel, Germany
- Institute of Experimental Medicine, Christian-Albrechts University Kiel, 24118 Kiel, Germany
| | - Elfriede Noessner
- Immunoanalytics Research Group—Tissue Control of Immunocytes, Helmholtz Center Munich, 81377 Munich, Germany
| | - Cornelia A. Deeg
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Martinsried, 82152 Planegg, Germany
| | - Stefanie M. Hauck
- Core Facility—Metabolomics and Proteomics Core, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), 80939 Munich, Germany
| |
Collapse
|
2
|
Wong-Benito V, de Rijke J, Dixon B. Antigen presentation in vertebrates: Structural and functional aspects. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 144:104702. [PMID: 37116963 DOI: 10.1016/j.dci.2023.104702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 06/05/2023]
Abstract
Antigen presentation is a key process of the immune system and is responsible for the activation of T cells. The main characters are the major histocompatibility complex class I (MHC-I) and class II (MHC-II) molecules, and accessory proteins that act as chaperones for these glycoproteins. Current knowledge of this process and also the elucidation of the structural features of these proteins, has been extensively reviewed in humans. Unfortunately, this is not the case for non-human species, wherein the function and structural characteristic of the antigen presentation proteins is far from being understood. The majority of previous studies in non-human species, especially in teleost fish and lower vertebrates, are limited to the transcriptomic level, which leads to gaps in the knowledge about the functional process of antigen presentation in these species. This review summarizes what is known so far about antigen presentation pathways in vertebrates from a structural and functional perspective. The focus is not only on the MHC receptors, but also, on the forgotten characters of these pathways such as the proteins of the peptide loading complex, and the MHC-II chaperone invariant chain.
Collapse
Affiliation(s)
| | - Jill de Rijke
- Department of Biology, University of Waterloo, Canada
| | - Brian Dixon
- Department of Biology, University of Waterloo, Canada.
| |
Collapse
|
3
|
Tran TM, Gill T, Bennett J, Hong S, Holt V, Lindstedt AJ, Bakshi S, Sikora K, Taurog JD, Breban M, Navid F, Colbert RA. Paradoxical Effects of Endoplasmic Reticulum Aminopeptidase 1 Deficiency on HLA-B27 and Its Role as an Epistatic Modifier in Experimental Spondyloarthritis. Arthritis Rheumatol 2023; 75:220-231. [PMID: 36577442 PMCID: PMC9892207 DOI: 10.1002/art.42327] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/15/2022] [Accepted: 08/11/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE We undertook this study to examine the functional basis for epistasis between endoplasmic reticulum aminopeptidase 1 (ERAP1) and HLA-B27 in experimental spondyloarthritis (SpA). METHODS ERAP1-knockout rats were created using genome editing and bred with HLA-B27/human β2 -microglobulin-transgenic (HLA-B27-Tg) rats and HLA-B7-Tg rats. The effects of ERAP1 deficiency on HLA allotypes were determined using immunoprecipitation and immunoblotting, flow cytometry, allogeneic T cell proliferation assays, and gene expression analyses. Animals were examined for clinical features of disease, and tissue was assessed by histology. RESULTS ERAP1 deficiency increased the ratio of folded to unfolded (β2 m-free) HLA-B27 heavy chains, while having the opposite effect on HLA-B7. Furthermore, in rats with ERAP1 deficiency, HLA-B27 misfolding was reduced, while free HLA-B27 heavy chain dimers on the cell surface and monomers were increased. The effects of ERAP1 deficiency persisted during up-regulation of HLA-B27 and led to a reduction in endoplasmic reticulum stress. ERAP1 deficiency reduced the prevalence of arthritis in HLA-B27-Tg rats by two-thirds without reducing gastrointestinal inflammation. Dendritic cell abnormalities attributed to the presence of HLA-B27, including reduced allogeneic T cell stimulation and loss of CD103-positive/major histocompatibility complex class II-positive cells, were not rescued by ERAP1 deficiency, while excess Il23a up-regulation was mitigated. CONCLUSION ERAP1 deficiency reduced HLA-B27 misfolding and improved folding while having opposing effects on HLA-B7. The finding that HLA-B27-Tg rats had partial protection against SpA in this study is consistent with genetic evidence that loss-of-function and/or reduced expression of ERAP1 reduces the risk of ankylosing spondylitis. Functional studies support the concept that the effects of ERAP1 on HLA-B27 and SpA may be a consequence of how peptides affect the biology of this allotype rather than their role as antigenic determinants.
Collapse
Affiliation(s)
- Tri M. Tran
- Pediatric Translational Research Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institute of Health, Bethesda, MD
| | - Tejpal Gill
- Pediatric Translational Research Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institute of Health, Bethesda, MD
| | - Joshua Bennett
- Pediatric Translational Research Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institute of Health, Bethesda, MD
| | - Sohee Hong
- Pediatric Translational Research Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institute of Health, Bethesda, MD
| | - Vance Holt
- Pediatric Translational Research Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institute of Health, Bethesda, MD
| | - Anders J. Lindstedt
- Pediatric Translational Research Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institute of Health, Bethesda, MD
| | - Sufia Bakshi
- Pediatric Translational Research Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institute of Health, Bethesda, MD
| | - Keith Sikora
- Pediatric Translational Research Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institute of Health, Bethesda, MD
| | - Joel D. Taurog
- Division of Rheumatic Diseases, Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Maxime Breban
- Infection & Inflammation, UMR1173, Inserm, UVSQ/Université Paris Saclay, Montigny-le-Bretonneux & Rheumatology, Ambroise Paré Hospital, Boulogne Billancourt, France
| | - Fatemeh Navid
- Pediatric Translational Research Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institute of Health, Bethesda, MD
| | - Robert A. Colbert
- Pediatric Translational Research Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institute of Health, Bethesda, MD
| |
Collapse
|
4
|
Hopkins JR, MacLachlan BJ, Harper S, Sewell AK, Cole DK. Unconventional modes of peptide-HLA-I presentation change the rules of TCR engagement. DISCOVERY IMMUNOLOGY 2022; 1:kyac001. [PMID: 38566908 PMCID: PMC10917088 DOI: 10.1093/discim/kyac001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/18/2022] [Accepted: 04/06/2022] [Indexed: 04/04/2024]
Abstract
The intracellular proteome of virtually every nucleated cell in the body is continuously presented at the cell surface via the human leukocyte antigen class I (HLA-I) antigen processing pathway. This pathway classically involves proteasomal degradation of intracellular proteins into short peptides that can be presented by HLA-I molecules for interrogation by T-cell receptors (TCRs) expressed on the surface of CD8+ T cells. During the initiation of a T-cell immune response, the TCR acts as the T cell's primary sensor, using flexible loops to mould around the surface of the pHLA-I molecule to identify foreign or dysregulated antigens. Recent findings demonstrate that pHLA-I molecules can also be highly flexible and dynamic, altering their shape according to minor polymorphisms between different HLA-I alleles, or interactions with different peptides. These flexible presentation modes have important biological consequences that can, for example, explain why some HLA-I alleles offer greater protection against HIV, or why some cancer vaccine approaches have been ineffective. This review explores how these recent findings redefine the rules for peptide presentation by HLA-I molecules and extend our understanding of the molecular mechanisms that govern TCR-mediated antigen discrimination.
Collapse
Affiliation(s)
- Jade R Hopkins
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Bruce J MacLachlan
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | | | - Andrew K Sewell
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - David K Cole
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| |
Collapse
|
5
|
Alvarez I. Purification of HLA Immunopeptidomes from Human Thymus. Methods Mol Biol 2022; 2420:127-136. [PMID: 34905170 DOI: 10.1007/978-1-0716-1936-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mass spectrometry has become an essential technique for the analysis of peptide repertoires presented by MHC molecules to T lymphocytes. Years ago, analyses of MHC peptidomes were performed using a great number of cells, and cell lines were chosen as the main peptide source. Mass spectrometry devices have been improved in terms of sensitivity and resolution, making feasible the analysis of samples with relatively small amounts of cells. Thus, analyses of MHC peptide repertoires from different tissue samples are now available. Here, I describe a protocol to process human thymus samples to purify HLA class I- or HLA-DR-associated peptidomes. For that, cells are lysed using a nonionic detergent together with a mechanical cell rupture. Immunopeptidomes are purified by immunoaffinity chromatography. The peptide pool is fractionated by ionic chromatography. Finally, peptide fragmentation and identification are conducted by LC-MS/MS and the use of MASCOT search engine.
Collapse
Affiliation(s)
- Iñaki Alvarez
- Immunology Unit, Department of Cell Biology, Physiology and Immunology, Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, Spain.
| |
Collapse
|
6
|
Joyce S, Ternette N. Know thy immune self and non-self: Proteomics informs on the expanse of self and non-self, and how and where they arise. Proteomics 2021; 21:e2000143. [PMID: 34310018 PMCID: PMC8865197 DOI: 10.1002/pmic.202000143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/30/2021] [Accepted: 07/19/2021] [Indexed: 12/30/2022]
Abstract
T cells play an important role in the adaptive immune response to a variety of infections and cancers. Initiation of a T cell mediated immune response requires antigen recognition in a process termed MHC (major histocompatibility complex) restri ction. A T cell antigen is a composite structure made up of a peptide fragment bound within the antigen-binding groove of an MHC-encoded class I or class II molecule. Insight into the precise composition and biology of self and non-self immunopeptidomes is essential to harness T cell mediated immunity to prevent, treat, or cure infectious diseases and cancers. T cell antigen discovery is an arduous task! The pioneering work in the early 1990s has made large-scale T cell antigen discovery possible. Thus, advancements in mass spectrometry coupled with proteomics and genomics technologies make possible T cell antigen discovery with ease, accuracy, and sensitivity. Yet we have only begun to understand the breadth and the depth of self and non-self immunopeptidomes because the molecular biology of the cell continues to surprise us with new secrets directly related to the source, and the processing and presentation of MHC ligands. Focused on MHC class I molecules, this review, therefore, provides a brief historic account of T cell antigen discovery and, against a backdrop of key advances in molecular cell biologic processes, elaborates on how proteogenomics approaches have revolutionised the field.
Collapse
Affiliation(s)
- Sebastian Joyce
- Department of Veterans AffairsTennessee Valley Healthcare System and the Department of PathologyMicrobiology and ImmunologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Nicola Ternette
- Centre for Cellular and Molecular PhysiologyNuffield Department of MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
7
|
Padariya M, Kote S, Mayordomo M, Dapic I, Alfaro J, Hupp T, Fahraeus R, Kalathiya U. Structural determinants of peptide-dependent TAP1-TAP2 transit passage targeted by viral proteins and altered by cancer-associated mutations. Comput Struct Biotechnol J 2021; 19:5072-5091. [PMID: 34589184 PMCID: PMC8453138 DOI: 10.1016/j.csbj.2021.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 01/20/2023] Open
Abstract
The TAP1-TAP2 complex transports antigenic peptide substrates into the endoplasmic reticulum (ER). In ER, the peptides are further processed and loaded on the major histocompatibility class (MHC) I molecules by the peptide loading complex (PLC). The TAP transporters are linked with the PLC; a target for cancers and viral immune evasion. But the mechanisms whereby the cancer-derived mutations in TAP1-TAP2 or viral factors targeting the PLC, interfere peptide transport are only emerging. This study describes that transit of peptides through TAP can take place via two different channels (4 or 8 helices) depending on peptide length and sequence. Molecular dynamics and binding affinity predictions of peptide-transporters demonstrated that smaller peptides (8-10 mers; e.g. AAGIGILTV, SIINFEKL) can transport quickly through the transport tunnel compared to longer peptides (15-mer; e.g. ENPVVHFFKNIVTPR). In line with a regulated and selective peptide transport by TAPs, the immunopeptidome upon IFN-γ treatment in melanoma cells induced the shorter length (9-mer) peptide presentation over MHC-I that exhibit a relatively weak binding affinity with TAP. A conserved distance between N and C terminus residues of the studied peptides in the transport tunnel were reported. Furthermore, by adversely interacting with the TAP transport passage or affecting TAPNBD domains tilt movement, the viral proteins and cancer-derived mutations in TAP1-TAP2 may induce allosteric effects in TAP that block conformation of the tunnel (closed towards ER lumen). Interestingly, some cancer-associated mutations (e.g. TAP1R372Q and TAP2R373H) can specifically interfere with selective transport channels (i.e. for longer-peptides). These results provide a model for how viruses and cancer-associated mutations targeting TAP interfaces can affect MHC-I antigen presentation, and how the IFN-γ pathway alters MHC-I antigen presentation via the kinetics of peptide transport.
Collapse
Affiliation(s)
- Monikaben Padariya
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland
| | - Sachin Kote
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland
| | - Marcos Mayordomo
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland
| | - Irena Dapic
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland
| | - Javier Alfaro
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland EH4 2XR, United Kingdom
| | - Ted Hupp
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland EH4 2XR, United Kingdom
| | - Robin Fahraeus
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, F-75010 Paris, France
- Department of Medical Biosciences, Building 6M, Umeå University, 901 85 Umeå, Sweden
- RECAMO, Masaryk Memorial Cancer Institute, Zlutykopec 7, 65653 Brno, Czech Republic
| | - Umesh Kalathiya
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland
| |
Collapse
|
8
|
Abualrous ET, Sticht J, Freund C. Major histocompatibility complex (MHC) class I and class II proteins: impact of polymorphism on antigen presentation. Curr Opin Immunol 2021; 70:95-104. [PMID: 34052735 DOI: 10.1016/j.coi.2021.04.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 01/01/2023]
Abstract
The major histocompatibility complex (MHC) loci are amongst the most polymorphic regions in the genomes of vertebrates. In the human population, thousands of MHC gene variants (alleles) exist that translate into distinct allotypes equipped with overlapping but unique peptide binding profiles. Understanding the differential structural and dynamic properties of MHC alleles and their interaction with critical regulators of peptide exchange bears the potential for more personalized strategies of immune modulation in the context of HLA-associated diseases.
Collapse
Affiliation(s)
- Esam T Abualrous
- Protein Biochemistry, Institute for Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Jana Sticht
- Protein Biochemistry, Institute for Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Christian Freund
- Protein Biochemistry, Institute for Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany.
| |
Collapse
|
9
|
Nanaware PP, Jurewicz MM, Clement CC, Lu L, Santambrogio L, Stern LJ. Distinguishing Signal From Noise in Immunopeptidome Studies of Limiting-Abundance Biological Samples: Peptides Presented by I-A b in C57BL/6 Mouse Thymus. Front Immunol 2021; 12:658601. [PMID: 33995376 PMCID: PMC8116589 DOI: 10.3389/fimmu.2021.658601] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/09/2021] [Indexed: 11/13/2022] Open
Abstract
Antigen presentation by MHC-II proteins in the thymus is central to selection of CD4 T cells, but analysis of the full repertoire of presented peptides responsible for positive and negative selection is complicated by the low abundance of antigen presenting cells. A key challenge in analysis of limiting abundance immunopeptidomes by mass spectrometry is distinguishing true MHC-binding peptides from co-eluting non-specifically bound peptides present in the mixture eluted from immunoaffinity-purified MHC molecules. Herein we tested several approaches to minimize the impact of non-specific background peptides, including analyzing eluates from isotype-control antibody-conjugated beads, considering only peptides present in nested sets, and using predicted binding motif analysis to identify core epitopes. We evaluated these methods using well-understood human cell line samples, and then applied them to analysis of the I-Ab presented immunopeptidome of the thymus of C57BL/6 mice, comparing this to the more easily characterized splenic B cell and dendritic cell populations. We identified a total of 3473 unique peptides eluted from the various tissues, using a data dependent acquisition strategy with a false-discovery rate of <1%. The immunopeptidomes presented in thymus as compared to splenic B cells and DCs identified shared and tissue-specific epitopes. A broader length distribution was observed for peptides presented in the thymus as compared to splenic B cells or DCs. Detailed analysis of 61 differentially presented peptides indicated a wider distribution of I-Ab binding affinities in thymus as compared to splenic B cells. These results suggest different constraints on antigen processing and presentation pathways in central versus peripheral tissues.
Collapse
Affiliation(s)
- Padma P. Nanaware
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Mollie M. Jurewicz
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Cristina C. Clement
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Liying Lu
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Laura Santambrogio
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Lawrence J. Stern
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
10
|
Tedeschi V, Paldino G, Paladini F, Mattorre B, Tuosto L, Sorrentino R, Fiorillo MT. The Impact of the 'Mis-Peptidome' on HLA Class I-Mediated Diseases: Contribution of ERAP1 and ERAP2 and Effects on the Immune Response. Int J Mol Sci 2020; 21:ijms21249608. [PMID: 33348540 PMCID: PMC7765998 DOI: 10.3390/ijms21249608] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 01/08/2023] Open
Abstract
The strong association with the Major Histocompatibility Complex (MHC) class I genes represents a shared trait for a group of autoimmune/autoinflammatory disorders having in common immunopathogenetic basis as well as clinical features. Accordingly, the main risk factors for Ankylosing Spondylitis (AS), prototype of the Spondyloarthropathies (SpA), the Behçet's disease (BD), the Psoriasis (Ps) and the Birdshot Chorioretinopathy (BSCR) are HLA-B*27, HLA-B*51, HLA-C*06:02 and HLA-A*29:02, respectively. Despite the strength of the association, the HLA pathogenetic role in these diseases is far from being thoroughly understood. Furthermore, Genome-Wide Association Studies (GWAS) have highlighted other important susceptibility factors such as Endoplasmic Reticulum Aminopeptidase (ERAP) 1 and, less frequently, ERAP2 that refine the peptidome presented by HLA class I molecules to CD8+ T cells. Mass spectrometry analysis provided considerable knowledge of HLA-B*27, HLA-B*51, HLA-C*06:02 and HLA-A*29:02 immunopeptidome. However, the combined effect of several ERAP1 and ERAP2 allelic variants could generate an altered pool of peptides accounting for the "mis-immunopeptidome" that ranges from suboptimal to pathogenetic/harmful peptides able to induce non-canonical or autoreactive CD8+ T responses, activation of NK cells and/or garbling the classical functions of the HLA class I molecules. This review will focus on this class of epitopes as possible elicitors of atypical/harmful immune responses which can contribute to the pathogenesis of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Valentina Tedeschi
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University, 00185 Rome, Italy; (G.P.); (F.P.); (B.M.); (L.T.); (R.S.); (M.T.F.)
- Correspondence:
| | - Giorgia Paldino
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University, 00185 Rome, Italy; (G.P.); (F.P.); (B.M.); (L.T.); (R.S.); (M.T.F.)
| | - Fabiana Paladini
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University, 00185 Rome, Italy; (G.P.); (F.P.); (B.M.); (L.T.); (R.S.); (M.T.F.)
| | - Benedetta Mattorre
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University, 00185 Rome, Italy; (G.P.); (F.P.); (B.M.); (L.T.); (R.S.); (M.T.F.)
| | - Loretta Tuosto
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University, 00185 Rome, Italy; (G.P.); (F.P.); (B.M.); (L.T.); (R.S.); (M.T.F.)
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, 00185 Rome, Italy
| | - Rosa Sorrentino
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University, 00185 Rome, Italy; (G.P.); (F.P.); (B.M.); (L.T.); (R.S.); (M.T.F.)
| | - Maria Teresa Fiorillo
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University, 00185 Rome, Italy; (G.P.); (F.P.); (B.M.); (L.T.); (R.S.); (M.T.F.)
| |
Collapse
|
11
|
Bunsuz A, Serçinoğlu O, Ozbek P. Computational investigation of peptide binding stabilities of HLA-B*27 and HLA-B*44 alleles. Comput Biol Chem 2019; 84:107195. [PMID: 31877499 DOI: 10.1016/j.compbiolchem.2019.107195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 11/27/2022]
Abstract
Major Histocompatibility Complex (MHC) is a cell surface glycoprotein that binds to foreign antigens and presents them to T lymphocyte cells on the surface of Antigen Presenting Cells (APCs) for appropriate immune recognition. Recently, studies focusing on peptide-based vaccine design have allowed a better understanding of peptide immunogenicity mechanisms, which is defined as the ability of a peptide to stimulate CTL-mediated immune response. Peptide immunogenicity is also known to be related to the stability of peptide-loaded MHC (pMHC) complex. In this study, ENCoM server was used for structure-based estimation of the impact of single point mutations on pMHC complex stabilities. For this purpose, two human MHC molecules from the HLA-B*27 group (HLA-B*27:05 and HLA-B*27:09) in complex with four different peptides (GRFAAAIAK, RRKWRRWHL, RRRWRRLTV and IRAAPPPLF) and three HLA-B*44 molecules (HLA-B*44:02, HLA-B*44:03 and HLA-B*44:05) in complex with two different peptides (EEYLQAFTY and EEYLKAWTF) were analyzed. We found that the stability of pMHC complexes is dependent on both peptide sequence and MHC allele. Furthermore, we demonstrate that allele-specific peptide-binding preferences can be accurately revealed using structure-based computational methods predicting the effect of mutations on protein stability.
Collapse
Affiliation(s)
- Asuman Bunsuz
- Department of Bioengineering, Institute of Pure and Applied Sciences, Marmara University, Istanbul, Turkey
| | - Onur Serçinoğlu
- Department of Bioengineering, Faculty of Engineering, Recep Tayyip Erdogan University, Rize, Turkey
| | - Pemra Ozbek
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey.
| |
Collapse
|
12
|
Tedeschi V, Alba J, Paladini F, Paroli M, Cauli A, Mathieu A, Sorrentino R, D'Abramo M, Fiorillo MT. Unusual Placement of an EBV Epitope into the Groove of the Ankylosing Spondylitis-Associated HLA-B27 Allele Allows CD8+ T Cell Activation. Cells 2019; 8:cells8060572. [PMID: 31212633 PMCID: PMC6627668 DOI: 10.3390/cells8060572] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/06/2019] [Accepted: 06/08/2019] [Indexed: 02/02/2023] Open
Abstract
The human leukocyte antigen HLA-B27 is a strong risk factor for Ankylosing Spondylitis (AS), an immune-mediated disorder affecting axial skeleton and sacroiliac joints. Additionally, evidence exists sustaining a strong protective role for HLA-B27 in viral infections. These two aspects could stem from common molecular mechanisms. Recently, we have found that the HLA-B*2705 presents an EBV epitope (pEBNA3A-RPPIFIRRL), lacking the canonical B27 binding motif but known as immunodominant in the HLA-B7 context of presentation. Notably, 69% of B*2705 carriers, mostly patients with AS, possess B*2705-restricted, pEBNA3A-specific CD8+ T cells. Contrarily, the non-AS-associated B*2709 allele, distinguished from the B*2705 by the single His116Asp polymorphism, is unable to display this peptide and, accordingly, B*2709 healthy subjects do not unleash specific T cell responses. Herein, we investigated whether the reactivity towards pEBNA3A could be a side effect of the recognition of the natural longer peptide (pKEBNA3A) having the classical B27 consensus (KRPPIFIRRL). The stimulation of PBMC from B*2705 positive patients with AS in parallel with both pEBNA3A and pKEBNA3A did not allow to reach an unambiguous conclusion since the differences in the magnitude of the response measured as percentage of IFNγ-producing CD8+ T cells were not statistically significant. Interestingly, computational analysis suggested a structural shift of pEBNA3A as well as of pKEBNA3A into the B27 grooves, leaving the A pocket partially unfilled. To our knowledge this is the first report of a viral peptide: HLA-B27 complex recognized by TCRs in spite of a partially empty groove. This implies a rethinking of the actual B27 immunopeptidome crucial for viral immune-surveillance and autoimmunity.
Collapse
Affiliation(s)
- Valentina Tedeschi
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, 00185 Rome, Italy.
| | - Josephine Alba
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy.
| | - Fabiana Paladini
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, 00185 Rome, Italy.
| | - Marino Paroli
- Division of Clinical Immunology and Rheumatology, Department of Biotechnology and Medical Surgical Sciences, Sapienza University of Rome, 00185 Rome, Italy.
| | - Alberto Cauli
- Rheumatology Unit, Department of Medical Sciences and Public Health, University and AOU of Cagliari, Monserrato, 09042 Cagliari, Italy.
| | - Alessandro Mathieu
- Rheumatology Unit, Department of Medical Sciences and Public Health, University and AOU of Cagliari, Monserrato, 09042 Cagliari, Italy.
| | - Rosa Sorrentino
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, 00185 Rome, Italy.
| | - Marco D'Abramo
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy.
| | - Maria Teresa Fiorillo
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, 00185 Rome, Italy.
| |
Collapse
|
13
|
Colbert RA, Navid F, Gill T. The role of HLA-B*27 in spondyloarthritis. Best Pract Res Clin Rheumatol 2018; 31:797-815. [PMID: 30509441 DOI: 10.1016/j.berh.2018.07.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/20/2018] [Indexed: 02/08/2023]
Abstract
The mechanism by which HLA-B*27 predisposes to spondyloarthritis remains unresolved. Arthritogenic peptides have not been defined in humans and are not involved in experimental models of spondyloarthritis. Aberrant properties of HLA-B*27 can activate the IL-23/IL-17 axis in HLA-B*27 transgenic rats and humans. In HLA-B*27-independent rodent models, spondyloarthritis can be driven by IL-23 triggering entheseal-resident CD4-/CD8- T cells or CD4+ Th17 T cells. These findings point toward noncanonical mechanisms linking HLA-B*27 to the disease and provide a potential explanation for HLA-B*27-negative spondyloarthritis. Gut microbial dysbiosis may be important in the development of spondyloarthritis. HLA-B*27-induced changes in gut microbiota are complex and suggest an ecological model of dysbiosis in rodents. The importance of the IL-23/IL-17 axis in ankylosing spondylitis has been demonstrated by studies showing efficacy of IL-17. Although deciphering the precise role(s) of HLA-B*27 in disease requires further investigation, considerable progress has been made in understanding this complex relationship.
Collapse
Affiliation(s)
- Robert A Colbert
- Pediatric Translational Research Branch, NIAMS Intramural Research Program, NIH, USA.
| | - Fatemeh Navid
- Pediatric Translational Research Branch, NIAMS Intramural Research Program, NIH, USA.
| | - Tejpal Gill
- Pediatric Translational Research Branch, NIAMS Intramural Research Program, NIH, USA.
| |
Collapse
|
14
|
Wieczorek M, Abualrous ET, Sticht J, Álvaro-Benito M, Stolzenberg S, Noé F, Freund C. Major Histocompatibility Complex (MHC) Class I and MHC Class II Proteins: Conformational Plasticity in Antigen Presentation. Front Immunol 2017. [PMID: 28367149 DOI: 10.3389/fimmu.2017.00292.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Antigen presentation by major histocompatibility complex (MHC) proteins is essential for adaptive immunity. Prior to presentation, peptides need to be generated from proteins that are either produced by the cell's own translational machinery or that are funneled into the endo-lysosomal vesicular system. The prolonged interaction between a T cell receptor and specific pMHC complexes, after an extensive search process in secondary lymphatic organs, eventually triggers T cells to proliferate and to mount a specific cellular immune response. Once processed, the peptide repertoire presented by MHC proteins largely depends on structural features of the binding groove of each particular MHC allelic variant. Additionally, two peptide editors-tapasin for class I and HLA-DM for class II-contribute to the shaping of the presented peptidome by favoring the binding of high-affinity antigens. Although there is a vast amount of biochemical and structural information, the mechanism of the catalyzed peptide exchange for MHC class I and class II proteins still remains controversial, and it is not well understood why certain MHC allelic variants are more susceptible to peptide editing than others. Recent studies predict a high impact of protein intermediate states on MHC allele-specific peptide presentation, which implies a profound influence of MHC dynamics on the phenomenon of immunodominance and the development of autoimmune diseases. Here, we review the recent literature that describe MHC class I and II dynamics from a theoretical and experimental point of view and we highlight the similarities between MHC class I and class II dynamics despite the distinct functions they fulfill in adaptive immunity.
Collapse
Affiliation(s)
- Marek Wieczorek
- Protein Biochemistry, Institute for Biochemistry, Freie Universität Berlin , Berlin , Germany
| | - Esam T Abualrous
- Computational Molecular Biology Group, Institute for Mathematics , Berlin , Germany
| | - Jana Sticht
- Protein Biochemistry, Institute for Biochemistry, Freie Universität Berlin , Berlin , Germany
| | - Miguel Álvaro-Benito
- Protein Biochemistry, Institute for Biochemistry, Freie Universität Berlin , Berlin , Germany
| | | | - Frank Noé
- Computational Molecular Biology Group, Institute for Mathematics , Berlin , Germany
| | - Christian Freund
- Protein Biochemistry, Institute for Biochemistry, Freie Universität Berlin , Berlin , Germany
| |
Collapse
|
15
|
Wieczorek M, Abualrous ET, Sticht J, Álvaro-Benito M, Stolzenberg S, Noé F, Freund C. Major Histocompatibility Complex (MHC) Class I and MHC Class II Proteins: Conformational Plasticity in Antigen Presentation. Front Immunol 2017; 8:292. [PMID: 28367149 PMCID: PMC5355494 DOI: 10.3389/fimmu.2017.00292] [Citation(s) in RCA: 645] [Impact Index Per Article: 80.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/28/2017] [Indexed: 11/21/2022] Open
Abstract
Antigen presentation by major histocompatibility complex (MHC) proteins is essential for adaptive immunity. Prior to presentation, peptides need to be generated from proteins that are either produced by the cell’s own translational machinery or that are funneled into the endo-lysosomal vesicular system. The prolonged interaction between a T cell receptor and specific pMHC complexes, after an extensive search process in secondary lymphatic organs, eventually triggers T cells to proliferate and to mount a specific cellular immune response. Once processed, the peptide repertoire presented by MHC proteins largely depends on structural features of the binding groove of each particular MHC allelic variant. Additionally, two peptide editors—tapasin for class I and HLA-DM for class II—contribute to the shaping of the presented peptidome by favoring the binding of high-affinity antigens. Although there is a vast amount of biochemical and structural information, the mechanism of the catalyzed peptide exchange for MHC class I and class II proteins still remains controversial, and it is not well understood why certain MHC allelic variants are more susceptible to peptide editing than others. Recent studies predict a high impact of protein intermediate states on MHC allele-specific peptide presentation, which implies a profound influence of MHC dynamics on the phenomenon of immunodominance and the development of autoimmune diseases. Here, we review the recent literature that describe MHC class I and II dynamics from a theoretical and experimental point of view and we highlight the similarities between MHC class I and class II dynamics despite the distinct functions they fulfill in adaptive immunity.
Collapse
Affiliation(s)
- Marek Wieczorek
- Protein Biochemistry, Institute for Biochemistry, Freie Universität Berlin , Berlin , Germany
| | - Esam T Abualrous
- Computational Molecular Biology Group, Institute for Mathematics , Berlin , Germany
| | - Jana Sticht
- Protein Biochemistry, Institute for Biochemistry, Freie Universität Berlin , Berlin , Germany
| | - Miguel Álvaro-Benito
- Protein Biochemistry, Institute for Biochemistry, Freie Universität Berlin , Berlin , Germany
| | | | - Frank Noé
- Computational Molecular Biology Group, Institute for Mathematics , Berlin , Germany
| | - Christian Freund
- Protein Biochemistry, Institute for Biochemistry, Freie Universität Berlin , Berlin , Germany
| |
Collapse
|
16
|
Barnea E, Melamed Kadosh D, Haimovich Y, Satumtira N, Dorris ML, Nguyen MT, Hammer RE, Tran TM, Colbert RA, Taurog JD, Admon A. The Human Leukocyte Antigen (HLA)-B27 Peptidome in Vivo, in Spondyloarthritis-susceptible HLA-B27 Transgenic Rats and the Effect of Erap1 Deletion. Mol Cell Proteomics 2017; 16:642-662. [PMID: 28188227 DOI: 10.1074/mcp.m116.066241] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/05/2017] [Indexed: 01/20/2023] Open
Abstract
HLA-B27 is a class I major histocompatibility (MHC-I) allele that confers susceptibility to the rheumatic disease ankylosing spondylitis (AS) by an unknown mechanism. ERAP1 is an aminopeptidase that trims peptides in the endoplasmic reticulum for binding to MHC-I molecules. ERAP1 shows genetic epistasis with HLA-B27 in conferring susceptibility to AS. Male HLA-B27 transgenic rats develop arthritis and serve as an animal model of AS, whereas female B27 transgenic rats remain healthy. We used large scale quantitative mass spectrometry to identify over 15,000 unique HLA-B27 peptide ligands, isolated after immunoaffinity purification of the B27 molecules from the spleens of HLA-B27 transgenic rats. Heterozygous deletion of Erap1, which reduced the Erap1 level to less than half, had no qualitative or quantitative effects on the B27 peptidome. Homozygous deletion of Erap1 affected approximately one-third of the B27 peptidome but left most of the B27 peptidome unchanged, suggesting the possibility that some of the HLA-B27 immunopeptidome is not processed in the presence of Erap1. Deletion of Erap1 was permissive for the AS-like phenotype, increased mean peptide length and increased the frequency of C-terminal hydrophobic residues and of N-terminal Ala, Ser, or Lys. The presence of Erap1 increased the frequency of C-terminal Lys and Arg, of Glu and Asp at intermediate residues, and of N-terminal Gly. Several peptides of potential interest in AS pathogenesis, previously identified in human cell lines, were isolated. However, rats susceptible to arthritis had B27 peptidomes similar to those of non-susceptible rats, and no peptides were found to be uniquely associated with arthritis. Whether specific B27-bound peptides are required for AS pathogenesis remains to be determined. Data are available via ProteomeXchange with identifier PXD005502.
Collapse
Affiliation(s)
- Eilon Barnea
- From the ‡Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Dganit Melamed Kadosh
- From the ‡Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Yael Haimovich
- From the ‡Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Nimman Satumtira
- §Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-8884
| | - Martha L Dorris
- §Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-8884
| | - Mylinh T Nguyen
- ¶Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-8816
| | - Robert E Hammer
- ¶Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-8816
| | - Tri M Tran
- ‖NIAMS, National Institutes of Health, Bethesda, Maryland 20892-1560
| | - Robert A Colbert
- ‖NIAMS, National Institutes of Health, Bethesda, Maryland 20892-1560
| | - Joel D Taurog
- §Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-8884;
| | - Arie Admon
- From the ‡Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel;
| |
Collapse
|
17
|
Tran TM, Hong S, Edwan JH, Colbert RA. ERAP1 reduces accumulation of aberrant and disulfide-linked forms of HLA-B27 on the cell surface. Mol Immunol 2016; 74:10-7. [PMID: 27107845 PMCID: PMC5425939 DOI: 10.1016/j.molimm.2016.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 04/03/2016] [Accepted: 04/04/2016] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Endoplasmic reticulum (ER) aminopeptidase 1 (ERAP1) variants contribute to the risk of ankylosing spondylitis in HLA-B27 positive individuals, implying a disease-related interaction between these gene products. The aim of this study was to determine whether reduced ERAP1 expression would alter the cell surface expression of HLA-B27 and the formation of aberrant disulfide-linked forms that have been implicated in the pathogenesis of spondyloarthritis. METHODS ERAP1 expression was knocked down in monocytic U937 cells expressing HLA-B27 and endogenous HLA class I. The effect of ERAP1 knockdown on the accumulation HLA-B alleles (B18, B51, and B27) was assessed using immunoprecipitation, isoelectric focusing, and immunoblotting, as well as flow cytometry with antibodies specific for different forms of HLA-B27. Cell surface expression of aberrant disulfide-linked HLA-B27 dimers was assessed by immunoprecipitation and electrophoresis on non-reducing polyacrylamide gels. RESULTS ERAP1 knockdown increased the accumulation of HLA-B27 on the cell surface including disulfide-linked dimers, but had no effect on levels of HLA-B18 or -B51. Antibodies with unique specificity for HLA-B27 confirmed increased cell surface expression of complexes shown previously to contain long peptides. IFN-γ treatment resulted in striking increases in the expression of disulfide-linked HLA-B27 heavy chains, even in cells with normal ERAP1 expression. CONCLUSIONS Our results suggest that normal levels of ERAP1 reduce the accumulation of aberrant and disulfide-linked forms of HLA-B27 in monocytes, and thus help to maintain the integrity of cell surface HLA-B27 complexes.
Collapse
Affiliation(s)
- Tri M Tran
- Pediatric Translational Research Branch, National Institute of Arthritis Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - Sohee Hong
- Pediatric Translational Research Branch, National Institute of Arthritis Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - Jehad H Edwan
- Pediatric Translational Research Branch, National Institute of Arthritis Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - Robert A Colbert
- Pediatric Translational Research Branch, National Institute of Arthritis Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD 20892, United States.
| |
Collapse
|
18
|
Wakefield D, Yates W, Amjadi S, McCluskey P. HLA-B27 Anterior Uveitis: Immunology and Immunopathology. Ocul Immunol Inflamm 2016; 24:450-9. [PMID: 27245590 DOI: 10.3109/09273948.2016.1158283] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute anterior uveitis (AAU) is the commonest type of uveitis and HLA-B27 AAU is the most frequently recognized type of acute anterior uveitis and anterior uveitis overall. Recent evidence indicates that acute anterior uveitis is a heterogenous disease, is polygenic and is frequently associated with the spondyloarthropathies (SpA). Studies of patients with AAU and animal models of disease indicate a role for innate immunity, the IL-23 cytokine pathway and exogenous factors, in the pathogenesis of both SpA and acute anterior uveitis. Recently described genetic associations cluster around immunologic pathways, including the IL-17 and IL-23 pathways, antigen processing and presentation, and lymphocyte development and activation. Patients with ankylosing spondylitis (AS) and AAU share other genetic markers, such as ERAP-1, which show strong evidence of gene-gene interaction and point to new mechanisms of disease pathogenesis. These observations have major implications for understanding the pathogenesis of HLA-B27 diseases, such as AAU, and may lead to the development of more specific therapy for AAU. Received 6 January 2016; revised 6 February 2016; accepted 18 February 2016; published online 31 May 2016.
Collapse
Affiliation(s)
- Denis Wakefield
- a Laboratory of Ocular Immunology , University of New South Wales , Kensington , Sydney , Australia
| | - William Yates
- a Laboratory of Ocular Immunology , University of New South Wales , Kensington , Sydney , Australia
| | - Shahriar Amjadi
- a Laboratory of Ocular Immunology , University of New South Wales , Kensington , Sydney , Australia
| | - Peter McCluskey
- b Save Sight Institute, Discipline of Ophthalmology , Sydney Medical School, The University of Sydney , Sydney , Australia
| |
Collapse
|
19
|
Abstract
The mammalian immune system has evolved to respond to pathogenic, environmental, and cellular changes in order to maintain the health of the host. These responses include the comparatively primitive innate immune response, which represents a rapid and relatively nonspecific reaction to challenge by pathogens and the more complex cellular adaptive immune response. This adaptive response evolves with the pathogenic challenge, involves the cross talk of several cell types, and is highly specific to the pathogen due to the liberation of peptide antigens and their presentation on the surface of affected cells. Together these two forms of immunity provide a surveillance mechanism for the system-wide scrutiny of cellular function, environment, and health. As such the immune system is best understood at a systems biology level, and studies that combine gene expression, protein expression, and liberation of peptides for antigen presentation can be combined to provide a detailed understanding of immunity. This chapter details our experience in identifying peptide antigens and combining this information with more traditional proteomics approaches to understand the generation of immune responses on a holistic level.
Collapse
|
20
|
Abstract
Possession of the human leukocyte antigen (HLA) class I molecule B27 is strongly associated with ankylosing spondylitis (AS), but the pathogenic role of HLA-B27 is unknown. Two broad theories most likely explain the role of HLA-B27 in AS pathogenesis. The first is based on the natural immunological function of HLA-B27 of presenting antigenic peptides to cytotoxic T cells. Thus, HLA-B27-restricted immune responses to self-antigens, or arthritogenic peptides, might drive immunopathology. B27 can also "behave badly," misfolding during assembly and leading to endoplasmic reticulum stress and autophagy responses. β2m-free B27 heavy chain structures including homodimers (B272) can also be expressed at the cell surface following endosomal recycling of cell surface heterotrimers. Cell surface free heavy chains and B272 bind to innate immune receptors on T, NK, and myeloid cells with proinflammatory effects. This review describes the natural function of HLA-B27, its disease associations, and the current theories as to its pathogenic role.
Collapse
Affiliation(s)
- Paul Bowness
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science (NDORMS), Botnar Research Center, University of Oxford, Headington, Oxford OX3 9DL, United Kingdom;
| |
Collapse
|
21
|
Abstract
A clear etiological link has been established between infection with several gram-negative enteric pathogens, including Salmonella spp., and the incidence of reactive arthritis (ReA), an autoimmune disease that largely affects the joints. ReA is sometimes referred to as Reiter's syndrome, particularly when accompanied by uveitis and urethritis. This review reviews the evidence etiologically linking Salmonella infection with autoimmune disease and addresses the roles that bacterial and host elements play in controlling disease outcome. ReA is an autoimmune disease that largely consists of painful joint inflammation but also can include inflammation of the eye, gastrointestinal tract, and skin. ReA is a member of a broad spectrum of chronic inflammatory disorders termed the seronegative spondyloarthropathies (SNSpAs) that includes ankylosing spondylitis (AS), psoriatic arthritis, and enteropathic arthritis. Salmonella species, as well as other enteric pathogens associated with postgastroenteritis ReA, are facultative intracellular gram-negative bacteria. Many studies have analyzed the association of the HLA class I molecule, HLA-B27, with SNSpAs. Whereas B27 has been shown to be present in 90 to 95% of cases of AS, the association of the B27 haplotype with other SNSpAs is more tenuous. The clear association between ReA and infection with Salmonella or other gram-negative enteric pathogens has led to the suggestion that the adaptive immune response to infection has an autoimmune component. In addition to various Salmonella species, other gram-negative enteric pathogens have been linked to the development of ReA. Given their close relationship to Salmonella, this review considers the involvement of Shigella species in ReA.
Collapse
|
22
|
Kim HS, Kang D, Moon MH, Kim HJ. Identification of pancreatic cancer-associated tumor antigen from HSP-enriched tumor lysate-pulsed human dendritic cells. Yonsei Med J 2014; 55:1014-27. [PMID: 24954332 PMCID: PMC4075362 DOI: 10.3349/ymj.2014.55.4.1014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 10/23/2013] [Accepted: 11/04/2013] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Vaccine strategies utilizing dendritic cells (DCs) to elicit anti-tumor immunity are the subject of intense research. Although we have shown that DCs pulsed with heat-treated tumor lysate (HTL) induced more potent anti-tumor immunity than DCs pulsed with conventional tumor lysate (TL), the underlying molecular mechanism is unclear. In order to explore the molecular basis of this approach and to identify potential antigenic peptides from pancreatic cancer, we analyzed and compared the major histocompatibility complex (MHC) ligands derived from TL- and HTL-pulsed dendritic cells by mass spectrophotometry. MATERIALS AND METHODS Human monocyte-derived dendritic cells were pulsed with TL or HTL prior to maturation induction. To delineate differences of MHC-bound peptide repertoire eluted from DCs pulsed with TL or HTL, nanoflow liquid chromatography-electrospray ionization-tandem mass spectrometry (nLC-ESI-MS-MS) was employed. RESULTS HTL, but not TL, significantly induced DC function, assessed by phenotypic maturation, allostimulation capacity and IFN-γ secretion by stimulated allogeneic T cells. DCs pulsed with TL or HTL displayed pancreas or pancreatic cancer-related peptides in context of MHC class I and II molecules. Some of the identified peptides had not been previously reported as expressed in pancreatic cancer or cancer of other tissue types. CONCLUSION Our partial lists of MHC-associated peptides revealed the differences between peptide profiles eluted from HTL-and TL-loaded DCs, implying that induced heat shock proteins in HTL chaperone tumor-derived peptides enhanced their delivery to DCs and promoted cross-presentation by DC. These findings may aid in identifying novel tumor antigens or biomarkers and in designing future vaccination strategies.
Collapse
Affiliation(s)
- Han-Soo Kim
- Innovative Cell and Gene Therapy Center, International St. Mary's Hospital, Incheon, Korea
| | - Dukjin Kang
- Center for Bioanalysis, Division of Metrology for Quality of Life, Korea Research Institute of Standards and Science, Daejeon, Korea
| | | | - Hyung Jik Kim
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Korea.
| |
Collapse
|
23
|
Abstract
The mammalian immune system has evolved to display peptides derived from microbial antigens to immune effector cells. Liberated from the intact antigens through distinct proteolytic mechanisms, these peptides are subsequently transported to the cell surface while bound to chaperone-like receptors known as major histocompatibility complex molecules. These complexes are then scrutinized by T-cells that express receptors with specificity for specific major histocompatibility complex-peptide complexes. In normal uninfected cells, this process of antigen processing and presentation occurs continuously, with the resultant array of self-antigen-derived peptides displayed on the surface of these cells. Changes in this cellular peptide array alert the immune system to changes in the intracellular environment that may be associated with infection, oncogenesis or other abnormal cellular processes, resulting in a cascade of events that result in the elimination of the abnormal cell. Since peptides play such an essential role in informing the immune system of infection with viral or microbial pathogens and the transformation of cells in malignancy, the tools of proteomics, in particular mass spectrometry, are ideally suited to study these immune responses at a molecular level. Recent advances in studies of immune responses that have utilized mass spectrometry and associated technologies are reviewed. The authors gaze into the future and look at current challenges and where proteomics will impact in immunology over the next 5 years.
Collapse
Affiliation(s)
- Nicholas A Williamson
- The University of Melbourne, Department of Biochemistry & Molecular Biology, The Bio21 Molecular Science & Biotechnology Institute, 3010, Victoria, Australia.
| | | |
Collapse
|
24
|
Mehra NK, Kanga U. Molecular diversity of the HLA-B27 gene and its association with disease. Mod Rheumatol 2014; 11:275-85. [DOI: 10.3109/s10165-001-8056-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
25
|
Geironson L, Thuring C, Harndahl M, Rasmussen M, Buus S, Røder G, Paulsson KM. Tapasin facilitation of natural HLA-A and -B allomorphs is strongly influenced by peptide length, depends on stability, and separates closely related allomorphs. THE JOURNAL OF IMMUNOLOGY 2013; 191:3939-47. [PMID: 23980206 DOI: 10.4049/jimmunol.1201741] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Despite an abundance of peptides inside a cell, only a small fraction is ultimately presented by HLA-I on the cell surface. The presented peptides have HLA-I allomorph-specific motifs and are restricted in length. So far, detailed length studies have been limited to few allomorphs. Peptide-HLA-I (pHLA-I) complexes of different allomorphs are qualitatively and quantitatively influenced by tapasin to different degrees, but again, its effect has only been investigated for a small number of HLA-I allomorphs. Although both peptide length and tapasin dependence are known to be important for HLA-I peptide presentation, the relationship between them has never been studied. In this study, we used random peptide libraries from 7- to 13-mers and studied binding in the presence and absence of a recombinant truncated form of tapasin. The data show that HLA-I allomorphs are differentially affected by tapasin, different lengths of peptides generated different amounts of pHLA-I complexes, and HLA-A allomorphs are generally less restricted than HLA-B allomorphs to peptides of the classical length of 8-10 aa. We also demonstrate that tapasin facilitation varies for different peptide lengths, and that the correlation between high degree of tapasin facilitation and low stability is valid for different random peptide mixes of specific lengths. In conclusion, these data show that tapasin has specificity for the combination of peptide length and HLA-I allomorph, and suggest that tapasin promotes formation of pHLA-I complexes with high on and off rates, an important intermediary step in the HLA-I maturation process.
Collapse
Affiliation(s)
- Linda Geironson
- Department of Experimental Medical Science, Immunology Section, Lund University, 221 84 Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
26
|
Sorrentino R, Böckmann RA, Fiorillo MT. HLA-B27 and antigen presentation: at the crossroads between immune defense and autoimmunity. Mol Immunol 2013; 57:22-7. [PMID: 23916069 DOI: 10.1016/j.molimm.2013.06.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/17/2013] [Accepted: 06/18/2013] [Indexed: 10/26/2022]
Abstract
The HLA-B27 is historically studied as a susceptibility factor in spondyloarthropathies and, primarily, in ankylosing spondylitis (AS). Over the recent years however, it has been rediscovered as protective factor against some severe viral infections. This is due to the high capacity of virus-specific, HLA-B27-restricted CD8+ T cells for both intrinsic (i.e. polyfunctionality, high avidity, low sensitivity to Treg cell-mediated suppression) and extrinsic (i.e. rapid and efficient antigen processing and presentation) factors. It is tempting to speculate that these two aspects are not independent and that the association of B27 molecules to autoimmunity is the downside of this superior functional efficacy which, in given genetic backgrounds and environmental conditions, can support a chronic inflammation leading to spondyloarthropathies. Still, the pathogenic role of HLA-B27 molecules in AS is elusive. Here, we focus on the biology of HLA-B27 from the genetics to the biochemistry and to the structural/dynamical properties of B27:peptide complexes as obtained from atomistic molecular dynamics simulation. Overall, the results point at the antigen presentation as the key event in the disease pathogenesis. In particular, an extensive comparison of HLA-B*2705 and B*2709 molecules, that differ in a single amino acid (Asp116 to His116) and are differentially associated with AS, indicates that position 116 is crucial for shaping the entire peptide-presenting groove.
Collapse
Affiliation(s)
- Rosa Sorrentino
- Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza, University of Rome, Italy; Department of Biology and Biotechnology "C. Darwin", Sapienza, University of Rome, Italy
| | | | | |
Collapse
|
27
|
|
28
|
Duquesnoy RJ, Marrari M, Jelenik L, Zeevi A, Claas FHJ, Mulder A. Structural aspects of HLA class I epitopes reacting with human monoclonal antibodies in Ig-binding, C1q-binding and lymphocytotoxicity assays. Hum Immunol 2013; 74:1271-9. [PMID: 23770250 DOI: 10.1016/j.humimm.2013.05.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 04/24/2013] [Accepted: 05/29/2013] [Indexed: 02/07/2023]
Abstract
This study addresses the reactivity patterns of human cytotoxic HLA class I epitope-specific monoclonal antibodies in Ig-binding and complement component C1q-binding Luminex assays in comparison with complement-dependent lymphocytotoxicity data reported at the 13th International HLA Workshop. Some monoclonal antibodies reacted similarly with epitope-carrying alleles in all three assays but others showed different reactivity patterns. These reactivity differences were analyzed with HLAMatchmaker and we incorporated the concept that eplets are essential parts of structural epitopes which can contact the six Complementarity Determining Regions (CDRs) of antibody. The data show that technique-dependent reactivity patterns are associated with distinct differences between polymorphic amino acid configurations on eplet-defined structural epitopes. The findings have been viewed in context of antigen-antibody complex formation that results in the release of free energy necessary to stabilize binding and to induce conformational changes in the antibody molecule to expose the C1q binding site, the first step of complement activation. Moreover the amount of free energy should be sufficient to induce a conformational change of C1q thereby initiating the first stages of the classical complement cascade leading to lymphocytotoxicity. The complement-fixing properties of HLA antibodies require not only specific recognition of eplets but also depend on interactions of other CDRs with critical amino acid configurations within the structural epitope. Eplet-carrying alleles that lack such configurations may only bind with antibody. This concept is important to our understanding whether or not complement-fixing donor-specific HLA antibodies can initiate antibody-mediated rejection.
Collapse
Affiliation(s)
- Rene J Duquesnoy
- Division of Transplant Pathology, University of Pittsburgh Medical Center, United States.
| | | | | | | | | | | |
Collapse
|
29
|
Croft NP, Smith SA, Wong YC, Tan CT, Dudek NL, Flesch IEA, Lin LCW, Tscharke DC, Purcell AW. Kinetics of antigen expression and epitope presentation during virus infection. PLoS Pathog 2013; 9:e1003129. [PMID: 23382674 PMCID: PMC3561264 DOI: 10.1371/journal.ppat.1003129] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 11/26/2012] [Indexed: 01/20/2023] Open
Abstract
Current knowledge about the dynamics of antigen presentation to T cells during viral infection is very poor despite being of fundamental importance to our understanding of anti-viral immunity. Here we use an advanced mass spectrometry method to simultaneously quantify the presentation of eight vaccinia virus peptide-MHC complexes (epitopes) on infected cells and the amounts of their source antigens at multiple times after infection. The results show a startling 1000-fold range in abundance as well as strikingly different kinetics across the epitopes monitored. The tight correlation between onset of protein expression and epitope display for most antigens provides the strongest support to date that antigen presentation is largely linked to translation and not later degradation of antigens. Finally, we show a complete disconnect between the epitope abundance and immunodominance hierarchy of these eight epitopes. This study highlights the complexity of viral antigen presentation by the host and demonstrates the weakness of simple models that assume total protein levels are directly linked to epitope presentation and immunogenicity. A major mechanism for the detection of virus infection is the recognition by T cells of short peptide fragments (epitopes) derived from the degradation of intracellular proteins presented at the cell surface in a complex with class I MHC. Whilst the mechanics of antigen degradation and the loading of peptides onto MHC are now well understood, the kinetics of epitope presentation have only been studied for individual model antigens. We addressed this issue by studying vaccinia virus, best known as the smallpox vaccine, using advanced mass spectrometry. Precise and simultaneous quantification of multiple peptide-MHC complexes showed that the surface of infected cells provides a surprisingly dynamic landscape from the point of view of anti-viral T cells. Further, concurrent measurement of virus protein levels demonstrated that in most cases, peak presentation of epitopes occurs at the same time or precedes the time of maximum protein build up. Finally, we found a complete disconnect between the abundance of epitopes on infected cells and the size of the responding T cell populations. These data provide new insights into how virus infected cells are seen by T cells, which is crucial to our understanding of anti-viral immunity and development of vaccines.
Collapse
Affiliation(s)
- Nathan P. Croft
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Stewart A. Smith
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Yik Chun Wong
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Chor Teck Tan
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Nadine L. Dudek
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Inge E. A. Flesch
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Leon C. W. Lin
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - David C. Tscharke
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
- * E-mail: (DCT); (AWP)
| | - Anthony W. Purcell
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- * E-mail: (DCT); (AWP)
| |
Collapse
|
30
|
Rapid antigen processing and presentation of a protective and immunodominant HLA-B*27-restricted hepatitis C virus-specific CD8+ T-cell epitope. PLoS Pathog 2012; 8:e1003042. [PMID: 23209413 PMCID: PMC3510254 DOI: 10.1371/journal.ppat.1003042] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 10/03/2012] [Indexed: 12/20/2022] Open
Abstract
HLA-B*27 exerts protective effects in hepatitis C virus (HCV) and human immunodeficiency virus (HIV) infections. While the immunological and virological features of HLA-B*27-mediated protection are not fully understood, there is growing evidence that the presentation of specific immunodominant HLA-B*27-restricted CD8+ T-cell epitopes contributes to this phenomenon in both infections. Indeed, protection can be linked to single immunodominant CD8+ T-cell epitopes and functional constraints on escape mutations within these epitopes. To better define the immunological mechanisms underlying HLA-B*27-mediated protection in HCV infection, we analyzed the functional avidity, functional profile, antiviral efficacy and naïve precursor frequency of CD8+ T cells targeting the immunodominant HLA-B*27-restricted HCV-specific epitope as well as its antigen processing and presentation. For comparison, HLA-A*02-restricted HCV-specific epitopes were analyzed. The HLA-B*27-restricted CD8+ T-cell epitope was not superior to epitopes restricted by HLA-A*02 when considering the functional avidity, functional profile, antiviral efficacy or naïve precursor frequency. However, the peptide region containing the HLA-B*27-restricted epitope was degraded extremely fast by both the constitutive proteasome and the immunoproteasome. This efficient proteasomal processing that could be blocked by proteasome inhibitors was highly dependent on the hydrophobic regions flanking the epitope and led to rapid and abundant presentation of the epitope on the cell surface of antigen presenting cells. Our data suggest that rapid antigen processing may be a key immunological feature of this protective and immunodominant HLA-B*27-restricted HCV-specific epitope.
Collapse
|
31
|
Pedersen LE, Harndahl M, Nielsen M, Patch JR, Jungersen G, Buus S, Golde WT. Identification of peptides from foot-and-mouth disease virus structural proteins bound by class I swine leukocyte antigen (SLA) alleles, SLA-1*0401 and SLA-2*0401. Anim Genet 2012; 44:251-8. [PMID: 22984928 DOI: 10.1111/j.1365-2052.2012.02400.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2012] [Indexed: 11/30/2022]
Abstract
Characterization of the peptide-binding specificity of swine leukocyte antigen (SLA) class I and II molecules is critical to the understanding of adaptive immune responses of swine toward infectious pathogens. Here, we describe the complete binding motif of the SLA-2*0401 molecule based on a positional scanning combinatorial peptide library approach. By combining this binding motif with data achieved by applying the NetMHCpan peptide prediction algorithm to both SLA-1*0401 and SLA-2*0401, we identified high-affinity binding peptides. A total of 727 different 9mer and 726 different 10mer peptides within the structural proteins of foot-and-mouth disease virus (FMDV), strain A24 were analyzed as candidate T-cell epitopes. Peptides predicted by the NetMHCpan were tested in ELISA for binding to the SLA-1*0401 and SLA-2*0401 major histocompatibility complex class I proteins. Four of the 10 predicted FMDV peptides bound to SLA-2*0401, whereas five of the nine predicted FMDV peptides bound to SLA-1*0401. These methods provide the characterization of T-cell epitopes in response to pathogens in more detail. The development of such approaches to analyze vaccine performance will contribute to a more accelerated improvement of livestock vaccines by virtue of identifying and focusing analysis on bona fide T-cell epitopes.
Collapse
Affiliation(s)
- L E Pedersen
- Foreign Animal Disease Unit, Plum Island Animal Disease Center, Agricultural Research Service, USDA, Greenport, NY 11944, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Magnacca A, Persiconi I, Nurzia E, Caristi S, Meloni F, Barnaba V, Paladini F, Raimondo D, Fiorillo MT, Sorrentino R. Characterization of a proteasome and TAP-independent presentation of intracellular epitopes by HLA-B27 molecules. J Biol Chem 2012; 287:30358-67. [PMID: 22807446 DOI: 10.1074/jbc.m112.384339] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Nascent HLA-class I molecules are stabilized by proteasome-derived peptides in the ER and the new complexes proceed to the cell surface through the post-ER vesicles. It has been shown, however, that less stable complexes can exchange peptides in the Trans Golgi Network (TGN). HLA-B27 are the most studied HLA-class I molecules due to their association with Ankylosing Spondylitis (AS). Chimeric proteins driven by TAT of HIV have been exploited by us to deliver viral epitopes, whose cross-presentation by the HLA-B27 molecules was proteasome and TAP-independent and not restricted to Antigen-Presenting Cells (APC). Here, using these chimeric proteins as epitope suppliers, we compared with each other and with the HLA-A2 molecules, the two HLA-B*2705 and B*2709 alleles differing at residue 116 (D116H) and differentially associated with AS. We found that the antigen presentation by the two HLA-B27 molecules was proteasome-, TAP-, and APC-independent whereas the presentation by the HLA-A2 molecules required proteasome, TAP and professional APC. Assuming that such difference could be due to the unpaired, highly reactive Cys-67 distinguishing the HLA-B27 molecules, C67S mutants in HLA-B*2705 and B*2709 and V67C mutant in HLA-A*0201 were also analyzed. The results showed that this mutation did not influence the HLA-A2-restricted antigen presentation while it drastically affected the HLA-B27-restricted presentation with, however, remarkable differences between B*2705 and B*2709. The data, together with the occurrence on the cell surface of unfolded molecules in the case of C67S-B*2705 mutant but not in that of C67S-B*2709 mutant, indicates that Cys-67 has a more critical role in stabilizing the B*2705 rather than the B*2709 complexes.
Collapse
Affiliation(s)
- Adriana Magnacca
- Department of Biology and Biotechnology C. Darwin, University of Rome, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
McHugh K, Bowness P. The link between HLA-B27 and SpA--new ideas on an old problem. Rheumatology (Oxford) 2012; 51:1529-39. [PMID: 22513152 DOI: 10.1093/rheumatology/kes061] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The strong association of the HLA-B27 with AS was first discovered independently by groups in London and California in 1972 and has recently been confirmed beyond reasonable doubt by fine mapping in the latest and most sophisticated genome-wide association study (GWAS) published this July. Yet, despite nearly four decades of extensive research, the exact role that HLA-B27 plays in pathogenesis remains unknown. However, we believe that recent developments in three fields have allowed us to view this conundrum in a new light and to propose coherent theories of disease pathogenesis. These areas are as follows: (i) GWASs, (ii) studies of B27 biology and (iii) lessons from biologic therapies. In this review we will discuss these recent advances before discussing the current models of AS pathogenesis under investigation.
Collapse
Affiliation(s)
- Kirsty McHugh
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, University of Oxford, Oxford, UK
| | | |
Collapse
|
34
|
Haroon N, Tsui FW, Uchanska-Ziegler B, Ziegler A, Inman RD. Endoplasmic reticulum aminopeptidase 1 (ERAP1) exhibits functionally significant interaction with HLA-B27 and relates to subtype specificity in ankylosing spondylitis. Ann Rheum Dis 2012; 71:589-95. [PMID: 22355039 DOI: 10.1136/annrheumdis-2011-200347] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVES The functional interaction of endoplasmic reticulum aminopeptidase 1 (ERAP1) with human leucocyte antigen (HLA)-B*27 could be important in the pathogenesis of ankylosing spondylitis (AS). AS is associated with B*27:04 and B*27:05, but not with B*27:06 and B*27:09. The authors studied the surface expression of peptide-HLA(pHLA)-B27 complexes and HLA class-I free heavy chains (FHCs) on peripheral blood mononuclear cells of patients with AS with different ERAP1 single nucleotide polymorphisms. The effects of ERAP1 suppression on HLA-B*27 subtypes were tested. METHODS Peripheral blood mononuclear cells were collected from Caucasian patients with AS for flow cytometry and were stained for pHLA and FHCs. Genotyping was performed for two ERAP1 single nucleotide polymorphisms (rs27044(C/G) and rs30187(C/T)). C1R cells transfected with different HLA-B27 subtypes (B*27:04, B*27:05, B*27:06 and B*27:09) were subjected to ERAP1 suppression by small interfering RNA and stained using the monoclonal antibody (mAb) MARB4 as well as antibodies for pHLA, FHC, intracellular FHC (IC-FHC). MARB4 has been reported to bind to HLA-B27 with extended peptides. RESULTS The authors found variations in FHC expression on the monocytes of patients with AS, depending on different ERAP1 variants. Subsequently, using Hmy2.C1R cells in vitro, the authors show that ERAP1 suppression leads to increased IC-FHC and surface pHLA that react with the monoclonal antibody MARB4. The functional interaction between ERAP1 and HLA-B27 molecules appears to be subtype-specific, since ERAP1 suppression leads to changes only in cells expressing B*27:04 or B*27:05, but not B*27:06 or B*27:09. CONCLUSIONS Direct or indirect alterations in the ERAP1-HLA-B27 interaction could be crucial by causing changes in peptide presentation or FHC formation by HLA-B27 molecules, as well as by contributing to differential subtype association in spondyloarthropathies.
Collapse
Affiliation(s)
- Nigil Haroon
- Division of Rheumatology, Toronto Western Hospital, University of Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
35
|
Compeer EB, Flinsenberg TWH, van der Grein SG, Boes M. Antigen processing and remodeling of the endosomal pathway: requirements for antigen cross-presentation. Front Immunol 2012; 3:37. [PMID: 22566920 PMCID: PMC3342355 DOI: 10.3389/fimmu.2012.00037] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 02/16/2012] [Indexed: 12/29/2022] Open
Abstract
Cross-presentation of endocytosed antigen as peptide/class I major histocompatibility complex complexes plays a central role in the elicitation of CD8+ T cell clones that mediate anti-viral and anti-tumor immune responses. While it has been clear that there are specific subsets of professional antigen presenting cells capable of antigen cross-presentation, identification of mechanisms involved is still ongoing. Especially amongst dendritic cells (DC), there are specialized subsets that are highly proficient at antigen cross-presentation. We here present a focused survey on the cell biological processes in the endosomal pathway that support antigen cross-presentation. This review highlights DC-intrinsic mechanisms that facilitate the cross-presentation of endocytosed antigen, including receptor-mediated uptake, maturation-induced endosomal sorting of membrane proteins, dynamic remodeling of endosomal structures and cell surface-directed endosomal trafficking. We will conclude with the description of pathogen-induced deviation of endosomal processing, and discuss how immune evasion strategies pertaining endosomal trafficking may preclude antigen cross-presentation.
Collapse
Affiliation(s)
- Ewoud Bernardus Compeer
- Department of Pediatric Immunology, University Medical Center Utrecht/Wilhelmina Children's Hospital Utrecht, Netherlands
| | | | | | | |
Collapse
|
36
|
STAGSTED JAN. Journey beyond immunology. Regulation of receptor internalization by major histocompatibility complex class I (MHC-I) and effect of peptides derived from MHC-I. APMIS 2011. [DOI: 10.1111/j.1600-0463.1998.tb05657.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
37
|
Uchanska-Ziegler B, Loll B, Fabian H, Hee CS, Saenger W, Ziegler A. HLA class I-associated diseases with a suspected autoimmune etiology: HLA-B27 subtypes as a model system. Eur J Cell Biol 2011; 91:274-86. [PMID: 21665321 DOI: 10.1016/j.ejcb.2011.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 03/15/2011] [Accepted: 03/15/2011] [Indexed: 01/05/2023] Open
Abstract
Although most autoimmune diseases are connected to major histocompatibility complex (MHC) class II alleles, a small number of these disorders exhibit a variable degree of association with selected MHC class I genes, like certain human HLA-A and HLA-B alleles. The basis for these associations, however, has so far remained elusive. An understanding might be obtained by comparing functional, biochemical, and biophysical properties of alleles that are minimally distinct from each other, but are nevertheless differentially associated to a given disease, like the HLA-B*27:05 and HLA-B*27:09 antigens, which differ only by a single amino acid residue (Asp116His) that is deeply buried within the binding groove. We have employed a number of approaches, including X-ray crystallography and isotope-edited infrared spectroscopy, to investigate biophysical characteristics of the two HLA-B27 subtypes complexed with up to ten different peptides. Our findings demonstrate that the binding of these peptides as well as the conformational flexibility of the subtypes is greatly influenced by interactions of the C-terminal peptide residue. In particular, a basic C-terminal peptide residue is favoured by the disease-associated subtype HLA-B*27:05, but not by HLA-B*27:09. This property appears also as the only common denominator of distinct HLA class I alleles, among them HLA-B*27:05, HLA-A*03:01 or HLA-A*11:01, that are associated with diseases suspected to have an autoimmune etiology. We postulate here that the products of these alleles, due to their unusual ability to bind with high affinity to a particular peptide set during positive T cell selection in the thymus, are involved in shaping an abnormal T cell repertoire which predisposes to the acquisition of autoimmune diseases.
Collapse
Affiliation(s)
- Barbara Uchanska-Ziegler
- Institut für Immungenetik, Charité - Universitätmedizin Berlin, Campus Benjamin Franklin, Freie Universität Berlin, Thielallee 73, 14195 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Almost four decades of research into the role of human leukocyte antigen-B27 (HLA-B27) in susceptibility to spondyloarthritis has yet to yield a convincing answer. New results from an HLA-B27 transgenic rat model now demonstrate quite convincingly that CD8(+) T cells are not required for the inflammatory phenotype. Discoveries that the HLA-B27 heavy chain has a tendency to misfold during the assembly of class I complexes in the endoplasmic reticulum (ER) and to form aberrant disulfide-linked dimers after transport to the cell surface have forced the generation of new ideas about its role in disease pathogenesis. In transgenic rats, HLA-B27 misfolding generates ER stress and leads to activation of the unfolded protein response, which dramatically enhances the production of interleukin-23 (IL-23) in response to pattern recognition receptor agonists. These findings have led to the discovery of striking T-helper 17 cell activation and expansion in this animal model, consistent with results emerging from humans with spondyloarthritis and the discovery of IL23R as an additional susceptibility gene for ankylosing spondylitis. Together, these results suggest a novel link between HLA-B27 and the T-helper 17 axis through the consequences of protein misfolding and open new avenues of investigation as well as identifying new targets for therapeutic intervention in this group of diseases.
Collapse
Affiliation(s)
- Robert A Colbert
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
39
|
Tenzer S, Wee E, Burgevin A, Stewart-Jones G, Friis L, Lamberth K, Chang CH, Harndahl M, Weimershaus M, Gerstoft J, Akkad N, Klenerman P, Fugger L, Jones EY, McMichael AJ, Buus S, Schild H, van Endert P, Iversen AKN. Antigen processing influences HIV-specific cytotoxic T lymphocyte immunodominance. Nat Immunol 2009; 10:636-46. [PMID: 19412183 DOI: 10.1038/ni.1728] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 03/12/2009] [Indexed: 11/09/2022]
Abstract
Although cytotoxic T lymphocytes (CTLs) in people infected with human immunodeficiency virus type 1 can potentially target multiple virus epitopes, the same few are recognized repeatedly. We show here that CTL immunodominance in regions of the human immunodeficiency virus type 1 group-associated antigen proteins p17 and p24 correlated with epitope abundance, which was strongly influenced by proteasomal digestion profiles, affinity for the transporter protein TAP, and trimming mediated by the endoplasmatic reticulum aminopeptidase ERAAP, and was moderately influenced by HLA affinity. Structural and functional analyses demonstrated that proteasomal cleavage 'preferences' modulated the number and length of epitope-containing peptides, thereby affecting the response avidity and clonality of T cells. Cleavage patterns were affected by both flanking and intraepitope CTL-escape mutations. Our analyses show that antigen processing shapes CTL response hierarchies and that viral evolution modifies cleavage patterns and suggest strategies for in vitro vaccine optimization.
Collapse
Affiliation(s)
- Stefan Tenzer
- Institute of Immunology, University of Mainz, Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ziegler A, Müller CA, Böckmann RA, Uchanska-Ziegler B. Low-affinity peptides and T-cell selection. Trends Immunol 2009; 30:53-60. [PMID: 19201651 DOI: 10.1016/j.it.2008.11.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 10/15/2008] [Accepted: 11/10/2008] [Indexed: 01/17/2023]
Abstract
The dual requirement for T cells to recognize a particular major histocompatibility complex (MHC) antigen presenting a foreign peptide and to lack strong reactivity with a complex of the same molecule when bound to a self-peptide, is attained by thymic positive and negative selection processes, the molecular details of which are currently only partially understood. However, the discovery of the thymoproteasome and our improved understanding of the dynamics of peptide presentation permit us to suggest that the biophysical properties of the MHC:peptide class I complexes engaged in positive T-cell selection will be distinct from those involved in negative selection, hence imposing differential barriers for T cells.
Collapse
Affiliation(s)
- Andreas Ziegler
- Institut für Immungenetik, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Freie Universität Berlin, Thielallee 73, 14195 Berlin, Germany.
| | | | | | | |
Collapse
|
41
|
Ziegler A, Coulie PG, Uchańska-Ziegler B. Monoclonal and recombinant antibodies with T cell receptor-like reactivity. RECENT RESULTS IN CANCER RESEARCH. FORTSCHRITTE DER KREBSFORSCHUNG. PROGRES DANS LES RECHERCHES SUR LE CANCER 2007; 176:229-41. [PMID: 17607930 DOI: 10.1007/978-3-540-46091-6_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
We will explain why major histocompatibility complex (MHC) molecules presenting peptides derived from tumour-associated antigens can be recognized not only by T cell receptors (TCR), but also by soluble proteins endowed with TCR-like reactivity. To understand how an antibody can display high affinity and specificity for a particular MHC:peptide complex, we have employed X-ray crystallography to determine the structure of a recombinant antibody, Hyb3, bound to human HLA-A1 molecules presenting the peptide EADPTGHSY that is derived from the tumour-associated antigen MAGE-Al. The results indicate that although Hyb3 recgonizes its target in a TCR-like diagonal binding mode, important differences between the two types of proteins exist that are probably due to the fact that TCR are part of a molecular assembly on the surface of effector cells, while antibodies such as Hyb3 have to carry out their function as individual molecules.
Collapse
Affiliation(s)
- Andreas Ziegler
- Institut für Immungenetik, Humboldt-Universität zu Berlin, Charité Campus Virchow-Klinikum, Germany
| | | | | |
Collapse
|
42
|
Kumar P, Vahedi-Faridi A, Merino E, López de Castro JA, Volz A, Ziegler A, Saenger W, Uchanska-Ziegler B. Expression, purification and preliminary X-ray crystallographic analysis of the human major histocompatibility antigen HLA-B*1402 in complex with a viral peptide and with a self-peptide. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:631-4. [PMID: 17620730 PMCID: PMC2335130 DOI: 10.1107/s1744309107029077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Accepted: 06/13/2007] [Indexed: 05/16/2023]
Abstract
The product of the human major histocompatibility (HLA) class I allele HLA-B*1402 only differs from that of allele HLA-B*1403 at amino-acid position 156 of the heavy chain (Leu in HLA-B*1402 and Arg in HLA-B*1403). However, both subtypes are known to be differentially associated with the inflammatory rheumatic disease ankylosing spondylitis (AS) in black populations in Cameroon and Togo. HLA-B*1402 is not associated with AS, in contrast to HLA-B*1403, which is associated with this disease in the Togolese population. The products of these alleles can present peptides with Arg at position 2, a feature shared by a small group of other HLA-B antigens, including HLA-B*2705, the prototypical AS-associated subtype. Complexes of HLA-B*1402 with a viral peptide (RRRWRRLTV, termed pLMP2) and a self-peptide (IRAAPPPLF, termed pCatA) were prepared and were crystallized using polyethylene glycol as precipitant. The complexes crystallized in space groups P2(1) (pLMP2) and P2(1)2(1)2(1) (pCatA) and diffracted synchrotron radiation to 2.55 and 1.86 A resolution, respectively. Unambiguous solutions for both data sets were obtained by molecular replacement using a peptide-complexed HLA-B*2705 molecule (PDB code 1jge) as a search model.
Collapse
Affiliation(s)
- Pravin Kumar
- Institut für Immungenetik, Charité – Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Thielallee 73, 14195 Berlin, Germany
| | - Ardeschir Vahedi-Faridi
- Institut für Chemie und Biochemie/Kristallographie, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Elena Merino
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid, Facultad de Ciencias, Universidad Autónoma, 28049 Madrid, Spain
| | - José A. López de Castro
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid, Facultad de Ciencias, Universidad Autónoma, 28049 Madrid, Spain
| | - Armin Volz
- Institut für Immungenetik, Charité – Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Thielallee 73, 14195 Berlin, Germany
| | - Andreas Ziegler
- Institut für Immungenetik, Charité – Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Thielallee 73, 14195 Berlin, Germany
| | - Wolfram Saenger
- Institut für Chemie und Biochemie/Kristallographie, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Barbara Uchanska-Ziegler
- Institut für Immungenetik, Charité – Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Thielallee 73, 14195 Berlin, Germany
| |
Collapse
|
43
|
Malhotra U, Li F, Nolin J, Allison M, Zhao H, Mullins JI, Self S, McElrath MJ. Enhanced detection of human immunodeficiency virus type 1 (HIV-1) Nef-specific T cells recognizing multiple variants in early HIV-1 infection. J Virol 2007; 81:5225-37. [PMID: 17329342 PMCID: PMC1900243 DOI: 10.1128/jvi.02564-06] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A human immunodeficiency virus (HIV)-preventive vaccine will likely need to induce broad immunity that can recognize antigens expressed within circulating strains. To understand the potentially relevant responses that T-cell based vaccines should elicit, we examined the ability of T cells from early infected persons to recognize a broad spectrum of potential T-cell epitopes (PTE) expressed by the products encoded by the HIV type 1 (HIV-1) nef gene, which is commonly included in candidate vaccines. T cells were evaluated for gamma interferon (IFN-gamma) secretion using two peptide panels: subtype B consensus (CON) peptides and a novel peptide panel providing 70% coverage of PTE in subtype B HIV-1 Nef. Eighteen of 23 subjects' T cells recognized HIV-1 Nef. In one subject, Nef-specific T cells were detected with the PTE but not with the CON peptides. The greatest frequency of responses spanned Nef amino acids 65 to 103 and 113 to 147, with multiple epitope variants being recognized. Detection of both the epitope domain number and the response magnitude was enhanced using the PTE peptides. On average, we detected 2.7 epitope domains with the PTE peptides versus 1.7 domains with the CON peptides (P = 0.0034). The average response magnitude was 2,169 spot-forming cells (SFC)/10(6) peripheral blood mononuclear cells (PBMC) with the PTE peptides versus 1,010 SFC/10(6) PBMC with CON peptides (P = 0.0046). During early HIV-1 infection, Nef-specific T cells capable of recognizing multiple variants are commonly induced, and these responses are readily detected with the PTE peptide panel. Our findings suggest that Nef responses induced by a given vaccine strain before HIV-1 exposure may be sufficiently broad to recognize most variants within subtype B HIV-1.
Collapse
Affiliation(s)
- Uma Malhotra
- Program in Infectious Diseases, Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., D3-100, Seattle, WA 98109, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Racape J, Connan F, Hoebeke J, Choppin J, Guillet JG. Influence of dominant HIV-1 epitopes on HLA-A3/peptide complex formation. Proc Natl Acad Sci U S A 2006; 103:18208-13. [PMID: 17116886 PMCID: PMC1654130 DOI: 10.1073/pnas.0609029103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Indexed: 11/18/2022] Open
Abstract
The binding of peptides to MHC class I molecules induces MHC/peptide complexes that have specific conformational features. Little is known about the molecular and structural bases required for an optimal MHC/peptide association able to induce a dominant T cell response. We sought to characterize the interaction between purified HLA-A3 molecules and four well known CD8 epitopes from HIV-1 proteins. To define the characteristics of HLA-peptide complex formation and to identify potential structural changes, we used biochemical assays that detect well formed complexes. We tested the amplitude, stability, and kinetic parameters of the interaction between HLA-A3, peptides, and anti-HLA mAbs. Our results show that the four epitopes Nef73-82, Pol325-333, Env37-46, and Gag20-28 bind strongly to HLA-A3 molecules and form very stable complexes that are detected with differential patterns of mAb reactivity. The most striking result is the nonrecognition of the HLA-A3/Gag20-28 complex by the A11.1M mAb specific to HLA-A3/-A11 alleles. To explain this observation, from the data published on HLA-A11 crystallographic structure, we propose molecular models of the HLA-A3 molecule complexed with Nef73-82, Pol325-333, and Gag20-28 epitopes. In the HLA-A3/Gag20-28 complex, we suggest that Arg at position P1 of the peptide may push the alpha2 helix residue Trp-167 of HLA-A3 and affect mAb recognition. Such observations may have great implications for T cell antigen receptor recognition and the immunogenicity of HLA/peptide complexes.
Collapse
Affiliation(s)
- Judith Racape
- Département d'Immunologie, Institut Cochin, F-75014 Paris, France
- Institut National de la Santé et de la Recherche Médicale, Unité 567, F-75014 Paris, France
- Faculté de Médecine René Descartes, Université Paris 5, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, F-75014 Paris, France; and
| | - Francine Connan
- Département d'Immunologie, Institut Cochin, F-75014 Paris, France
- Institut National de la Santé et de la Recherche Médicale, Unité 567, F-75014 Paris, France
- Faculté de Médecine René Descartes, Université Paris 5, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, F-75014 Paris, France; and
| | - Johan Hoebeke
- Institut de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Unité Propre de la Recherche 9021, 15 Rue René Descartes, F67084 Strasbourg, France
| | - Jeannine Choppin
- Département d'Immunologie, Institut Cochin, F-75014 Paris, France
- Institut National de la Santé et de la Recherche Médicale, Unité 567, F-75014 Paris, France
- Faculté de Médecine René Descartes, Université Paris 5, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, F-75014 Paris, France; and
| | - Jean-Gérard Guillet
- Département d'Immunologie, Institut Cochin, F-75014 Paris, France
- Institut National de la Santé et de la Recherche Médicale, Unité 567, F-75014 Paris, France
- Faculté de Médecine René Descartes, Université Paris 5, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, F-75014 Paris, France; and
| |
Collapse
|
45
|
Toussirot E, Wendling D. Immunogénétique de la spondylarthrite ankylosante. Rev Med Interne 2006; 27:762-71. [PMID: 16782239 DOI: 10.1016/j.revmed.2006.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Accepted: 05/04/2006] [Indexed: 01/03/2023]
Abstract
BACKGROUND Ankylosing spondylitis (AS) is an inflammatory rheumatic disease with axial involvement but its physiopathology remains unexplained. This latter combines genetic and environmental factors as well as an abnormal immune response. CURRENT TOPICS AND IMPORTANT RESULT This review addresses the different aspects of AS immunogenetic. A genetic background in AS is suggested by familial cases, concordance rate in twins and transmission of the disease in siblings. Ankylosing spondylitis is strongly associated with the expression of the HLA Class I antigen, B27, but also with other genes not yet identified since currently, only chromosomic area have been linked to AS. Studies of candidate genes or genome screening allow to determine these chromosomic regions. HLA-B27 is directly associated with the disease physiopathology as suggested by animal models of rats transgenic for human HLA-B27 and beta2 microglobulin. This HLA molecule have original biological properties, in particular a slow heavy chain folding and the formation of heavy chain homodimers without light chain. However, HLA B27 is a functional molecule and assumes its property of presenting peptide of 9 amino acids to CD8+ T cells. Interaction modelling studies between HLA B27 and peptides have identified peptide and peptide groove amino acid sequences, with the identification of critical positions on the HLA B27 molecule for the peptide interaction. Original biochemical properties of HLA-B27 include diminished bacterial antigen response and CD4+ T lymphocyte stimulation. Innate immunity is also of interest in AS, as suggested by the presence of macrophage and polymorphonuclear neutrophils in AS synovitis, as well as the contribution of Toll-like receptors. FUTURE PROSPECTS AND PROJECTS Thus in AS, the inflammatory process and then the clinical consequences may be explained by the involvement of HLA-B27, a bacterial antigen presentation, an abnormal immune response and the contribution of innate immunity, T CD4+ but also T CD8+ cells. The original molecular structures of HLA-B27 are certainly involved in this complex physiopathology, but their direct influence on the disease remains to be precised.
Collapse
Affiliation(s)
- E Toussirot
- Service de rhumatologie, CHU Jean-Minjoz, boulevard Fleming, 25030 Besançon cedex, France.
| | | |
Collapse
|
46
|
Gebreselassie D, Spiegel H, Vukmanović S. Sampling of major histocompatibility complex class I-associated peptidome suggests relatively looser global association of HLA-B*5101 with peptides. Hum Immunol 2006; 67:894-906. [PMID: 17145369 PMCID: PMC2269730 DOI: 10.1016/j.humimm.2006.08.294] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 07/18/2006] [Accepted: 08/17/2006] [Indexed: 12/29/2022]
Abstract
We have analyzed peptides associated with six human major histocompatibility complex (MHC) class I allomorphs expressed by the U937 cell line. Peptides were isolated by mild acid elution or by MHC class I immunoprecipitation by using W6/32 monoclonal antibody. Eighty-five peptides were sequenced by mass spectrometry, and their putative binding alleles were assigned using bioinformatic tools. Only three peptides isolated by the two approaches were identical, suggesting that the approaches may yield distinct partially overlapping peptide populations. Mild acid treatment-derived peptides manifested overall characteristics suggestive of relatively lower affinity of binding for MHC class I. Interestingly, a large proportion of putative HLA-B*5101-binding peptides was evident among the mild acid treatment-eluted peptides, and to a lesser degree in the affinity-purified peptide pool. These results suggest that HLA-B*5101 may bind a potentially large pool of peptides with relatively lower affinity. We suggest that lower affinity of peptide binding may be the basis for inefficient tolerance to HLA-B*5101-binding self-peptides, a predisposing factor for the development of Behçet disease.
Collapse
Affiliation(s)
| | | | - Stanislav Vukmanović
- Address correspondence to: Stanislav Vukmanović Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010-2970. Phone: (202) 884-3078; FAX: (202) 884-3929; e-mail:
| |
Collapse
|
47
|
Jiang S, Song R, Popov S, Mirshahidi S, Ruprecht RM. Overlapping synthetic peptides as vaccines. Vaccine 2006; 24:6356-65. [PMID: 16793181 PMCID: PMC7127786 DOI: 10.1016/j.vaccine.2006.04.070] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 04/13/2006] [Accepted: 04/20/2006] [Indexed: 01/06/2023]
Abstract
Several vaccine strategies aim to generate cell-mediated immunity (CMI) against microorganisms or tumors. While epitope-based vaccines offer advantages, knowledge of specific epitopes and frequency of major histocompatibility complex (MHC) alleles is required. Here we show that using promiscuous overlapping synthetic peptides (OSP) as immunogens generated peptide-specific CMI in all vaccinated outbred mice and in different strains of inbred mice; CMI responses also recognized viral proteins. OSP immunogens also induced CMI ex vivo in dendritic cell/T-cell cocultures involving cells from individuals with different HLA haplotypes. Thus, broad CMI was induced by OSP in different experimental settings, using different immunogens, without identifying either epitopes or MHC backgrounds of the vaccinees.
Collapse
Affiliation(s)
- Shisong Jiang
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
48
|
Suri A, Walters JJ, Levisetti MG, Gross ML, Unanue ER. Identification of naturally processed peptides bound to the class I MHC molecule H-2Kd of normal and TAP-deficient cells. Eur J Immunol 2006; 36:544-57. [PMID: 16479539 DOI: 10.1002/eji.200526235] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This report details the biochemical features of natural peptides selected by the H-2Kd class I MHC molecule. In normal cell lines, the length of the naturally processed peptides ranged from 8 to 18 amino acids, although the majority were 9-mers (16% were longer than nine residues). The binding motif for the 9-mer peptides was dominated by the presence of a tyrosine at P2 and an isoleucine/leucine at the P9 position. The P2 residue contributed most towards binding; and the short peptides bound better and formed longer-lived cell surface complexes than the long peptides, which bound poorly and dissociated rapidly. The longer peptides did not exhibit this strictly defined motif. Trimming the long peptides to their shorter forms did not enhance binding and conversely, extending the 9-mer peptides did not decrease binding. The long peptides were present on the cell-surface bound to H-2Kd (Kd) and were not intermediate products of the class I MHC processing pathway. Finally, in two different TAP-deficient cells the long peptides were the dominant species, which suggested that TAP-independent pathways selected for long peptides by class I MHC molecules.
Collapse
Affiliation(s)
- Anish Suri
- Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
49
|
Margalit A, Sheikhet HM, Carmi Y, Berko D, Tzehoval E, Eisenbach L, Gross G. Induction of antitumor immunity by CTL epitopes genetically linked to membrane-anchored beta2-microglobulin. THE JOURNAL OF IMMUNOLOGY 2006; 176:217-24. [PMID: 16365413 DOI: 10.4049/jimmunol.176.1.217] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Level and persistence of antigenic peptides presented by APCs on MHC class I (MHC-I) molecules influence the magnitude and quality of the ensuing CTL response. We recently demonstrated the unique immunological properties conferred on APCs by expressing beta2-microglobulin (beta2m) as an integral membrane protein. In this study, we explored membrane-anchored beta2m as a platform for cancer vaccines using as a model MO5, an OVA-expressing mouse B16 melanoma. We expressed in mouse RMA-S cells two H-2Kb binding peptides from MO5, OVA257-264, and TRP-2181-188, each genetically fused with the N terminus of membranal beta2m via a short linker. Specific Ab staining and T cell hybridoma activation confirmed that OVA257-264 was properly situated in the MHC-I binding groove. In vivo, transfectants expressing both peptides elicited stronger CTLs and conferred better protection against MO5 than peptide-saturated RMA-S cells. Cells expressing OVA257-264/beta2m were significantly superior to OVA257-264-charged cells in their ability to inhibit the growth of pre-established MO5 tumors. Our results highlight the immunotherapeutic potential of membranal beta2m as a universal scaffold for optimizing Ag presentation by MHC-I molecules.
Collapse
Affiliation(s)
- Alon Margalit
- Laboratory of Immunology, MIGAL-Galilee Technology Center, Kiryat Shmona, Israel
| | | | | | | | | | | | | |
Collapse
|
50
|
Miles JJ, Elhassen D, Borg NA, Silins SL, Tynan FE, Burrows JM, Purcell AW, Kjer-Nielsen L, Rossjohn J, Burrows SR, McCluskey J. CTL recognition of a bulged viral peptide involves biased TCR selection. THE JOURNAL OF IMMUNOLOGY 2005; 175:3826-34. [PMID: 16148129 DOI: 10.4049/jimmunol.175.6.3826] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
MHC class I molecules generally present peptides of 8-10 aa long, forming an extended coil in the HLA cleft. Although longer peptides can also bind to class I molecules, they tend to bulge from the cleft and it is not known whether the TCR repertoire has sufficient plasticity to recognize these determinants during the antiviral CTL response. In this study, we show that unrelated individuals infected with EBV generate a significant CTL response directed toward an HLA-B*3501-restricted, 11-mer epitope from the BZLF1 Ag. The 11-mer determinant adopts a highly bulged conformation with seven of the peptide side chains being solvent-exposed and available for TCR interaction. Such a complex potentially creates a structural challenge for TCR corecognition of both HLA-B*3501 and the peptide Ag. Surprisingly, unrelated B*3501 donors recognizing the 11-mer use identical or closely related alphabeta TCR sequences that share particular CDR3 motifs. Within the small number of dominant CTL clonotypes observed, each has discrete fine specificity for the exposed side chain residues of the peptide. The data show that bulged viral peptides are indeed immunogenic but suggest that the highly constrained TCR repertoire reflects a limit to TCR diversity when responding to some unusual MHC peptide ligands.
Collapse
Affiliation(s)
- John J Miles
- Cellular Immunology Laboratory, Queensland Institute of Medical Research, Brisbane, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|