1
|
Sarrabayrouse G, Joulain C, Bessoles S, Chiron AS, Abina AM, Hacein-Bey-Abina S. Erythropoietin supplementation induces dysbiosis of the gut microbiota and impacts mucosal immunity in a non-diseased mouse model. Front Immunol 2025; 15:1465410. [PMID: 39916952 PMCID: PMC11798978 DOI: 10.3389/fimmu.2024.1465410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/20/2024] [Indexed: 02/09/2025] Open
Abstract
A number of drug treatments are known to alter the dialogue between the gut microbiota and the immune system components in the digestive mucosa. Alterations in intestinal homeostasis are now well known to affect peripheral immune responses and favor the occurrence of a number of pathologies such as allergies and cancers. Erythropoietin's known pleiotropic effects might explain the adverse events sometimes observed in anemic patients treated by erythropoiesis-stimulating agents (ESA). However, the impact of this therapeutic cytokine on the homeostasis of the intestinal tract has not previously been investigated in detail. By studying a mouse model of erythropoietin (EPO) supplementation for 28 days, we observed EPO-induced dysbiosis of the fecal microbiota characterized by a greater bacterial load, lower bacterial diversity and taxonomic changes. With regard to the mucosal immune system, an analysis of leukocyte populations in the small intestine and colon treatment revealed low proportions of ileal CD4 lymphocyte subpopulations (Treg, Tr17 and Th17 cells), IgA-secreting plasma cells, and a major macrophage subpopulation, involved in the control of lymphocyte responses. Our results provide for the first time a descriptive analysis of intestinal EPO's regulatory properties and raise questions about the involvement of EPO-induced alterations in the microbiota and the gut immune effectors in the control of intestinal and peripheral immune responses.
Collapse
Affiliation(s)
- Guillaume Sarrabayrouse
- Unité des technologies Chimiques et Biologiques pour la Santé, Université Paris Cité, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), UTCBS, Paris, France
| | - Corentin Joulain
- Unité des technologies Chimiques et Biologiques pour la Santé, Université Paris Cité, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), UTCBS, Paris, France
| | - Stéphanie Bessoles
- Unité des technologies Chimiques et Biologiques pour la Santé, Université Paris Cité, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), UTCBS, Paris, France
| | - Andrada S. Chiron
- Unité des technologies Chimiques et Biologiques pour la Santé, Université Paris Cité, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), UTCBS, Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Saclay, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France
| | - Amine M. Abina
- Unité des technologies Chimiques et Biologiques pour la Santé, Université Paris Cité, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), UTCBS, Paris, France
| | - Salima Hacein-Bey-Abina
- Unité des technologies Chimiques et Biologiques pour la Santé, Université Paris Cité, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), UTCBS, Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Saclay, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France
| |
Collapse
|
2
|
Guo C, Li W, Liu Y, Tao X, Mahaman YAR, Wang J, Liu R, Li S, Wang X. EPO Deficiency Upregulates GADD45b/p38 MAPK Axis, Mediating Schizophrenia-Related Synaptic and Cognitive Impairments. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406979. [PMID: 39467064 DOI: 10.1002/advs.202406979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/10/2024] [Indexed: 10/30/2024]
Abstract
Schizophrenia (SZ) is a chronic and severe mental illness associated with psychiatric symptoms, cognitive deficits, and social dysfunction. Current clinical interventions only limit relief of psychiatric symptoms and have minimal impact on cognitive impairments. Erythropoietin (EPO), known for its role in neurogenesis and synaptic plasticity, is significantly low in SZ patients. However, the role of EPO deficiency in SZ-associated cognitive deficits remains unclear. In this study, we used the MK801-induced SZ rat model to show that EPO levels were significantly decreased, correlating with cognitive impairments. EPO supplementation mitigated apoptosis, synaptic damage, and cognitive impairments caused by MK801. RNA-sequencing and Western blot analysis revealed increased expression of growth arrest and DNA damage 45b (GADD45b) in MK801-treated rats, reversed by EPO supplementation. Moreover, overexpression of GADD45b exacerbated neuronal loss and cognitive impairments in male Sprague-Dawley rats, while downregulation of GADD45b rescued these SZ-related pathologies. Notably, the benefits of EPO supplementation on SZ pathology were blocked by GADD45b overexpression. Inhibition of p38 MAPK, a GADD45b target, reduced MK801-induced apoptosis and synaptic damage. These findings uncover a novel etiopathogenic mechanism of SZ-related cognitive impairments, driven by EPO deficiency and the activation of the GADD45b/p38 MAPK axis.
Collapse
Affiliation(s)
- Cuiping Guo
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wensheng Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yi Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoqing Tao
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, China
| | - Yacoubou Abdoul Razak Mahaman
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jianzhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rong Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shusheng Li
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China
| |
Collapse
|
3
|
Curto Y, Carceller H, Klimczak P, Perez-Rando M, Wang Q, Grewe K, Kawaguchi R, Rizzoli S, Geschwind D, Nave KA, Teruel-Marti V, Singh M, Ehrenreich H, Nácher J. Erythropoietin restrains the inhibitory potential of interneurons in the mouse hippocampus. Mol Psychiatry 2024; 29:2979-2996. [PMID: 38622200 PMCID: PMC11449791 DOI: 10.1038/s41380-024-02528-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 04/17/2024]
Abstract
Severe psychiatric illnesses, for instance schizophrenia, and affective diseases or autism spectrum disorders, have been associated with cognitive impairment and perturbed excitatory-inhibitory balance in the brain. Effects in juvenile mice can elucidate how erythropoietin (EPO) might aid in rectifying hippocampal transcriptional networks and synaptic structures of pyramidal lineages, conceivably explaining mitigation of neuropsychiatric diseases. An imminent conundrum is how EPO restores synapses by involving interneurons. By analyzing ~12,000 single-nuclei transcriptomic data, we generated a comprehensive molecular atlas of hippocampal interneurons, resolved into 15 interneuron subtypes. Next, we studied molecular alterations upon recombinant human (rh)EPO and saw that gene expression changes relate to synaptic structure, trans-synaptic signaling and intracellular catabolic pathways. Putative ligand-receptor interactions between pyramidal and inhibitory neurons, regulating synaptogenesis, are altered upon rhEPO. An array of in/ex vivo experiments confirms that specific interneuronal populations exhibit reduced dendritic complexity, synaptic connectivity, and changes in plasticity-related molecules. Metabolism and inhibitory potential of interneuron subgroups are compromised, leading to greater excitability of pyramidal neurons. To conclude, improvement by rhEPO of neuropsychiatric phenotypes may partly owe to restrictive control over interneurons, facilitating re-connectivity and synapse development.
Collapse
Affiliation(s)
- Yasmina Curto
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
- Neuroplasticity Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Héctor Carceller
- Neuroplasticity Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
- Spanish National Network for Research in Mental Health (CIBERSAM), Madrid, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
| | - Patrycja Klimczak
- Neuroplasticity Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
- Spanish National Network for Research in Mental Health (CIBERSAM), Madrid, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
| | - Marta Perez-Rando
- Neuroplasticity Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
- Spanish National Network for Research in Mental Health (CIBERSAM), Madrid, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
| | - Qing Wang
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Katharina Grewe
- Department of Neuro- & Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Riki Kawaguchi
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Silvio Rizzoli
- Department of Neuro- & Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Daniel Geschwind
- Institute of Precision Health, University of California Los Angeles, Los Angeles, CA, USA
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
| | - Vicent Teruel-Marti
- Neuronal Circuits Laboratory, Department of Anatomy and Human Embryology, University of Valencia, Valencia, Spain
| | - Manvendra Singh
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany.
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany.
- Georg-August-University, Göttingen, Germany.
- Experimental Medicine, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J 5, Mannheim, Germany.
| | - Juan Nácher
- Neuroplasticity Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain.
- Spanish National Network for Research in Mental Health (CIBERSAM), Madrid, Spain.
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain.
| |
Collapse
|
4
|
Fussing F, Christensson J, Wörtwein G. Expression of erythropoietin receptor protein in the mouse hippocampus in response to normobaric hypoxia. Heliyon 2024; 10:e25051. [PMID: 38322970 PMCID: PMC10844123 DOI: 10.1016/j.heliyon.2024.e25051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 12/17/2023] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
Background Over the past decades, accumulating research on erythropoietin (EPO) and its receptor (EPOR) has revealed various neuroprotective actions and upregulation in hypoxic conditions. To our knowledge, EPOR protein levels in the hippocampus and isocortex have never been measured. Therefore, the aim of this study was to measure EPOR protein in the hippocampus (HPC) and prefrontal cortex (PFC). Further objectives were to examine the effects of exposure to normobaric hypoxia of various degrees and durations on EPOR protein and to explore how long-lasting these effects were. Method Adult C57BL/6 mice were randomized into a control group (N = 12) or various hypoxia groups (N = 5-11). Mice were exposed to three different O2 concentrations (10 %, 12 %, or 18 %) for 8 h a day for 5 days and sacrificed immediately after the last exposure. The effect of exposure to 12 % O2 for 1 day and 4 weeks (8 h per day) at this survival time was also examined. Additionally, groups of mice were exposed to 12 % O2 for 1 or 5 days (8 h per day) and euthanized at various times (up to 3 weeks) thereafter to examine the duration of EPOR protein regulation in the HPC and the PFC. EPOR protein was detected with a sandwich-ELISA method. Results EPOR protein was present in the HPC and PFC, at 206.64 ± 43.98 pg/mg and 184.25 ± 48.21 pg/mg, respectively. The highest increase in EPOR protein was observed in the HPC after 5 days of 8 h exposure to 12 % O2 and was most pronounced 24 h after last exposure. The effect of hypoxia normalized within one week after the last exposure. Conclusion This study successfully measured hippocampal EPOR protein and showed a significant association between normobaric hypoxia and acute EPOR elevation. It is our hope that this study can provide guidance to future research on the neuroprotective effects of EPO.
Collapse
Affiliation(s)
- F. Fussing
- Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, Mental Health Services, Capital Region of Copenhagen and University Hospital of Copenhagen, Denmark
| | - J. Christensson
- Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, Mental Health Services, Capital Region of Copenhagen and University Hospital of Copenhagen, Denmark
| | - G. Wörtwein
- Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, Mental Health Services, Capital Region of Copenhagen and University Hospital of Copenhagen, Denmark
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5, DK-1014, Copenhagen, Denmark
| |
Collapse
|
5
|
Kraemer RR, Kraemer BR. The effects of peripheral hormone responses to exercise on adult hippocampal neurogenesis. Front Endocrinol (Lausanne) 2023; 14:1202349. [PMID: 38084331 PMCID: PMC10710532 DOI: 10.3389/fendo.2023.1202349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023] Open
Abstract
Over the last decade, a considerable amount of new data have revealed the beneficial effects of exercise on hippocampal neurogenesis and the maintenance or improvement of cognitive function. Investigations with animal models, as well as human studies, have yielded novel understanding of the mechanisms through which endocrine signaling can stimulate neurogenesis, as well as the effects of exercise on acute and/or chronic levels of these circulating hormones. Considering the effects of aging on the decline of specific endocrine factors that affect brain health, insights in this area of research are particularly important. In this review, we discuss how different forms of exercise influence the peripheral production of specific endocrine factors, with particular emphasis on brain-derived neurotrophic factor, growth hormone, insulin-like growth factor-1, ghrelin, estrogen, testosterone, irisin, vascular endothelial growth factor, erythropoietin, and cortisol. We also describe mechanisms through which these endocrine responses to exercise induce cellular changes that increase hippocampal neurogenesis and improve cognitive function.
Collapse
Affiliation(s)
- Robert R. Kraemer
- Department of Kinesiology and Health Studies, Southeastern Louisiana University, Hammond, LA, United States
| | - Bradley R. Kraemer
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL, United States
| |
Collapse
|
6
|
A Hosny S, M Abdelmenem A, Azouz T, S Kamar S, M ShamsEldeen A, A El-Shafei A. Beneficial Effect of Erythropoietin on Ameliorating Propionic Acid-Induced Autistic-Like Features in Young Rats. Acta Histochem Cytochem 2023; 56:77-86. [PMID: 37970239 PMCID: PMC10644041 DOI: 10.1267/ahc.23-00027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/22/2023] [Indexed: 11/17/2023] Open
Abstract
Autism is a neurodevelopmental disorder that impairs communication and social interaction. This study investigated the possible beneficial effects of erythropoietin (EPO) on experimental autistic-like behaviors induced by propionic acid (PPA). Twenty-four rats were distributed into three groups: (i) control; (ii) PPA_Gp: daily injected subcutaneously with PPA for five consecutive days; PPA+EPO-Gp: injected with PPA, then received intraperitoneal injection of EPO once daily for two weeks. Behavioral changes in the rats were assessed. Specimens from the cerebellar hemispheres were subjected to histological and ultrastructure examination, immunohistochemistry for glial fibrillary acidic protein (GFAP) and calbindin-D28K, and biochemical analysis for glutathione peroxidase (GSH-Px), malondialdehyde (MDA), gamma amino-butyric acid (GABA), and serotonin. PPA-Gp showed significant behavioral impairment, with a significant depletion in GSH-px, GABA, and serotonin and a significant increase in MDA. Histological examination revealed reduced Purkinje cell count with ultrastructural degeneration, irregularly arranged nerve fibers in the molecular layer, astrogliosis, and significantly decreased calbindin-immunostaining compared to the control. EPO protected cerebellar structure, increased Purkinje cell count, improved neuronal morphology, reduced PPA-induced autistic-like features, alleviated neuronal oxidative stress, increased intercellular antioxidant levels, and suppressed inflammation. EPO provided significant protection against PPA-induced autistic features in rats, with structural preservation of Purkinje cells.
Collapse
Affiliation(s)
- Sara A Hosny
- Histology Department, Faculty of Medicine, Cairo University, Manial, Cairo, Egypt
| | | | - Taha Azouz
- Medical Biochemistry Department, Faculty of Medicine, Cairo University, Manial, Cairo, Egypt
| | - Samaa S Kamar
- Histology Department, Faculty of Medicine, Cairo University, Manial, Cairo, Egypt
| | - Asmaa M ShamsEldeen
- Physiology Department, Faculty of Medicine, Cairo University, Manial, Cairo, Egypt
| | - Asmaa A El-Shafei
- Histology Department, Faculty of Medicine, Cairo University, Manial, Cairo, Egypt
| |
Collapse
|
7
|
Ehrenreich H, Gassmann M, Poustka L, Burtscher M, Hammermann P, Sirén AL, Nave KA, Miskowiak K. Exploiting moderate hypoxia to benefit patients with brain disease: Molecular mechanisms and translational research in progress. NEUROPROTECTION 2023; 1:9-19. [PMID: 37671067 PMCID: PMC7615021 DOI: 10.1002/nep3.15] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/17/2022] [Indexed: 09/07/2023]
Abstract
Hypoxia is increasingly recognized as an important physiological driving force. A specific transcriptional program, induced by a decrease in oxygen (O2) availability, for example, inspiratory hypoxia at high altitude, allows cells to adapt to lower O2 and limited energy metabolism. This transcriptional program is partly controlled by and partly independent of hypoxia-inducible factors. Remarkably, this same transcriptional program is stimulated in the brain by extensive motor-cognitive exercise, leading to a relative decrease in O2 supply, compared to the acutely augmented O2 requirement. We have coined the term "functional hypoxia" for this important demand-responsive, relative reduction in O2 availability. Functional hypoxia seems to be critical for enduring adaptation to higher physiological challenge that includes substantial "brain hardware upgrade," underlying advanced performance. Hypoxia-induced erythropoietin expression in the brain likely plays a decisive role in these processes, which can be imitated by recombinant human erythropoietin treatment. This article review presents hints of how inspiratory O2 manipulations can potentially contribute to enhanced brain function. It thereby provides the ground for exploiting moderate inspiratory plus functional hypoxia to treat individuals with brain disease. Finally, it sketches a planned multistep pilot study in healthy volunteers and first patients, about to start, aiming at improved performance upon motor-cognitive training under inspiratory hypoxia.
Collapse
Affiliation(s)
- Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Max Gassmann
- Institute of Veterinary Physiology and Zürich Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Martin Burtscher
- Faculty of Sports Science, University of Innsbruck, Innsbruck, Austria
| | | | - Anna-Leena Sirén
- Departments of Neurophysiology and Neurosurgery, University of Würzburg, Würzburg, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Kamilla Miskowiak
- Psychiatric Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Ranjbaran M, Kadkhodaee M, Adelipour M, Hafazeh L, Lorian K, Seifi B. A comparison between centrally and systemically administered erythropoietin on kidney protection in a model of fixed-volume hemorrhagic shock in male rats. Mol Biol Rep 2023; 50:4781-4789. [PMID: 37024748 DOI: 10.1007/s11033-023-08412-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023]
Abstract
BACKGROUND In this study, a comparison between centrally and systemically administered erythropoietin (EPO) was performed on nephroprotection during hemorrhagic shock (HS) in male rats. METHODS Male rats were allocated into four experimental groups. (1) Sham; a guide cannula was inserted into the left lateral ventricle and other cannulas were placed into the left femoral artery and vein. (2) HS; stereotaxic surgery was done to insert a cannula in the left lateral ventricle and after a 7-day recovery; hemorrhagic shock and resuscitation were performed. (3) EPO-systemic; the procedure was the same as the HS group except that animals received 300 IU/kg erythropoietin into the femoral vein immediately before resuscitation. (4) EPO-central; animals was treated with erythropoietin (2 IU/rat) into the left lateral ventricle before resuscitation. Arterial oxygen saturation (SaO2) was measured during experiments. Urine and renal tissue samples were stored for ex-vivo indices assessments. RESULTS Erythropoietin (systemically/centrally administered) significantly improved SaO2, renal functional and oxidative stress parameters and decreased renal inflammatory (TNF-α and IL-6) mRNA expression compared to the HS group. EPO-treated groups showed a decrease in active form of caspase-3 protein level and an increase in autophagy activity in comparison with the HS group. CONCLUSION Considering the fact that the effective dose of systemic EPO (300 IU/kg) was roughly 50 times higher than that of central administration (2 IU/rat), centrally administered EPO was accompanied by more advantageous consequences than systemic way. EPO is likely to act as a neuro-modulator or neuro-mediator in the central protection of organs including the kidneys.
Collapse
Affiliation(s)
- Mina Ranjbaran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehri Kadkhodaee
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Adelipour
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Leila Hafazeh
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Keivan Lorian
- Research and clinical center for infertility, Yazd Rreproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Behjat Seifi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Wu X, You J, Chen X, Zhou M, Ma H, Zhang T, Huang C. An overview of hyperbaric oxygen preconditioning against ischemic stroke. Metab Brain Dis 2023; 38:855-872. [PMID: 36729260 PMCID: PMC10106353 DOI: 10.1007/s11011-023-01165-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/23/2022] [Accepted: 01/12/2023] [Indexed: 02/03/2023]
Abstract
Ischemic stroke (IS) has become the second leading cause of morbidity and mortality worldwide, and the prevention of IS should be given high priority. Recent studies have indicated that hyperbaric oxygen preconditioning (HBO-PC) may be a protective nonpharmacological method, but its underlying mechanisms remain poorly defined. This study comprehensively reviewed the pathophysiology of IS and revealed the underlying mechanism of HBO-PC in protection against IS. The preventive effects of HBO-PC against IS may include inducing antioxidant, anti-inflammation, and anti-apoptosis capacity; activating autophagy and immune responses; upregulating heat shock proteins, hypoxia-inducible factor-1, and erythropoietin; and exerting protective effects upon the blood-brain barrier. In addition, HBO-PC may be considered a safe and effective method to prevent IS in combination with stem cell therapy. Although the benefits of HBO-PC on IS have been widely observed in recent research, the implementation of this technique is still controversial due to regimen differences. Transferring the results to clinical application needs to be taken carefully, and screening for the optimal regimen would be a daunting task. In addition, whether we should prescribe an individualized preconditioning regimen to each stroke patient needs further exploration.
Collapse
Affiliation(s)
- Xuyi Wu
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Jiuhong You
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Xinxin Chen
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Mei Zhou
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Hui Ma
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Tianle Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Cheng Huang
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
10
|
Siwicka-Gieroba D, Robba C, Gołacki J, Badenes R, Dabrowski W. Cerebral Oxygen Delivery and Consumption in Brain-Injured Patients. J Pers Med 2022; 12:1763. [PMID: 36573716 PMCID: PMC9698645 DOI: 10.3390/jpm12111763] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 12/30/2022] Open
Abstract
Organism survival depends on oxygen delivery and utilization to maintain the balance of energy and toxic oxidants production. This regulation is crucial to the brain, especially after acute injuries. Secondary insults after brain damage may include impaired cerebral metabolism, ischemia, intracranial hypertension and oxygen concentration disturbances such as hypoxia or hyperoxia. Recent data highlight the important role of clinical protocols in improving oxygen delivery and resulting in lower mortality in brain-injured patients. Clinical protocols guide the rules for oxygen supplementation based on physiological processes such as elevation of oxygen supply (by mean arterial pressure (MAP) and intracranial pressure (ICP) modulation, cerebral vasoreactivity, oxygen capacity) and reduction of oxygen demand (by pharmacological sedation and coma or hypothermia). The aim of this review is to discuss oxygen metabolism in the brain under different conditions.
Collapse
Affiliation(s)
- Dorota Siwicka-Gieroba
- Department of Anaesthesiology and Intensive Care, Medical University in Lublin, 20-954 Lublin, Poland
| | - Chiara Robba
- Department of Anesthesiology and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy
| | - Jakub Gołacki
- Department of Anaesthesiology and Intensive Care, Medical University in Lublin, 20-954 Lublin, Poland
| | - Rafael Badenes
- Department of Anesthesiology and Surgical-Trauma Intensive Care, Hospital Clinic Universitari, University of Valencia, 46010 Valencia, Spain
| | - Wojciech Dabrowski
- Department of Anaesthesiology and Intensive Care, Medical University in Lublin, 20-954 Lublin, Poland
| |
Collapse
|
11
|
Ziaka M, Exadaktylos A. ARDS associated acute brain injury: from the lung to the brain. Eur J Med Res 2022; 27:150. [PMID: 35964069 PMCID: PMC9375183 DOI: 10.1186/s40001-022-00780-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/29/2022] [Indexed: 01/10/2023] Open
Abstract
A complex interrelation between lung and brain in patients with acute lung injury (ALI) has been established by experimental and clinical studies during the last decades. Although, acute brain injury represents one of the most common insufficiencies in patients with ALI and acute respiratory distress syndrome (ARDS), the underlying pathophysiology of the observed crosstalk remains poorly understood due to its complexity. Specifically, it involves numerous pathophysiological parameters such as hypoxemia, neurological adverse events of lung protective ventilation, hypotension, disruption of the BBB, and neuroinflammation in such a manner that the brain of ARDS patients-especially hippocampus-becomes very vulnerable to develop secondary lung-mediated acute brain injury. A protective ventilator strategy could reduce or even minimize further systemic release of inflammatory mediators and thus maintain brain homeostasis. On the other hand, mechanical ventilation with low tidal volumes may lead to self-inflicted lung injury, hypercapnia and subsequent cerebral vasodilatation, increased cerebral blood flow, and intracranial hypertension. Therefore, by describing the pathophysiology of ARDS-associated acute brain injury we aim to highlight and discuss the possible influence of mechanical ventilation on ALI-associated acute brain injury.
Collapse
Affiliation(s)
- Mairi Ziaka
- Department of Internal Medicine, Thun General Hospital, Thun, Switzerland
| | - Aristomenis Exadaktylos
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Palus S, Elkina Y, Braun T, von Haehling S, Döhner W, Anker SD, Cerami A, Brines M, Springer J. The erythropoietin-derived peptide ARA 284 reduces tissue wasting and improves survival in a rat model of cancer cachexia. J Cachexia Sarcopenia Muscle 2022; 13:2202-2210. [PMID: 35586884 PMCID: PMC9397558 DOI: 10.1002/jcsm.13009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/05/2022] [Accepted: 04/14/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Cancer cachexia (CC) is a severe complication during the last stages of the disease, which is characterized by the substantial loss of muscle and fat mass. Currently, there is no effective treatment of CC. Erythropoietin plays tissue-protective role in different tissues. Based on the structure of erythropoietin, small non-erythropoietic peptides were synthesized, which activate tissue-protective signalling pathways. METHODS Here, we investigated the influence of the tissue-protective peptide ARA 284 on CC in rats using the Yoshida hepatoma model. RESULTS Treatment with ARA 284 (1.7 μg/kg/day) counteracted the loss of body weight (12.46 ± 4.82% ARA 284 vs. 26.85 ± 0.88% placebo, P < 0.01), fat mass (P < 0.01), and lean mass (P < 0.01). It improved spontaneous activity of ARA 284-treated animals. Further, gastrocnemius mass was increased (13.2% ARA 284 vs. placebo, P < 0.01) in association with induced p-Akt (P < 0.01) and decreased in p-p38 MAPK, GSK-3β, and myostatin (all P < 0.01), suggesting an induction of anabolic pathways. At the same time, we observed the significant increase in the survival of animals by high-dose ARA 284 treatment (hazard ratio: 0.46, 95% confidence interval: 0.23-0.94, P = 0.0325). CONCLUSIONS Taken together these results suggest that ARA 284 can be considered beneficial in experimental CC and it remains to be seen, if it can have similar beneficial effects in CC patient.
Collapse
Affiliation(s)
- Sandra Palus
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Yulia Elkina
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tanja Braun
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, University Medical Centre Göttingen, Göttingen, Germany
| | - Wolfram Döhner
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany.,Centre for Stroke Research Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan D Anker
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany.,German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | | | - Jochen Springer
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany.,German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
13
|
Ayerdem G, Bosma MJ, Vinke JSJ, Ziengs AL, Potgieser ARE, Gansevoort RT, Bakker SJL, De Borst MH, Eisenga MF. Association of Endogenous Erythropoietin Levels and Iron Status With Cognitive Functioning in the General Population. Front Aging Neurosci 2022; 14:862856. [PMID: 35462689 PMCID: PMC9024369 DOI: 10.3389/fnagi.2022.862856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundEmerging data suggest that erythropoietin (EPO) promotes neural plasticity and that iron homeostasis is needed to maintain normal physiological brain function. Cognitive functioning could therefore be influenced by endogenous EPO levels and disturbances in iron status.ObjectiveTo determine whether endogenous EPO levels and disturbances in iron status are associated with alterations in cognitive functioning in the general population.Materials and MethodsCommunity-dwelling individuals from the Prevention of Renal and Vascular End-Stage Disease (PREVEND) study, a general population-based cohort in Groningen, Netherlands, were surveyed between 2003 and 2006. Additionally, endogenous EPO levels and iron status, consisting of serum iron, transferrin, ferritin, and transferrin saturation were analyzed. Cognitive function was assessed by scores on the Ruff Figural Fluency Test (RFFT), as a reflection of executive function, and the Visual Association Test (VAT), as a reflection of associative memory.ResultsAmong 851 participants (57% males; mean age 60 ± 13 years), higher endogenous EPO levels were independently associated with an improved cognitive function, reflected by RFFT scores (ß = 0.09, P = 0.008). In multivariable backward linear regression analysis, EPO levels were among the most important modifiable determinants of RFFT scores (ß = 0.09, P = 0.002), but not of VAT scores. Of the iron status parameters, only serum ferritin levels were inversely associated with cognitive function, reflected by VAT scores, in multivariable logistic regression analysis (odds ratio, 0.77; 95% confidence interval 0.63–0.95; P = 0.02 for high performance on VAT, i.e., ≥11 points). No association between iron status parameters and RFFT scores was identified.ConclusionThe findings suggest that endogenous EPO levels and serum ferritin levels are associated with specific cognitive functioning tests in the general population. Higher EPO levels are associated with better RFFT scores, implying better executive function. Serum ferritin levels, but not other iron status parameters, were inversely associated with high performance on the VAT score, implying a reduced ability to create new memories and recall recent past. Further research is warranted to unravel underlying mechanisms and possible benefits of therapeutic interventions.
Collapse
Affiliation(s)
- Gizem Ayerdem
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Matthijs J. Bosma
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Joanna Sophia J. Vinke
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Aaltje L. Ziengs
- Department of Neuropsychology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Adriaan R. E. Potgieser
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ron T. Gansevoort
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Stephan J. L. Bakker
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Martin H. De Borst
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Michele F. Eisenga
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- *Correspondence: Michele F. Eisenga,
| |
Collapse
|
14
|
Ma Y, Zhou Z, Yang GY, Ding J, Wang X. The Effect of Erythropoietin and Its Derivatives on Ischemic Stroke Therapy: A Comprehensive Review. Front Pharmacol 2022; 13:743926. [PMID: 35250554 PMCID: PMC8892214 DOI: 10.3389/fphar.2022.743926] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 01/19/2022] [Indexed: 12/17/2022] Open
Abstract
Numerous studies explored the therapeutic effects of erythropoietin (EPO) on neurodegenerative diseases. Few studies provided comprehensive and latest knowledge of EPO treatment for ischemic stroke. In the present review, we introduced the structure, expression, function of EPO, and its receptors in the central nervous system. Furthermore, we comprehensively discussed EPO treatment in pre-clinical studies, clinical trials, and its therapeutic mechanisms including suppressing inflammation. Finally, advanced studies of the therapy of EPO derivatives in ischemic stroke were also discussed. We wish to provide valuable information on EPO and EPO derivatives’ treatment for ischemic stroke for basic researchers and clinicians to accelerate the process of their clinical applications.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiyuan Zhou
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guo-Yuan Yang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Guo-Yuan Yang, ; Jing Ding,
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Guo-Yuan Yang, ; Jing Ding,
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Ginerete RP, Mascio G, Liberatore F, Bucci D, Antenucci N, Di Pietro P, Cannella M, Imbriglio T, Notartomaso S, Nicoletti F, Bruno V, Battaglia G. Repeated episodes of transient reduction of oxygen exposure simulating aircraft cabin conditions enhance resilience to stress in mice. Eur J Neurosci 2021; 54:7109-7124. [PMID: 34655118 DOI: 10.1111/ejn.15495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/01/2021] [Accepted: 10/01/2021] [Indexed: 11/30/2022]
Abstract
Pilots and crew of domestic flights are exposed to transient periods of mild reductions of partial pressure of inspired oxygen each day, and this might have functional consequence on their performance in the long range. Here, we exposed mice to mild reductions of oxygen exposure (ROE) four times per day for 21 days by lowering oxygen partial pressure to levels corresponding to an altitude of about 2300 m, which is the quote of pressurization of the air cabin. Four groups of mice were studied: unstressed or stressed mice exposed to ROE or normoxic conditions. Mice were exposed to chronic unpredictable stress (CUS) for 28 days, and ROE was delivered in the last 21 days of CUS. In normoxic mice, CUS caused anhedonia in the sucrose preference test, anxiety-like behaviour in the open field test, learning impairment in the Morris water maze, reduced hippocampal neurogenesis, increased serum corticosterone levels and increased expression of depression-related genes (Pclo, Mthfr and Grm5) in the hippocampus. All these changes were reversed by ROE, which had little or no effect in unstressed mice. These findings suggest that ROE simulating air cabin conditions of domestic flights may enhance resilience to stress improving mood, anxiety and learning ability.
Collapse
Affiliation(s)
- Roxana Paula Ginerete
- Department of Molecular Pathology, Neuropharmacology Unit, I.R.C.C.S. Neuromed, Pozzilli, Italy
| | - Giada Mascio
- Department of Molecular Pathology, Neuropharmacology Unit, I.R.C.C.S. Neuromed, Pozzilli, Italy
| | - Francesca Liberatore
- Department of Molecular Pathology, Neuropharmacology Unit, I.R.C.C.S. Neuromed, Pozzilli, Italy
| | - Domenico Bucci
- Department of Molecular Pathology, Neuropharmacology Unit, I.R.C.C.S. Neuromed, Pozzilli, Italy
| | - Nico Antenucci
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Paola Di Pietro
- Department of Molecular Pathology, Neuropharmacology Unit, I.R.C.C.S. Neuromed, Pozzilli, Italy
| | - Milena Cannella
- Department of Molecular Pathology, Neuropharmacology Unit, I.R.C.C.S. Neuromed, Pozzilli, Italy
| | - Tiziana Imbriglio
- Department of Molecular Pathology, Neuropharmacology Unit, I.R.C.C.S. Neuromed, Pozzilli, Italy
| | - Serena Notartomaso
- Department of Molecular Pathology, Neuropharmacology Unit, I.R.C.C.S. Neuromed, Pozzilli, Italy
| | - Ferdinando Nicoletti
- Department of Molecular Pathology, Neuropharmacology Unit, I.R.C.C.S. Neuromed, Pozzilli, Italy.,Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Valeria Bruno
- Department of Molecular Pathology, Neuropharmacology Unit, I.R.C.C.S. Neuromed, Pozzilli, Italy.,Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Giuseppe Battaglia
- Department of Molecular Pathology, Neuropharmacology Unit, I.R.C.C.S. Neuromed, Pozzilli, Italy.,Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| |
Collapse
|
16
|
Dey S, Lee J, Noguchi CT. Erythropoietin Non-hematopoietic Tissue Response and Regulation of Metabolism During Diet Induced Obesity. Front Pharmacol 2021; 12:725734. [PMID: 34603036 PMCID: PMC8479821 DOI: 10.3389/fphar.2021.725734] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
Erythropoietin (EPO) receptor (EPOR) determines EPO response. High level EPOR on erythroid progenitor cells gives rise to EPO regulated production of red blood cells. Animal models provide evidence for EPO activity in non-hematopoietic tissue mediated by EPOR expression. Beyond erythropoiesis, EPO activity includes neuroprotection in brain ischemia and trauma, endothelial nitric oxide production and cardioprotection, skeletal muscle wound healing, and context dependent bone remodeling affecting bone repair or bone loss. This review highlights examples of EPO protective activity in select non-hematopoietic tissue with emphasis on metabolic response mediated by EPOR expression in fat and brain and sex-specific regulation of fat mass and inflammation associated with diet induced obesity. Endogenous EPO maintains glucose and insulin tolerance and protects against fat mass accumulation and inflammation. Accompanying the increase in erythropoiesis with EPO treatment is improved glucose tolerance and insulin response. During high fat diet feeding, EPO also decreases fat mass accumulation in male mice. The increased white adipose tissue inflammation and macrophage infiltration associated with diet induced obesity are also reduced with EPO treatment with a shift toward an anti-inflammatory state and decreased inflammatory cytokine production. In female mice the protective effect of estrogen against obesity supersedes EPO regulation of fat mass and inflammation, and requires estrogen receptor alpha activity. In brain, EPOR expression in the hypothalamus localizes to proopiomelanocortin neurons in the arcuate nucleus that promotes a lean phenotype. EPO stimulation of proopiomelanocortin neurons increases STAT3 signaling and production of proopiomelanocortin. Cerebral EPO contributes to metabolic response, and elevated brain EPO reduces fat mass and hypothalamus inflammation during diet induced obesity in male mice without affecting EPO stimulated erythropoiesis. Ovariectomy abrogates the sex-specific metabolic response of brain EPO. The sex-dimorphic EPO metabolic response associated with fat mass accumulation and inflammation during diet induced obesity provide evidence for crosstalk between estrogen and EPO in their anti-obesity potential in female mice mediated in part via tissue specific response in brain and white adipose tissue. Endogenous and exogenous EPO response in non-hematopoietic tissue demonstrated in animal models suggests additional activity by which EPO treatment may affect human health beyond increased erythropoiesis.
Collapse
Affiliation(s)
- Soumyadeep Dey
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jeeyoung Lee
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Constance T Noguchi
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
17
|
Newton SS, Sathyanesan M. Erythropoietin and Non-Erythropoietic Derivatives in Cognition. Front Pharmacol 2021; 12:728725. [PMID: 34552490 PMCID: PMC8450392 DOI: 10.3389/fphar.2021.728725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/19/2021] [Indexed: 01/04/2023] Open
Abstract
Cognitive deficits are widespread in psychiatric disorders, including major depression and schizophrenia. These deficits are known to contribute significantly to the accompanying functional impairment. Progress in the development of targeted treatments of cognitive deficits has been limited and there exists a major unmet need to develop more efficacious treatments. Erythropoietin (Epo) has shown promising procognitive effects in psychiatric disorders, providing support for a neurotrophic drug development approach. Several preclinical studies with non-erythropoietic derivatives have demonstrated that the modulation of behavior is independent of erythropoiesis. In this review, we examine the molecular, cellular and cognitive actions of Epo and non-erythropoietic molecular derivatives by focusing on their neurotrophic, synaptic, myelin plasticity, anti-inflammatory and neurogenic mechanisms in the brain. We also discuss the role of receptor signaling in Epo and non-erythropoietic EPO-mimetic molecules in their procognitive effects.
Collapse
Affiliation(s)
- Samuel S Newton
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States.,Sioux Falls VA Healthcare System, Sioux Falls, SD, United States
| | - Monica Sathyanesan
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States.,Sioux Falls VA Healthcare System, Sioux Falls, SD, United States
| |
Collapse
|
18
|
Fernandez Garcia-Agudo L, Steixner-Kumar AA, Curto Y, Barnkothe N, Hassouna I, Jähne S, Butt UJ, Grewe K, Weber MS, Green K, Rizzoli S, Nacher J, Nave KA, Ehrenreich H. Brain erythropoietin fine-tunes a counterbalance between neurodifferentiation and microglia in the adult hippocampus. Cell Rep 2021; 36:109548. [PMID: 34433021 DOI: 10.1016/j.celrep.2021.109548] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/27/2021] [Accepted: 07/27/2021] [Indexed: 12/26/2022] Open
Abstract
In adult cornu ammonis hippocampi, erythropoietin (EPO) expression drives the differentiation of new neurons, independent of DNA synthesis, and increases dendritic spine density. This substantial brain hardware upgrade is part of a regulatory circle: during motor-cognitive challenge, neurons experience "functional" hypoxia, triggering neuronal EPO production, which in turn promotes improved performance. Here, we show an unexpected involvement of resident microglia. During EPO upregulation and stimulated neurodifferentiation, either by functional or inspiratory hypoxia, microglia numbers decrease. Treating mice with recombinant human (rh)EPO or exposure to hypoxia recapitulates these changes and reveals the involvement of neuronally expressed IL-34 and microglial CSF1R. Surprisingly, EPO affects microglia in phases, initially by inducing apoptosis, later by reducing proliferation, and overall dampens microglia activity and metabolism, as verified by selective genetic targeting of either the microglial or pyramidal neuronal EPO receptor. We suggest that during accelerating neuronal differentiation, EPO acts as regulator of the CSF1R-dependent microglia.
Collapse
Affiliation(s)
| | - Agnes A Steixner-Kumar
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Yasmina Curto
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Nadine Barnkothe
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Imam Hassouna
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Sebastian Jähne
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Umer Javed Butt
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Katharina Grewe
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Martin S Weber
- Institute of Neuropathology and Department of Neurology, UMG, Göttingen, Germany
| | - Kim Green
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Silvio Rizzoli
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Juan Nacher
- Neurobiology Unit, Program in Neurosciences and Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
| |
Collapse
|
19
|
Ji F, Wang W, Feng C, Gao F, Jiao J. Brain-specific Wt1 deletion leads to depressive-like behaviors in mice via the recruitment of Tet2 to modulate Epo expression. Mol Psychiatry 2021; 26:4221-4233. [PMID: 32393787 DOI: 10.1038/s41380-020-0759-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 04/20/2020] [Accepted: 04/24/2020] [Indexed: 12/18/2022]
Abstract
Major depressive disorder (MDD) is the most common psychiatric disease worldwide. The precise molecular and cellular mechanisms underlying this disorder remain largely unknown. Wilms' tumor 1 (Wt1), a transcription factor, plays critical roles in cancer and organ development. Importantly, deletion of the 11p13 region that contains the WT1 gene is a major cause of WARG syndrome (Wilms' tumor, aniridia, genitourinary anomalies, and mental retardation), which is characterized by psychiatric disease, including depression. However, the roles and mechanisms of WT1 in embryonic neurogenesis and psychiatric disease remain unclear. Here, we demonstrate that the brain-specific deletion of Wt1 results in abnormal cell distribution during embryonic neurogenesis, which is accompanied by enhanced proliferation of neural progenitors and reduced neuronal differentiation. Moreover, neurons exhibit abnormal morphology during cortical development following Wt1 ablation. Furthermore, Wt1cKO mice exhibit depressive-like behaviors, including immobility, despair, and anhedonia. Mechanistically, Wt1 recruits Tet2 to the promoter of erythropoietin (Epo), which results in enhanced 5-hydroxymethylcytosine (5hmC) levels and the promotion of Epo expression. Either Epo plasmid electroporation or Epo protein injection can partially restore the deficiency caused by Wt1 deletion. Importantly, administration of Epo to both embryos and adults can ameliorate the depressive-like behavior of Wt1cKO mice. In addition, WT1 plays a similar role in human neural progenitor cells (hNPCs) proliferation and differentiation. Taken together, our findings reveal the critical role and regulatory mechanism of Wt1 in embryonic neurogenesis and behavioral modulation, which could contribute to the understanding of MDD etiology and therapy.
Collapse
Affiliation(s)
- Fen Ji
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Wenwen Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.,School of Life Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Chao Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China.,Sino-Danish College, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China. .,Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China.
| |
Collapse
|
20
|
Vittori DC, Chamorro ME, Hernández YV, Maltaneri RE, Nesse AB. Erythropoietin and derivatives: Potential beneficial effects on the brain. J Neurochem 2021; 158:1032-1057. [PMID: 34278579 DOI: 10.1111/jnc.15475] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/24/2021] [Accepted: 07/14/2021] [Indexed: 12/16/2022]
Abstract
Erythropoietin (Epo), the main erythropoiesis-stimulating factor widely prescribed to overcome anemia, is also known nowadays for its cytoprotective action on non-hematopoietic tissues. In this context, Epo showed not only its ability to cross the blood-brain barrier, but also its expression in the brain of mammals. In clinical trials, recombinant Epo treatment has been shown to stimulate neurogenesis; improve cognition; and activate antiapoptotic, antioxidant, and anti-inflammatory signaling pathways. These mechanisms, proposed to characterize a neuroprotective property, opened new perspectives on the Epo pharmacological potencies. However, many questions arise about a possible physiological role of Epo in the central nervous system (CNS) and the factors or environmental conditions that induce its expression. Although Epo may be considered a strong candidate to be used against neuronal damage, long-term treatments, particularly when high Epo doses are needed, may induce thromboembolic complications associated with increases in hematocrit and blood viscosity. To avoid these adverse effects, different Epo analogs without erythropoietic activity but maintaining neuroprotection ability are currently being investigated. Carbamylated erythropoietin, as well as alternative molecules like Epo fusion proteins and partial peptides of Epo, seems to match this profile. This review will focus on the discussion of experimental evidence reported in recent years linking erythropoietin and CNS function through investigations aimed at finding benefits in the treatment of neurodegenerative diseases. In addition, it will review the proposed mechanisms for novel derivatives which may clarify and, eventually, improve the neuroprotective action of Epo.
Collapse
Affiliation(s)
- Daniela C Vittori
- Department of Biological Chemistry, National Scientific and Technical Research Council, Institute of Biological Chemistry (IQUIBICEN), School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - María E Chamorro
- Department of Biological Chemistry, National Scientific and Technical Research Council, Institute of Biological Chemistry (IQUIBICEN), School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Yender V Hernández
- Department of Biological Chemistry, National Scientific and Technical Research Council, Institute of Biological Chemistry (IQUIBICEN), School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Romina E Maltaneri
- Department of Biological Chemistry, National Scientific and Technical Research Council, Institute of Biological Chemistry (IQUIBICEN), School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Alcira B Nesse
- Department of Biological Chemistry, National Scientific and Technical Research Council, Institute of Biological Chemistry (IQUIBICEN), School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
21
|
Shim SH, Kim YK, Hwangbo Y, Yoon HJ, Kim JS, Lee YJ, Woo YS, Bahk WM. The Relationship between Plasma Erythropoietin Levels and Symptoms of Attention Deficit Hyperactivity Disorder. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2021; 19:334-340. [PMID: 33888662 PMCID: PMC8077052 DOI: 10.9758/cpn.2021.19.2.334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/16/2020] [Indexed: 01/01/2023]
Abstract
Objective There are animal models associating dopamine dysfunction with behavioral impairments that model attention deficit hyperactivity disorder (ADHD). Erythropoietin (EPO) has trophic effects on dopaminergic neurons. The aim of this study was to examine the EPO plasma levels and determine whether there was any correlation between plasma EPO levels and clinical characteristics of ADHD. Methods Plasma EPO levels were measured in 78 drug-naïve children with ADHD and in 81 healthy children. The severity of ADHD symptoms was determined by scores on the Korean ADHD Rating Scale (K-ARS) in ADHD children and healthy controls. Results The difference between median plasma EPO levels in ADHD children and in healthy controls was not statistically significant. Adjusting for age and sex, a linear regression analysis showed that inattention score was significantly higher in the second highest tertile of plasma EPO compared to those in the lowest tertile. Hyperactivity-impulsivity score was significantly higher in the highest tertile of plasma EPO compared to those in the lowest tertile. Moreover, total K-ARS scores were significantly higher in the second highest tertile of plasma EPO compared to those in the lowest tertile. Conclusion These findings suggest that plasma EPO levels were related to some ADHD symptoms, which could be used in the monitoring of the disorder.
Collapse
Affiliation(s)
- Se-Hoon Shim
- Department of Psychiatry, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University Ansan Hospital, Ansan, Korea
| | - Young Hwangbo
- Department of Preventive Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| | | | - Ji Sun Kim
- Department of Psychiatry, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Youn Jung Lee
- Department of Psychiatry, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Korea
| | - Young Sup Woo
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Won-Myong Bahk
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
22
|
Rink S, Manthou ME, Arnold J, Grigo M, Dicken P, Abdulla DSY, Bendella H, Nohroudi K, Angelov DN. Motor, sensitive, and vegetative recovery in rats with compressive spinal-cord injury after combined treatment with erythropoietin and whole-body vibration. Restor Neurol Neurosci 2021; 39:85-100. [PMID: 33612500 DOI: 10.3233/rnn-201120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Physical therapy with whole body vibration (WBV) following compressive spinal cord injury (SCI) in rats restores density of perisomatic synapses, improves body weight support and leads to a better bladder function. The purpose of the study was to determine whether the combined treatment with WBV plus erythropoietin (EPO) would further improve motor, sensory and vegetative functions after SCI in rats. METHODS Severe compressive SCI at low thoracic level was followed by a single i.p. injection of 2,5μg (250 IU) human recombinant EPO. Physical therapy with WBV started on 14th day after injury and continued over a 12-week post injury period. Locomotor recovery, sensitivity tests and urinary bladder scores were analysed at 1, 3, 6, 9, and 12 weeks after SCI. The closing morphological measurements included lesion volume and numbers of axons in the preserved perilesional neural tissue bridges (PNTB). RESULTS Assessment of motor performance sensitivity and bladder function revealed no significant effects of EPO when compared to the control treatments. EPO treatment neither reduced the lesion volume, nor increased the number of axons in PNTB. CONCLUSIONS The combination of WBV + EPO exerts no positive effects on hind limbs motor performance and bladder function after compressive SCI in rats.
Collapse
Affiliation(s)
- Svenja Rink
- Department of Prosthetic Dentistry, School of Dental and Oral Medicine, University of Cologne, Cologne, Germany
| | - Maria Eleni Manthou
- Department of Histology and Embryology, School of Medicine, Faculty of Health Sciences, Aristotle University Thessaloniki, Thessaloniki, Greece
| | - Julia Arnold
- Department of Anatomy I, University of Cologne, Cologne, Germany
| | - Merle Grigo
- Department of Anatomy I, University of Cologne, Cologne, Germany
| | - Paulina Dicken
- Department of Anatomy I, University of Cologne, Cologne, Germany
| | - Diana Saad Yousif Abdulla
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Network Genomic Medicine, Lung Cancer Group Cologne, University of Cologne, Cologne, Germany
| | - Habib Bendella
- Department of Neurosurgery, University of Witten/Herdecke, Cologne Merheim Medical Center (CMMC), Cologne, Germany
| | - Klaus Nohroudi
- Department of Anatomy I, University of Cologne, Cologne, Germany
| | | |
Collapse
|
23
|
Cytoprotective effects of erythropoietin: What about the lung? Biomed Pharmacother 2021; 139:111547. [PMID: 33831836 DOI: 10.1016/j.biopha.2021.111547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
Erythropoietin (Epo) is a pleiotropic cytokine, essential for erythropoiesis. Epo and its receptor (Epo-R) are produced by several tissues and it is now admitted that Epo displays other physiological functions than red blood cell synthesis. Indeed, Epo provides cytoprotective effects, which consist in prevention or fight against pathological processes. This perspective article reviews the various protective effects of Epo in several organs and tries to give a proof of concept about its effects in the lung. The tissue-protective effects of Epo could be a promising approach to limit the symptoms of acute and chronic lung diseases.
Collapse
|
24
|
Erythropoietin Stimulates GABAergic Maturation in the Mouse Hippocampus. eNeuro 2021; 8:ENEURO.0006-21.2021. [PMID: 33495244 PMCID: PMC7890522 DOI: 10.1523/eneuro.0006-21.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 12/15/2022] Open
Abstract
Several neurodevelopmental disabilities are strongly associated with alterations in GABAergic transmission, and therapies to stimulate its normal development are lacking. Erythropoietin (EPO) is clinically used in neonatology to mitigate acute brain injury, and to stimulate neuronal maturation. Yet it remains unclear whether EPO can stimulate maturation of the GABAergic system. Here, with the use of a transgenic mouse line that constitutively overexpresses neuronal EPO (Tg21), we show that EPO stimulates postnatal GABAergic maturation in the hippocampus. We show an increase in hippocampal GABA-immunoreactive neurons, and postnatal elevation of interneurons expressing parvalbumin (PV), somatostatin (SST), and neuropeptide Y (NPY). Analysis of perineuronal net (PNN) formation and innervation of glutamatergic terminals onto PV+ cells, shows to be enhanced early in postnatal development. Additionally, an increase in GABAAergic synapse density and IPSCs in CA1 pyramidal cells from Tg21 mice is observed. Detection of EPO receptor (EPOR) mRNA was observed to be restricted to glutamatergic pyramidal cells and increased in Tg21 mice at postnatal day (P)7, along with reduced apoptosis. Our findings show that EPO can stimulate postnatal GABAergic maturation in the hippocampus, by increasing neuronal survival, modulating critical plasticity periods, and increasing synaptic transmission. Our data supports EPO’s clinical use to balance GABAergic dysfunction.
Collapse
|
25
|
Mitochondrial Metabolism as Target of the Neuroprotective Role of Erythropoietin in Parkinson's Disease. Antioxidants (Basel) 2021; 10:antiox10010121. [PMID: 33467745 PMCID: PMC7830512 DOI: 10.3390/antiox10010121] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/30/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
Existing therapies for Parkinson's disease (PD) are only symptomatic. As erythropoietin (EPO) is emerging for its benefits in neurodegenerative diseases, here, we test the protective effect driven by EPO in in vitro (SH-SY5Y cells challenged by MPP+) and in vivo (C57BL/6J mice administered with MPTP) PD models. EPO restores cell viability in both protective and restorative layouts, enhancing the dopaminergic recovery. Specifically, EPO rescues the PD-induced damage to mitochondria, as shown by transmission electron microscopy, Mitotracker assay and PINK1 expression. Moreover, EPO promotes a rescue of mitochondrial respiration while markedly enhancing the glycolytic rate, as shown by the augmented extracellular acidification rate, contributing to elevated ATP levels in MPP+-challenged cells. In PD mice, EPO intrastriatal infusion markedly improves the outcome of behavioral tests. This is associated with the rescue of dopaminergic markers and decreased neuroinflammation. This study demonstrates cellular and functional recovery following EPO treatment, likely mediated by the 37 Kda isoform of the EPO-receptor. We report for the first time, that EPO-neuroprotection is exerted through restoring ATP levels by accelerating the glycolytic rate. In conclusion, the redox imbalance and neuroinflammation associated with PD may be successfully treated by EPO.
Collapse
|
26
|
Thompson A, Farmer K, Rowe E, Hayley S. Erythropoietin modulates striatal antioxidant signalling to reduce neurodegeneration in a toxicant model of Parkinson's disease. Mol Cell Neurosci 2020; 109:103554. [DOI: 10.1016/j.mcn.2020.103554] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
|
27
|
Phenolic Acids-Rich Fractions from Agaricus bitorguis (Quél.) Sacc. Chaidam ZJU-CDMA-12 Mycelia Modulate Hypoxic Stress on Hypoxia-Damaged PC12 Cells. Molecules 2020; 25:molecules25204845. [PMID: 33096616 PMCID: PMC7587959 DOI: 10.3390/molecules25204845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/10/2020] [Accepted: 10/17/2020] [Indexed: 01/06/2023] Open
Abstract
Hypoxia is a common pathological process in various clinical diseases. However, there is still a lack of effective anti-hypoxia active substances. Agaricus bitorguis (Quél.) Sacc Chaidam (ABSC) is a rare wild edible macrofungus that grows underground at high altitudes. Herein, intracellular phenolic acids-rich fractions (IPA) were extracted from ABSC ZJU-CDMA-12, and the structural characterization and anti-hypoxia activity of IPA on PC12 cells were elucidated as well. The results of HPLC-Q-TOF-MS illustrated that five kinds of IPA were isolated from ABSC, including (−)-epicatechin gallate, arabelline, yunnaneic acid D, 2′-O-p-hydroxybenzoyl-6′-O-trans-caffeoylgardoside,4′-O-methylgallocatechin-(4->8)-4′-O-methylepigallocatechin. IPA extracted from ABSC proved to show anti-hypoxia activity on hypoxia-damaged PC12 cells. Hypoxia enhanced reactive oxygen species (ROS) generation and reduced the mitochondrial membrane potential (ΔΨm) in PC12 cells, resulting in the inhibition of survival and induction of apoptosis in PC12 cells. Measurements of 100 μg/mL and 250 μg/mL IPA could significantly reduce hypoxia-induced damage in PC12 cells by decreasing overproduced intracellular ROS, improving ΔΨm, and reducing cell apoptosis rate. Our findings indicated that the IPA from ABSC potentially could be used as novel bioactive components applied to anti-hypoxia functional foods or medicines.
Collapse
|
28
|
Hemoglobin concentration of young men at residential altitudes between 200 and 2000 m mirrors Switzerland's topography. Blood 2020; 135:1066-1069. [PMID: 32043119 DOI: 10.1182/blood.2019004135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
29
|
Rolfes S, Munro DAD, Lyras EM, Matute E, Ouk K, Harms C, Böttcher C, Priller J. Lentiviral delivery of human erythropoietin attenuates hippocampal atrophy and improves cognition in the R6/2 mouse model of Huntington's disease. Neurobiol Dis 2020; 144:105024. [PMID: 32702387 DOI: 10.1016/j.nbd.2020.105024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/04/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022] Open
Abstract
Huntington's disease (HD) is an incurable neurodegenerative disorder caused by a trinucleotide (CAG) repeat expansion in the huntingtin gene (HTT). The R6/2 transgenic mouse model of HD expresses exon 1 of the human HTT gene with approximately 150 CAG repeats. R6/2 mice develop progressive behavioural abnormalities, impaired neurogenesis, and atrophy of several brain regions. In recent years, erythropoietin (EPO) has been shown to confer neuroprotection and enhance neurogenesis, rendering it a promising molecule to attenuate HD symptoms. In this study, the therapeutic potential of EPO was evaluated in female R6/2 transgenic mice. A single bilateral injection of a lentivirus encoding human EPO (LV-hEPO) was performed into the lateral ventricles of R6/2 mice at disease onset (8 weeks of age). Control groups were either untreated or injected with a lentivirus encoding green fluorescent protein (LV-GFP). Thirty days after virus administration, hEPO mRNA and protein were present in injected R6/2 brains. Compared to control R6/2 mice, LV-hEPO-treated R6/2 mice exhibited reduced hippocampal atrophy, increased neuroblast branching towards the dentate granular cell layer, and improved spatial cognition. Our results suggest that LV-hEPO administration may be a promising strategy to reduce cognitive impairment in HD.
Collapse
Affiliation(s)
- Simone Rolfes
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité -Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - David A D Munro
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh EH16 4SA, UK
| | - Ekaterini-Maria Lyras
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité -Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Eduardo Matute
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité -Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Koliane Ouk
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité -Universitätsmedizin Berlin, 10117 Berlin, Germany; DZNE Berlin, 10117 Berlin, Germany
| | - Christoph Harms
- Department of Experimental Neurology and Center for Stroke Research, Charité -Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Chotima Böttcher
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité -Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Josef Priller
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité -Universitätsmedizin Berlin, 10117 Berlin, Germany; UK Dementia Research Institute at the University of Edinburgh, Edinburgh EH16 4SA, UK; DZNE Berlin, 10117 Berlin, Germany.
| |
Collapse
|
30
|
Ehrenreich H, Weissenborn K, Begemann M, Busch M, Vieta E, Miskowiak KW. Erythropoietin as candidate for supportive treatment of severe COVID-19. Mol Med 2020; 26:58. [PMID: 32546125 PMCID: PMC7297268 DOI: 10.1186/s10020-020-00186-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
In light of the present therapeutic situation in COVID-19, any measure to improve course and outcome of seriously affected individuals is of utmost importance. We recap here evidence that supports the use of human recombinant erythropoietin (EPO) for ameliorating course and outcome of seriously ill COVID-19 patients. This brief expert review grounds on available subject-relevant literature searched until May 14, 2020, including Medline, Google Scholar, and preprint servers. We delineate in brief sections, each introduced by a summary of respective COVID-19 references, how EPO may target a number of the gravest sequelae of these patients. EPO is expected to: (1) improve respiration at several levels including lung, brainstem, spinal cord and respiratory muscles; (2) counteract overshooting inflammation caused by cytokine storm/ inflammasome; (3) act neuroprotective and neuroregenerative in brain and peripheral nervous system. Based on this accumulating experimental and clinical evidence, we finally provide the research design for a double-blind placebo-controlled randomized clinical trial including severely affected patients, which is planned to start shortly.
Collapse
Affiliation(s)
- Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
| | | | - Martin Begemann
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
- Department of Psychiatry & Psychotherapy, University Medical Center, Göttingen, Germany
| | - Markus Busch
- Center of Internal Medicine, Hannover Medical School, Hannover, Germany
| | - Eduard Vieta
- Institute of Neuroscience, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
| | - Kamilla W Miskowiak
- Psychiatric Centre Copenhagen, University Hospital, Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
31
|
Rey F, Balsari A, Giallongo T, Ottolenghi S, Di Giulio AM, Samaja M, Carelli S. Erythropoietin as a Neuroprotective Molecule: An Overview of Its Therapeutic Potential in Neurodegenerative Diseases. ASN Neuro 2020; 11:1759091419871420. [PMID: 31450955 PMCID: PMC6712762 DOI: 10.1177/1759091419871420] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Erythropoietin (EPO) is a cytokine mainly induced in hypoxia conditions. Its major production site is the kidney. EPO primarily acts on the erythroid progenitor cells in the bone marrow. More and more studies are highlighting its secondary functions, with a crucial focus on its role in the central nervous system. Here, EPO may interact with up to four distinct isoforms of its receptor (erythropoietin receptor [EPOR]), activating different signaling cascades with roles in neuroprotection and neurogenesis. Indeed, the EPO/EPOR axis has been widely studied in the neurodegenerative diseases field. Its potential therapeutic effects have been evaluated in multiple disorders, such as Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, spinal cord injury, as well as brain ischemia, hypoxia, and hyperoxia. EPO is showing great promise by counteracting secondary neuroinflammatory processes, reactive oxygen species imbalance, and cell death in these diseases. Multiple studies have been performed both in vitro and in vivo, characterizing the mechanisms through which EPO exerts its neurotrophic action. In some cases, clinical trials involving EPO have been performed, highlighting its therapeutic potential. Together, all these works indicate the potential beneficial effects of EPO.
Collapse
Affiliation(s)
- Federica Rey
- 1 Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Italy
| | - Alice Balsari
- 1 Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Italy
| | - Toniella Giallongo
- 1 Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Italy
| | - Sara Ottolenghi
- 2 Laboratory of Biochemistry, Department of Health Sciences, University of Milan, Italy
| | - Anna M Di Giulio
- 1 Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Italy.,3 Pediatric Clinical Research Center Fondazione "Romeo ed Enrica Invernizzi", University of Milan, Italy
| | - Michele Samaja
- 2 Laboratory of Biochemistry, Department of Health Sciences, University of Milan, Italy
| | - Stephana Carelli
- 1 Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Italy.,3 Pediatric Clinical Research Center Fondazione "Romeo ed Enrica Invernizzi", University of Milan, Italy
| |
Collapse
|
32
|
Wakhloo D, Scharkowski F, Curto Y, Javed Butt U, Bansal V, Steixner-Kumar AA, Wüstefeld L, Rajput A, Arinrad S, Zillmann MR, Seelbach A, Hassouna I, Schneider K, Qadir Ibrahim A, Werner HB, Martens H, Miskowiak K, Wojcik SM, Bonn S, Nacher J, Nave KA, Ehrenreich H. Functional hypoxia drives neuroplasticity and neurogenesis via brain erythropoietin. Nat Commun 2020; 11:1313. [PMID: 32152318 PMCID: PMC7062779 DOI: 10.1038/s41467-020-15041-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/12/2020] [Indexed: 12/18/2022] Open
Abstract
Erythropoietin (EPO), named after its role in hematopoiesis, is also expressed in mammalian brain. In clinical settings, recombinant EPO treatment has revealed a remarkable improvement of cognition, but underlying mechanisms have remained obscure. Here, we show with a novel line of reporter mice that cognitive challenge induces local/endogenous hypoxia in hippocampal pyramidal neurons, hence enhancing expression of EPO and EPO receptor (EPOR). High-dose EPO administration, amplifying auto/paracrine EPO/EPOR signaling, prompts the emergence of new CA1 neurons and enhanced dendritic spine densities. Single-cell sequencing reveals rapid increase in newly differentiating neurons. Importantly, improved performance on complex running wheels after EPO is imitated by exposure to mild exogenous/inspiratory hypoxia. All these effects depend on neuronal expression of the Epor gene. This suggests a model of neuroplasticity in form of a fundamental regulatory circle, in which neuronal networks—challenged by cognitive tasks—drift into transient hypoxia, thereby triggering neuronal EPO/EPOR expression. EPO treatment improves cognition, but underlying mechanisms were unknown. Here the authors describe a regulatory loop in which brain networks challenged by cognitive tasks drift into functional hypoxia that drives—via neuronal EPO synthesis—neurodifferentiation and dendritic spine formation.
Collapse
Affiliation(s)
- Debia Wakhloo
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Franziska Scharkowski
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Yasmina Curto
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Neurobiology Unit, Program in Neurosciences and Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Umer Javed Butt
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Vikas Bansal
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Institute of Medical Systems Biology, Center for Molecular Neurobiology, University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Agnes A Steixner-Kumar
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Liane Wüstefeld
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Ashish Rajput
- Institute of Medical Systems Biology, Center for Molecular Neurobiology, University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Sahab Arinrad
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Matthias R Zillmann
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Anna Seelbach
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Imam Hassouna
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Katharina Schneider
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Abdul Qadir Ibrahim
- Institute of Medical Systems Biology, Center for Molecular Neurobiology, University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | | | - Kamilla Miskowiak
- Copenhagen Affective Disorder Research Centre, Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Sonja M Wojcik
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, Center for Molecular Neurobiology, University Clinic Hamburg-Eppendorf, Hamburg, Germany.,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Juan Nacher
- Neurobiology Unit, Program in Neurosciences and Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain.,CIBERSAM: Spanish National Network for Research in Mental Health, Valencia, Spain.,Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany. .,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany. .,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.
| |
Collapse
|
33
|
Im JH, Yeo IJ, Hwang CJ, Lee KS, Hong JT. PEGylated Erythropoietin Protects against Brain Injury in the MCAO-Induced Stroke Model by Blocking NF-κB Activation. Biomol Ther (Seoul) 2020; 28:152-162. [PMID: 31813204 PMCID: PMC7059808 DOI: 10.4062/biomolther.2019.147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/12/2019] [Accepted: 10/28/2019] [Indexed: 12/13/2022] Open
Abstract
Cerebral ischemia exhibits a multiplicity of pathophysiological mechanisms. During ischemic stroke, the reactive oxygen species (ROS) concentration rises to a peak during reperfusion, possibly underlying neuronal death. Recombinant human erythropoietin (EPO) supplementation is one method of treating neurodegenerative disease by reducing the generation of ROS. We investigated the therapeutic effect of PEGylated EPO (P-EPO) on ischemic stroke. Mice were administered P-EPO (5,000 U/kg) via intravenous injection, and middle cerebral artery occlusion (MCAO) followed by reperfusion was performed to induce in vivo ischemic stroke. P-EPO ameliorated MCAO-induced neurological deficit and reduced behavioral disorder and the infarct area. Moreover, lipid peroxidation, expression of inflammatory proteins (cyclooxygenase-2 and inducible nitric oxide synthase), and cytokine levels in blood were reduced by the P-EPO treatment. In addition, higher activation of nuclear factor kappa B (NF-κB) was found in the brain after MCAO, but NF-κB activation was reduced in the P-EPO-injected group. Treatment with the NF-κB inhibitor PS-1145 (5 mg/kg) abolished the P-EPO-induced reduction of infarct volume, neuronal death, neuroinflammation, and oxidative stress. Moreover, P-EPO was more effective than EPO (5,000 U/kg) and similar to a tissue plasminogen activator (10 mg/kg). An in vitro study revealed that P-EPO (25, 50, and 100 U/mL) treatment protected against rotenone (100 nM)-induced neuronal loss, neuroinflammation, oxidative stress, and NF-κB activity. These results indicate that the administration of P-EPO exerted neuroprotective effects on cerebral ischemia damage through anti-oxidant and anti-inflammatory properties by inhibiting NF-κB activation.
Collapse
Affiliation(s)
- Jun Hyung Im
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - In Jun Yeo
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Chul Ju Hwang
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Kyung Sun Lee
- R&D Center, Ts Corporation, Incheon 22300, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea
| |
Collapse
|
34
|
Pignataro G, Brancaccio P, Laudati G, Valsecchi V, Anzilotti S, Casamassa A, Cuomo O, Vinciguerra A. Sodium/calcium exchanger as main effector of endogenous neuroprotection elicited by ischemic tolerance. Cell Calcium 2020; 87:102183. [PMID: 32120196 DOI: 10.1016/j.ceca.2020.102183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/12/2020] [Accepted: 02/16/2020] [Indexed: 12/13/2022]
Abstract
The ischemic tolerance (IT) paradigm represents a fundamental cell response to certain types or injury able to render an organ more "tolerant" to a subsequent, stronger, insult. During the 16th century, the toxicologist Paracelsus described for the first time the possibility that a noxious event might determine a state of tolerance. This finding was summarized in one of his most important mentions: "The dose makes the poison". In more recent years, ischemic tolerance in the brain was first described in 1991, when it was demonstrated by Kirino and collaborators that two minutes of subthreshold brain ischemia in gerbils produced tolerance against global brain ischemia. Based on the time in which the conditioning stimulus is applied, it is possible to define preconditioning, perconditioning and postconditioning, when the subthreshold insult is applied before, during or after the ischemic event, respectively. Furthermore, depending on the temporal delay from the ischemic event, two different modalities are distinguished: rapid or delayed preconditioning and postconditioning. Finally, the circumstance in which the conditioning stimulus is applied on an organ distant from the brain is referred as remote conditioning. Over the years the "conditioning" paradigm has been applied to several brain disorders and a number of molecular mechanisms taking part to these protective processes have been described. The mechanisms are usually classified in three distinct categories identified as triggers, mediators and effectors. As concerns the putative effectors, it has been hypothesized that brain cells appear to have the ability to adapt to hypoxia by reducing their energy demand through modulation of ion channels and transporters, which delays anoxic depolarization. The purpose of the present review is to summarize the role played by plasmamembrane proteins able to control ionic homeostasis in mediating protection elicited by brain conditioning, particular attention will be deserved to the role played by Na+/Ca2+ exchanger.
Collapse
Affiliation(s)
- G Pignataro
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy.
| | - P Brancaccio
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy
| | - G Laudati
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy
| | - V Valsecchi
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy
| | | | - A Casamassa
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy
| | - O Cuomo
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy
| | - A Vinciguerra
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy
| |
Collapse
|
35
|
Suresh S, Rajvanshi PK, Noguchi CT. The Many Facets of Erythropoietin Physiologic and Metabolic Response. Front Physiol 2020; 10:1534. [PMID: 32038269 PMCID: PMC6984352 DOI: 10.3389/fphys.2019.01534] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/05/2019] [Indexed: 12/30/2022] Open
Abstract
In mammals, erythropoietin (EPO), produced in the kidney, is essential for bone marrow erythropoiesis, and hypoxia induction of EPO production provides for the important erythropoietic response to ischemic stress, such as during blood loss and at high altitude. Erythropoietin acts by binding to its cell surface receptor which is expressed at the highest level on erythroid progenitor cells to promote cell survival, proliferation, and differentiation in production of mature red blood cells. In addition to bone marrow erythropoiesis, EPO causes multi-tissue responses associated with erythropoietin receptor (EPOR) expression in non-erythroid cells such neural cells, endothelial cells, and skeletal muscle myoblasts. Animal and cell models of ischemic stress have been useful in elucidating the potential benefit of EPO affecting maintenance and repair of several non-hematopoietic organs including brain, heart and skeletal muscle. Metabolic and glucose homeostasis are affected by endogenous EPO and erythropoietin administration affect, in part via EPOR expression in white adipose tissue. In diet-induced obese mice, EPO is protective for white adipose tissue inflammation and gives rise to a gender specific response in weight control associated with white fat mass accumulation. Erythropoietin regulation of fat mass is masked in female mice due to estrogen production. EPOR is also expressed in bone marrow stromal cells (BMSC) and EPO administration in mice results in reduced bone independent of the increase in hematocrit. Concomitant reduction in bone marrow adipocytes and bone morphogenic protein suggests that high EPO inhibits adipogenesis and osteogenesis. These multi-tissue responses underscore the pleiotropic potential of the EPO response and may contribute to various physiological manifestations accompanying anemia or ischemic response and pharmacological uses of EPO.
Collapse
Affiliation(s)
- Sukanya Suresh
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Praveen Kumar Rajvanshi
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Constance T Noguchi
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
36
|
Wang Z, Khor S, Cai D. Regulation of muscle and metabolic physiology by hypothalamic erythropoietin independently of its peripheral action. Mol Metab 2019; 32:56-68. [PMID: 32029230 PMCID: PMC6938905 DOI: 10.1016/j.molmet.2019.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 12/14/2022] Open
Abstract
Objective The glycoprotein hormone erythropoietin (EPO) is required for erythropoiesis, and the kidney is the primary site of adult EPO synthesis. Limited evidence has suggested that EPO could be detectable in the brain under certain conditions, but it remains unknown if the brain might have its own EPO system for biological functions that are independent of peripheral EPO production and action. We performed this study to address this question using mice under normal conditions versus pathophysiological conditions including aging and dietary obesity. Methods EPO expression was measured in different brain regions as well as in the cerebrospinal fluid. Hypothalamic ventricular EPO was administered to physiologically examine possible therapeutic effects on the conditions of aging and dietary obesity. Body weight, body composition, insulin tolerance, and glucose tolerance were measured to assess the central effects of EPO on metabolic physiology, and muscle strength and histology were analyzed to assess the central effects of EPO on muscle function. In addition, β2-adrenergic receptor knockout bone marrow transplant was employed to determine the potential role of bone marrow in linking the brain to some of these peripheral functions. Results This study revealed that EPO is expressed in the ventromedial hypothalamus in addition to a few other brain regions and is present in the cerebrospinal fluid. Unlike blood EPO concentration, which increased with aging and dietary obesity, hypothalamic EPO decreased in these disease conditions. Therapeutically, aged mice were chronically treated with EPO in the hypothalamic ventricle, showing an increase in lean mass, while body weight and fat mass decreased as a result of a moderate reduction of food intake. Both muscle and metabolic functions were improved by this central treatment, and mechanistically, adrenergic signals to the bone marrow played a role in conveying hypothalamic EPO to these peripheral actions. Dietary obesity was also studied, showing that hypothalamic EPO treatment caused a reduction in food intake and obesity, leading to improved metabolic functions related to decreased fat as well as increased lean mass. Conclusions Hypothalamic EPO plays a role in the central regulation of muscle and metabolic physiology, while its decline contributes to aging and obesity physiology in a manner that is independent of peripheral EPO. Hypothalamic EPO plays a role in regulating muscle and metabolic physiology independently of its peripheral action. Hypothalamic EPO expression and the cerebrospinal fluid EPO concentration decrease in aging and obesity conditions. Hypothalamic EPO treatment blunts the effects of aging and obesity conditions in impairing muscle and metabolic functions. There exists a connection between the hypothalamus and bone marrow in mediating the physiological effects of central EPO.
Collapse
Affiliation(s)
- Zhouguang Wang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sinan Khor
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Dongsheng Cai
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
37
|
Moradi M, Saidijam M, Ghaleiha A, Jahangard L, Yadegarazari R, Keshavarzi A. Genes Encoding Erythropoietin and Its Receptor in Bipolar I (Manic Phase) Patients as a Novel Diagnostic Agent: A Case-Control Study. NEUROCHEM J+ 2019. [DOI: 10.1134/s1819712419020089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
38
|
Schneider Gasser EM, Elliot-Portal E, Arias-Reyes C, Losantos-Ramos K, Khalid K, Ogunshola O, Soliz J. Developmental expression patterns of erythropoietin and its receptor in mouse brainstem respiratory regions. Respir Physiol Neurobiol 2019; 267:12-19. [PMID: 31154093 DOI: 10.1016/j.resp.2019.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/23/2019] [Accepted: 05/20/2019] [Indexed: 12/14/2022]
Abstract
Erythropoietin (EPO) is a hypoxia-inducible hormone, classically known to enhance red blood cell production upon binding its receptor (EPOR) present on the surface of the erythroid progenitor cells. EPO and its receptor are also expressed in the central nervous system (CNS), exerting several non-hematopoietic actions. EPO also plays an important role in the control of breathing. In this review, we summarize the known physiological actions of EPO in the neural control of ventilation during postnatal development and at adulthood in rodents under normoxic and hypoxic conditions. Furthermore, we present the developmental expression patterns of EPO and EPORs in the brainstem, and with the use of in situ hybridization (ISH) and immunofluorescence techniques we provide original data showing that EPOR is abundantly present in specific brainstem nuclei associated with central chemosensitivity and control of ventilation in the ventrolateral medulla, mainly on somatostatin negative cells. Thus, we conclude that EPO signaling may act through glutamatergic neuron populations that are the primary source of rhythmic inspiratory excitatory drive. This work underlies the importance of EPO signaling in the central control of ventilation across development and adulthood and provides new insights on the expression of EPOR at the cellular level.
Collapse
Affiliation(s)
- Edith M Schneider Gasser
- Institute of Pharmacology and Toxicology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Elizabeth Elliot-Portal
- Institut universitaire de cardiologie et de pneumologie de Québec, Centre Hospitalier Universitaire de Québec (CHUQ), Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Christian Arias-Reyes
- Institut universitaire de cardiologie et de pneumologie de Québec, Centre Hospitalier Universitaire de Québec (CHUQ), Faculty of Medicine, Université Laval, Québec, QC, Canada; Instituto de Biología Molecular y Biotecnología, Facultad de Ciencias Puras y Naturales, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Karen Losantos-Ramos
- Institut universitaire de cardiologie et de pneumologie de Québec, Centre Hospitalier Universitaire de Québec (CHUQ), Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Kasifa Khalid
- Institute of Pharmacology and Toxicology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Omolara Ogunshola
- Institute of Veterinary Physiology and Zurich Center of Integrative Human Physiology (ZIHP), Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057 Zurich, Switzerland
| | - Jorge Soliz
- Institut universitaire de cardiologie et de pneumologie de Québec, Centre Hospitalier Universitaire de Québec (CHUQ), Faculty of Medicine, Université Laval, Québec, QC, Canada; Instituto de Biología Molecular y Biotecnología, Facultad de Ciencias Puras y Naturales, Universidad Mayor de San Andrés, La Paz, Bolivia.
| |
Collapse
|
39
|
Jantzie L, El Demerdash N, Newville JC, Robinson S. Time to reconsider extended erythropoietin treatment for infantile traumatic brain injury? Exp Neurol 2019; 318:205-215. [PMID: 31082389 DOI: 10.1016/j.expneurol.2019.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/03/2019] [Accepted: 05/08/2019] [Indexed: 01/03/2023]
Abstract
Pediatric traumatic brain injury (TBI) remains a leading cause of childhood morbidity and mortality worldwide. Most efforts to reduce the chronic impact of pediatric TBI involve prevention and minimization of secondary injury. Currently, no treatments are used in routine clinical care during the acute and subacute phases to actively repair injury to the developing brain. The endogenous pluripotent cytokine erythropoietin (EPO) holds promise as an emerging neuroreparative agent in perinatal brain injury (PBI). EPO signaling in the central nervous system (CNS) is essential for multiple stages of neurodevelopment, including the genesis, survival and differentiation of multiple lineages of neural cells. Postnatally, EPO signaling decreases markedly as the CNS matures. Importantly, high-dose, extended EPO regimens have shown efficacy in preclinical controlled cortical impact (CCI) models of infant TBI at two different, early ages by independent research groups. Specifically, extended high-dose EPO treatment after infantile CCI prevents long-term cognitive deficits in adult rats. Because of the striking differences in the molecular and cellular responses to both injury and recovery in the developing and mature CNS, and the excellent safety profile of EPO in infants and children, extended courses of EPO are currently in Phase III trials for neonates with PBI. Extended, high-dose EPO may also warrant testing for infants and young children with TBI.
Collapse
Affiliation(s)
- Lauren Jantzie
- Division of Neonatology, Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, NM, 87111,United States.; Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, 87111, United States..
| | - Nagat El Demerdash
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States
| | - Jessie C Newville
- Division of Neonatology, Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, NM, 87111,United States.; Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, 87111, United States
| | - Shenandoah Robinson
- Division of Pediatric Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
40
|
Kunze R, Marti HH. Angioneurins - Key regulators of blood-brain barrier integrity during hypoxic and ischemic brain injury. Prog Neurobiol 2019; 178:101611. [PMID: 30970273 DOI: 10.1016/j.pneurobio.2019.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/29/2019] [Indexed: 12/14/2022]
Abstract
The loss of blood-brain barrier (BBB) integrity leading to vasogenic edema and brain swelling is a common feature of hypoxic/ischemic brain diseases such as stroke, but is also central to the etiology of other CNS disorders. In the past decades, numerous proteins, belonging to the family of angioneurins, have gained increasing attention as potential therapeutic targets for ischemic stroke, but also other CNS diseases attributed to BBB dysfunction. Angioneurins encompass mediators that affect both neuronal and vascular function. Recently, increasing evidence has been accumulated that certain angioneurins critically determine disease progression and outcome in stroke among others through multifaceted effects on the compromised BBB. Here, we will give a concise overview about the family of angioneurins. We further describe the most important cellular and molecular components that contribute to structural integrity and low permeability of the BBB under steady-state conditions. We then discuss BBB alterations in ischemic stroke, and highlight underlying cellular and molecular mechanisms. For the most prominent angioneurin family members including vascular endothelial growth factors, angiopoietins, platelet-derived growth factors and erythropoietin, we will summarize current scientific literature from experimental studies in animal models, and if available from clinical trials, on the following points: (i) spatiotemporal expression of these factors in the healthy and hypoxic/ischemic CNS, (ii) impact of loss- or gain-of-function during cerebral hypoxia/ischemia for BBB integrity and beyond, and (iii) potential underlying molecular mechanisms. Moreover, we will highlight novel therapeutic strategies based on the activation of endogenous angioneurins that might improve BBB dysfuntion during ischemic stroke.
Collapse
Affiliation(s)
- Reiner Kunze
- Institute of Physiology and Pathophysiology, Heidelberg University, Germany.
| | - Hugo H Marti
- Institute of Physiology and Pathophysiology, Heidelberg University, Germany
| |
Collapse
|
41
|
Sun J, Martin JM, Vanderpoel V, Sumbria RK. The Promises and Challenges of Erythropoietin for Treatment of Alzheimer's Disease. Neuromolecular Med 2019; 21:12-24. [PMID: 30656553 DOI: 10.1007/s12017-019-08524-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/08/2019] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder in the world, and intracellular neurofibrillary tangles and extracellular amyloid-beta protein deposits represent the major pathological hallmarks of the disease. Currently available treatments provide some symptomatic relief but fail to modify primary pathological processes that underlie the disease. Erythropoietin (EPO), a hematopoietic growth factor, acts primarily to stimulate erythroid cell production, and is clinically used to treat anemia. EPO has evolved as a therapeutic agent for neurodegeneration and has improved neurological outcomes and AD pathology in rodents. However, penetration of the blood-brain barrier (BBB) and negative hematopoietic effects are the two major challenges for the therapeutic development of EPO for chronic neurodegenerative diseases like AD. The transferrin receptors at the BBB, which are responsible for transporting transferrin-bound iron from the blood into the brain parenchyma, can be used to shuttle therapeutic molecules across the BBB. In this review, we discuss the role of EPO as a potential neurotherapeutic for AD, challenges associated with EPO development for AD, and targeting the BBB transferrin receptor for EPO brain delivery.
Collapse
Affiliation(s)
- Jiahong Sun
- Department of Biopharmaceutical Sciences, School of Pharmacy and Health Sciences, Keck Graduate Institute, 535 Watson Dr, Claremont, CA, 91711, USA
| | - Jan Michelle Martin
- College of Medicine, California Northstate University, Elk Grove, CA, 95757, USA
| | | | - Rachita K Sumbria
- Department of Biopharmaceutical Sciences, School of Pharmacy and Health Sciences, Keck Graduate Institute, 535 Watson Dr, Claremont, CA, 91711, USA. .,Department of Neurology, University of California, Irvine, CA, 92868, USA.
| |
Collapse
|
42
|
Andrade DC, Haine L, Toledo C, Diaz HS, Quintanilla RA, Marcus NJ, Iturriaga R, Richalet JP, Voituron N, Del Rio R. Ventilatory and Autonomic Regulation in Sleep Apnea Syndrome: A Potential Protective Role for Erythropoietin? Front Physiol 2018; 9:1440. [PMID: 30374309 PMCID: PMC6196773 DOI: 10.3389/fphys.2018.01440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/21/2018] [Indexed: 12/20/2022] Open
Abstract
Obstructive sleep apnea (OSA) is the most common form of sleep disordered breathing and is associated with wide array of cardiovascular morbidities. It has been proposed that during OSA, the respiratory control center (RCC) is affected by exaggerated afferent signals coming from peripheral/central chemoreceptors which leads to ventilatory instability and may perpetuate apnea generation. Treatments focused on decreasing hyperactivity of peripheral/central chemoreceptors may be useful to improving ventilatory instability in OSA patients. Previous studies indicate that oxidative stress and inflammation are key players in the increased peripheral/central chemoreflex drive associated with OSA. Recent data suggest that erythropoietin (Epo) could also be involved in modulating chemoreflex activity as functional Epo receptors are constitutively expressed in peripheral and central chemoreceptors cells. Additionally, there is some evidence that Epo has anti-oxidant/anti-inflammatory effects. Accordingly, we propose that Epo treatment during OSA may reduce enhanced peripheral/central chemoreflex drive and normalize the activity of the RCC which in turn may help to abrogate ventilatory instability. In this perspective article we discuss the potential beneficial effects of Epo administration on ventilatory regulation in the setting of OSA.
Collapse
Affiliation(s)
- David C Andrade
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Investigación en Fisiología del Ejercicio, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Liasmine Haine
- Laboratoire Hypoxie and Poumon - EA2363, Université Paris 13, Paris, France
| | - Camilo Toledo
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Hugo S Diaz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Investigación Biomédica, Universidad Autónoma de Chile, Santiago, Chile
| | | | - Noah J Marcus
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, United States
| | - Rodrigo Iturriaga
- Laboratorio de Neurobiología, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jean-Paul Richalet
- Laboratoire Hypoxie and Poumon - EA2363, Université Paris 13, Paris, France
| | - Nicolas Voituron
- Laboratoire Hypoxie and Poumon - EA2363, Université Paris 13, Paris, France
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
43
|
Miskowiak KW, Petersen NA, Harmer CJ, Ehrenreich E, Kessing LV, Vinberg M, Macoveanu J, Siebner HR. Neural correlates of improved recognition of happy faces after erythropoietin treatment in bipolar disorder. Acta Psychiatr Scand 2018; 138:336-347. [PMID: 29882276 DOI: 10.1111/acps.12915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/11/2018] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Bipolar disorder is associated with impairments in social cognition including the recognition of happy faces. This is accompanied by imbalanced cortico-limbic response to emotional faces. We found that EPO improved the recognition of happy faces in patients with bipolar disorder. This randomized, controlled, longitudinal fMRI study explores the neuronal underpinnings of this effect. METHOD Forty-four patients with bipolar disorder in full or partial remission were randomized to eight weekly erythropoietin (EPO; 40 000 IU) or saline (NaCl 0.9%) infusions in a double-blind, parallel-group design. Participants underwent whole-brain fMRI at 3T, mood ratings and blood tests at baseline and week 14. During fMRI, participants viewed happy and fearful faces and performed a gender discrimination task. RESULTS Thirty-four patients had complete pre- and post-treatment fMRI data (EPO: N = 18, saline: N = 16). Erythropoietin vs. saline increased right superior frontal response to happy vs. fearful faces. This correlated with improved happiness recognition in the EPO group. Erythropoietin also enhanced gender discrimination accuracy for happy faces. These effects were not influenced by medication, mood, red blood cells or blood pressure. CONCLUSIONS Together with previous findings, the present observation suggests that increased dorsal prefrontal attention control is a common mechanism of EPO-associated improvements across several cognitive domains.
Collapse
Affiliation(s)
- K W Miskowiak
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - N A Petersen
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - C J Harmer
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - E Ehrenreich
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Denmark
| | - L V Kessing
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - M Vinberg
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - J Macoveanu
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - H R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital, Hvidovre, Denmark.,Department of Neurology, Copenhagen University Hospital, Bispebjerg, Copenhagen, Denmark
| |
Collapse
|
44
|
Dik A, Saffari R, Zhang M, Zhang W. Contradictory effects of erythropoietin on inhibitory synaptic transmission in left and right prelimbic cortex of mice. Neurobiol Stress 2018; 9:113-123. [PMID: 30450377 PMCID: PMC6234276 DOI: 10.1016/j.ynstr.2018.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/08/2018] [Accepted: 08/24/2018] [Indexed: 12/28/2022] Open
Abstract
Erythropoietin (EPO) has been shown to improve cognitive function in mammals as well as in patients of psychiatric diseases by directly acting on the brain. In addition, EPO attenuates the synaptic transmission and enhances short- and long-term synaptic plasticity in hippocampus of mice, although there are still many discrepancies between different studies. It has been suggested that the divergences of different studies take root in different in-vivo application schemata or in long-term trophic effects of EPO. In the current study, we investigated the direct effects of EPO in slices of prelimbic cortex (PrL) by acute ex-vivo application of EPO, so that the erythropoietic or other trophic effects could be entirely excluded. Our results showed that the EPO effects were contradictory between the left and the right PrL. It enhanced the inhibitory transmission in the left and depressed the inhibitory transmission in the right PrL. Strikingly, this lateralized effect of EPO could be consistently found in individual bi-lateral PrL of all tested mice. Thus, our data suggest that EPO differentially modulates the inhibitory synaptic transmission of neuronal networks in the left and the right PrL. We hypothesize that such lateralized effects of EPO contribute to the development of the lateralization of stress reaction in PFC and underlie the altered bilateral GAGAergic synaptic transmission and oscillation patterns under stress that impact the central emotional and cognitive control in physiology as well as in pathophysiology. EPO showed fast effects on inhibitory transmission in the prefrontal cortex of mice. EPO enhanced the inhibitory transmission in the left and depressed it in the right prelimbic cortex of mice. The expression of EPOR in GAD+-neurons is different between the left and right PFC.
Collapse
Affiliation(s)
- Andre Dik
- Laboratory of Molecular Psychiatry, Department of Psychiatry, University of Münster, Germany.,Department of Neurology, University of Muenster, Germany
| | - Roja Saffari
- Laboratory of Molecular Psychiatry, Department of Psychiatry, University of Münster, Germany
| | - Mingyue Zhang
- Laboratory of Molecular Psychiatry, Department of Psychiatry, University of Münster, Germany
| | - Weiqi Zhang
- Laboratory of Molecular Psychiatry, Department of Psychiatry, University of Münster, Germany
| |
Collapse
|
45
|
Castillo C, Zaror S, Gonzalez M, Hidalgo A, Burgos CF, Cabezas OI, Hugues F, Jiménez SP, González-Horta E, González-Chavarría I, Gavilán J, Montesino R, Sánchez O, Lopez MG, Fuentealba J, Toledo JR. Neuroprotective effect of a new variant of Epo nonhematopoietic against oxidative stress. Redox Biol 2018; 14:285-294. [PMID: 28987867 PMCID: PMC5975214 DOI: 10.1016/j.redox.2017.09.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/05/2017] [Accepted: 09/18/2017] [Indexed: 12/19/2022] Open
Abstract
Human erythropoietin is mainly recognized for its hematopoietic function; however, by binding to its receptor (EpoR), it can activate different signaling pathways as STAT, PI3K, MAPK and RAS to increase cellular differentiation or provide neuroprotective effects, among others. A recombinant human erythropoietin variant with low glycosylation and without hematopoietic effect (EpoL) was purified from skimmed goat milk. Recombinant human erythropoietin (Epo) was obtained from CHO cell line and used as control to compare EpoL effects. Neuroprotection studies were performed in PC12 cells and rat hippocampal slices. Cells were pretreated during 1h with EpoL or Epo and exposed to oxidative agents (H2O2 or FCCP); cell viability was assayed at the end of the experiment by the MTT method. Hippocampal slices were exposed to 15min of oxygen and glucose deprivation (OGD) and the neuroprotective drugs EpoL or Epo were incubated for 2h post-OGD in re-oxygenated medium. Cell cultures stressed with oxidative agents, and pretreated with EpoL, showed neuroprotective effects of 30% at a concentration 10 times lower than that of Epo. Moreover, similar differences were observed in OGD ex vivo assays. Neuroprotection elicited by EpoL was lost when an antibody against EpoR was present, indicating that its effect is EpoR-dependent. In conclusion, our results suggest that EpoL has a more potent neuroprotective profile than Epo against oxidative stress, mediated by activation of EpoR, thus EpoL represents an important target to develop a potential biopharmaceutical to treat different central nervous system pathologies related to oxidative stress such as stroke or neurodegenerative diseases.
Collapse
Affiliation(s)
- C Castillo
- Biotechnology and Biopharmaceutical Laboratory, Pathophysiology Department, Universidad de Concepción, Victor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - S Zaror
- Biotechnology and Biopharmaceutical Laboratory, Pathophysiology Department, Universidad de Concepción, Victor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - M Gonzalez
- Biotechnology and Biopharmaceutical Laboratory, Pathophysiology Department, Universidad de Concepción, Victor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - A Hidalgo
- Biotechnology and Biopharmaceutical Laboratory, Pathophysiology Department, Universidad de Concepción, Victor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - C F Burgos
- Laboratory of Screening of Neuroactive Compound, Physiology Department. School of Biological Sciences, Universidad de Concepción, Victor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - O I Cabezas
- Clinical Sciences Department, School of Veterinary Sciences, Universidad de Concepción, Avenida Vicente Méndez 595, Chillan, Chile
| | - F Hugues
- Clinical Sciences Department, School of Veterinary Sciences, Universidad de Concepción, Avenida Vicente Méndez 595, Chillan, Chile
| | - S P Jiménez
- Biotechnology and Biopharmaceutical Laboratory, Pathophysiology Department, Universidad de Concepción, Victor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - E González-Horta
- Biotechnology and Biopharmaceutical Laboratory, Pathophysiology Department, Universidad de Concepción, Victor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - I González-Chavarría
- Biotechnology and Biopharmaceutical Laboratory, Pathophysiology Department, Universidad de Concepción, Victor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - J Gavilán
- Laboratory of Screening of Neuroactive Compound, Physiology Department. School of Biological Sciences, Universidad de Concepción, Victor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - R Montesino
- Biotechnology and Biopharmaceutical Laboratory, Pathophysiology Department, Universidad de Concepción, Victor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - O Sánchez
- Biotechnology and Biopharmaceutical Laboratory, Pathophysiology Department, Universidad de Concepción, Victor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - Manuela G Lopez
- Department of Pharmacology and Therapeutics, "Instituo Teófilo Hernando", Universidad Autónoma de Madrid, Spain
| | - J Fuentealba
- Laboratory of Screening of Neuroactive Compound, Physiology Department. School of Biological Sciences, Universidad de Concepción, Victor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - J R Toledo
- Biotechnology and Biopharmaceutical Laboratory, Pathophysiology Department, Universidad de Concepción, Victor Lamas 1290, P.O. Box 160-C, Concepción, Chile.
| |
Collapse
|
46
|
Fang Y, Gao T, Zhang B, Pu J. Recent Advances: Decoding Alzheimer's Disease With Stem Cells. Front Aging Neurosci 2018; 10:77. [PMID: 29623038 PMCID: PMC5874773 DOI: 10.3389/fnagi.2018.00077] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 03/07/2018] [Indexed: 12/13/2022] Open
Abstract
Alzheimer’s disease (AD) is an irreversible neurodegenerative disorder that destroys cognitive functions. Recently, a number of high-profile clinical trials based on the amyloid cascade hypothesis have encountered disappointing results. The failure of these trials indicates the necessity for novel therapeutic strategies and disease models. In this review, we will describe how recent advances in stem cell technology have shed light on a novel treatment strategy and revolutionized the mechanistic investigation of AD pathogenesis. Current advances in promoting endogenous neurogenesis and transplanting exogenous stem cells from both bench research and clinical translation perspectives will be thoroughly summarized. In addition, reprogramming technology-based disease modeling, which has shown improved efficacy in recapitulating pathological features in human patients, will be discussed.
Collapse
Affiliation(s)
- Yi Fang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ting Gao
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiali Pu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
47
|
Jha NK, Jha SK, Sharma R, Kumar D, Ambasta RK, Kumar P. Hypoxia-Induced Signaling Activation in Neurodegenerative Diseases: Targets for New Therapeutic Strategies. J Alzheimers Dis 2018; 62:15-38. [DOI: 10.3233/jad-170589] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Niraj Kumar Jha
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly DCE), Delhi, India
| | - Saurabh Kumar Jha
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly DCE), Delhi, India
| | - Renu Sharma
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly DCE), Delhi, India
| | - Dhiraj Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly DCE), Delhi, India
| | - Rashmi K. Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly DCE), Delhi, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly DCE), Delhi, India
| |
Collapse
|
48
|
Acute Effects of Systemic Erythropoietin Injections on Carotid Body Chemosensory Activity Following Hypoxic and Hypercapnic Stimulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1071:95-102. [PMID: 30357739 DOI: 10.1007/978-3-319-91137-3_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The carotid body (CB) chemoreceptors sense changes in arterial blood gases. Upon stimulation CB chemoreceptors cells release one or more transmitters to excite sensory nerve fibers of the carotid sinus nerve. While several neurotransmitters have been described to contribute to the CB chemosensory process less is known about modulatory molecules. Recent data suggest that erythropoietin (Epo) is involved in the control of ventilation, and it has been shown that Epo receptor is constitutively expressed in the CB chemoreceptors, suggesting a possible role for Epo in regulation of CB function. Therefore, in the present study we aimed to determine whether exogenous applications of Epo modulate the hypoxic and hypercapnic CB chemosensory responses. Carotid sinus nerve discharge was recorded in-situ from anesthetized adult male and female Sprague Dawley rats (350 g, n = 8) before and after systemic administration of Epo (2000 UI/kg). CB-chemosensitivity to hypoxia and hypercapnia was calculated by exposing the rat to FiO2 5-15% and FiCO2 10% gas mixtures, respectively. During baseline recordings at normoxia, we found no effects of Epo on CB activity both in male and female rats. In addition, Epo had no effect on maximal CB response to hypoxia in both male and female rats. Epo injections enhanced the maximum CB chemosensory response to hypercapnia in female rats (before vs. after Epo, 72.5 ± 7.1 Hz vs. 108.3 ± 6.9 Hz, p < 0.05). In contrast, Epo had no effect on maximum CB chemosensory response to hypercapnia in male rats but significantly increased the response recovery times (time required to return to baseline discharge following hypercapnic stimulus) from 2.1 ± 0.1 s to 8.2 ± 2.3 s (p < 0.05). Taken together, our results suggest that Epo has some modulatory effect on the CB chemosensory response to hypercapnia.
Collapse
|
49
|
Zhang H, Fang X, Huang D, Luo Q, Zheng M, Wang K, Cao L, Yin Z. Erythropoietin signaling increases neurogenesis and oligodendrogenesis of endogenous neural stem cells following spinal cord injury both in vivo and in vitro. Mol Med Rep 2017; 17:264-272. [PMID: 29115443 PMCID: PMC5780136 DOI: 10.3892/mmr.2017.7873] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 10/13/2017] [Indexed: 12/17/2022] Open
Abstract
Erythropoietin (Epo) promotes functional recovery following spinal cord injury (SCI); however, the exact underlying mechanisms are yet to be determined. Although endogenous neural stem cells (NSCs) in the adult spinal cord are a therapeutic target in SCI models, the effect of Epo on this NSC population remains unknown. The present study investigated the effects of Epo on endogenous NSCs in the adult spinal cord both in vitro and in vivo. For the in vivo analyses, normal rats (Normal) and SCI contusion model rats (SCI) received either recombinant human Epo or saline treatment for 7 days (5,000 U/kg), and spinal cords were subsequently analyzed at 2, 8, and 14 days. For in vitro analyses, NSCs harvested from adult rat spinal cords were exposed to Epo (10 U/ml). A significant increase in β-tubulin+ new neurons (P<0.01) was observed at all three time points and O4+ new oligodendrocytes (P<0.05) at days 8 and 14 in the SCI+Epo group compared with the SCI+Saline group. This was concomitant with a prolonged activation of Epo signaling; however, no effect on NSCs proliferation was observed. Similar results were also obtained in vitro. Motor functional recovery was also noted at days 8 and 14 only in the Epo-treated SCI rats. Although the expression of Epo and EpoR significantly increased in Normal+Epo rats compared with Normal+Saline rats (P<0.05), the cell numbers and phenotype were comparable between the two groups. To the best of the author's knowledge, this is the first study to demonstrate that Epo signaling promotes both neurogenesis and oligodendrogenesis following SCI and that these may represent the underlying mechanisms for the functional recovery and therapeutic effects of Epo following SCI.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Xiao Fang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Dake Huang
- School of Basic Medical Science, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Qingli Luo
- School of Basic Medical Science, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Meijuan Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Kangkang Wang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Le Cao
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Zongsheng Yin
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
50
|
Moransard M, Bednar M, Frei K, Gassmann M, Ogunshola OO. Erythropoietin reduces experimental autoimmune encephalomyelitis severity via neuroprotective mechanisms. J Neuroinflammation 2017; 14:202. [PMID: 29029628 PMCID: PMC5640948 DOI: 10.1186/s12974-017-0976-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/03/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Treatment with erythropoietin (Epo) in experimental autoimmune encephalomyelitis (EAE), the rodent model of multiple sclerosis (MS), has consistently been shown to ameliorate disease progression and improve overall outcome. The effect has been attributed to modulation of the immune response and/or preservation of the central nervous system (CNS) tissue integrity. It remains unclear, however, if (a) Epo acts primarily in the CNS or the periphery and if (b) Epo's beneficial effect in EAE is mainly due to maintaining CNS tissue integrity or to modulation of the immune response. If Epo acts primarily by modulating the immune system, where is this modulation required? In the periphery, the CNS or both? METHODS To address these questions, we used two well-characterized transgenic mouse strains that constitutively overexpress recombinant human Epo (rhEpo) either systemically (tg6) or in CNS only (tg21) in a MOG-induced EAE model. We assessed clinical severity, disease progression, immunomodulation, and CNS tissue integrity, including neuronal survival. RESULTS Although disease onset remained unaffected, EAE progression was alleviated in transgenic animals compared to controls with both lines performing equally well showing that expression of Epo in the periphery is not required; Epo expression in the CNS is sufficient. Immunomodulation was observed in both strains but surprisingly the profile of modulation differed substantially between strains. Modulation in the tg21 strain was limited to a reduction in macrophages in the CNS, with no peripheral immunomodulatory effects observed. In contrast, in the tg6 strain, macrophages were upregulated in the CNS, and, in the periphery of this strain, T cells and macrophages were downregulated. The lack of a consistent immunomodulatory profile across both transgenic species suggests that immunomodulation by Epo is unlikely to be the primary mechanism driving amelioration of EAE. Finally, CNS tissue integrity was affected in all strains. Although myelin appeared equally damaged in all strains, neuronal survival was significantly improved in the spinal cord of tg21 mice, indicating that Epo may ameliorate EAE predominantly by protecting neurons. CONCLUSIONS Our data suggests that moderate elevated brain Epo levels provide clinically significant neuroprotection in EAE without modulation of the immune response making a significant contribution.
Collapse
Affiliation(s)
- M Moransard
- Department of Internal Medicine, Section of Clinical Immunology, University Hospital Zürich, Zurich, Switzerland
| | - M Bednar
- Institute of Veterinary Physiology and Zurich Center of Integrative Human Physiology (ZIHP), Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland
| | - K Frei
- Department of Neurosurgery, University Hospital Zurich, CH-8006, Zurich, Switzerland
| | - M Gassmann
- Institute of Veterinary Physiology and Zurich Center of Integrative Human Physiology (ZIHP), Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland
- Universidad Peruana Cayetano Heredia (UPCH), Lima, Peru
| | - O O Ogunshola
- Institute of Veterinary Physiology and Zurich Center of Integrative Human Physiology (ZIHP), Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland.
| |
Collapse
|