1
|
Obeng B, Bennett LJ, West BE, Wagner DJ, Fleming PJ, Tasker MN, Lorenger MK, Smith DR, Systuk T, Plummer SM, Eom J, Paine MD, Frangos CT, Wilczek MP, Shim JK, Maginnis MS, Gosse JA. Anti-microbial cetylpyridinium chloride suppresses mast cell function by targeting tyrosine phosphorylation of Syk kinase. J Immunotoxicol 2024; 21:2443397. [PMID: 39815634 PMCID: PMC11827644 DOI: 10.1080/1547691x.2024.2443397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/22/2024] [Accepted: 12/12/2024] [Indexed: 01/18/2025] Open
Abstract
Cetylpyridinium chloride (CPC) is a quaternary ammonium antimicrobial used in numerous personal care products, human food, cosmetic products, and cleaning solutions. Yet, there is minimal published data on CPC effects on eukaryotes, immune signaling, and human health. Previously, it was shown that low-micromolar CPC inhibits rat mast cell function by inhibiting antigen (Ag)-stimulated Ca2+ mobilization, microtubule polymerization, and degranulation. In the current study, these findings are extended to human mast cells (LAD2); this paper presents data indicating that a mechanism of action for CPC might center on its positively-charged quaternary nitrogen in its pyridinium headgroup. The inhibitory effect of CPC was independent of signaling platform receptor architecture. Tyrosine phosphorylation events are a trigger of Ca2+ mobilization necessary for degranulation. CPC inhibits global tyrosine phosphorylation in Ag-stimulated mast cells. Specifically, CPC inhibits tyrosine phosphorylation of specific key players Syk kinase and LAT, a substrate of Syk. In contrast, CPC did not affect Lyn kinase phosphorylation. Thus, a root mechanism for CPC effect might be electrostatic disruption of particular tyrosine phosphorylation events essential for signaling. This work presented here outlines biochemical mechanisms underlying the effects of CPC on immune signaling.
Collapse
Affiliation(s)
- Bright Obeng
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME
| | - Lucas J. Bennett
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME
| | - Bailey E. West
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME
| | - Dylan J. Wagner
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME
| | - Patrick J. Fleming
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME
| | - Morgan N. Tasker
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME
| | | | - Dorothy R. Smith
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME
| | - Tetiana Systuk
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME
| | - Sydni M. Plummer
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME
| | - Jeongwon Eom
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME
| | - Marissa D. Paine
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME
| | | | - Michael P. Wilczek
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME
| | - Juyoung K. Shim
- Department of Biology, University of Maine Augusta, Augusta, ME
| | - Melissa S. Maginnis
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME
| | - Julie A. Gosse
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME
| |
Collapse
|
2
|
Obeng B, Bennett LJ, West BE, Wagner DJ, Fleming PJ, Tasker MN, Lorenger MK, Smith DR, Systuk T, Plummer SM, Eom J, Paine MD, Frangos CT, Wilczek MP, Shim JK, Maginnis MS, Gosse JA. Antimicrobial cetylpyridinium chloride suppresses mast cell function by targeting tyrosine phosphorylation of Syk kinase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.04.602096. [PMID: 39026716 PMCID: PMC11257455 DOI: 10.1101/2024.07.04.602096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Cetylpyridinium chloride (CPC) is a quaternary ammonium antimicrobial used in numerous personal care products, human food, cosmetic products, and cleaning solutions. Yet, there is minimal published data on CPC effects on eukaryotes, immune signaling, and human health. Previously, we showed that low-micromolar CPC inhibits rat mast cell function by inhibiting antigen (Ag)-stimulated Ca 2+ mobilization, microtubule polymerization, and degranulation. In this study, we extend the findings to human mast cells (LAD2) and present data indicating that CPC's mechanism of action centers on its positively-charged quaternary nitrogen in its pyridinium headgroup. CPC's inhibitory effect is independent of signaling platform receptor architecture. Tyrosine phosphorylation events are a trigger of Ca 2+ mobilization necessary for degranulation. CPC inhibits global tyrosine phosphorylation in Ag-stimulated mast cells. Specifically, CPC inhibits tyrosine phosphorylation of specific key players Syk kinase and LAT, a substrate of Syk. In contrast, CPC does not affect Lyn kinase phosphorylation. Thus, CPC's root mechanism is electrostatic disruption of particular tyrosine phosphorylation events essential for signaling. This work outlines the biochemical mechanisms underlying the effects of CPC on immune signaling and allows the prediction of CPC effects on cell types, like T cells, that share similar signaling elements.
Collapse
|
3
|
Motif-dependent immune co-receptor interactome profiling by photoaffinity chemical proteomics. Cell Chem Biol 2022; 29:1024-1036.e5. [PMID: 35093210 DOI: 10.1016/j.chembiol.2022.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/10/2021] [Accepted: 01/06/2022] [Indexed: 12/17/2022]
Abstract
Identification of the tyrosine phosphorylation (pY)-dependent interactome of immune co-receptors is crucial for understanding signal pathways involved in immunotherapy. However, identifying the motif-specific interactome for each pY commonly found on these multi-phosphorylated membrane proteins remains challenging. Here, we describe a photoaffinity-based chemical proteomic approach to dissect the motif-specific cytoplasmic interactomes of the critical immune co-receptor CD28. Various full-length CD28 cytoplasmic tails (CD28cyto) with defined pY and selectively replaced photo-methionine were synthesized and applied to explore three pY-motif-dependent CD28cyto interactomes. We identified a stand-alone interaction of phospholipase PLCG1 with the Y191 motif with enhanced affinity for the sequence neighboring the transmembrane domain. Importantly, taking advantage of native top-down mass spectrometry with a 193-nm laser, we discovered the direct association of a previously undefined pY218 motif with the kinase PKCθ through its C2 domain. This synthetic CD28cyto-based photoaffinity proteomic approach is generically applicable to the study of other immune co-receptors with multiple pY sites on their linear cytoplasmic tail.
Collapse
|
4
|
Pohlmeyer CW, Shang C, Han P, Cui ZH, Jones RM, Clarke AS, Murray BP, Lopez DA, Newstrom DW, Inzunza MD, Matzkies FG, Currie KS, Di Paolo JA. Characterization of the mechanism of action of lanraplenib, a novel spleen tyrosine kinase inhibitor, in models of lupus nephritis. BMC Rheumatol 2021; 5:15. [PMID: 33781343 PMCID: PMC8008554 DOI: 10.1186/s41927-021-00178-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 01/22/2021] [Indexed: 12/19/2022] Open
Abstract
Background B cells are critical mediators of systemic lupus erythematosus (SLE) and lupus nephritis (LN), and antinuclear antibodies can be found in the serum of approximately 98% of patients with SLE. Spleen tyrosine kinase (SYK) is a nonreceptor tyrosine kinase that mediates signaling from immunoreceptors, including the B cell receptor. Active, phosphorylated SYK has been observed in tissues from patients with SLE or cutaneous lupus erythematosus, and its inhibition is hypothesized to ameliorate disease pathogenesis. We sought to evaluate the efficacy and characterize the mechanism of action of lanraplenib, a selective oral SYK inhibitor, in the New Zealand black/white (NZB/W) murine model of SLE and LN. Methods Lanraplenib was evaluated for inhibition of primary human B cell functions in vitro. Furthermore, the effect of SYK inhibition on ameliorating LN-like disease in vivo was determined by treating NZB/W mice with lanraplenib, cyclophosphamide, or a vehicle control. Glomerulopathy and immunoglobulin G (IgG) deposition were quantified in kidneys. The concentration of proinflammatory cytokines was measured in serum. Splenocytes were analyzed by flow cytometry for B cell maturation and T cell memory maturation, and the presence of T follicular helper and dendritic cells. Results In human B cells in vitro, lanraplenib inhibited B cell activating factor-mediated survival as well as activation, maturation, and immunoglobulin M production. Treatment of NZB/W mice with lanraplenib improved overall survival, prevented the development of proteinuria, and reduced blood urea nitrogen concentrations. Kidney morphology was significantly preserved by treatment with lanraplenib as measured by glomerular diameter, protein cast severity, interstitial inflammation, vasculitis, and frequency of glomerular crescents; treatment with lanraplenib reduced glomerular IgG deposition. Mice treated with lanraplenib had reduced concentrations of serum proinflammatory cytokines. Lanraplenib blocked disease-driven B cell maturation and T cell memory maturation in the spleen. Conclusions Lanraplenib blocked the progression of LN-like disease in NZB/W mice. Human in vitro and murine in vivo data suggest that lanraplenib may be efficacious in preventing disease progression in patients with LN at least in part by inhibiting B cell maturation. These data provide additional rationale for the use of lanraplenib in the treatment of SLE and LN. Supplementary Information The online version contains supplementary material available at 10.1186/s41927-021-00178-3.
Collapse
Affiliation(s)
| | - Ching Shang
- Department of Biology, Gilead Sciences, Inc., 333 Lakeside Dr, Foster City, CA, 94404, USA
| | - Pei Han
- Department of Biology, Gilead Sciences, Inc., 333 Lakeside Dr, Foster City, CA, 94404, USA
| | - Zhi-Hua Cui
- Department of Biology, Gilead Sciences, Inc., 333 Lakeside Dr, Foster City, CA, 94404, USA
| | - Randall M Jones
- Department of Biology, Gilead Sciences, Inc., 333 Lakeside Dr, Foster City, CA, 94404, USA
| | - Astrid S Clarke
- Department of Biology, Gilead Sciences, Inc., 333 Lakeside Dr, Foster City, CA, 94404, USA
| | - Bernard P Murray
- Department of Drug Metabolism, Gilead Sciences, Inc., Foster City, CA, USA
| | - David A Lopez
- Department of Biology, Gilead Sciences, Inc., 333 Lakeside Dr, Foster City, CA, 94404, USA
| | - David W Newstrom
- Department of Nonclinical Safety and Pathobiology, Gilead Sciences, Inc., Foster City, CA, USA
| | - M David Inzunza
- Department of Nonclinical Safety and Pathobiology, Gilead Sciences, Inc., Foster City, CA, USA
| | | | - Kevin S Currie
- Department of Chemistry, Gilead Sciences, Inc., Foster City, CA, USA
| | - Julie A Di Paolo
- Department of Biology, Gilead Sciences, Inc., 333 Lakeside Dr, Foster City, CA, 94404, USA
| |
Collapse
|
5
|
Plani-Lam JHC, Slavova-Azmanova NS, Kucera N, Louw A, Satiaputra J, Singer P, Lam KP, Hibbs ML, Ingley E. Csk-binding protein controls red blood cell development via regulation of Lyn tyrosine kinase activity. Exp Hematol 2016; 46:70-82.e10. [PMID: 27751872 DOI: 10.1016/j.exphem.2016.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/30/2016] [Accepted: 10/01/2016] [Indexed: 11/29/2022]
Abstract
Erythropoiesis is controlled principally through erythropoietin (Epo) receptor signaling, which involves Janus kinase 2 (JAK2) and Lyn tyrosine kinase, both of which are important for regulating red blood cell (RBC) development. Negative regulation of Lyn involves C-Src kinase (Csk)-mediated phosphorylation of its C-terminal tyrosine, which is facilitated by the transmembrane adaptor Csk-binding protein (Cbp). Although Cbp has significant functions in controlling Lyn levels and activity in erythroid cells in vitro, its importance to primary erythroid cell development and signaling has remained unclear. To address this, we assessed the consequence of loss of Cbp on the erythroid compartment in vivo and whether Epo-responsive cells isolated from Cbp-knockout mice exhibited altered signaling. Our data show that male Cbp-/- mice display a modest but significant alteration to late erythroid development in bone marrow with evidence of increased erythrocytes in the spleen, whereas female Cbp-/- mice exhibit a moderate elevation in early erythroid progenitors (not seen in male mice) that does not influence the later steps in RBC development. In isolated primary erythroid cells and cell lines generated from Cbp-/- mice, survival signaling through Lyn/Akt/FoxO3 was elevated, resulting in sustained viability during differentiation. The high Akt activity disrupted GAB2/SHP-2 feedback inhibition of Lyn; however, the elevated Lyn activity also increased inhibitory signaling via SHP-1 to restrict the Erk1/2 pathway. Interestingly, whereas loss of Cbp led to mild changes to late RBC development in male mice, this was not apparent in female Cbp-/- mice, possibly due to their elevated estrogen, which is known to facilitate early progenitor self-renewal.
Collapse
Affiliation(s)
- Janice H C Plani-Lam
- Cell Signalling Group, Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Neli S Slavova-Azmanova
- Cell Signalling Group, Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Nicole Kucera
- Cell Signalling Group, Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Alison Louw
- Cell Signalling Group, Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Jiulia Satiaputra
- Cell Signalling Group, Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Peter Singer
- Laboratory of Immunology, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Kong-Peng Lam
- Laboratory of Immunology, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Margaret L Hibbs
- Leukocyte Signalling Laboratory, Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC, Australia
| | - Evan Ingley
- Cell Signalling Group, Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
6
|
Alvarez-Errico D, Yamashita Y, Suzuki R, Odom S, Furumoto Y, Yamashita T, Rivera J. Functional analysis of Lyn kinase A and B isoforms reveals redundant and distinct roles in Fc epsilon RI-dependent mast cell activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:5000-8. [PMID: 20308635 PMCID: PMC2948211 DOI: 10.4049/jimmunol.0904064] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Engagement of FcepsilonRI causes its phosphorylation by Lyn kinase. Two alternatively spliced variants, Lyn A and B, are expressed in mast cells, and both isoforms interact with FcepsilonRI. Unlike Lyn A, Lyn B lacks a 21-aa region in the N-terminal unique domain. In this study, we investigated the role of Lyn A and B isoforms in mast cell signaling and responses. Lyn B was found to be a poor inducer of mast cell degranulation and was less potent in both inositol 1,4,5-triphosphate production and calcium responses. Expression of Lyn B alone showed reduced phosphorylation of both phospholipase Cgamma-1 and -2 and decreased interaction of phospholipase Cgamma-1 with the phosphorylated linker for activation of T cells. Lyn B also showed increased binding of tyrosine-phosphorylated proteins, which included the negative regulatory lipid phosphatase SHIP-1. In contrast, both Lyn A and B caused similar total cellular tyrosine phosphorylation and FcepsilonRI phosphorylation and neither Lyn A nor Lyn B alone could completely restore mast cell degranulation or dampen the excessive cytokine production seen in the absence of Lyn. However, expression of both isoforms showed complementation and normalized responses. These findings demonstrate that Lyn B differs from Lyn A in its association with SHIP-1 and in the regulation of calcium responses. However, complementation of both isoforms is required in mast cell activation.
Collapse
Affiliation(s)
- Damiana Alvarez-Errico
- Laboratory of Molecular Imunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892
| | - Yumi Yamashita
- Laboratory of Molecular Imunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892
- Department of Immunology, School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan
| | - Ryo Suzuki
- Laboratory of Molecular Imunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892
| | - Sandra Odom
- Laboratory of Molecular Imunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892
| | - Yasuko Furumoto
- Laboratory of Molecular Imunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892
| | - Toshiyuki Yamashita
- Laboratory of Molecular Imunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892
- Department of Immunology, School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan
| | - Juan Rivera
- Laboratory of Molecular Imunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892
| |
Collapse
|
7
|
Geahlen RL. Syk and pTyr'd: Signaling through the B cell antigen receptor. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1793:1115-27. [PMID: 19306898 PMCID: PMC2700185 DOI: 10.1016/j.bbamcr.2009.03.004] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 03/06/2009] [Indexed: 11/18/2022]
Abstract
The B cell receptor (BCR) transduces antigen binding into alterations in the activity of intracellular signaling pathways through its ability to recruit and activate the cytoplasmic protein-tyrosine kinase Syk. The recruitment of Syk to the receptor, its activation and its subsequent interactions with downstream effectors are all regulated by its phosphorylation on tyrosine. This review discusses our current understanding of how this phosphorylation regulates the activity of Syk and its participation in signaling through the BCR.
Collapse
Affiliation(s)
- Robert L Geahlen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
8
|
Wälchli S, Aasheim HC, Skånland SS, Spilsberg B, Torgersen ML, Rosendal KR, Sandvig K. Characterization of clathrin and Syk interaction upon Shiga toxin binding. Cell Signal 2009; 21:1161-8. [PMID: 19289168 DOI: 10.1016/j.cellsig.2009.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Accepted: 03/05/2009] [Indexed: 11/19/2022]
Abstract
Shiga toxin (Stx) is a bacterial toxin that binds to its receptor Gb3 at the plasma membrane. It is taken up by endocytosis and transported retrogradely via the Golgi apparatus to the endoplasmic reticulum. The toxin is then translocated to the cytosol where it exerts its toxic effect. We have previously shown that phosphorylation of clathrin heavy chain (CHC) is an early event following Stx binding to HeLa cells, and that this requires the activity of the tyrosine kinase Syk. Here, we have investigated this event in more detail in the B lymphoid cell line Ramos, which expresses high endogenous levels of both Syk and Gb3. We report that efficient endocytosis of Stx in Ramos cells requires Syk activity and that Syk is recruited to the uptake site of Stx. Furthermore, in response to Stx treatment, CHC and Syk were rapidly phosphorylated in a Src family kinase dependent manner at Y1477 and Y352, respectively. We show that these phosphorylated residues act as binding sites for the direct interaction between Syk and CHC. Interestingly, Syk-CHC complex formation could be induced by both Stx and B cell receptor stimulation.
Collapse
Affiliation(s)
- Sébastien Wälchli
- Department of Biochemistry, Institute for Cancer Research, Faculty Division: The Norwegian Radium Hospital, Montebello, Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
9
|
Pinchuk GV, Lee SR, Nanduri B, Honsinger KL, Stokes JV, Pinchuk LM. Bovine viral diarrhea viruses differentially alter the expression of the protein kinases and related proteins affecting the development of infection and anti-viral mechanisms in bovine monocytes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1234-47. [DOI: 10.1016/j.bbapap.2008.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 05/05/2008] [Accepted: 05/06/2008] [Indexed: 10/22/2022]
|
10
|
Kyttaris VC, Tsokos GC. Syk kinase as a treatment target for therapy in autoimmune diseases. Clin Immunol 2007; 124:235-7. [PMID: 17662659 PMCID: PMC1986716 DOI: 10.1016/j.clim.2007.06.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 06/01/2007] [Indexed: 01/03/2023]
Abstract
Spleen tyrosine kinase (Syk) associates with a variety of immunoreceptors in myeloid and lymphoid cells. Syk initiates intracellular signaling once the receptor is engaged by its ligand. Blocking Syk may prove beneficial in interrupting the propagation of the abnormal immune response in both autoimmune and allergic diseases.
Collapse
Affiliation(s)
- Vasileios C Kyttaris
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard Institutes of Medicine, HIM-238, 4 Blackfan Circle, Boston, MA 02115, USA.
| | | |
Collapse
|
11
|
Lee JH, Kim YM, Kim NW, Kim JW, Her E, Kim BK, Kim JH, Ryu SH, Park JW, Seo DW, Han JW, Beaven MA, Choi WS. Phospholipase D2 acts as an essential adaptor protein in the activation of Syk in antigen-stimulated mast cells. Blood 2006; 108:956-64. [PMID: 16861349 PMCID: PMC1895856 DOI: 10.1182/blood-2005-10-009159] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Mast cells are responsible for IgE-mediated allergic reactions. Phospholipase D1 (PLD1) and PLD2 regulate mast cell activation, but the mechanisms remain unclear. Here we show that PLD2 associates with and promotes activation of Syk, a key enzyme in mast cell activation. Antigen stimulation resulted in increased association and colocalization of Syk with PLD2 on the plasma membrane as indicated by coimmunoprecipitation and confocal microscopy. This association was dependent on tyrosine phosphorylation of Syk but not on PLD2 activity. In vitro, PLD2 interacted via its Phox homology (PX) domain with recombinant Syk to induce phosphorylation and activation of Syk. Furthermore, overexpression of PLD2 or catalytically inactive PLD2K758R enhanced antigen-induced phosphorylations of Syk and its downstream targets, the adaptor proteins LAT and SLP-76, while expression of a PLD2 siRNA blocked these phosphorylations. Apparently, the interaction of PLD2 with Syk is an early critical event in the activation of mast cells.
Collapse
Affiliation(s)
- Jun Ho Lee
- Department of Immunology, College of Medicine, Konkuk University, Chungju 380-701, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Zhou F, Hu J, Ma H, Harrison ML, Geahlen RL. Nucleocytoplasmic trafficking of the Syk protein tyrosine kinase. Mol Cell Biol 2006; 26:3478-91. [PMID: 16611990 PMCID: PMC1447433 DOI: 10.1128/mcb.26.9.3478-3491.2006] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protein tyrosine kinase Syk couples the B-cell receptor (BCR) for antigen to multiple intracellular signaling pathways and also modulates cellular responses to inducers of oxidative stress in a receptor-independent fashion. In B cells, Syk is found in both the nuclear and cytoplasmic compartments but contains no recognizable nuclear localization or export signals. Through the analysis of a series of deletion mutants, we identified the presence of an unconventional shuttling sequence near the junction of the catalytic domain and the linker B region that accounts for Syk's subcellular localization. This localization is altered following prolonged engagement of the BCR, which causes Syk to be excluded from the nucleus. Nuclear exclusion requires the receptor-mediated activation of protein kinase C and new protein synthesis. Both of these processes also potentiate the activation of caspase 3 in cells in response to oxidative stress in a manner that is dependent on the localization of Syk outside of the nucleus. In contrast, restriction of Syk to the nucleus greatly diminishes the stress-induced activation of caspase 3.
Collapse
Affiliation(s)
- Fei Zhou
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 201 S. University St., West Lafayette, IN 47907-2064, USA
| | | | | | | | | |
Collapse
|
13
|
|
14
|
Moon KD, Post CB, Durden DL, Zhou Q, De P, Harrison ML, Geahlen RL. Molecular basis for a direct interaction between the Syk protein-tyrosine kinase and phosphoinositide 3-kinase. J Biol Chem 2004; 280:1543-51. [PMID: 15536084 DOI: 10.1074/jbc.m407805200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
After engagement of the B cell receptor for antigen, the Syk protein-tyrosine kinase becomes phosphorylated on multiple tyrosines, some of which serve as docking sites for downstream effectors with SH2 or other phosphotyrosine binding domains. The most frequently identified binding partner for catalytically active Syk identified in a yeast two-hybrid screen was the p85 regulatory subunit of phosphoinositide 3-kinase. The C-terminal SH2 domain of p85 was sufficient for mediating an interaction with tyrosine-phosphorylated Syk. Interestingly, this domain interacted with Syk at phosphotyrosine 317, a site phosphorylated in trans by the Src family kinase, Lyn, and identified previously as a binding site for c-Cbl. This site interacted preferentially with the p85 C-terminal SH2 domain compared with the c-Cbl tyrosine kinase binding domain. Molecular modeling studies showed a good fit between the p85 SH2 domain and a peptide containing phosphotyrosine 317. Tyr-317 was found to be essential for Syk to support phagocytosis mediated by FcgammaRIIA receptors expressed in a heterologous system. These studies establish a new type of p85 binding site that can exist on proteins that serve as substrates for Src family kinases and provide a molecular explanation for observations on direct interactions between Syk and phosphoinositide 3-kinase.
Collapse
Affiliation(s)
- Kyung D Moon
- Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Cancer Center, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Goodman PA, Burkhardt N, Juran B, Tibbles HE, Uckun FM. Hypermethylation of the spleen tyrosine kinase promoter in T-lineage acute lymphoblastic leukemia. Oncogene 2003; 22:2504-14. [PMID: 12717427 DOI: 10.1038/sj.onc.1206313] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sequence analysis of the noncoding first exon (exon 1) of the Syk gene demonstrated the presence of a previously cloned CpG island (GenBank #Z 65706). Transient transfection analysis in Daudi cells demonstrated promoter activity (18-fold increase over parental luciferase plasmid) for a 348 bp BstXI-BsrBI fragment containing this island. This region exhibits a high GC content (approximately 75%), contains several SP1 binding sites and a potential initiator sequence, but lacks a strong TATA consensus. Bisulfite sequencing and methylation-specific PCR (MSP) of this region demonstrated that the Syk promoter CpG island was largely unmethylated in B-lineage leukemia cell lines, control peripheral blood cells, human thymocytes and CD3(+) T lymphocytes. However, dense methylation was seen in four T-lineage leukemia cell lines, Jurkat, H9, Molt 3 and HUT 78. MSP screening of leukemia cells from six T-lineage acute lymphoblastic leukemia (ALL) patients demonstrated methylation of the Syk promoter CpG island in one T-lineage ALL patient. Promoter methylation was correlated with reduced to absent expression of Syk mRNA and SYK protein in the T-lineage leukemia cell lines. Treatment of the leukemia lines Ha and Molt 3, with the methylation inhibitor, 5-aza-2'-deoxycytidine (5-aza-CdR) resulted in increased Syk mRNA expression. The presence of a methylated promoter sequence in these T-lineage leukemia cell lines and in one T-lineage patient suggests a potential role for SYK as a tumor suppressor in T-ALL.
Collapse
Affiliation(s)
- Patricia A Goodman
- Department of Molecular Genetics, Parker Hughes Institute and Parker Hughes Cancer Center, 2699 Patton Road, St Paul, MN 55113, USA
| | | | | | | | | |
Collapse
|
16
|
Yankee TM, Solow SA, Draves KD, Clark EA. Expression of the Grb2-related protein of the lymphoid system in B cell subsets enhances B cell antigen receptor signaling through mitogen-activated protein kinase pathways. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:349-55. [PMID: 12496419 DOI: 10.4049/jimmunol.170.1.349] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adapter proteins play a critical role in regulating signals triggered by Ag receptor cross-linking. These small molecules link receptor proximal events with downstream signaling pathways. In this study, we explore the expression and function of the Grb2-related protein of the lymphoid system (GrpL)/Grb2-related adaptor downstream of Shc adapter protein in human B cells. GrpL is expressed in naive B cells and is down-regulated following B cell Ag receptor ligation. By contrast, germinal center and memory B cells express little or no GrpL. Using human B cell lines, we detected constitutive interactions between GrpL and B cell linker protein, Src homology (SH)2 domain-containing leukocyte protein of 76 kDa, hemopoietic progenitor kinase 1, and c-Cbl. The N-terminal SH3 domain of GrpL binds c-Cbl while the C-terminal SH3 domain binds B cell linker protein and SH2 domain-containing leukocyte protein of 76 kDa. Exogenous expression of GrpL in a GrpL-negative B cell line leads to enhanced Ag receptor-induced extracellular signal-related kinase and p38 mitogen-activated protein kinase phosphorylation. Thus, GrpL expression in human B cell subsets appears to regulate Ag receptor-mediated signaling events.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adjuvants, Immunologic/biosynthesis
- Adjuvants, Immunologic/genetics
- Adjuvants, Immunologic/metabolism
- Adjuvants, Immunologic/physiology
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/metabolism
- Carrier Proteins/biosynthesis
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Carrier Proteins/physiology
- Down-Regulation/genetics
- Down-Regulation/immunology
- GRB2 Adaptor Protein
- Humans
- Interphase/genetics
- Interphase/immunology
- Lymphocyte Activation/genetics
- Lymphoid Tissue/cytology
- Lymphoid Tissue/immunology
- Lymphoid Tissue/metabolism
- MAP Kinase Signaling System/immunology
- Mutagenesis, Site-Directed
- Palatine Tonsil
- Phosphoproteins/metabolism
- Protein Biosynthesis
- Protein Serine-Threonine Kinases/metabolism
- Proteins/physiology
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-cbl
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/physiology
- Tumor Cells, Cultured
- Ubiquitin-Protein Ligases
- src Homology Domains/genetics
Collapse
Affiliation(s)
- Thomas M Yankee
- Department of Microbiology, University of Washington, Seattle WA 98195, USA.
| | | | | | | |
Collapse
|
17
|
Goodman PA, Jurana B, Wood CM, Uckun F. Genomic studies of the spleen protein tyrosine kinase locus reveal a complex promoter structure and several genetic variants. Leuk Lymphoma 2002; 43:1627-35. [PMID: 12400606 DOI: 10.1080/1042819021000002965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Here we show that the gene of the cytoplasmic tyrosine kinase SYK spans a region of 90kb with 13 coding exons, an alternative exon 14 and at least two 5' untranslated regions exons 1a and 1b. 5' RACE (Rapid amplification of cDNA ends) of human Syk cDNAs demonstrated a complex promoter usage and splicing pattern. We identified three common single nucleotide polymorphisms in the exon la promoter region of the Syk gene as well as a variant Syk cDNA haplotype. This haplotype was characterized by a constellation of 5 silent mutations in the Syk cDNA: 1065(C-T), 1302(G-C), 1338(G-A), 1521(C-T) and 1545(T-C). A hypervariable CATATA(n) repeat polymorphism was also localized to the intron between exons 11 and 12. These novel insights into the genomic organization, promoter structure and genetic variability of Syk will serve as a foundation for detailed molecular epidemiological investigation of its potential role in human cancer biology.
Collapse
Affiliation(s)
- Patricia A Goodman
- Department of Molecular Genetics, Parker Hughes Institute and Parker Hughes Cancer Center St Paul, MN 55113, USA
| | | | | | | |
Collapse
|
18
|
Goodman PA, Wood CM, Vassilev A, Mao C, Uckun FM. Spleen tyrosine kinase (Syk) deficiency in childhood pro-B cell acute lymphoblastic leukemia. Oncogene 2001; 20:3969-78. [PMID: 11494125 DOI: 10.1038/sj.onc.1204515] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2001] [Revised: 04/03/2001] [Accepted: 04/09/2001] [Indexed: 01/27/2023]
Abstract
The cytoplasmic spleen tyrosine kinase (SYK) is a key regulator of signal transduction events, apoptosis and orderly cell cycle progression in B-lineage lymphoid cells. Although SYK has not been linked to a human disease, defective expression of the closely related T-cell tyrosine kinase ZAP-70 has been associated with severe combined immunodeficiency. Childhood CD19(+)CD10(-) pro-B cell acute lymphoblastic leukemia (ALL) is thought to originate from B-cell precursors with a maturational arrest at the pro-B cell stage and it is associated with poor prognosis. Since lethally irradiated mice reconstituted with SYK-deficient fetal liver-derived lymphohematopoietic progenitor cells show a block in B-cell ontogeny at the pro-B to pre-B cell transition, we examined the SYK expression profiles of primary leukemic cells from children with pro-B cell ALL. Here we report that leukemic cells from pediatric CD19(+)CD10(-) pro-B cell ALL patients (but not leukemic cells from patients with CD19(+)CD10(+) common pre-pre-B cell ALL) have markedly reduced SYK activity. Sequencing of the reverse transcriptase-polymerase chain reaction (RT-PCR) products of the Syk mRNA in these pro-B leukemia cells revealed profoundly aberrant coding sequences with deletions or insertions. These mRNA species encode abnormal SYK proteins with a missing or truncated catalytic kinase domain. In contrast to pro-B leukemia cells, pre-pre-B leukemia cells from children with CD19(+)CD10(+) common B-lineage ALL and EBV-transformed B-cell lines from healthy volunteers expressed wild-type Syk coding sequences. Examination of the genomic structure of the Syk gene by inter-exonic PCR and genomic cloning demonstrated that the deletions and insertions in the abnormal mRNA species of pro-B leukemia cells are caused by aberrant splicing resulting in either mis-splicing, exon skipping or inclusion of alternative exons, consistent with an abnormal posttranscriptional regulation of alternative splicing of Syk pre-mRNA. Our findings link for the first time specific molecular defects involving the Syk gene to an immunophenotypically distinct category of childhood ALL. To our knowledge, this is the first discovery of a specific tyrosine kinase deficiency in a human hematologic malignancy.
Collapse
Affiliation(s)
- P A Goodman
- Department of Molecular Genetics, Parker Hughes Institute & Parker Hughes Cancer Center, St Paul, Minnesota, MN 55113, USA
| | | | | | | | | |
Collapse
|
19
|
Tabata H, Matsuoka T, Endo F, Nishimura Y, Matsushita S. Ligation of HLA-DR molecules on B cells induces enhanced expression of IgM heavy chain genes in association with Syk activation. J Biol Chem 2000; 275:34998-5005. [PMID: 10948188 DOI: 10.1074/jbc.m002089200] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signals transmitted by class II major histocompatibility complex are important regarding cell function related to antigen presentation. We examined effects of DR-mediated signaling on Ig production from B cells. Cross-linking HLA-DR molecules on B cells by solid-phase anti-HLA-DR monoclonal antibodies, led to an increased production of IgM, without proliferation or apoptosis. This event was accompanied by an enhanced expression of both membrane- and secretory-type IgM heavy chain mRNA. When peptide-pulsed B cells were co-incubated with an HLA-DR-restricted T cell clone treated by the protein synthesis inhibitor emetine, peptide-induced de novo expression of lymphokines and cell-surface molecules on T cells can be neglected. CD40-CD154 interaction was not involved in IgM enhancement, in such a system. The protein-tyrosine kinase inhibitors and the Syk inhibitor piceatannol, but not the Src inhibitor PP2 had a marked inhibitory effect on IgM secretion. Furthermore, ligation of HLA-DR on B cells using the F(ab')2 fragment of anti-DR monoclonal antibody, enhanced Syk activity. Our data suggest that HLA-DR on B cells not only present antigenic peptides to T cells, but also up-regulate IgM production, in association with Syk activation and without the involvement of Src kinases, hence the possible physiological relevance of Src-independent Syk activation.
Collapse
Affiliation(s)
- H Tabata
- Division of Immunogenetics, Department of Neuroscience and Immunology, Kumamoto University Graduate School of Medical Sciences and the Department of Pediatrics, Kumamoto University School of Medicine, Kumamoto 860-0811, Japan
| | | | | | | | | |
Collapse
|
20
|
Rebecchi MJ, Pentyala SN. Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol Rev 2000; 80:1291-335. [PMID: 11015615 DOI: 10.1152/physrev.2000.80.4.1291] [Citation(s) in RCA: 738] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Phosphoinositide-specific phospholipase C (PLC) subtypes beta, gamma, and delta comprise a related group of multidomain phosphodiesterases that cleave the polar head groups from inositol lipids. Activated by all classes of cell surface receptor, these enzymes generate the ubiquitous second messengers inositol 1,4, 5-trisphosphate and diacylglycerol. The last 5 years have seen remarkable advances in our understanding of the molecular and biological facets of PLCs. New insights into their multidomain arrangement and catalytic mechanism have been gained from crystallographic studies of PLC-delta(1), while new modes of controlling PLC activity have been uncovered in cellular studies. Most notable is the realization that PLC-beta, -gamma, and -delta isoforms act in concert, each contributing to a specific aspect of the cellular response. Clues to their true biological roles were also obtained. Long assumed to function broadly in calcium-regulated processes, genetic studies in yeast, slime molds, plants, flies, and mammals point to specific and conditional roles for each PLC isoform in cell signaling and development. In this review we consider each subtype of PLC in organisms ranging from yeast to mammals and discuss their molecular regulation and biological function.
Collapse
Affiliation(s)
- M J Rebecchi
- Departments of Anesthesiology and Physiology and Biophysics, School of Medicine, State University of New York, Stony Brook, New York 11794, USA.
| | | |
Collapse
|
21
|
Ganju RK, Brubaker SA, Chernock RD, Avraham S, Groopman JE. Beta-chemokine receptor CCR5 signals through SHP1, SHP2, and Syk. J Biol Chem 2000; 275:17263-8. [PMID: 10747947 DOI: 10.1074/jbc.m000689200] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The beta-chemokine receptor CCR5 has been shown to modulate cell migration, proliferation, and immune functions and to serve as a co-receptor for the human immunodeficiency virus. We and others have shown that CCR5 activates related adhesion focal tyrosine kinase (RAFTK)/Pyk2/CAK-beta. In this study, we further characterize the signaling molecules activated by CCR5 upon binding to its cognate ligand, macrophage inflammatory protein-1beta (MIP1beta). We observed enhanced tyrosine phosphorylation of the phosphatases SHP1 and SHP2 upon MIP1beta stimulation of CCR5 L1.2 transfectants and T-cells derived from peripheral blood mononuclear cells. Furthermore, we observed that SHP1 associated with RAFTK. However, using a dominant-negative phosphatase-binding mutant of RAFTK (RAFTK(m906)), we found that RAFTK does not mediate SHP1 or SHP2 phosphorylation. SHP1 and SHP2 also associated with the adaptor protein Grb2 and the Src-related kinase Syk. Pretreatment of CCR5 L1.2 transfectants or T-cells with the phosphatase inhibitor orthovanadate markedly abolished MIP1beta-induced chemotaxis. Syk was also activated upon MIP1beta stimulation of CCR5 L1.2 transfectants or T-cells and associated with RAFTK. Overexpression of a dominant-negative Src-binding mutant of RAFTK (RAFTK(m402)) significantly attenuated Syk activation, whereas overexpression of wild-type RAFTK enhanced Syk activity, indicating that RAFTK acts upstream of CCR5-mediated Syk activation. Taken together, these results suggest that MIP1beta stimulation mediated by CCR5 induces the formation of a signaling complex consisting of RAFTK, Syk, SHP1, and Grb2.
Collapse
Affiliation(s)
- R K Ganju
- Division of Experimental Medicine, Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | |
Collapse
|
22
|
Tasker L, Marshall-Clarke S. Antigen receptor signalling in apoptosis-resistant mutants of WEHI 231 cells. Immunology 2000; 99:385-93. [PMID: 10712668 PMCID: PMC2327163 DOI: 10.1046/j.1365-2567.2000.00976.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ligation of membrane immunoglobulin M (mIgM) induces cell cycle arrest and apoptosis in the WEHI 231 B-lymphoma cell line. The molecular mechanisms which link receptor ligation and the nuclear events that underlie this response, have yet to be fully elucidated. Here we have examined the signals induced following mIgM cross-linking in variants of WEHI 231 that no longer undergo apoptosis in response to this stimulus. Tyrosine phosphorylation of cellular substrates in two of the variants is identical to that seen in wild-type cells but in one of the mutants, VS2.12, a restricted set of substrates becomes tyrosine phosphorylated. In a second variant (E8), mIgM cross-linking does not induce elevation of intracellular Ca2+, although tyrosine phosphorylation of PLCgamma2 is induced to an equivalent extent to that seen in WEHI 231 cells. A third variant, 2E10.F9, is resistant to apoptosis despite the fact that all signals analysed appear to be similar to those induced in wild-type cells. Our findings show that resistance to apoptosis can arise as a result of mutations affecting discrete stages of the mIgM signalling pathway. The mutant lines reported here show defects that have not yet been identified in previous studies and are likely to be useful tools in dissecting the signalling of cell death in B lymphocytes.
Collapse
Affiliation(s)
- L Tasker
- Department of Human Anatomy and Cell Biology, The University of Liverpool, New Medical School, Liverpool, UK
| | | |
Collapse
|
23
|
Justement LB. Signal transduction via the B-cell antigen receptor: the role of protein tyrosine kinases and protein tyrosine phosphatases. Curr Top Microbiol Immunol 1999; 245:1-51. [PMID: 10533309 DOI: 10.1007/978-3-642-57066-7_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
MESH Headings
- Adaptor Proteins, Signal Transducing
- Agammaglobulinaemia Tyrosine Kinase
- Animals
- Antigens/metabolism
- Antigens, CD/metabolism
- Antigens, CD/physiology
- Antigens, Differentiation, B-Lymphocyte/metabolism
- B-Lymphocytes/metabolism
- CD79 Antigens
- Calcium/metabolism
- Carrier Proteins/metabolism
- Cell Adhesion Molecules
- Enzyme Activation
- Enzyme Precursors/metabolism
- Gene Expression Regulation
- Humans
- Immunoglobulin M/metabolism
- Intracellular Signaling Peptides and Proteins
- Lectins
- Oncogene Proteins/metabolism
- Phosphoproteins/metabolism
- Phosphorylation
- Protein Tyrosine Phosphatase, Non-Receptor Type 11
- Protein Tyrosine Phosphatase, Non-Receptor Type 6
- Protein Tyrosine Phosphatases/metabolism
- Protein Tyrosine Phosphatases/physiology
- Protein-Tyrosine Kinases/metabolism
- Protein-Tyrosine Kinases/physiology
- Proteins/metabolism
- Proto-Oncogene Proteins c-vav
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/physiology
- Receptors, IgG/metabolism
- Sialic Acid Binding Ig-like Lectin 2
- Signal Transduction/immunology
- Signal Transduction/physiology
- Syk Kinase
- Type C Phospholipases/metabolism
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- L B Justement
- Department of Microbiology, University of Alabama at Birmingham 35294-3300, USA
| |
Collapse
|
24
|
Gross BS, Melford SK, Watson SP. Evidence that phospholipase C-gamma2 interacts with SLP-76, Syk, Lyn, LAT and the Fc receptor gamma-chain after stimulation of the collagen receptor glycoprotein VI in human platelets. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 263:612-23. [PMID: 10469124 DOI: 10.1046/j.1432-1327.1999.00560.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Platelet activation by collagen is mediated by the sequential tyrosine phosphorylation of the Fc receptor gamma-chain (FcR gamma-chain), which is part of the collagen receptor glycoprotein VI, the tyrosine kinase Syk and phospholipase C-gamma2 (PLC-gamma2). In this study tyrosine-phosphorylated proteins that associate with PLC-gamma2 after stimulation by a collagen-related peptide (CRP) were characterized using glutathione S-transferase fusion proteins of PLC-gamma2 Src homology (SH) domains and by immunoprecipitation of endogenous PLC-gamma2. The majority of the tyrosine-phosphorylated proteins that associate with PLC-gamma2 bind to its C-terminal SH2 domain. These were found to include PLC-gamma2, Syk, SH2-domain-containing leucocyte protein of 76 kDa (SLP-76), Lyn, linker for activation of T cells (LAT) and the FcR gamma-chain. Direct association was detected between PLC-gamma2 and SLP-76, and between PLC-gamma2 and LAT upon CRP stimulation of platelets by far-Western blotting. FcR gamma-chain and Lyn were found to co-immunoprecipitate with PLC-gamma2 as well as with unidentified 110-kDa and 75-kDa phosphoproteins. The absence of an in vivo association between Syk and PLC-gamma2 in platelets is in contrast with that for PLC-gamma1 and Syk in B cells. The in vivo function of PLC-gamma2 SH2 domains was examined through measurement of Ca2+ increases in mouse megakaryocytes that had been microinjected with recombinant proteins. This revealed that the C-terminal SH2 domain is involved in the regulation of PLC-gamma2. These data indicate that the C-terminal SH2 domain of PLC-gamma2 is important for PLC-gamma2 regulation through possible interactions with SLP-76, Syk, Lyn, LAT and the FcR gamma-chain.
Collapse
Affiliation(s)
- B S Gross
- Department of Pharmacology, University of Oxford, UK
| | | | | |
Collapse
|
25
|
Xu R, Seger R, Pecht I. Cutting Edge: Extracellular Signal-Regulated Kinase Activates Syk: A New Potential Feedback Regulation of Fcε Receptor Signaling. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.3.1110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
The protein tyrosine kinase Syk is an essential element in several cascades coupling Ag receptors to cell responses. Syk and the mitogen-activated protein kinase extracellular signal-regulated kinase 1 (ERK1) were found to form a tight complex in both resting and Ag-stimulated rat mucosal-type mast cells (rat basophilic leukemia 2H3 cell line RBL-2H3). A direct serine phosphorylation and activation of Syk by ERK was observed in in vitro experiments. Moreover the mitogen-activated protein kinase/extracellular signal-regulated protein kinase (ERK) kinase (MEK) inhibitors markedly decreased the Ag-induced phosphorylation of the tyrosyl residues of Syk and its activation as well as suppressed the degranulation of the cells. These results suggest a positive feedback regulation of Syk by ERK in the cascade coupling the type 1 Fcε receptor to the secretory response of mast cells; hence, the existence of a novel type of cross-talk between protein serine/threonine kinases and protein tyrosine kinases is suggested.
Collapse
Affiliation(s)
| | - Rony Seger
- †Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
26
|
Craxton A, Otipoby KL, Jiang A, Clark EA. Signal transduction pathways that regulate the fate of B lymphocytes. Adv Immunol 1999; 73:79-152. [PMID: 10399006 DOI: 10.1016/s0065-2776(08)60786-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- A Craxton
- Department of Microbiology, University of Washington, Seattle 98195, USA
| | | | | | | |
Collapse
|
27
|
Bubeck-Wardenburg J, Wong J, Fütterer K, Pappu R, Fu C, Waksman G, Chan AC. Regulation of antigen receptor function by protein tyrosine kinases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1999; 71:373-92. [PMID: 10354705 DOI: 10.1016/s0079-6107(98)00060-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- J Bubeck-Wardenburg
- Departments of Internal Medicine and Pathology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Alzheimer's disease (AD) is a devastating neurological disorder characterized by loss of cognitive skills and progressive dementia. The pathological hallmark of AD is the presence of numerous senile plaques throughout the hippocampus and cerebral cortex associated with degenerating axons, neurofibrillary tangles, and gliosis. The core of the senile plaque primarily is composed of the 39-43 amino acid beta-amyloid peptide (Abeta), which forms fibrils of beta-pleated sheets. Although considerable genetic evidence implicates Abeta in the pathogenesis of AD, a direct causal link remains to be established. Senile plaques are foci of local inflammatory processes, as evidenced by the presence of numerous activated microglia and acute phase proteins. Abeta has been shown to elicit inflammatory responses in microglia; however, the intracellular events mediating these effects are largely unknown. We report that exposure of microglia and THP1 monocytes to fibrillar Abeta led to time- and dose-dependent increases in protein tyrosine phosphorylation of a population of proteins similar to that elicited by classical immune stimuli such as immune complexes. The tyrosine kinases Lyn, Syk, and FAK were activated on exposure of microglia and THP1 monocytes to Abeta, resulting in the tyrosine kinase-dependent generation of superoxide radicals. The present data support a role for oxidative damage in the pathogenesis of AD, provide an important mechanistic link between Abeta and the generation of reactive oxygen intermediates, and identify molecular targets for therapeutic intervention in AD.
Collapse
|
29
|
|
30
|
Keshvara LM, Isaacson CC, Yankee TM, Sarac R, Harrison ML, Geahlen RL. Syk- and Lyn-Dependent Phosphorylation of Syk on Multiple Tyrosines Following B Cell Activation Includes a Site That Negatively Regulates Signaling. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.10.5276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
The Syk protein tyrosine kinase is an essential component of the B cell Ag receptor signaling pathway. Syk is phosphorylated on tyrosine following B cell activation. However, the sites that are modified and the kinases responsible for these modifications have yet to be determined. To approach this problem, we used a mapping strategy based on the electrophoretic separation of peptides on alkaline polyacrylamide gels to identify the tryptic phosphopeptides derived from metabolically labeled Syk. In this work, we report that Syk from activated B cells is phosphorylated principally on six tyrosines: one located between the tandem SH2 domains (Tyr130); three in the linker region (Tyr317, Tyr342, and Tyr346); and two in the catalytic domain (Tyr519 and Tyr520). The linker region sites are the primary targets of the Src family protein tyrosine kinase, Lyn, and include a site that negatively (Tyr317) regulates receptor signaling. Efficient phosphorylation of the catalytic domain and inter-SH2 domain tyrosines is catalyzed primarily by Syk itself, but only occurs to an appreciable extent in cells that express Lyn. We propose that these sites are phosphorylated following the binding of Syk to immunoreceptor tyrosine-based activation motif.
Collapse
Affiliation(s)
- Lakhu M. Keshvara
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907
| | - Christina C. Isaacson
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907
| | - Thomas M. Yankee
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907
| | - Radmila Sarac
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907
| | - Marietta L. Harrison
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907
| | - Robert L. Geahlen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
31
|
Nishizumi H, Horikawa K, Mlinaric-Rascan I, Yamamoto T. A double-edged kinase Lyn: a positive and negative regulator for antigen receptor-mediated signals. J Exp Med 1998; 187:1343-8. [PMID: 9547345 PMCID: PMC2212230 DOI: 10.1084/jem.187.8.1343] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
B cells from young lyn-/- mice are hyperresponsive to anti-IgM-induced proliferation, suggesting involvement of Lyn in negative regulation of B cell antigen receptor (BCR)-mediated signaling. Here we show that tyrosine phosphorylation of FcgammaRIIB and CD22 coreceptors, which are important for feedback suppression of BCR-induced signaling, was severely impaired in lyn-/- B cells upon their coligation with the BCR. Hypophosphorylation on tyrosine residues of these molecules resulted in failure of recruiting the tyrosine phosphatase SHP-1 and inositol phosphatase SHIP, SH2-containing potent inhibitors of BCR-induced B cell activation, to the coreceptors. Consequently, lyn-/- B cells exhibited defects in suppressing BCR-induced Ca2+ influx and proliferation. Thus, Lyn is critically important in tyrosine phosphorylation of the coreceptors, which is required for feedback suppression of B cell activation.
Collapse
Affiliation(s)
- H Nishizumi
- Department of Oncology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | | | | | | |
Collapse
|
32
|
Pedersen AE, Bregenholt S, Skov S, Vrang ML, Claesson MH. Protein tyrosine kinases p53/56lyn and p72syk in MHC class I-mediated signal transduction in B lymphoma cells. Exp Cell Res 1998; 240:144-50. [PMID: 9570929 DOI: 10.1006/excr.1998.4014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Crosslinking of major histocompatibility complex class I (MHC-I) molecules on the surface of human B lymphoma cells was shown to induce protein tyrosine phosphorylation and mobilization of intracellular free calcium. Immunoprecipitations indicated that the protein tyrosine kinases p53/56lyn and p72syk are among the tyrosine-phosphorylated proteins. The kinetics of phosphorylation of these kinases after MHC-I crosslinking differ from the kinetics observed after crosslinking of the B cell antigen receptor (BCR). Additional experiments were performed with chicken lyn- and syk-negative DT40 B cells and the results indicate that these two kinases have different substrate specificity and regulate intracellular free calcium differently in response to MHC-I crosslinking. In addition MHC-I crosslinking of a sIgM-negative DT40 chicken B cell variant results in less activity of tyrosine kinases and less mobilization of intracellular free calcium compared with MHC-I crosslinking of wild-type DT40 cells. Thus, expression of BCR at the cell surface is likely to be important for the signal cascade initiated by MHC-I crosslinking. Our data suggest that signal transduction initiated through ligation of the MHC-I molecule plays a role in the regulation of B cell homeostasis.
Collapse
Affiliation(s)
- A E Pedersen
- Department of Medical Anatomy, Panum Institute, University of Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
33
|
Sozzani P, Hasan L, Séguélas MH, Caput D, Ferrara P, Pipy B, Cambon C. IL-13 induces tyrosine phosphorylation of phospholipase C gamma-1 following IRS-2 association in human monocytes: relationship with the inhibitory effect of IL-13 on ROI production. Biochem Biophys Res Commun 1998; 244:665-70. [PMID: 9535722 DOI: 10.1006/bbrc.1998.8314] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Here we analysed the involvement of tyrosine phosphorylation in the regulation of the initial molecular events induced by IL-13 to modulate TPA-triggered reactive oxygen intermediates (ROI) production. Our data indicate that treatment of monocytes with a protein tyrosine kinase inhibitor (herbimycin A) prevents IL-13-induced cAMP accumulation and subsequent ROI inhibition. We have previously demonstrated that cAMP accumulation depends on inositol phosphates hydrolysis (InsPs) and intracellular Ca2+ mobilisation. The inhibition of InsPs and intracellular Ca2+ release by herbimycin A suggests a primary role of tyrosine kinases upstream PLC activation. We further specify that IL-13 stimulates PLC-gamma 1 and IRS-2 tyrosine phosphorylation in human monocytes. We demonstrate for the first time that IL-13 induces the association of IRS-2 with PLC-gamma 1. We proposed here that PLC-gamma 1 is a new candidate recruited by IRS-2.
Collapse
Affiliation(s)
- P Sozzani
- Laboratoire de l'Université P. Sabatier, CHU Rangueil, Toulouse, France.
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
The development and function of the immune system is precisely regulated to assure the generation of protective immune responses while avoiding autoimmunity. This regulation is accomplished by the engagement of a multitude of cell-surface receptors which transduce signals that activate or regulate cell differentiative and proliferative pathways. In some cases biologic responses reflect the integration of signals generated by co-aggregation of multiple receptors by complex ligands. For example, B-cell responses to antigen receptor aggregation can be modulated by co-aggregation of receptors for immunoglobulin G (Fc gamma RIIB1), complement components (CR2), and alpha 2, 6-sialoglycoproteins (CD22). Here we review our recent studies of molecular mechanisms underlying co-receptor modulation of B-cell antigen receptor signaling. Our results define interesting circuitry involving interactions among the B-cell antigen receptor, CD19 and Fc gamma RIIB1. CD19 may function as an important integrator of positive and negative signals that regulate B-cell antigen receptor signal output.
Collapse
Affiliation(s)
- A M Buhl
- Department of Pediatrics, National Jewish Medical and Research Center, Denver, Colorado 80206, USA
| | | |
Collapse
|
35
|
Wan Y, Bence K, Hata A, Kurosaki T, Veillette A, Huang XY. Genetic evidence for a tyrosine kinase cascade preceding the mitogen-activated protein kinase cascade in vertebrate G protein signaling. J Biol Chem 1997; 272:17209-15. [PMID: 9202044 DOI: 10.1074/jbc.272.27.17209] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The signal transduction pathway from heterotrimeric G proteins to the mitogen-activated protein kinase (MAPK) cascade is best understood in the yeast mating pheromone response, in which a serine/threonine protein kinase (STE20) serves as the critical linking component. Little is known in metazoans on how G proteins and the MAPK cascade are coupled. Here we provide genetic and biochemical evidence that a tyrosine kinase cascade bridges G proteins and the MAPK pathway in vertebrate cells. Targeted deletion of tyrosine kinase Csk in avian B lymphoma cells blocks the stimulation of MAPK by Gq-, but not Gi-, coupled receptors. In cells deficient in Bruton's tyrosine kinase (Btk), Gi-coupled receptors failed to activate MAPK, while Gq-coupled receptor-mediated stimulation is unaffected. Taken together with our previous data on tyrosine kinases Lyn and Syk, the Gq-coupled pathway requires tyrosine kinases Csk, Lyn, and Syk, while the Gi-coupled pathway requires tyrosine kinases Btk and Syk to feed into the MAPK cascade in these cells. The central role of Syk is further strengthened by data showing that Syk can bind to purified Lyn, Csk, or Btk.
Collapse
Affiliation(s)
- Y Wan
- Department of Physiology, Cornell University Medical College, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
AbstractThe majority of BALB/c mice immunized with the BCL1 lymphoma-derived idiotype (Id+) IgM and subsequently challenged with BCL1 tumor cells develop a state of tumor dormancy. The vast majority of dormant lymphoma cells are in cell cycle arrest, but there are also residual replicating cells. In the present studies, we attempted to define features of both the dormant lymphoma cells and the host that lead to escape from dormancy. Escape from dormancy occurs at a steady rate over a 2-year period, suggesting that it is a stochastic process. We found that, in the majority of mice, escape was due to the emergence of genetic variants that were no longer susceptible to the anti-Id–mediated induction of dormancy. Ten percent of these variants were Id−; the remainder were Id+ but could grow in the presence of anti-Id antibodies, suggesting that there were mutations in molecules involved in one or more mIg-mediated negative-signaling pathways. In two of five such escapees, alterations in either Syk, HS1, and/or Lyn were observed. In a small percentage of mice, a low titer of circulating anti-Id antibody before tumor challenge correlated with a subsequent, more rapid loss of dormancy.
Collapse
|
37
|
Abstract
Recent gene-targeting experiments have highlighted the importance of the intracellular protein tyrosine kinases Lyn, Syk, and Btk in BCR signal transduction and B cell development. In addition, the interactions of these kinases and their regulatory mechanisms have been reported. Activation loop phosphorylation of these kinases is critical for their participation in signal propagation. Several substrates have been identified for these kinases and this has led to elucidation of the mechanisms by which these kinases mediate the downstream signaling events that lead to cellular responses of B cells.
Collapse
Affiliation(s)
- T Kurosaki
- Department of Molecular Genetics, Institute for Hepatic Research Kansai, Medical University, 10-15 Fumizono-cho, Moriguchi, Osaka, 570, Japan.
| |
Collapse
|
38
|
McDonald DR, Brunden KR, Landreth GE. Amyloid fibrils activate tyrosine kinase-dependent signaling and superoxide production in microglia. J Neurosci 1997; 17:2284-94. [PMID: 9065490 PMCID: PMC6573513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/1996] [Revised: 01/07/1997] [Accepted: 01/15/1997] [Indexed: 02/03/2023] Open
Abstract
Alzheimer's disease (AD) is a devastating neurological disorder characterized by loss of cognitive skills and progressive dementia. The pathological hallmark of AD is the presence of numerous senile plaques throughout the hippocampus and cerebral cortex associated with degenerating axons, neurofibrillary tangles, and gliosis. The core of the senile plaque primarily is composed of the 39-43 amino acid beta-amyloid peptide (Abeta), which forms fibrils of beta-pleated sheets. Although considerable genetic evidence implicates Abeta in the pathogenesis of AD, a direct causal link remains to be established. Senile plaques are foci of local inflammatory processes, as evidenced by the presence of numerous activated microglia and acute phase proteins. Abeta has been shown to elicit inflammatory responses in microglia; however, the intracellular events mediating these effects are largely unknown. We report that exposure of microglia and THP1 monocytes to fibrillar Abeta led to time- and dose-dependent increases in protein tyrosine phosphorylation of a population of proteins similar to that elicited by classical immune stimuli such as immune complexes. The tyrosine kinases Lyn, Syk, and FAK were activated on exposure of microglia and THP1 monocytes to Abeta, resulting in the tyrosine kinase-dependent generation of superoxide radicals. The present data support a role for oxidative damage in the pathogenesis of AD, provide an important mechanistic link between Abeta and the generation of reactive oxygen intermediates, and identify molecular targets for therapeutic intervention in AD.
Collapse
Affiliation(s)
- D R McDonald
- Alzheimer Research Laboratory, Department of Neurology and Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
39
|
Fitzer-Attas CJ, Schindler DG, Waks T, Eshhar Z. Direct T cell activation by chimeric single chain Fv-Syk promotes Syk-Cbl association and Cbl phosphorylation. J Biol Chem 1997; 272:8551-7. [PMID: 9079685 DOI: 10.1074/jbc.272.13.8551] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The protein tyrosine kinase Syk is activated upon engagement of immune recognition receptors. We have focused on the identification of signaling elements immediately downstream to Syk in the pathway leading to T cell activation. To circumvent T cell receptor (TCR). CD3 activation of Src family kinases, we constructed a signaling molecule with an extracellular single chain Fv of an anti-TNP antibody, attached via a transmembrane region to Syk (scFv-Syk). In a murine T cell hybridoma, direct aggregation of chimeric Syk with antigen culminates in interleukin-2 production and target cell lysis. Initially, it causes an increase in the association between scFv-Syk and the cytosolic protein Cbl and subsequently promotes tyrosine phosphorylation of Cbl. Interestingly, although both Cbl and phospholipase C-gamma (PLC-gamma) are phosphorylated in this hybridoma upon TCR.CD3 cross-linking, these two events are uncoupled in scFv-Syk-transfected cells, in which we were unable to detect antigen-driven PLC-gamma phosphorylation. These results support a model in which Syk can initiate and directly activate the T cell's signaling machinery and position Cbl as a primary tyrosine kinase substrate in this pathway. Furthermore, for efficient PLC-gamma phosphorylation to occur in these cells, the combined actions of different tyrosine kinase families may be required.
Collapse
Affiliation(s)
- C J Fitzer-Attas
- Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
40
|
Amoui M, Dráberová L, Tolar P, Dráber P. Direct interaction of Syk and Lyn protein tyrosine kinases in rat basophilic leukemia cells activated via type I Fc epsilon receptors. Eur J Immunol 1997; 27:321-8. [PMID: 9022035 DOI: 10.1002/eji.1830270146] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Activation of rat mast cells through the receptor with high affinity for IgE (Fc epsilonRI) requires a complex set of interactions involving transmembrane subunits of the Fc epsilonRI and two classes of nonreceptor protein tyrosine kinase (PTK). the Src family PTK p53/p56(lyn) (Lyn) and the Syk/ZAP-family PTK p72(syk) (Syk). Early activation events involve increased activity of Lyn and Syk kinases and their translocation into membrane domains containing aggregated Fc epsilonRI, but the molecular mechanisms responsible for these changes have remained largely unclear. To determine the role of Fc epsilonRI subunits in this process, we have analyzed Syk- and Lyn-associated proteins in activated rat basophilic leukemia (RBL) cells and their variants deficient in the expression of Fc epsilonRI beta or gamma subunits. Sepharose 4B gel chromatography of postnuclear supernatants from Nonidet-P40-solubilized antigen (Ag)- or pervanadate-activated RBL cells revealed extensive changes in the size of complexes formed by Lyn and Syk kinases and other cellular components. A fusion protein containing Src homology 2 (SH2) and SH3 domains of Lyn bound Syk from lysates of nonactivated RBL cells; an increased binding was observed when lysates from Ag- or pervanadate-activated cells were used. A similar amount of Syk was bound when lysates from pervanadate-activated variant cells deficient in the expression of Fc epsilonRI beta or gamma subunits were used, suggesting that Fc epsilonRI does not function as the only intermediate in the formation of the Syk-Lyn complexes. Further experiments have indicated that Syk-Lyn interactions occur in Ag-activated RBL cells under in vivo conditions and that these interactions could involve direct binding of the Lyn SH2 domain with phosphorylated tyrosine of Syk. The physical association of Lyn and Syk during mast-like cell activation supports the recently proposed functional cooperation of these two tyrosine kinases in Fc epsilonRI signaling.
Collapse
Affiliation(s)
- M Amoui
- Department of Mammalian Gene Expression, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague
| | | | | | | |
Collapse
|
41
|
Abstract
Current models of signal transduction from the antigen receptors on B and T cells still resemble equations with several unknown elements. Data from recent knockout experiments in cell lines and mice contradict the assumption that Src-family kinase and tyrosine kinases of the Syk/Zap-70 family are the transducer elements that set signaling from these receptors in motion. Using a functional definition of signaling elements, we discuss the current knowledge of signaling events from the BCR and suggest the existence of an as-yet-unknown BCR transducer complex.
Collapse
Affiliation(s)
- M Reth
- Department of Molecular Immunology, Biology III, University Freiburg, Germany.
| | | |
Collapse
|
42
|
Kimura T, Kihara H, Bhattacharyya S, Sakamoto H, Appella E, Siraganian RP. Downstream signaling molecules bind to different phosphorylated immunoreceptor tyrosine-based activation motif (ITAM) peptides of the high affinity IgE receptor. J Biol Chem 1996; 271:27962-8. [PMID: 8910399 DOI: 10.1074/jbc.271.44.27962] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The cytoplasmic tails of both the beta and gamma subunits of the high affinity IgE receptor (FcepsilonRI) contain a consensus sequence termed the immunoreceptor tyrosine-based activation motif (ITAM). This motif plays a critical role in receptor-mediated signal transduction. Synthetic peptides based on the ITAM sequences of the beta and gamma subunits of FcepsilonRI were used to investigate which proteins associate with these motifs. Tyrosine-phosphorylated beta and gamma ITAM peptides immobilized on beads precipitated Syk, Lyn, Shc, Grb2, and phospholipase C-gamma1 from lysates of rat basophilic leukemia RBL-2H3 cells. Syk was precipitated predominantly by the tyrosine-diphosphorylated gamma ITAM peptide, but much less by the diphosphorylated beta ITAM peptide or by the monophosphorylated peptides. Phospholipase C-gamma1, Shc, and Grb2 were precipitated only by the diphosphorylated beta ITAM peptide. Non-phosphorylated ITAM peptides did not precipitate these proteins. In membrane binding assays, fusion proteins containing the Src homology 2 domains of phospholipase C-gamma1, Shc, Syk, and Lyn directly bound the tyrosine-phosphorylated ITAM peptides. Although the ITAM sequences of the beta and gamma subunits of FcepsilonRI are similar, once they are tyrosine-phosphorylated they preferentially bind different downstream signaling molecules. Tyrosine phosphorylation of the ITAM of the gamma subunit recruits and activates Syk, whereas the beta subunit may be important for the Ras signaling pathway.
Collapse
Affiliation(s)
- T Kimura
- Laboratory of Immunology, NIDR, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Sidorenko SP, Law CL, Klaus SJ, Chandran KA, Takata M, Kurosaki T, Clark EA. Protein kinase C mu (PKC mu) associates with the B cell antigen receptor complex and regulates lymphocyte signaling. Immunity 1996; 5:353-63. [PMID: 8885868 DOI: 10.1016/s1074-7613(00)80261-7] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have identified a Ser/Thr kinase associated with the B cell receptor (BCR) complex as protein kinase C mu (PKC mu). PKC mu activity is up-regulated after cross-linking the BCR and CD19 on B cells, and PKC mu co-precipitates with Syk and phospholipase C-gamma 1/2 (PLC gamma 1/2). In vitro phosphorylation of fusion proteins showed that both Syk and PLC gamma 1 are potential substrates of PKC mu in vivo. Analysis of mutants of the chicken B cell line DT40 deficient in either Syk, Lyn, Btk, or PLC gamma 2 revealed that BCR-induced activation of PKC mu, like activation of PLC gamma 2, requires Syk and is partially regulated by Btk, but is Lyn independent. PKC mu can down-regulate the ability of Syk to phosphorylate PLC gamma 1 in vitro. Thus, PKC mu may function in a negative feedback loop regulating BCR-initiated signaling cascades.
Collapse
Affiliation(s)
- S P Sidorenko
- Department of Microbiology, University of Washington, Seattle 98195, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Law CL, Craxton A, Otipoby KL, Sidorenko SP, Klaus SJ, Clark EC. Regulation of signalling through B-lymphocyte antigen receptors by cell-cell interaction molecules. Immunol Rev 1996; 153:123-54. [PMID: 9010722 DOI: 10.1111/j.1600-065x.1996.tb00923.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- C L Law
- Department of Microbiology, University of Washington, Seattle 98195, USA
| | | | | | | | | | | |
Collapse
|
45
|
Wang J, Koizumi T, Watanabe T. Altered antigen receptor signaling and impaired Fas-mediated apoptosis of B cells in Lyn-deficient mice. J Exp Med 1996; 184:831-8. [PMID: 9064343 PMCID: PMC2192791 DOI: 10.1084/jem.184.3.831] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Mice deficient in the src related protein tyrosine kinase, Lyn, exhibit splenomegaly and accumulate lymphoblast-like and plasma cells in spleen as they age, resulting in elevated levels of serum IgM (10-20-fold of control) and glomerulonephritis due to the presence of immune complexes containing auto-reactive antibodies. It remains unclear, however, how antibody-producing cells are accumulated in the lymphoid tissues of Lyn-/- mice. To elucidate the role of Lyn in B cell function, we have studied the proliferative responses to various stimuli and Fas-mediated apoptosis in B cells from young Lyn-/- mice which do not yet show apparent abnormality such as splenomegaly. Compared with control B cells, Lyn-/- B cells were hyper responsive to anti-IgM-induced proliferation and defective in Fc gamma RIIB-mediated suppression of B cell antigen receptor (BCR) signaling, indicating that Lyn is involved in the negative regulation of BCR signaling. In addition, the BCR-mediated signal in Lyn-/- B cells, unlike that in control B cells, failed to act in synergy with either CD40- or IL-4 receptor-triggered signal in inducing a strong proliferative response, suggesting that the BCR signaling pathway in Lyn-/- B cells is altered from that in control B cells. Furthermore, Lyn-/- B cells were found to be impaired in the induction of Fas expression after CD40 ligation and exhibited a reduced susceptibility to Fas-mediated apoptosis. Moreover, BCR cross-linking in Lyn-/- B cells suppressed Fas expression induced by costimulation with CD40 ligand and IL-4. Collectively, these results suggest that the accumulation of lymphoblast-like and plasma cells in Lyn-/- mice may be caused in part, by the accelerated activation of B cells in the absence of Lyn, as well as the impaired Fas-mediated apoptosis after the activation.
Collapse
Affiliation(s)
- J Wang
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | | | | |
Collapse
|
46
|
Haimovich B, Regan C, DiFazio L, Ginalis E, Ji P, Purohit U, Rowley RB, Bolen J, Greco R. The FcgammaRII receptor triggers pp125FAK phosphorylation in platelets. J Biol Chem 1996; 271:16332-7. [PMID: 8663117 DOI: 10.1074/jbc.271.27.16332] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Platelets express a single low affinity receptor for immunoglobulin, FcgammaRII, that triggers multiple cellular responses upon interaction with multivalent immune complexes. In this study we show that immobilized IgG is also a potent stimulant of platelet activation triggering adhesion, aggregation, massive dense granule secretion, and thromboxane production. Platelet adhesion to IgG was blocked by the FcgammaRII receptor-specific monoclonal antibody, IV. 3. Pretreatment of the platelets with cytochalasin D to inhibit actin polymerization similarly prevented cell binding to IgG having no effect on platelet binding to fibrinogen. Platelet adhesion to IgG also led to the induction of tyrosine phosphorylation of multiple proteins including pp125(FAK) and p72(SYK). These proteins were also tyrosine-phosphorylated in alphaIIbbeta3-deficient IgG-adherent platelets from patients with Glanzmann's thrombasthenia. These data demonstrate that FcgammaRII mediates pp125(FAK) phosphorylation and platelet adhesion to IgG independent of the integrin alphaIIbbeta3. Treatment of the platelets with bisindolylmaleimide to inhibit protein kinase C prevented phosphorylation of pp125(FAK) as well as several other proteins, but not p72(SYK) phosphorylation. This study establishes that the FcgammaRII receptor mediates pp125(FAK) phosphorylation via protein kinase C.
Collapse
Affiliation(s)
- B Haimovich
- Department of Surgery, Robert Wood Johnson Medical School, New Brunswick, New Jersey 08903, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Law CL, Chandran KA, Sidorenko SP, Clark EA. Phospholipase C-gamma1 interacts with conserved phosphotyrosyl residues in the linker region of Syk and is a substrate for Syk. Mol Cell Biol 1996; 16:1305-15. [PMID: 8657103 PMCID: PMC231114 DOI: 10.1128/mcb.16.4.1305] [Citation(s) in RCA: 195] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Antigen receptor ligation on lymphocytes activates protein tyrosine kinases and phospholipase C-gamma (PLC-gamma) isoforms. Glutathione S-transferase fusion proteins containing the C-terminal Src-homology 2 [SH2(C)] domain of PLC-gamma1 bound to tyrosyl phosphorylated Syk. Syk isolated from antigen receptor-activated B cells phosphorylated PLC-gamma1 on Tyr-771 and the key regulatory residue Tyr-783 in vitro, whereas Lyn from the same B cells phosphorylated PLC-gamma1 only on Tyr-771. The ability of Syk to phosphorylate PLC-gamma1 required antigen receptor ligation, while Lyn was constitutively active. An mCD8-Syk cDNA construct could be expressed as a tyrosyl-phosphorylated chimeric protein tyrosine kinase in COS cells, was recognized by PLC-gamma1 SH2(C) in vitro, and induced tyrosyl phosphorylation of endogenous PLC-gamma1 in vivo. Substitution of Tyr-525 and Tyr-526 at the autophosphorylation site of Syk in mCD8-Syk substantially reduced the kinase activity and the binding of this variant chimera to PLC-gamma1 SH2(C) in vitro; it also failed to induce tyrosyl phosphorylation of PLC-gamma1 in vivo. In contrast, substitution of Tyr-348 and Tyr-352 in the linker region of Syk in mCD8-Syk did not affect the kinase activity of this variant chimera but almost completely eliminated its binding to PLC-gamma1 SH(C) and completely eliminated its ability to induce tyrosyl phosphorylation of PLC-gamma1 in vivo. Thus, an optimal kinase activity of Syk and an interaction between the linker region of Syk with PLC-gamma1 are required for the tyrosyl phosphorylation of PLC-gamma1.
Collapse
Affiliation(s)
- C L Law
- Department of Microbiology, University of Washington, Seattle, USA
| | | | | | | |
Collapse
|
48
|
Richards JD, Gold MR, Hourihane SL, DeFranco AL, Matsuuchi L. Reconstitution of B cell antigen receptor-induced signaling events in a nonlymphoid cell line by expressing the Syk protein-tyrosine kinase. J Biol Chem 1996; 271:6458-66. [PMID: 8626447 DOI: 10.1074/jbc.271.11.6458] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
B cell antigen receptor (BCR) cross-linking activates both Src family and Syk tyrosine kinases, resulting in increased cellular protein-tyrosine phosphorylation and activation of several downstream signaling enzymes. To define the role of Syk in these events, we expressed the BCR in the AtT20 mouse pituitary cell line. These nonlymphoid cells endogenously expressed the Src family kinase Fyn but not Syk. Anti-IgM stimulation of these cells failed to induce most of the signaling events that occur in B cells. BCR-expressing AtT20 transfectants were generated that also expressed Syk. Syk expression reconstituted several signaling events upon anti-IgM stimulation, including Syk phosphorylation and association with the BCR, tyrosine phosphorylation of numerous proteins including Shc, and activation of mitogen-activated protein kinase. In contrast, Syk expression did not reconstitute anti-IgM-induced inositol phosphate production. A catalytically inactive Syk mutant could associate with the BCR and become tyrosine phosphorylated but could not reconstitute downstream signaling events. Expression of the Src family kinase Lck instead of Syk also did not reconstitute signaling. Thus, wild type Syk was required to reconstitute several BCR-induced signaling events but was not sufficient to couple the BCR to the phosphoinositide signaling pathway.
Collapse
Affiliation(s)
- J D Richards
- Department of Microbiology and Immunology, G.W. Hooper Foundation, University of California, San Francisco 94143,USA
| | | | | | | | | |
Collapse
|
49
|
Law CL, Sidorenko SP, Chandran KA, Zhao Z, Shen SH, Fischer EH, Clark EA. CD22 associates with protein tyrosine phosphatase 1C, Syk, and phospholipase C-gamma(1) upon B cell activation. J Exp Med 1996; 183:547-60. [PMID: 8627166 PMCID: PMC2192439 DOI: 10.1084/jem.183.2.547] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Cross-linking B cell antigen receptor (BCR) elicits early signal transduction events, including activation of protein tyrosine kinases, phosphorylation of receptor components, activation of phospholipase C-gamma (PLC-gamma), and increases in intracellular free Ca2+. In this article, we report that cross-linking the BCR led to a rapid translocation of cytosolic protein tyrosine phosphatase (PTP) 1C to the particulate fraction, where it became associated with a 140-150-kD tyrosyl-phosphorylated protein. Western blotting analysis identified this 140-150-kD protein to be CD22. The association of PTP-1C with CD22 was mediated by the NH2-terminal Src homology 2 (SH2) domain of PTP-1C. Complexes of either CD22/PTP-1C/Syk/PLC-gamma(1) could be isolated from B cells stimulated by BCR engagement or a mixture of hydrogen peroxidase and sodium orthovanadate, respectively. The binding of PLC-gamma(1) and Syk to tyrosyl-phosphorylated CD22 was mediated by the NH2-terminal SH2 domain of PLC-gamma(1) and the COOH-terminal SH2 domain of Syk, respectively. These observations suggest that tyrosyl-phosphorylated CD22 may downmodulate the activity of this complex by dephosphorylation of CD22, Syk, and/or PLC-gamma(1). Transient expression of CD22 and a null mutant of PTP-1C (PTP-1CM) in COS cells resulted in an increase in tyrosyl phosphorylation of CD22 and its interaction with PTP-1CM. By contrast, CD22 was not tyrosyl phosphorylated or associated with PTP-1CM in the presence of wild-type PTP-1C. These results suggest that tyrosyl-phosphorylated CD22 may be a substrate for PTP-1C regulates tyrosyl phosphorylation of CD22.
Collapse
MESH Headings
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/metabolism
- B-Lymphocytes/immunology
- Base Sequence
- Calcium/metabolism
- Cell Adhesion Molecules
- Cross-Linking Reagents
- Enzyme Precursors/metabolism
- Humans
- Intracellular Signaling Peptides and Proteins
- Isoenzymes/metabolism
- Lectins
- Lymphocyte Activation
- Macromolecular Substances
- Models, Molecular
- Molecular Sequence Data
- Phospholipase C gamma
- Phosphorylation
- Protein Binding
- Protein Tyrosine Phosphatase, Non-Receptor Type 11
- Protein Tyrosine Phosphatase, Non-Receptor Type 6
- Protein Tyrosine Phosphatases/genetics
- Protein Tyrosine Phosphatases/metabolism
- Protein-Tyrosine Kinases/metabolism
- Receptors, Antigen, B-Cell/metabolism
- SH2 Domain-Containing Protein Tyrosine Phosphatases
- Sialic Acid Binding Ig-like Lectin 2
- Signal Transduction
- Syk Kinase
- Transfection
- Tumor Cells, Cultured
- Type C Phospholipases/metabolism
- src Homology Domains
Collapse
Affiliation(s)
- C L Law
- Department of Microbiology, University of Washington, Seattle 98195, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Brumell JH, Burkhardt AL, Bolen JB, Grinstein S. Endogenous reactive oxygen intermediates activate tyrosine kinases in human neutrophils. J Biol Chem 1996; 271:1455-61. [PMID: 8576138 DOI: 10.1074/jbc.271.3.1455] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In response to invading microorganisms, neutrophils produce large amounts of superoxide and other reactive oxygen intermediates (ROI) by assembly and activation of a multicomponent enzyme complex, the NADPH oxidase. While fulfilling a microbicidal role, ROI have also been postulated to serve as signaling molecules, because activation of the NADPH oxidase was found to be associated with increased tyrosine phosphorylation (Fialkow, L., Chan, C. K., Grinstein, S., and Downey, G.P. (1993) J. Biol. Chem. 268, 17131-17137). The mechanism whereby ROI induces phosphotyrosine accumulation was investigated using electroporated neutrophils stimulated with guanosine 5'-O-3-thiotriphosphate in order to bypass membrane receptors. In vitro immune complex assays and immunoblotting were used to identify five tyrosine kinases present in human neutrophils. Of these, p56/59hck, p72syk, and p77btk were activated during production of ROI. Interestingly, the in vitro autophosphorylation activities of p53/56lyn and p59fgr were found to decline with ROI production. The mode of regulation of p56/59hck was explored in detail. Oxidizing agents were unable to activate p56/59hck in vitro and, once activated in situ, reducing agents failed to inactivate it, suggesting that the effects of ROI are indirect. Tyrosine phosphorylation of p56/59hck paralleled its activation, and dephosphorylation in vitro reversed the stimulation. We therefore conclude that tyrosine phosphorylation is central to the regulation of p56/59hck and likely also of p72syk, which is similarly phosphorylated upon activation of the oxidase. Because ROI have been shown to reduce the activity of tyrosine phosphatases, we suggest that this inhibition allows constitutively active kinases to auto/transphosphorylate on stimulatory tyrosine residues, leading to an increase in their catalytic activity. Enhanced phosphotyrosine accumulation would then result from the combined effects of increased phosphorylation with decreased dephosphorylation.
Collapse
Affiliation(s)
- J H Brumell
- Division of Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|