1
|
Rojas M, Herrán M, Ramírez-Santana C, Leung PSC, Anaya JM, Ridgway WM, Gershwin ME. Molecular mimicry and autoimmunity in the time of COVID-19. J Autoimmun 2023; 139:103070. [PMID: 37390745 PMCID: PMC10258587 DOI: 10.1016/j.jaut.2023.103070] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/26/2023] [Accepted: 06/03/2023] [Indexed: 07/02/2023]
Abstract
Infectious diseases are commonly implicated as potential initiators of autoimmune diseases (ADs) and represent the most commonly known factor in the development of autoimmunity in susceptible individuals. Epidemiological data and animal studies on multiple ADs suggest that molecular mimicry is one of the likely mechanisms for the loss of peripheral tolerance and the development of clinical disease. Besides molecular mimicry, other mechanisms such as defects in central tolerance, nonspecific bystander activation, epitope-determinant spreading, and/or constant antigenic stimuli, may also contribute for breach of tolerance and to the development of ADs. Linear peptide homology is not the only mechanism by which molecular mimicry is established. Peptide modeling (i.e., 3D structure), molecular docking analyses, and affinity estimation for HLAs are emerging as critical strategies when studying the links of molecular mimicry in the development of autoimmunity. In the current pandemic, several reports have confirmed an influence of SARS-CoV-2 on subsequent autoimmunity. Bioinformatic and experimental evidence support the potential role of molecular mimicry. Peptide dimensional analysis requires more research and will be increasingly important for designing and distributing vaccines and better understanding the role of environmental factors related to autoimmunity.
Collapse
Affiliation(s)
- Manuel Rojas
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA; Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia.
| | - María Herrán
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Carolina Ramírez-Santana
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Patrick S C Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - Juan-Manuel Anaya
- Health Research and Innovation Center at Coosalud, Cartagena, 130001, Colombia
| | - William M Ridgway
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| |
Collapse
|
2
|
Hudson D, Fernandes RA, Basham M, Ogg G, Koohy H. Can we predict T cell specificity with digital biology and machine learning? Nat Rev Immunol 2023; 23:511-521. [PMID: 36755161 PMCID: PMC9908307 DOI: 10.1038/s41577-023-00835-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2022] [Indexed: 02/10/2023]
Abstract
Recent advances in machine learning and experimental biology have offered breakthrough solutions to problems such as protein structure prediction that were long thought to be intractable. However, despite the pivotal role of the T cell receptor (TCR) in orchestrating cellular immunity in health and disease, computational reconstruction of a reliable map from a TCR to its cognate antigens remains a holy grail of systems immunology. Current data sets are limited to a negligible fraction of the universe of possible TCR-ligand pairs, and performance of state-of-the-art predictive models wanes when applied beyond these known binders. In this Perspective article, we make the case for renewed and coordinated interdisciplinary effort to tackle the problem of predicting TCR-antigen specificity. We set out the general requirements of predictive models of antigen binding, highlight critical challenges and discuss how recent advances in digital biology such as single-cell technology and machine learning may provide possible solutions. Finally, we describe how predicting TCR specificity might contribute to our understanding of the broader puzzle of antigen immunogenicity.
Collapse
Affiliation(s)
- Dan Hudson
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- The Rosalind Franklin Institute, Didcot, UK
| | - Ricardo A Fernandes
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | | | - Graham Ogg
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | - Hashem Koohy
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
3
|
Kim CH. Complex regulatory effects of gut microbial short-chain fatty acids on immune tolerance and autoimmunity. Cell Mol Immunol 2023; 20:341-350. [PMID: 36854801 PMCID: PMC10066346 DOI: 10.1038/s41423-023-00987-1] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/10/2023] [Indexed: 03/02/2023] Open
Abstract
Immune tolerance deletes or suppresses autoreactive lymphocytes and is established at multiple levels during the development, activation and effector phases of T and B cells. These mechanisms are cell-intrinsically programmed and critical in preventing autoimmune diseases. We have witnessed the existence of another type of immune tolerance mechanism that is shaped by lifestyle choices, such as diet, microbiome and microbial metabolites. Short-chain fatty acids (SCFAs) are the most abundant microbial metabolites in the colonic lumen and are mainly produced by the microbial fermentation of prebiotics, such as dietary fiber. This review focuses on the preventive and immunomodulatory effects of SCFAs on autoimmunity. The tissue- and disease-specific effects of dietary fiber, SCFAs and SCFA-producing microbes on major types of autoimmune diseases, including type I diabetes, multiple sclerosis, rheumatoid arthritis and lupus, are discussed. Additionally, their key regulatory mechanisms for lymphocyte development, tissue barrier function, host metabolism, immunity, autoantibody production, and inflammatory effector and regulatory lymphocytes are discussed. The shared and differential effects of SCFAs on different types and stages of autoimmune diseases are discussed.
Collapse
Affiliation(s)
- Chang H Kim
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA.
- Mary H. Weiser Food Allergy Center, Center for Gastrointestinal Research, and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
4
|
Antigenic mimicry – The key to autoimmunity in immune privileged organs. J Autoimmun 2022:102942. [DOI: 10.1016/j.jaut.2022.102942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022]
|
5
|
Johansson AM, Malhotra U, Kim YG, Gomez R, Krist MP, Wald A, Koelle DM, Kwok WW. Cross-reactive and mono-reactive SARS-CoV-2 CD4+ T cells in prepandemic and COVID-19 convalescent individuals. PLoS Pathog 2021; 17:e1010203. [PMID: 34965282 PMCID: PMC8769337 DOI: 10.1371/journal.ppat.1010203] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/19/2022] [Accepted: 12/14/2021] [Indexed: 12/15/2022] Open
Abstract
Class II tetramer reagents for eleven common DR alleles and a DP allele prevalent in the world population were used to identify SARS-CoV-2 CD4+ T cell epitopes. A total of 112, 28 and 42 epitopes specific for Spike, Membrane and Nucleocapsid, respectively, with defined HLA-restriction were identified. Direct ex vivo staining of PBMC with tetramer reagents was used to define immunodominant and subdominant T cell epitopes and estimate the frequencies of these T cells in SARS-CoV-2 exposed and naïve individuals. Majority of SARS-CoV-2 epitopes identified have <67% amino acid sequence identity with endemic coronaviruses and are unlikely to elicit high avidity cross-reactive T cell responses. Four SARS-CoV-2 Spike reactive epitopes, including a DPB1*04:01 restricted epitope, with ≥67% amino acid sequence identity to endemic coronavirus were identified. SARS-CoV-2 T cell lines for three of these epitopes elicited cross-reactive T cell responses to endemic cold viruses. An endemic coronavirus Spike T cell line showed cross-reactivity to the fourth SARS-CoV-2 epitope. Three of the Spike cross-reactive epitopes were subdominant epitopes, while the DPB1*04:01 restricted epitope was a dominant epitope. Frequency analyses showed Spike cross-reactive T cells as detected by tetramers were present at relatively low frequency in unexposed people and only contributed a small proportion of the overall Spike-specific CD4+ T cells in COVID-19 convalescent individuals. In total, these results suggested a very limited number of SARS-CoV-2 T cells as detected by tetramers are capable of recognizing ccCoV with relative high avidity and vice versa. The potentially supportive role of these high avidity cross-reactive T cells in protective immunity against SARS-CoV-2 needs further studies.
Collapse
Affiliation(s)
- Alexandra M. Johansson
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States of America
| | - Uma Malhotra
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States of America
- Virginia Mason Franciscan Health, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Yeseul G. Kim
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States of America
| | - Rebecca Gomez
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States of America
| | - Maxwell P. Krist
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Anna Wald
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - David M. Koelle
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - William W. Kwok
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
6
|
Tan CCS, Owen CJ, Tham CYL, Bertoletti A, van Dorp L, Balloux F. Pre-existing T cell-mediated cross-reactivity to SARS-CoV-2 cannot solely be explained by prior exposure to endemic human coronaviruses. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 95:105075. [PMID: 34509646 PMCID: PMC8428999 DOI: 10.1016/j.meegid.2021.105075] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/27/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023]
Abstract
T-cell-mediated immunity to SARS-CoV-2-derived peptides in individuals unexposed to SARS-CoV-2 has been previously reported. This pre-existing immunity was suggested to largely derive from prior exposure to 'common cold' endemic human coronaviruses (HCoVs). To test this, we characterised the sequence homology of SARS-CoV-2-derived T-cell epitopes reported in the literature across the full proteome of the Coronaviridae family. 54.8% of these epitopes had no homology to any of the HCoVs. Further, the proportion of SARS-CoV-2-derived epitopes with any level of sequence homology to the proteins encoded by any of the coronaviruses tested is well-predicted by their alignment-free phylogenetic distance to SARS-CoV-2 (Pearson's r = -0.958). No coronavirus in our dataset showed a significant excess of T-cell epitope homology relative to the proportion of expected random matches, given their genetic similarity to SARS-CoV-2. Our findings suggest that prior exposure to human or animal-associated coronaviruses cannot completely explain the T-cell repertoire in unexposed individuals that recognise SARS-CoV-2 cross-reactive epitopes.
Collapse
Affiliation(s)
- Cedric C S Tan
- UCL Genetics Institute, University College London, Gower Street, London WC1E 6BT, United Kingdom.
| | - Christopher J Owen
- UCL Genetics Institute, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Christine Y L Tham
- Emerging Infectious Diseases Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Antonio Bertoletti
- Emerging Infectious Diseases Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Lucy van Dorp
- UCL Genetics Institute, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Francois Balloux
- UCL Genetics Institute, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
7
|
Karami Fath M, Jahangiri A, Ganji M, Sefid F, Payandeh Z, Hashemi ZS, Pourzardosht N, Hessami A, Mard-Soltani M, Zakeri A, Rahbar MR, Khalili S. SARS-CoV-2 Proteome Harbors Peptides Which Are Able to Trigger Autoimmunity Responses: Implications for Infection, Vaccination, and Population Coverage. Front Immunol 2021; 12:705772. [PMID: 34447375 PMCID: PMC8383889 DOI: 10.3389/fimmu.2021.705772] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/23/2021] [Indexed: 12/16/2022] Open
Abstract
Autoimmune diseases (ADs) could occur due to infectious diseases and vaccination programs. Since millions of people are expected to be infected with SARS-CoV-2 and vaccinated against it, autoimmune consequences seem inevitable. Therefore, we have investigated the whole proteome of the SARS-CoV-2 for its ability to trigger ADs. In this regard, the entire proteome of the SARS-CoV-2 was chopped into more than 48000 peptides. The produced peptides were searched against the entire human proteome to find shared peptides with similar experimentally confirmed T-cell and B-cell epitopes. The obtained peptides were checked for their ability to bind to HLA molecules. The possible population coverage was calculated for the most potent peptides. The obtained results indicated that the SARS-CoV-2 and human proteomes share 23 peptides originated from ORF1ab polyprotein, nonstructural protein NS7a, Surface glycoprotein, and Envelope protein of SARS-CoV-2. Among these peptides, 21 peptides had experimentally confirmed equivalent epitopes. Amongst, only nine peptides were predicted to bind to HLAs with known global allele frequency data, and three peptides were able to bind to experimentally confirmed HLAs of equivalent epitopes. Given the HLAs which have already been reported to be associated with ADs, the ESGLKTIL, RYPANSIV, NVAITRAK, and RRARSVAS were determined to be the most harmful peptides of the SARS-CoV-2 proteome. It would be expected that the COVID-19 pandemic and the vaccination against this pathogen could significantly increase the ADs incidences, especially in populations harboring HLA-B*08:01, HLA-A*024:02, HLA-A*11:01 and HLA-B*27:05. The Southeast Asia, East Asia, and Oceania are at higher risk of AD development.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Abolfazl Jahangiri
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahmoud Ganji
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Sefid
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zahra Payandeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Sadat Hashemi
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Navid Pourzardosht
- Biochemistry Department, Guilan University of Medical Sciences, Rasht, Iran
| | - Anahita Hessami
- School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maysam Mard-Soltani
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Alireza Zakeri
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Mohammad Reza Rahbar
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| |
Collapse
|
8
|
Gu QH, Huynh M, Shi Y, Jia XY, Luo JJ, Jiang TJ, Cui Z, Ooi JD, Kitching AR, Zhao MH. Experimental Antiglomerular Basement Membrane GN Induced by a Peptide from Actinomyces. J Am Soc Nephrol 2021; 31:1282-1295. [PMID: 32444356 DOI: 10.1681/asn.2019060619] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 03/22/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Antiglomerular basement membrane (anti-GBM) disease is associated with HLA-DRB1*1501 (the major predisposing genetic factor in the disease), with α3127-148 as a nephritogenic T and B cell epitope. Although the cause of disease remains unclear, the association of infections with anti-GBM disease has been long suspected. METHODS To investigate whether microbes might activate autoreactive T and B lymphocytes via molecular mimicry in anti-GBM disease, we used bioinformatic tools, including BLAST, SYFPEITHI, and ABCpred, for peptide searching and epitope prediction. We used sera from patients with anti-GBM disease to assess peptides recognized by antibodies, and immunized WKY rats and a humanized mouse model (HLA-DR15 transgenic mice) with each of the peptide candidates to assess pathogenicity. RESULTS On the basis of the critical motif, the bioinformatic approach identified 36 microbial peptides that mimic human α3127-148. Circulating antibodies in sera from patients with anti-GBM recognized nine of them. One peptide, B7, derived from Actinomyces species, induced proteinuria, linear IgG deposition on the GBM, and crescent formation when injected into WKY rats. The antibodies to B7 also targeted human and rat α3127-148. B7 induced T cell activation from human α3127-148-immunized rats. T cell responses to B7 were detected in rats immunized by Actinomyces lysate proteins or recombinant proteins. We confirmed B7's pathogenicity in HLA-DR15 transgenic mice that developed kidney injury similar to that observed in α3135-145-immunized mice. CONCLUSIONS Sera from patients with anti-GBM disease recognized microbial peptides identified through a bioinformatic approach, and a peptide from Actinomyces induced experimental anti-GBM GN by T and B cell crossreactivity. These studies demonstrate that anti-GBM disease may be initiated by immunization with a microbial peptide.
Collapse
Affiliation(s)
- Qiu-Hua Gu
- Renal Division, Peking University First Hospital, Beijing, PR China.,Institute of Nephrology, Peking University, Beijing, PR China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, PR China.,Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, PR China
| | - Megan Huynh
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Monash Medical Centre, Clayton, Victoria, Australia
| | - Yue Shi
- Renal Division, Peking University First Hospital, Beijing, PR China.,Institute of Nephrology, Peking University, Beijing, PR China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, PR China.,Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, PR China
| | - Xiao-Yu Jia
- Renal Division, Peking University First Hospital, Beijing, PR China.,Institute of Nephrology, Peking University, Beijing, PR China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, PR China.,Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, PR China
| | - Jie-Jian Luo
- Key Laboratory of Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, PR China
| | - Tai-Jiao Jiang
- Key Laboratory of Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, PR China.,Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, PR China
| | - Zhao Cui
- Renal Division, Peking University First Hospital, Beijing, PR China .,Institute of Nephrology, Peking University, Beijing, PR China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, PR China.,Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, PR China
| | - Joshua D Ooi
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Monash Medical Centre, Clayton, Victoria, Australia
| | - A Richard Kitching
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Monash Medical Centre, Clayton, Victoria, Australia.,Department of Nephrology, Monash Health, Clayton, Victoria, Australia.,Department of Paediatric Nephrology, Monash Health, Clayton, Victoria, Australia
| | - Ming-Hui Zhao
- Renal Division, Peking University First Hospital, Beijing, PR China.,Institute of Nephrology, Peking University, Beijing, PR China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, PR China.,Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, PR China.,Peking-Tsinghua Center for Life Sciences, Beijing, PR China
| |
Collapse
|
9
|
Wildner G, Diedrichs-Möhring M. Molecular Mimicry and Uveitis. Front Immunol 2020; 11:580636. [PMID: 33193382 PMCID: PMC7658003 DOI: 10.3389/fimmu.2020.580636] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/12/2020] [Indexed: 01/11/2023] Open
Abstract
Molecular or antigenic mimicry is a term for the similarity of different antigens, which can be confused by the immune system. Antigen recognition by antibodies and T cell receptors is specific, but not restricted to a single antigen. Both types of receptors specifically recognize antigens and are expressed with a very high but still restricted variability compared to the number of different antigens they potentially could bind. T cell receptors only can bind to antigen peptides presented on certain self-MHC-molecules by screening only some amino acid side chains on both the presented peptides and the MHC molecule. The other amino acids of the peptide are not directly perceived by the T cell, offering the opportunity for a single T cell to recognize a variety of different antigens with the same receptor, which significantly increases the immune repertoire. The immune system is usually tolerant to autoantigens, especially to those of immune privileged sites, like the eye. Therefore, autoimmune diseases targeting these organs were hard to explain, unless a T cell is activated by an environmental peptide (e.g. pathogen) that is similar, but not necessarily identical with an autoantigen. Here we describe antigenic mimicry of retinal autoantigens with a variety of non-ocular antigens resulting in the induction of intraocular inflammation. T cells that are activated by mimotopes outside of the eye can pass the blood-retina barrier and enter ocular tissues. When reactivated in the eye by crossreaction with autoantigens they induce uveitis by recruiting inflammatory cells.
Collapse
Affiliation(s)
- Gerhild Wildner
- Section of Immunobiology, Department of Ophthalmology, University Hospital, LMU Munich, München, Germany
| | - Maria Diedrichs-Möhring
- Section of Immunobiology, Department of Ophthalmology, University Hospital, LMU Munich, München, Germany
| |
Collapse
|
10
|
Zhao Z, Ren J, Dai C, Kannapell CC, Wang H, Gaskin F, Fu SM. Nature of T cell epitopes in lupus antigens and HLA-DR determines autoantibody initiation and diversification. Ann Rheum Dis 2019; 78:380-390. [PMID: 30254034 PMCID: PMC6377330 DOI: 10.1136/annrheumdis-2018-214125] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/14/2018] [Accepted: 08/19/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVES The generation of systemic lupus erythematosus (SLE)-related autoantibodies have been shown to be T cell dependent and antigen driven with HLA-DR restriction. In this study, the initiating antigen(s) and the mechanism of autoantibody diversification were investigated. METHODS T cell epitopes (T-epitopes) of SmD1 (SmD) were mapped by T-T hybridomas generated from DR3+AE0 mice immunised with SmD and with SmD overlapping peptides. TCRs from the reactive hybridomas were sequenced. The core epitopes were determined. Bacterial mimics were identified by bioinformatics. Sera from DR3+AE0 mice immunised with SmD peptides and their mimics were analysed for their reactivity by ELISA and immunohistochemistry. Samples of blood donors were analysed for HLA-DR and autoantibody specificities. RESULTS Multiple HLA-DR3 restricted T-epitopes within SmD were identified. Many T-T hybridomas reacted with more than one epitope. Some of them were cross-reactive with other snRNP peptides and with proteins in the Ro60/La/Ro52 complex. The reactive hybridomas used unique TCRs. Multiple T-epitope mimics were identified in commensal and environmental bacteria. Certain bacterial mimics shared both T and B cell epitopes with the related SmD peptide. Bacterial mimics induced autoantibodies to lupus-related antigens and to different tissues. HLA-DR3+ blood donors made significantly more SLE-related autoantibodies. CONCLUSIONS The unique antigenic structures of the lupus-related autoantigens provide the basis for being targeted and for T and B cell epitope spreading and autoantibody diversification with unique patterns. SLE-related autoantibodies are likely generated from responses to commensal and/or environmental microbes due to incomplete negative selection for autoreactive T cells. The production of SLE-related antibodies is inevitable in normal individuals. The findings in this investigation have significant implications in autoimmunity in general.
Collapse
Affiliation(s)
- Zhenhuan Zhao
- Division of Rheumatology, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Jiling Ren
- Division of Rheumatology, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Chao Dai
- Division of Rheumatology, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Carol C Kannapell
- Division of Rheumatology, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Hongyang Wang
- Division of Rheumatology, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Felicia Gaskin
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia, USA
| | - Shu Man Fu
- Division of Rheumatology, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
11
|
Yang J, Jing L, James EA, Gebe JA, Koelle DM, Kwok WW. A Novel Approach of Identifying Immunodominant Self and Viral Antigen Cross-Reactive T Cells and Defining the Epitopes They Recognize. Front Immunol 2018; 9:2811. [PMID: 30619245 PMCID: PMC6298415 DOI: 10.3389/fimmu.2018.02811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 11/14/2018] [Indexed: 11/13/2022] Open
Abstract
Infection and vaccination can lead to activation of autoreactive T cells, including the activation of cross-reactive T cells. However, detecting these cross-reactive T cells and identifying the non-self and self-antigen epitopes is difficult. The current study demonstrates the utility of a novel approach that effectively accomplishes both. We utilized surface expression of CD38 on newly activated CD4 memory T cells as a strategy to identify type 1 diabetes associated autoreactive T cells activated by influenza vaccination in healthy subjects. We identified an influenza A matrix protein (MP) specific CD4+ T cell clone that cross-recognizes an immunodominant epitope from Glutamic Acid Decarboxylase 65 (GAD65) protein. The sequences of the MP and GAD65 peptides are rather distinct, with only 2 identical amino acids within the HLA-DR binding region. This result suggests that activation of autoreactive T cells by microbial infection under certain physiological conditions can occur amongst peptides with minimum amino acid sequence homology. This novel strategy also provides a new research pathway in which to examine activation of autoreactive CD4+ T cells after vaccination or natural infection.
Collapse
Affiliation(s)
- Junbao Yang
- Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Lichen Jing
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Eddie A James
- Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - John A Gebe
- Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - David M Koelle
- Benaroya Research Institute at Virginia Mason, Seattle, WA, United States.,Department of Medicine, University of Washington, Seattle, WA, United States.,Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - William W Kwok
- Benaroya Research Institute at Virginia Mason, Seattle, WA, United States.,Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
12
|
Rekvig OP. Systemic Lupus Erythematosus: Definitions, Contexts, Conflicts, Enigmas. Front Immunol 2018; 9:387. [PMID: 29545801 PMCID: PMC5839091 DOI: 10.3389/fimmu.2018.00387] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/12/2018] [Indexed: 12/15/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an inadequately defined syndrome. Etiology and pathogenesis remain largely unknown. SLE is on the other hand a seminal syndrome that has challenged immunologists, biologists, genetics, and clinicians to solve its nature. The syndrome is characterized by multiple, etiologically unlinked manifestations. Unexpectedly, they seem to occur in different stochastically linked clusters, although single gene defects may promote a smaller spectrum of symptoms/criteria typical for SLE. There is no known inner coherence of parameters (criteria) making up the disease. These parameters are, nevertheless, implemented in The American College of Rheumatology (ACR) and The Systemic Lupus Collaborating Clinics (SLICC) criteria to classify SLE. Still, SLE is an abstraction since the ACR or SLICC criteria allow us to define hundreds of different clinical SLE phenotypes. This is a major point of the present discussion and uses "The anti-dsDNA antibody" as an example related to the problematic search for biomarkers for SLE. The following discussion will show how problematic this is: the disease is defined through non-coherent classification criteria, its complexity is recognized and accepted, its pathogenesis is plural and poorly understood. Therapy is focused on dominant symptoms or organ manifestations, and not on the syndrome itself. From basic scientific evidences, we can add substantial amount of data that are not sufficiently considered in clinical medicine, which may change the paradigms linked to what "The Anti-DNA antibody" is-and is not-in context of the imperfectly defined syndrome SLE.
Collapse
Affiliation(s)
- Ole Petter Rekvig
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| |
Collapse
|
13
|
Ramadan A, Lucca LE, Carrié N, Desbois S, Axisa PP, Hayder M, Bauer J, Liblau RS, Mars LT. In situ expansion of T cells that recognize distinct self-antigens sustains autoimmunity in the CNS. Brain 2016; 139:1433-46. [PMID: 27000832 DOI: 10.1093/brain/aww032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/15/2016] [Indexed: 01/22/2023] Open
Abstract
Polyspecific T cells recognizing multiple distinct self-antigens have been identified in multiple sclerosis and other organ-specific autoimmune diseases, but their pathophysiological relevance remains undetermined. Using a mouse model of multiple sclerosis, we show that autoimmune encephalomyelitis induction is strictly dependent on reactivation of pathogenic T cells by a peptide (35-55) derived from myelin oligodendrocyte glycoprotein (MOG). This disease-inducing response wanes after onset. Strikingly, the progression of disease is driven by the in situ activation and expansion of a minority of MOG35-55-specific T cells that also recognize neurofilament-medium (NF-M)15-35, an intermediate filament protein expressed in neurons. This mobilization of bispecific T cells is critical for disease progression as adoptive transfer of NF-M15-35/MOG35-55 bispecific T cell lines caused full-blown disease in wild-type but not NF-M-deficient recipients. Moreover, specific tolerance through injection of NF-M15-35 peptide at the peak of disease halted experimental autoimmune encephalomyelitis progression. Our findings highlight the importance of polyspecific autoreactive T cells in the aggravation and perpetuation of central nervous system autoimmunity.
Collapse
Affiliation(s)
- Abdulraouf Ramadan
- INSERM UMR1043, Toulouse, F-31300, France CNRS, U5282, Toulouse, F-31300, France Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, F-31300, France
| | - Liliana E Lucca
- INSERM UMR1043, Toulouse, F-31300, France CNRS, U5282, Toulouse, F-31300, France Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, F-31300, France
| | - Nadège Carrié
- INSERM UMR1043, Toulouse, F-31300, France CNRS, U5282, Toulouse, F-31300, France Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, F-31300, France
| | - Sabine Desbois
- INSERM UMR1043, Toulouse, F-31300, France CNRS, U5282, Toulouse, F-31300, France Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, F-31300, France
| | - Pierre-Paul Axisa
- INSERM UMR1043, Toulouse, F-31300, France CNRS, U5282, Toulouse, F-31300, France Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, F-31300, France
| | - Myriam Hayder
- INSERM UMR1043, Toulouse, F-31300, France CNRS, U5282, Toulouse, F-31300, France Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, F-31300, France
| | - Jan Bauer
- Center for Brain Research, Department of Neuroimmunology, Medical University of Vienna, Vienna, Austria
| | - Roland S Liblau
- INSERM UMR1043, Toulouse, F-31300, France CNRS, U5282, Toulouse, F-31300, France Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, F-31300, France
| | - Lennart T Mars
- INSERM UMR1043, Toulouse, F-31300, France CNRS, U5282, Toulouse, F-31300, France Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, F-31300, France INSERM UMR995, LIRIC, F-59000 Lille, France Université de Lille, centre d'excellence LICEND and FHU IMMINeNT, F-59000 Lille, France
| |
Collapse
|
14
|
Aas-Hanssen K, Thompson KM, Bogen B, Munthe LA. Systemic Lupus Erythematosus: Molecular Mimicry between Anti-dsDNA CDR3 Idiotype, Microbial and Self Peptides-As Antigens for Th Cells. Front Immunol 2015; 6:382. [PMID: 26284067 PMCID: PMC4517057 DOI: 10.3389/fimmu.2015.00382] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/13/2015] [Indexed: 11/19/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is marked by a T helper (Th) cell-dependent B cell hyperresponsiveness, with frequent germinal center reactions, and gammaglobulinemia. A feature of SLE is the finding of IgG autoantibodies specific for dsDNA. The specificity of the Th cells that drive the expansion of anti-dsDNA B cells is unresolved. However, anti-microbial, anti-histone, and anti-idiotype Th cell responses have been hypothesized to play a role. It has been entirely unclear if these seemingly disparate Th cell responses and hypotheses could be related or unified. Here, we describe that H chain CDR3 idiotypes from IgG+ B cells of lupus mice have sequence similarities with both microbial and self peptides. Matched sequences were more frequent within the mutated CDR3 repertoire and when sequences were derived from lupus mice with expanded anti-dsDNA B cells. Analyses of histone sequences showed that particular histone peptides were similar to VDJ junctions. Moreover, lupus mice had Th cell responses toward histone peptides similar to anti-dsDNA CDR3 sequences. The results suggest that Th cells in lupus may have multiple cross-reactive specificities linked to the IgVH CDR3 Id-peptide sequences as well as similar DNA-associated protein motifs.
Collapse
Affiliation(s)
- Kristin Aas-Hanssen
- Department of Immunology, Centre for Immune Regulation, Institute of Clinical Medicine, University of Oslo , Oslo , Norway
| | - Keith M Thompson
- Department of Immunology, Centre for Immune Regulation, Institute of Clinical Medicine, University of Oslo , Oslo , Norway
| | - Bjarne Bogen
- Department of Immunology, Centre for Immune Regulation, Institute of Clinical Medicine, University of Oslo , Oslo , Norway ; KG Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo , Oslo , Norway
| | - Ludvig A Munthe
- Department of Immunology, Centre for Immune Regulation, Institute of Clinical Medicine, University of Oslo , Oslo , Norway
| |
Collapse
|
15
|
Lucca LE, Desbois S, Ramadan A, Ben-Nun A, Eisenstein M, Carrié N, Guéry JC, Sette A, Nguyen P, Geiger TL, Mars LT, Liblau RS. Bispecificity for myelin and neuronal self-antigens is a common feature of CD4 T cells in C57BL/6 mice. THE JOURNAL OF IMMUNOLOGY 2014; 193:3267-77. [PMID: 25135834 DOI: 10.4049/jimmunol.1400523] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The recognition of multiple ligands by a single TCR is an intrinsic feature of T cell biology, with important consequences for physiological and pathological processes. Polyspecific T cells targeting distinct self-antigens have been identified in healthy individuals as well as in the context of autoimmunity. We have previously shown that the 2D2 TCR recognizes the myelin oligodendrocyte glycoprotein epitope (MOG)35-55 as well as an epitope within the axonal protein neurofilament medium (NF-M15-35) in H-2(b) mice. In this study, we assess whether this cross-reactivity is a common feature of the MOG35-55-specific T cell response. To this end, we analyzed the CD4 T cell response of MOG35-55-immunized C57BL/6 mice for cross-reactivity with NF-M15-35. Using Ag recall responses, we established that an important proportion of MOG35-55-specific CD4 T cells also responded to NF-M15-35 in all mice tested. To study the clonality of this response, we analyzed 22 MOG35-55-specific T cell hybridomas expressing distinct TCR. Seven hybridomas were found to cross-react with NF-M15-35. Using an alanine scan of NF-M18-30 and an in silico predictive model, we dissected the molecular basis of cross-reactivity between MOG35-55 and NF-M15-35. We established that NF-M F24, R26, and V27 proved important TCR contacts. Strikingly, the identified TCR contacts are conserved within MOG38-50. Our data indicate that due to linear sequence homology, part of the MOG35-55-specific T cell repertoire of all C57BL/6 mice also recognizes NF-M15-35, with potential implications for CNS autoimmunity.
Collapse
Affiliation(s)
- Liliana E Lucca
- INSERM, U1043, Toulouse F-31300, France; Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France; Centre de Physiopathologie Toulouse-Purpan, Université Toulouse 3, Toulouse F-31300, France
| | - Sabine Desbois
- INSERM, U1043, Toulouse F-31300, France; Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France; Centre de Physiopathologie Toulouse-Purpan, Université Toulouse 3, Toulouse F-31300, France
| | - Abdulraouf Ramadan
- INSERM, U1043, Toulouse F-31300, France; Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France; Centre de Physiopathologie Toulouse-Purpan, Université Toulouse 3, Toulouse F-31300, France
| | - Avraham Ben-Nun
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Chemical Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Miriam Eisenstein
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Chemical Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nadège Carrié
- INSERM, U1043, Toulouse F-31300, France; Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France; Centre de Physiopathologie Toulouse-Purpan, Université Toulouse 3, Toulouse F-31300, France
| | - Jean-Charles Guéry
- INSERM, U1043, Toulouse F-31300, France; Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France; Centre de Physiopathologie Toulouse-Purpan, Université Toulouse 3, Toulouse F-31300, France
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, San Diego, CA 92109
| | - Phuong Nguyen
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | - Terrence L Geiger
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | - Lennart T Mars
- INSERM, U1043, Toulouse F-31300, France; Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France; Centre de Physiopathologie Toulouse-Purpan, Université Toulouse 3, Toulouse F-31300, France
| | - Roland S Liblau
- INSERM, U1043, Toulouse F-31300, France; Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France; Centre de Physiopathologie Toulouse-Purpan, Université Toulouse 3, Toulouse F-31300, France; Département d'Immunologie, Centre Hospitalier Universitaire Toulouse, Hôpital Purpan, Toulouse F-31300, France
| |
Collapse
|
16
|
Ehlers M, Thiel A, Papewalis C, Domröse A, Stenzel W, Bernecker C, Haase M, Allelein S, Schinner S, Willenberg HS, Feldkamp J, Schott M. Enhanced iodine supplementation alters the immune process in a transgenic mouse model for autoimmune thyroiditis. Thyroid 2014; 24:888-96. [PMID: 24460670 DOI: 10.1089/thy.2013.0495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND The impact of excessive iodine intake on the development of autoimmune thyroiditis (AIT) is still under debate. Transgenic, antibody-devoid TAZ10 mice spontaneously develop AIT due to autoreactive thyroperoxidase-specific T cells. In this model, development of AIT is determined by a T cell infiltration of the thyroid gland leading to an elevation of serum thyrotropin (TSH) levels and significant weight gain. In the present study we investigated the impact of moderate and high iodine supplementation on the course of disease in these mice, which are immunologically prone to AIT. METHODS In addition to normal nutrition, mice were supplemented for 20 weeks with 2.5 μg versus 5 μg iodine per milliliter drinking water, which corresponds to a human daily iodine supplementation of 150 μg, 315 μg, and 615 μg iodine. AIT-defining parameters (weight gain, elevation of serum TSH levels, cellular infiltration of the thyroid) and immunologic effects were analyzed. RESULTS No significant differences were displayed when comparing weight and serum TSH levels in the iodine-supplemented versus control groups. Increased thyroid infiltrates with CD8⁺ T cells were detected by fluorescein-activated cell sorter (FACS) and immunofluorescence staining in mice supplemented with elevated iodine amounts (315 μg and 615 μg iodine per day, respectively). Immunologic monitoring revealed selective changes in immune cell frequencies (CD8⁺ and regulatory T cells, natural killer [NK] cells) and cytokine production (interferon-γ, interleukin-1α, and interleukin-17), however, without affecting the overall immune balance. CONCLUSION Our results demonstrate that elevated iodine supplementation has no physical impact on the course of disease in transgenic, antibody-devoid TAZ10 mice, which are immunologically prone to AIT.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/pathology
- Cytokines/blood
- Cytokines/metabolism
- Dietary Supplements
- Female
- Immunity, Cellular
- Immunologic Factors/administration & dosage
- Immunologic Factors/therapeutic use
- Iodine/administration & dosage
- Iodine/therapeutic use
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/pathology
- Male
- Mice, Transgenic
- Organ Size
- Specific Pathogen-Free Organisms
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/pathology
- Th1 Cells/immunology
- Th1 Cells/metabolism
- Th1 Cells/pathology
- Thyroid Gland/immunology
- Thyroid Gland/metabolism
- Thyroid Gland/pathology
- Thyroiditis, Autoimmune/diet therapy
- Thyroiditis, Autoimmune/immunology
- Thyroiditis, Autoimmune/metabolism
- Thyroiditis, Autoimmune/pathology
- Thyrotropin/blood
- Weight Gain
Collapse
Affiliation(s)
- Margret Ehlers
- 1 Division for Specific Endocrinology, University of Duesseldorf , Duesseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Muller I, Giani C, Zhang L, Grennan-Jones FA, Fiore E, Belardi V, Rosellini V, Funel N, Campani D, Giustarini E, Lewis MD, Bakhsh AD, Roncella M, Ghilli M, Vitti P, Dayan CM, Ludgate ME. Does thyroid peroxidase provide an antigenic link between thyroid autoimmunity and breast cancer? Int J Cancer 2014; 134:1706-1714. [PMID: 24114667 DOI: 10.1002/ijc.28493] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 07/11/2013] [Accepted: 08/28/2013] [Indexed: 11/05/2022]
Abstract
Women with breast cancer (BC) and antithyroid peroxidase (TPO) autoantibodies (TPOAb) have a better prognosis than women lacking TPOAb. Sera from women with TPOAb displayed immunoreactivity to BC tissue by immunofluorescence that was not apparent in women without TPOAb. We hypothesize a BC/thyroid shared antigen that provides a target for humoral or cell-mediated immune activity; candidates include the sodium/iodide symporter (expressed in thyroid and BC), cross-reacting epitopes in TPO and lactoperoxidase (LPO) or TPO itself. As the association is with TPOAb, we investigated TPO expression in BC, breast peritumoral tissue (PT), other tissues (tumoral and not) and thyroid as positive control. Transcripts for known and novel TPO isoforms were detected in BC (n = 8) and PT (n = 8) but at approximately 10(4) -fold lower than in thyroid while in non-BC tumors (n = 5) they were at the limit of detection. TPO was expressed also in adipose tissue (n = 17), 10(3) -fold lower than in thyroid. Full length TPO (Mr 105-110 kDa) was detected in Western blots in the majority of examined tissues; preabsorption of the TPO antibody with recombinant TPO (but not LPO) reduced the signal, indicating specificity. The same occurred with some lower molecular weight bands, which could correspond to smaller TPO transcript isoforms, present in all samples. In conclusion, TPO is weakly expressed in BC and other tissues; this could partly explain the high frequency and protective role of TPOAb in BC patients. Further studies will investigate tissue specificity, function and immunogenicity of the novel TPO variants (some BC-specific) identified.
Collapse
Affiliation(s)
- I Muller
- Thyroid Research Group Institute of Molecular & Experimental Medicine School of Medicine, Cardiff University, Cardiff, Wales, United Kingdom; Department of Endocrinology, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
McLachlan SM, Rapoport B. Breaking tolerance to thyroid antigens: changing concepts in thyroid autoimmunity. Endocr Rev 2014; 35:59-105. [PMID: 24091783 PMCID: PMC3895862 DOI: 10.1210/er.2013-1055] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 09/24/2013] [Indexed: 02/06/2023]
Abstract
Thyroid autoimmunity involves loss of tolerance to thyroid proteins in genetically susceptible individuals in association with environmental factors. In central tolerance, intrathymic autoantigen presentation deletes immature T cells with high affinity for autoantigen-derived peptides. Regulatory T cells provide an alternative mechanism to silence autoimmune T cells in the periphery. The TSH receptor (TSHR), thyroid peroxidase (TPO), and thyroglobulin (Tg) have unusual properties ("immunogenicity") that contribute to breaking tolerance, including size, abundance, membrane association, glycosylation, and polymorphisms. Insight into loss of tolerance to thyroid proteins comes from spontaneous and induced animal models: 1) intrathymic expression controls self-tolerance to the TSHR, not TPO or Tg; 2) regulatory T cells are not involved in TSHR self-tolerance and instead control the balance between Graves' disease and thyroiditis; 3) breaking TSHR tolerance involves contributions from major histocompatibility complex molecules (humans and induced mouse models), TSHR polymorphism(s) (humans), and alternative splicing (mice); 4) loss of tolerance to Tg before TPO indicates that greater Tg immunogenicity vs TPO dominates central tolerance expectations; 5) tolerance is induced by thyroid autoantigen administration before autoimmunity is established; 6) interferon-α therapy for hepatitis C infection enhances thyroid autoimmunity in patients with intact immunity; Graves' disease developing after T-cell depletion reflects reconstitution autoimmunity; and 7) most environmental factors (including excess iodine) "reveal," but do not induce, thyroid autoimmunity. Micro-organisms likely exert their effects via bystander stimulation. Finally, no single mechanism explains the loss of tolerance to thyroid proteins. The goal of inducing self-tolerance to prevent autoimmune thyroid disease will require accurate prediction of at-risk individuals together with an antigen-specific, not blanket, therapeutic approach.
Collapse
Affiliation(s)
- Sandra M McLachlan
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute, and University of California-Los Angeles School of Medicine, Los Angeles, California 90048
| | | |
Collapse
|
19
|
Choi YS, Lee JE, Nam SJ, Park JT, Kim HS, Choi KH, Kim BS, Shin EC. Two distinct functional patterns of hepatitis C Virus (HCV)-specific T cell responses in seronegative, aviremic patients. PLoS One 2013; 8:e62319. [PMID: 23638039 PMCID: PMC3640053 DOI: 10.1371/journal.pone.0062319] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 03/20/2013] [Indexed: 12/13/2022] Open
Abstract
In hepatitis C Virus (HCV) high-risk groups, HCV-specific T cell responses have been detected in seronegative, aviremic persons who have no evidence of HCV infection. Herein, we investigated functional profiles of HCV-specific T-cell responses in seronegative, aviremic patients of a HCV high-risk group. Seventy seven hemodialysis patients with chronic renal disease were analyzed by IFN-γ ELISpot assays, and eight of 71 (11.3%) seronegative, aviremic patients displayed HCV-specific T-cell responses. Their HCV-specific memory T cells were characterized by assessing cytokine polyfunctionality, known to provide antiviral protection. By intracellular staining of IFN-γ, TNF-α, IL-2 and MIP-1β, we identified two distinct populations in the seronegative, aviremic patients: polyfunctional responders and TNF-α-predominant responders. In further analysis, occult HCV infection was excluded as a cause of the HCV-specific T cell response via secondary nested RT-PCR of HCV RNA in peripheral blood mononuclear cell samples. HCV-specific T cells targeted multiple epitopes including non-structural proteins in a single patient, implying that their T cells might have been primed by HCV proteins synthesized within the host. We conclude that HCV-specific memory T cells of seronegative, aviremic patients arise from authentic HCV replication in the host, but not from current occult HCV infection. By functional pattern of HCV-specific T cells, there are two distinct populations in these patients: polyfunctional responders and TNF-α-predominant responders.
Collapse
Affiliation(s)
- Yoon Seok Choi
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Jung Eun Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Joo Nam
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Jung Tak Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyon-Suk Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyu Hun Choi
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Beom Seok Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- * E-mail: (ES); (BK)
| | - Eui-Cheol Shin
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
- * E-mail: (ES); (BK)
| |
Collapse
|
20
|
Cusick MF, Libbey JE, Fujinami RS. Molecular mimicry as a mechanism of autoimmune disease. Clin Rev Allergy Immunol 2012; 42:102-11. [PMID: 22095454 PMCID: PMC3266166 DOI: 10.1007/s12016-011-8294-7] [Citation(s) in RCA: 378] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A variety of mechanisms have been suggested as the means by which infections can initiate and/or exacerbate autoimmune diseases. One mechanism is molecular mimicry, where a foreign antigen shares sequence or structural similarities with self-antigens. Molecular mimicry has typically been characterized on an antibody or T cell level. However, structural relatedness between pathogen and self does not account for T cell activation in a number of autoimmune diseases. A proposed mechanism that could have been misinterpreted for molecular mimicry is the expression of dual T cell receptors (TCR) on a single T cell. These T cells have dual reactivity to both foreign and self-antigens leaving the host vulnerable to foreign insults capable of triggering an autoimmune response. In this review, we briefly discuss what is known about molecular mimicry followed by a discussion of the current understanding of dual TCRs. Finally, we discuss three mechanisms, including molecular mimicry, dual TCRs, and chimeric TCRs, by which dual reactivity of the T cell may play a role in autoimmune diseases.
Collapse
Affiliation(s)
- Matthew F Cusick
- Department of Pathology, University of Utah, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
21
|
Tchernev G, Ananiev J, Cardoso JC, Wollina U, Verma SB, Patterson JW, Dourmishev LA, Tronnier M, Okamoto H, Mizuno K, Kanazawa N, Gulubova M, Manolova I, Salaro C. Sarcoidosis and molecular mimicry--important etiopathogenetic aspects: current state and future directions. Wien Klin Wochenschr 2012; 124:227-38. [PMID: 22527817 DOI: 10.1007/s00508-012-0154-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Accepted: 01/21/2012] [Indexed: 01/19/2023]
Abstract
Sarcoidosis is a disease of uncertainty in terms of its cause, presentation, and clinical course. The disease has a worldwide distribution and affects all ages, races, and both sex. Sarcoidosis of the skin may have an extremely heterogeneous clinical presentation, so that the definitions of 'great imitator' and 'clinical chameleon' have long been used. The factors that influence clinical picture and severity of the disease are probably linked to the etiopathogenesis of sarcoidosis, which continues to be shrouded in mystery. The current state of the art on the pathogenesis of sarcoidosis is that it is an immunological response in a genetically susceptible individual to an as-yet undefined antigenic stimulus. How exposure occurs in genetically predisposed patients is not completely clear, but the most likely explanation is that these agents or antigens are either inhaled into the lungs or enter through contact with the skin, as these are the common target organs that are constantly in contact with the environment. An autoimmune etiology of sarcoidosis could possibly occur through a process of molecular mimicry of infectious or other environmental antigens to host antigens. This could lead to a cross-mediated immune response and induction of autoimmune disease. This molecular mimicry may probably be responsible for the heterogeneous clinical presentations of the disease. Several investigations and studies have provided valuable evidence on the etiopathogenesis of sarcoidosis, which may lead to the future development of targeted and innovative treatment strategies. Nevertheless, we are still a long way from unravelling the underlying cause of this mysterious disease.
Collapse
Affiliation(s)
- Georgi Tchernev
- Policlinic for Dermatology and Venereology, University Hospital Lozenetz, Academic Educational Hospital of The Saint Kliment Ohridski University, Koziak street 1, 1407, Sofia, Bulgaria.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Liblau RS, Wekerle H, Tisch RM. Cumulative autoimmunity: T cell clones recognizing several self-epitopes exhibit enhanced pathogenicity. Front Immunol 2011; 2:47. [PMID: 22566837 PMCID: PMC3342376 DOI: 10.3389/fimmu.2011.00047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 09/10/2011] [Indexed: 11/24/2022] Open
Abstract
T cell receptor (TCR) recognition is intrinsically polyspecific. In the field of autoimmunity, recognition of both self- and microbial peptides by a single TCR has led to the concept of molecular mimicry. However, findings made by our group and others clearly demonstrate that a given TCR can also recognize multiple distinct self-peptides. Based on experimental data we argue that recognition of several self-peptides increases the pathogenicity of an autoreactive T cell; a property we refer to as “cumulative autoimmunity.” The mechanisms of such increased pathogenicity, and the implications of cumulative autoimmunity regarding the pathophysiology of T cell-mediated autoimmune diseases will be discussed.
Collapse
|
24
|
Macdonald WA, Chen Z, Gras S, Archbold JK, Tynan FE, Clements CS, Bharadwaj M, Kjer-Nielsen L, Saunders PM, Wilce MCJ, Crawford F, Stadinsky B, Jackson D, Brooks AG, Purcell AW, Kappler JW, Burrows SR, Rossjohn J, McCluskey J. T cell allorecognition via molecular mimicry. Immunity 2010; 31:897-908. [PMID: 20064448 DOI: 10.1016/j.immuni.2009.09.025] [Citation(s) in RCA: 223] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 09/10/2009] [Accepted: 09/25/2009] [Indexed: 10/20/2022]
Abstract
T cells often alloreact with foreign human leukocyte antigens (HLA). Here we showed the LC13 T cell receptor (TCR), selected for recognition on self-HLA-B( *)0801 bound to a viral peptide, alloreacts with B44 allotypes (HLA-B( *)4402 and HLA-B( *)4405) bound to two different allopeptides. Despite extensive polymorphism between HLA-B( *)0801, HLA-B( *)4402, and HLA-B( *)4405 and the disparate sequences of the viral and allopeptides, the LC13 TCR engaged these peptide-HLA (pHLA) complexes identically, accommodating mimicry of the viral peptide by the allopeptide. The viral and allopeptides adopted similar conformations only after TCR ligation, revealing an induced-fit mechanism of molecular mimicry. The LC13 T cells did not alloreact against HLA-B( *)4403, and the single residue polymorphism between HLA-B( *)4402 and HLA-B( *)4403 affected the plasticity of the allopeptide, revealing that molecular mimicry was associated with TCR specificity. Accordingly, molecular mimicry that is HLA and peptide dependent is a mechanism for human T cell alloreactivity between disparate cognate and allogeneic pHLA complexes.
Collapse
Affiliation(s)
- Whitney A Macdonald
- The Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Iakhiaev MA, Iakhiaev AV. Graph-theoretical comparison of protein surfaces reveals potential determinants of cross-reactivity and the molecular mimicry. Mol Immunol 2009; 47:719-25. [PMID: 19939450 DOI: 10.1016/j.molimm.2009.10.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Accepted: 10/23/2009] [Indexed: 01/24/2023]
Abstract
Different proteins, even without sequence similarity, still can contain similar surface regions involved in protein-protein interactions with common target. These regions can serve as structural determinants of cross-reactivity and molecular mimicry. Molecular mimicry, defined as the process in which structural properties of one molecule are simulated by the dissimilar molecules, is implicated in several biologically important processes, including autoimmune and allergic reactions, binding of some ligands to common receptor, and interactions in cell signaling. The problem of identification of the determinants of molecular mimicry is not completely solved at this time. We hypothesize that identification of structurally and chemically similar surface regions of two protein molecules capable of binding to the same target will allow us to identify sites involved in cross-reactivity including determinants of the molecular mimicry. We used a graph-theoretical approach in order to determine highly similar surface regions of two proteins with known three-dimensional structures. This approach uses a variation of Maximal Common Subgraph (MCS) isomorphism, where an association graph is constructed based on the surface-exposed residues of the two molecules and the matching regions are found based on the maximum cliques in the association graph. Testing the proposed method on the targets of autoantibody involved in antiphopholipid syndrome (APS)--beta2-GPI, PC, thrombin, factor IX, factor X, and plasmin allowed identifying potential epitopes for antibody that can inhibit coagulation proteases. Application of this method to the Activated Protein C and factor VII Gla-domains revealed surface regions involved in EPCR and plasma membrane binding, consistent with known experimental results. Analysis of major pollen allergen that can cause food allergies through cross-reactivity found known epitopes involved in cross-reactivity and also revealed additional surface regions that can complement the list of epitopes. Taken together, our results suggest that the proposed graph-theoretical approach can identify determinants of cross-reactivity and molecular mimicry.
Collapse
Affiliation(s)
- Mikhail A Iakhiaev
- Graduate Program of the Computer Science Department, The University of Texas at Austin, TX, United States
| | | |
Collapse
|
26
|
Wolfl M, Rutebemberwa A, Mosbruger T, Mao Q, Li H, Netski D, Ray SC, Pardoll D, Sidney J, Sette A, Allen T, Kuntzen T, Kavanagh DG, Kuball J, Greenberg PD, Cox AL. Hepatitis C virus immune escape via exploitation of a hole in the T cell repertoire. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:6435-46. [PMID: 18941234 PMCID: PMC2742502 DOI: 10.4049/jimmunol.181.9.6435] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hepatitis C virus (HCV) infection frequently persists despite eliciting substantial virus-specific immune responses. Thus, HCV infection provides a setting in which to investigate mechanisms of immune escape that allow for viral persistence. Viral amino acid substitutions resulting in decreased MHC binding or impaired Ag processing of T cell epitopes reduce Ag density on the cell surface, permitting evasion of T cell responses in chronic viral infection. Substitutions in viral epitopes that alter TCR contact residues frequently result in escape, but via unclear mechanisms because such substitutions do not reduce surface presentation of peptide-MHC complexes and would be expected to prime T cells with new specificities. We demonstrate that a known in vivo HCV mutation involving a TCR contact residue significantly diminishes T cell recognition and, in contrast to the original sequence, fails to effectively prime naive T cells. This mutant epitope thus escapes de novo immune recognition because there are few highly specific cognate TCR among the primary human T cell repertoire. This example is the first on viral immune escape via exploitation of a "hole" in the T cell repertoire, and may represent an important general mechanism of viral persistence.
Collapse
Affiliation(s)
- Matthias Wolfl
- Department of Fred Hutchinson Cancer Research Center 1100 Fairview Ave North D3-100 Seattle, Washington 98109
| | - Alleluiah Rutebemberwa
- Department of Medicine, Johns Hopkins Medical Institutions, 1503 E. Jefferson St. Baltimore, Maryland 21231
| | - Timothy Mosbruger
- Department of Medicine, Johns Hopkins Medical Institutions, 1503 E. Jefferson St. Baltimore, Maryland 21231
| | - Qing Mao
- Department of Medicine, Johns Hopkins Medical Institutions, 1503 E. Jefferson St. Baltimore, Maryland 21231
- Department of Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China 400038
| | - Hongmei Li
- Department of Medicine, Johns Hopkins Medical Institutions, 1503 E. Jefferson St. Baltimore, Maryland 21231
| | - Dale Netski
- Department of Medicine, Johns Hopkins Medical Institutions, 1503 E. Jefferson St. Baltimore, Maryland 21231
| | - Stuart C. Ray
- Department of Medicine, Johns Hopkins Medical Institutions, 1503 E. Jefferson St. Baltimore, Maryland 21231
- Department of Oncology, Johns Hopkins Medical Institutions, 1503 E. Jefferson St. Baltimore, Maryland 21231
| | - Drew Pardoll
- Department of Medicine, Johns Hopkins Medical Institutions, 1503 E. Jefferson St. Baltimore, Maryland 21231
- Department of Oncology, Johns Hopkins Medical Institutions, 1503 E. Jefferson St. Baltimore, Maryland 21231
| | - John Sidney
- Department of La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive San Diego, California 92121
| | - Alessandro Sette
- Department of La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive San Diego, California 92121
| | - Todd Allen
- Department of Partners AIDS Research Center, 13th Street, Bldg 149, Charlestown, Massachusetts 02129
| | - Thomas Kuntzen
- Department of Partners AIDS Research Center, 13th Street, Bldg 149, Charlestown, Massachusetts 02129
| | - Daniel G. Kavanagh
- Department of Partners AIDS Research Center, 13th Street, Bldg 149, Charlestown, Massachusetts 02129
| | - Jurgen Kuball
- Department of Fred Hutchinson Cancer Research Center 1100 Fairview Ave North D3-100 Seattle, Washington 98109
| | - Philip D. Greenberg
- Department of Fred Hutchinson Cancer Research Center 1100 Fairview Ave North D3-100 Seattle, Washington 98109
| | - Andrea L. Cox
- Department of Medicine, Johns Hopkins Medical Institutions, 1503 E. Jefferson St. Baltimore, Maryland 21231
- Department of Oncology, Johns Hopkins Medical Institutions, 1503 E. Jefferson St. Baltimore, Maryland 21231
| |
Collapse
|
27
|
Muixí L, Alvarez I, Jaraquemada D. Peptides presented in vivo by HLA-DR in thyroid autoimmunity. Adv Immunol 2008; 99:165-209. [PMID: 19117535 DOI: 10.1016/s0065-2776(08)00606-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The association of the major histocompatibility complex (MHC) genes with autoimmune diseases together with the ectopic expression of class II molecules by epithelial cells of the target tissue gives to these molecules a central role in the pathogenesis of the disease, in its regulation and in the persistence of the immune response in situ. HLA-DR molecules expressed by thyroid follicular cells in thyroid autoimmune diseases are compact molecules stably associated with peptides. The nature of these peptides is of vital importance in the understanding of the disease, since these MHC-II-peptide complexes are going to be recognized by both effector and regulatory T cells in situ. In this chapter, we review the current state of the analysis of naturally processed peptides presented by MHC class II molecules in the context of autoimmunity and we discuss our data of natural HLA-DR ligands eluted from Graves' disease affected thyroid glands, from where autoantigen-derived peptides have been identified.
Collapse
Affiliation(s)
- Laia Muixí
- Immunology Unit, Institut de Biotechnologia i Biomedicina, Universitat Autònoma de Barcelona, Campus de Bellaterra, Barcelona, Spain
| | | | | |
Collapse
|
28
|
Abstract
Thyroid peroxidase (TPO) evokes high-affinity, IgG-class autoantibodies [TPO autoantibodies (TPOAbs)] and TPO-specific T cells that are markers of thyroid infiltration or implicated in thyroid destruction, respectively. A diverse repertoire of human monoclonal TPOAbs, unparalleled in other autoimmune diseases, provides invaluable probes for investigating antibody epitopes. Human TPOAbs recognize an immunodominant region comprising overlapping A and B domains on conformationally intact TPO. Amino acids recognized by TPOAbs are located in the regions with homology to myeloperoxidase (MPO) and the complement control protein (CCP) but not in the epidermal growth factor (EGF)-like region. T cells recognize epitopes in the MPO-like region but not in the CCP- or EGF-like regions in humans. Monoclonal human TPOAbs modulate processing of TPO protein to provide peptides for some T cells. A human T cell clone expressed transgenically in mice induces lymphocytic infiltration and hypothyroidism. This T cell's epitope is only generated by thyrocyte processing of endogenous TPO. Further, intact TPO expressed in vivo is also required for induction of TPOAbs in mice that resemble human autoantibodies. Overall, some TPO-specific T cells and the majority of autoantibodies in humans develop in response to TPO presented by thyroid cells, rather than to TPO released by damaged thyrocytes.
Collapse
Affiliation(s)
- Sandra M McLachlan
- Autoimmune Disease Unit, Cedars-Sinai Medical Center and UCLA Medical School, Los Angeles, California, USA.
| | | |
Collapse
|
29
|
Polymeros D, Bogdanos DP, Day R, Arioli D, Vergani D, Forbes A. Does cross-reactivity between mycobacterium avium paratuberculosis and human intestinal antigens characterize Crohn's disease? Gastroenterology 2006; 131:85-96. [PMID: 16831593 DOI: 10.1053/j.gastro.2006.04.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Accepted: 03/30/2006] [Indexed: 01/15/2023]
Abstract
BACKGROUND & AIMS Most Crohn's disease (CD) patients show seroreactivity against Mycobacterium avium paratuberculosis (MAP), suggesting a pathogenic role for this organism. Our aim was to seek amino acid similarities between MAP and intestinal proteins that, through molecular mimicry, could serve as targets for cross-reactive immunity in CD. METHODS Fifty-three peptides comprising 23 sets of MAP/human intestinal peptidyl mimics chosen for maximal homology were constructed and tested for immunologic cross-reactivity by enzyme-linked immunosorbent assay in 50 patients with CD, 50 with ulcerative colitis, and 38 healthy controls. RESULTS Antibody reactivity was present in only 7 of 23 peptide sets. MAP/self-reactivity in at least 1 of the 7 reactive sets was present in 21 (42%) CD patients but was virtually absent in the controls. Significant double-reactivity was found against MAP glycosyl transferase d (gsd)(230-244)/human gastrointestinal glutathione peroxidase (GPg)(111-125) homologues in 15 of 50 (30%) CD patients; MAP alkylohydroperoxidase C (ahpC)(20-34)/human tumor overexpressed protein (TOG)(637-651) double-reactivity was present in 10 (20%) CD patients, but in none of the controls. Inhibition studies confirmed that simultaneous reactivity to mimics was caused by cross-reactivity. Three-dimensional modeling predicts GPg(111-125) will be exposed in a solvent-accessible surface region of the protein compatible with antibody recognition. Antibody affinity was greater for the MAP mimics than for the self-sequences, suggesting that reactivity to the mycobacterial sequences precedes that against self-sequences. CONCLUSIONS We describe MAP/self-mimics as targets of cross-reactive antibody responses characterizing patients with CD. Our findings indicate gastrointestinal glutathione peroxidase as a novel autoantigen in CD.
Collapse
|
30
|
Bogdanos DP, Smith H, Ma Y, Baum H, Mieli-Vergani G, Vergani D. A study of molecular mimicry and immunological cross-reactivity between hepatitis B surface antigen and myelin mimics. Clin Dev Immunol 2005; 12:217-24. [PMID: 16295528 PMCID: PMC2275415 DOI: 10.1080/17402520500285247] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
On the basis of the reported association between hepatitis B vaccination
(HBvacc) and autoimmune demyelinating complications such as multiple sclerosis
(MS), we have looked for aminoacid similarities between the small hepatitis
B virus surface antigen (SHBsAg), and the MS-autoantigens myelin basic protein
(MBP) and myelin oligodendrocyte glycoprotein (MOG) that could serve as targets
of immunological cross-reactivity. Twenty-mer peptides spanning 4 SHBsAg/MOG
and 1 SHBsAg/MBP mimicking pairs, were constructed and tested by ELISA as
targets of cross-reactive responses. A total of 147 samples from 58 adults were
collected before HBvacc (58/58), and post-HBvacc (48/58 before the second and
41/58 before the third boost). Eighty-seven sera from anti-SHBsAg antibody
negative patients with various diseases were tested as pathological controls.
Reactivity to at least one of the SHBsAg peptides was found in 8 (14%)
pre-HBvacc subjects; amongst the remaining 50, reactivity to at least one of the
SHBsAg peptides appeared in 47 (94%) post-HBvacc. Reactivity to at least one
of the MOG mimics was present in 4 (8%) pre-HBvacc and in 30 (60%)
post-HBvacc (p < 0.001). Overall 30/50 (60%) vaccinees had SHBsAg/MOG
double reactivity on at least one occasion compared to none before-vaccination
and in 2 (2%) of the pathological controls (p < 0.001 for both). SHBsAg/MOG
double reactivity was cross-reactive as confirmed by inhibition studies. At 6 months
post-vaccination, 3 of the 4 anti-MOG reactive cases before vaccination and 7
of the 24 (29%) of the anti-MOG reactive cases at 3 months post-vaccination had
lost their reactivity to MOG5-24. There was no reactivity to the SHBsAg/MBP
mimics. None of the vaccinees reported symptoms of demyelinating disorders. In
view of the observed SHBsAg/MOG cross-reactivity, the vaccine's possible role as
an immunomodulator of viral/self cross-reactivity must be further investigated.
Collapse
|
31
|
Badami E, Maiuri L, Quaratino S. High incidence of spontaneous autoimmune thyroiditis in immunocompetent self-reactive human T cell receptor transgenic mice. J Autoimmun 2005; 24:85-91. [PMID: 15829400 DOI: 10.1016/j.jaut.2005.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Accepted: 12/14/2004] [Indexed: 11/23/2022]
Abstract
Autoantigen-specific TCR transgenic mice allow us to assess the role of T cells in autoimmunity. We have recently generated humanized TAZ10 transgenic mice expressing the human TCR specific for the immunodominant epitope of thyroid peroxidase (TPO). We have shown that these transgenic mice do not undergo tolerance in vivo and that on Rag deficient background they are susceptible to spontaneous autoimmune thyroiditis. Here we show that, in contrast to other transgenic models of autoimmunity, almost all TCR(+)Rag1+ (T+R+) T cells are activated in vivo leading to the development of spontaneous autoimmune thyroiditis. In these mice, disease is also accompanied by a significant reduction of CD4+CD25hi regulatory T cells. These data indicate that the pathogenic activity of the self-reactive TCR can circumvent the regulatory function operated by the non-transgenic T cells that are normally present in T+R+ mice, leading to autoimmunity.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- Cells, Cultured
- Humans
- Immunocompetence/immunology
- Lymphocyte Activation
- Lymphocyte Count
- Male
- Mice
- Mice, Transgenic
- Phenotype
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Interleukin-2/immunology
- Thyroiditis, Autoimmune/genetics
- Thyroiditis, Autoimmune/immunology
- Thyroiditis, Autoimmune/pathology
Collapse
Affiliation(s)
- Ester Badami
- Cancer Sciences Division, Southampton General Hospital, University of Southampton, Tremona Road, Southampton SO16 6YD, UK
| | | | | |
Collapse
|
32
|
Sandalova T, Michaëlsson J, Harris RA, Odeberg J, Schneider G, Kärre K, Achour A. A structural basis for CD8+ T cell-dependent recognition of non-homologous peptide ligands: implications for molecular mimicry in autoreactivity. J Biol Chem 2005; 280:27069-75. [PMID: 15845547 DOI: 10.1074/jbc.m500927200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Molecular mimicry of self-epitopes by viral antigens is one possible pathogenic mechanism underlying induction of autoimmunity. A self-epitope, mDBM, derived from mouse dopamine beta-mono-oxygenase (KALYDYAPI) sharing 44% sequence identity with the lymphocytic choriomeningitis virus-derived immunodominant epitope gp33 (KAVYNFATC/M), has previously been identified as a cross-reactive self-ligand, presentation of which results in autoimmunity. A rat peptide homologue, rDBM (KALYNYAPI, 56% identity to gp33), which displayed similar properties to mDBM, has also been identified. We herein report the crystal structure of H-2Db.rDBM and a comparison with the crystal structures of the cross-reactive H-2Db.gp33 and non-cross-reactive H-2Db.gp33 (V3L) escape variant (KALYNFATM, 88% identity to gp33). Despite the large sequence disparity, rDBM and gp33 peptides are presented in nearly identical manners by H-2Db, with a striking juxtaposition of the central sections of both peptides from residues p3 to p7. The structural similarity provides H-2Db in complex with either a virus-derived or a dopamine beta-mono-oxygenase-derived peptide with a shared antigenic identity that conserves the positioning of the heavy chain and peptide residues that interact with the T cell receptor (TCR). This stands in contrast to the structure of H-2Db.gp33 (V3L), in which a single conserved mutation, also present in rDBM, induces large movements of both the peptide backbone and the side chains that interact with the TCR. The TCR-interacting surfaces of the H-2Db.rDBM and H-2Db.gp33 major histocompatibility complexes are very similar with regard to shape, topology, and charge distribution, providing a structural basis for CD8 T cell activation by molecular mimicry and potential subsequent development of autoreactivity.
Collapse
Affiliation(s)
- Tatyana Sandalova
- Department of Medical Biochemistry and Biophysics, Microbiology and Tumor Biology Center, and Strategic Research Center IRIS for Studies of Integrated Recognition in the Immune System, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
33
|
Quaratino S, Ruf J, Osman M, Guo J, McLachlan S, Rapoport B, Londei M. Human autoantibodies modulate the T cell epitope repertoire but fail to unmask a pathogenic cryptic epitope. THE JOURNAL OF IMMUNOLOGY 2005; 174:557-63. [PMID: 15611283 DOI: 10.4049/jimmunol.174.1.557] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abs can tune the responses of Ag-specific T cells by influencing the nature of the epitope repertoire displayed by APCs. We explored the interaction between human self-reactive T cells and human monoclonal autoantibodies from combinatorial Ig-gene libraries derived from autoimmune thyroiditis patients and specific for the main autoantigen thyroid peroxidase (TPO). All human mAbs extensively influenced the T cell epitope repertoire recognized by different TPO-specific T cell clones. The action of the human mAbs was complex, because sometimes the same Ab suppressed or enhanced the epitopes recognized by the 10 different TPO-specific T cell clones. The human mAbs could modulate the epitope repertoire when TPO was added exogenously and when expressed constitutively on the surface of APCs. However, they could not unmask an immunodominant cryptic TPO epitope. In this study, we show that human autoantibodies influence the activity of self-reactive T cells and prove their relevance in concealing or exposing epitopes recognized by self-reactive T cells. However, our results further stress the biological significance of the immunodominant cryptic epitope we have defined and its potential importance in the evolution of autoimmunity.
Collapse
Affiliation(s)
- Sonia Quaratino
- Cancer Sciences Division, Southampton General Hospital, University of Southampton, Tremona Road, Southampton SO16 6YD, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
34
|
Laugel B, Boulter JM, Lissin N, Vuidepot A, Li Y, Gostick E, Crotty LE, Douek DC, Hemelaar J, Price DA, Jakobsen BK, Sewell AK. Design of Soluble Recombinant T Cell Receptors for Antigen Targeting and T Cell Inhibition. J Biol Chem 2005; 280:1882-92. [PMID: 15531581 DOI: 10.1074/jbc.m409427200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The use of recombinant T cell receptors (TCRs) to target therapeutic interventions has been hindered by the naturally low affinity of TCR interactions with peptide major histocompatibility complex ligands. Here, we use multimeric forms of soluble heterodimeric alphabeta TCRs for specific detection of target cells pulsed with cognate peptide, discrimination of quantitative changes in antigen display at the cell surface, identification of virus-infected cells, inhibition of antigen-specific cytotoxic T lymphocyte activation, and identification of cross-reactive peptides. Notably, the A6 TCR specific for the immunodominant HLA A2-restricted human T cell leukemia virus type 1 Tax(11-19) epitope bound to HLA A2-HuD(87-95) (K(D) 120 microm by surface plasmon resonance), an epitope implicated as a causal antigen in the paraneoplastic neurological degenerative disorder anti-Hu syndrome. A mutant A6 TCR that exhibited dramatically increased affinity for cognate antigen (K(D) 2.5 nm) without enhanced cross-reactivity was generated; this TCR demonstrated potent biological activity even as a monomeric molecule. These data provide insights into TCR repertoire selection and delineate a framework for the selective modification of TCRs in vitro that could enable specific therapeutic intervention in vivo.
Collapse
Affiliation(s)
- Bruno Laugel
- The T-cell Modulation Group, The Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Rd., Oxford OX1 3SY, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Satheeshkumar KS, Murali J, Jayakumar R. Assemblages of prion fragments: novel model systems for understanding amyloid toxicity. J Struct Biol 2004; 148:176-93. [PMID: 15477098 DOI: 10.1016/j.jsb.2004.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Revised: 05/10/2004] [Indexed: 11/21/2022]
Abstract
We report the conformational and toxic properties of two novel fibril-forming prion amyloid sequences, GAVVGGLG (PrP(119-126)) and VVGGLGG (PrP(121-127)). The conformational preferences of these fragments were studied in differing microenvironments of TFE/water mixtures and SDS solution. Interestingly, with an increase in TFE concentration, PrP(119-126) showed a helical conformational propensity, whereas PrP(121-127) adopted a more random coil structure. In 5% SDS, PrP(119-126) showed more alpha-helical content than in TFE solution, and PrP(121-127) exhibited a predominantly random coil conformation. However, both peptides took a random coil conformation in water, and over time the random coil transformed into a beta-sheet structure with a significant percentage of helical conformation and beta-turn structure in PrP(119-126) and PrP(121-127), respectively, as observed with CD spectroscopy. The aged fibrils of PrP(119-126) were insoluble in SDS, and PrP(121-127) was extractable with SDS solution. These fibrils were characterized by transmission electron microscopy. Both PrP(119-126) and PrP(121-127) formed stable monolayer's consisting of multimeric assemblages at the air-water interface. Monomeric PrP(119-126) was more toxic to astrocytes than the control Abeta peptide; however, the fibrillar form of PrP(119-126) was less toxic to astrocytes. PrP(121-127) elicited moderate toxicity in both soluble and fibrillar forms on astrocytes. Furthermore, quenching experiments using acroyl-labeled PrP(119-126) and PrP(121-127) with eosin-labeled synaptosomal membrane revealed that these prion fragments bind to anion-exchange protein. The binding of PrP(119-126) and PrP(121-127) with a membrane microdomain (lipid raft) was also analyzed using pyrenated derivatives. We conclude that the formation of PrP(119-126) and PrP(121-127) fibrils is a concentration-dependent process that involves coil to sheet conversion with aging. PrP(119-126), the sequence with intrinsic helical propensity, is more toxic in monomer form, and the fibril formation in this case seems to be protective to cells. For PrP(121-127), the SDS-soluble fibrils are more cytotoxic, indicating that a higher order assemblage structure is required for cytotoxic activity of this peptide.
Collapse
MESH Headings
- Amyloid/chemistry
- Amyloid/toxicity
- Amyloid beta-Peptides/chemistry
- Animals
- Astrocytes/metabolism
- Chromatography, Gel
- Chromatography, Ion Exchange
- Circular Dichroism
- Disease Models, Animal
- Lipids/chemistry
- Membrane Microdomains
- Microscopy, Electron, Transmission
- Peptide Fragments/chemistry
- Peptides/chemistry
- Prions/chemistry
- Protein Binding
- Protein Conformation
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Pyrenes/chemistry
- Rats
- Rats, Wistar
- Sodium Dodecyl Sulfate/chemistry
- Spectrometry, Fluorescence
- Spectroscopy, Fourier Transform Infrared
- Synaptosomes/metabolism
- Temperature
- Tetrazolium Salts/pharmacology
- Thiazoles/pharmacology
Collapse
Affiliation(s)
- K S Satheeshkumar
- Bioorganic and Neurochemistry Laboratory, Central Leather Research Institute, Adyar, Chennai 600 020, India
| | | | | |
Collapse
|
36
|
Quaratino S, Badami E, Pang YY, Bartok I, Dyson J, Kioussis D, Londei M, Maiuri L. Degenerate self-reactive human T-cell receptor causes spontaneous autoimmune disease in mice. Nat Med 2004; 10:920-6. [PMID: 15311276 DOI: 10.1038/nm1092] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Accepted: 07/22/2004] [Indexed: 11/09/2022]
Abstract
Thyroid autoimmune disorders comprise more than 30% of all organ-specific autoimmune diseases and are characterized by autoantibodies and infiltrating T cells. The pathologic role of infiltrating T cells is not well defined. To address this issue, we generated transgenic mice expressing a human T-cell receptor derived from the thyroid-infiltrating T cell of a patient with thyroiditis and specific for a cryptic thyroid-peroxidase epitope. Here we show that mouse major histocompatibility complex molecules sustain selection and activation of the transgenic T cells, as coexpression of histocompatibility leukocyte antigen molecules was not needed. Furthermore, the transgenic T cells had an activated phenotype in vivo, and mice spontaneously developed destructive thyroiditis with histological, clinical and hormonal signs comparable with human autoimmune hypothyroidism. These results highlight the pathogenic role of human T cells specific for cryptic self epitopes. This new 'humanized' model will provide a unique tool to investigate how human pathogenic self-reactive T cells initiate autoimmune diseases and to determine how autoimmunity can be modulated in vivo.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Autoantibodies/immunology
- Chromium Radioisotopes
- DNA Fragmentation
- Epitopes
- Flow Cytometry
- Humans
- In Situ Nick-End Labeling
- Iodide Peroxidase/metabolism
- Major Histocompatibility Complex/immunology
- Mice
- Mice, Transgenic
- Models, Immunological
- Models, Molecular
- Radioimmunoassay
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Statistics, Nonparametric
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Thyroiditis, Autoimmune/etiology
- Thyroiditis, Autoimmune/physiopathology
- Thyrotropin/metabolism
- Thyroxine/blood
Collapse
Affiliation(s)
- Sonia Quaratino
- Cancer Research UK Oncology Unit, Cancer Sciences Division, University of Southampton, MP824, Southampton SO16 6YD, UK.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Uemura Y, Senju S, Maenaka K, Iwai LK, Fujii S, Tabata H, Tsukamoto H, Hirata S, Chen YZ, Nishimura Y. Systematic analysis of the combinatorial nature of epitopes recognized by TCR leads to identification of mimicry epitopes for glutamic acid decarboxylase 65-specific TCRs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:947-60. [PMID: 12517961 DOI: 10.4049/jimmunol.170.2.947] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Accumulating evidence indicates that recognition by TCRs is far more degenerate than formerly presumed. Cross-recognition of microbial Ags by autoreactive T cells is implicated in the development of autoimmunity, and elucidating the recognition nature of TCRs has great significance for revelation of the disease process. A major drawback of currently used means, including positional scanning synthetic combinatorial peptide libraries, to analyze diversity of epitopes recognized by certain TCRs is that the systematic detection of cross-recognized epitopes considering the combinatorial effect of amino acids within the epitope is difficult. We devised a novel method to resolve this issue and used it to analyze cross-recognition profiles of two glutamic acid decarboxylase 65-autoreactive CD4(+) T cell clones, established from type I diabetes patients. We generated a DNA-based randomized epitope library based on the original glutamic acid decarboxylase epitope using class II-associated invariant chain peptide-substituted invariant chains. The epitope library was composed of seven sublibraries, in which three successive residues within the epitope were randomized simultaneously. Analysis of agonistic epitopes indicates that recognition by both TCRs was significantly affected by combinations of amino acids in the antigenic peptide, although the degree of combinatorial effect differed between the two TCRs. Protein database searching based on the TCR recognition profile proved successful in identifying several microbial and self-protein-derived mimicry epitopes. Some of the identified mimicry epitopes were actually produced from recombinant microbial proteins by APCs to stimulate T cell clones. Our data demonstrate the importance of the combinatorial nature of amino acid residues of epitopes in molecular mimicry.
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Sequence
- Amino Acid Substitution/genetics
- Antigen Presentation/genetics
- Antigens, Differentiation, B-Lymphocyte/genetics
- Autoantigens/analysis
- Autoantigens/metabolism
- Bacterial Proteins/immunology
- Bacterial Proteins/metabolism
- Cells, Cultured
- Clone Cells
- Combinatorial Chemistry Techniques/methods
- Epitopes, T-Lymphocyte/analysis
- Epitopes, T-Lymphocyte/biosynthesis
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/metabolism
- Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Glutamate Decarboxylase/analysis
- Glutamate Decarboxylase/genetics
- Glutamate Decarboxylase/metabolism
- HLA-DR Antigens/genetics
- HLA-DRB4 Chains
- Histocompatibility Antigens Class II/genetics
- Humans
- Isoenzymes/analysis
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Ligands
- Molecular Mimicry/genetics
- Molecular Mimicry/immunology
- Molecular Sequence Data
- Peptide Library
- Peptides/genetics
- Peptides/immunology
- Peptides/isolation & purification
- Peptides/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/analysis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- T-Lymphocyte Subsets/enzymology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Viral Proteins/immunology
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Yasushi Uemura
- Division of Immunogenetics, Department of Neuroscience and Immunology, Kumamoto University Graduate School of Medical Sciences, Kumamoto University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kumar R, Eastwood AL, Brown ML, Laurie GW. Human genome search in celiac disease: mutated gliadin T-cell-like epitope in two human proteins promotes T-cell activation. J Mol Biol 2002; 319:593-602. [PMID: 12054857 DOI: 10.1016/s0022-2836(02)00366-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Discovery of a number of novel and known human genes whose protein products bear striking similarity to two or more wheat gliadin domains raised the possibility that human intestinal non-HLA peptides homologous to celiac T-cell epitopes could play a role in non-HLA gene specification in celiac disease. Database searching of the entire human genome identified only 11 gut-expressed proteins with high T-cell epitope homology, particularly to the DQ2-gamma-I-gliadin epitope (i.e. TFIIA, FOXJ2 and IgD; mean BestFit quality score=40 versus random value of 24). Others were similar to DQ2-alpha-I-gliadin (i.e. PAX9; BestFit quality 46 versus 20 for random), or DQ2-alpha-II-gliadin (PHLDA1, known in mice as the T-cell death-associated gene; BestFit quality 43 versus 30 for random) epitopes. Among proteins previously screened for gliadin homology, noteworthy was achaete scute homologous protein (DQ2-alpha-I-gliadin; BestFit quality 41 versus 22 for random). With the exception of IgD, all are nuclear factors. Paying particular attention to the position of potential major histocompatibility complex (MHC) anchor residues, several were selected for testing in a DQ2-gamma-I-gliadin-restricted T-cell system. All native 10-mer peptides were inactive, even when deamidated, but V96F substitution of deamidated TFIIA amino acid residues 91-100 stimulated IL-2 release at levels exceeding the wheat gliadin positive control. Also active, but only slightly, was L1009F substitution of AIB3 amino acid residues 1004-1013. PlotSimilarity alignment of TFIIAs from eight species revealed subthreshold similarity score in the peptide region, in contrast to the highly conserved amino and carboxy termini. Molecular modeling of TFIIA[V96F] peptide points to an important juxtaposition of an upwardly projecting phenylalanine residue at peptide position 6 that likely contacts a receptor complementarity-determining region, and a downwardly projecting glutamic acid residue that fits into the shallow MHC P7 pocket. These observations tentatively point to a new multi-gene hypothesis for the initiation of celiac disease in which deamidated free human peptides with T-cell epitope homology (particularly those made more homologous by mutation) escape negative selection, as per deamidation of the HEL(48-62) peptide in the hen egg lysozyme model of autoimmunity. Deamidation following peptide release due to injury triggers inflammation, thereafter repeatedly provoked by dietary gliadin immunodominant peptides concentrated in the proximal small intestine.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908-0732, USA
| | | | | | | |
Collapse
|
39
|
Popov I, Dela Cruz CS, Barber BH, Chiu B, Inman RD. The effect of an anti-HLA-B27 immune response on CTL recognition of Chlamydia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:3375-82. [PMID: 11544328 DOI: 10.4049/jimmunol.167.6.3375] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The interplay between triggering bacteria and HLA-B27 in the pathogenesis of the spondyloarthropathies remains one of the most active areas of investigation in the rheumatic diseases. This has proved difficult to study systematically in the clinical setting, and in this study we utilized a rat model to address the influence that B27-related immunity may have on the process of generating anti-Chlamydia immunity. When splenocytes from HLA-B27 DNA-immunized Lewis (LEW) animals received restimulation in vitro with Chlamydia-treated cells from B27-transgenic LEW rats, we observed that in addition to the expected CTL recognition of HLA-B27, there was also anti-Chlamydia CTL killing of Chlamydia-sensitized syngeneic fibroblast targets. This was not seen when responding cells in vitro were naive LEW splenocytes. To confirm the existence of CTLs recognizing both HLA-B27 and Chlamydia, LEW rats were immunized with B27-transgenic LEW cells, instead of the B27 DNA construct. Splenocytes from the immune rats were restimulated in vitro with Chlamydia-treated B27-transgenic LEW cells. In this instance, the CTLs retained the allele-specific recognition of HLA-B27, as well as recognition of Chlamydia-sensitized syngeneic fibroblasts. Thus, if there is prior expansion of an immune response against HLA-B27, then the resulting splenocytes demonstrate a reduced threshold for generating a primary anti-Chlamydia CTL response. These studies implicate a dynamic interrelationship between recognition of HLA-B27 and Chlamydia trachomatis. The results may have implications for deciphering the cellular basis of Chlamydia-induced reactive arthritis.
Collapse
Affiliation(s)
- I Popov
- Division of Rheumatology, Department of Medicine, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
40
|
Würtzen PA, Pedersen LO, Poulsen HS, Claesson MH. Specific killing of P53 mutated tumor cell lines by a cross-reactive human HLA-A2-restricted P53-specific CTL line. Int J Cancer 2001; 93:855-61. [PMID: 11519048 DOI: 10.1002/ijc.1417] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
p53 is upregulated in the majority of spontaneous tumors and the HLA class I molecule HLA-A2 is expressed by approximately 50% of the caucasians. Potentially, these facts make HLA-A2-binding p53 peptides for CTL-inducing immunotherapy applicable to a broad range of cancer patients. In our study, we investigated the CTL-inducing capacity of autologous monocyte-derived dendritic cells (DC) maturated by exposure to CD40L and pulsed with a pool of 4 wild-type, HLA-A2-binding p53 peptides, and the p53-specific CD8(+) CTL lines established from healthy HLA-A2-positive donors were characterized. Reactivity to p53(65-73) and p53(187-197) peptides was obtained in the T-cell lines. Interestingly, cold target inhibition experiments demonstrated that the simultaneous recognition of the 2 peptides was the result of cross-reactivity, which was confirmed by killing experiments at the clonal CTL level. Furthermore, 4 HLA-A2(+) p53-mutated tumor cell lines were lysed by the CTL line, indicating that these peptides are endogenously processed and presented on HLA-A2 molecule. Thus, monocyte-derived DC pulsed with a pool of peptides are able to induce CTL reactivity to wild-type p53 peptides presented by several cancer cell lines. In addition, the recognition of 2 different p53 peptides by the same CTL clone suggests a promiscuous peptide recognition by the TCR involved. Taken together, these in vitro results suggest that vaccination with autologous DC pulsed with multiple p53 epitopes may induce an effective tumor-specific CTL response in vivo with the potential to eradicate p53-upregulated spontaneously occurring tumors.
Collapse
Affiliation(s)
- P A Würtzen
- Department of Medical Anatomy, The Panum Institute, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
41
|
Amrani A, Serra P, Yamanouchi J, Trudeau JD, Tan R, Elliott JF, Santamaria P. Expansion of the antigenic repertoire of a single T cell receptor upon T cell activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:655-66. [PMID: 11441068 DOI: 10.4049/jimmunol.167.2.655] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Activated T cells and their naive precursors display different functional avidities for peptide/MHC, but are thought to have identical antigenic repertoires. We show that, following activation with a cognate mimotope (NRP), diabetogenic CD8(+) T cells expressing a single TCR (8.3) respond vigorously to numerous peptide analogs of NRP that were unable to elicit any responses from naive 8.3-CD8(+) T cells, even at high concentrations. The NRP-reactive, in vivo activated CD8(+) cells arising in pancreatic islets of nonobese diabetic mice are similarly promiscuous for peptide/MHC, and paradoxically this promiscuity expands as the aviditiy of the T cell population for NRP/MHC increases with age. Thus, activation and avidity maturation of T lymphocyte populations can lead to dramatic expansions in the range of peptides that elicit functional T cell responses.
Collapse
Affiliation(s)
- A Amrani
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| | | | | | | | | | | | | |
Collapse
|
42
|
Affiliation(s)
- P J Talbot
- Centre de recherche en santé humaine, INRS-Institut Armand-Frappier 531, boulevard des Prairies, Laval, Québec, Canada, H7V 1B7.
| | | | | |
Collapse
|
43
|
Heemskerk MH, de Paus RA, Lurvink EG, Koning F, Mulder A, Willemze R, van Rood JJ, Falkenburg JH. Dual HLA class I and class II restricted recognition of alloreactive T lymphocytes mediated by a single T cell receptor complex. Proc Natl Acad Sci U S A 2001; 98:6806-11. [PMID: 11381117 PMCID: PMC34434 DOI: 10.1073/pnas.111162298] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The alloreactive human T cell clone MBM15 was found to exhibit dual specificity recognizing both an antigen in the context of the HLA class I A2 molecule and an antigen in the context of the HLA class II DR1. We demonstrated that the dual reactivity that was mediated via a single clonal T cell population depended on specific peptide binding. For complete recognition of the HLA-A2-restricted specificity the interaction of CD8 with HLA class I is essential. Interestingly, interaction of the CD8 molecule with HLA class I contributed to the HLA-DR1-restricted specificity. T cell clone MBM15 expressed two in-frame T cell receptor (TCR) Valpha transcripts (Valpha1 and Valpha2) and one TCR Vbeta transcript (Vbeta13). To elucidate whether two TCR complexes were responsible for the dual recognition or one complex, cytotoxic T cells were transduced with retroviral vectors encoding the different TCR chains. Only T cells transduced with the TCR Valpha1Vbeta13 combination specifically recognized both the HLA-A2(+) and HLA-DR1(+) target cells, whereas the Valpha2Vbeta13 combination did not result in a TCR on the cell surface. Thus a single TCRalphabeta complex can have dual specificity, recognizing both a peptide in the context of HLA class I as well as a peptide in the context of HLA class II. Transactivation of T cells by an unrelated antigen in the context of HLA class II may evoke an HLA class I-specific T cell response. We propose that this finding may have major implications for immunotherapeutic interventions and insight into the development of autoimmune diseases.
Collapse
Affiliation(s)
- M H Heemskerk
- Department of Hematology, Leiden University Medical Center, C2-R, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Maverakis E, van den Elzen P, Sercarz EE. Self-reactive T cells and degeneracy of T cell recognition: evolving concepts-from sequence homology to shape mimicry and TCR flexibility. J Autoimmun 2001; 16:201-9. [PMID: 11334484 DOI: 10.1006/jaut.2000.0493] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- E Maverakis
- La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, CA 92121, USA
| | | | | |
Collapse
|
45
|
Quaratino S, Duddy LP, Londei M. Fully competent dendritic cells as inducers of T cell anergy in autoimmunity. Proc Natl Acad Sci U S A 2000; 97:10911-6. [PMID: 10984510 PMCID: PMC27123 DOI: 10.1073/pnas.190204697] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2000] [Indexed: 11/18/2022] Open
Abstract
Mature immunologically competent dendritic cells are the most efficient antigen-presenting cells that powerfully activate T cells and initiate and sustain immune responses. Indeed, dendritic cells are able to efficiently capture antigens, express high levels of costimulatory molecules, and produce the combination of cytokines required to create a powerful immune response. They are also considered to be important in initiating autoimmune disease by efficiently presenting autoantigens to self-reactive T cells that, in this case, will mount a pathogenic autoimmune reaction. Triggering T cells is not a simple on-off procedure, as T cell receptor responds to minor changes in ligand with gradations of T cell activation and effector functions. These "misfit" peptides have been called Altered Peptide Ligands, and have been shown to have important biological significance. Here, we show that fully capable dendritic cells may present, upon natural antigen processing, a self-epitope with Altered Peptide Ligands features that can unexpectedly induce anergy in a human autoreactive T cell clone. These results indicate that presentation of a self-epitope by immunologically competent dendritic cells does not always mean "danger" and show a mechanism involved in the fine balance between activation and tolerance induction in humans.
Collapse
Affiliation(s)
- S Quaratino
- Imperial College School of Medicine, Kennedy Institute of Rheumatology Division, 1 Aspenlea Road, London W6 8LH, United Kingdom.
| | | | | |
Collapse
|
46
|
Choi JI, Borrello MA, Smith ES, Zauderer M. Polarization of Porphyromonas gingivalis-specific helper T-cell subsets by prior immunization with Fusobacterium nucleatum. ORAL MICROBIOLOGY AND IMMUNOLOGY 2000; 15:181-7. [PMID: 11154401 DOI: 10.1034/j.1399-302x.2000.150306.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Antigen-specific T-cell clones were obtained from mice immunized with Fusobacterium nucleatum ATCC 10953 and/or Porphyromonas gingivalis 381. 10 BALB/c mice per group were immunized with F. nucleatum followed by P. gingivalis, or with P. gingivalis alone by intraperitoneal injection of viable microorganisms. Spleen T cells were isolated and stimulated in vitro with viable P. gingivalis cells to establish P. gingivalis-specific T-cell clones. T-cell phenotypes and cytokine profiles were determined along with T-cell responsiveness to F. nucleatum or P. gingivalis. Serum immunoglobulin G antibody titers to F. nucleatum or P. gingivalis were also determined by enzyme-linked immunosorbent assay. All the T-cell clones derived from mice immunized with F. nucleatum followed by P. gingivalis demonstrated Th2 subsets, while those from mice immunized with P. gingivalis alone demonstrated Th1 subsets based on the flow cytometric analysis and cytokine profiles. All T-cell clones from both groups were cross-reactive to both P. gingivalis and F. nucleatum antigens. Phenotypes of T-cell clones were all positive for CD4. Mean post-immune serum IgG antibody levels to F. nucleatum or P. gingivalis were significantly higher than the pre-immune levels (P < 0.05, P < 0.01, respectively). There were no significant differences in the antibody titers between the two groups. It was concluded that P. gingivalis-specific T cells initially primed by cross-reactive F. nucleatum antigens were polarized to Th2 subset, while T cells stimulated with P. gingivalis alone maintained the profile of Th1 subset.
Collapse
Affiliation(s)
- J I Choi
- Cancer Center, Division of Immunology, School of Medicine and Dentistry, University of Rochester, New York, USA
| | | | | | | |
Collapse
|
47
|
García-Peydró M, Paradela A, Lamas JR, López de Castro JA. Peptide Presentation to an Alloreactive CTL Clone Is Modulated Through Multiple Mechanisms Involving Polymorphic and Conserved Residues in HLA-B27. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.11.6060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
This study addressed the mechanisms by which HLA class I polymorphism modulates allorecognition. CTL 27S69 is an alloreactive clone raised against HLA-B*2705, with a known peptide epitope. This CTL cross-reacts with B*2702, which differs from B*2705 in the D77N, T80I, and L81A changes, but not with B*2701, which has D74Y, D77N, and L81A changes. To explain this differential recognition, B*2705 mutants mimicking subtype changes were used. The A81 mutant was not recognized, despite binding the natural epitope in vivo, suggesting that, when bound to this mutant, this peptide adopts an inappropriate conformation. The N77 and I80 mutations restored recognition in the N77A81 or I80A81 mutants. These compensatory effects explain the cross-reaction with B*2702. The Y74 and the Y74N77 mutants were weakly recognized or not recognized by CTL 27S69. This correlated with the absence or marginal presence of the peptide epitope in the Y74N77-bound pool. As with B*2701, exogenous addition of the peptide epitope sensitized Y74 and Y74N77 targets for lysis, indicating that failure to cross-react with B*2701 or these mutants was due to poor binding of the peptide in vivo and not to inappropriate presentation. The abrogating effect of Y74 was critically dependent upon the K70 residue, conserved among subtypes, as demonstrated with mutants at this position. Thus, HLA polymorphism affects allorecognition by modulating peptide binding or the conformation of bound peptides. Compensatory mutations and indirect effects of a polymorphic residue on residues conserved play a critical role.
Collapse
Affiliation(s)
- Marina García-Peydró
- Centro de Biología Molecular Severo Ochoa, (Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid, Facultad de Ciencias, Madrid, Spain
| | - Alberto Paradela
- Centro de Biología Molecular Severo Ochoa, (Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid, Facultad de Ciencias, Madrid, Spain
| | - José R. Lamas
- Centro de Biología Molecular Severo Ochoa, (Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid, Facultad de Ciencias, Madrid, Spain
| | - José A. López de Castro
- Centro de Biología Molecular Severo Ochoa, (Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid, Facultad de Ciencias, Madrid, Spain
| |
Collapse
|
48
|
Grogan JL, Kramer A, Nogai A, Dong L, Ohde M, Schneider-Mergener J, Kamradt T. Cross-Reactivity of Myelin Basic Protein-Specific T Cells with Multiple Microbial Peptides: Experimental Autoimmune Encephalomyelitis Induction in TCR Transgenic Mice. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.7.3764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abstract
Activation of autoreactive T cells is a crucial event in the pathogenesis of autoimmune diseases. Cross-reactivity between microbial and self Ags (molecular mimicry) is one hypothesis that could explain the activation of autoreactive T cells. We have systematically examined this hypothesis in experimental autoimmune encephalomyelitis using mice bearing exclusively myelin basic protein (MBP)-specific T cells (designated T+ α−). A peptide substitution analysis was performed in which each residue of the MBPAc1–11 peptide was exchanged by all 20 naturally occurring amino acids. This allowed the definition of the motif (supertope) that is recognized by the MBPAc1–11-specific T cells. The supertope was used to screen protein databases (SwissProt and TREMBL). By the search, 832 peptides of microbial origin were identified and synthesized. Of these, 61 peptides induced proliferation of the MBPAc1–11-specific transgenic T cells in vitro. Thus, the definition of a supertope by global amino acid substitution can identify multiple microbial mimic peptides that activate an encephalitogenic TCR. Peptides with only two native MBP-residues were sufficient to activate MBPAc1–11-specific T cells in vitro, and experimental autoimmune encephalomyelitis could be induced by immunizing mice with a mimic peptide with only four native MBP residues.
Collapse
Affiliation(s)
| | - Achim Kramer
- †Institut für Medizinische Immunologie, Universitätsklinikum Charité, Berlin, Germany; and
| | - Axel Nogai
- *Deutsches Rheumaforschungszentrum, Berlin, Germany
| | - Liying Dong
- †Institut für Medizinische Immunologie, Universitätsklinikum Charité, Berlin, Germany; and
| | - Manuela Ohde
- *Deutsches Rheumaforschungszentrum, Berlin, Germany
| | - Jens Schneider-Mergener
- †Institut für Medizinische Immunologie, Universitätsklinikum Charité, Berlin, Germany; and
| | - Thomas Kamradt
- *Deutsches Rheumaforschungszentrum, Berlin, Germany
- ‡Universitätsklinikum Charité, Rheumatologie/Klinische Immunologie, Berlin, Germany
| |
Collapse
|
49
|
Ohteki T, Hessel A, Bachmann MF, Zakarian A, Sebzda E, Tsao MS, McKall-Faienza K, Odermatt B, Ohashi PS. Identification of a cross-reactive self ligand in virus-mediated autoimmunity. Eur J Immunol 1999; 29:2886-96. [PMID: 10508263 DOI: 10.1002/(sici)1521-4141(199909)29:09<2886::aid-immu2886>3.0.co;2-a] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Molecular mimicry has been considered to be one of the potential mechanisms underlying the induction of autoimmune diseases. Using a TCR-transgenic model specific for lymphocytic choriomeningitis virus (LCMV) we have examined the potential for cross-reactive recognition of tissue-restricted self peptides. Several peptides were identified that were able to cross-react with the TCR-transgenic virus-specific T cells in vitro. One peptide was derived from dopamine beta-mono-oxygenase, an enzyme expressed in the adrenal medulla. Interestingly, after activation of the transgenic T cells with LCMV glycoprotein peptides or viruses, infiltration of the adrenal medulla was detected in conjunction with alterations in dopamine metabolism. However, complete destruction of the adrenal medulla was not observed. This suggests that molecular mimicry may be sufficient for self recognition and infiltration, but other factors clearly contribute to chronic autoimmune disease.
Collapse
MESH Headings
- Allergens/immunology
- Animals
- Autoimmunity/immunology
- Cross Reactions
- DNA-Binding Proteins
- Epitopes/immunology
- Epitopes/isolation & purification
- H-2 Antigens/analysis
- H-2 Antigens/immunology
- Ligands
- Lymphocytic choriomeningitis virus/immunology
- Mice
- Mice, Congenic
- Mice, Inbred C57BL/immunology
- Mice, Transgenic
- Molecular Mimicry/immunology
- Receptors, Antigen, T-Cell/agonists
- Receptors, Antigen, T-Cell/antagonists & inhibitors
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- T Ohteki
- Ontario Cancer Institute, Departments of Medical Biophysics and Immunology, Toronto, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Loftus C, Huseby E, Gopaul P, Beeson C, Goverman J. Highly Cross-Reactive T Cell Responses to Myelin Basic Protein Epitopes Reveal a Nonpredictable Form of TCR Degeneracy. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.11.6451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
We identified two nonoverlapping epitopes in myelin basic protein presented by I-Au that are responsible for mediating tolerance induction to this self-Ag. A large number of T cells expressing diverse TCRs are strongly cross-reactive to both epitopes. Surprisingly, the TCR contact residues in each peptide are highly dissimilar. Furthermore, functional TCR contacts cannot be interchanged between the two epitopes, indicating that the TCR contacts in each peptide can only be recognized within the context of the other amino acids present in that peptide’s sequence. This observation indicates that both buried and exposed residues of each peptide contribute to the sculpting of completely distinct antigenic surfaces. We propose that the cross-reactive TCRs adopt mutually exclusive conformations to recognize these dissimilar epitopes, adding a new dimension to TCR degeneracy. This unpredictable TCR plasticity indicates that using just the TCR contacts on a single epitope to define other cross-reactive peptides will identify only a subset of the complete repertoire of cross-reactive epitopes.
Collapse
Affiliation(s)
| | | | - Priya Gopaul
- ‡Molecular Biotechnology, University of Washington, Seattle, WA 98195
| | | | - Joan Goverman
- †Immunology, and
- ‡Molecular Biotechnology, University of Washington, Seattle, WA 98195
| |
Collapse
|