1
|
Torres-Martos Á, Anguita-Ruiz A, Bustos-Aibar M, Ramírez-Mena A, Arteaga M, Bueno G, Leis R, Aguilera CM, Alcalá R, Alcalá-Fdez J. Multiomics and eXplainable artificial intelligence for decision support in insulin resistance early diagnosis: A pediatric population-based longitudinal study. Artif Intell Med 2024; 156:102962. [PMID: 39180924 DOI: 10.1016/j.artmed.2024.102962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/31/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
Pediatric obesity can drastically heighten the risk of cardiometabolic alterations later in life, with insulin resistance standing as the cornerstone linking adiposity to the increased cardiovascular risk. Puberty has been pointed out as a critical stage after which obesity-associated insulin resistance is more difficult to revert. Timely prediction of insulin resistance in pediatric obesity is therefore vital for mitigating the risk of its associated comorbidities. The construction of effective and robust predictive systems for a complex health outcome like insulin resistance during the early stages of life demands the adoption of longitudinal designs for more causal inferences, and the integration of factors of varying nature involved in its onset. In this work, we propose an eXplainable Artificial Intelligence-based decision support pipeline for early diagnosis of insulin resistance in a longitudinal cohort of 90 children. For that, we leverage multi-omics (genomics and epigenomics) and clinical data from the pre-pubertal stage. Different data layers combinations, pre-processing techniques (missing values, feature selection, class imbalance, etc.), algorithms, training procedures were considered following good practices for Machine Learning. SHapley Additive exPlanations were provided for specialists to understand both the decision-making mechanisms of the system and the impact of the features on each automatic decision, an essential issue in high-risk areas such as this one where system decisions may affect people's lives. The system showed a relevant predictive ability (AUC and G-mean of 0.92). A deep exploration, both at the global and the local level, revealed promising biomarkers of insulin resistance in our population, highlighting classical markers, such as Body Mass Index z-score or leptin/adiponectin ratio, and novel ones such as methylation patterns of relevant genes, such as HDAC4, PTPRN2, MATN2, RASGRF1 and EBF1. Our findings highlight the importance of integrating multi-omics data and following eXplainable Artificial Intelligence trends when building decision support systems.
Collapse
Affiliation(s)
- Álvaro Torres-Martos
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA) and Center of Biomedical Research, University of Granada, Granada, 18071, Spain; Instituto de investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain.
| | - Augusto Anguita-Ruiz
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain; Barcelona Institute for Global Health, ISGlobal, Barcelona, 08003, Spain.
| | - Mireia Bustos-Aibar
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA) and Center of Biomedical Research, University of Granada, Granada, 18071, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain; Growth, Exercise, Nutrition and Development (GENUD) Research Group, Institute for Health Research Aragón (IIS Aragón), Zaragoza, 50009, Spain.
| | - Alberto Ramírez-Mena
- Bioinformatics Unit, Centre for Genomics and Oncological Research, GENYO Pfizer/University of Granada/Andalusian Regional Government, PTS, Granada, 18016, Spain.
| | - María Arteaga
- Department of Computer Science and Artificial Intelligence, Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, 18071, Spain.
| | - Gloria Bueno
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain; Growth, Exercise, Nutrition and Development (GENUD) Research Group, Institute for Health Research Aragón (IIS Aragón), Zaragoza, 50009, Spain; Pediatric Endocrinology Unit, Facultad de Medicina, Clinic University Hospital Lozano Blesa, University of Zaragoza, Zaragoza, 50009, Spain.
| | - Rosaura Leis
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain; Unit of Pediatric Gastroenterology, Hepatology and Nutrition, Pediatric Service, Hospital Clínico Universitario de Santiago. Unit of Investigation in Nutrition, Growth and Human Development of Galicia-USC, Pediatric Nutrition Research Group-Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, 15706, Spain.
| | - Concepción M Aguilera
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA) and Center of Biomedical Research, University of Granada, Granada, 18071, Spain; Instituto de investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain.
| | - Rafael Alcalá
- Department of Computer Science and Artificial Intelligence, Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, 18071, Spain.
| | - Jesús Alcalá-Fdez
- Department of Computer Science and Artificial Intelligence, Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, 18071, Spain.
| |
Collapse
|
2
|
Siddiqui K, Nawaz SS, Alfadda AA, Mujammami M. Islet Autoantibodies to Pancreatic Insulin-Producing Beta Cells in Adolescent and Adults with Type 1 Diabetes Mellitus: A Cross-Sectional Study. Diagnostics (Basel) 2023; 13:diagnostics13101736. [PMID: 37238221 DOI: 10.3390/diagnostics13101736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
(1) Background: Type 1 diabetes mellitus (T1D) is a chronic autoimmune disease caused by the destruction of pancreatic insulin-producing beta cells. T1D is one of the most common endocrine and metabolic disorders occurring in children. Autoantibodies against pancreatic insulin-producing beta cells are important immunological and serological markers of T1D. Zinc transporter 8 autoantibody (ZnT8) is a recently identified autoantibody in T1D; however, no data on ZnT8 autoantibody in the Saudi Arabian population have been reported. Thus, we aimed to investigate the prevalence of islet autoantibodies (IA-2 and ZnT8) in adolescents and adults with T1D according to age and disease duration. (2) Methods: In total, 270 patients were enrolled in this cross-sectional study. After meeting the study's inclusion and exclusion criteria, 108 patients with T1D (50 men and 58 women) were assessed for T1D autoantibody levels. Serum ZnT8 and IA-2 autoantibodies were measured using commercial enzyme-linked immunosorbent assay kits. (3) Results: IA-2 and ZnT8 autoantibodies were present in 67.6% and 54.6% of patients with T1D, respectively. Autoantibody positivity was found in 79.6% of the patients with T1D. Both the IA-2 and ZnT8 autoantibodies were frequently observed in adolescents. The prevalence of IA-2 and ZnT8 autoantibodies in patients with a disease duration < 1 year was 100% and 62.5%, respectively, which declined with an increase in disease duration (p < 0.020). Logistic regression analysis revealed a significant relationship between age and autoantibodies (p < 0.004). (4) Conclusions: The prevalence of IA-2 and ZnT8 autoantibodies in the Saudi Arabian T1D population appears to be higher in adolescents. The current study also showed that the prevalence of autoantibodies decreased with disease duration and age. IA-2 and ZnT8 autoantibodies are important immunological and serological markers for T1D diagnosis in the Saudi Arabian population.
Collapse
Affiliation(s)
- Khalid Siddiqui
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Shaik Sarfaraz Nawaz
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Assim A Alfadda
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
- Department of Medicine, College of Medicine & King Saud University Medical City, King Saud University, Riyadh 11461, Saudi Arabia
- Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Muhammad Mujammami
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
- Department of Medicine, College of Medicine & King Saud University Medical City, King Saud University, Riyadh 11461, Saudi Arabia
- University Diabetes Center, King Saud University Medical City, King Saud University, Riyadh 11461, Saudi Arabia
| |
Collapse
|
3
|
Casu A, Grippo PJ, Wasserfall C, Sun Z, Linsley PS, Hamerman JA, Fife BT, Lacy-Hulbert A, Toledo FGS, Hart PA, Papachristou GI, Bellin MD, Yadav D, Laughlin MR, Goodarzi MO, Speake C. Evaluating the Immunopathogenesis of Diabetes After Acute Pancreatitis in the Diabetes RElated to Acute Pancreatitis and Its Mechanisms Study: From the Type 1 Diabetes in Acute Pancreatitis Consortium. Pancreas 2022; 51:580-585. [PMID: 36206462 PMCID: PMC9555855 DOI: 10.1097/mpa.0000000000002076] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
ABSTRACT The association between acute pancreatitis (AP) and diabetes mellitus (DM) has long been established, with the initial descriptions of AP patients presenting with DM after a bout of AP published in the 1940s and 50s. However, the potential mechanisms involved, particularly those components related to the immune system, have not been well defined. The Diabetes RElated to Acute pancreatitis and its Mechanisms (DREAM) study is a multicenter clinical study designed to understand the frequency and phenotype of DM developing after AP. This article describes one objective of the DREAM study: to determine the immunologic mechanisms of DM after AP, including the contribution of β-cell autoimmunity. This component of the study will assess the presence of islet autoimmunity, as well as the magnitude and kinetics of the innate and adaptive immune response at enrollment and during longitudinal follow-up after 1 or more episodes of AP. Finally, DREAM will evaluate the relationship between immune features, DM development, and pancreatitis etiology and severity.
Collapse
Affiliation(s)
- Anna Casu
- From the Translational Research Institute, AdventHealth Orlando, Orlando, FL
| | - Paul J Grippo
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois-Chicago, Chicago, IL
| | - Clive Wasserfall
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL
| | - Zhaoli Sun
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Peter S Linsley
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA
| | - Jessica A Hamerman
- Center for Fundamental Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA
| | - Brian T Fife
- Department of Medicine, Center for Immunology, University of Minnesota, Minneapolis, MN
| | - Adam Lacy-Hulbert
- Center for Fundamental Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA
| | - Frederico G S Toledo
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Phil A Hart
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Georgios I Papachristou
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH
| | | | - Dhiraj Yadav
- Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Maren R Laughlin
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Mark O Goodarzi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Cate Speake
- Diabetes Clinical Research Program, Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA
| |
Collapse
|
4
|
Sasaki A, Murphy KE, Briollais L, McGowan PO, Matthews SG. DNA methylation profiles in the blood of newborn term infants born to mothers with obesity. PLoS One 2022; 17:e0267946. [PMID: 35500004 PMCID: PMC9060365 DOI: 10.1371/journal.pone.0267946] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/19/2022] [Indexed: 01/03/2023] Open
Abstract
Maternal obesity is an important risk factor for childhood obesity and influences the prevalence of metabolic diseases in offspring. As childhood obesity is influenced by postnatal factors, it is critical to determine whether children born to women with obesity during pregnancy show alterations that are detectable at birth. Epigenetic mechanisms such as DNA methylation modifications have been proposed to mediate prenatal programming. We investigated DNA methylation signatures in male and female infants from mothers with a normal Body Mass Index (BMI 18.5-24.9 kg/m2) compared to mothers with obesity (BMI≥30 kg/m2). BMI was measured during the first prenatal visit from women recruited into the Ontario Birth Study (OBS) at Mount Sinai Hospital in Toronto, ON, Canada. DNA was extracted from neonatal dried blood spots collected from heel pricks obtained 24 hours after birth at term (total n = 40) from women with a normal BMI and women with obesity matched for parity, age, and neonatal sex. Reduced representation bisulfite sequencing was used to identify genomic loci associated with differentially methylated regions (DMRs) in CpG-dense regions most likely to influence gene regulation. DMRs were predominantly localized to intergenic regions and gene bodies, with only 9% of DMRs localized to promoter regions. Genes associated with DMRs were compared to those from a large publicly available cohort study, the Avon Longitudinal Study of Parents and Children (ALSPAC; total n = 859). Hypergeometric tests revealed a significant overlap in genes associated with DMRs in the OBS and ALSPAC cohorts. PTPRN2, a gene involved in insulin secretion, and MAD1L1, which plays a role in the cell cycle and tumor suppression, contained DMRs in males and females in both cohorts. In males, KEGG pathway analysis revealed significant overrepresentation of genes involved in endocytosis and pathways in cancer, including IGF1R, which was previously shown to respond to diet-induced metabolic stress in animal models and in lymphocytes in the context of childhood obesity. These preliminary findings are consistent with Developmental Origins of Health and Disease paradigm, which posits that adverse prenatal exposures set developmental health trajectories.
Collapse
Affiliation(s)
- Aya Sasaki
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Kellie E. Murphy
- Department of Obstetrics & Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Laurent Briollais
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Patrick O. McGowan
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Departments of Biological Sciences and Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Stephen G. Matthews
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Department of Obstetrics & Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Tiberti C, D’Onofrio L, Panimolle F, Zampetti S, Maddaloni E, Buzzetti R. Immunoreactivities Against Different Tyrosine-Phosphatase 2 (IA-2)(256-760) Protein Domains Characterize Distinct Phenotypes in Subjects With LADA. Front Endocrinol (Lausanne) 2022; 13:921886. [PMID: 35813648 PMCID: PMC9263087 DOI: 10.3389/fendo.2022.921886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Antibodies (Abs) against intracellular epitopes of the tyrosine-phosphatase 2 (IA-2) are detected in type 1 diabetes. Abs directed against the IA-2(256-760) portion, with both intra- and extracellular epitopes, are present in people with latent autoimmune diabetes in adults (LADA) and in obese subjects with normal glucose tolerance (NGT). We aim to characterize distribution and clinical features of intra- and extra-cellular IA-2(256-760) immunoreactivities in people with LADA compared to obese people with NGT. The intracellular immunoreactivity represented by immune response against two intracellular IA-2 constructs (IA-2JM(601-630) and IA-2IC(605-979)) was analyzed and related to clinical and biochemical features in 101 people with LADA and in 20 NGT obese subjects, all testing positive for IA-2(256-760) Abs. IA-2 intracellular immunoreactivity showed a frequency of 40.6% in LADA while it was not detected among NGT obese (p<0.001). Amongst LADA, the presence of immunoreactivity against the IA-2 intracellular domains was associated with lower BMI, waist circumference, higher HDL cholesterol and lower triglycerides, lower prevalence of hypertension and higher prevalence of other autoimmune disorders. Immunoreactivity against IA-2 does not involve intracellular domains in the majority of LADA and in obese people with NGT. This study shows that there is heterogeneity in the IA-2 epitopes, associated with different clinical features.
Collapse
|
6
|
Lu C, Zhao Q, Wang D, Feng Y, Feng L, Li Z, Shi Q. Rab35 regulates insulin secretion via phogrin in pancreatic β cells. Clin Exp Pharmacol Physiol 2021; 49:104-112. [PMID: 34448213 DOI: 10.1111/1440-1681.13581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 11/29/2022]
Abstract
Dysfunction of pancreatic β cell insulin secretion is related to the pathogenesis of type 2 diabetes (T2D). Rab proteins have been shown to be key players in insulin secretion by pancreatic β cells, and phogrin is a marker for the processes of exocytosis and insulin secretion. The purposes of this study were to clarify the regulatory role of Rab35 in insulin secretion and analyse the Rab35/phogrin interaction mechanism in β-TC-6 cells. We studied the effects of Rab35 gene overexpression and interference on insulin secretion and phogrin expression and levels in β-TC-6 cells. The Rab35/phogrin interaction was verified by GST pulldown, co-IP and co-localisation experiments. Here, we report that Rab35 is mainly distributed in the β-TC-6-cell plasma membrane and cytoplasm. Rab35 overexpression promotes insulin secretion and decreases phogrin expression in β-TC-6 cells, whereas its silencing significantly inhibits insulin secretion, promotes phogrin expression (p < 0.05) and causes phogrin redistribution. Furthermore, Rab35 silencing suppresses exocytosis of insulin. Rab35 interacts with phogrin, and both proteins co-localise in the plasma membranes and cytoplasm of β-TC-6 cells. Our study presents novel evidence that Rab35 regulates insulin secretion by inhibiting phogrin expression and causing intracellular phogrin redistribution in pancreatic β cells.
Collapse
Affiliation(s)
- Chunting Lu
- Science and Education Office, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Qingtong Zhao
- Medical Centre of Stomatology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Dan Wang
- Science and Education Office, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yunlu Feng
- South China Normal University Hospital, Guangzhou, China
| | - Lie Feng
- Department of Endocrinology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Zejian Li
- Medical Centre of Stomatology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Qiping Shi
- Department of Endocrinology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Sevillano J, Sánchez-Alonso MG, Pizarro-Delgado J, Ramos-Álvarez MDP. Role of Receptor Protein Tyrosine Phosphatases (RPTPs) in Insulin Signaling and Secretion. Int J Mol Sci 2021; 22:ijms22115812. [PMID: 34071721 PMCID: PMC8198922 DOI: 10.3390/ijms22115812] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 01/12/2023] Open
Abstract
Changes in lifestyle in developed countries have triggered the prevalence of obesity and type 2 diabetes mellitus (T2DM) in the latest years. Consequently, these metabolic diseases associated to insulin resistance, and the morbidity associated with them, accounts for enormous costs for the health systems. The best way to face this problem is to identify potential therapeutic targets and/or early biomarkers to help in the treatment and in the early detection. In the insulin receptor signaling cascade, the activities of protein tyrosine kinases and phosphatases are coordinated, thus, protein tyrosine kinases amplify the insulin signaling response, whereas phosphatases are required for the regulation of the rate and duration of that response. The focus of this review is to summarize the impact of transmembrane receptor protein tyrosine phosphatase (RPTPs) in the insulin signaling cascade and secretion, and their implication in metabolic diseases such as obesity and T2DM.
Collapse
|
8
|
Williams MD, Bacher R, Perry DJ, Grace CR, McGrail KM, Posgai AL, Muir A, Chamala S, Haller MJ, Schatz DA, Brusko TM, Atkinson MA, Wasserfall CH. Genetic Composition and Autoantibody Titers Model the Probability of Detecting C-Peptide Following Type 1 Diabetes Diagnosis. Diabetes 2021; 70:932-943. [PMID: 33419759 PMCID: PMC7980194 DOI: 10.2337/db20-0937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/01/2021] [Indexed: 12/15/2022]
Abstract
We and others previously demonstrated that a type 1 diabetes genetic risk score (GRS) improves the ability to predict disease progression and onset in at-risk subjects with islet autoantibodies. Here, we hypothesized that GRS and islet autoantibodies, combined with age at onset and disease duration, could serve as markers of residual β-cell function following type 1 diabetes diagnosis. Generalized estimating equations were used to investigate whether GRS along with insulinoma-associated protein-2 autoantibody (IA-2A), zinc transporter 8 autoantibody (ZnT8A), and GAD autoantibody (GADA) titers were predictive of C-peptide detection in a largely cross-sectional cohort of 401 subjects with type 1 diabetes (median duration 4.5 years [range 0-60]). Indeed, a combined model with incorporation of disease duration, age at onset, GRS, and titers of IA-2A, ZnT8A, and GADA provided superior capacity to predict C-peptide detection (quasi-likelihood information criterion [QIC] = 334.6) compared with the capacity of disease duration, age at onset, and GRS as the sole parameters (QIC = 359.2). These findings support the need for longitudinal validation of our combinatorial model. The ability to project the rate and extent of decline in residual C-peptide production for individuals with type 1 diabetes could critically inform enrollment and benchmarking for clinical trials where investigators are seeking to preserve or restore endogenous β-cell function.
Collapse
Affiliation(s)
- MacKenzie D Williams
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL
| | - Rhonda Bacher
- Department of Biostatistics, College of Public Health and Health Professions, and College of Medicine, University of Florida, Gainesville, FL
| | - Daniel J Perry
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL
| | - C Ramsey Grace
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL
| | - Kieran M McGrail
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL
| | - Amanda L Posgai
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL
| | - Andrew Muir
- Department of Pediatrics, Emory University, Atlanta, GA
| | - Srikar Chamala
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL
| | - Michael J Haller
- Department of Pediatrics, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL
| | - Desmond A Schatz
- Department of Pediatrics, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL
- Department of Pediatrics, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL
| | - Mark A Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL
- Department of Pediatrics, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL
| | - Clive H Wasserfall
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL
| |
Collapse
|
9
|
Smeets S, De Paep DL, Stangé G, Verhaeghen K, Van der Auwera B, Keymeulen B, Weets I, Ling Z, In't Veld P, Gorus F. Insulitis in the pancreas of non-diabetic organ donors under age 25 years with multiple circulating autoantibodies against islet cell antigens. Virchows Arch 2021; 479:295-304. [PMID: 33594586 PMCID: PMC8364522 DOI: 10.1007/s00428-021-03055-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 12/16/2022]
Abstract
Autoantibodies against islet cell antigens are routinely used to identify subjects at increased risk of symptomatic type 1 diabetes, but their relation to the intra-islet pathogenetic process that leads to positivity for these markers is poorly understood. We screened 556 non-diabetic organ donors (3 months to 24 years) for five different autoantibodies and found positivity in 27 subjects, 25 single- and two double autoantibody-positive donors. Histopathological screening of pancreatic tissue samples showed lesion characteristic for recent-onset type 1 diabetes in the two organ donors with a high-risk profile, due to their positivity for multiple autoantibodies and HLA-inferred risk. Inflammatory infiltrates (insulitis) were found in a small fraction of islets (<5%) and consisted predominantly of CD3+CD8+ T-cells. Islets with insulitis were found in close proximity to islets devoid of insulin-positivity; such pseudo-atrophic islets were present in multiple small foci scattered throughout the pancreatic tissue or were found to be distributed with a lobular pattern. Relative beta cell area in both single and multiple autoantibody-positive donors was comparable to that in autoantibody-negative controls. In conclusion, in organ donors under age 25 years, insulitis and pseudo-atrophic islets were restricted to multiple autoantibody-positive individuals allegedly at high risk of developing symptomatic type 1 diabetes, in line with reports in older age groups. These observations may give further insight into the early pathogenetic events that may culminate in clinically overt disease.
Collapse
Affiliation(s)
- Silke Smeets
- Diabetes Research Center (DRC), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Diedert Luc De Paep
- Diabetes Research Center (DRC), Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Beta Cell Bank, UZ Brussel, Brussels, Belgium.,Department of Surgery, UZ Brussel, Brussels, Belgium
| | - Geert Stangé
- Diabetes Research Center (DRC), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | - Bart Van der Auwera
- Diabetes Research Center (DRC), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Bart Keymeulen
- Diabetes Research Center (DRC), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Ilse Weets
- Clinical Biology, UZ Brussel, Brussels, Belgium
| | - Zhidong Ling
- Diabetes Research Center (DRC), Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Beta Cell Bank, UZ Brussel, Brussels, Belgium
| | - Peter In't Veld
- Diabetes Research Center (DRC), Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| | - Frans Gorus
- Diabetes Research Center (DRC), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
10
|
Mudali D, Jeevanandam J, Danquah MK. Probing the characteristics and biofunctional effects of disease-affected cells and drug response via machine learning applications. Crit Rev Biotechnol 2020; 40:951-977. [PMID: 32633615 DOI: 10.1080/07388551.2020.1789062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Drug-induced transformations in disease characteristics at the cellular and molecular level offers the opportunity to predict and evaluate the efficacy of pharmaceutical ingredients whilst enabling the optimal design of new and improved drugs with enhanced pharmacokinetics and pharmacodynamics. Machine learning is a promising in-silico tool used to simulate cells with specific disease properties and to determine their response toward drug uptake. Differences in the properties of normal and infected cells, including biophysical, biochemical and physiological characteristics, plays a key role in developing fundamental cellular probing platforms for machine learning applications. Cellular features can be extracted periodically from both the drug treated, infected, and normal cells via image segmentations in order to probe dynamic differences in cell behavior. Cellular segmentation can be evaluated to reflect the levels of drug effect on a distinct cell or group of cells via probability scoring. This article provides an account for the use of machine learning methods to probe differences in the biophysical, biochemical and physiological characteristics of infected cells in response to pharmacokinetics uptake of drug ingredients for application in cancer, diabetes and neurodegenerative disease therapies.
Collapse
Affiliation(s)
- Deborah Mudali
- Department of Computer Science, University of Tennessee, Chattanooga, TN, USA
| | - Jaison Jeevanandam
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, Miri, Malaysia
| | - Michael K Danquah
- Chemical Engineering Department, University of Tennessee, Chattanooga, TN, USA
| |
Collapse
|
11
|
Reiterer V, Pawłowski K, Desrochers G, Pause A, Sharpe HJ, Farhan H. The dead phosphatases society: a review of the emerging roles of pseudophosphatases. FEBS J 2020; 287:4198-4220. [PMID: 32484316 DOI: 10.1111/febs.15431] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/12/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022]
Abstract
Phosphatases are a diverse family of enzymes, comprising at least 10 distinct protein folds. Like most other enzyme families, many have sequence variations that predict an impairment or loss of catalytic activity classifying them as pseudophosphatases. Research on pseudoenzymes is an emerging area of interest, with new biological functions repurposed from catalytically active relatives. Here, we provide an overview of the pseudophosphatases identified to date in all major phosphatase families. We will highlight the degeneration of the various catalytic sequence motifs and discuss the challenges associated with the experimental determination of catalytic inactivity. We will also summarize the role of pseudophosphatases in various diseases and discuss the major challenges and future directions in this field.
Collapse
Affiliation(s)
| | | | - Guillaume Desrochers
- Department of Biochemistry, McGill University, Montréal, QC, Canada.,Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada
| | - Arnim Pause
- Department of Biochemistry, McGill University, Montréal, QC, Canada.,Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada
| | | | - Hesso Farhan
- Institute of Basic Medical Sciences, University of Oslo, Norway
| |
Collapse
|
12
|
Rahmani B, Gandhi J, Joshi G, Smith NL, Reid I, Khan SA. The Role of Diabetes Mellitus in Diseases of the Gallbladder and Biliary Tract. Curr Diabetes Rev 2020; 16:931-948. [PMID: 32133965 DOI: 10.2174/1573399816666200305094727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The increasing prevalence of diabetes mellitus worldwide continues to pose a heavy burden. Though its gastrointestinal impact is appropriately recognized, the lesser known associations may be overlooked. OBJECTIVE We aim to review the negative implications of diabetes on the gallbladder and the biliary tract. METHODS A MEDLINE® database search of literature was conducted with emphasis on the previous five years, combining keywords such as "diabetes," "gallbladder," and "biliary". RESULTS The association of diabetes to the formation of gallstones, gallbladder cancer, and cancer of the biliary tract are discussed along with diagnosis and treatment. CONCLUSION Though we uncover the role of diabetic neuropathy in gallbladder and biliary complications, the specific individual diabetic risk factors behind these developments is unclear. Also, in addition to diabetes control and surgical gallbladder management, the treatment approach also requires further focus.
Collapse
Affiliation(s)
- Benjamin Rahmani
- Department of Physiology and Biophysics, Renaissance School of Medicine at Stony Brook University, Stony Brook,
NY, USA
| | - Jason Gandhi
- Department of Physiology and Biophysics, Renaissance School of Medicine at Stony Brook University, Stony Brook,
NY, USA
- Medical Student Research Institute, St. George’s University School of Medicine, Grenada, West Indies
| | - Gunjan Joshi
- Department of Internal Medicine, Stony Brook Southampton Hospital, Southampton, NY, USA
| | | | - Inefta Reid
- Department of Physiology and Biophysics, Renaissance School of Medicine at Stony Brook University, Stony Brook,
NY, USA
| | - Sardar Ali Khan
- Department of Physiology and Biophysics, Renaissance School of Medicine at Stony Brook University, Stony Brook,
NY, USA
- Department of Urology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
13
|
Zheng Y, Hlady RA, Joyce BT, Robertson KD, He C, Nannini DR, Kibbe WA, Achenbach CJ, Murphy RL, Roberts LR, Hou L. DNA methylation of individual repetitive elements in hepatitis C virus infection-induced hepatocellular carcinoma. Clin Epigenetics 2019; 11:145. [PMID: 31639042 PMCID: PMC6802191 DOI: 10.1186/s13148-019-0733-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023] Open
Abstract
Background The two most common repetitive elements (REs) in humans, long interspersed nuclear element-1 (LINE-1) and Alu element (Alu), have been linked to various cancers. Hepatitis C virus (HCV) may cause hepatocellular carcinoma (HCC) by suppressing host defenses, through DNA methylation that controls the mobilization of REs. We aimed to investigate the role of RE methylation in HCV-induced HCC (HCV-HCC). Results We studied methylation of over 30,000 locus-specific REs across the genome in HCC, cirrhotic, and healthy liver tissues obtained by surgical resection. Relative to normal liver tissue, we observed the largest number of differentially methylated REs in HCV-HCC followed by alcohol-induced HCC (EtOH-HCC). After excluding EtOH-HCC-associated RE methylation (FDR < 0.001) and those unable to be validated in The Cancer Genome Atlas (TCGA), we identified 13 hypomethylated REs (11 LINE-1 and 2 Alu) and 2 hypermethylated REs (1 LINE-1 and 1 Alu) in HCV-HCC (FDR < 0.001). A majority of these REs were located in non-coding regions, preferentially enriched with chromatin repressive marks H3K27me3, and positively associated with gene expression (median correlation r = 0.32 across REs). We further constructed an HCV-HCC RE methylation score that distinguished HCV-HCC (lowest score), HCV-cirrhosis, and normal liver (highest score) in a dose-responsive manner (p for trend < 0.001). HCV-cirrhosis had a lower score than EtOH-cirrhosis (p = 0.038) and HCV-HCC had a lower score than EtOH-HCC in TCGA (p = 0.024). Conclusions Our findings indicate that HCV infection is associated with loss of DNA methylation in specific REs, which could implicate molecular mechanisms in liver cancer development. If our findings are validated in larger sample sizes, methylation of these REs may be useful as an early detection biomarker for HCV-HCC and/or a target for prevention of HCC in HCV-positive individuals. Electronic supplementary material The online version of this article (10.1186/s13148-019-0733-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yinan Zheng
- Center for Global Oncology, Institute for Global Health, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 680 N. Lake Shore Drive, Suite 1400, Chicago, IL, 60611-4402, USA.
| | - Ryan A Hlady
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Brian T Joyce
- Center for Global Oncology, Institute for Global Health, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 680 N. Lake Shore Drive, Suite 1400, Chicago, IL, 60611-4402, USA
| | - Keith D Robertson
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Chunyan He
- University of Kentucky Markey Cancer Center, Lexington, KY, USA.,Department of Internal Medicine, Division of Medical Oncology, University of Kentucky, Lexington, KY, USA
| | - Drew R Nannini
- Center for Global Oncology, Institute for Global Health, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 680 N. Lake Shore Drive, Suite 1400, Chicago, IL, 60611-4402, USA
| | - Warren A Kibbe
- Duke Cancer Institute and Duke School of Medicine, Duke University, Durham, NC, USA
| | - Chad J Achenbach
- Center for Global Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Robert L Murphy
- Center for Global Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Robert H Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Lifang Hou
- Center for Global Oncology, Institute for Global Health, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 680 N. Lake Shore Drive, Suite 1400, Chicago, IL, 60611-4402, USA
| |
Collapse
|
14
|
McKay TB, Priyadarsini S, Karamichos D. Mechanisms of Collagen Crosslinking in Diabetes and Keratoconus. Cells 2019; 8:cells8101239. [PMID: 31614631 PMCID: PMC6830090 DOI: 10.3390/cells8101239] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 12/14/2022] Open
Abstract
Collagen crosslinking provides the mechanical strength required for physiological maintenance of the extracellular matrix in most tissues in the human body, including the cornea. Aging and diabetes mellitus (DM) are processes that are both associated with increased collagen crosslinking that leads to increased corneal rigidity. By contrast, keratoconus (KC) is a corneal thinning disease associated with decreased mechanical stiffness leading to ectasia of the central cornea. Studies have suggested that crosslinking mediated by reactive advanced glycation end products during DM may protect the cornea from KC development. Parallel to this hypothesis, riboflavin-mediated photoreactive corneal crosslinking has been proposed as a therapeutic option to halt the progression of corneal thinning by inducing intra- and intermolecular crosslink formation within the collagen fibrils of the stroma, leading to stabilization of the disease. Here, we review the pathobiology of DM and KC in the context of corneal structure, the epidemiology behind the inverse correlation of DM and KC development, and the chemical mechanisms of lysyl oxidase-mediated crosslinking, advanced glycation end product-mediated crosslinking, and photoreactive riboflavin-mediated corneal crosslinking. The goal of this review is to define the biological and chemical pathways important in physiological and pathological processes related to collagen crosslinking in DM and KC.
Collapse
Affiliation(s)
- Tina B McKay
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - Shrestha Priyadarsini
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA.
| | - Dimitrios Karamichos
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
15
|
Kumar A, de Leiva A. Latent autoimmune diabetes in adults (LADA) in Asian and European populations. Diabetes Metab Res Rev 2017; 33. [PMID: 28198081 DOI: 10.1002/dmrr.2890] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 01/18/2017] [Accepted: 02/02/2017] [Indexed: 12/16/2022]
Abstract
Diabetes mellitus is a chronic disorder caused by relative or absolute insulin deficiency and characterized by chronic hyperglycaemia. It is expected that by year 2025, 80% of all type 2 diabetic patients will be living in developing or low- and middle-income countries. Among Asians, there has been an overall increase in abdominal obesity; however, the risk of diabetes in these populations starts at much lower body mass index as compared to Caucasians. A significant proportion of diabetic patients with adult-onset, initially nonrequiring insulin treatment, have diabetes-associated autoantibodies in their sera. A new subclass of diabetes with the designation of latent autoimmune diabetes of adult-onset (LADA) has been proposed for this category of subjects. Studies have demonstrated that patients with autoimmune diabetes, characterized by the presence of glutamic decarboxylase autoantibodies display a different clinical phenotype from classical type 2 diabetes without glutamic decarboxylase autoantibodies. This subset of phenotypic type 2 diabetes subjects with islet autoantibodies tend to have sulphonylurea failure and need insulin treatment earlier in the disease process. Diagnosing LADA at an initial stage will be important so that insulin can be initiated earlier, facilitating improved glycemic control sooner as well as the preservation of residual beta-cell function in adult-onset autoimmune diabetes. Because of differences in dietary habits, environmental factors, and phenotypic characteristics between European and Asian populations, there may be heterogeneity in the prevalence and other characteristics of LADA in these two populations.
Collapse
Affiliation(s)
- Alok Kumar
- Department of Diabetes, Endocrinology and Nutrition, Hospital de Sant Creu i Sant Pau, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Alberto de Leiva
- Department of Diabetes, Endocrinology and Nutrition, Hospital de Sant Creu i Sant Pau, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- EDUAB-IIB-HSP (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Fundación DIABEM, Barcelona, Spain
| |
Collapse
|
16
|
Li Z, Fang J, Jiao R, Wei X, Ma Y, Liu X, Cheng P, Li T. A novel multi-epitope vaccine based on Dipeptidyl Peptidase 4 prevents streptozotocin-induced diabetes by producing anti-DPP4 antibody and immunomodulatory effect in C57BL/6J mice. Biomed Pharmacother 2017; 89:1467-1475. [DOI: 10.1016/j.biopha.2017.01.089] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/14/2017] [Accepted: 01/14/2017] [Indexed: 10/19/2022] Open
|
17
|
Marré ML, Piganelli JD. Environmental Factors Contribute to β Cell Endoplasmic Reticulum Stress and Neo-Antigen Formation in Type 1 Diabetes. Front Endocrinol (Lausanne) 2017; 8:262. [PMID: 29033899 PMCID: PMC5626851 DOI: 10.3389/fendo.2017.00262] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/20/2017] [Indexed: 12/16/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease in which immune-mediated targeting and destruction of insulin-producing pancreatic islet β cells leads to chronic hyperglycemia. There are many β cell proteins that are targeted by autoreactive T cells in their native state. However, recent studies have demonstrated that many β cell proteins are recognized as neo-antigens following posttranslational modification (PTM). Although modified neo-antigens are well-established targets of pathology in other autoimmune diseases, the effects of neo-antigens in T1D progression and the mechanisms by which they are generated are not well understood. We have demonstrated that PTM occurs during endoplasmic reticulum (ER) stress, a process to which β cells are uniquely susceptible due to the high rate of insulin production in response to dynamic glucose sensing. In the context of genetic susceptibility to autoimmunity, presentation of these modified neo-antigens may activate autoreactive T cells and cause pathology. However, inherent β cell ER stress and protein PTM do not cause T1D in every genetically susceptible individual, suggesting the contribution of additional factors. Indeed, many environmental factors, such as viral infection, chemicals, or inflammatory cytokines, are associated with T1D onset, but the mechanisms by which these factors lead to disease onset remain unknown. Since these environmental factors also cause ER stress, exposure to these factors may enhance production of neo-antigens, therefore boosting β cell recognition by autoreactive T cells and exacerbating T1D pathogenesis. Therefore, the combined effects of physiological ER stress and the stress that is induced by environmental factors may lead to breaks in peripheral tolerance, contribute to antigen spread, and hasten disease onset. This Hypothesis and Theory article summarizes what is currently known about ER stress and protein PTM in autoimmune diseases including T1D and proposes a role for environmental factors in breaking immune tolerance to β cell antigens through neo-antigen formation.
Collapse
Affiliation(s)
- Meghan L Marré
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jon D Piganelli
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
18
|
Sanyal D, Majumder A, Chaudhuri SR, Chatterjee S. Thyroid profile and autoantibodies in Type 1 diabetes subjects: A perspective from Eastern India. Indian J Endocrinol Metab 2017; 21:45-50. [PMID: 28217497 PMCID: PMC5240080 DOI: 10.4103/2230-8210.195998] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
CONTEXT There has been a rise in the incidence of type 1 diabetes mellitus (T1DM) in India. The prevalence of thyroid autoantibodies and thyroid dysfunction is common in T1DM. AIMS The aim of this study is to determine the incidence of thyroid dysfunction and thyroid autoantibodies in T1DM subjects, without any history of thyroid disease, and the prevalence of glutamic acid decarboxylase (GAD) antibody, Islet antigen-2 antibody (IA2), thyroid peroxidase (TPO), and thyroglobulin autoantibodies (Tg-AB) in T1DM subjects. SETTINGS AND DESIGN This was a cross-sectional clinical-based study. SUBJECTS AND METHODS Fifty subjects (29 males, 31 females) with T1DM and without any history of thyroid dysfunction were included in the study. All subjects were tested for GAD antibody, IA2 antibody, TPO antibody, thyroglobulin antibody, free thyroxine, and thyroid-stimulating hormone. STATISTICAL ANALYSIS USED A Chi-square/pooled Chi-square test was used to assess the trends in the prevalence of hypothyroidism. A two-tailed P < 0.05 was considered statistically significant. RESULTS The mean age of the subjects was 23.50 years. 9.8% of subjects were below the age of 12 years, 27.45% of subjects were of age 12-18 years, 37.25% of subjects were of age 19-30 years, and 25.49% of subjects were above 30 years. 78% were positive autoantibody for GAD, 30% for IA-2, 24% for TPO, and 16% were positive for Tg-AB. A total of 6.0% of T1DM subjects had evidence of clinical hypothyroidism, but the prevalence of subclinical hyperthyroidism (SCH) varied from 32% to 68.0% for we considered different definitions of SCH as advocated by different guidelines. All subjects with overt hypothyroidism had positive GAD and thyroid autoantibodies. One (2%) subject had clinical hyperthyroidism with strongly positive GAD, TPO, and Tg-AB. CONCLUSIONS We found a high prevalence of GAD, IA2, TPO, and Tg-AB in our T1DM subjects. A substantial proportion of our subjects had undiagnosed thyroid dysfunction with a preponderance of subclinical hypothyroidism. All T1DM subjects with overt hypothyroidism or hyperthyroidism had positive GAD and thyroid autoantibodies. The high prevalence of undiagnosed thyroid dysfunction highlights the importance of regular thyroid screening in T1DM subjects.
Collapse
Affiliation(s)
- Debmalya Sanyal
- Department of Endocrinology, KPC Medical College, Kolkata, West Bengal, India
| | - Anirban Majumder
- Department of Endocrinology, KPC Medical College, Kolkata, West Bengal, India
| | | | - Sudip Chatterjee
- Department of Endocrinology, Park Clinic, Kolkata, West Bengal, India
| |
Collapse
|
19
|
Guerra LL, Faccinetti NI, Trabucchi A, Rovitto BD, Sabljic AV, Poskus E, Iacono RF, Valdez SN. Novel prokaryotic expression of thioredoxin-fused insulinoma associated protein tyrosine phosphatase 2 (IA-2), its characterization and immunodiagnostic application. BMC Biotechnol 2016; 16:84. [PMID: 27881117 PMCID: PMC5122161 DOI: 10.1186/s12896-016-0309-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/21/2016] [Indexed: 11/11/2022] Open
Abstract
Background The insulinoma associated protein tyrosine phosphatase 2 (IA-2) is one of the immunodominant autoantigens involved in the autoimmune attack to the beta-cell in Type 1 Diabetes Mellitus. In this work we have developed a complete and original process for the production and recovery of the properly folded intracellular domain of IA-2 fused to thioredoxin (TrxIA-2ic) in Escherichia coli GI698 and GI724 strains. We have also carried out the biochemical and immunochemical characterization of TrxIA-2icand design variants of non-radiometric immunoassays for the efficient detection of IA-2 autoantibodies (IA-2A). Results The main findings can be summarized in the following statements: i) TrxIA-2ic expression after 3 h of induction on GI724 strain yielded ≈ 10 mg of highly pure TrxIA-2ic/L of culture medium by a single step purification by affinity chromatography, ii) the molecular weight of TrxIA-2ic (55,358 Da) could be estimated by SDS-PAGE, size exclusion chromatography and mass spectrometry, iii) TrxIA-2ic was properly identified by western blot and mass spectrometric analysis of proteolytic digestions (63.25 % total coverage), iv) excellent immunochemical behavior of properly folded full TrxIA-2ic was legitimized by inhibition or displacement of [35S]IA-2 binding from IA-2A present in Argentinian Type 1 Diabetic patients, v) great stability over time was found under proper storage conditions and vi) low cost and environmentally harmless ELISA methods for IA-2A assessment were developed, with colorimetric or chemiluminescent detection. Conclusions E. coli GI724 strain emerged as a handy source of recombinant IA-2ic, achieving high levels of expression as a thioredoxin fusion protein, adequately validated and applicable to the development of innovative and cost-effective immunoassays for IA-2A detection in most laboratories. Electronic supplementary material The online version of this article (doi:10.1186/s12896-016-0309-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luciano Lucas Guerra
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Estudios de la Inmunidad Humoral "Prof. Ricardo A. Margni" (IDEHU), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Natalia Inés Faccinetti
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Estudios de la Inmunidad Humoral "Prof. Ricardo A. Margni" (IDEHU), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Aldana Trabucchi
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Estudios de la Inmunidad Humoral "Prof. Ricardo A. Margni" (IDEHU), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Bruno David Rovitto
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Estudios de la Inmunidad Humoral "Prof. Ricardo A. Margni" (IDEHU), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Adriana Victoria Sabljic
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Estudios de la Inmunidad Humoral "Prof. Ricardo A. Margni" (IDEHU), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Edgardo Poskus
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Estudios de la Inmunidad Humoral "Prof. Ricardo A. Margni" (IDEHU), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Ruben Francisco Iacono
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Estudios de la Inmunidad Humoral "Prof. Ricardo A. Margni" (IDEHU), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Silvina Noemí Valdez
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Estudios de la Inmunidad Humoral "Prof. Ricardo A. Margni" (IDEHU), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| |
Collapse
|
20
|
Pes GM, Delitala AP, Errigo A, Delitala G, Dore MP. Clustering of immunological, metabolic and genetic features in latent autoimmune diabetes in adults: evidence from principal component analysis. Intern Emerg Med 2016; 11:561-7. [PMID: 26612761 DOI: 10.1007/s11739-015-1352-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/07/2015] [Indexed: 01/30/2023]
Abstract
Latent autoimmune diabetes in adults (LADA) which accounts for more than 10 % of all cases of diabetes is characterized by onset after age 30, absence of ketoacidosis, insulin independence for at least 6 months, and presence of circulating islet-cell antibodies. Its marked heterogeneity in clinical features and immunological markers suggests the existence of multiple mechanisms underlying its pathogenesis. The principal component (PC) analysis is a statistical approach used for finding patterns in data of high dimension. In this study the PC analysis was applied to a set of variables from a cohort of Sardinian LADA patients to identify a smaller number of latent patterns. A list of 11 variables including clinical (gender, BMI, lipid profile, systolic and diastolic blood pressure and insulin-free time period), immunological (anti-GAD65, anti-IA-2 and anti-TPO antibody titers) and genetic features (predisposing gene variants previously identified as risk factors for autoimmune diabetes) retrieved from clinical records of 238 LADA patients referred to the Internal Medicine Unit of University of Sassari, Italy, were analyzed by PC analysis. The predictive value of each PC on the further development of insulin dependence was evaluated using Kaplan-Meier curves. Overall 4 clusters were identified by PC analysis. In component PC-1, the dominant variables were: BMI, triglycerides, systolic and diastolic blood pressure and duration of insulin-free time period; in PC-2: genetic variables such as Class II HLA, CTLA-4 as well as anti-GAD65, anti-IA-2 and anti-TPO antibody titers, and the insulin-free time period predominated; in PC-3: gender and triglycerides; and in PC-4: total cholesterol. These components explained 18, 15, 12, and 12 %, respectively, of the total variance in the LADA cohort. The predictive power of insulin dependence of the four components was different. PC-2 (characterized mostly by high antibody titers and presence of predisposing genetic markers) showed a faster beta-cells failure and PC-3 (characterized mostly by gender and high triglycerides) and PC-4 (high cholesterol) showed a slower beta-cells failure. PC-1 (including dislipidemia and other metabolic dysfunctions), showed a mild beta-cells failure. In conclusion variable clustering might be consistent with different pathogenic pathways and/or distinct immune mechanisms in LADA and could potentially help physicians improve the clinical management of these patients.
Collapse
Affiliation(s)
- Giovanni Mario Pes
- Dipartimento di Medicina Clinica e Sperimentale, University of Sassari, Viale San Pietro 8, 07100, Sassari, Italy
| | - Alessandro Palmerio Delitala
- Dipartimento di Medicina Clinica e Sperimentale, University of Sassari, Viale San Pietro 8, 07100, Sassari, Italy
| | - Alessandra Errigo
- Dipartimento di Medicina Clinica e Sperimentale, University of Sassari, Viale San Pietro 8, 07100, Sassari, Italy
| | - Giuseppe Delitala
- Dipartimento di Medicina Clinica e Sperimentale, University of Sassari, Viale San Pietro 8, 07100, Sassari, Italy
| | - Maria Pina Dore
- Dipartimento di Medicina Clinica e Sperimentale, University of Sassari, Viale San Pietro 8, 07100, Sassari, Italy.
| |
Collapse
|
21
|
Doran TM, Morimoto J, Simanski S, Koesema EJ, Clark LF, Pels K, Stoops SL, Pugliese A, Skyler JS, Kodadek T. Discovery of Phosphorylated Peripherin as a Major Humoral Autoantigen in Type 1 Diabetes Mellitus. Cell Chem Biol 2016; 23:618-628. [PMID: 27185639 DOI: 10.1016/j.chembiol.2016.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 04/03/2016] [Accepted: 04/07/2016] [Indexed: 12/21/2022]
Abstract
A major goal in understanding autoimmune diseases is to define the antigens that elicit a self-destructive immune response, but this is a difficult endeavor. In an effort to discover autoantigens associated with type 1 diabetes (T1D), we used epitope surrogate technology that screens combinatorial libraries of synthetic molecules for compounds that could recognize disease-linked autoantibodies and enrich them from serum. Autoantibodies from one patient revealed a highly phosphorylated form of peripherin, a neuroendocrine filament protein, as a candidate T1D antigen. Peripherin antibodies were detected in 72% of donor patient sera. Further analysis revealed that the T1D-associated antibodies only recognized a dimeric conformation of peripherin. These data explain why peripherin was dismissed as an important T1D antigen previously. The discovery of this novel autoantigen would not have been possible using standard methods, such as hybridizing serum antibodies to recombinant protein arrays, highlighting the power of epitope surrogate technology for probing the mechanism of autoimmune diseases.
Collapse
Affiliation(s)
- Todd M Doran
- Departments of Chemistry and Cancer Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Jumpei Morimoto
- Departments of Chemistry and Cancer Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Scott Simanski
- Departments of Chemistry and Cancer Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Eric J Koesema
- Departments of Chemistry and Cancer Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Lorraine F Clark
- Departments of Chemistry and Cancer Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Kevin Pels
- Departments of Chemistry and Cancer Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Sydney L Stoops
- Departments of Chemistry and Cancer Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Alberto Pugliese
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33101, USA; Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
| | - Jay S Skyler
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
| | - Thomas Kodadek
- Departments of Chemistry and Cancer Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|
22
|
Wasserfall C, Montgomery E, Yu L, Michels A, Gianani R, Pugliese A, Nierras C, Kaddis JS, Schatz DA, Bonifacio E, Atkinson MA. Validation of a rapid type 1 diabetes autoantibody screening assay for community-based screening of organ donors to identify subjects at increased risk for the disease. Clin Exp Immunol 2016; 185:33-41. [PMID: 27029857 DOI: 10.1111/cei.12797] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The Network for Pancreatic Organ donors with Diabetes (nPOD) programme was developed in response to an unmet research need for human pancreatic tissue obtained from individuals with type 1 diabetes mellitus and people at increased risk [i.e. autoantibody (AAb)-positive] for the disease. This necessitated the establishment of a type 1 diabetes-specific AAb screening platform for organ procurement organizations (OPOs). Assay protocols for commercially available enzyme-linked immunosorbent assays (elisas) determining AAb against glutamic acid decarboxylase (GADA), insulinoma-associated protein-2 (IA-2A) and zinc transporter-8 (ZnT8A) were modified to identify AAb-positive donors within strict time requirements associated with organ donation programmes. These rapid elisas were evaluated by the international islet AAb standardization programme (IASP) and used by OPO laboratories as an adjunct to routine serological tests evaluating donors for organ transplantation. The rapid elisas performed well in three IASPs (2011, 2013, 2015) with 98-100% specificity for all three assays, including sensitivities of 64-82% (GADA), 60-64% (IA-2A) and 62-68% (ZnT8A). Since 2009, nPOD has screened 4442 organ donors by rapid elisa; 250 (5·6%) were identified as positive for one AAb and 14 (0.3%) for multiple AAb with 20 of these cases received by nPOD for follow-up studies (14 GADA+, two IA-2A(+) , four multiple AAb-positive). Rapid screening for type 1 diabetes-associated AAb in organ donors is feasible, allowing for identification of non-diabetic, high-risk individuals and procurement of valuable tissues for natural history studies of this disease.
Collapse
Affiliation(s)
- C Wasserfall
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - E Montgomery
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - L Yu
- Univeristy of Colorado, Aurora
| | | | | | | | | | | | - D A Schatz
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - E Bonifacio
- Technical University of Dresden, Dresden, Germany
| | - M A Atkinson
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
23
|
Cai T, Notkins AL. Pathophysiologic changes in IA-2/IA-2β null mice are secondary to alterations in the secretion of hormones and neurotransmitters. Acta Diabetol 2016; 53:7-12. [PMID: 25861885 PMCID: PMC5243143 DOI: 10.1007/s00592-015-0750-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/26/2015] [Indexed: 12/13/2022]
Abstract
IA-2 and IA-2β are transmembrane proteins of dense-core vesicles (DCV). The deletion of these proteins results in a reduction in the number of DCV and the secretion of hormones and neurotransmitters. As a result, this leads to a variety of pathophysiologic changes. The purpose of this review is to describe these changes, which are characterized by glucose intolerance, female infertility, behavior and learning abnormalities and alterations in the diurnal circadian rhythms of blood pressure, heart rate, spontaneous physical activity and body temperature. These findings show that the deletion of IA-2 and IA-2β results in multiple pathophysiologic changes and represents a unique in vivo model for studying the effect of hormone and neurotransmitter reduction on known and still unrecognized targets.
Collapse
Affiliation(s)
- Tao Cai
- Experimental Medicine Section, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), B30/Rm106, Bethesda, MD, 20892, USA
| | - Abner L Notkins
- Experimental Medicine Section, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), B30/Rm106, Bethesda, MD, 20892, USA.
| |
Collapse
|
24
|
Sengelaub CA, Navrazhina K, Ross JB, Halberg N, Tavazoie SF. PTPRN2 and PLCβ1 promote metastatic breast cancer cell migration through PI(4,5)P2-dependent actin remodeling. EMBO J 2015; 35:62-76. [PMID: 26620550 PMCID: PMC4717998 DOI: 10.15252/embj.201591973] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 10/19/2015] [Indexed: 12/22/2022] Open
Abstract
Altered abundance of phosphatidyl inositides (PIs) is a feature of cancer. Various PIs mark the identity of diverse membranes in normal and malignant cells. Phosphatidylinositol 4,5‐bisphosphate (PI(4,5)P2) resides predominantly in the plasma membrane, where it regulates cellular processes by recruiting, activating, or inhibiting proteins at the plasma membrane. We find that PTPRN2 and PLCβ1 enzymatically reduce plasma membrane PI(4,5)P2 levels in metastatic breast cancer cells through two independent mechanisms. These genes are upregulated in highly metastatic breast cancer cells, and their increased expression associates with human metastatic relapse. Reduction in plasma membrane PI(4,5)P2 abundance by these enzymes releases the PI(4,5)P2‐binding protein cofilin from its inactive membrane‐associated state into the cytoplasm where it mediates actin turnover dynamics, thereby enhancing cellular migration and metastatic capacity. Our findings reveal an enzymatic network that regulates metastatic cell migration through lipid‐dependent sequestration of an actin‐remodeling factor.
Collapse
Affiliation(s)
- Caitlin A Sengelaub
- Laboratory of Systems Cancer Biology, Rockefeller University, New York, NY, USA
| | - Kristina Navrazhina
- Laboratory of Systems Cancer Biology, Rockefeller University, New York, NY, USA
| | - Jason B Ross
- Laboratory of Systems Cancer Biology, Rockefeller University, New York, NY, USA
| | - Nils Halberg
- Laboratory of Systems Cancer Biology, Rockefeller University, New York, NY, USA
| | - Sohail F Tavazoie
- Laboratory of Systems Cancer Biology, Rockefeller University, New York, NY, USA
| |
Collapse
|
25
|
Marré ML, James EA, Piganelli JD. β cell ER stress and the implications for immunogenicity in type 1 diabetes. Front Cell Dev Biol 2015; 3:67. [PMID: 26579520 PMCID: PMC4621612 DOI: 10.3389/fcell.2015.00067] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/08/2015] [Indexed: 12/11/2022] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by hyperglycemia due to progressive immune-mediated destruction of insulin-producing pancreatic islet β cells. Although many elegant studies have identified β cell autoantigens that are targeted by the autoimmune response, the mechanisms by which these autoantigens are generated remain poorly understood. Normal β cell physiology includes a high demand for insulin production and secretion in response to dynamic glucose sensing. This secretory function predisposes β cells to significantly higher levels of endoplasmic reticulum (ER) stress compared to nonsecretory cells. In addition, many environmental triggers associated with T1D onset further augment this inherent ER stress in β cells. ER stress may increase abnormal post-translational modification (PTM) of endogenous β cell proteins. Indeed, in other autoimmune disorders such as celiac disease, systemic lupus erythematosus, multiple sclerosis, and rheumatoid arthritis, abnormally modified neo-antigens are presented by antigen presenting cells (APCs) in draining lymph nodes. In the context of genetic susceptibility to autoimmunity, presentation of neo-antigens activates auto-reactive T cells and pathology ensues. Therefore, the ER stress induced by normal β cell secretory physiology and environmental triggers may be sufficient to generate neo-antigens for the autoimmune response in T1D. This review summarizes what is currently known about ER stress and protein PTM in target organs of other autoimmune disease models, as well as the data supporting a role for ER stress-induced neo-antigen formation in β cells in T1D.
Collapse
Affiliation(s)
- Meghan L Marré
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Pittsburgh, PA, USA
| | - Eddie A James
- Benaroya Research Institute at Virginia Mason Seattle, WA, USA
| | - Jon D Piganelli
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Pittsburgh, PA, USA
| |
Collapse
|
26
|
Rekers NV, von Herrath MG, Wesley JD. Immunotherapies and immune biomarkers in Type 1 diabetes: A partnership for success. Clin Immunol 2015; 161:37-43. [PMID: 26122172 DOI: 10.1016/j.clim.2015.05.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/13/2015] [Accepted: 05/17/2015] [Indexed: 12/16/2022]
Abstract
The standard of care (SoC) for Type 1 diabetes (T1D) today is much the same as it was in the early 1920s, simply with more insulin options-fast-acting, slow-acting, injectable, and inhalable insulins. However, these well-tolerated treatments only manage the symptoms and complications, but do nothing to halt the underlying immune response. There is an unmet need for better treatment options for T1D that address all aspects of the disease. For decades, we have successfully treated T1D in preclinical animal models with immune-modifying therapies that have not demonstrated comparable efficacy in humans. The path to bringing such options to the clinic will depend on the implementation and standard inclusion of biomarkers of immune and therapeutic efficacy in T1D clinical trials, and dictate if we can create a new SoC that treats the underlying autoimmunity as well as the symptoms it causes.
Collapse
Affiliation(s)
- Niels V Rekers
- Type 1 Diabetes R&D Center, Novo Nordisk Inc., Seattle, WA, USA; Pacific Northwest Diabetes Research Institute, Seattle, WA, USA
| | | | - Johnna D Wesley
- Type 1 Diabetes R&D Center, Novo Nordisk Inc., Seattle, WA, USA.
| |
Collapse
|
27
|
Cai T, Hirai H, Xu H, Notkins AL. The minimal promoter region of the dense-core vesicle protein IA-2: transcriptional regulation by CREB. Acta Diabetol 2015; 52:573-80. [PMID: 25528004 PMCID: PMC5273861 DOI: 10.1007/s00592-014-0689-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 11/20/2014] [Indexed: 11/29/2022]
Abstract
AIMS IA-2 is a transmembrane protein found in the dense-core vesicles (DCV) of neuroendocrine cells and one of the major autoantigens in type 1 diabetes. DCV are involved in the secretion of hormones (e.g., insulin) and neurotransmitters. Stimulation of pancreatic β cells with glucose upregulates the expression of IA-2 and an increase in IA-2 results in an increase in the number of DCV. Little is known, however, about the promoter region of IA-2 or the transcriptional factors that regulate the expression of this gene. METHODS In the present study, we constructed eight deletion fragments from the upstream region of the IA-2 transcription start site and linked them to a luciferase reporter. RESULTS By this approach, we have identified a short bp region (-216 to +115) that has strong promoter activity. We also identified a transcription factor, cAMP responsive element-binding protein (CREB), which binds to two CREB-related binding sites located in this region. The binding of CREB to these sites enhanced IA-2 transcription by more than fivefold. We confirmed these findings by site-directed mutagenesis, chromatin immunoprecipitation assays and RNAi inhibition. CONCLUSION Based on these findings, we conclude that the PKA pathway is a critical, but not the exclusive signaling pathway involved in IA-2 gene expression.
Collapse
Affiliation(s)
- Tao Cai
- Experimental Medicine Section, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), B30/Rm106, Bethesda, MD, 20892, USA,
| | | | | | | |
Collapse
|
28
|
Doran TM, Simanski S, Kodadek T. Discovery of native autoantigens via antigen surrogate technology: application to type 1 diabetes. ACS Chem Biol 2015; 10:401-12. [PMID: 25474415 PMCID: PMC4339956 DOI: 10.1021/cb5007618] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/04/2014] [Indexed: 01/23/2023]
Abstract
A fundamental goal in understanding the mechanisms of autoimmune disease is the characterization of autoantigens that are targeted by autoreactive antibodies and T cells. Unfortunately, the identification of autoantigens is a difficult problem. We have begun to explore a novel route to the discovery of autoantibody/autoantigen pairs that involves comparative screening of combinatorial libraries of unnatural, synthetic molecules for compounds that bind antibodies present at much higher levels in the serum of individuals with a given autoimmune disease than in the serum of control individuals. We have shown that this approach can yield "antigen surrogates" capable of capturing disease-specific autoantibodies from serum. In this report, we demonstrate that the synthetic antigen surrogates can be used to affinity purify the autoantibodies from serum and that these antibodies can then be used to identify their cognate autoantigen in an appropriate tissue lysate. Specifically, we report the discovery of a peptoid able to bind autoantibodies present in about one-third of nonobese diabetic (NOD) mice. The peptoid-binding autoantibodies were highly enriched through peptoid affinity chromatography and employed to probe mouse pancreatic and brain lysates. This resulted in identification of murine GAD65 as the native autoantigen. GAD65 is a known humoral autoantigen in human type 1 diabetes mellitus (T1DM), but its existence in mice had been controversial. This study demonstrates the potential of this chemical approach for the unbiased identification of autoantigen/autoantibody complexes.
Collapse
Affiliation(s)
- Todd M. Doran
- Departments
of Chemistry
& Cancer Biology, The Scripps Research
Institute, 130 Scripps
Way, Jupiter, Florida 33458, United States
| | - Scott Simanski
- Departments
of Chemistry
& Cancer Biology, The Scripps Research
Institute, 130 Scripps
Way, Jupiter, Florida 33458, United States
| | - Thomas Kodadek
- Departments
of Chemistry
& Cancer Biology, The Scripps Research
Institute, 130 Scripps
Way, Jupiter, Florida 33458, United States
| |
Collapse
|
29
|
Robert S, Van Huynegem K, Gysemans C, Mathieu C, Rottiers P, Steidler L. Trimming of two major type 1 diabetes driving antigens, GAD65 and IA-2, allows for successful expression in Lactococcus lactis. Benef Microbes 2015; 6:591-601. [PMID: 25576592 DOI: 10.3920/bm2014.0083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterised by excessive immune reactions against auto-antigens of pancreatic β-cells. Restoring auto-antigen tolerance remains the superior therapeutic strategy. Oral auto-antigen administration uses the tolerogenic nature of the gut-associated immune system to induce antigen-specific tolerance. However, due to gastric degradation, proper mucosal product delivery often imposes a challenge. Recombinant Lactococcus lactis have proven to be effective and safe carriers for gastrointestinal delivery of therapeutic products: L. lactis secreting diabetes-associated auto-antigens in combination with interleukin (IL)-10 have demonstrated therapeutic efficacy in a well-defined mouse model for T1D. Here, we describe the construction of recombinant L. lactis secreting the 65 kDa isoform of glutamic acid decarboxylase (GAD65) and tyrosine phosphatase-like protein ICA512 (IA-2), two major T1D-related auto-antigens. Attempts to secrete full size human GAD65 and IA-2 protein by L. lactis were unsuccessful. Trimming of GAD65 and IA-2 was investigated to optimise antigen secretion while maintaining sufficient bacterial growth. GAD65370-575 and IA-2635-979 showed to be efficiently secreted by recombinant L. lactis. Antigen secretion was verified by immunoblotting. Plasmid-derived GAD65 and IA-2 expression was combined in single strains with human IL-10 expression, a desired combination to allow tolerance induction. This study reports the generation of recombinant L. lactis secreting two major diabetes-related auto-antigens: human GAD65 and IA-2, by themselves or combined with the anti-inflammatory cytokine human IL-10. Prohibitive sequence obstacles hampering antigen secretion were resolved by trimming the full size proteins.
Collapse
Affiliation(s)
- S Robert
- 1 Clinical and Experimental Endocrinology (CEE), KU Leuven, Herestraat 49 bus 902, 3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
30
|
Balti EV, Vandemeulebroucke E, Weets I, Van De Velde U, Van Dalem A, Demeester S, Verhaeghen K, Gillard P, De Block C, Ruige J, Keymeulen B, Pipeleers DG, Decochez K, Gorus FK. Hyperglycemic clamp and oral glucose tolerance test for 3-year prediction of clinical onset in persistently autoantibody-positive offspring and siblings of type 1 diabetic patients. J Clin Endocrinol Metab 2015; 100:551-60. [PMID: 25405499 DOI: 10.1210/jc.2014-2035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
CONTEXT AND OBJECTIVE In preparation of future prevention trials, we aimed to identify predictors of 3-year diabetes onset among oral glucose tolerance test (OGTT)- and hyperglycemic clamp-derived metabolic markers in persistently islet autoantibody positive (autoAb(+)) offspring and siblings of patients with type 1 diabetes (T1D). DESIGN The design is a registry-based study. SETTING Functional tests were performed in a hospital setting. PARTICIPANTS Persistently autoAb(+) first-degree relatives of patients with T1D (n = 81; age 5-39 years). MAIN OUTCOME MEASURES We assessed 3-year predictive ability of OGTT- and clamp-derived markers using receiver operating characteristics (ROC) and Cox regression analysis. Area under the curve of clamp-derived first-phase C-peptide release (AUC(5-10 min); min 5-10) was determined in all relatives and second-phase release (AUC(120-150 min); min 120-150) in those aged 12-39 years (n = 62). RESULTS Overall, the predictive ability of AUC(5-10 min) was better than that of peak C-peptide, the best predictor among OGTT-derived parameters (ROC-AUC [95%CI]: 0.89 [0.80-0.98] vs 0.81 [0.70-0.93]). Fasting blood glucose (FBG) and AUC(5-10 min) provided the best combination of markers for prediction of diabetes within 3 years; (ROC-AUC [95%CI]: 0.92 [0.84-1.00]). In multivariate Cox regression analysis, AUC(5-10 min)) (P = .001) was the strongest independent predictor and interacted significantly with all tested OGTT-derived parameters. AUC(5-10 min) below percentile 10 of controls was associated with 50-70% progression to T1D regardless of age. Similar results were obtained for AUC(120-150 min). CONCLUSIONS Clamp-derived first-phase C-peptide release can be used as an efficient and simple screening strategy in persistently autoAb(+) offspring and siblings of T1D patients to predict impending diabetes.
Collapse
Affiliation(s)
- Eric V Balti
- Diabetes Research Center (E.V.B., E.V., I.W., A.V., S.D., P.G., B.K., D.G.P., K.D., F.K.G.), Brussels Free University-VUB, Brussels, Belgium; Department of Clinical Chemistry and Radio-Immunology (E.V.B., I.W., A.V., S.D., K.V., F.K.G.), University Hospital Brussels-UZ Brussel, Brussels, Belgium; Diabetes Clinic (E.V., U.V., B.K., K.D.), University Hospital Brussels-UZ Brussel, Brussels, Belgium; Department of Clinical and Experimental Medicine (P.G.), University of Leuven-KUL and University Hospital Leuven, Leuven, Belgium; Department of Endocrinology (C.D.), Diabetology and Metabolism, Antwerp University Hospital, Edegem, Belgium; and Department of Endocrinology (J.R.), University of Ghent, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Nishimura A, Nagasawa K, Okubo M, Kobayashi T, Mori Y. Exponential increase of glutamic acid decarboxylase (GAD) antibody titer after initiating and stopping insulin in a patient with slowly progressive type 1 diabetes. Endocr J 2015; 62:1077-82. [PMID: 26440526 DOI: 10.1507/endocrj.ej15-0378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Few articles have described fluctuations in glutamic acid decarboxylase antibody (GADAb) levels after a diagnosis of slowly progressive type 1 diabetes (SPIDDM). Here, we present a case in which GADAb levels exponentially increased after initiating and stopping insulin. A 64-year-old female patient newly diagnosed with SPIDDM was admitted and started multiple daily insulin injections. The patient's GADAb titer was 6.9 U/mL (normal: <1.4 U/mL) and the patient had a type 1 diabetes susceptible HLA class II haplotype known in the Japanese population as: DRB1*04:05-DQB1*04:01. When the patient's "honeymoon period" set in, hypoglycemia was observed and the dose of insulin was reduced. Two months after the diagnosis, 1 unit of insulin glargine/day was being injected and the patient demonstrated good glycemic control. Subsequently, the patient's home doctor recommended that insulin injections be stopped. Three months after the diagnosis, the patient's GADAb titer suddenly increased to 1600 U/mL. The patient's GADAb titer decreased but was still positive (40 U/mL) 36 months after diagnosis. HbA1c levels were maintained below 7%, and oral glucose tolerance tests at 10, 26, and 36 months after diagnosis suggested that the patient had preserved insulin secretion. To the best of our knowledge, this is the first report that describes exponential increases in GADAb after initiating and stopping insulin in a patient with SPIDDM.
Collapse
Affiliation(s)
- Akihiro Nishimura
- Department of Endocrinology and Metabolism Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan
| | | | | | | | | |
Collapse
|
32
|
Ida-1, the Caenorhabditis elegans orthologue of mammalian diabetes autoantigen IA-2, potentially acts as a common modulator between Parkinson's disease and Diabetes: role of Daf-2/Daf-16 insulin like signalling pathway. PLoS One 2014; 9:e113986. [PMID: 25469508 PMCID: PMC4254930 DOI: 10.1371/journal.pone.0113986] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/31/2014] [Indexed: 01/08/2023] Open
Abstract
The lack of cure to age associated Parkinson's disease (PD) has been challenging the efforts of researchers as well as health care providers. Recent evidences suggest that diabetic patients tend to show a higher future risk for PD advocating a strong correlation between PD and Diabetes, thus making it intriguing to decipher common genetic cues behind these ailments. We carried out studies on ida-1, the C. elegans orthologue of mammalian type-1 diabetes auto-antigen IA-2 towards achieving its functional workup vis-à-vis various associated endpoints of PD and Diabetes. Employing transgenic C. elegans strain expressing "human" alpha synuclein (NL5901) under normal and increased glucose concentrations, we studied aggregation of alpha synuclein, content of dopamine, expression of dopamine transporter, content of reactive oxygen species, locomotor activity, nuclear translocation of FOXO transcription factor Daf-16, and quantification of Daf2/Daf-16 mRNA. Our findings indicate that ida-1 affords protection in the studied disease conditions as absence of ida-1 resulted in higher alpha-synuclein aggregation under conditions that mimic the blood glucose levels of diabetic patients. We also observed reduced dopamine content, decreased motility, defective Daf-16 translocation and reduced expression of Daf-2 and Daf-16. Our studies establish important function of ida-1 as a modulator in Daf-2/Daf-16 insulin like signalling pathway thus possibly being a common link between PD and Diabetes.
Collapse
|
33
|
Dhanwal D, Agarwal S, Garg S, Agarwal P. Clinical & immunological profile of newly diagnosed patients with youth onset diabetes mellitus. Indian J Med Res 2014; 140:356-60. [PMID: 25366202 PMCID: PMC4248381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND & OBJECTIVES There has been a rise in the incidence of diabetes mellitus in the younger population of India. There are limited data available on the immunological profile of youth onset diabetes mellitus (DM) especially in type 2. Therefore, this study was undertaken to evaluate the clinical and immunological profile of youth onset DM in north India. METHODS Fifty one consecutive patients of 8-35 yr of age with diabetes mellitus attending the Lok Nayak Hospital, Maulana Azad Medical College, New Delhi, and Hormone Care and Research Center at Ghaziabad, Uttar Pradesh, India, were included in the study. All subjects were tested for glutamic acid decarboxylase (GAD), an islet cell antigen ICA512/IA2, and insulin antibodies. GAD and ICA512/IA2 were done by ELISA and insulin autoantibodies were tested by radioimmunoassay (RIA) method. These patients were also screened for hepatitis A to E, cytomegalovirus (CMV) and Epstein-Barr virus (EBV) as trigger factors for onset of type 1 DM. RESULTS o0 f the total 51 patients, 38 were men and 13 were women. The mean age and BMI of the subjects was 19.7 (±7) years and 21 (± 5) kg/m [2] , respectively. Twenty patients were below the age of 18 yr and their height was more than 75 th percentile of Indian standards. All patients were symptomatic and 12 of these presented with ketoacidosis. Only 48 per cent (n=24) were positive for GAD, 14 per cent (n=7) for ICA512/IA-2, and 28% (n=14) were positive for insulin antibody. Five of these patients had evidence of hepatitis E virus infection. None of the subjects had evidence of active CMV or EBV infection. INTERPRETATION & CONCLUSIONS About half of the youth onset diabetes mellitus patients from north India had presence of pancreatic autoimmunity in the form of GAD, ICA512/IA2, and insulin antibodies or a combination of antibodies suggestive of having type 1 DM. Further studies need to be done on a large sample size in different parts of the country.
Collapse
Affiliation(s)
- D.K. Dhanwal
- Department of Medicine, Maulana Azad Medical College, New Delhi, India,Reprint requests: Dr Dinesh K. Dhanwal, Director Professor of Medicine & Endocrinologist, Maulana Azad Medical College, New Delhi 110 002, India e-mail:
| | - S. Agarwal
- Department of Medicine, Maulana Azad Medical College, New Delhi, India
| | - S. Garg
- Department of Medicine, Maulana Azad Medical College, New Delhi, India
| | - P. Agarwal
- Endocrinologist, Hormone Care & Research Center, Ghaziabad, India
| |
Collapse
|
34
|
Carmona GN, Nishimura T, Schindler CW, Panlilio LV, Notkins AL. The dense core vesicle protein IA-2, but not IA-2β, is required for active avoidance learning. Neuroscience 2014; 269:35-42. [PMID: 24662847 DOI: 10.1016/j.neuroscience.2014.03.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 03/12/2014] [Accepted: 03/13/2014] [Indexed: 10/25/2022]
Abstract
The islet-antigens IA-2 and IA-2β are major autoantigens in type-1 diabetes and transmembrane proteins in dense core vesicles (DCV). Recently we showed that deletion of both IA-2 and IA-2β alters the secretion of hormones and neurotransmitters and impairs behavior and learning. The present study was designed to evaluate the contribution to learning of each of these genes by using single knockout (SKO) and double knockout (DKO) mice in an active avoidance test. After 5 days of training, wild-type (WT) mice showed 60-70% active avoidance responses, whereas the DKO mice showed only 10-15% active avoidance responses. The degree of active avoidance responses in the IA-2 SKO mice was similar to that of the DKO mice, but in contrast, the IA-2β SKO mice behaved like WT mice showing 60-70% active avoidance responses. Molecular studies revealed a marked decrease in the phosphorylation of the cAMP response element-binding protein (CREB) and Ca(2+)/calmodulin-dependent protein kinase II (CAMKII) in the striatum and hippocampus of the IA-2 SKO and DKO mice, but not in the IA-2β SKO mice. To evaluate the role of CREB and CAMKII in the SKO and DKO mice, GBR-12909, which selectively blocks the dopamine uptake transporter and increases CREB and CAMKII phosphorylation, was administered. GBR-12909 restored the phosphorylation of CREB and CAMKII and increased active avoidance learning in the DKO and IA-2 SKO to near the normal levels found in the WT and IA-2β SKO mice. We conclude that in the absence of the DCV protein IA-2, active avoidance learning is impaired.
Collapse
Affiliation(s)
- G N Carmona
- Experimental Medicine Section, Laboratory of Sensory Biology Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - T Nishimura
- Experimental Medicine Section, Laboratory of Sensory Biology Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - C W Schindler
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - L V Panlilio
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - A L Notkins
- Experimental Medicine Section, Laboratory of Sensory Biology Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
35
|
Gorus FK, Keymeulen B, Veld PAI, Pipeleers DG. Predictors of progression to Type 1 diabetes: preparing for immune interventions in the preclinical disease phase. Expert Rev Clin Immunol 2014; 9:1173-83. [DOI: 10.1586/1744666x.2013.856757] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
36
|
Ludwig B, Barthel A, Reichel A, Block NL, Ludwig S, Schally AV, Bornstein SR. Modulation of the pancreatic islet-stress axis as a novel potential therapeutic target in diabetes mellitus. VITAMINS AND HORMONES 2014; 95:195-222. [PMID: 24559919 DOI: 10.1016/b978-0-12-800174-5.00008-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Loss of pancreatic islet function and insulin-producing beta cell mass is a central hallmark in the pathogenesis of both type 1 and type 2 diabetes. While in type 1 diabetes this phenomenon is due to an extensive destruction of beta cells caused by an autoimmune process, the mechanisms resulting in beta cell failure in type 2 diabetes are different and less clear. Also, beta cell destruction in type 1 diabetes occurs early and is the initial step in the pathogenetic process, while beta cell loss in type 2 diabetes after an initial phase of hyperinsulinemia due to the underlying insulin resistance occurs relatively late and it is less pronounced. Since diabetes mellitus is the most frequent endocrine disease, with an increasing high prevalence worldwide, huge efforts have been made over the past many decades to identify predisposing genetic, environmental, and nutritional factors in order to develop effective strategies to prevent the disease. In parallel, extensive studies in different cell systems and animal models have helped to elucidate our understanding of the physiologic function of islets and to gain insight into the immunological and non-immunological mechanisms of beta cell destruction and failure. Furthermore, currently emerging concepts of beta cell regeneration (e.g., the restoration of the beta cell pool by regenerative, proliferative and antiapoptotic processes, and recovery of physiologic islet function) apparently is yielding the first promising results. Recent insights into the complex endocrine and paracrine mechanisms regulating the physiologic function of pancreatic islets, as well as beta cell life and death, constitute an essential part of this new and exciting area of diabetology. For example, understanding of the physiological role of glucagon-like peptide 1 has resulted in the successful clinical implementation of incretin-based therapies over the last years. Further, recent data suggesting paracrine effects of growth hormone-releasing hormone and corticotropin-releasing hormone on the regulation of pancreatic islet function, survival, and proliferation as well as on local glucocorticoid metabolism provide evidence for a potential role of the pancreatic islet-stress axis in the pathophysiology of diabetes mellitus. In this chapter, we provide a comprehensive overview of current preventive and regenerative concepts as a basis for the development of novel therapeutic approaches to the treatment of diabetes mellitus. A particular focus is given on the potential of the pancreatic islet-stress axis in the development of novel regenerative strategies.
Collapse
Affiliation(s)
- Barbara Ludwig
- Department of Medicine III, University Hospital Carl Gustav Carus, Dresden, Germany; The Paul Langerhans Institute, Dresden, Germany; Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany.
| | - Andreas Barthel
- Department of Medicine III, University Hospital Carl Gustav Carus, Dresden, Germany; Endokrinologikum Ruhr, Bochum, Germany
| | - Andreas Reichel
- Department of Medicine III, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Norman L Block
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Medicine, Division of Hematology-Oncology, University of Miami Miller School of Medicine, Miami, Florida, USA; Veterans Administration Medical Center, Miami, Florida, USA
| | - Stefan Ludwig
- Department of Visceral, Thorax and Vascular Surgery, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Andrew V Schally
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Medicine, Division of Endocrinology, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Medicine, Division of Hematology-Oncology, University of Miami Miller School of Medicine, Miami, Florida, USA; Veterans Administration Medical Center, Miami, Florida, USA
| | - Stefan R Bornstein
- Department of Medicine III, University Hospital Carl Gustav Carus, Dresden, Germany; The Paul Langerhans Institute, Dresden, Germany; Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany
| |
Collapse
|
37
|
A new ELISA for dermatomyositis autoantibodies: rapid introduction of autoantigen cDNA to recombinant assays for autoantibody measurement. Clin Dev Immunol 2013; 2013:856815. [PMID: 24416061 PMCID: PMC3876671 DOI: 10.1155/2013/856815] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 11/19/2013] [Accepted: 11/19/2013] [Indexed: 01/05/2023]
Abstract
Advances in immunology, biochemistry, and molecular biology have enabled the development of a number of assays for measuring autoantibodies. ELISA has been widely used, because it can deal with relatively large numbers of serum samples more quickly than other immunologic methods, such as immunoblotting and immunoprecipitation. Recombinant autoantigens, which are generally produced in E. coli using the relevant cloned cDNA, are necessary for ELISA. Conventional clinical ELISA tests are limited in their ability to purify proteins free of bacterial contaminants, and the process is labor intensive. We recently developed new ELISA tests that utilize simple in vitro transcription and translation labeling of autoantigens in order to measure dermatomyositis- (DM-) specific autoantibodies, including autoantibodies to Mi-2, MDA5, NXP-2, TIF1-α, and TIF1-γ. This method may allow for the rapid conversion of cDNAs to a chemiluminescent ELISA to detect autoantibodies that are found not only in DM but also in other autoimmune diseases.
Collapse
|
38
|
Rydén AKE, Wesley JD, Coppieters KT, Von Herrath MG. Non-antigenic and antigenic interventions in type 1 diabetes. Hum Vaccin Immunother 2013; 10:838-46. [PMID: 24165565 PMCID: PMC4896560 DOI: 10.4161/hv.26890] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Type 1 diabetes (T1D) results from autoimmune destruction of the pancreatic β-cells. Current T1D therapies are exclusively focused on regulating glycemia rather than the underlying immune response. A handful of trials have sought to alter the clinical course of T1D using various broad immune-suppressors, e.g., cyclosporine A and azathioprine.1–3 The effect on β-cell preservation was significant, however, these therapies were associated with unacceptable side-effects. In contrast, more recent immunomodulators, such as anti-CD3 and antigenic therapies such as DiaPep277, provide a more targeted immunomodulation and have been generally well-tolerated and safe; however, as a monotherapy there appear to be limitations in terms of therapeutic benefit. Therefore, we argue that this new generation of immune-modifying agents will likely work best as part of a combination therapy. This review will summarize current immune-modulating therapies under investigation and discuss how to move the field of immunotherapy in T1D forward.
Collapse
Affiliation(s)
- Anna K E Rydén
- Type 1 Diabetes R&D Center; Novo Nordisk Inc.; Seattle, WA USA; Pacific Northwest Diabetes Research Institute; Seattle, WA USA
| | | | | | | |
Collapse
|
39
|
Upadhyaya S. Immunology of type I diabetes: The journey from animal models to human therapeutics. APOLLO MEDICINE 2013. [DOI: 10.1016/j.apme.2013.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
40
|
Donelan W, Wang H, Li SW, Pittman D, Li Y, Han S, Sun Y, Carter C, Atkinson M, Reeves W, Winter WE, Yang LJ. Novel detection of pancreatic and duodenal homeobox 1 autoantibodies (PAA) in human sera using luciferase immunoprecipitation systems (LIPS) assay. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2013; 6:1202-1210. [PMID: 23696946 PMCID: PMC3657381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 04/16/2013] [Indexed: 06/02/2023]
Abstract
We have previously identified pancreatic and duodenal homeobox 1 (Pdx1) autoantibodies (PAA) in sera from both non-obese diabetic (NOD) mice and human type 1 diabetic (T1D) patients. A suitable non-radioactive, sensitive and specific assay is needed for large-scale testing to determine the clinical utility of PAA. Here we reported a liquid-phase luciferase immunoprecipitation system (LIPS) assay by generating a renilla luciferase (Rluc)-Pdx1 fusion protein as a sensitive non-radioactive antigen from mammalian cells combined with immunoprecipitation to detect PAA in human sera. Sera from healthy donors and the University of Florida Pathology Laboratories, Endocrine Autoantibody Laboratory were used to validate the LIPS assay for PAA. Antigenic specificity to Pdx1 was confirmed by using a Rluc-only control compared to Rluc-Pdx1 fusion antigen and by competition assays using purified recombinant Pdx1 protein. We then used the LIPS assay to assess the prevalence of triple autoantibodies (GADA, IA-2A, and IA-2βA), and PAA in non-T1D control sera, recent onset (RO)-T1D sera (mean duration of T1D = 9.5 weeks), and long standing (LS)-T1D sera. Compared to clinical radioimmunoprecipitation assays (RIPA), the LIPS assay showed comparable sensitivity and specificity for detection of GADA and IA-2A. PAA were detectable in human serum samples and higher in triple-positive T1D autoantibodies (21% PAA positive in triple positive sera and 4% PAA positive in triple negative sera). Interestingly, PAA were found to be highest in the non-T1D population, suggesting that PAA might have a clinical utility in screening high-risk population susceptible for developing T1D. In conclusion, we have developed a liquid-phase, non-radioactive, sensitive and specific LIPS assay to detect PAA in human sera, providing a useful tool for evaluating the clinical relevance of PAA.
Collapse
Affiliation(s)
- William Donelan
- Department of Pathology, Immunology and Laboratory MedicineGainesville, Florida 32610, USA
| | - Hai Wang
- Department of Pathology, Immunology and Laboratory MedicineGainesville, Florida 32610, USA
| | - Shi-Wu Li
- Department of Pathology, Immunology and Laboratory MedicineGainesville, Florida 32610, USA
| | - David Pittman
- Department of Pathology, Immunology and Laboratory MedicineGainesville, Florida 32610, USA
| | - Yi Li
- Department of Medicine, University of Florida College of MedicineGainesville, Florida 32610, USA
| | - Shuhong Han
- Department of Medicine, University of Florida College of MedicineGainesville, Florida 32610, USA
| | - Yu Sun
- Department of Pathology, Immunology and Laboratory MedicineGainesville, Florida 32610, USA
| | - Christopher Carter
- Department of Pathology, Immunology and Laboratory MedicineGainesville, Florida 32610, USA
| | - Mark Atkinson
- Department of Pathology, Immunology and Laboratory MedicineGainesville, Florida 32610, USA
| | - Westley Reeves
- Department of Medicine, University of Florida College of MedicineGainesville, Florida 32610, USA
| | - William E Winter
- Department of Pathology, Immunology and Laboratory MedicineGainesville, Florida 32610, USA
| | - Li-Jun Yang
- Department of Pathology, Immunology and Laboratory MedicineGainesville, Florida 32610, USA
- Tianjin University of Science & TechnologyTianjin, 300457, China
| |
Collapse
|
41
|
La Torre D. Immunobiology of beta-cell destruction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 771:194-218. [PMID: 23393680 DOI: 10.1007/978-1-4614-5441-0_16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Type 1 diabetes is a chronic disease characterized by severe insulin deficiency and hyperglycemia, due to autoimmune destruction of pancreatic islets of Langerhans. A susceptible genetic background is necessary, but not sufficient, for the development of the disease. Epidemiological and clinical observations underscore the importance of environmental factors as triggers of type 1 diabetes, currently under investigation. Islet-specific autoantibodies precede clinical onset by months to years and are established tools for risk prediction, yet minor players in the pathogenesis of the disease. Many efforts have been made to elucidate disease-relevant defects in the key immune effectors of islet destruction, from the early failure of specific tolerance to the vicious circle of destructive insulitis. However, the events triggering islet autoimmunity as well as the transition to overt diabetes are still largely unknown, making prevention and treatment strategies still a challenge.
Collapse
Affiliation(s)
- Daria La Torre
- Lund University, Clinical Research Center (CRC), Department of Clinical Sciences, Malmö, Sweden.
| |
Collapse
|
42
|
Gressner AM, Arndt T. A. LEXIKON DER MEDIZINISCHEN LABORATORIUMSDIAGNOSTIK 2013. [PMCID: PMC7123472 DOI: 10.1007/978-3-642-12921-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Punia S, Rumery KK, Yu EA, Lambert CM, Notkins AL, Weaver DR. Disruption of gene expression rhythms in mice lacking secretory vesicle proteins IA-2 and IA-2β. Am J Physiol Endocrinol Metab 2012; 303:E762-76. [PMID: 22785238 PMCID: PMC3468428 DOI: 10.1152/ajpendo.00513.2011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulinoma-associated protein (IA)-2 and IA-2β are transmembrane proteins involved in neurotransmitter secretion. Mice with targeted disruption of both IA-2 and IA-2β (double-knockout, or DKO mice) have numerous endocrine and physiological disruptions, including disruption of circadian and diurnal rhythms. In the present study, we have assessed the impact of disruption of IA-2 and IA-2β on molecular rhythms in the brain and peripheral oscillators. We used in situ hybridization to assess molecular rhythms in the hypothalamic suprachiasmatic nuclei (SCN) of wild-type (WT) and DKO mice. The results indicate significant disruption of molecular rhythmicity in the SCN, which serves as the central pacemaker regulating circadian behavior. We also used quantitative PCR to assess gene expression rhythms in peripheral tissues of DKO, single-knockout, and WT mice. The results indicate significant attenuation of gene expression rhythms in several peripheral tissues of DKO mice but not in either single knockout. To distinguish whether this reduction in rhythmicity reflects defective oscillatory function in peripheral tissues or lack of entrainment of peripheral tissues, animals were injected with dexamethasone daily for 15 days, and then molecular rhythms were assessed throughout the day after discontinuation of injections. Dexamethasone injections improved gene expression rhythms in liver and heart of DKO mice. These results are consistent with the hypothesis that peripheral tissues of DKO mice have a functioning circadian clockwork, but rhythmicity is greatly reduced in the absence of robust, rhythmic physiological signals originating from the SCN. Thus, IA-2 and IA-2β play an important role in the regulation of circadian rhythms, likely through their participation in neurochemical communication among SCN neurons.
Collapse
Affiliation(s)
- Sohan Punia
- Experimental Medicine Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
44
|
Andersen MLM, Vaziri-Sani F, Delli A, Pörksen S, Jacobssen E, Thomsen J, Svensson J, Steen Petersen J, Hansen L, Lernmark A, Mortensen HB, Nielsen LB. Association between autoantibodies to the Arginine variant of the Zinc transporter 8 (ZnT8) and stimulated C-peptide levels in Danish children and adolescents with newly diagnosed type 1 diabetes. Pediatr Diabetes 2012; 13:454-62. [PMID: 22686132 DOI: 10.1111/j.1399-5448.2012.00857.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 01/20/2012] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The zinc transporter 8 (ZnT8) was recently identified as a common autoantigen in type 1 diabetes (T1D) and inclusion of ZnT8 autoantibodies (ZnT8Ab) was found to increase the diagnostic specificity of T1D. OBJECTIVES The main aims were to determine whether ZnT8Ab vary during follow-up 1 year after diagnosis, and to relate the reactivity of three types of ZnT8Ab to the residual stimulated C-peptide levels during the first year after diagnosis. SUBJECTS A total of 129 newly diagnosed T1D patients <15 years was followed prospectively 1, 3, 6, and 12 months after diagnosis. METHODS Hemoglobin A1c, meal-stimulated C-peptide, ZnT8Ab, and other pancreatic autoantibodies were measured at each visit. Patients were genotyped for the rs13266634 variant at the SLC30A8 gene and HLA-DQ alleles. RESULTS The levels of all ZnT8Ab [ZnT8Arg (arginine), ZnT8Trp (tryptophan), ZnT8Gln (glutamine)] tended to decrease during disease progression. A twofold higher level of ZnT8Arg and ZnT8Gln was associated with 4.6%/5.2% (p = 0.02), 5.3%/8.2% (p = 0.02) and 8.9%/9.7% (p = 0.004) higher concentrations of stimulated C-peptide 3, 6, and 12 months after diagnosis. The TT genotype carriers of the SLC30A8 gene had 45.8% (p = 0.01) and 60.1% (p = 0.002) lower stimulated C-peptide 6 and 12 months after diagnosis compared to the CC and the CT genotype carriers in a recessive model. CONCLUSIONS The levels of the Arg variant of the ZnT8 autoantibodies are associated with higher levels of stimulated C-peptide after diagnosis of T1D and during follow-up. Carriers of the TT genotype of the SLC30A8 gene predict lower stimulated C-peptide levels 12 months after diagnosis.
Collapse
|
45
|
Receptor type protein tyrosine phosphatases (RPTPs) - roles in signal transduction and human disease. J Cell Commun Signal 2012; 6:125-38. [PMID: 22851429 DOI: 10.1007/s12079-012-0171-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 07/12/2012] [Indexed: 01/06/2023] Open
Abstract
Protein tyrosine phosphorylation is a fundamental regulatory mechanism controlling cell proliferation, differentiation, communication, and adhesion. Disruption of this key regulatory mechanism contributes to a variety of human diseases including cancer, diabetes, and auto-immune diseases. Net protein tyrosine phosphorylation is determined by the dynamic balance of the activity of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). Mammals express many distinct PTKs and PTPs. Both of these families can be sub-divided into non-receptor and receptor subtypes. Receptor protein tyrosine kinases (RPTKs) comprise a large family of cell surface proteins that initiate intracellular tyrosine phosphorylation-dependent signal transduction in response to binding of extracellular ligands, such as growth factors and cytokines. Receptor-type protein tyrosine phosphatases (RPTPs) are enzymatic and functional counterparts of RPTKs. RPTPs are a family of integral cell surface proteins that possess intracellular PTP activity, and extracellular domains that have sequence homology to cell adhesion molecules. In comparison to extensively studied RPTKs, much less is known about RPTPs, especially regarding their substrate specificities, regulatory mechanisms, biological functions, and their roles in human diseases. Based on the structure of their extracellular domains, the RPTP family can be grouped into eight sub-families. This article will review one representative member from each RPTP sub-family.
Collapse
|
46
|
Verhulst PJ, Depoortere I. Ghrelin's second life: From appetite stimulator to glucose regulator. World J Gastroenterol 2012; 18:3183-95. [PMID: 22783041 PMCID: PMC3391754 DOI: 10.3748/wjg.v18.i25.3183] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 12/01/2011] [Accepted: 01/18/2012] [Indexed: 02/06/2023] Open
Abstract
Ghrelin, a 28 amino acid peptide hormone produced by the stomach, was the first orexigenic hormone to be discovered from the periphery. The octanoyl modification at Ser3, mediated by ghrelin O-acyltransferase (GOAT), is essential for ghrelin’s biological activity. Ghrelin stimulates food intake through binding to its receptor (GRLN-R) on neurons in the arcuate nucleus of the hypothalamus. Ghrelin is widely expressed throughout the body; accordingly, it is implicated in several other physiological functions, which include growth hormone release, gastric emptying, and body weight regulation. Ghrelin and GRLN-R expression are also found in the pancreas, suggesting a local physiological role. Accordingly, several recent studies now point towards an important role for ghrelin and its receptor in the regulation of blood glucose homeostasis, which is the main focus of this review. Several mechanisms of this regulation by ghrelin have been proposed, and one possibility is through the regulation of insulin secretion. Despite some controversy, most studies suggest that ghrelin exerts an inhibitory effect on insulin secretion, resulting in increased circulating glucose levels. Ghrelin may thus be a diabetogenic factor. Obesity-related type 2 diabetes has become an increasingly important health problem, almost reaching epidemic proportions in the world; therefore, antagonists of the ghrelin-GOAT signaling pathway, which will tackle both energy- and glucose homeostasis, may be considered as promising new therapies for this disease.
Collapse
|
47
|
Asfandiyarova NS. Cell-mediated immunity to insulin: A new criterion for differentiation of diabetes mellitus? Med Hypotheses 2012; 78:402-6. [DOI: 10.1016/j.mehy.2011.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 11/16/2011] [Accepted: 11/22/2011] [Indexed: 10/14/2022]
|
48
|
Schnermann J, Briggs JP. Synthesis and secretion of renin in mice with induced genetic mutations. Kidney Int 2012; 81:529-38. [PMID: 22258323 DOI: 10.1038/ki.2011.451] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The juxtaglomerular (JG) cell product renin is rate limiting in the generation of the bioactive octapeptide angiotensin II. Rates of synthesis and secretion of the aspartyl protease renin by JG cells are controlled by multiple afferent and efferent pathways originating in the CNS, cardiovascular system, and kidneys, and making critical contributions to the maintenance of extracellular fluid volume and arterial blood pressure. Since both excesses and deficits of angiotensin II have deleterious effects, it is not surprising that control of renin is secured by a complex system of feedforward and feedback relationships. Mice with genetic alterations have contributed to a better understanding of the networks controlling renin synthesis and secretion. Essential input for the setting of basal renin generation rates is provided by β-adrenergic receptors acting through cyclic adenosine monophosphate, the primary intracellular activation mechanism for renin mRNA generation. Other major control mechanisms include COX-2 and nNOS affecting renin through PGE2, PGI2, and nitric oxide. Angiotensin II provides strong negative feedback inhibition of renin synthesis, largely an indirect effect mediated by baroreceptor and macula densa inputs. Adenosine appears to be a dominant factor in the inhibitory arms of the baroreceptor and macula densa mechanisms. Targeted gene mutations have also shed light on a number of novel aspects related to renin processing and the regulation of renin synthesis and secretion.
Collapse
Affiliation(s)
- Jurgen Schnermann
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
49
|
Primo ME, Jakoncic J, Noguera ME, Risso VA, Sosa L, Sica MP, Solimena M, Poskus E, Ermácora MR. Protein-protein interactions in crystals of the human receptor-type protein tyrosine phosphatase ICA512 ectodomain. PLoS One 2011; 6:e24191. [PMID: 21935384 PMCID: PMC3174154 DOI: 10.1371/journal.pone.0024191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 08/02/2011] [Indexed: 11/19/2022] Open
Abstract
ICA512 (or IA-2) is a transmembrane protein-tyrosine phosphatase located in secretory granules of neuroendocrine cells. Initially, it was identified as one of the main antigens of autoimmune diabetes. Later, it was found that during insulin secretion, the cytoplasmic domain of ICA512 is cleaved and relocated to the nucleus, where it stimulates the transcription of the insulin gene. The role of the other parts of the receptor in insulin secretion is yet to be unveiled. The structures of the intracellular pseudocatalytic and mature extracellular domains are known, but the transmembrane domain and several intracellular and extracellular parts of the receptor are poorly characterized. Moreover the overall structure of the receptor remains to be established. We started to address this issue studying by X-ray crystallography the structure of the mature ectodomain of ICA512 (ME ICA512) and variants thereof. The variants and crystallization conditions were chosen with the purpose of exploring putative association interfaces, metal binding sites and all other structural details that might help, in subsequent works, to build a model of the entire receptor. Several structural features were clarified and three main different association modes of ME ICA512 were identified. The results provide essential pieces of information for the design of new experiments aimed to assess the structure in vivo.
Collapse
Affiliation(s)
- María E. Primo
- Consejo Nacional de Investigaciones Científicas y Técnicas (Conicet), Ciudad Autónoma de Buenos Aires, Argentina
- Cátedra de Inmunología de la Facultad de Farmacia y Bioquímica, Idehu, and División Endocrinología del Hospital de Clínicas J. de San Martín, Universidad de Buenos Aires—Conicet, Ciudad Autónoma de Buenos Aires, Argentina
| | - Jean Jakoncic
- Photon Science Directorate, Brookhaven National Laboratory, Upton, New York, United States of America
| | - Martín E. Noguera
- Consejo Nacional de Investigaciones Científicas y Técnicas (Conicet), Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
| | - Valeria A. Risso
- Consejo Nacional de Investigaciones Científicas y Técnicas (Conicet), Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
| | - Laura Sosa
- Consejo Nacional de Investigaciones Científicas y Técnicas (Conicet), Ciudad Autónoma de Buenos Aires, Argentina
- Cátedra de Inmunología de la Facultad de Farmacia y Bioquímica, Idehu, and División Endocrinología del Hospital de Clínicas J. de San Martín, Universidad de Buenos Aires—Conicet, Ciudad Autónoma de Buenos Aires, Argentina
| | - Mauricio P. Sica
- Consejo Nacional de Investigaciones Científicas y Técnicas (Conicet), Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
| | - Michele Solimena
- Paul Langerhans Institute Dresden, Molecular Diabetology, Universitätsklinikum “Carl Gustav Carus”, University of Technology Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics Dresden, Dresden, Germany
| | - Edgardo Poskus
- Consejo Nacional de Investigaciones Científicas y Técnicas (Conicet), Ciudad Autónoma de Buenos Aires, Argentina
- Cátedra de Inmunología de la Facultad de Farmacia y Bioquímica, Idehu, and División Endocrinología del Hospital de Clínicas J. de San Martín, Universidad de Buenos Aires—Conicet, Ciudad Autónoma de Buenos Aires, Argentina
| | - Mario R. Ermácora
- Consejo Nacional de Investigaciones Científicas y Técnicas (Conicet), Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
| |
Collapse
|
50
|
Sacks DB, Arnold M, Bakris GL, Bruns DE, Horvath AR, Kirkman MS, Lernmark A, Metzger BE, Nathan DM. Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Diabetes Care 2011; 34:e61-99. [PMID: 21617108 PMCID: PMC3114322 DOI: 10.2337/dc11-9998] [Citation(s) in RCA: 324] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 02/28/2011] [Indexed: 02/06/2023]
Abstract
BACKGROUND Multiple laboratory tests are used to diagnose and manage patients with diabetes mellitus. The quality of the scientific evidence supporting the use of these tests varies substantially. APPROACH An expert committee compiled evidence-based recommendations for the use of laboratory testing for patients with diabetes. A new system was developed to grade the overall quality of the evidence and the strength of the recommendations. Draft guidelines were posted on the Internet and presented at the 2007 Arnold O. Beckman Conference. The document was modified in response to oral and written comments, and a revised draft was posted in 2010 and again modified in response to written comments. The National Academy of Clinical Biochemistry and the Evidence-Based Laboratory Medicine Committee of the American Association for Clinical Chemistry jointly reviewed the guidelines, which were accepted after revisions by the Professional Practice Committee and subsequently approved by the Executive Committee of the American Diabetes Association. CONTENT In addition to long-standing criteria based on measurement of plasma glucose, diabetes can be diagnosed by demonstrating increased blood hemoglobin A(1c) (HbA(1c)) concentrations. Monitoring of glycemic control is performed by self-monitoring of plasma or blood glucose with meters and by laboratory analysis of HbA(1c). The potential roles of noninvasive glucose monitoring, genetic testing, and measurement of autoantibodies, urine albumin, insulin, proinsulin, C-peptide, and other analytes are addressed. SUMMARY The guidelines provide specific recommendations that are based on published data or derived from expert consensus. Several analytes have minimal clinical value at present, and their measurement is not recommended.
Collapse
Affiliation(s)
- David B Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|