1
|
Zluhan-Martínez E, Pérez-Koldenkova V, Ponce-Castañeda MV, Sánchez MDLP, García-Ponce B, Miguel-Hernández S, Álvarez-Buylla ER, Garay-Arroyo A. Beyond What Your Retina Can See: Similarities of Retinoblastoma Function between Plants and Animals, from Developmental Processes to Epigenetic Regulation. Int J Mol Sci 2020; 21:E4925. [PMID: 32664691 PMCID: PMC7404004 DOI: 10.3390/ijms21144925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
The Retinoblastoma protein (pRb) is a key cell cycle regulator conserved in a wide variety of organisms. Experimental analysis of pRb's functions in animals and plants has revealed that this protein participates in cell proliferation and differentiation processes. In addition, pRb in animals and its orthologs in plants (RBR), are part of highly conserved protein complexes which suggest the possibility that analogies exist not only between functions carried out by pRb orthologs themselves, but also in the structure and roles of the protein networks where these proteins are involved. Here, we present examples of pRb/RBR participation in cell cycle control, cell differentiation, and in the regulation of epigenetic changes and chromatin remodeling machinery, highlighting the similarities that exist between the composition of such networks in plants and animals.
Collapse
Affiliation(s)
- Estephania Zluhan-Martínez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
- Posgrado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Coyoacán 04510, Mexico
| | - Vadim Pérez-Koldenkova
- Laboratorio Nacional de Microscopía Avanzada, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc, 330. Col. Doctores, Alc. Cuauhtémoc 06720, Mexico;
| | - Martha Verónica Ponce-Castañeda
- Unidad de Investigación Médica en Enfermedades Infecciosas, Centro Médico Nacional SXXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| | - María de la Paz Sánchez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
| | - Sergio Miguel-Hernández
- Laboratorio de Citopatología Ambiental, Departamento de Morfología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Calle Wilfrido Massieu Esquina Cda, Manuel Stampa 07738, Mexico;
| | - Elena R. Álvarez-Buylla
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
| |
Collapse
|
2
|
Giacomini I, Cocetta V, Carrara M, Ragazzi E, Montopoli M. Plumbagin Induces Cell Cycle Arrest and Apoptosis in A431 Cisplatin-Resistant Cancer Cells. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20921627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The onset of drug resistance represents the leading cause of chemotherapy failure in clinics. In the last decades, natural compounds have emerged as possible anticancer strategies used either alone or in combination with chemotherapeutic drugs, in order to overcome drug resistance. In fact, plant-derived therapies present biological activity and minimal side effects showing promising roles in the resensitization of resistant cancer cells. This work was aimed at investigating the anticancer potential of the natural naphthoquinone plumbagin in a cisplatin-resistant cancer cell line. The results indicated cytotoxic and pro-oxidant activity of plumbagin in both sensitive (A431wt) and cisplatin-resistant (A431/Pt) human cervix squamous carcinoma cell lines. Moreover, plumbagin treatment induced cell cycle arrest and apoptosis in A431/Pt cells and the inhibition of retinoblastoma complex, suggesting a stronger activity on the cisplatin-resistant cell line. Taken together, the data indicate appreciable in vitro anticancer activity of plumbagin, suggesting that this natural compound could become a tool to overcome cisplatin resistance. Although further studies are necessary, this work underlines a promising role of plumbagin in the resensitization of cisplatin-resistant cancer cells.
Collapse
Affiliation(s)
- Isabella Giacomini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padova, Italy
| | - Veronica Cocetta
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padova, Italy
| | - Maria Carrara
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padova, Italy
| | - Eugenio Ragazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padova, Italy
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| |
Collapse
|
3
|
Indovina P, Pentimalli F, Conti D, Giordano A. Translating RB1 predictive value in clinical cancer therapy: Are we there yet? Biochem Pharmacol 2019; 166:323-334. [PMID: 31176618 DOI: 10.1016/j.bcp.2019.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/03/2019] [Indexed: 12/16/2022]
Abstract
The retinoblastoma RB1 gene has been identified in the 80s as the first tumor suppressor. RB1 loss of function, as well alterations in its pathway, occur in most human cancers and often have prognostic value. RB1 has a key role in restraining cell cycle entry and, along with its family members, regulates a myriad of cellular processes and affects cell response to a variety of stimuli, ultimately determining cell fate. Consistently, RB1 status is a crucial determinant of the cell response to antitumoral therapies, impacting on the outcome of both traditional and modern anti-cancer strategies, including precision medicine approaches, such as kinase inhibitors, and immunotherapy. Despite many efforts however, the predictive value of RB1 status in the clinical practice is still underused, mainly owing to the complexity of RB1 function, to differences depending on the cellular context and on the therapeutic strategies, and, not-lastly, to technical issues. Here, we provide an overview of studies analyzing the role of RB1 in response to conventional cytotoxic and cytostatic therapeutic agents in different cancer types, including hormone dependent ones. We also review RB1 predictive value in the response to the last generation CDK4/6 inhibitors, other kinase inhibitors, and immunotherapy and discuss new emerging non-canonical roles of RB1 that could impact on the response to antitumoral treatments.
Collapse
Affiliation(s)
- Paola Indovina
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Francesca Pentimalli
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli 80131, Italy
| | - Daniele Conti
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy.
| |
Collapse
|
4
|
Farman FU, Iqbal M, Azam M, Saeed M. Nucleosomes positioning around transcriptional start site of tumor suppressor (Rbl2/p130) gene in breast cancer. Mol Biol Rep 2018; 45:185-194. [PMID: 29417345 DOI: 10.1007/s11033-018-4151-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 01/24/2018] [Indexed: 12/17/2022]
Abstract
Dynamic positioning of nucleosomes is pivotal in determining level of genes expression especially on or around transcription start site (TSS) of a gene. Purpose of the current study was to determine nucleosome position around TSS of Rbl2/p130. We investigated Rbl2/p130 expression in connection to nucleosome positions around its TSS among breast tumors and their adjacent normal control tissues (ANCT) using micrococcal nuclease (MNAse) digestion assay and ChIP-PCR analysis. Three fold reduced Rbl2/p130 expression in these tumor tissues were noticed compared to their control tissues. DNA obtained from MNAse digested chromatin was used as PCR template. Region between - 137 to + 140 around TSS was scanned using 3 primer pairs (P1 = - 137 to + 69; P2 = - 90 to + 69; P3 = - 33 to + 140). ~ 66% breast tumors and ~ 26% ANCT samples were positive for P1. The difference was found statistically significant (p = 0.000) with an odd ratio (OD) of 9.143, suggesting that nucleosome formation in this region is ~ 9 times more probable in tumor samples. ~ 73% of the tumor and 60% ANCT were positive for P2, which although is significant (p = 0.035) with OD = 3.250, but less preferable than P1. However, P3 was not found to be a preferred area for nucleosome occupancy (p = 0.670; OD = 1.2). Negative correlations for nucleosome positions were observed especially for P1. Our results indicate that nucleosome are present slightly downstream of TSS in routine, while in case of breast carcinogenesis nucleosomes slides 55 bases upstream of the TSS, aligning + 1 position at the center of nucleosome, hence hindering access to the transcriptional machinery.
Collapse
Affiliation(s)
- Farman Ullah Farman
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS Institute of Information Technology (CIIT), Islamabad, Pakistan
| | - Mehwish Iqbal
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS Institute of Information Technology (CIIT), Islamabad, Pakistan
| | - Muhammad Azam
- Department of Statistics & Computer Science, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | - Muhammad Saeed
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS Institute of Information Technology (CIIT), Islamabad, Pakistan.
| |
Collapse
|
5
|
Ullah F, Khan T, Ali N, Malik FA, Kayani MA, Shah STA, Saeed M. Promoter Methylation Status Modulate the Expression of Tumor Suppressor (RbL2/p130) Gene in Breast Cancer. PLoS One 2015; 10:e0134687. [PMID: 26271034 PMCID: PMC4536218 DOI: 10.1371/journal.pone.0134687] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/13/2015] [Indexed: 01/15/2023] Open
Abstract
Background Aberrant expression of tumor suppressor genes may correspond to the abnormal cell development and tumorigenesis. Rbl2/p130, a member of retinoblastoma family of proteins, has growth suppressive properties. Numerous studies reported de-regulation of Rbl2/p130 in various types of cancer as a consequence of a number of genetic alterations. However, role of epigenetic mechanisms like DNA methylation in Rbl2/p130 expression remains elusive. Methods In the current study, 76 breast cancer tumors along with normal tissues (n = 76), blood (n = 76) of respective individuals and control blood (n = 50) were analyzed. Rbl2/p130 expression was analyzed by quantitative real time PCR (syber green method). Promoter methylation status was studied through methylation specific PCR of bisulfite converted genomic DNA. Data was analyzed using various statistical tests. Results We report significantly reduced Rbl2/p130 expression (P = 0.001) in tumors tissues as compared to control samples. Similarly, Rbl2/p130 expression varies with age and disease stages (P = 0.022), which suggest its involvement in tumor progression. Aberrant promoter methylation (Δmeth) was found in almost all the diseased samples and that was significantly different (P<0.001) with control samples. Similarly, methylation status varies significantly with tumor progression stages (P = 0.022). Hyper-methylation was observed at -1, +3, +15 and +75 of Rbl2/p130 promoter flanking around the TSS. Statistical analysis revealed that Rbl2/p130 expression negatively correlates to its promoter methylation (r = -0.412) in tumor tissues. Our results reflect an epigenetic regulation of Rbl2/p130 expression in breast cancer. This highlights the importance of Rbl2/p130 promoter methylation in breast cancer pathogenesis.
Collapse
Affiliation(s)
- Farman Ullah
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS Institute of Information Technology (CIIT), Islamabad, Pakistan
| | - Taimoor Khan
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS Institute of Information Technology (CIIT), Islamabad, Pakistan
| | - Nawab Ali
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Pakistan
| | - Faraz Arshad Malik
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS Institute of Information Technology (CIIT), Islamabad, Pakistan
| | - Mahmood Akhtar Kayani
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS Institute of Information Technology (CIIT), Islamabad, Pakistan
| | - Syed Tahir Abbas Shah
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS Institute of Information Technology (CIIT), Islamabad, Pakistan
| | - Muhammad Saeed
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS Institute of Information Technology (CIIT), Islamabad, Pakistan
- * E-mail:
| |
Collapse
|
6
|
Cito L, Indovina P, Forte IM, Pentimalli F, Di Marzo D, Somma P, Barone D, Penon A, Penon D, Ceccherini E, Micheli P, Saragoni L, Di Domenico M, Feola A, Roviello F, Mattioli E, Giordano GG, Giordano A. pRb2/p130 localizes to the cytoplasm in diffuse gastric cancer. J Cell Physiol 2015; 230:802-5. [PMID: 25205458 DOI: 10.1002/jcp.24805] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 09/05/2014] [Indexed: 12/18/2022]
Abstract
pRb2/p130 is a key tumor suppressor, whose oncosuppressive activity has mainly been attributed to its ability to negatively regulate cell cycle by interacting with the E2F4 and E2F5 transcription factors. Indeed, pRb2/p130 has been found altered in various cancer types in which it functions as a valuable prognostic marker. Here, we analyzed pRb2/p130 expression in gastric cancer tissue samples of diffuse histotype, in comparison with their normal counterparts. We found a cytoplasmic localization of pRb2/p130 in cancer tissue samples, whereas, in normal counterparts, we observed the expected nuclear localization. pRb2/p130 cytoplasmic delocalization can lead to cell cycle deregulation, but considering the emerging involvement of pRb2/p130 in other key cellular processes, it could contribute to gastric tumorigenesis also through other mechanisms. Our data support the necessity of further investigations to verify the possibility of using pRb2/p130 as a biomarker or potential therapeutic target for diffuse gastric cancer.
Collapse
Affiliation(s)
- Letizia Cito
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale per lo studio e la cura dei tumori "Fondazione Giovanni Pascale"-IRCCS, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Lee TC, Gombos DS, Harbour JW, Mansfield NC, Murphree AL. Retinoblastoma. Retina 2013. [DOI: 10.1016/b978-1-4557-0737-9.00128-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Rb1/105 gene alterations and head and neck carcinogenesis. Mol Biol Rep 2012; 39:9573-81. [PMID: 22744425 DOI: 10.1007/s11033-012-1822-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 06/10/2012] [Indexed: 10/28/2022]
Abstract
Retinoblastoma gene (Rb1) is a tumor suppressor gene, which plays a pivotal role in cell cycle regulation, promoting G1/S arrest and growth restriction through inhibition of the E2F transcription factor. Abnormalities in the genes involved in cell cycle, including Rb1, have been reported in head and neck cancer (HNC) patients. Studies regarding Rb1 have been observed in different world populations but data is missing for Pakistani population. This study was aimed to analyze the genetic aberrations of Rb1 and their association with the development of HNC in Pakistani population. Genomic DNA was isolated from blood samples of 300 HNC patients and 270 controls. Salient coding region of gene was amplified by using Polymerase Chain Reaction (PCR). PCR conditions were optimized for each exon separately. Amplified products were analyzed for mutational screening using Single strand confirmation polymorphism (SSCP) technique followed by sequence analysis. Sequence analysis revealed five missense mutations g77082G>C, g77083G>A, g170220A>T, g170221G>C, g170228T>A, two frameshift mutations, two stop codon and two intronic substitutions in this study. The overall frequency of these mutations was 0.71. Frequency of nonsense mutations; Lys462stop (Novel) and Ser834stop (CM952105) were 0.15 and 0.14 respectively. We also report here novel missense mutations, frameshift mutation and a stop codon Lys462stop in HNC patients of Pakistani origin.This study suggests that the Rb1 germline mutations may contribute to genetic susceptibility for HNC. To our knowledge, this is the first report that Rb1 gene may be associated with risk of cancer in Pakistani population.
Collapse
|
9
|
Kalungi S, Steine SJ, Wabinga H, Bostad L, Molven A. pRb2/p130 protein expression and RBL2 mutation analysis in Burkitt lymphoma from Uganda. BMC Clin Pathol 2009; 9:6. [PMID: 19691827 PMCID: PMC2735744 DOI: 10.1186/1472-6890-9-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 08/19/2009] [Indexed: 08/26/2023] Open
Abstract
Background The members of the retinoblastoma protein family, pRb, p107 and pRb2 (p130), are central players in controlling the cell cycle. Whereas disturbed function of pRb is commonly seen in human cancers, it is still an open question whether pRb2 is involved in tumorigenic processes. However, altered subcellular localization of pRb2 and mutations in the pRb2-encoding gene RBL2 have been described for some tumours, including Burkitt lymphomas (BL). Methods We retrieved 51 biopsy specimens of endemic BL cases from Uganda. The expression of pRb2 was determined by immunohistochemistry. Exons 19-22 of the RBL2 gene, the region known to contain a nuclear localization signal, were screened for mutations by PCR amplification and direct DNA sequencing. Results Nearly all of our cases (84.0%) were positive for pRb2 protein expression although this protein is a marker for growth arrest and Burkitt lymphoma is characterized by a high proliferation rate. Of the positive cases, 73.8% were scored as expressing the protein at a high level. Subcellular pRb2 localization was predominantly nuclear and no cases with expression restricted to the cytoplasm were observed. We did not detect any RBL2 mutations in the part of the gene that encodes the C-terminal end of the protein. Conclusion The majority of endemic BL cases from Uganda express pRb2, but somatic RBL2 mutations affecting the protein's nuclear localization signal appear to be rare.
Collapse
Affiliation(s)
- Sam Kalungi
- Section for Pathology, the Gade Institute, University of Bergen, Bergen, Norway.
| | | | | | | | | |
Collapse
|
10
|
Fields AL, Soprano DR, Soprano KJ. Characterization of alterations of Rb2/p130 tumor suppressor in all-trans-retinoic acid resistant SK-OV3 ovarian carcinoma cells. J Cell Physiol 2008; 217:77-85. [DOI: 10.1002/jcp.21477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Coleman WB, Rivenbark AG. pRb2/p130: a gene target for diagnosis and treatment of cancer. ACTA ACUST UNITED AC 2008; 2:1197-203. [PMID: 23496428 DOI: 10.1517/17530059.2.10.1197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This application claims: i) a method for detecting cancer cells based on analysis of gene mutations and/or promoter methylation of the pRb2/p130 gene; ii) a method for diagnosing cancer based on analysis of gene mutations and/or promoter methylation of the pRb2/p130 gene; iii) a method for detection of cells that are predisposed to tumorigenesis based on analysis of gene mutations and/or promoter methylation of the pRb2/p130 gene; iv) a method for treating cancer and/or inhibiting tumorigenesis based on demethylation of the pRb2/p130 gene promoter; and v) a method for treating cancer and/or inhibiting tumorigenesis based on inhibition of other proteins that interact with or regulate pRb2/p130. This application is founded on the recognition that: i) pRb2/p130 is a frequent target of genetic or epigenetic alteration in various human cancers; ii) the resulting loss of regulation of cell cycle progression contributes to the phenotypic characteristics of these neoplasms; iii) pRb2/p130 represents a valuable biomarker for detection/diagnosis of some cancers; and iv) pRb2/p130 may be a useful gene target for development of new cancer therapeutics.
Collapse
Affiliation(s)
- William B Coleman
- University of North Carolina School of Medicine, Department of Pathology and Laboratory Medicine, Curriculum in Toxicology, 515 Brinkhous-Bullitt Building, CB# 7525, Chapel Hill, NC 27599, USA +1 919 966 2699 ; +1 919 966 5046 ;
| | | |
Collapse
|
12
|
Myslinski E, Gérard MA, Krol A, Carbon P. Transcription of the human cell cycle regulated BUB1B gene requires hStaf/ZNF143. Nucleic Acids Res 2007; 35:3453-64. [PMID: 17478512 PMCID: PMC1904299 DOI: 10.1093/nar/gkm239] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BubR1 is a key protein mediating spindle checkpoint activation. Loss of this checkpoint control results in chromosomal instability and aneuploidy. The transcriptional regulation of the cell cycle regulated human BUB1B gene, which encodes BubR1, was investigated in this report. A minimal BUB1B gene promoter containing 464 bp upstream from the translation initiation codon was sufficient for cell cycle regulated promoter activity. A pivotal role for transcription factor hStaf/ZNF143 in the expression of the BUB1B gene was demonstrated through gel retardation assays, transient expression of mutant BUB1B promoter–reporter gene constructs and chromatin immunoprecipitation assay. Two phylogenetically conserved hStaf/ZNF143-binding sites (SBS) were identified which are indispensable for BUB1B promoter activity. In addition, we found that the domain covering the transcription start sites contains conserved boxes homologous to initiator (Inr), cell cycle dependent (CDE) and cell cycle genes homology regions (CHR) elements. Mutations within the CDE and CHR elements led to diminished cell cycle regulation of BUB1B transcription. These results demonstrate that BUB1B gene transcription is positively regulated by hStaf/ZNF143, a ubiquitously expressed factor, and that the CDE-CHR tandem element was essential for G2/M-specific transcription of the BUB1B gene.
Collapse
Affiliation(s)
| | | | | | - Philippe Carbon
- *To whom correspondence should be addressed. Tel: +33 3 88 41 70 64; Fax: +33 3 88 60 22 18;
| |
Collapse
|
13
|
Abstract
Growth regulatory functions of Rb2/p130, which aim at a sustained arrest such as in quiescent or differentiated cells, qualify the protein also to act as a central regulator of growth arrest in cellular senescence. In this respect, Rb2/p130 functions are connected to signaling pathways induced by p53, which is a master regulator in cellular senescence. Here, we summarize the pathways, which specify pRb2/p130 to control this arrest program and distinguish its functions from those of pRb/p105.
Collapse
Affiliation(s)
- H Helmbold
- Heinrich-Pette-Institute for Experimental Virology and Immunology at the University of Hamburg, Martinistr, Hamburg, Germany
| | | | | |
Collapse
|
14
|
Abstract
The Rb protein is a tumor suppressor, which plays a pivotal role in the negative control of the cell cycle and in tumor progression. It has been shown that Rb protein (pRb) is responsible for a major G1 checkpoint, blocking S-phase entry and cell growth. The retinoblastoma family includes three members, Rb/p105, p107 and Rb2/p130, collectively referred to as 'pocket proteins'. The pRb protein represses gene transcription, required for transition from G1 to S phase, by directly binding to the transactivation domain of E2F and by binding to the promoter of these genes as a complex with E2F. pRb represses transcription also by remodeling chromatin structure through interaction with proteins such as hBRM, BRG1, HDAC1 and SUV39H1, which are involved in nucleosome remodeling, histone acetylation/deacetylation and methylation, respectively. Loss of pRb functions may induce cell cycle deregulation and so lead to a malignant phenotype. Gene inactivation of pRB through chromosomal mutations is one of the principal reasons for retinoblastoma tumor development. Functional inactivation of pRb by viral oncoprotein binding is also shown in many neoplasias such as cervical cancer, mesothelioma and AIDS-related Burkitt's lymphoma.
Collapse
Affiliation(s)
- C Giacinti
- Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
| | | |
Collapse
|
15
|
Murphree AL, Samuel MA, Harbour JW, Mansfield NC. Retinoblastoma. Retina 2006. [DOI: 10.1016/b978-0-323-02598-0.50028-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Tosi GM, Trimarchi C, Macaluso M, La Sala D, Ciccodicola A, Lazzi S, Massaro-Giordano M, Caporossi A, Giordano A, Cinti C. Genetic and epigenetic alterations of RB2/p130 tumor suppressor gene in human sporadic retinoblastoma: implications for pathogenesis and therapeutic approach. Oncogene 2005; 24:5827-36. [PMID: 16007224 DOI: 10.1038/sj.onc.1208630] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human retinoblastoma occurs in two forms (familial and sporadic) both due to biallelic mutation of the RB1/p105 gene even if its loss is insufficient for malignancy. We have recently reported that loss of expression of the retinoblastoma-related protein pRb2/p130 correlates with low apoptotic index, suggesting that RB2/p130 gene could be involved in retinoblastoma. Mutational analysis of RB2/p130 in primary tumors showed a tight correlation between Exon 1 mutations and pRb2/p130 expression level in sporadic retinoblastoma. These mutations are located within a CpG-enriched region prone to de novo methylation. Analysis of RB2/p130 methylation status revealed that epigenetic events, most probably consequent to the Exon 1 mutations, determined the observed phenotype. Treatment of Weri-Rb1 cell line by 5-Aza-dC induced an increase in expression level of pRb2/p130, E2F1, p73 and p53. Overall, our results highlight a crucial role of epigenetic events in sporadic retinoblastoma, which opens a perspective for new therapeutic approaches.
Collapse
Affiliation(s)
- Gian Marco Tosi
- Department of Ophthalmology and Neurosurgery, University of Siena, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Cinti C, Giordano A. The retinoblastoma gene family: its role in cancer onset and progression. ACTA ACUST UNITED AC 2005. [DOI: 10.1517/14728222.4.6.765] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
Bignold LP. The cell-type-specificity of inherited predispositions to tumours: review and hypothesis. Cancer Lett 2005; 216:127-46. [PMID: 15533589 DOI: 10.1016/j.canlet.2004.07.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Revised: 07/28/2004] [Accepted: 07/29/2004] [Indexed: 12/19/2022]
Abstract
Most hereditary predispositions to tumours affect only one particular cell type of the body but the genes bearing the relevant germ-line mutation are not cell-type-specific. Some predisposition syndromes include increased risks of lesions (developmental or tumourous) of unrelated cell types, in any individual predisposed to the main lesion (e.g. osteosarcoma in patients predisposed to retinoblastoma). Other predispositions to additional lesions occur only in members of some families with the predisposition to the basic lesion (e.g. Gardner's syndrome in some families suffering familial adenomatous polyposis). In yet other predisposition syndromes, different mutations of the same gene are associated with markedly differing family-specific clinical syndromes. In particular, identical germline mutations (e.g. in APC, RET and PTEN genes), have been found associated with differing clinical syndromes in different families. This paper reviews previously suggested mechanisms of the cell-type specificity of inherited predispositions to tumour. Models of tumour formation in predisposition syndromes are discussed, especially those involving a germline mutation (the first 'hit') of a tumour suppressor gene (TSG) and a second (somatic) hit on the second allele of the same TSG. A modified model is suggested, such that the second hit is a co-mutation of the second allele of the TSG and a regulator which is specific for growth and/or differentiation of the cell type which is susceptible to the tumour predisposition. In some cases of tumour, the second hit may be large enough to be associated with a cytogenetically-demonstrable abnormality of the part of the chromosome carrying the TSG, but in other cases, the co-mutation may be of 'sub-cytogenetic' size (i.e. 10(2)-10(5) bases). For the latter, mutational mechanisms of frameshift and impaired fidelity of replication of DNA by DNA polyerases may sometimes be involved. Candidate cell-type-specific regulators may include microRNAs and perhaps transcription factors. It is suggested that searching the introns within 10(5)-10(6) bases either side of known of exonic mutations of TSGs associated with inherited tumour predisposition might reveal microRNA cell-type-specific regulators. Additional investigations may involve fluorescent in situ hybridisations on interphase tumour nuclei.
Collapse
Affiliation(s)
- Leon P Bignold
- Division of Tissue Pathology, Institute of Medical and Veterinary Science, PO Box 14, Rundle Mall, Adelaide, SA 5001, Australia.
| |
Collapse
|
19
|
D'Andrilli G, Masciullo V, Bagella L, Tonini T, Minimo C, Zannoni GF, Giuntoli RL, Carlson JA, Soprano DR, Soprano KJ, Scambia G, Giordano A. Frequent loss of pRb2/p130 in human ovarian carcinoma. Clin Cancer Res 2004; 10:3098-103. [PMID: 15131049 DOI: 10.1158/1078-0432.ccr-03-0524] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE RB2/p130, a member of the retinoblastoma gene family, maps to human chromosome 16q12.2, a region in which deletions have been found in several human neoplasms including breast, prostatic, and ovarian carcinoma. We sought to evaluate pRb2/p130 protein expression and function in ovarian carcinoma. EXPERIMENTAL DESIGN pRb2/p130 expression was detected by immunohistochemical and Western blot analyses in 45 primary ovarian carcinoma samples. RESULTS Immunohistochemical analysis revealed loss or decrease of pRb2/p130 expression in 18 cases (40%). pRb2/p130 expression was mostly nuclear and inversely correlated to the tumor grade (P < 0.05). Western blot analysis correlated with immunohistochemical expression. Reverse transcription-PCR followed by Southern blot analysis was performed on a representative set of 20 ovarian carcinomas. RB2/p130 mRNA levels were consistent with protein expression. We found a significant increase in the percentage of G(1)-phase-arrested cells in CAOV3 and A2780 ovarian carcinoma cell lines after transduction with an adenovirus carrying the RB2/p130 gene (Ad-CMV-RB2/p130). CONCLUSIONS These data indicate that loss or decrease of pRb2/p130 expression is a frequent event in ovarian carcinoma and is regulated mostly at the transcriptional level. Moreover, pRb2/p130 overexpression is able to arrest cell growth in ovarian carcinoma cells, suggesting the putative role of pRb2/p130 as a tumor suppressor in this malignancy.
Collapse
Affiliation(s)
- Giuseppina D'Andrilli
- Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Xue Jun H, Gemma A, Hosoya Y, Matsuda K, Nara M, Hosomi Y, Okano T, Kurimoto F, Seike M, Takenaka K, Yoshimura A, Toyota M, Kudoh S. Reduced transcription of the RB2/p130 gene in human lung cancer. Mol Carcinog 2003; 38:124-9. [PMID: 14587097 DOI: 10.1002/mc.10152] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Reduced expression of the retinoblastoma gene (RB)2/p130 protein, as well as mutation of exons 19, 20, 21, and 22 of the same gene, has been reported in primary lung cancer. However, it has been suggested by other investigators that mutational inactivation and loss of the RB2/p130 gene and protein, respectively, are rare events in lung cancer. In order to determine the contribution and mechanisms of RB2/p130 gene inactivation to lung cancer development and progression, we quantified RB2/p130 mRNA expression levels in a range of human lung cancer cell lines (n = 13) by real-time reverse transcription (RT)-polymerase chain reaction (PCR) analysis. In comparison to normal lung tissue, reduced transcription of the RB2/p130 gene was found in all small cell lung cancer cell lines examined, along with six out of the eight nonsmall cell lung cancers tested, most of which had inactivation of RB/p16 pathway. On the basis of Western blot analysis, the expression of RB2/p130 protein was consistent with RNA expression levels in all lung cancer cell lines examined. In addition, the mutational status of the RB2/p130 gene (specifically, exons 19, 20, 21, and 22) was determined in 30 primary lung cancers (from patients with distant metastasis) and 30 lung cancer cell lines by PCR-single strand conformation polymorphism (SSCP) analysis and direct DNA sequencing. There was no evidence of somatic mutations within the RB2/p130 gene in the 60 lung cancer samples (both cell lines and tumors) assessed, including the 11 lung cancer cell lines that displayed reduced expression of the gene. Furthermore, hypermethylation of the RB2/p130 promoter was not found in any of the above-mentioned 11 cell lines, as determined by a DNA methylation assay, combined bisulfite restriction analysis (COBRA). The results of the present study suggest that the reduced RB2/p130 expression seen in lung cancer may be in part transcriptionally mediated, albeit not likely via a mechanism involving hypermethylation of the RB2/p130 promoter. The observed reduction in RB2/p130 gene expression may be due to histone deacetylation, altered mRNA stability, and/or other forms of transcriptional regulation.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Small Cell/genetics
- Carcinoma, Small Cell/metabolism
- Carcinoma, Small Cell/pathology
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Case-Control Studies
- DNA Methylation
- DNA Mutational Analysis
- DNA, Neoplasm/metabolism
- Exons
- Gene Expression Regulation, Neoplastic
- Humans
- Lung/metabolism
- Lung/pathology
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mutation
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Polymerase Chain Reaction
- Polymorphism, Single-Stranded Conformational
- Proteins
- Retinoblastoma Protein/genetics
- Retinoblastoma Protein/metabolism
- Retinoblastoma-Like Protein p130
- Transcription, Genetic
Collapse
Affiliation(s)
- Hu Xue Jun
- Fourth Department of Medicine, Nippon Medical School, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Takeuchi S, Takeuchi N, Tsukasaki K, Fermin AC, De Vas S, Seo H, Koeffler HP. Mutations in the retinoblastoma-related gene RB2/p130 in adult T-cell leukaemia/lymphoma. Leuk Lymphoma 2003; 44:699-701. [PMID: 12769348 DOI: 10.1080/1042819031000063480] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The retinoblastoma (Rb) family consists of the tumor suppressor Rb/p105 and related proteins p107 and Rb2/p130. Although the involvement of the RB/p105 gene in Adult T-cell leukaemia/lymphoma (ATL) has been studied, no mutational data is reported regarding the RB2/p130 gene in ATL. We screened for mutations of the RB2/p130 gene. Mutation was detected in 1 of 41 primary ATL sample. This is the first report describing mutation of the RB2/p130 gene in ATL, suggesting that RB2/p130 may be involved in the development of ATL, and may behave as a tumor suppressor gene in T lymphocytes.
Collapse
Affiliation(s)
- Seisho Takeuchi
- Department of Internal Medicine, Kochi Medical School, Okohcho, Nankoku, Kochi 783-8505, Japan.
| | | | | | | | | | | | | |
Collapse
|
22
|
Yonehara K, Suzuki M, Yamanouchi K, Nishihara M. Androgen induces p130 mRNA expression in the neonatal rat hypothalamus. Neurosci Lett 2002; 334:107-10. [PMID: 12435483 DOI: 10.1016/s0304-3940(02)01114-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Our previous research using cDNA microarray analysis demonstrated that female rats displayed a higher p130 mRNA level than males in the hypothalamus at postnatal day (PN) 5. In the present study, it was shown that at PN3 males had a significantly elevated mRNA level over females, whereas at PN7 females displayed a higher expression level using a real-time reverse transcription-polymerase chain reaction. In situ hybridization analysis indicated relatively strong p130 mRNA signals in the ventromedial nucleus and the arcuate nucleus in the neonatal hypothalamus. Subcutaneous injection of 5alpha-dihydrotestosterone as well as testosterone propionate to PN2 neonatal rats significantly increased p130 gene expression at PN3, whereas estradiol benzoate did not have a significant effect. These results suggest that expression of the p130 gene in the neonatal rat hypothalamus is responsive to androgens and may be involved in sexual differentiation of the brain.
Collapse
Affiliation(s)
- Keisuke Yonehara
- Department of Veterinary Physiology, Veterinary Medical Science, The University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
23
|
Nozoe T, Korenaga D, Itoh S, Futatsugi M, Maehara Y. Clinicopathological significance of pRb2/p130 expression in squamous cell carcinoma of the esophagus. J Cancer Res Clin Oncol 2002; 128:691-6. [PMID: 12474056 DOI: 10.1007/s00432-002-0395-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2002] [Revised: 10/28/2002] [Indexed: 11/24/2022]
Abstract
PURPOSE The aim of the current study was to find out the significance of the immunohistochemical expression of pRb2/p130, which is a member of the retinoblastoma gene family, in squamous cell carcinoma of the esophagus. METHODS We analyzed immunohistochemically the expression of pRb2/p130 of 107 squamous cell carcinomas (SCCs) of the esophagus and the correlation of pRb2/p130 expression with clinicopathological features was investigated. RESULTS Expression of pRb2/p130 was observed in 42 SCCs (39.3%). There was a significant correlation of pRb2/p130 expression with the histological type of well-differentiated SCC (P< 0.0001). The survival rate of patients with esophageal SCCs expressing pRb2/p130 was significantly better than that of patients with tumors without pRb2/p130 expression (P= 0.016). A multivariate analysis demonstrated that pRb2/p130 expression (P= 0.026), venous invasion (P= 0.028), and TNM stage (P= 0.044) were independent prognostic indicators in patients with esophageal SCCs. CONCLUSIONS Differentiation of esophageal SCC might be partially mediated by the pRb2/p130 gene, and pRb2/p130 expression can additionally be an indicator of the better prognosis of patients with esophageal SCCs.
Collapse
Affiliation(s)
- T Nozoe
- Department of General Surgery, Fukuoka Dental College Hospital, Sawara Ward, Japan.
| | | | | | | | | |
Collapse
|
24
|
Tsujiuchi T, Sasaki Y, Konishi Y, Tsutsumi M. Alterations of the retinoblastoma-related gene RB2/p130 in lung adenocarcinomas induced by N-nitrosobis(2-hydroxypropyl)amine in rats. Mol Carcinog 2002; 35:57-62. [PMID: 12325035 DOI: 10.1002/mc.10074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Alteration of the retinoblastoma-related gene RB2/p130 was investigated in lung adenocarcinomas induced by N-nitrosobis(2-hydroxypropyl)amine (BHP) in male Wistar rats. At 6 wk of age, 21 animals were given 2000 ppm of BHP in their drinking water for 12 wk and then maintained without further treatment until they were killed at the end of week 25. A total of 21 lung adenocarcinomas were obtained, and total RNAs were extracted from each for mutation analysis of RB2/p130 by the reverse transcription-polymerase chain reaction-single-strand comformation polymorphism approach. No mutations were found in exons 19-22. However, examination of the expression of the RB2/p130 gene by Northern blot analysis showed mRNA levels to be significantly lower than those of normal lung tissues. Western blot analysis showed reduction of the pRb2/p130 protein in all of the adenocarcinomas examined. These results suggest that alteration of the RB2/p130 gene may play important roles in the development of lung adenocarcinomas induced by BHP in rats.
Collapse
Affiliation(s)
- Toshifumi Tsujiuchi
- Department of Oncological Pathology, Cancer Center, Nara Medical University, Kashihara, Nara, Japan
| | | | | | | |
Collapse
|
25
|
Alvi AJ, Hogg R, Rader JS, Kuo MJ, Maher ER, Latif F. Mutation screening analysis of the retinoblastoma related gene RB2/p130 in sporadic ovarian cancer and head and neck squamous cell cancer. Mol Pathol 2002; 55:153-5. [PMID: 12032225 PMCID: PMC1187167 DOI: 10.1136/mp.55.3.153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2001] [Indexed: 11/03/2022]
Abstract
AIMS To investigate the involvement of the RB2/p130 gene in the pathogenesis of sporadic ovarian cancer in addition to head and neck squamous cell carcinoma (HNSCC). METHODS Paired tumour and patient matched normal DNA samples from 43 sporadic ovarian tumours and 39 normal/tumour HNSCC DNA samples were screened. The mutation screen used polymerase chain reaction (PCR) amplification followed by single strand conformation polymorphism analysis and direct sequencing of the PCR products. Exons 19 and 20 (B domain) and exons 21 and 22 (C-terminus) were analysed for mutations. These exons were chosen because most of the point mutations in RB2/p130 are located in the C-terminal region and mutations in these exons have been identified previously in nasopharyngeal carcinomas and primary lung tumours. RESULTS No abnormal band shifts were seen in the samples analysed, and no bands directly sequenced revealed the presence of mutations. CONCLUSIONS Genetic alterations in the RB2/p130 gene (exons 19-22) are unlikely to be involved directly in the pathogenesis of sporadic ovarian cancer or HNSCC.
Collapse
Affiliation(s)
- A J Alvi
- Section of Medical and Molecular Genetics, Department of Paediatrics and Child Health, University of Birmingham, Birmingham B15 2TT, UK
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
The destiny of a cell--whether it undergoes division, differentiation or death--results from an intricate balance of many regulators, including oncoproteins, tumor-suppressor proteins and cell-cycle-associated proteins. One of the better-studied tumor suppressors is the retinoblastoma protein, known as pRb or p105. Two recently identified proteins, pRb2/p130 and p107, show structural and functional similarities to pRb, and these proteins and their orthologs make up the retinoblastoma (Rb) family. Members of the family have been found in animals and plants, and a related protein is known in the alga Chlamydomonas. Members of the Rb family are bound and inactivated by viral proteins and, in turn, bind cellular transcription factors and repress their function, and can also form complexes with cyclins and cyclin-dependent kinases and with histone deacetylases. They are found in the nucleus and their subnuclear localization depends on binding to the nuclear matrix. Members of the family form part of a signal-transduction pathway called the Rb pathway, which is important in cell-cycle regulation and have roles in growth suppression, differentiation and apoptosis in different organisms and cell types.
Collapse
Affiliation(s)
- Pier Paolo Claudio
- Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technologies, Temple University, Philadelphia, PA 19122, USA
- Dipartimento di Scienze Odontostomatologiche e Maxillo-Facciali, Universitá degli studi di Napoli "Federico II", 80130 Napoli, Italy
| | - Tiziana Tonini
- Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technologies, Temple University, Philadelphia, PA 19122, USA
- Istituto di Anatomia ed Istologia Patologica, Universita degli Studi di Siena, 53100 Siena, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technologies, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
27
|
Abstract
Modern anticancer strategies are designed against specific molecular targets with the goal of sparing normal, non-neoplastic tissues. Choosing specific molecular targets, however, is problematic. Cdk2 (Cyclin dependent kinase 2, cell division kinase 2, p33) is an important candidate target for therapeutic intervention. Phosphorylation of retinoblastoma protein (pRb) by Cdk2 is the penultimate step in the transition from G1 to S phase. Inhibition of this step could potentially result in inhibition of proliferation, cytostasis and possibly apoptosis in human tumors. Cdk2 also plays a critical role in the transition through S phase and the S to G2 transition as well. Inhibitors of the cyclin dependent kinases, such as flavopiridol and UCN-01, are currently in clinical trials. While demonstrating clinical activity, neither acts specifically against Cdk2. Other more specific Cdk2 inhibitors are currently in preclinical development. Further studies to explore the therapeutic worth of such agents are warranted.
Collapse
Affiliation(s)
- S Wadler
- Division of Hematology/Oncology, Weill Medical College of Cornell University, New York, NY 10021, USA.
| |
Collapse
|
28
|
Goh SG, Lau LC, Sivaswaren C, Chuah KL, Tan PH, Lai D. Pseudodicentric (16;12)(q11;p11.2) in a type AB (mixed) thymoma. CANCER GENETICS AND CYTOGENETICS 2001; 131:42-7. [PMID: 11734317 DOI: 10.1016/s0165-4608(01)00500-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Genetic alterations of thymomas are rarely described in the literature. In this study, a previously unreported instance of aberrant karyotypic change consisting of 45,XX,pseu dic(16;12) (q11;p11.2) [cp23]/87-90,idemx2[cp4] in a Masaoka Stage II mixed thymoma or type AB thymoma affecting a 56-year-old Chinese woman is detailed. Abnormalities involving 12p containing important tumor suppressor-like genes have been documented especially in hematological malignancies. Recently, recurrent losses involving 16q, a locus known to harbor several tumor suppressor genes, have been described in type C thymomas (squamous cell carcinoma), suggesting a possible relationship between type AB thymoma and type C thymoma. Whether these genes are involved in the pathogenesis of type AB thymoma remain to be clarified and it is currently unclear if cytogenetic studies may eventually play a role in the classification of thymic tumors.
Collapse
Affiliation(s)
- S G Goh
- Department of Pathology, Singapore General Hospital, Outram Road, 169608, Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
29
|
Maraldi NM, Giordano A, Manzoli L, Falconi M, Pol AD, Cinti C. Genetic alterations at the nuclear localization signal of the RB2/p130 gene occur in lymphoid tumor but not in osteosarcoma cell lines. ADVANCES IN ENZYME REGULATION 2001; 41:31-55. [PMID: 11384736 DOI: 10.1016/s0065-2571(00)00006-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
MESH Headings
- Blotting, Western
- Bromodeoxyuridine/metabolism
- Cell Cycle
- Cell Nucleus/metabolism
- Cell Separation
- DNA Mutational Analysis
- DNA-Binding Proteins/metabolism
- E2F4 Transcription Factor
- Exons
- Flow Cytometry
- Green Fluorescent Proteins
- Humans
- Immunohistochemistry
- Leukemia, Lymphoid/genetics
- Leukemia, Lymphoid/metabolism
- Luminescent Proteins/metabolism
- Microscopy, Confocal
- Microscopy, Electron
- Microscopy, Fluorescence
- Mutagenesis, Site-Directed
- Mutation
- Nuclear Localization Signals/metabolism
- Nuclear Proteins/metabolism
- Osteosarcoma/genetics
- Osteosarcoma/metabolism
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Point Mutation
- Polymerase Chain Reaction
- Polymorphism, Single-Stranded Conformational
- Proteins
- Recombinant Fusion Proteins/metabolism
- Retinoblastoma Protein/metabolism
- Retinoblastoma-Like Protein p107
- Retinoblastoma-Like Protein p130
- Sequence Analysis, DNA
- Transcription Factors/metabolism
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- N M Maraldi
- Institute of Citomorfologia Normale e Patologica, C.N.R., and Laboratory of Cell Biology, Istituti Ortopedici Rizzoli, Bologna, Italy
| | | | | | | | | | | |
Collapse
|
30
|
Paggi MG, Bonetto F, Severino A, Baldi A, Battista T, Bucci F, Felsani A, Lombardi D, Giordano A. The retinoblastoma-related Rb2/p130 gene is an effector downstream of AP-2 during neural differentiation. Oncogene 2001; 20:2570-8. [PMID: 11420667 DOI: 10.1038/sj.onc.1204356] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2000] [Revised: 01/31/2001] [Accepted: 02/05/2001] [Indexed: 11/08/2022]
Abstract
Rb2/p130, a member of the Retinoblastoma family of growth and tumour suppressor genes, is extensively implicated in the control of cell cycle and differentiation. The minimal promoter region of Rb2/p130 in T98G human glioblastoma cells was identified and its analysis revealed the presence of a KER1 palindromic sequence able to bind the transcription factor AP-2, a regulatory protein that plays a crucial role in ectodermal differentiation. This KER1 site interacted in vitro with AP-2, and AP-2 overexpression increased Rb2/p130 transcription and translation. We also found that rat PC12 pheochromocytoma cells, when induced to differentiate by NGF, displayed an increase of AP-2 protein levels and of Rb2/p130 transcription and protein levels. AP-2-transfected PC12 cells displayed enhanced transcription and translation of Rb2/p130 and of the cdk inhibitor p21(WAF1/CIP1), a gene known to be under the control of AP-2, but unable by itself to elicit PC12 differentiation. Overexpression of either AP-2 or Rb2/p130 elicited per se cell differentiation in the absence of NGF, while coexpression of AP-2B, a negative regulator of AP-2 transcriptional activity, inhibited only AP-2-induced differentiation. Altogether, these results indicate that Rb2/p130 is a critical effector of AP-2 in sustaining ectodermal differentiation.
Collapse
Affiliation(s)
- M G Paggi
- Laboratory of Cell Metabolism and Pharmacokinetics, Centre for Experimental Research, Regina Elena Cancer Institute, Via delle Messi d'Oro 156, 00158 Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hannan KM, Hannan RD, Smith SD, Jefferson LS, Lun M, Rothblum LI. Rb and p130 regulate RNA polymerase I transcription: Rb disrupts the interaction between UBF and SL-1. Oncogene 2000; 19:4988-99. [PMID: 11042686 DOI: 10.1038/sj.onc.1203875] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have previously demonstrated that the protein encoded by the retinoblastoma susceptibility gene (Rb) functions as a regulator of transcription by RNA polymerase I (rDNA transcription) by inhibiting UBF-mediated transcription. In the present study, we have examined the mechanism by which Rb represses UBF-dependent rDNA transcription and determined if other Rb-like proteins have similar effects. We demonstrate that authentic or recombinant UBF and Rb interact directly and this requires a functional A/B pocket. DNase footprinting and band-shift assays demonstrated that the interaction between Rb and UBF does not inhibit the binding of UBF to DNA. However, the formation of an UBF/Rb complex does block the interaction of UBF with SL-1, as indicated by using the 48 kDa subunit as a marker for SL-1. Additional evidence is presented that another pocket protein, p130 but not p107, can be found in a complex with UBF. Interestingly, the cellular content of p130 inversely correlated with the rate of rDNA transcription in two physiological systems, and overexpression of p130 inhibited rDNA transcription. These results suggest that p130 may regulate rDNA transcription in a similar manner to Rb.
Collapse
Affiliation(s)
- K M Hannan
- Henry Hood Research Program, Weis Center for Research, Geisinger Clinic, 100 N. Academy Ave., Danville, Pennsylvania, PA 17822 USA
| | | | | | | | | | | |
Collapse
|
32
|
Jiang H, Karnezis AN, Tao M, Guida PM, Zhu L. pRB and p107 have distinct effects when expressed in pRB-deficient tumor cells at physiologically relevant levels. Oncogene 2000; 19:3878-87. [PMID: 10951581 DOI: 10.1038/sj.onc.1203722] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A key difference among the three structurally similar pRB family members is that only pRB is a tumor suppressor. Identification of distinctive functional differences between pRB and p107/p130 therefore holds promise for a better understanding of the tumor suppression mechanisms of pRB. Enigmatically, pRB and p107 have been shown to have indistinguishable growth suppression activities when studied in the pRB-deficient Saos-2 cell system. In this study, we discovered that, when expressed at physiologically relevant levels, pRB and p107 had distinctive effects in causing growth suppression. pRB induced cellular p130 levels while p107 repressed them. p107, but not pRB, blocked cells inside S phase in addition to G1 arrest. In contrast, no qualitative differences were identified in their abilities to repress the expression of a set of suspected pRB/E2F repression target genes. These results indicate that pRB and p107 possess different growth suppression effects, despite the fact that they have similar E2F repression effects.
Collapse
Affiliation(s)
- H Jiang
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
33
|
Ichimura K, Hanafusa H, Takimoto H, Ohgama Y, Akagi T, Shimizu K. Structure of the human retinoblastoma-related p107 gene and its intragenic deletion in a B-cell lymphoma cell line. Gene 2000; 251:37-43. [PMID: 10863094 DOI: 10.1016/s0378-1119(00)00193-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The human p107 protein shares many structural and functional features with the retinoblastoma gene product and retinoblastoma-related p130 protein. In this study, we have cloned and elucidated the complete intron-exon organization of the gene encoding the p107 protein. The gene contains 22 exons spanning over 100kilobase pairs of genomic DNA. The length of individual exons ranges from 50 to 840base pairs. The arrays of exons in the p107 gene are rather similar among members of the gene family, especially to those of the p130 gene, while the length of introns is extensively diverse. This study will provide a molecular basis for implementing comprehensive screening for p107 mutations using genomic DNAs from human malignancies. We also show a detailed structure of an intragenic deletion of the p107 gene found in a human B-cell lymphoma cell line, KAL-1, which was shown to occur by homologous recombination between the two directly repeated Alu family sequences.
Collapse
Affiliation(s)
- K Ichimura
- 2nd Department of Pathology, Okayama University Medical School, Shikata-cho, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Fajas L, Le Cam L, Polanowska J, Fabbrizio E, Servant N, Philips A, Carnac G, Sardet C. A CDE/CHR-like element mediates repression of transcription of the mouse RB2 (p130) gene. FEBS Lett 2000; 471:29-33. [PMID: 10760507 DOI: 10.1016/s0014-5793(00)01363-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The bipartite repressor elements, termed cell cycle-dependent element (CDE)/cell cycle regulatory element (CCRE)-cell cycle homology region (CHR) control the growth-dependent transcription of the cyclin A, cdc25C, cdc2 genes. Here, we have identified a functional element displaying the signature of the CDE-CHR in the promoter of the mouse RB2 (p130) gene, encoding the retinoblastoma protein family (pRB)-related protein p130. This element locates close to the major transcription start site where it makes major groove contacts with proteins that can be detected in a cellular context using in vivo genomic footprinting techniques. Inactivation of either the CDE or CHR sequence strongly up-regulates the p130 promoter activity in exponentially growing cells, a situation where endogenous p130 gene expression is almost undetectable. Electrophoretic mobility shift assays suggest that two different protein complexes bind independently to the p130 CDE and CHR elements, and that the protein(s) bound to the CDE might be related to those bound on cyclin A and cdc2 promoters.
Collapse
Affiliation(s)
- L Fajas
- Institut de Génétique Moléculaire, UMR 5535 CNRS, 1919 Route de Mende, 34293, Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Stiegler P, Giordano A. Big brothers are watching: the retinoblastoma family and growth control. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 1999; 20:25-42. [PMID: 9928525 DOI: 10.1007/978-3-642-72149-6_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- P Stiegler
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | |
Collapse
|
36
|
Pupa SM, Howard CM, Invernizzi AM, De Vecchi R, Giani C, Claudio PP, Colnaghi MI, Giordano A, Ménard S. Ectopic expression of pRb2/p130 suppresses the tumorigenicity of the c-erbB-2-overexpressing SKOV3 tumor cell line. Oncogene 1999; 18:651-6. [PMID: 9989815 DOI: 10.1038/sj.onc.1202363] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We investigated the in vitro and in vivo effects of the ectopic expression of the pRb2/p130 cell cycle regulator on c-erbB-2-associated tumorigenicity. SKOV3 ovarian cancer cells, which display c-erbB-2 gene amplification and oncoprotein (p185HER2) overexpression, were stably transfected with a plasmid containing the coding sequence for human wild-type pRb2/p130 (wtRb2), or with pcDNA3 empty vector. Three wtRb2-transfected clones (cl. 24, ci. 49, cl. 100) and one empty vector-transfected clone (cl. mock) were randomly picked and further analysed. Western blot analysis revealed high levels of pRb2/p130 in the three clones compared to mock cells. Levels of p185HER2 and the extent of its tyrosine phosphorylation were similar in all transfectant clones, as were levels of pRb1 and p107. In anchorage-independent growth assays, the number of colonies from wtRb2 clone-transfectants was about 90% less than that arising from mock cells (P<0.001). Tumor take rates of the three wtRb2-transfected clones xenografted in nu/nu mice were much lower than those of mock cells, and tumor volume was decreased by 80% (P<0.001). A mutant version of pRb2/p130 deleted of the pocket region (mut-Rb2) was also transfected into SKOV3 cells and studied in parallel with the wtRb2-transfected and pcDNA empty vector-transfected bulk populations. mut-Rb2 transfected cells showed no inhibition of in vitro colony formation and were fully tumorigenic. Together, these findings indicate that Rb2 acts as a tumor suppressor gene in vivo and in vitro in SKOV3 cells and that the intact pocket region is required for the suppressor activity.
Collapse
Affiliation(s)
- S M Pupa
- Division of Experimental Oncology E, Istituto Nazionale Tumori, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Mayol X, Graña X. pRB, p107 and p130 as transcriptional regulators: role in cell growth and differentiation. PROGRESS IN CELL CYCLE RESEARCH 1998; 3:157-69. [PMID: 9580269 DOI: 10.1007/978-1-4615-5371-7_13] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The mammalian cell cycle engine, which is composed of cyclin/CDK holoenzymes, controls the progression throughout the cell cycle by regulating, at least in part, the transcription of two types of genes: genes whose protein products are required for DNA metabolism and genes whose protein products are involved in cell cycle control. Among the targets of cyclin/CDKs, there is a family of negative growth regulators collectively known as pocket proteins. This family of pocket proteins includes the product of the retinoblastoma tumor suppressor gene, pRB and the functionally and structurally related proteins p107 and p130. In this review, the mechanisms by which pocket proteins are thought to regulate cell growth and differentiation are discussed.
Collapse
Affiliation(s)
- X Mayol
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | |
Collapse
|
38
|
Helin K, Holm K, Niebuhr A, Eiberg H, Tommerup N, Hougaard S, Poulsen HS, Spang-Thomsen M, Norgaard P. Loss of the retinoblastoma protein-related p130 protein in small cell lung carcinoma. Proc Natl Acad Sci U S A 1997; 94:6933-8. [PMID: 9192669 PMCID: PMC21262 DOI: 10.1073/pnas.94.13.6933] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The retinoblastoma gene family consists of the tumor suppressor protein pRB and its two relatives p107 and p130. These proteins have been implicated in the regulation of cell cycle progression, in part, through inactivation of members of the E2F transcription factor family. Overexpression of pRB, p107, or p130 leads to growth arrest in the G1 phase of the cell cycle, and this arrest is abolished by complex formation with the adenovirus E1A, human papilloma virus E7, or simian virus 40 T oncoproteins. Inactivation of pRB by gross structural alterations or point mutations in the RB-1 gene has been described in a variety of human tumors, including retinoblastomas, osteosarcomas, and small cell lung carcinomas. Despite the structural and functional similarity between pRB, p107, and p130, alterations in the latter two proteins have not been identified in human tumors. We have screened a panel of 17 small cell lung carcinoma cell lines for the presence of functional p107 and p130 by evaluating their ability to form complexes with E1A in vitro. In the GLC2 small cell lung carcinoma cells no p130 protein was detected. The loss of the p130 protein is the result of a single point mutation within a splice acceptor sequence in the GLC2 genomic DNA. This mutation eliminates exon 2, leading to an in-frame stop codon, and no detectable protein is produced. These data are, to our knowledge, the first to describe the loss of p130 as a consequence of a genetic alteration, suggesting that not only pRB but also the other members of the family may contribute to tumorigenesis, providing a rationale for the observation that the DNA tumor viruses selectively target all the members of the retinoblastoma protein family.
Collapse
Affiliation(s)
- K Helin
- Department of Experimental Oncology, European Institute of Oncology, 20141 Milan, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|