1
|
Shang R, Rodrigues B. Lipoprotein lipase as a target for obesity/diabetes related cardiovascular disease. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:13199. [PMID: 39081272 PMCID: PMC11286490 DOI: 10.3389/jpps.2024.13199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024]
Abstract
Worldwide, the prevalence of obesity and diabetes have increased, with heart disease being their leading cause of death. Traditionally, the management of obesity and diabetes has focused mainly on weight reduction and controlling high blood glucose. Unfortunately, despite these efforts, poor medication management predisposes these patients to heart failure. One instigator for the development of heart failure is how cardiac tissue utilizes different sources of fuel for energy. In this regard, the heart switches from using various substrates, to predominantly using fatty acids (FA). This transformation to using FA as an exclusive source of energy is helpful in the initial stages of the disease. However, over the progression of diabetes this has grave end results. This is because toxic by-products are produced by overuse of FA, which weaken heart function (heart disease). Lipoprotein lipase (LPL) is responsible for regulating FA delivery to the heart, and its function during diabetes has not been completely revealed. In this review, the mechanisms by which LPL regulates fuel utilization by the heart in control conditions and following diabetes will be discussed in an attempt to identify new targets for therapeutic intervention. Currently, as treatment options to directly target diabetic heart disease are scarce, research on LPL may assist in drug development that exclusively targets fuel utilization by the heart and lipid accumulation in macrophages to help delay, prevent, or treat cardiac failure, and provide long-term management of this condition during diabetes.
Collapse
Affiliation(s)
- Rui Shang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Al Hageh C, Chacar S, Venkatachalam T, Gauguier D, Abchee A, Chammas E, Hamdan H, O’Sullivan S, Zalloua P, Nader M. Genetic Variants in PHACTR1 & LPL Mediate Restenosis Risk in Coronary Artery Patients. Vasc Health Risk Manag 2023; 19:83-92. [PMID: 36814994 PMCID: PMC9940491 DOI: 10.2147/vhrm.s394695] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/25/2022] [Indexed: 02/17/2023] Open
Abstract
Background and Objective Coronary artery disease (CAD) is a major cause of death worldwide. Revascularization via stent placement or coronary artery bypass grafting (CABG) are standard treatments for CAD. Despite a high success rate, these approaches are associated with long-term failure due to restenosis. Risk factors associated with restenosis were investigated using a case-control association study design. Methods Five thousand two hundred and forty-two patients were enrolled in this study and were assigned as follows: Stenosis Group: 3570 patients with CAD >50% without a prior stent or CABG (1394 genotyped), and Restenosis Group: 1672 patients with CAD >50% and prior stent deployment or CABG (705 genotyped). Binomial regression models were applied to investigate the association of restenosis with diabetes, hypertension, and dyslipidemia. The genetic association with restenosis was conducted using PLINK 1.9. Results Dyslipidemia is a major risk factor (Odds Ratio (OR) = 2.14, P-value <0.0001) for restenosis particularly among men (OR = 2.32, P < 0.0001), while type 2 diabetes (T2D) was associated with an increased risk of restenosis in women (OR = 1.36, P = 0.01). The rs9349379 (PHACTR1) and rs264 (LPL) were associated with an increased risk of restenosis in our patients. PHACTR1 variant was associated with increased risk of restenosis mainly in women and in diabetic patients, while the LPL variant was associated with increased risk of restenosis in men. Conclusion The rs9349379 in PHACTR1 gene is significantly associated with restenosis, this association is more pronounced in women and in diabetic patients. The rs264 in LPL gene was associated with increased risk of restenosis in male patients.
Collapse
Affiliation(s)
- Cynthia Al Hageh
- Department of Molecular Biology and Genetics, College of Medicine and Health Sciences, Khalifa University for Science and Technology, Abu Dhabi, United Arab Emirates
| | - Stephanie Chacar
- Department of Physiology and Immunology College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Thenmozhi Venkatachalam
- Department of Physiology and Immunology College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Dominique Gauguier
- McGill University and Genome Quebec Innovation Centre, Montreal, QC, H3A 0G1, Canada,Université Paris Cité, INSERM, Paris, France
| | - Antoine Abchee
- Sheikh Shakhbout Medical City, Abu Dhabi, United Arab Emirates
| | - Elie Chammas
- School of Medicine, Lebanese University, Beirut, Lebanon
| | - Hamdan Hamdan
- Department of Physiology and Immunology College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Siobhan O’Sullivan
- Department of Molecular Biology and Genetics, College of Medicine and Health Sciences, Khalifa University for Science and Technology, Abu Dhabi, United Arab Emirates
| | - Pierre Zalloua
- Department of Molecular Biology and Genetics, College of Medicine and Health Sciences, Khalifa University for Science and Technology, Abu Dhabi, United Arab Emirates,Biotechnology Center, Khalifa University for Science and Technology, Abu Dhabi, United Arab Emirates,Harvard T.H. Chan School of Public Health, Boston, MA, USA,Correspondence: Pierre Zalloua; Moni Nader, College of Medicine and Health Sciences, Khalifa University for Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates, Email ;
| | - Moni Nader
- Department of Physiology and Immunology College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, UAE,Biotechnology Center, Khalifa University for Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
3
|
Al-Shammari RT, Al-Serri AE, Barhoush SA, Al-Bustan SA. Identification and Characterization of Variants in Intron 6 of the LPL Gene Locus among a Sample of the Kuwaiti Population. Genes (Basel) 2022; 13:genes13040664. [PMID: 35456470 PMCID: PMC9024856 DOI: 10.3390/genes13040664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/22/2022] Open
Abstract
Lipoprotein lipase (LPL) is responsible for the hydrolysis of lipoproteins; hence defective LPL is associated with metabolic disorders. Here, we identify certain intronic insertions and deletions (InDels) and single nucleotide polymorphisms (SNPs) in intron 6 of the LPL gene and investigate their associations with different phenotypic characteristics in a cohort of the general Kuwaiti population. Two specific regions of intron 6 of the LPL gene, which contain InDels, were amplified via Sanger sequencing in 729 subjects. Genotypic and allelic frequencies were estimated, and genetic modeling was used to investigate genetic associations of the identified variants with lipid profile, body mass index (BMI), and risk of coronary heart disease (CHD). A total of 16 variants were identified, including 2 InDels, 2 novel SNPs, and 12 known SNPs. The most common variants observed among the population were rs293, rs274, rs295, and rs294. The rs293 “A” insertion showed a significant positive correlation with elevated LDL levels, while rs295 was significantly associated with increased BMI. The rs274 and rs294 variants showed a protective effect of the minor allele with decreased CHD prevalence. These findings shed light on the possible role of LPL intronic variants on metabolic disorders.
Collapse
Affiliation(s)
- Reem T. Al-Shammari
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait City 13060, Kuwait; (R.T.A.-S.); (S.A.B.)
- Kuwait Medical Genetic Center, Ministry of Health, Kuwait City 70051, Kuwait
| | - Ahmad E. Al-Serri
- Human Genetics Unit, Department of Pathology, Faculty of Medicine, Kuwait University, Kuwait City 46304, Kuwait;
| | - Sahar A. Barhoush
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait City 13060, Kuwait; (R.T.A.-S.); (S.A.B.)
| | - Suzanne A. Al-Bustan
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait City 13060, Kuwait; (R.T.A.-S.); (S.A.B.)
- Correspondence: ; Tel.: +965-2498-7130 (ext. 7863)
| |
Collapse
|
4
|
Abstract
INTRODUCTION Dyslipidemia therapeutics have primarily focused on lowering levels of low-density lipoprotein cholesterol. However, many patients continue to experience cardiovascular events, despite effective lowering of LDL-C. This has prompted efforts to target additional risk factors to achieve more effective prevention of cardiovascular disease. Emerging evidence suggests that triglyceride rich lipoproteins play a causal role in atherosclerosis, highlighting the potential for specific therapeutic lowering. AREAS COVERED (1) Evidence to support the causal role of triglyceride rich lipoproteins in atherosclerotic cardiovascular disease. (2) Use of existing lipid modifying therapies to target triglyceride rich lipoproteins. (3) Development of novel therapeutic agents that target triglyceride rich lipoproteins and their potential impact on cardiovascular risk. EXPERT OPINION/COMMENTARY Evidence from preclinical, observational and genetic studies highlight the role of triglyceride rich lipoproteins in the causal pathway of atherosclerotic cardiovascular disease. A number of existing agents have the potential to reduce residual cardiovascular risk associated with hypertriglyceridemia. However, emerging agents have the potential to substantially and preferentially lower triglyceride levels beyond contemporary therapeutics. How they will modulate cardiovascular risk will ultimately be determined by large clinical outcomes trials. They do provide the opportunity to substantially influence the way we target dyslipidemia in the prevention of cardiovascular disease.
Collapse
Affiliation(s)
- Kristen J Bubb
- Biomedicine Discovery Institute, Clayto, VIC, Australia.,Monash Cardiovascular Research Centre, Victorian Heart Institute, Monash University, Clayton, VIC, Australia
| | - Adam J Nelson
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Monash University, Clayton, VIC, Australia
| | - Stephen J Nicholls
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
5
|
Ha EE, Quartuccia GI, Ling R, Xue C, Karikari RA, Hernandez-Ono A, Hu KY, Matias CV, Imam R, Cui J, Pellegata NS, Herzig S, Georgiadi A, Soni RK, Bauer RC. Adipocyte-specific tribbles pseudokinase 1 regulates plasma adiponectin and plasma lipids in mice. Mol Metab 2021; 56:101412. [PMID: 34890852 PMCID: PMC8749272 DOI: 10.1016/j.molmet.2021.101412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/16/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Multiple genome-wide association studies (GWAS) have identified SNPs in the 8q24 locus near TRIB1 that are significantly associated with plasma lipids and other markers of cardiometabolic health, and prior studies have revealed the roles of hepatic and myeloid Trib1 in plasma lipid regulation and atherosclerosis. The same 8q24 SNPs are additionally associated with plasma adiponectin levels in humans, implicating TRIB1 in adipocyte biology. Here, we hypothesize that TRIB1 in adipose tissue regulates plasma adiponectin, lipids, and metabolic health. METHODS We investigate the metabolic phenotype of adipocyte-specific Trib1 knockout mice (Trib1_ASKO) fed on chow and high-fat diet (HFD). Through secretomics of adipose tissue explants and RNA-seq of adipocytes and livers from these mice, we further investigate the mechanism of TRIB1 in adipose tissue. RESULTS Trib1_ASKO mice have an improved metabolic phenotype with increased plasma adiponectin levels, improved glucose tolerance, and decreased plasma lipids. Trib1_ASKO adipocytes have increased adiponectin production and secretion independent of the known TRIB1 function of regulating proteasomal degradation. RNA-seq analysis of adipocytes and livers from Trib1_ASKO mice indicates that alterations in adipocyte function underlie the observed plasma lipid changes. Adipose tissue explant secretomics further reveals that Trib1_ASKO adipose tissue has decreased ANGPTL4 production, and we demonstrate an accompanying increase in the lipoprotein lipase (LPL) activity that likely underlies the triglyceride phenotype. CONCLUSIONS This study shows that adipocyte Trib1 regulates multiple aspects of metabolic health, confirming previously observed genetic associations in humans and shedding light on the further mechanisms by which TRIB1 regulates plasma lipids and metabolic health.
Collapse
Affiliation(s)
- Elizabeth E Ha
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| | - Gabriella I Quartuccia
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| | - Ruifeng Ling
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| | - Chenyi Xue
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| | - Rhoda A Karikari
- Institute for Diabetes and Cancer, Helmholtz Centre, Munich, Germany
| | - Antonio Hernandez-Ono
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Krista Y Hu
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| | - Caio V Matias
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| | - Rami Imam
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| | - Jian Cui
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| | | | - Stephan Herzig
- Institute for Diabetes and Cancer, Helmholtz Centre, Munich, Germany
| | | | - Rajesh K Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Robert C Bauer
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA.
| |
Collapse
|
6
|
Kitamoto T, Kuo T, Okabe A, Kaneda A, Accili D. An integrative transcriptional logic model of hepatic insulin resistance. Proc Natl Acad Sci U S A 2021; 118:e2102222118. [PMID: 34732569 PMCID: PMC8609333 DOI: 10.1073/pnas.2102222118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2021] [Indexed: 12/27/2022] Open
Abstract
Abnormalities of lipid/lipoprotein and glucose metabolism are hallmarks of hepatic insulin resistance in type 2 diabetes. The former antedate the latter, but the latter become progressively refractory to treatment and contribute to therapeutic failures. It's unclear whether the two processes share a common pathogenesis and what underlies their progressive nature. In this study, we investigated the hypothesis that genes in the lipid/lipoprotein pathway and those in the glucose metabolic pathway are governed by different transcriptional regulatory logics that affect their response to physiologic (fasting/refeeding) as well as pathophysiologic cues (insulin resistance and hyperglycemia). To this end, we obtained genomic and transcriptomic maps of the key insulin-regulated transcription factor, FoxO1, and integrated them with those of CREB, PPAR-α, and glucocorticoid receptor. We found that glucose metabolic genes are primarily regulated by promoter and intergenic enhancers in a fasting-dependent manner, while lipid genes are regulated through fasting-dependent intron enhancers and fasting-independent enhancerless introns. Glucose genes also showed a remarkable transcriptional resiliency (i.e., the ability to compensate following constitutive FoxO1 ablation through an enrichment of active marks at shared PPAR-α/FoxO1 regulatory elements). Unexpectedly, insulin resistance and hyperglycemia were associated with a "spreading" of FoxO1 binding to enhancers and the emergence of unique target sites. We surmise that this unusual pattern correlates with the progressively intractable nature of hepatic insulin resistance. This transcriptional logic provides an integrated model to interpret the combined lipid and glucose abnormalities of type 2 diabetes.
Collapse
Affiliation(s)
- Takumi Kitamoto
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032;
- Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Taiyi Kuo
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Atsushi Okabe
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan
| | - Domenico Accili
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| |
Collapse
|
7
|
Määttä J, Serpi R, Hörkkö S, Izzi V, Myllyharju J, Dimova EY, Koivunen P. Genetic Ablation of Transmembrane Prolyl 4-Hydroxylase Reduces Atherosclerotic Plaques in Mice. Arterioscler Thromb Vasc Biol 2021; 41:2128-2140. [PMID: 34039020 DOI: 10.1161/atvbaha.121.316034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Jenni Määttä
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research (J. Määttä, R.S., V.I., J. Myllyharju, E.Y.D., P.K.), University of Oulu, Finland
| | - Raisa Serpi
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research (J. Määttä, R.S., V.I., J. Myllyharju, E.Y.D., P.K.), University of Oulu, Finland
| | - Sohvi Hörkkö
- Institute of Biomedicine (S.H.), University of Oulu, Finland
| | - Valerio Izzi
- Faculty of Medicine (V.I.), University of Oulu, Finland
- Finnish Cancer Institute, Helsinki, Finland (V.I.)
| | - Johanna Myllyharju
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research (J. Määttä, R.S., V.I., J. Myllyharju, E.Y.D., P.K.), University of Oulu, Finland
| | - Elitsa Y Dimova
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research (J. Määttä, R.S., V.I., J. Myllyharju, E.Y.D., P.K.), University of Oulu, Finland
| | - Peppi Koivunen
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research (J. Määttä, R.S., V.I., J. Myllyharju, E.Y.D., P.K.), University of Oulu, Finland
| |
Collapse
|
8
|
Shen C, Fan D, Fu H, Zheng C, Chen Y, Hu Z. Single nucleotide polymorphisms in the ANGPTL4 gene and the SNP-SNP interactions on the risk of atherosclerotic Ischaemic stroke. BMC Neurol 2021; 21:108. [PMID: 33750331 PMCID: PMC7941969 DOI: 10.1186/s12883-021-02138-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/01/2021] [Indexed: 12/29/2022] Open
Abstract
Objectives The purpose of this study was to investigate the impact of single nucleotide polymorphisms (SNPs) in the ANGPTL4 gene and the SNP–SNP interactions on atherosclerotic ischemic stroke (IS) risk. Patients and methods A case-control study was conducted. A total of 360 patients with atherosclerotic IS and 342 controls between December 2018 and December 2019 from Longyan First Hospital affiliated to Fujian Medical University were included. A logistic regression model was used to examine the association between SNPs and atherosclerotic IS risk. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated. Generalized multifactor dimensionality reduction was employed to analyze the SNP-SNP interaction. Results Logistic regression analysis showed that atherosclerotic IS risk was significantly lower in carriers with the rs11672433-T allele than those with the CC genotype (CT+ TT vs. CC); adjusted OR, 0.005; 95% CI, 0.02–0.11. We found a significant 2-locus model (P = 0.0010) involving rs11672433 and rs4076317; the cross-validation consistency of this model was 10 of 10, and the testing accuracy was 57.96%. Participants with the CT or TT of rs11672433 and CC of rs4076317 genotype have the lowest atherosclerotic IS risk, compared to subjects with CC of rs11672433 and the CC of rs4076317 genotype, OR (95%CI) was 0.06(0.02–0.22), after covariates adjustment for gender, age, smoking and alcohol status, hypertension, Diabetes mellitus, TG, TC, HDL-C, LDL-C, Uric acid. Conclusions We found that rs11672433 was associated with decreased atherosclerotic IS risk; we also found that gene–gene interaction between rs11672433 and rs4076317 was associated with decreased atherosclerotic IS risk.
Collapse
Affiliation(s)
- Chaoxiong Shen
- Neurology Department, Longyan First Hospital Affiliated to Fujian Medical University, No. 105, Jiuyi North Road, Longyan, 364000, Fujian, China
| | - Daofeng Fan
- Neurology Department, Longyan First Hospital Affiliated to Fujian Medical University, No. 105, Jiuyi North Road, Longyan, 364000, Fujian, China.
| | - Huajun Fu
- Neurology Department, Longyan First Hospital Affiliated to Fujian Medical University, No. 105, Jiuyi North Road, Longyan, 364000, Fujian, China
| | - Chong Zheng
- Neurology Department, Longyan First Hospital Affiliated to Fujian Medical University, No. 105, Jiuyi North Road, Longyan, 364000, Fujian, China
| | - Yinjuan Chen
- Neurology Department, Longyan First Hospital Affiliated to Fujian Medical University, No. 105, Jiuyi North Road, Longyan, 364000, Fujian, China
| | - Zhizhou Hu
- Neurology Department, Longyan First Hospital Affiliated to Fujian Medical University, No. 105, Jiuyi North Road, Longyan, 364000, Fujian, China
| |
Collapse
|
9
|
Gong D, Zhao ZW, Zhang Q, Yu XH, Wang G, Zou J, Zheng XL, Zhang DW, Yin WD, Tang CK. The Long Noncoding RNA Metastasis-Associated Lung Adenocarcinoma Transcript-1 Regulates CCDC80 Expression by Targeting miR-141-3p/miR-200a-3p in Vascular Smooth Muscle Cells. J Cardiovasc Pharmacol 2020; 75:336-343. [DOI: 10.1097/fjc.0000000000000798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
Scuruchi M, Potì F, Rodríguez-Carrio J, Campo GM, Mandraffino G. Biglycan and atherosclerosis: Lessons from high cardiovascular risk conditions. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158545. [PMID: 31672572 DOI: 10.1016/j.bbalip.2019.158545] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/26/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023]
Abstract
Atherosclerosis (ATH) is a chronic, dynamic, evolutive process involving morphological and structural subversion of artery walls, leading to the formation of atherosclerotic plaques. ATH generally initiates during the childhood, occurring as a result of a number of changes in the intima tunica and in the media of arteries. A key event occurring during the pathobiology of ATH is the accumulation of lipoproteins in the sub-intimal spaces mediated by extracellular matrix (ECM) molecules, especially by the chondroitin sulfate/dermatan sulfate (CS/DS) -containing proteoglycans (CS/DSPGs). Among them, the proteoglycan biglycan (BGN) is critically involved in the onset and progression of ATH and evidences show that BGN represents the missing link between the pro-atherogenic status induced by both traditional and non-traditional cardiovascular risk factors and the development and progression of vascular damage. In the light of these findings, the role of BGN in dyslipidemia, hypertension, cigarette smoking, diabetes, chronic kidney disease and inflammatory status is briefly analyzed and discussed in order to shed new light on the underlying mechanisms governing the association between BGN and ATH.
Collapse
Affiliation(s)
- Michele Scuruchi
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Francesco Potì
- Department of Medicine and Surgery-Unit of Neurosciences, University of Parma, Parma, Italy
| | - Javier Rodríguez-Carrio
- Area of Immunology, Department of Functional Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain; Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Oviedo, Spain; Bone and Mineral Research Unit, Instituto Reina Sofía de Investigación Nefrológica, REDinREN Del ISCIII, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | - Giuseppe Mandraffino
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.
| |
Collapse
|
11
|
Basu D, Bornfeldt KE. Hypertriglyceridemia and Atherosclerosis: Using Human Research to Guide Mechanistic Studies in Animal Models. Front Endocrinol (Lausanne) 2020; 11:504. [PMID: 32849290 PMCID: PMC7423973 DOI: 10.3389/fendo.2020.00504] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
Human studies support a strong association between hypertriglyceridemia and atherosclerotic cardiovascular disease (CVD). However, whether a causal relationship exists between hypertriglyceridemia and increased CVD risk is still unclear. One plausible explanation for the difficulty establishing a clear causal role for hypertriglyceridemia in CVD risk is that lipolysis products of triglyceride-rich lipoproteins (TRLs), rather than the TRLs themselves, are the likely mediators of increased CVD risk. This hypothesis is supported by studies of rare mutations in humans resulting in impaired clearance of such lipolysis products (remnant lipoprotein particles; RLPs). Several animal models of hypertriglyceridemia support this hypothesis and have provided additional mechanistic understanding. Mice deficient in lipoprotein lipase (LPL), the major vascular enzyme responsible for TRL lipolysis and generation of RLPs, or its endothelial anchor GPIHBP1, are severely hypertriglyceridemic but develop only minimal atherosclerosis as compared with animal models deficient in apolipoprotein (APO) E, which is required to clear TRLs and RLPs. Likewise, animal models convincingly show that increased clearance of TRLs and RLPs by LPL activation (achieved by inhibition of APOC3, ANGPTL3, or ANGPTL4 action, or increased APOA5) results in protection from atherosclerosis. Mechanistic studies suggest that RLPs are more atherogenic than large TRLs because they more readily enter the artery wall, and because they are enriched in cholesterol relative to triglycerides, which promotes pro-atherogenic effects in lesional cells. Other mechanistic studies show that hepatic receptors (LDLR and LRP1) and APOE are critical for RLP clearance. Thus, studies in animal models have provided additional mechanistic insight and generally agree with the hypothesis that RLPs derived from TRLs are highly atherogenic whereas hypertriglyceridemia due to accumulation of very large TRLs in plasma is not markedly atherogenic in the absence of TRL lipolysis products.
Collapse
Affiliation(s)
- Debapriya Basu
- Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, NY, United States
| | - Karin E. Bornfeldt
- Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, United States
- Department of Pathology, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, United States
- *Correspondence: Karin E. Bornfeldt
| |
Collapse
|
12
|
Shibata MA, Harada-Shiba M, Shibata E, Tosa H, Matoba Y, Hamaoka H, Iinuma M, Kondo Y. Crude α-Mangostin Suppresses the Development of Atherosclerotic Lesions in Apoe-Deficient Mice by a Possible M2 Macrophage-Mediated Mechanism. Int J Mol Sci 2019; 20:ijms20071722. [PMID: 30959963 PMCID: PMC6480575 DOI: 10.3390/ijms20071722] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 12/14/2022] Open
Abstract
Lifestyle choices play a significant role in the etiology of atherosclerosis. Male Apoe−/− mice that develop spontaneous atherosclerotic lesions were fed 0%, 0.3%, and 0.4% mangosteen extracts, composed largely of α-mangostin (MG), for 17 weeks. Body weight gains were significantly decreased in both MG-treated groups compared to the control, but the general condition remained good throughout the study. The levels of total cholesterol (decreased very-low-density lipoprotein in lipoprotein profile) and triglycerides decreased significantly in the MG-treated mice in conjunction with decreased hepatic HMG-CoA synthase and Fatty acid transporter. Additionally, increased serum lipoprotein lipase activity and histopathology further showed a significant reduction in atherosclerotic lesions at both levels of MG exposure. Real-time PCR analysis for macrophage indicators showed a significant elevation in the levels of Cd163, an M2 macrophage marker, in the lesions of mice receiving 0.4% MG. However, the levels of Nos2, associated with M1 macrophages, showed no change. In addition, quantitative immunohistochemical analysis of macrophage subtypes showed a tendency for increased M2 populations (CD68+/CD163+) in the lesions of mice given 0.4% MG. In further analysis of the cytokine-polarizing macrophage subtypes, the levels of Interleukin13 (Il13), associated with M2 polarization, were significantly elevated in lesions exposed to 0.4% MG. Thus, MG could suppress the development of atherosclerosis in Apoe−/− mice, possibly through an M2 macrophage-mediated mechanism.
Collapse
Affiliation(s)
- Masa-Aki Shibata
- Department of Anatomy and Cell Biology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan.
| | - Mariko Harada-Shiba
- Department of Molecular Innovation in Lipidology, National Cerebral & Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan.
| | - Eiko Shibata
- Department of Molecular Innovation in Lipidology, National Cerebral & Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan.
| | | | - Yoshinobu Matoba
- Ecoresource Institute Co., Ltd., Minokamo, Gifu 505-0042, Japan.
| | - Hitomi Hamaoka
- Department of Anatomy and Cell Biology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan.
| | | | - Yoichi Kondo
- Department of Anatomy and Cell Biology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan.
| |
Collapse
|
13
|
Kobayashi J. Which is the Best Predictor for the Development of Atherosclerosis Among Circulating Lipoprotein Lipase, Hepatic Lipase, and Endothelial Lipase? J Atheroscler Thromb 2019; 26:758-759. [PMID: 30814386 PMCID: PMC6753242 DOI: 10.5551/jat.ed108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
14
|
Kimura N, Kikumori A, Kawase D, Okano M, Fukamachi K, Ishida T, Nakajima K, Shiomi M. Species differences in lipoprotein lipase and hepatic lipase activities: comparative studies of animal models of lifestyle-related diseases. Exp Anim 2019; 68:267-275. [PMID: 30745527 PMCID: PMC6699980 DOI: 10.1538/expanim.18-0176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Lipoprotein lipase (LPL) and hepatic triglyceride lipase (HTGL) have an important role in lifestyle-related diseases. To evaluate species differences, we compared LPL and HTGL activities in different animal models of lifestyle-related diseases using the same assay kit. Normal animals (JW rabbits, ICR mice, and SD rats), a hypercholesterolemic animal model (WHHLMI rabbits), and obese animal models (KK-Ay mice and Zucker fatty rats) fed standard chow were used in this study. Plasma was prepared before and after an intravenous injection of heparin sodium under fasting and feeding. LPL and HTGL activities were measured with the LPL/HTGL activity assay kit (Immuno-Biological Laboratories) using an auto-analyzer. Only in mice, high HTGL activity was observed in pre-heparin plasma. In normal animals, LPL and HTGL activities were high in ICR mice and SD rats but low in JW rabbits. Compared to normal animals, LPL activity was high in Zucker fatty rats and WHHLMI rabbits at both fasting and feeding, while LPL activity after feeding was low in KK-Ay mice. HTGL activity was higher in fasted and fed WHHLMI rabbits and fasted Zucker fatty rats, but was lower in fed KK-Ay mice. Gender difference was observed in HTGL activity in SD rats and LPL activity in WHHLMI rabbits but not in ICR mice. In conclusion, this simple assay method was effective for measuring LPL and HTGL activities of experimental animals, and the activities are highly regulated depending on animal species, animal models, feeding/fasting conditions and genders.
Collapse
Affiliation(s)
- Norie Kimura
- Division of Comparative Pathophysiology, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Akio Kikumori
- Institute for Experimental Animals, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Daisuke Kawase
- Immuno-Biological Laboratories Co., Ltd., 3-39-15 Showa-machi, Maebashi, Gunma 371-8514, Japan
| | - Mitsumasa Okano
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Kumiko Fukamachi
- Immuno-Biological Laboratories Co., Ltd., 3-39-15 Showa-machi, Maebashi, Gunma 371-8514, Japan
| | - Tatsuro Ishida
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Katsuyuki Nakajima
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, 4-2 Aramaki-cho, Maebashi, Gunma 371-8510, Japan
| | - Masashi Shiomi
- Division of Comparative Pathophysiology, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan.,Institute for Experimental Animals, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan.,Present address: Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan.,Present address: Devision of Biological Resources and Development, Analytical Research Center for Experimental Sciences, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| |
Collapse
|
15
|
Yang JH, Cho SS, Kim KM, Kim JY, Kim EJ, Park EY, Lee JH, Ki SH. Neoagarooligosaccharides enhance the level and efficiency of LDL receptor and improve cholesterol homeostasis. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.09.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
16
|
|
17
|
Accelerated atherosclerosis development in C57Bl6 mice by overexpressing AAV-mediated PCSK9 and partial carotid ligation. J Transl Med 2017; 97:935-945. [PMID: 28504688 PMCID: PMC5563968 DOI: 10.1038/labinvest.2017.47] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/30/2017] [Accepted: 03/31/2017] [Indexed: 01/17/2023] Open
Abstract
Studying the role of a particular gene in atherosclerosis typically requires a time-consuming and often difficult process of generating double knockouts or transgenics on ApoE-/- or LDL receptor (LDLR)-/- background. Recently, it was reported that adeno-associated-virus-8 (AAV8)-mediated overexpression of PCSK9 (AAV8-PCSK9) rapidly induced hyperlipidemia. However, using this method in C57BL6 wild-type (C57) mice, it took ~3 months to develop atherosclerosis. Our partial carotid ligation model is used to rapidly develop atherosclerosis by inducing disturbed flow in the left common carotid artery within 2 weeks in ApoE-/- or LDLR-/- mice. Here, we combined these two approaches to develop an accelerated model of atherosclerosis in C57 mice. C57 mice were injected with AAV9-PCSK9 or AAV9-luciferase (control) and high-fat diet was initiated. A week later, partial ligation was performed. Compared to the control, AAV-PCSK9 led to elevated serum PCSK9, hypercholesterolemia, and rapid atherosclerosis development within 3 weeks as determined by gross plaque imaging, and staining with Oil-Red-O, Movat's pentachrome, and CD45 antibody. These plaque lesions were comparable to the atherosclerotic lesions that have been previously observed in ApoE-/- or LDLR-/- mice that were subjected to partial carotid ligation and high-fat diet. Next, we tested whether our method can be utilized to rapidly determine the role of a particular gene in atherosclerosis. Using eNOS-/- and NOX1-/y mice on C57 background, we found that the eNOS-/- mice developed more advanced lesions, while the NOX1-/y mice developed less atherosclerotic lesions as compared to the C57 controls. These results are consistent with the previous findings using double knockouts (eNOS-/-_ApoE-/- and NOX1-/y_ApoE-/-). AAV9-PCSK9 injection followed by partial carotid ligation is an effective and time-saving approach to rapidly induce atherosclerosis. This accelerated model is well-suited to quickly determine the role of gene(s) interest without generating double or triple knockouts.
Collapse
|
18
|
Kanaki M, Tiniakou I, Thymiakou E, Kardassis D. Physical and functional interactions between nuclear receptor LXRα and the forkhead box transcription factor FOXA2 regulate the response of the human lipoprotein lipase gene to oxysterols in hepatic cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:848-860. [PMID: 28576574 DOI: 10.1016/j.bbagrm.2017.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/17/2017] [Accepted: 05/29/2017] [Indexed: 11/30/2022]
Abstract
Lipoprotein lipase (LPL) catalyzes the hydrolysis of triglycerides from triglyceride-rich lipoproteins such as VLDL and chylomicrons in the circulation. Mutations in LPL or its activator apolipoprotein C-II cause hypertriglyceridemia in humans and animal models. The levels of LPL in the liver are low but they can be strongly induced by a high cholesterol diet or by synthetic ligands of Liver X Receptors (LXRs). However, the mechanism by which LXRs activate the human LPL gene is unknown. In the present study we show that LXR agonists increased the mRNA and protein levels as well as the promoter activity of human LPL in HepG2 cells. A promoter deletion analysis defined the proximal -109/-28 region, which contains a functional FOXA2 element, as essential for transactivation by ligand-activated LXRα/RXRα heterodimers. Silencing of endogenous FOXA2 in HepG2 cells by siRNAs or by treatment with insulin compromised the induction of the LPL gene by LXR agonists whereas mutations in the FOXA2 site abolished the synergistic transactivation of the LPL promoter by LXRα/RXRα and FOXA2. Physical and functional interactions between LXRα and FOXA2 were established in vitro and ex vivo. In summary, the present study revealed a novel mechanism of human LPL gene induction by oxysterols in the liver with is based on physical and functional interactions between transcription factors LXRα and FOXA2. This mechanism, which may not be restricted to the LPL gene, is critically important for a better understanding of the regulation of cholesterol and triglyceride metabolism in the liver under healthy or pathological states.
Collapse
Affiliation(s)
- Maria Kanaki
- Laboratory of Biochemistry, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 71003, Greece
| | - Ioanna Tiniakou
- Laboratory of Biochemistry, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 71003, Greece
| | - Efstathia Thymiakou
- Laboratory of Biochemistry, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 71003, Greece
| | - Dimitris Kardassis
- Laboratory of Biochemistry, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 71003, Greece,.
| |
Collapse
|
19
|
Kanaki M, Kardassis D. Regulation of the human lipoprotein lipase gene by the forkhead box transcription factor FOXA2/HNF-3β in hepatic cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:327-336. [DOI: 10.1016/j.bbagrm.2017.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/13/2017] [Accepted: 01/13/2017] [Indexed: 12/11/2022]
|
20
|
Pohlkamp T, Wasser CR, Herz J. Functional Roles of the Interaction of APP and Lipoprotein Receptors. Front Mol Neurosci 2017; 10:54. [PMID: 28298885 PMCID: PMC5331069 DOI: 10.3389/fnmol.2017.00054] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/16/2017] [Indexed: 11/24/2022] Open
Abstract
The biological fates of the key initiator of Alzheimer’s disease (AD), the amyloid precursor protein (APP), and a family of lipoprotein receptors, the low-density lipoprotein (LDL) receptor-related proteins (LRPs) and their molecular roles in the neurodegenerative disease process are inseparably interwoven. Not only does APP bind tightly to the extracellular domains (ECDs) of several members of the LRP group, their intracellular portions are also connected through scaffolds like the one established by FE65 proteins and through interactions with adaptor proteins such as X11/Mint and Dab1. Moreover, the ECDs of APP and LRPs share common ligands, most notably Reelin, a regulator of neuronal migration during embryonic development and modulator of synaptic transmission in the adult brain, and Agrin, another signaling protein which is essential for the formation and maintenance of the neuromuscular junction (NMJ) and which likely also has critical, though at this time less well defined, roles for the regulation of central synapses. Furthermore, the major independent risk factors for AD, Apolipoprotein (Apo) E and ApoJ/Clusterin, are lipoprotein ligands for LRPs. Receptors and ligands mutually influence their intracellular trafficking and thereby the functions and abilities of neurons and the blood-brain-barrier to turn over and remove the pathological product of APP, the amyloid-β peptide. This article will review and summarize the molecular mechanisms that are shared by APP and LRPs and discuss their relative contributions to AD.
Collapse
Affiliation(s)
- Theresa Pohlkamp
- Department of Molecular Genetics, UT Southwestern Medical CenterDallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical CenterDallas, TX, USA
| | - Catherine R Wasser
- Department of Molecular Genetics, UT Southwestern Medical CenterDallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical CenterDallas, TX, USA
| | - Joachim Herz
- Department of Molecular Genetics, UT Southwestern Medical CenterDallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical CenterDallas, TX, USA; Department of Neuroscience, UT Southwestern Medical CenterDallas, TX, USA; Department of Neurology and Neurotherapeutics, UT Southwestern Medical CenterDallas, TX, USA
| |
Collapse
|
21
|
Daily supplementation with fresh pomegranate juice increases paraoxonase 1 expression and activity in mice fed a high-fat diet. Eur J Nutr 2017; 57:383-389. [PMID: 28243786 DOI: 10.1007/s00394-017-1394-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 02/02/2017] [Indexed: 10/20/2022]
Abstract
PURPOSE Studies have found that pomegranate juice (PJ) consumption increases the binding of high-density lipoproteins (HDL) to paraoxonase 1 (PON1), thus increasing the catalytic activity of this enzyme. PON1 is an antioxidant arylesterase synthesized in the liver and transported in plasma in association with HDL. Decreased levels of PON1 are associated with higher levels of cholesterol. We determined the effects of PJ on body weight, cholesterol, and triacylglycerols through 5 months of supplementation. In addition, the effect of PJ on pon1 gene expression in the liver was also measured by RT-qPCR as well as the activity in serum by a semiautomated method using paraoxon as a substrate. METHODS CD-1 mice were either fed a control diet or were fed a high-fat diet 1.25% (wt/wt) cholesterol, 0.5% (wt/wt) sodium cholate, and 15% (wt/wt) saturated fat. 300 μL of PJ containing 0.35 mmol total polyphenols was administered by oral gavage to half of the high fat mice daily. The rest of the high fat mice and the control mice were administered with 300 μL of water. RESULTS PJ-supplemented animals had significantly higher levels of expression of pon1 compared to the unsupplemented group. PJ-supplemented animals had twice the PON1 activity of the unsupplemented group. In addition, PJ-supplemented animals had the lowest body weight and significantly reduced cholesterol and triacylglycerol levels, although the tricylglycerol levels were not consistently decreased. CONCLUSIONS These results suggest that PJ protects against the effects of a high-fat diet in body weight, and cholesterol levels.
Collapse
|
22
|
Geldenhuys WJ, Lin L, Darvesh AS, Sadana P. Emerging strategies of targeting lipoprotein lipase for metabolic and cardiovascular diseases. Drug Discov Today 2016; 22:352-365. [PMID: 27771332 DOI: 10.1016/j.drudis.2016.10.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/17/2016] [Accepted: 10/12/2016] [Indexed: 12/12/2022]
Abstract
Although statins and other pharmacological approaches have improved the management of lipid abnormalities, there exists a need for newer treatment modalities especially for the management of hypertriglyceridemia. Lipoprotein lipase (LPL), by promoting hydrolytic cleavage of the triglyceride core of lipoproteins, is a crucial node in the management of plasma lipid levels. Although LPL expression and activity modulation is observed as a pleiotropic action of some the commonly used lipid lowering drugs, the deliberate development of drugs targeting LPL has not occurred yet. In this review, we present the biology of LPL, highlight the LPL modulation property of currently used drugs and review the novel emerging approaches to target LPL.
Collapse
Affiliation(s)
- Werner J Geldenhuys
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26505, USA
| | - Li Lin
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA
| | - Altaf S Darvesh
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA
| | - Prabodh Sadana
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA.
| |
Collapse
|
23
|
Xie W, Li L, Zhang M, Cheng HP, Gong D, Lv YC, Yao F, He PP, Ouyang XP, Lan G, Liu D, Zhao ZW, Tan YL, Zheng XL, Yin WD, Tang CK. MicroRNA-27 Prevents Atherosclerosis by Suppressing Lipoprotein Lipase-Induced Lipid Accumulation and Inflammatory Response in Apolipoprotein E Knockout Mice. PLoS One 2016; 11:e0157085. [PMID: 27257686 PMCID: PMC4892477 DOI: 10.1371/journal.pone.0157085] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/24/2016] [Indexed: 01/11/2023] Open
Abstract
Atherosclerotic lesions are lipometabolic disorder characterized by chronic progressive inflammation in arterial walls. Previous studies have shown that macrophage-derived lipoprotein lipase (LPL) might be a key factor that promotes atherosclerosis by accelerating lipid accumulation and proinflammatory cytokine secretion. Increasing evidence indicates that microRNA-27 (miR-27) has beneficial effects on lipid metabolism and inflammatory response. However, it has not been fully understood whether miR-27 affects the expression of LPL and subsequent development of atherosclerosis in apolipoprotein E knockout (apoE KO) mice. To address these questions and its potential mechanisms, oxidized low-density lipoprotein (ox-LDL)-treated THP-1 macrophages were transfected with the miR-27 mimics/inhibitors and apoE KO mice fed high-fat diet were given a tail vein injection with miR-27 agomir/antagomir, followed by exploring the potential roles of miR-27. MiR-27 agomir significantly down-regulated LPL expression in aorta and peritoneal macrophages by western blot and real-time PCR analyses. We performed LPL activity assay in the culture media and found that miR-27 reduced LPL activity. ELISA showed that miR-27 reduced inflammatory response as analyzed in vitro and in vivo experiments. Our results showed that miR-27 had an inhibitory effect on the levels of lipid both in plasma and in peritoneal macrophages of apoE KO mice as examined by HPLC. Consistently, miR-27 suppressed the expression of scavenger receptors associated with lipid uptake in ox-LDL-treated THP-1 macrophages. In addition, transfection with LPL siRNA inhibited the miR-27 inhibitor-induced lipid accumulation and proinflammatory cytokines secretion in ox-LDL-treated THP-1 macrophages. Finally, systemic treatment revealed that miR-27 decreased aortic plaque size and lipid content in apoE KO mice. The present results provide evidence that a novel antiatherogenic role of miR-27 was closely related to reducing lipid accumulation and inflammatory response via downregulation of LPL gene expression, suggesting a potential strategy to the diagnosis and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Wei Xie
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China.,Laboratory of Clinical Anatomy, University of South China, Hengyang, Hunan, China
| | - Liang Li
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China.,Department of Pathophysiology, University of South China, Hengyang, Hunan, China
| | - Min Zhang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Hai-Peng Cheng
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Duo Gong
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Yun-Cheng Lv
- Laboratory of Clinical Anatomy, University of South China, Hengyang, Hunan, China
| | - Feng Yao
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Ping-Ping He
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Xin-Ping Ouyang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Gang Lan
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Dan Liu
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Zhen-Wang Zhao
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Yu-Lin Tan
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Health Sciences Center, Hospital Dr NW, Calgary, Alberta, Canada
| | - Wei-Dong Yin
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Chao-Ke Tang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| |
Collapse
|
24
|
An experimental evaluation of the anti-atherogenic potential of the plant, Piper betle, and its active constitutent, eugenol, in rats fed an atherogenic diet. Biomed Pharmacother 2016; 80:276-288. [PMID: 27133067 DOI: 10.1016/j.biopha.2016.03.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 12/11/2022] Open
Abstract
Hypercholesterolemia is a major risk factor for systemic atherosclerosis and subsequent cardiovascular disease. Lipoperoxidation-mediated oxidative damage is believed to contribute strongly to the progression of atherogenesis. In the current investigation, putative anti-atherogenic and antioxidative properties of an ethanolic extract of Piper betle and of its active constituent, eugenol, were sought in an experimental animal model of chronic hypercholesterolemia. Atherogenic diet-fed rats that received either Piper betle extract orally (500mg/kg b.wt) or eugenol orally (5mg/kg b.wt) for 15days (commencing 30days after the atherogenic diet had been started) exhibited the following variations in different parameters, when compared to atherogenic diet-fed rats that received only saline: (1) significantly lower mean levels of total cholesterol, triglycerides, low-density lipoprotein cholesterol and very low density lipoprotein cholesterol in both serum and hepatic tissue samples; (2) lower mean serum levels of aspartate amino-transferase, alanine amino-transferase, alkaline phosphatase, lactate dehydrogenase and lipid-metabolizing enzymes (lipoprotein lipase, 3-hydroxy-3-methyl-glutaryl-CoA reductase; (3) significantly lower mean levels of enzymatic antioxidants (catalase, superoxide dismutase, glutathione peroxidase, glutathione-S-transferase) and non-enzymatic antioxidants (reduced glutathione, vitamin C and vitamin E) and significantly higher mean levels of malondialdehyde in haemolysate and hepatic tissue samples. Histopathological findings suggested a protective effect of the Piper betle extract and a more pronounced protective effect of eugenol on the hepatic and aortic tissues of atherogenic diet-fed (presumed atherosclerotic) rats. These results strongly suggest that the Piper betle extract and its active constituent, eugenol, exhibit anti-atherogenic effects which may be due to their anti-oxidative properties.
Collapse
|
25
|
Nozako M, Koyama T, Nagano C, Sato M, Matsumoto S, Mitani K, Yasufuku R, Kohashi M, Yoshikawa T. An Atherogenic Paigen-Diet Aggravates Nephropathy in Type 2 Diabetic OLETF Rats. PLoS One 2015; 10:e0143979. [PMID: 26606054 PMCID: PMC4659596 DOI: 10.1371/journal.pone.0143979] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/11/2015] [Indexed: 11/18/2022] Open
Abstract
Diabetic nephropathy develops in association with hyperglycemia, is aggravated by atherogenic factors such as dyslipidemia, and is sometimes initiated before obvious hyperglycemia is seen. However, the precise mechanisms of progression are still unclear. In this study, we investigated the influence of an atherogenic Paigen diet (PD) on the progression of nephropathy in spontaneous type 2 diabetic OLETF rats. Feeding PD to male OLETF rats for 12 weeks caused an extensive increase in excretion of urinary albumin and markers of tubular injury such as KIM-1 and L-FABP, accompanied by mesangial expansion and tubular atrophy. PD significantly increased plasma total cholesterol concentration, which correlates well with increases in urine albumin excretion and mesangial expansion. Conversely, PD did not change plasma glucose and free fatty acid concentrations. PD enhanced renal levels of mRNA for inflammatory molecules such as KIM-1, MCP-1, TLR4 and TNF-α and promoted macrophage infiltration and lipid accumulation in the tubulointerstitium and glomeruli in OLETF rats. Intriguingly, PD had little effect on urine albumin excretion and renal morphology in normal control LETO rats. This model may be useful in studying the complex mechanisms that aggravate diabetic nephropathy in an atherogenic environment.
Collapse
Affiliation(s)
- Masanori Nozako
- Free Radical Research Project, Otsuka Pharmaceutical Co., Ltd., Tokushima, Tokushima, Japan
- Department of Toxicology, Drug Safety Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., Tokushima, Tokushima, Japan
| | - Takashi Koyama
- Free Radical Research Project, Otsuka Pharmaceutical Co., Ltd., Tokushima, Tokushima, Japan
- Department of Toxicology, Drug Safety Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., Tokushima, Tokushima, Japan
| | - Chifumi Nagano
- Free Radical Research Project, Otsuka Pharmaceutical Co., Ltd., Tokushima, Tokushima, Japan
- Department of Toxicology, Drug Safety Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., Tokushima, Tokushima, Japan
| | - Makoto Sato
- Department of Toxicology, Drug Safety Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., Tokushima, Tokushima, Japan
| | - Satoshi Matsumoto
- Department of Toxicology, Drug Safety Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., Tokushima, Tokushima, Japan
| | - Kiminobu Mitani
- Free Radical Research Project, Otsuka Pharmaceutical Co., Ltd., Tokushima, Tokushima, Japan
| | - Reiko Yasufuku
- Free Radical Research Project, Otsuka Pharmaceutical Co., Ltd., Tokushima, Tokushima, Japan
| | - Masayuki Kohashi
- Free Radical Research Project, Otsuka Pharmaceutical Co., Ltd., Tokushima, Tokushima, Japan
| | - Tomohiro Yoshikawa
- Free Radical Research Project, Otsuka Pharmaceutical Co., Ltd., Tokushima, Tokushima, Japan
- * E-mail:
| |
Collapse
|
26
|
Kobayashi J, Mabuchi H. Lipoprotein lipase and atherosclerosis. Ann Clin Biochem 2015; 52:632-7. [DOI: 10.1177/0004563215590451] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2015] [Indexed: 11/16/2022]
Abstract
Lipoprotein lipase has long been known to hydrolyse triglycerides from triglycerides-rich lipoproteins. More recently, it has been shown to promote the binding of lipoproteins to various lipoprotein receptors. Evidence is also presented regarding the possible atherogenic role of lipoprotein lipase. In theory, lipoprotein lipase deficiency should help to clarify this question. However, the rarity of this condition means that it has not been possible to conduct epidemiological studies. An alternative approach is to investigate the correlation of lipoprotein lipase with onset of cardiovascular disease in prospective studies in large population-based cohorts. Complementary with this approach, animal models have been used to explore the atherogenicity of lipoprotein lipase expressed by macrophages.
Collapse
Affiliation(s)
- Junji Kobayashi
- General Internal Medicine, Kanazawa Medical University, Uchinada, Daigaku, Ishikawa, Japan
| | - Hiroshi Mabuchi
- Lipid Research Course, Kanazawa University Graduate School of Pharmaceutical, Health Sciences, Kakuma-machi, Kanazawa, Ishikawa, Japan
| |
Collapse
|
27
|
Wang Y, Gusarova V, Banfi S, Gromada J, Cohen JC, Hobbs HH. Inactivation of ANGPTL3 reduces hepatic VLDL-triglyceride secretion. J Lipid Res 2015; 56:1296-307. [PMID: 25954050 DOI: 10.1194/jlr.m054882] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Indexed: 02/01/2023] Open
Abstract
Humans and mice lacking angiopoietin-like protein 3 (ANGPTL3) have pan-hypolipidemia. ANGPTL3 inhibits two intravascular lipases, LPL and endothelial lipase, and the low plasma TG and HDL-cholesterol levels in ANGPTL3 deficiency reflect increased activity of these enzymes. The mechanism responsible for the low LDL-cholesterol levels associated with ANGPTL3 deficiency is not known. Here we used an anti-ANGPTL3 monoclonal antibody (REGN1500) to inactivate ANGPTL3 in mice with genetic deficiencies in key proteins involved in clearance of ApoB-containing lipoproteins. REGN1500 treatment consistently reduced plasma cholesterol levels in mice in which Apoe, Ldlr, Lrp1, and Sdc1 were inactivated singly or in combination, but did not alter clearance of rabbit (125)I-βVLDL or mouse (125)I-LDL. Despite a 61% reduction in VLDL-TG production, VLDL-ApoB-100 production was unchanged in REGN1500-treated animals. Hepatic TG content, fatty acid synthesis, and fatty acid oxidation were similar in REGN1500 and control antibody-treated animals. Taken together, our findings indicate that inactivation of ANGPTL3 does not affect the number of ApoB-containing lipoproteins secreted by the liver but alters the particles that are made such that they are cleared more rapidly from the circulation via a noncanonical pathway(s). The increased clearance of lipolytic remnants results in decreased production of LDL in ANGPTL3-deficient animals.
Collapse
Affiliation(s)
- Yan Wang
- Departments of Molecular Genetics University of Texas Southwestern Medical Center, Dallas, TX Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | | | - Serena Banfi
- Departments of Molecular Genetics University of Texas Southwestern Medical Center, Dallas, TX
| | | | - Jonathan C Cohen
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Helen H Hobbs
- Departments of Molecular Genetics University of Texas Southwestern Medical Center, Dallas, TX Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
28
|
Puthanveetil P, Wan A, Rodrigues B. Lipoprotein lipase and angiopoietin-like 4 – Cardiomyocyte secretory proteins that regulate metabolism during diabetic heart disease. Crit Rev Clin Lab Sci 2015; 52:138-49. [DOI: 10.3109/10408363.2014.997931] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Modulatory effect of moringa oleifera against gamma-radiation-induced oxidative stress in rats. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.biomag.2014.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
30
|
Geldenhuys WJ, Aring D, Sadana P. A novel Lipoprotein lipase (LPL) agonist rescues the enzyme from inhibition by angiopoietin-like 4 (ANGPTL4). Bioorg Med Chem Lett 2014; 24:2163-7. [DOI: 10.1016/j.bmcl.2014.03.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/10/2014] [Indexed: 11/28/2022]
|
31
|
Chang CL, Torrejon C, Jung UJ, Graf K, Deckelbaum RJ. Incremental replacement of saturated fats by n-3 fatty acids in high-fat, high-cholesterol diets reduces elevated plasma lipid levels and arterial lipoprotein lipase, macrophages and atherosclerosis in LDLR-/- mice. Atherosclerosis 2014; 234:401-9. [PMID: 24747115 DOI: 10.1016/j.atherosclerosis.2014.03.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 02/28/2014] [Accepted: 03/18/2014] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Effects of progressive substitution of dietary n-3 fatty acids (FA) for saturated FA (SAT) on modulating risk factors for atherosclerosis have not been fully defined. Our previous reports demonstrate that SAT increased, but n-3 FA decreased, arterial lipoprotein lipase (LpL) levels and arterial LDL-cholesterol deposition early in atherogenesis. We now questioned whether incremental increases in dietary n-3 FA can counteract SAT-induced pro-atherogenic effects in atherosclerosis-prone LDL-receptor knockout (LDLR-/-) mice and have identified contributing mechanisms. METHODS AND RESULTS Mice were fed chow or high-fat diets enriched in SAT, n-3, or a combination of both SAT and n-3 in ratios of 3:1 (S:n-3 3:1) or 1:1 (S:n-3 1:1). Each diet resulted in the expected changes in fatty acid composition in blood and aorta for each feeding group. SAT-fed mice became hyperlipidemic. By contrast, n-3 inclusion decreased plasma lipid levels, especially cholesterol. Arterial LpL and macrophage levels were increased over 2-fold in SAT-fed mice but these were decreased with incremental replacement with n-3 FA. n-3 FA partial inclusion markedly decreased expression of pro-inflammatory markers (CD68, IL-6, and VCAM-1) in aorta. SAT diets accelerated advanced atherosclerotic lesion development, whereas all n-3 FA-containing diets markedly slowed atherosclerotic progression. CONCLUSION Mechanisms whereby dietary n-3 FA may improve adverse cardiovascular effects of high-SAT, high-fat diets include improving plasma lipid profiles, increasing amounts of n-3 FA in plasma and the arterial wall. Even low levels of replacement of SAT by n-3 FA effectively reduce arterial lipid deposition by decreasing aortic LpL, macrophages and pro-inflammatory markers.
Collapse
Affiliation(s)
- Chuchun L Chang
- Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Claudia Torrejon
- Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Campus Norte Hospital Roberto del Río, University of Chile, Santiago, Chile
| | - Un Ju Jung
- Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Kristin Graf
- Campus Norte Hospital Roberto del Río, University of Chile, Santiago, Chile
| | - Richard J Deckelbaum
- Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
32
|
Tian GP, Tang YY, He PP, Lv YC, Ouyang XP, Zhao GJ, Tang SL, Wu JF, Wang JL, Peng J, Zhang M, Li Y, Cayabyab FS, Zheng XL, Zhang DW, Yin WD, Tang CK. The effects of miR-467b on lipoprotein lipase (LPL) expression, pro-inflammatory cytokine, lipid levels and atherosclerotic lesions in apolipoprotein E knockout mice. Biochem Biophys Res Commun 2013; 443:428-34. [PMID: 24309104 DOI: 10.1016/j.bbrc.2013.11.109] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 11/25/2013] [Indexed: 11/19/2022]
Abstract
Atherosclerosis is a lipid disorder disease characterized by chronic blood vessel wall inflammation driven by the subendothelial accumulation of macrophages. Studies have shown that lipoprotein lipase (LPL) participates in lipid metabolism, but it is not yet known whether post-transcriptional regulation of LPL gene expression by microRNAs (miRNAs) occurs in vivo. Here, we tested that miR-467b provides protection against atherosclerosis by regulating the target gene LPL which leads to reductions in LPL expression, lipid accumulation, progression of atherosclerosis and production of inflammatory cytokines in apolipoprotein E knockout (apoE(-/-)) mice. Treatment of apoE(-/-) mice with intra-peritoneal injection of miR-467b agomir led to decreased blood plasma levels of total cholesterol (TC), triglyceride (TG), low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), IL-1β and monocyte chemotactic protein-1 (MCP-1). Using Western blots and real time PCR, we determined that LPL expression in aorta and abdominal cavity macrophages were significantly down-regulated in the miR-467b agomir group. Furthermore, systemic treatment with miR-467b antagomir accelerated the progression of atherosclerosis in the aorta of apoE(-/-) mice. The present study showed that miR-467b protects apoE(-/-) mice from atherosclerosis by reducing lipid accumulation and inflammatory cytokine secretion via downregulation of LPL expression. Therefore, targeting miR-467b may offer a promising strategy to treat atherosclerotic vascular disease.
Collapse
Affiliation(s)
- Guo-Ping Tian
- Department of Cardiovascular Medicine, Second Affiliated Hospital of University of South China, Hengyang 421001, Hunan, China
| | - Yan-Yan Tang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang 421001, Hunan, China
| | - Ping-Ping He
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang 421001, Hunan, China; School of Nursing, University of South China, Hengyang 421001, Hunan, China
| | - Yun-Cheng Lv
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang 421001, Hunan, China
| | - Xin-Pin Ouyang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang 421001, Hunan, China
| | - Guo-Jun Zhao
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang 421001, Hunan, China
| | - Shi-Lin Tang
- Department of Physiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jian-Feng Wu
- Department of Cardiovascular Medicine, Second Affiliated Hospital of University of South China, Hengyang 421001, Hunan, China; Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang 421001, Hunan, China
| | - Jia-Lin Wang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang 421001, Hunan, China
| | - Juan Peng
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang 421001, Hunan, China
| | - Min Zhang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang 421001, Hunan, China
| | - Yuan Li
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang 421001, Hunan, China
| | - Francisco S Cayabyab
- Department of Physiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, The University of Calgary, Health Sciences Center, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Wei-Dong Yin
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang 421001, Hunan, China.
| | - Chao-Ke Tang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
33
|
Abstract
At least 468 individual genes have been manipulated by molecular methods to study their effects on the initiation, promotion, and progression of atherosclerosis. Most clinicians and many investigators, even in related disciplines, find many of these genes and the related pathways entirely foreign. Medical schools generally do not attempt to incorporate the relevant molecular biology into their curriculum. A number of key signaling pathways are highly relevant to atherogenesis and are presented to provide a context for the gene manipulations summarized herein. The pathways include the following: the insulin receptor (and other receptor tyrosine kinases); Ras and MAPK activation; TNF-α and related family members leading to activation of NF-κB; effects of reactive oxygen species (ROS) on signaling; endothelial adaptations to flow including G protein-coupled receptor (GPCR) and integrin-related signaling; activation of endothelial and other cells by modified lipoproteins; purinergic signaling; control of leukocyte adhesion to endothelium, migration, and further activation; foam cell formation; and macrophage and vascular smooth muscle cell signaling related to proliferation, efferocytosis, and apoptosis. This review is intended primarily as an introduction to these key signaling pathways. They have become the focus of modern atherosclerosis research and will undoubtedly provide a rich resource for future innovation toward intervention and prevention of the number one cause of death in the modern world.
Collapse
Affiliation(s)
- Paul N Hopkins
- Cardiovascular Genetics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
34
|
Takahashi M, Yagyu H, Tazoe F, Nagashima S, Ohshiro T, Okada K, Osuga JI, Goldberg IJ, Ishibashi S. Macrophage lipoprotein lipase modulates the development of atherosclerosis but not adiposity. J Lipid Res 2013; 54:1124-34. [PMID: 23378601 DOI: 10.1194/jlr.m035568] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of macrophage lipoprotein lipase (LpL) in the development of atherosclerosis and adiposity was examined in macrophage LpL knockout (MLpLKO) mice. MLpLKO mice were generated using cre-loxP gene targeting. Loss of LpL in macrophages did not alter plasma LpL activity or lipoprotein levels. Incubation of apolipoprotein E (ApoE)-deficient β-VLDL with peritoneal macrophages from ApoE knockout mice lacking macrophage LpL (MLpLKO/ApoEKO) led to less cholesteryl ester formation than that found with ApoEKO macrophages. MLpLKO/ApoEKO macrophages had reduced intracellular triglyceride levels, with decreased CD36 and carnitine palmitoyltransferase-1 mRNA levels compared with ApoEKO macrophages, when incubated with VLDL. Although both MLpLKO/ApoEKO and ApoEKO mice developed comparable hypercholesterolemia in response to feeding with a Western-type diet for 12 weeks, atherosclerosis was less in MLpLKO/ApoEKO mice. Epididymal fat mass and gene expression levels associated with inflammation did not differ between the two groups. In conclusion, macrophage LpL plays an important role in the development of atherosclerosis but not adiposity.
Collapse
Affiliation(s)
- Manabu Takahashi
- Department of Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Nakajima K, Nakano T, Tokita Y, Nagamine T, Yatsuzuka SI, Shimomura Y, Tanaka A, Sumino H, Nara M, Machida T, Murakami M. The characteristics of remnant lipoproteins in the fasting and postprandial plasma. Clin Chim Acta 2012; 413:1077-86. [DOI: 10.1016/j.cca.2012.02.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 02/18/2012] [Accepted: 02/23/2012] [Indexed: 11/16/2022]
|
36
|
|
37
|
Jinno Y, Nakakuki M, Kawano H, Notsu T, Mizuguchi K, Imada K. Eicosapentaenoic acid administration attenuates the pro-inflammatory properties of VLDL by decreasing its susceptibility to lipoprotein lipase in macrophages. Atherosclerosis 2011; 219:566-72. [DOI: 10.1016/j.atherosclerosis.2011.09.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 09/05/2011] [Accepted: 09/26/2011] [Indexed: 01/22/2023]
|
38
|
Araki M, Fan J, Challah M, Bensadoun A, Yamada N, Honda K, Watanabe T. Transgenic rabbits expressing human lipoprotein lipase. Cytotechnology 2011; 33:93-9. [PMID: 19002816 DOI: 10.1023/a:1008115429679] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To study the functions of lipoprotein lipase (LPL) in lipid and lipoprotein metabolism and the relationship between LPL and atherosclerosis, we generated transgenic rabbits expressing the human LPL gene. A total of 4045 Japanese whiterabbit embryos were microinjected with a 3.8-kb SalI/HindIII fragment containing the chicken beta-actin promoter, human LPL cDNA and rabbit beta-globin with poly (A) signals, and then transplanted into 116 recipient rabbits. Of the 166 pups born, six pups were transgenic as confirmed by Southern blot analysis. ANorthern blot analysis revealed that human LPL was expressed by a number of tissues including the heart, kidney, adrenal gland and intestine. One transgenic rabbit showed up to 3-foldincreased LPL activity in post-heparin plasma compared to thatin nontransgenic rabbits. Human LPL expression in various tissues of transgenic rabbits was further elucidated by in situ hybridization and immunostaining. Since rabbits are superior to mice as a model of atherosclerosis, this transgenicrabbit model should provide a valuable tool for the study of LPL in lipid metabolism and atherosclerosis.
Collapse
Affiliation(s)
- M Araki
- Department of Pathology, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, 305-8575, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Leger AJ, Mosquea LM, Li L, Chuang W, Pacheco J, Taylor K, Luo Z, Piepenhagen P, Ziegler R, Moreland R, Urabe A, Jiang C, Cheng SH, Yew NS. Adeno-associated virus-mediated expression of acid sphingomyelinase decreases atherosclerotic lesion formation in apolipoprotein E−/− mice. J Gene Med 2011; 13:324-32. [DOI: 10.1002/jgm.1575] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
| | | | - Lingyun Li
- Genzyme Corporation; Framingham; MA; USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Yasuda T, Ishida T, Rader DJ. Update on the Role of Endothelial Lipase in High-Density Lipoprotein Metabolism, Reverse Cholesterol Transport, and Atherosclerosis. Circ J 2010; 74:2263-70. [DOI: 10.1253/circj.cj-10-0934] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tomoyuki Yasuda
- Institute for Translational Medicine and Therapeutics and Cardiovascular Institute, University of Pennsylvania School of Medicine
- Division of Cardiovascular Medicine, Kobe University Graduate school of Medicine
| | - Tatsuro Ishida
- Division of Cardiovascular Medicine, Kobe University Graduate school of Medicine
| | - Daniel J. Rader
- Institute for Translational Medicine and Therapeutics and Cardiovascular Institute, University of Pennsylvania School of Medicine
| |
Collapse
|
41
|
Khera AV, Rader DJ. Discovery and validation of new molecular targets in treating dyslipidemia: the role of human genetics. Trends Cardiovasc Med 2009; 19:195-201. [PMID: 20211435 PMCID: PMC3328807 DOI: 10.1016/j.tcm.2009.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Several high-profile failures of lipid-related therapeutics in clinical trials have led to intense interest in improved discovery and preclinical prioritization of potential targets. The careful study of patients with rare monogenic disorders has played a key role in establishing the causal role of cholesterol in atherosclerosis and highlighting viable drug targets. Systematic efforts to extend the association of common variants linked with lipid levels to coronary disease enable assessment of the vascular consequences of lifelong differences in lipids due to variation in specific molecules. This application of genetic epidemiology, termed Mendelian randomization, may prove useful in informing ongoing drug development efforts.
Collapse
Affiliation(s)
- Amit V. Khera
- Institute for Translational Medicine & Therapeutics and Cardiovascular Institute, University of Pennsylvania; Philadelphia, PA
| | - Daniel J. Rader
- Institute for Translational Medicine & Therapeutics and Cardiovascular Institute, University of Pennsylvania; Philadelphia, PA
| |
Collapse
|
42
|
Enhanced atherothrombotic formation after oxidative injury by FeCl3 to the common carotid artery in severe combined hyperlipidemic mice. Biochem Biophys Res Commun 2009; 385:563-9. [DOI: 10.1016/j.bbrc.2009.05.101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 05/22/2009] [Indexed: 11/22/2022]
|
43
|
Higgins LJ, Rutledge JC. Inflammation associated with the postprandial lipolysis of triglyceriderich lipoproteins by lipoprotein lipase. Curr Atheroscler Rep 2009; 11:199-205. [DOI: 10.1007/s11883-009-0031-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Adachi H, Fujiwara Y, Kondo T, Nishikawa T, Ogawa R, Matsumura T, Ishii N, Nagai R, Miyata K, Tabata M, Motoshima H, Furukawa N, Tsuruzoe K, Kawashima J, Takeya M, Yamashita S, Koh GY, Nagy A, Suda T, Oike Y, Araki E. Angptl 4 deficiency improves lipid metabolism, suppresses foam cell formation and protects against atherosclerosis. Biochem Biophys Res Commun 2009; 379:806-11. [DOI: 10.1016/j.bbrc.2008.12.018] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 12/05/2008] [Indexed: 12/21/2022]
|
45
|
Inaba T, Yagyu H, Itabashi N, Tazoe F, Fujita N, Nagashima SI, Okada K, Okazaki M, Furukawa Y, Ishibashi S. Cholesterol reduction and atherosclerosis inhibition by bezafibrate in low-density lipoprotein receptor knockout mice. Hypertens Res 2008; 31:999-1005. [PMID: 18712055 DOI: 10.1291/hypres.31.999] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Fibrates, peroxisome proliferator-activated receptor a agonists, are widely used as lipid-lowering agents with anti-atherogenic activity. However, conflicting results have been reported with regard to their pharmacological effects on plasma lipoprotein profiles as well as on atherosclerosis in animal models. Furthermore, the anti-atherogenic effects of bezafibrate, one of the most commonly used fibrates, in animal models have not been reported. In the present study, we investigated the effects of bezafibrate on lipoprotein profiles as well as on atherosclerosis in low-density lipoprotein receptor knockout (LDLR-/-) mice fed an atherogenic diet for 8 weeks. Bezafibrate decreased plasma levels of both cholesterol and triglycerides (TG), while increasing plasma levels of high-density lipoprotein-cholesterol (HDL-C). Since hepatic TG production was significantly reduced in the bezafibrate-treated mice lacking LDLR, the plasma lipid-lowering effects of bezafibrate might be primarily mediated by the suppression of hepatic production of apolipoprotein-B-containing lipoproteins. In parallel with the reduced ratio of non-HDL-C to HDL-C, bezafibrate suppressed fatty streak lesions in the aortic sinus by 51%. To determine whether or not bezafibrate directly alters the expression of genes relevant to atherosclerosis, we measured mRNA expression levels of three genes in the aorta by real-time PCR: ATP-binding cassette transporter A1, lipoprotein lipase, and monocyte chemoattractant protein-1. The results showed that there were no differences in the expression of these genes between mice treated with bezafibrate and those not. In conclusion, bezafibrate inhibits atherosclerosis in LDLR-/- mice primarily by decreasing the ratio of non-HDL-C to HDL-C.
Collapse
Affiliation(s)
- Toshihiro Inaba
- Division of Endocrinology and Metabolism, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Talmud PJ, Flavell DM, Alfakih K, Cooper JA, Balmforth AJ, Sivananthan M, Montgomery HE, Hall AS, Humphries SE. The lipoprotein lipase gene serine 447 stop variant influences hypertension-induced left ventricular hypertrophy and risk of coronary heart disease. Clin Sci (Lond) 2007; 112:617-24. [PMID: 17291198 DOI: 10.1042/cs20060344] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
LVH [LV (left ventricular) hypertrophy] is an independent risk factor for CHD (coronary heart disease). During LVH, the preferred cardiac energy substrate switches from FAs (fatty acids) to glucose. LPL (lipoprotein lipase) is the key enzyme in triacylglycerol (triglyceride) hydrolysis and supplies FAs to the heart. To investigate whether substrate utilization influences cardiac growth and CHD risk, we examined the association between the functional LPL S447X (rs328) variant and hypertension-induced LV growth and CHD risk. LPL-X447 has been shown to be more hydrolytically efficient and would therefore release more free FAs than LPL-S477. In a cohort of 190 hypertensive subjects, LPL X447 was associated with a greater LV mass index [85.2 (1.7) in S/S compared with 91.1 (3.4) in S/X+X/X; P=0.01], but no such association was seen in normotensive controls (n=60). X447 allele frequency was higher in hypertensives with than those without LVH {0.14 [95% CI (confidence interval), 0.08-0.19] compared with 0.07 (95% CI, 0.05-0.10) respectively; odds ratio, 2.52 (95% CI, 1.17-5.40), P=0.02}. The association of LPL S447X with CHD risk was then examined in a prospective study of healthy middle-aged U.K. men (n=2716). In normotensive individuals, compared with S447 homozygotes, X447 carriers were protected from CHD risk [HR (hazard ratio), 0.48 (95% CI, 0.23-1.00); P=0.05], whereas, in the hypertensives, X447 carriers had increased risk [HR, 1.54 (95% CI, 1.13-2.09) for S/S (P=0.006) and 2.30 (95% CI, 1.53-3.45) for X447+ (P<0.0001)] and had a significant interaction with hypertension in CHD risk determination (P=0.007). In conclusion, hypertensive LPL X447 carriers have increased risk of LVH and CHD, suggesting that altered FA delivery constitutes a mechanism through which LVH and CHD are associated in hypertensive subjects.
Collapse
Affiliation(s)
- Philippa J Talmud
- Centre for Cardiovascular Genetics, British Heart Foundation Laboratories, The Rayne Building, Department of Medicine, Royal Free and University College Medical School, London, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Elder GA, Cho JY, English DF, Franciosi S, Schmeidler J, Sosa MAG, Gasperi RD, Fisher EA, Mathews PM, Haroutunian V, Buxbaum JD. Elevated plasma cholesterol does not affect brain Abeta in mice lacking the low-density lipoprotein receptor. J Neurochem 2007; 102:1220-31. [PMID: 17472705 DOI: 10.1111/j.1471-4159.2007.04614.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Epidemiological studies support an association between vascular risk factors, including hypercholesterolemia, and Alzheimer's disease (AD). Recently, there has been much interest in the possibility that hypercholesterolemia might directly promote beta-amyloid (Abeta) production. Indeed, in vitro studies have shown that increasing cellular cholesterol levels enhances Abeta production. However, studies in AD transgenic mouse models have not consistently found that elevated plasma cholesterol leads to increased Abeta production or deposition in vivo. In this study, we determined whether elevated peripheral cholesterol influences Abeta production in mice with a null mutation of the low-density lipoprotein receptor (LDLR). We show that dramatically elevated plasma cholesterol levels, whether induced by high cholesterol, high fat, or high fat/high cholesterol diets, did not affect either levels of brain Abeta40, Abeta42, or APP, or the Abeta42/40 or APP-CTF/APP ratios, nor substantially alter brain cholesterol levels. ApoE protein levels in brain were, however, elevated, in LDLR-/- mice by post-transcriptional mechanisms. Collectively, these studies argue that plasma cholesterol levels do not normally regulate production of brain Abeta.
Collapse
Affiliation(s)
- Gregory A Elder
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Wang X, Jin W, Rader DJ. Upregulation of Macrophage Endothelial Lipase by Toll-Like Receptors 4 and 3 Modulates Macrophage Interleukin-10 and -12 Production. Circ Res 2007; 100:1008-15. [PMID: 17347473 DOI: 10.1161/01.res.0000263011.34709.c5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Limited data suggest that endothelial lipase (EL) is synthesized not only by endothelial cells but also by macrophages. Previous studies showed that proinflammatory cytokines upregulate EL in endothelial cells, but there are very few data regarding EL expression, regulation, and functional consequences in macrophages. In the present study, RAW cells and mouse peritoneal macrophages were treated with Toll-like receptor (TLR) ligands and EL expression and its consequences were assessed. We demonstrate that lipopolysaccharide, a TLR4 ligand; and polyinosinic:polycytidylic acid (poly I:C), a TLR3 ligand; but not lipoteichoic acid, a TLR2 ligand, upregulate macrophage EL expression both ex vivo and in vivo. In contrast, macrophage lipoprotein lipase expression is significantly repressed by lipopolysaccharide or poly I:C. Using C3HJ and TLR3 knockout mice, we further show that upregulation of macrophage EL expression by lipopolysaccharide or poly I:C is TLR4 or TLR3 dependent, respectively. Furthermore, we demonstrate that lipopolysaccharide induced interleukin (IL)-10 production was significantly reduced, whereas IL-12 production is significantly increased in J744 macrophages and mouse peritoneal macrophages overexpressing human EL. Conversely, significantly increased IL-10 and significantly decreased IL-12 expression were observed in mouse peritoneal macrophages isolated from EL knockout mice. Finally we show that the catalytic activity is required for EL to modulate the balance of macrophage IL-10 and IL-12 production. These results suggest that macrophage EL may play important roles in modulating the macrophage inflammatory response through local hydrolysis of HDL.
Collapse
Affiliation(s)
- Xun Wang
- Institute for Translational Medicine and Therapeutics, School of Medicine, University of Pennsylvania, Philadelphia 9104-6160, USA
| | | | | |
Collapse
|
49
|
Rip J, Sierts JA, Vaessen SFC, Kastelein JJP, Twisk J, Kuivenhoven JA. Adeno-associated virus LPL(S447X) gene therapy in LDL receptor knockout mice. Atherosclerosis 2006; 194:55-61. [PMID: 17087965 DOI: 10.1016/j.atherosclerosis.2006.09.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 09/08/2006] [Accepted: 09/27/2006] [Indexed: 12/21/2022]
Abstract
BACKGROUND Overexpression of lipoprotein lipase (LPL) protects against atherosclerosis in genetically engineered mice. We tested whether a gene therapy vector that delivers human (h) LPL(S447X) cDNA to skeletal muscle could induce similar effects. METHODS LDL receptor knockout (LDLr-/-) mice were injected intramuscular (i.m.) with adeno-associated virus serotype 1 (AAV1) LPL(S447X) or PBS. Four weeks later they were started on an atherogenic diet for 12 weeks. After termination, atherosclerosis was assessed and homogenates of muscle and liver tissue were analyzed. RESULTS AAV1-treated mice showed hLPL concentrations of 768+/-293 ng/mL in post-heparin plasma associated with 48% reductions of fasting triglycerides (TG) levels (p<0.0001). In the absence of an effect on total cholesterol (TC) levels, no effects on atherosclerosis were found. An increase in lipid content of injected muscles was accompanied by a significant decrease of TG (-20%, p<0.0001) and free cholesterol (FC) content (-24%, p<0.0001) in liver homogenates. CONCLUSIONS The data show that transgenic hLPL(S447X) on top of endogenous murine LPL reduces fasting TG levels in plasma but has no effect on atherosclerosis in LDLr-/- mice. While lipid accumulation in the injected muscle was anticipated, this coincided with an interesting decrease of both TG and FC in liver homogenates.
Collapse
Affiliation(s)
- Jaap Rip
- Department of Vascular Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
50
|
Yang R, Le G, Li A, Zheng J, Shi Y. Effect of antioxidant capacity on blood lipid metabolism and lipoprotein lipase activity of rats fed a high-fat diet. Nutrition 2006; 22:1185-91. [PMID: 17095404 DOI: 10.1016/j.nut.2006.08.018] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 08/27/2006] [Accepted: 08/28/2006] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The present study explored the effect of antioxidant capacity on blood lipid metabolism and lipoprotein lipase (LPL) activity of rats fed with a high-fat diet (HFD). Furthermore, the relation of the atherosclerotic index (AI) and LPL activity to total antioxidant capacity (TAC) was studied. METHODS Thirty-two Sprague-Dawley rats were randomly assigned to one of four groups (n = 8). The control group consumed an ordinary diet (5.1% fat, w/w). The other three experimental groups were fed with an HFD (14.1% fat, w/w), an HFD plus 0.1% lipoic acid (LA), or an HFD plus 0.1% N-acetylcysteine (NAC). After 4 wk, serum levels of triacylglycerol, total cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol and LPL activity were examined. To evaluate rats' antioxidant status, TAC and superoxide dismutase activities and malondialdehyde level were measured. RESULTS The HFD induced abnormal increases in lipid peroxidation, serum concentrations of total cholesterol, triacylglycerol, and low-density lipoprotein cholesterol, and a decrease in high-density lipoprotein cholesterol concentration. Decreased activity of LPL, accompanied by a depressed antioxidant defense system, was observed in HFD-fed rats. These changes were partially restored in the NAC- and LA-treated groups. There was a negative correlation between AI and TAC (r = -0.969, P < 0.05). In addition, a significant positive correlation between LPL activity and TAC was found (r = 0.979, P < 0.05). CONCLUSION Oxidative injury and lipid abnormalities were induced by an HFD. Administration of LA and NAC can improve the antioxidant capacity and activity of LPL and reduce blood lipid significantly. Antioxidant capacity is correlated with AI and LPL activity.
Collapse
Affiliation(s)
- RuiLi Yang
- Key Laboratory of Food Science and Security, Ministry of Education, Southern Yangtze University, Wuxi, Jiangsu, China
| | | | | | | | | |
Collapse
|