1
|
Serafim C, Ramos MA, Yilmaz T, Sousa NR, Yu K, Van Geel M, Ceulemans T, Saudreau M, Somers B, Améglio T, Honnay O, Castro PML. Substrate pH mediates growth promotion and resilience to water stress of Tilia tomentosa seedlings after Ectomycorrhizal inoculation. BMC PLANT BIOLOGY 2024; 24:1001. [PMID: 39448897 PMCID: PMC11515430 DOI: 10.1186/s12870-024-05614-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
Colonization by Ectomycorrhizal (EcM) fungi is key for the health and performance of plants under different stress scenarios, such as those faced by trees in urban environments. Because urban environments can be lacking EcM fungi, we here assessed the benefits of inoculating Tilia tomentosa seedlings in a pre-transplantation nursery context with the EcM fungi Lactarius deliciosus and Paxillus involutus, using substrates of different pH and facing water-stress. P. involutus had a more evident positive effect in T. tomentosa seedlings and had a good performance in both acidic and alkaline substrate. In acidic substrate the fungus increased the plant height by 0.91-fold, increased the mycorrhization rate by 3.23-fold, expansion rate by 5.03-fold and formation of secondary roots by 0.46-fold, compared to the non-inoculated control. This species also improved the phosphorus content of leaves, which revealed a promotion of nutrient uptake. In alkaline substrate P. involutus increased root dry weight by 3.92-fold and the mycorrhization parameters. In contrast, L. deliciosus only had a positive effect in the improvement of mycorrhization and expansion rates and phosphorus content in the root, effects visible only in alkaline substrate. When exposed to water-stress the increase of proline content was visible in acidic substrate for both fungi, L. deliciosus and P. involutus, and in alkaline substrate for the fungus P. involutus, a response indicative of the enhancement of defenses in stressing scenarios such as water scarcity. We conclude that fungal inoculation improves the vigour and resilience of Tilia seedlings and that it is of utmost importance to select a suitable EcM fungus and to consider the soil pH of the transplanting site. The inoculation approach can be a valuable tool to produce robust seedlings which may have a better performance when transplanted to the challenging urban environment.
Collapse
Grants
- BR/175/A1/URBANMYCOSERVE 2015-2016 BiodivERsA COFUND call for research proposals, with the national funders: Belgian Science Policy (BelSPo), Research Foundation Flanders (FWO), Agence Nationale de la Recherche (ANR) and Fundação para a Ciência e a Tecnologia (FCT)
- BR/175/A1/URBANMYCOSERVE 2015-2016 BiodivERsA COFUND call for research proposals, with the national funders: Belgian Science Policy (BelSPo), Research Foundation Flanders (FWO), Agence Nationale de la Recherche (ANR) and Fundação para a Ciência e a Tecnologia (FCT)
- BR/175/A1/URBANMYCOSERVE 2015-2016 BiodivERsA COFUND call for research proposals, with the national funders: Belgian Science Policy (BelSPo), Research Foundation Flanders (FWO), Agence Nationale de la Recherche (ANR) and Fundação para a Ciência e a Tecnologia (FCT)
- BR/175/A1/URBANMYCOSERVE 2015-2016 BiodivERsA COFUND call for research proposals, with the national funders: Belgian Science Policy (BelSPo), Research Foundation Flanders (FWO), Agence Nationale de la Recherche (ANR) and Fundação para a Ciência e a Tecnologia (FCT)
- BR/175/A1/URBANMYCOSERVE 2015-2016 BiodivERsA COFUND call for research proposals, with the national funders: Belgian Science Policy (BelSPo), Research Foundation Flanders (FWO), Agence Nationale de la Recherche (ANR) and Fundação para a Ciência e a Tecnologia (FCT)
- BR/175/A1/URBANMYCOSERVE 2015-2016 BiodivERsA COFUND call for research proposals, with the national funders: Belgian Science Policy (BelSPo), Research Foundation Flanders (FWO), Agence Nationale de la Recherche (ANR) and Fundação para a Ciência e a Tecnologia (FCT)
- BR/175/A1/URBANMYCOSERVE 2015-2016 BiodivERsA COFUND call for research proposals, with the national funders: Belgian Science Policy (BelSPo), Research Foundation Flanders (FWO), Agence Nationale de la Recherche (ANR) and Fundação para a Ciência e a Tecnologia (FCT)
- BR/175/A1/URBANMYCOSERVE 2015-2016 BiodivERsA COFUND call for research proposals, with the national funders: Belgian Science Policy (BelSPo), Research Foundation Flanders (FWO), Agence Nationale de la Recherche (ANR) and Fundação para a Ciência e a Tecnologia (FCT)
- BR/175/A1/URBANMYCOSERVE 2015-2016 BiodivERsA COFUND call for research proposals, with the national funders: Belgian Science Policy (BelSPo), Research Foundation Flanders (FWO), Agence Nationale de la Recherche (ANR) and Fundação para a Ciência e a Tecnologia (FCT)
- BR/175/A1/URBANMYCOSERVE 2015-2016 BiodivERsA COFUND call for research proposals, with the national funders: Belgian Science Policy (BelSPo), Research Foundation Flanders (FWO), Agence Nationale de la Recherche (ANR) and Fundação para a Ciência e a Tecnologia (FCT)
- BR/175/A1/URBANMYCOSERVE 2015-2016 BiodivERsA COFUND call for research proposals, with the national funders: Belgian Science Policy (BelSPo), Research Foundation Flanders (FWO), Agence Nationale de la Recherche (ANR) and Fundação para a Ciência e a Tecnologia (FCT)
- BR/175/A1/URBANMYCOSERVE 2015-2016 BiodivERsA COFUND call for research proposals, with the national funders: Belgian Science Policy (BelSPo), Research Foundation Flanders (FWO), Agence Nationale de la Recherche (ANR) and Fundação para a Ciência e a Tecnologia (FCT)
- 2015–2016 BiodivERsA COFUND call for research proposals, with the national funders: Belgian Science Policy (BelSPo), Research Foundation Flanders (FWO), Agence Nationale de la Recherche (ANR) and Fundação para a Ciência e a Tecnologia (FCT)
Collapse
Affiliation(s)
- Cindy Serafim
- Escola Superior de Biotecnologia, Catholic University of Portugal, Rua Diogo Botelho, 1327, Porto, 4169-005, Portugal
| | - Miguel A Ramos
- Escola Superior de Biotecnologia, Catholic University of Portugal, Rua Diogo Botelho, 1327, Porto, 4169-005, Portugal
| | - Tugce Yilmaz
- Escola Superior de Biotecnologia, Catholic University of Portugal, Rua Diogo Botelho, 1327, Porto, 4169-005, Portugal
| | - Nadine R Sousa
- Escola Superior de Biotecnologia, Catholic University of Portugal, Rua Diogo Botelho, 1327, Porto, 4169-005, Portugal
| | - Kang Yu
- Precision Agriculture Lab, School of Life Sciences, Technical University of Munich, Dürnast 9, 85354, Freising, Germany
| | - Maarten Van Geel
- Plant Conservation and Population Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, Heverlee, 3001, Belgium
| | - Tobias Ceulemans
- Plant Conservation and Population Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, Heverlee, 3001, Belgium
| | - Marc Saudreau
- Université Clermont Auvergne, INRAE, UMR PIAF, Chemin de Beaulieu 5, Clermont-Ferrand, 63000, France
| | - Ben Somers
- Division of Forest, Nature & Landscape, Department of Earth & Environmental Sciences, KU Leuven, Celestijnenlaan 200E, Heverlee, 3001, Belgium
| | - Thierry Améglio
- Université Clermont Auvergne, INRAE, UMR PIAF, Chemin de Beaulieu 5, Clermont-Ferrand, 63000, France
| | - Olivier Honnay
- Plant Conservation and Population Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, Heverlee, 3001, Belgium
| | - Paula M L Castro
- Escola Superior de Biotecnologia, Catholic University of Portugal, Rua Diogo Botelho, 1327, Porto, 4169-005, Portugal.
| |
Collapse
|
2
|
Koc YE, Aycan M, Mitsui T. Exogenous proline suppresses endogenous proline and proline-production genes but improves the salinity tolerance capacity of salt-sensitive rice by stimulating antioxidant mechanisms and photosynthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108914. [PMID: 38981207 DOI: 10.1016/j.plaphy.2024.108914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/28/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
Salinity is a critical environmental stress factor that significantly reduces crop productivity and yield. A mutant B-type response regulator gene (hst1) has been shown to promote salinity tolerance in the YNU genotype. Previous studies on the hst1 gene showed a higher proline production capacity under salt stress. Using almost identical genetic backgrounded salt-tolerant (YNU) and salt-sensitive (Sister line) rice genotypes, we tested the function of proline in the hst1 gene salinity-tolerance mechanism by applying exogenous proline under control and salt-stress conditions. Morpho-physiological, biochemical, and molecular analysis of ST and SS plants was performed to clarify the salinity tolerance mechanism mediated by the exogenous proline. The ST and SS genotypes accumulated exogenous proline, and the ST genotype has higher proline levels than the SS genotype. However, exogenous proline improved salt tolerance only in the SS genotype. Exogenous proline promotes plant and root growth by stimulating photosynthetic pigments and photosynthesis. The exogenous proline has a reductive effect on MDA, and H2O2 protects plants against ROS. Interestingly, exogenous proline lowers Na+ and raises K+ accumulations under salt stress. In the SS genotype, exogenous proline increases the activity of antioxidant enzymes (SOD, CAT, and APX) to protect against salinity-induced damage. The exogenous proline application down-regulates proline-synthesis genes (OsP5CS1 and OsP5CR) and up-regulates proline-degradation genes. Also, exogenous proline increases the expression of the OsSalT and OsGRAS29 genes, improving salinity tolerance in the SS genotype. Our study has demonstrated that proline plays a significant role in conferring salt tolerance with the salinity-tolerance-related hst1 mechanisms.
Collapse
Affiliation(s)
- Yunus Emre Koc
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata, 950-21-81, Japan; General Directorate of Agricultural Research and Policies, Ministry of Agriculture and Forestry, Ankara, 06800, Turkiye
| | - Murat Aycan
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, 950-2181, Japan.
| | - Toshiaki Mitsui
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata, 950-21-81, Japan; Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, 950-2181, Japan.
| |
Collapse
|
3
|
Koim-Puchowska B, Kamiński P, Puchowski P, Ossowska A, Wieloch M, Labudda M, Tkaczenko H, Barczak T, Woźniak A, Kurhaluk N. Can Environmental Stressors Determine the Condition of Ecological Plant Groups? PLANTS (BASEL, SWITZERLAND) 2024; 13:1550. [PMID: 38891357 PMCID: PMC11174637 DOI: 10.3390/plants13111550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
There is still a need to investigate the relationships between glycophytes and halophytes and the many biotic and abiotic factors in their natural environments. Therefore, we study the effects of the type of environment on the ecophysiological responses and condition of the glycophyte Elder Sambucus nigra L., the macrophyte Common Reed Phragmites australis (Cav.) Trin. ex Steud., the facultative halophyte Weeping Alkaligrass Puccinellia distans (Jacq.) Parl, and the obligate halophyte Common Glasswort Salicornia europaea L. in a saline-disturbed anthropogenic region of central Poland. We analyzed the effects of salinity, acidity, and soil organic matter on shoot length, lipoperoxidation, and proline in roots and green parts, and evaluated plant responses to environmental disturbance, which allowed for the comparison of adaptation strategies. The studies were carried out in (1) "sodium production" (near sodium factories), (2) "anthropogenic environments" (waste dumps, agroecosystems, calcium deposits, post-production tanks), (3) "wetland environments" (near river channels and riparian areas), and (4) "control" (natural, unpolluted environments). Green parts of plants are better suited to indicate environmental stress than roots. Their higher structural MDA membrane damage is related to the transport of toxic ions to the shoots by a rapid transpiration stream in the xylem. We found high salinity to be the main factor inducing growth and found it to be correlated with the high pH effect on proline increase in glycophytes (Elder, Reed) and Weeping Alkaligrass, in contrast to Common Glasswort. We suggest that proline accumulation allows osmotic adjustment in the green parts of reeds and alkaligrasses, but may have another function (in Elder). Common Glasswort accumulates large amounts of Na+, which is energetically more effective than proline accumulation for osmotic adjustment. Organic matter affects plant growth and proline levels, but soil salinity and pH alter nutrient availability. Plant distribution along the salinity gradient indicates that Elder is the most salt-sensitive species compared to Reed, Alkaligrass, and Glasswort. Salinity and the lack of control of thick reeds, which compete with other plant groups, affect the distribution of halophytes in saline environments.
Collapse
Affiliation(s)
- Beata Koim-Puchowska
- Department of Biotechnology, Kazimierz Wielki University, Ks. J. Poniatowski St. 12, PL 85-671 Bydgoszcz, Poland;
| | - Piotr Kamiński
- Division of Ecology and Environmental Protection, Department of Medical Biology and Biochemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, PL 85-094 Bydgoszcz, Poland; (A.O.); (M.W.)
- Department of Biotechnology, Institute of Biological Sciences, Faculty of Biological Sciences, University of Zielona Góra, Prof. Z. Szafran St. 1, PL 65-516 Zielona Góra, Poland
| | - Piotr Puchowski
- Government Forestry in Toruń, Zamrzenica Forestry District, Zamrzenica 1A, PL 89-510 Bysław, Poland;
| | - Anna Ossowska
- Division of Ecology and Environmental Protection, Department of Medical Biology and Biochemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, PL 85-094 Bydgoszcz, Poland; (A.O.); (M.W.)
| | - Monika Wieloch
- Division of Ecology and Environmental Protection, Department of Medical Biology and Biochemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, PL 85-094 Bydgoszcz, Poland; (A.O.); (M.W.)
| | - Mateusz Labudda
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska St. 159, PL 02-776 Warsaw, Poland;
| | - Halina Tkaczenko
- Institute of Biology, Pomeranian University in Słupsk, Arciszewski St. 22 B, PL 76-200 Słupsk, Poland; (H.T.); (N.K.)
| | - Tadeusz Barczak
- Department of Biology and Animal Environment, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Hetmańska St. 33, PL 85-039 Bydgoszcz, Poland;
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicz St. 24, PL 85-092 Bydgoszcz, Poland;
| | - Natalia Kurhaluk
- Institute of Biology, Pomeranian University in Słupsk, Arciszewski St. 22 B, PL 76-200 Słupsk, Poland; (H.T.); (N.K.)
| |
Collapse
|
4
|
Zhang Z, Xu P, Duan Z, Lu L, Nan Z, Zhang J. Overexpression of P5CDH from Cleistogenes songorica improves alfalfa growth performance under field drought conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 209:108551. [PMID: 38537382 DOI: 10.1016/j.plaphy.2024.108551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/06/2024]
Abstract
Water stress affects the metabolic regulation and delays the growth and development of alfalfa, causing a reduction in biomass. New alfalfa germplasm was created with improved drought tolerance in greenhouse conditions by introducing the key gene P5CDH1 from C. songorica, a xerophytic grass. However, the field adaptability and response mechanism of new drought-tolerant alfalfa germplasms under water stress are still unclear. In the present study, the yield and quality traits of transgenic CsP5CDH1 alfalfa lines under water stress and normal irrigation conditions were measured and analyzed for two years. The genetic variance components of the tested traits were calculated from the data fitted by the mixed linear model. The plant height of all lines showed significant genotypic variation (σ2g) (P < 0.05), and the stem diameter, stem number, and dry weight of all lines had a significant genotype × environment interaction (σ2ge) (P < 0.05). The heritability (H) of plant height, stem diameter, stem number, dry weight and leaf-to-stem ratio of alfalfa lines were 0.87, 0.52, 0.59, 0.52 and 0.50, respectively. There were significant genotype × environment interactions (σ2ge) (P < 0.05) for the quality traits of all lines. The heritabilities (H) of acid detergent fiber and neutral detergent fiber were 0.65 and 0.64, respectively. The results of transcriptional expression analysis with RNA-seq showed that the genes MsProDH1, MsProDH4, MsProDH5, MsP5CDH1, MsP5CS5, MsP5CS9, and MsP5CR1, which are involved in the proline metabolism pathway, played an important role in the drought tolerance of innovative alfalfa germplasm. Under water stress, with the regulation of key genes in the proline metabolism pathway, the proline content of all alfalfa lines increased to varying degrees. Among them, the proline content in the shoots and roots of transgenic line L6 was 7.29 times and 12.22 times that under normal irrigation conditions, respectively. The present study helped to clarify that the new germplasm of alfalfa transformed with the CsP5CDH gene synthesized a large amount of proline under water stress, and effectively slowed leaf water loss, thus improving the drought resistance of alfalfa.
Collapse
Affiliation(s)
- Zhengshe Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| | - Pan Xu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Zhen Duan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Liyan Lu
- Guangxi Subtropical Crops Research Institute, Nanning, 530001, China
| | - Zhibiao Nan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Jiyu Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| |
Collapse
|
5
|
Na SJ, Kim YK, Park JM. Nectar Characteristics and Honey Production Potential of Five Rapeseed Cultivars and Two Wildflower Species in South Korea. PLANTS (BASEL, SWITZERLAND) 2024; 13:419. [PMID: 38337952 PMCID: PMC10856812 DOI: 10.3390/plants13030419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
The growing beekeeping industry in South Korea has led to the establishment of new honey plant complexes. However, studies on honey production from each species are limited. This study aimed to assess the honey production potential of various Brassica napus cultivars and two wildflower species. The nectar characteristics of B. napus varied significantly among the cultivars. Absolute sugar concentrations differed among the cultivars, but sugar composition ratios were similar. In contrast, the amino acid content remained relatively uniform regarding percentage values, irrespective of the absolute concentrations. Estimations of honey potential production per hectare (kg/ha) resulted in the following ranking among cultivars: 'JM7003' (107.1) > 'YS' (73.0) > 'JM7001' (63.7) > 'TL' (52.7) > 'TM' (42.4). The nectar volume of Pseudolysimachion rotundum var. subintegrum and Leonurus japonicus increased during the flowering stage. P. rotundum var. subintegrum was sucrose-rich and L. japonicus was sucrose-dominant. Both species predominantly contained phenylalanine, P. rotundum var. subintegrum had glutamine as the second most abundant amino acid, and L. japonicus had tyrosine. The honey production potential was 152.4 kg/ha for P. rotundum var. subintegrum and 151.3 kg/ha for L. japonicus. These findings provide a basis for identifying food resources for pollinators and selecting plant species to establish honey plant complexes.
Collapse
Affiliation(s)
- Sung-Joon Na
- Department of Forest Bioresources, National Institute of Forest Science, Suwon 16631, Republic of Korea; (Y.-K.K.); (J.-M.P.)
| | | | | |
Collapse
|
6
|
Jin EJ, Yoon JH, Lee H, Bae EJ, Yong SH, Choi MS. Evaluation of drought stress level in Sargent's cherry ( Prunus sargentii Rehder) using photosynthesis and chlorophyll fluorescence parameters and proline content analysis. PeerJ 2023; 11:e15954. [PMID: 37842053 PMCID: PMC10576498 DOI: 10.7717/peerj.15954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 08/02/2023] [Indexed: 10/17/2023] Open
Abstract
Sargent's cherry trees (Prunus sargentiiRehder) are widely planted as an ornamental, climate change-sensing species. This study investigated changes in the soil moisture content, fresh weight, photosynthesis and chlorophyll fluorescence properties, and the chlorophyll and proline content of four-year-old P. sargentii seedlings after 30 days of drought stress. In the trees subjected to drought stress treatment, soil moisture content decreased, and the fresh weight of the aboveground part of the plant decreased. However, there was no significant difference in the root growth of the dried plants. Among the photosynthesis parameters, Pn MAX, E and gs showed a significant (p < 0.001) decrease after 15 days in dry-stressed seedlings, but there was no difference between treatments in WUE until 20 days, and there was a significant (p < 0.001) difference after 24 days. Chlorophyll fluorescence parameters, Fv/Fm, ΦPSII, Rfd, NPQ, and Pn MAX, also increased after 10 days in dry-stressed seedlings, but these changes did not reach statistical significance compared to the control treatment. These results may suggest that drought stress highly correlates with photosynthesis and chlorophyll fluorescence parameters. Chlorophyll content also significantly decreased in the seedlings under drought stress compared with the control treatment. The proline content decreased until the 10th day of drought stress treatment and increased after the 15th day, showing an increase of 10.9% on the 15th day and 57.1% on the 30th day, compared to the control treatment. These results suggest that photosynthesis, chlorophyll fluorescence parameters, and proline content can be used to evaluate drought stress in trees. The results of this study can contribute to the management of forests, such as the irrigation of trees when pore control ability and photosynthesis ability decrease.
Collapse
Affiliation(s)
- Eon Ju Jin
- Forest Biomaterials Research Center, National institute of Forest Science, Jinju, South Korea
| | - Jun-Hyuk Yoon
- Forest Biomaterials Research Center, National institute of Forest Science, Jinju, South Korea
| | - Hyeok Lee
- Forest Biomaterials Research Center, National institute of Forest Science, Jinju, South Korea
| | - Eun Ji Bae
- Forest Biomaterials Research Center, National institute of Forest Science, Jinju, South Korea
| | - Seong Hyeon Yong
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, South Korea
| | - Myung Suk Choi
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, South Korea
- Division of Environmental Forest Science, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
7
|
Sweetman C, Waterman CD, Wong DC, Day DA, Jenkins CL, Soole KL. Altering the balance between AOX1A and NDB2 expression affects a common set of transcripts in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:876843. [PMID: 36466234 PMCID: PMC9716356 DOI: 10.3389/fpls.2022.876843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 10/24/2022] [Indexed: 06/17/2023]
Abstract
Stress-responsive components of the mitochondrial alternative electron transport pathway have the capacity to improve tolerance of plants to abiotic stress, particularly the alternative oxidase AOX1A but also external NAD(P)H dehydrogenases such as NDB2, in Arabidopsis. NDB2 and AOX1A can cooperate to entirely circumvent the classical electron transport chain in Arabidopsis mitochondria. Overexpression of AOX1A or NDB2 alone can have slightly negative impacts on plant growth under optimal conditions, while simultaneous overexpression of NDB2 and AOX1A can reverse these phenotypic effects. We have taken a global transcriptomic approach to better understand the molecular shifts that occur due to overexpression of AOX1A alone and with concomitant overexpression of NDB2. Of the transcripts that were significantly up- or down- regulated in the AOX1A overexpression line compared to wild type (410 and 408, respectively), the majority (372 and 337, respectively) reverted to wild type levels in the dual overexpression line. Several mechanisms for the AOX1A overexpression phenotype are proposed based on the functional classification of these 709 genes, which can be used to guide future experiments. Only 28 genes were uniquely up- or down-regulated when NDB2 was overexpressed in the AOX1A overexpression line. On the other hand, many unique genes were deregulated in the NDB2 knockout line. Furthermore, several changes in transcript abundance seen in the NDB2 knockout line were consistent with changes in the AOX1A overexpression line. The results suggest that an imbalance in AOX1A:NDB2 protein levels caused by under- or over-expression of either component, triggers a common set of transcriptional responses that may be important in mitochondrial redox regulation. The most significant changes were transcripts associated with photosynthesis, secondary metabolism and oxidative stress responses.
Collapse
Affiliation(s)
- Crystal Sweetman
- College of Science & Engineering, Flinders University, Bedford Park, SA, Australia
| | | | - Darren C.J. Wong
- College of Science, Australian National University, Canberra, ACT, Australia
| | - David A. Day
- College of Science & Engineering, Flinders University, Bedford Park, SA, Australia
| | - Colin L.D. Jenkins
- College of Science & Engineering, Flinders University, Bedford Park, SA, Australia
| | - Kathleen L. Soole
- College of Science & Engineering, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
8
|
Ghosh UK, Islam MN, Siddiqui MN, Cao X, Khan MAR. Proline, a multifaceted signalling molecule in plant responses to abiotic stress: understanding the physiological mechanisms. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:227-239. [PMID: 34796604 DOI: 10.1111/plb.13363] [Citation(s) in RCA: 220] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/21/2021] [Accepted: 10/15/2021] [Indexed: 05/22/2023]
Abstract
Abiotic stresses have a detrimental impact on plant growth and productivity and are a major threat to sustainable crop production in rapidly changing environments. Proline, an important amino acid, plays an important role in maintaining the metabolism and growth of plants under abiotic stress conditions. Many insights indicate a positive relationship between proline accumulation and tolerance of plants to various abiotic stresses. Because of its metal chelator properties, it acts as a molecular chaperone, an antioxidative defence molecule that scavenges reactive oxygen species (ROS), as well as having signalling behaviour to activate specific gene functions that are crucial for plant recovery from stresses. It also acts as an osmoprotectant, a potential source to acquire nitrogen as well as carbon, and plays a significant role in the flowering and development of plants. Overproduction of proline in plant cells contributes to maintaining cellular homeostasis, water uptake, osmotic adjustment and redox balance to restore the cell structures and mitigate oxidative damage. Many reports reveal that transgenic plants, particularly those overexpressing genes tailored for proline accumulation, exhibit better adaptation to abiotic stresses. Therefore, this review aims to provide a comprehensive update on proline biosynthesis and accumulation in plants and its putative regulatory roles in mediating plant defence against abiotic stresses. Additionally, the current and future directions in research concerning manipulation of proline to induce gene functions that appear promising in genetics and genomics approaches to improve plant adaptive responses under changing climate conditions are also highlighted.
Collapse
Affiliation(s)
- U K Ghosh
- Department of Agronomy, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - M N Islam
- Department of Agro-Processing, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - M N Siddiqui
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
| | - X Cao
- School of Chemistry and Food Science, Yulin Normal University, Yulin, China
| | - M A R Khan
- Department of Agronomy, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| |
Collapse
|
9
|
Launay A, Cabassa-Hourton C, Eubel H, Maldiney R, Guivarc’h A, Crilat E, Planchais S, Lacoste J, Bordenave-Jacquemin M, Clément G, Richard L, Carol P, Braun HP, Lebreton S, Savouré A. Proline oxidation fuels mitochondrial respiration during dark-induced leaf senescence in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6203-6214. [PMID: 31504781 PMCID: PMC6859731 DOI: 10.1093/jxb/erz351] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/18/2019] [Indexed: 05/20/2023]
Abstract
Leaf senescence is a form of developmentally programmed cell death that allows the remobilization of nutrients and cellular materials from leaves to sink tissues and organs. Among the catabolic reactions that occur upon senescence, little is known about the role of proline catabolism. In this study, the involvement in dark-induced senescence of proline dehydrogenases (ProDHs), which catalyse the first and rate-limiting step of proline oxidation in mitochondria, was investigated using prodh single- and double-mutants with the help of biochemical, proteomic, and metabolomic approaches. The presence of ProDH2 in mitochondria was confirmed by mass spectrometry and immunogold labelling in dark-induced leaves of Arabidopsis. The prodh1 prodh2 mutant exhibited enhanced levels of most tricarboxylic acid cycle intermediates and free amino acids, demonstrating a role of ProDH in mitochondrial metabolism. We also found evidence of the involvement and the importance of ProDH in respiration, with proline as an alternative substrate, and in remobilization of proline during senescence to generate glutamate and energy that can then be exported to sink tissues and organs.
Collapse
Affiliation(s)
- Alban Launay
- Sorbonne Université, CNRS, IRD 242, INRA, PARIS 7, UPEC, Institut d’Ecologie et des Sciences de l’Environnement de Paris, iEES, Paris, France
| | - Cécile Cabassa-Hourton
- Sorbonne Université, CNRS, IRD 242, INRA, PARIS 7, UPEC, Institut d’Ecologie et des Sciences de l’Environnement de Paris, iEES, Paris, France
| | - Holger Eubel
- Institute of Plant Genetics, Plant Proteomics, Leibniz University Hannover, Hannover, Germany
| | - Régis Maldiney
- Sorbonne Université, CNRS, IRD 242, INRA, PARIS 7, UPEC, Institut d’Ecologie et des Sciences de l’Environnement de Paris, iEES, Paris, France
| | - Anne Guivarc’h
- Sorbonne Université, CNRS, IRD 242, INRA, PARIS 7, UPEC, Institut d’Ecologie et des Sciences de l’Environnement de Paris, iEES, Paris, France
| | - Emilie Crilat
- Sorbonne Université, CNRS, IRD 242, INRA, PARIS 7, UPEC, Institut d’Ecologie et des Sciences de l’Environnement de Paris, iEES, Paris, France
| | - Séverine Planchais
- Sorbonne Université, CNRS, IRD 242, INRA, PARIS 7, UPEC, Institut d’Ecologie et des Sciences de l’Environnement de Paris, iEES, Paris, France
| | - Jérôme Lacoste
- Sorbonne Université, CNRS, IRD 242, INRA, PARIS 7, UPEC, Institut d’Ecologie et des Sciences de l’Environnement de Paris, iEES, Paris, France
- Present address: Sorbonne Université, CNRS, Institut de Biologie Paris Seine, IBPS, F-75005 Paris, France
| | - Marianne Bordenave-Jacquemin
- Sorbonne Université, CNRS, IRD 242, INRA, PARIS 7, UPEC, Institut d’Ecologie et des Sciences de l’Environnement de Paris, iEES, Paris, France
| | - Gilles Clément
- Institut Jean-Pierre Bourgin, UMR 1318, INRA-AgroParisTech, Centre INRA Versailles, Versailles Cedex, France
| | - Luc Richard
- Sorbonne Université, CNRS, IRD 242, INRA, PARIS 7, UPEC, Institut d’Ecologie et des Sciences de l’Environnement de Paris, iEES, Paris, France
| | - Pierre Carol
- Sorbonne Université, CNRS, IRD 242, INRA, PARIS 7, UPEC, Institut d’Ecologie et des Sciences de l’Environnement de Paris, iEES, Paris, France
| | - Hans-Peter Braun
- Institute of Plant Genetics, Plant Proteomics, Leibniz University Hannover, Hannover, Germany
| | - Sandrine Lebreton
- Sorbonne Université, CNRS, IRD 242, INRA, PARIS 7, UPEC, Institut d’Ecologie et des Sciences de l’Environnement de Paris, iEES, Paris, France
- Correspondence: or
| | - Arnould Savouré
- Sorbonne Université, CNRS, IRD 242, INRA, PARIS 7, UPEC, Institut d’Ecologie et des Sciences de l’Environnement de Paris, iEES, Paris, France
- Correspondence: or
| |
Collapse
|
10
|
Blume C, Ost J, Mühlenbruch M, Peterhänsel C, Laxa M. Low CO2 induces urea cycle intermediate accumulation in Arabidopsis thaliana. PLoS One 2019; 14:e0210342. [PMID: 30650113 PMCID: PMC6334940 DOI: 10.1371/journal.pone.0210342] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/20/2018] [Indexed: 12/26/2022] Open
Abstract
The non-proteinogenic amino acid ornithine links several stress response pathways. From a previous study we know that ornithine accumulates in response to low CO2. To investigate ornithine accumulation in plants, we shifted plants to either low CO2 or low light. Both conditions increased carbon limitation, but only low CO2 also increased the rate of photorespiration. Changes in metabolite profiles of light- and CO2-limited plants were quite similar. Several amino acids that are known markers of senescence accumulated strongly under both conditions. However, urea cycle intermediates respond differently between the two treatments. While the levels of both ornithine and citrulline were much higher in plants shifted to 100 ppm CO2 compared to those kept in 400 ppm CO2, their metabolite abundance did not significantly change in response to a light limitation. Furthermore, both ornithine and citrulline accumulation is independent from sugar starvation. Exogenous supplied sugar did not significantly change the accumulation of the two metabolites in low CO2-stressed plants, while the accumulation of other amino acids was reduced by about 50%. Gene expression measurements showed a reduction of the entire arginine biosynthetic pathway in response to low CO2. Genes in both proline biosynthesis and degradation were induced. Hence, proline did not accumulate in response to low CO2 like observed for many other stresses. We propose that excess of nitrogen re-fixed during photorespiration can be alternatively stored in ornithine and citrulline under low CO2 conditions. Furthermore, ornithine is converted to pyrroline-5-carboxylate by the action of δOAT.
Collapse
Affiliation(s)
- Christian Blume
- Institute of Botany, Leibniz University Hannover, Hannover, Germany
| | - Julia Ost
- Institute of Botany, Leibniz University Hannover, Hannover, Germany
| | | | | | - Miriam Laxa
- Institute of Botany, Leibniz University Hannover, Hannover, Germany
- * E-mail:
| |
Collapse
|
11
|
Trovato M, Mattioli R, Costantino P. From A. rhizogenes RolD to Plant P5CS: Exploiting Proline to Control Plant Development. PLANTS (BASEL, SWITZERLAND) 2018; 7:E108. [PMID: 30563242 PMCID: PMC6313920 DOI: 10.3390/plants7040108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/27/2018] [Accepted: 12/01/2018] [Indexed: 01/14/2023]
Abstract
The capability of the soil bacterium Agrobacterium rhizogenes to reprogram plant development and induce adventitious hairy roots relies on the expression of a few root-inducing genes (rol A, B, C and D), which can be transferred from large virulence plasmids into the genome of susceptible plant cells. Contrary to rolA, B and C, which are present in all the virulent strains of A. rhizogenes and control hairy root formation by affecting auxin and cytokinin signalling, rolD appeared non-essential and not associated with plant hormones. Its role remained elusive until it was discovered that it codes for a proline synthesis enzyme. The finding that, in addition to its role in protein synthesis and stress adaptation, proline is also involved in hairy roots induction, disclosed a novel role for this amino acid in plant development. Indeed, from this initial finding, proline was shown to be critically involved in a number of developmental processes, such as floral transition, embryo development, pollen fertility and root elongation. In this review, we present a historical survey on the rol genes focusing on the role of rolD and proline in plant development.
Collapse
Affiliation(s)
- Maurizio Trovato
- Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy.
| | - Roberto Mattioli
- Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy.
| | - Paolo Costantino
- Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy.
| |
Collapse
|
12
|
Guha T, Ravikumar KVG, Mukherjee A, Mukherjee A, Kundu R. Nanopriming with zero valent iron (nZVI) enhances germination and growth in aromatic rice cultivar (Oryza sativa cv. Gobindabhog L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 127:403-413. [PMID: 29679934 DOI: 10.1016/j.plaphy.2018.04.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/11/2018] [Accepted: 04/11/2018] [Indexed: 05/20/2023]
Abstract
Engineered nanoparticles are utilized in agriculture for various purposes. They can be used as fertilizer, carrier for macro/micro nutrients or priming agents. Various nanoparticles are reported to have toxicity at very high doses, but at optimum concentration, they can be beneficial for plant growth and development. In the present study, low concentrations of nZVI nanoparticles were evaluated for their growth enhancement potential as seed priming agent in an aromatic rice cultivar, Oryza sativa cv. Gobindabhog. Seeds were primed with different concentrations (10, 20, 40, 80, 160 mg L-1) of nZVI and allowed to grow for 14 days. Seed germination and seedling growth were studied by assessing physiological, biochemical, and structural parameters at different time points. Maximum activities of hydrolytic and antioxidant enzymes, along with root dehydrogenase enzyme were observed in 20 mg L-1 nZVI primed seeds. Priming with low doses of nZVI increased seedling vigour, as expressed by increased root and shoot length, biomass and photosynthetic pigment content. Our study also confirmed that after 14 days growth, the seedling showed absence of membrane damage, reduction in proline level and anti-oxidant enzyme activities. However, seedlings primed with 160 mg L-1 nZVI suffered oxidative stress. SEM micrographs also revealed damage in root tissue at that concentration. AAS study confirmed uptake of nZVI by the rice plants as maximum level of iron was found in the plants treated with highest concentration (i.e. 160 mg L-1 nZVI). Thus, nZVI at low concentrations can be considered as priming agent of rice seeds for increasing plant vigour.
Collapse
Affiliation(s)
- Titir Guha
- Department of Botany, Centre of Advanced Studies, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700 019, India
| | - K V G Ravikumar
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - Anita Mukherjee
- Department of Botany, Centre of Advanced Studies, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700 019, India
| | - Rita Kundu
- Department of Botany, Centre of Advanced Studies, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700 019, India.
| |
Collapse
|
13
|
Shen HY, Moonjai N, Verstrepen KJ, Delvaux FR. Impact of Attachment Immobilization on Yeast Physiology and Fermentation Performance. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-61-0079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- H.-Y. Shen
- Centre for Malting and Brewing Science, Faculty of Agricultural and Applied Biological Sciences, Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, 3001 Heverlee, Belgium
| | - N. Moonjai
- Centre for Malting and Brewing Science, Faculty of Agricultural and Applied Biological Sciences, Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, 3001 Heverlee, Belgium
| | - K. J. Verstrepen
- Centre for Malting and Brewing Science, Faculty of Agricultural and Applied Biological Sciences, Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, 3001 Heverlee, Belgium
| | - F. R. Delvaux
- Centre for Malting and Brewing Science, Faculty of Agricultural and Applied Biological Sciences, Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, 3001 Heverlee, Belgium
| |
Collapse
|
14
|
Fu Y, Ma H, Chen S, Gu T, Gong J. Control of proline accumulation under drought via a novel pathway comprising the histone methylase CAU1 and the transcription factor ANAC055. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:579-588. [PMID: 29253181 PMCID: PMC5853435 DOI: 10.1093/jxb/erx419] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Proline plays a crucial role in the drought stress response in plants. However, there are still gaps in our knowledge about the molecular mechanisms that regulate proline metabolism under drought stress. Here, we report that the histone methylase encoded by CAU1, which is genetically upstream of P5CS1 (encoding the proline biosynthetic enzyme Δ1-pyrroline-5-carboxylate synthetase 1), plays a crucial role in proline-mediated drought tolerance. We determined that the transcript level of CAU1 decreased while that of ANAC055 (encoding a transcription factor) increased in wild-type Arabidopsis under drought stress. Further analyses showed that CAU1 bound to the promoter of ANAC055 and suppressed its expression via H4R3sme2-type histone methylation in the promoter region. Thus, under drought stress, a decreased level of CAU1 led to an increased transcript level of ANAC055, which induced the expression of P5CS1 and increased proline level independently of CAS. Drought tolerance and the level of proline were found to be decreased in the cau1 anac055 double-mutant, while proline supplementation restored drought sensitivity in the anac055 mutant. Our results reveal the details of a novel pathway leading to drought tolerance mediated by CAU1.
Collapse
Affiliation(s)
- Yanlei Fu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
- Correspondence:
| | - Hailing Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Siying Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Tianyu Gu
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Jiming Gong
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
15
|
Fu Y, Ma H, Chen S, Gu T, Gong J. Control of proline accumulation under drought via a novel pathway comprising the histone methylase CAU1 and the transcription factor ANAC055. JOURNAL OF EXPERIMENTAL BOTANY 2018. [PMID: 29253181 DOI: 10.5061/dryad.hc4bj] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Proline plays a crucial role in the drought stress response in plants. However, there are still gaps in our knowledge about the molecular mechanisms that regulate proline metabolism under drought stress. Here, we report that the histone methylase encoded by CAU1, which is genetically upstream of P5CS1 (encoding the proline biosynthetic enzyme Δ1-pyrroline-5-carboxylate synthetase 1), plays a crucial role in proline-mediated drought tolerance. We determined that the transcript level of CAU1 decreased while that of ANAC055 (encoding a transcription factor) increased in wild-type Arabidopsis under drought stress. Further analyses showed that CAU1 bound to the promoter of ANAC055 and suppressed its expression via H4R3sme2-type histone methylation in the promoter region. Thus, under drought stress, a decreased level of CAU1 led to an increased transcript level of ANAC055, which induced the expression of P5CS1 and increased proline level independently of CAS. Drought tolerance and the level of proline were found to be decreased in the cau1 anac055 double-mutant, while proline supplementation restored drought sensitivity in the anac055 mutant. Our results reveal the details of a novel pathway leading to drought tolerance mediated by CAU1.
Collapse
Affiliation(s)
- Yanlei Fu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Hailing Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Siying Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Tianyu Gu
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jiming Gong
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
16
|
Ghosh D, Sen S, Mohapatra S. Modulation of proline metabolic gene expression in Arabidopsis thaliana under water-stressed conditions by a drought-mitigating Pseudomonas putida strain. ANN MICROBIOL 2017. [DOI: 10.1007/s13213-017-1294-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
17
|
Light affects salt stress-induced transcriptional memory of P5CS1 in Arabidopsis. Proc Natl Acad Sci U S A 2016; 113:E8335-E8343. [PMID: 27930298 DOI: 10.1073/pnas.1610670114] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
To cope with environmental stresses, plants often adopt a memory response upon primary stress exposure to facilitate a quicker and stronger reaction to recurring stresses. However, it remains unknown whether light is involved in the manifestation of stress memory. Proline accumulation is a striking metabolic adaptation of higher plants during various environmental stresses. Here we show that salinity-induced proline accumulation is memorable and HY5-dependent light signaling is required for such a memory response. Primary salt stress induced the expression of Δ1-pyrroline-5-carboxylate synthetase 1 (P5CS1), encoding a proline biosynthetic enzyme and proline accumulation, which were reduced to basal level during the recovery stage. Reoccurring salt stress-induced stronger P5CS1 expression and proline accumulation were dependent upon light exposure during the recovery stage. Further studies demonstrated that salt-induced transcriptional memory of P5CS1 is associated with the retention of increased H3K4me3 level at P5CS1 during the recovery stage. HY5 binds directly to light-responsive element, C/A-box, in the P5CS1 promoter. Deletion of the C/A-box or hy5 hyh mutations caused rapid reduction of H3K4me3 level at P5CS1 during the recovery stage, resulting in impairment of the stress memory response. These results unveil a previously unrecognized mechanism whereby light regulates salt-induced transcriptional memory via the function of HY5 in maintaining H3K4me3 level at the memory gene.
Collapse
|
18
|
Hein JA, Sherrard ME, Manfredi KP, Abebe T. The fifth leaf and spike organs of barley (Hordeum vulgare L.) display different physiological and metabolic responses to drought stress. BMC PLANT BIOLOGY 2016; 16:248. [PMID: 27829376 PMCID: PMC5103489 DOI: 10.1186/s12870-016-0922-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/21/2016] [Indexed: 05/22/2023]
Abstract
BACKGROUND Photosynthetic organs of the cereal spike (ear) provide assimilate for grain filling, but their response to drought is poorly understood. In this study, we characterized the drought response of individual organs of the barley spike (awn, lemma, and palea) and compared them with a vegetative organ (fifth leaf). Understanding differences in physiological and metabolic responses between the leaf and spike organs during drought can help us develop high yielding cultivars for environments where terminal drought is prevalent. RESULTS We exposed barley plants to drought by withholding water for 4 days at the grain filling stage and compared changes in: (1) relative water content (RWC), (2) osmotic potential (Ψs), (3) osmotic adjustment (OA), (4) gas exchange, and (5) metabolite content between organs. Drought reduced RWC and Ψs in all four organs, but the decrease in RWC was greater and there was a smaller change in Ψs in the fifth leaf than the spike organs. We detected evidence of OA in the awn, lemma, and palea, but not in the fifth leaf. Rates of gas exchange declined more rapidly in the fifth leaf than awn during drought. We identified 18 metabolites but, only ten metabolites accumulated significantly during drought in one or more organs. Among these, proline accumulated in all organs during drought while accumulation of the other metabolites varied between organs. This may suggest that each organ in the same plant uses a different set of osmolytes for drought resistance. CONCLUSIONS Our results suggest that photosynthetic organs of the barley spike maintain higher water content, greater osmotic adjustment, and higher rates of gas exchange than the leaf during drought.
Collapse
Affiliation(s)
- Jordan A. Hein
- Department of Biology, University of Northern Iowa, Cedar Falls, IA 50614 USA
| | - Mark E. Sherrard
- Department of Biology, University of Northern Iowa, Cedar Falls, IA 50614 USA
| | - Kirk P. Manfredi
- Department of Chemistry and Biochemistry, University of Northern Iowa, Cedar Falls, IA 50614 USA
| | - Tilahun Abebe
- Department of Biology, University of Northern Iowa, Cedar Falls, IA 50614 USA
| |
Collapse
|
19
|
Proteomic and functional analysis of proline dehydrogenase 1 link proline catabolism to mitochondrial electron transport in Arabidopsis thaliana. Biochem J 2016; 473:2623-34. [PMID: 27303048 DOI: 10.1042/bcj20160314] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 06/14/2016] [Indexed: 11/17/2022]
Abstract
Proline accumulates in many plant species in response to environmental stresses. Upon relief from stress, proline is rapidly oxidized in mitochondria by proline dehydrogenase (ProDH) and then by pyrroline-5-carboxylate dehydrogenase (P5CDH). Two ProDH genes have been identified in the genome of the model plant Arabidopsis thaliana To gain a better understanding of ProDH1 functions in mitochondria, proteomic analysis was performed. ProDH1 polypeptides were identified in Arabidopsis mitochondria by immunoblotting gels after 2D blue native (BN)-SDS/PAGE, probing them with an anti-ProDH antibody and analysing protein spots by MS. The 2D gels showed that ProDH1 forms part of a low-molecular-mass (70-140 kDa) complex in the mitochondrial membrane. To evaluate the contribution of each isoform to proline oxidation, mitochondria were isolated from wild-type (WT) and prodh1, prodh2, prodh1prodh2 and p5cdh mutants. ProDH activity was high for genotypes in which ProDH, most likely ProDH1, was strongly induced by proline. Respiratory measurements indicate that ProDH1 has a role in oxidizing excess proline and transferring electrons to the respiratory chain.
Collapse
|
20
|
Ben Rejeb K, Lefebvre-De Vos D, Le Disquet I, Leprince AS, Bordenave M, Maldiney R, Jdey A, Abdelly C, Savouré A. Hydrogen peroxide produced by NADPH oxidases increases proline accumulation during salt or mannitol stress in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2015; 208:1138-48. [PMID: 26180024 DOI: 10.1111/nph.13550] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 06/08/2015] [Indexed: 05/07/2023]
Abstract
Many plants accumulate proline, a compatible osmolyte, in response to various environmental stresses such as water deficit and salinity. In some stress responses, plants generate hydrogen peroxide (H2 O2 ) that mediates numerous physiological and biochemical processes. The aim was to study the relationship between stress-induced proline accumulation and H2 O2 production. Using pharmacological and reverse genetic approaches in Arabidopsis thaliana, we investigated the role of NADPH oxidases, Respiratory burst oxidase homologues (Rboh), in the induction of proline accumulation was investigated in response to stress induced by either 200 mM NaCl or 400 mM mannitol. Stress from NaCl or mannitol resulted in a transient increase in H2 O2 content accompanied by accumulation of proline. Dimethylthiourea, a scavenger of H2 O2 , and diphenylene iodonium (DPI), an inhibitor of H2 O2 production by NADPH oxidase, were found to significantly inhibit proline accumulation in these stress conditions. DPI also reduced the expression level of Δ(1) -pyrroline-5-carboxylate synthetase, the key enzyme involved in the biosynthesis of proline. Similarly, less proline accumulated in knockout mutants lacking either AtRbohD or AtRbohF than in wild-type plants in response to the same stresses. Our data demonstrate that AtRbohs (A. thaliana Rbohs) contribute to H2 O2 production in response to NaCl or mannitol stress to increase proline accumulation in this plant.
Collapse
Affiliation(s)
- Kilani Ben Rejeb
- Adaptation des Plantes aux Contraintes Environnementales, Case 156, Sorbonne Universités, UPMC Univ Paris 06, 4 place Jussieu, F-75005, Paris, France
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj-Cedria (CBBC), BP 901, Hammam-Lif, 2050, Tunisia
| | - Delphine Lefebvre-De Vos
- Adaptation des Plantes aux Contraintes Environnementales, Case 156, Sorbonne Universités, UPMC Univ Paris 06, 4 place Jussieu, F-75005, Paris, France
| | - Isabel Le Disquet
- Adaptation des Plantes aux Contraintes Environnementales, Case 156, Sorbonne Universités, UPMC Univ Paris 06, 4 place Jussieu, F-75005, Paris, France
| | - Anne-Sophie Leprince
- Adaptation des Plantes aux Contraintes Environnementales, Case 156, Sorbonne Universités, UPMC Univ Paris 06, 4 place Jussieu, F-75005, Paris, France
| | - Marianne Bordenave
- Adaptation des Plantes aux Contraintes Environnementales, Case 156, Sorbonne Universités, UPMC Univ Paris 06, 4 place Jussieu, F-75005, Paris, France
| | - Régis Maldiney
- Adaptation des Plantes aux Contraintes Environnementales, Case 156, Sorbonne Universités, UPMC Univ Paris 06, 4 place Jussieu, F-75005, Paris, France
| | - Asma Jdey
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj-Cedria (CBBC), BP 901, Hammam-Lif, 2050, Tunisia
| | - Chedly Abdelly
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj-Cedria (CBBC), BP 901, Hammam-Lif, 2050, Tunisia
| | - Arnould Savouré
- Adaptation des Plantes aux Contraintes Environnementales, Case 156, Sorbonne Universités, UPMC Univ Paris 06, 4 place Jussieu, F-75005, Paris, France
| |
Collapse
|
21
|
AbdElgawad H, De Vos D, Zinta G, Domagalska MA, Beemster GTS, Asard H. Grassland species differentially regulate proline concentrations under future climate conditions: an integrated biochemical and modelling approach. THE NEW PHYTOLOGIST 2015; 208:354-69. [PMID: 26037253 PMCID: PMC4744684 DOI: 10.1111/nph.13481] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 04/13/2015] [Indexed: 05/18/2023]
Abstract
Proline (Pro) is a versatile metabolite playing a role in the protection of plants against environmental stresses. To gain a deeper understanding of the regulation of Pro metabolism under predicted future climate conditions, including drought stress, elevated temperature and CO2 , we combined measurements in contrasting grassland species (two grasses and two legumes) at multiple organisational levels, that is, metabolite concentrations, enzyme activities and gene expression. Drought stress (D) activates Pro biosynthesis and represses its catabolism, and elevated temperature (DT) further elevated its content. Elevated CO2 attenuated the DT effect on Pro accumulation. Computational pathway control analysis allowed a mechanistic understanding of the regulatory changes in Pro metabolism. This analysis indicates that the experimentally observed coregulation of multiple enzymes is more effective in modulating Pro concentrations than regulation of a single step. Pyrroline-5-carboxylate synthetase (P5CS) and pyrroline-5-carboxylate reductase (P5CR) play a central role in grasses (Lolium perenne, Poa pratensis), and arginase (ARG), ornithine aminotransferase (OAT) and P5CR play a central role in legumes (Medicago lupulina, Lotus corniculatus). Different strategies in the regulation of Pro concentrations under stress conditions were observed. In grasses the glutamate pathway is activated predominantly, and in the legumes the ornithine pathway, possibly related to differences in N-nutritional status.
Collapse
Affiliation(s)
- Hamada AbdElgawad
- Laboratory for Molecular Plant Physiology and BiotechnologyDepartment of BiologyUniversity of AntwerpB‐2020AntwerpBelgium
- Department of BotanyFaculty of ScienceUniversity of Beni‐SueifBeni‐Sueif62511Egypt
| | - Dirk De Vos
- Laboratory for Molecular Plant Physiology and BiotechnologyDepartment of BiologyUniversity of AntwerpB‐2020AntwerpBelgium
- Department of Mathematics and Computer ScienceUniversity of AntwerpB‐2020AntwerpBelgium
| | - Gaurav Zinta
- Laboratory for Molecular Plant Physiology and BiotechnologyDepartment of BiologyUniversity of AntwerpB‐2020AntwerpBelgium
| | - Malgorzata A. Domagalska
- Laboratory for Molecular Plant Physiology and BiotechnologyDepartment of BiologyUniversity of AntwerpB‐2020AntwerpBelgium
- Molecular Parasitology UnitDepartment of Medical SciencesInstitute of Tropical MedicineAntwerpBelgium
| | - Gerrit T. S. Beemster
- Laboratory for Molecular Plant Physiology and BiotechnologyDepartment of BiologyUniversity of AntwerpB‐2020AntwerpBelgium
| | - Han Asard
- Laboratory for Molecular Plant Physiology and BiotechnologyDepartment of BiologyUniversity of AntwerpB‐2020AntwerpBelgium
| |
Collapse
|
22
|
Molecular Cloning and Expression Analysis of the Gene Encoding Proline Dehydrogenase from Jatropha curcas L. Appl Biochem Biotechnol 2014; 175:2413-26. [PMID: 25502926 DOI: 10.1007/s12010-014-1441-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 12/01/2014] [Indexed: 10/24/2022]
|
23
|
Ahkami A, Scholz U, Steuernagel B, Strickert M, Haensch KT, Druege U, Reinhardt D, Nouri E, von Wirén N, Franken P, Hajirezaei MR. Comprehensive transcriptome analysis unravels the existence of crucial genes regulating primary metabolism during adventitious root formation in Petunia hybrida. PLoS One 2014; 9:e100997. [PMID: 24978694 PMCID: PMC4076263 DOI: 10.1371/journal.pone.0100997] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 06/01/2014] [Indexed: 11/18/2022] Open
Abstract
To identify specific genes determining the initiation and formation of adventitious roots (AR), a microarray-based transcriptome analysis in the stem base of the cuttings of Petunia hybrida (line W115) was conducted. A microarray carrying 24,816 unique, non-redundant annotated sequences was hybridized to probes derived from different stages of AR formation. After exclusion of wound-responsive and root-regulated genes, 1,354 of them were identified which were significantly and specifically induced during various phases of AR formation. Based on a recent physiological model distinguishing three metabolic phases in AR formation, the present paper focuses on the response of genes related to particular metabolic pathways. Key genes involved in primary carbohydrate metabolism such as those mediating apoplastic sucrose unloading were induced at the early sink establishment phase of AR formation. Transcriptome changes also pointed to a possible role of trehalose metabolism and SnRK1 (sucrose non-fermenting 1- related protein kinase) in sugar sensing during this early step of AR formation. Symplastic sucrose unloading and nucleotide biosynthesis were the major processes induced during the later recovery and maintenance phases. Moreover, transcripts involved in peroxisomal beta-oxidation were up-regulated during different phases of AR formation. In addition to metabolic pathways, the analysis revealed the activation of cell division at the two later phases and in particular the induction of G1-specific genes in the maintenance phase. Furthermore, results point towards a specific demand for certain mineral nutrients starting in the recovery phase.
Collapse
Affiliation(s)
- Amirhossein Ahkami
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, United States of America
| | - Uwe Scholz
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | | | | | - Klaus-Thomas Haensch
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Grossbeeren & Erfurt, Germany
| | - Uwe Druege
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Grossbeeren & Erfurt, Germany
| | - Didier Reinhardt
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Eva Nouri
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Nicolaus von Wirén
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Philipp Franken
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Grossbeeren & Erfurt, Germany
| | | |
Collapse
|
24
|
Schertl P, Cabassa C, Saadallah K, Bordenave M, Savouré A, Braun HP. Biochemical characterization of proline dehydrogenase in Arabidopsis mitochondria. FEBS J 2014; 281:2794-804. [PMID: 24751239 DOI: 10.1111/febs.12821] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/14/2014] [Accepted: 04/11/2014] [Indexed: 01/17/2023]
Abstract
Proline has multiple functions in plants. Besides being a building block for protein biosynthesis proline plays a central role in the plant stress response and in further cellular processes. Here, we report an analysis on the integration of proline dehydrogenase (ProDH) into mitochondrial metabolism in Arabidopsis thaliana. An experimental system to induce ProDH activity was established using cell cultures. Induction of ProDH was measured by novel photometric activity assays and by a ProDH in gel activity assay. Effects of increased ProDH activity on other mitochondrial enzymes were systematically investigated. Activities of the protein complexes of the respiratory chain were not significantly altered. In contrast, some mitochondrial dehydrogenases had markedly changed activities. Activity of glutamate dehydrogenase substantially increased, indicating upregulation of the entire proline catabolic pathway, which was confirmed by co-expression analyses of the corresponding genes. Furthermore, activity of d-lactate dehydrogenase was increased. d-lactate was identified to be a competitive inhibitor of ProDH in plants. We suggest that induction of d-lactate dehydrogenase activity allows rapid upregulation of ProDH activity during the short-term stress response in plants.
Collapse
Affiliation(s)
- Peter Schertl
- Institute of Plant Genetics, Plant Proteomics, Leibniz University Hannover, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Schertl P, Braun HP. Respiratory electron transfer pathways in plant mitochondria. FRONTIERS IN PLANT SCIENCE 2014; 5:163. [PMID: 24808901 PMCID: PMC4010797 DOI: 10.3389/fpls.2014.00163] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/07/2014] [Indexed: 05/18/2023]
Abstract
The respiratory electron transport chain (ETC) couples electron transfer from organic substrates onto molecular oxygen with proton translocation across the inner mitochondrial membrane. The resulting proton gradient is used by the ATP synthase complex for ATP formation. In plants, the ETC is especially intricate. Besides the "classical" oxidoreductase complexes (complex I-IV) and the mobile electron transporters cytochrome c and ubiquinone, it comprises numerous "alternative oxidoreductases." Furthermore, several dehydrogenases localized in the mitochondrial matrix and the mitochondrial intermembrane space directly or indirectly provide electrons for the ETC. Entry of electrons into the system occurs via numerous pathways which are dynamically regulated in response to the metabolic state of a plant cell as well as environmental factors. This mini review aims to summarize recent findings on respiratory electron transfer pathways in plants and on the involved components and supramolecular assemblies.
Collapse
Affiliation(s)
| | - Hans-Peter Braun
- Abteilung Pflanzenproteomik, Institut für Pflanzengenetik, Leibniz Universität HannoverHannover, Germany
| |
Collapse
|
26
|
Leprince AS, Magalhaes N, De Vos D, Bordenave M, Crilat E, Clément G, Meyer C, Munnik T, Savouré A. Involvement of Phosphatidylinositol 3-kinase in the regulation of proline catabolism in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2014; 5:772. [PMID: 25628629 PMCID: PMC4290513 DOI: 10.3389/fpls.2014.00772] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/15/2014] [Indexed: 05/03/2023]
Abstract
Plant adaptation to abiotic stresses such as drought and salinity involves complex regulatory processes. Deciphering the signaling components that are involved in stress signal transduction and cellular responses is of importance to understand how plants cope with salt stress. Accumulation of osmolytes such as proline is considered to participate in the osmotic adjustment of plant cells to salinity. Proline accumulation results from a tight regulation between its biosynthesis and catabolism. Lipid signal components such as phospholipases C and D have previously been shown to be involved in the regulation of proline metabolism in Arabidopsis thaliana. In this study, we demonstrate that proline metabolism is also regulated by class-III Phosphatidylinositol 3-kinase (PI3K), VPS34, which catalyses the formation of phosphatidylinositol 3-phosphate (PI3P) from phosphatidylinositol. Using pharmacological and biochemical approaches, we show that the PI3K inhibitor, LY294002, affects PI3P levels in vivo and that it triggers a decrease in proline accumulation in response to salt treatment of A. thaliana seedlings. The lower proline accumulation is correlated with a lower transcript level of Pyrroline-5-carboxylate synthetase 1 (P5CS1) biosynthetic enzyme and higher transcript and protein levels of Proline dehydrogenase 1 (ProDH1), a key-enzyme in proline catabolism. We also found that the ProDH1 expression is induced in a pi3k-hemizygous mutant, further demonstrating that PI3K is involved in the regulation of proline catabolism through transcriptional regulation of ProDH1. A broader metabolomic analysis indicates that LY294002 also reduced other metabolites, such as hydrophobic and aromatic amino acids and sugars like raffinose.
Collapse
Affiliation(s)
- Anne-Sophie Leprince
- Sorbonne Universités, Universite Pierre et Marie Curie Univ Paris 06, Adaptation de Plantes aux Contraintes Environnementales, URF5Paris, France
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant SciencesVersailles, France
- *Correspondence: Anne-Sophie Leprince and Arnould Savouré, Sorbonne Universités, UPMC Univ Paris 06, APCE URF5, Case 156, 4 Place Jussieu, F-75252, Paris 05, France e-mail: ;
| | - Nelly Magalhaes
- Sorbonne Universités, Universite Pierre et Marie Curie Univ Paris 06, Adaptation de Plantes aux Contraintes Environnementales, URF5Paris, France
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant SciencesVersailles, France
| | - Delphine De Vos
- Sorbonne Universités, Universite Pierre et Marie Curie Univ Paris 06, Adaptation de Plantes aux Contraintes Environnementales, URF5Paris, France
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant SciencesVersailles, France
| | - Marianne Bordenave
- Sorbonne Universités, Universite Pierre et Marie Curie Univ Paris 06, Adaptation de Plantes aux Contraintes Environnementales, URF5Paris, France
| | - Emilie Crilat
- Sorbonne Universités, Universite Pierre et Marie Curie Univ Paris 06, Adaptation de Plantes aux Contraintes Environnementales, URF5Paris, France
| | - Gilles Clément
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant SciencesVersailles, France
| | - Christian Meyer
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant SciencesVersailles, France
| | - Teun Munnik
- Section Plant Physiology, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Arnould Savouré
- Sorbonne Universités, Universite Pierre et Marie Curie Univ Paris 06, Adaptation de Plantes aux Contraintes Environnementales, URF5Paris, France
- *Correspondence: Anne-Sophie Leprince and Arnould Savouré, Sorbonne Universités, UPMC Univ Paris 06, APCE URF5, Case 156, 4 Place Jussieu, F-75252, Paris 05, France e-mail: ;
| |
Collapse
|
27
|
Proline dehydrogenase regulates redox state and respiratory metabolism in Trypanosoma cruzi. PLoS One 2013; 8:e69419. [PMID: 23894476 PMCID: PMC3718742 DOI: 10.1371/journal.pone.0069419] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 06/10/2013] [Indexed: 11/19/2022] Open
Abstract
Over the past three decades, L-proline has become recognized as an important metabolite for trypanosomatids. It is involved in a number of key processes, including energy metabolism, resistance to oxidative and nutritional stress and osmoregulation. In addition, this amino acid supports critical parasite life cycle processes by acting as an energy source, thus enabling host-cell invasion by the parasite and subsequent parasite differentiation. In this paper, we demonstrate that L-proline is oxidized to Δ(1)-pyrroline-5-carboxylate (P5C) by the enzyme proline dehydrogenase (TcPRODH, E.C. 1.5.99.8) localized in Trypanosoma cruzi mitochondria. When expressed in its active form in Escherichia coli, TcPRODH exhibits a Km of 16.58±1.69 µM and a Vmax of 66±2 nmol/min mg. Furthermore, we demonstrate that TcPRODH is a FAD-dependent dimeric state protein. TcPRODH mRNA and protein expression are strongly upregulated in the intracellular epimastigote, a stage which requires an external supply of proline. In addition, when Saccharomyces cerevisiae null mutants for this gene (PUT1) were complemented with the TcPRODH gene, diminished free intracellular proline levels and an enhanced sensitivity to oxidative stress in comparison to the null mutant were observed, supporting the hypothesis that free proline accumulation constitutes a defense against oxidative imbalance. Finally, we show that proline oxidation increases cytochrome c oxidase activity in mitochondrial vesicles. Overall, these results demonstrate that TcPRODH is involved in proline-dependant cytoprotection during periods of oxidative imbalance and also shed light on the participation of proline in energy metabolism, which drives critical processes of the T. cruzi life cycle.
Collapse
|
28
|
Reactive oxygen species homeostasis and virulence of the fungal pathogen Cryptococcus neoformans requires an intact proline catabolism pathway. Genetics 2013; 194:421-33. [PMID: 23564202 DOI: 10.1534/genetics.113.150326] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Degradation of the multifunctional amino acid proline is associated with mitochondrial oxidative respiration. The two-step oxidation of proline is catalyzed by proline oxidase and Δ(1)-pyrroline-5-carboxylate (P5C) dehydrogenase, which produce P5C and glutamate, respectively. In animal and plant cells, impairment of P5C dehydrogenase activity results in P5C-proline cycling when exogenous proline is supplied via the actions of proline oxidase and P5C reductase (the enzyme that converts P5C to proline). This proline is oxidized by the proline oxidase-FAD complex that delivers electrons to the electron transport chain and to O2, leading to mitochondrial reactive oxygen species (ROS) overproduction. Coupled activity of proline oxidase and P5C dehydrogenase is therefore important for maintaining ROS homeostasis. In the genome of the fungal pathogen Cryptococcus neoformans, there are two paralogs (PUT1 and PUT5) that encode proline oxidases and a single ortholog (PUT2) that encodes P5C dehydrogenase. Transcription of all three catabolic genes is inducible by the presence of proline. However, through the creation of deletion mutants, only Put5 and Put2 were found to be required for proline utilization. The put2Δ mutant also generates excessive mitochondrial superoxide when exposed to proline. Intracellular accumulation of ROS is a critical feature of cell death; consistent with this fact, the put2Δ mutant exhibits a slight, general growth defect. Furthermore, Put2 is required for optimal production of the major cryptococcal virulence factors. During murine infection, the put2Δ mutant was discovered to be avirulent; this is the first report highlighting the importance of P5C dehydrogenase in enabling pathogenesis of a microorganism.
Collapse
|
29
|
Zhang C, Wang N, Zhang Y, Feng Q, Yang C, Liu B. DNA methylation involved in proline accumulation in response to osmotic stress in rice (Oryza sativa). GENETICS AND MOLECULAR RESEARCH 2013; 12:1269-77. [DOI: 10.4238/2013.april.17.5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
30
|
Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A. Role of proline under changing environments: a review. PLANT SIGNALING & BEHAVIOR 2012; 7:1456-66. [PMID: 22951402 PMCID: PMC3548871 DOI: 10.4161/psb.21949] [Citation(s) in RCA: 1104] [Impact Index Per Article: 84.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
When exposed to stressful conditions, plants accumulate an array of metabolites, particularly amino acids. Amino acids have traditionally been considered as precursors to and constituents of proteins, and play an important role in plant metabolism and development. A large body of data suggests a positive correlation between proline accumulation and plant stress. Proline, an amino acid, plays a highly beneficial role in plants exposed to various stress conditions. Besides acting as an excellent osmolyte, proline plays three major roles during stress, i.e., as a metal chelator, an antioxidative defense molecule and a signaling molecule. Review of the literature indicates that a stressful environment results in an overproduction of proline in plants which in turn imparts stress tolerance by maintaining cell turgor or osmotic balance; stabilizing membranes thereby preventing electrolyte leakage; and bringing concentrations of reactive oxygen species (ROS) within normal ranges, thus preventing oxidative burst in plants. Reports indicate enhanced stress tolerance when proline is supplied exogenously at low concentrations. However, some reports indicate toxic effects of proline when supplied exogenously at higher concentrations. In this article, we review and discuss the effects of exogenous proline on plants exposed to various abiotic stresses. Numerous examples of successful application of exogenous proline to improve stress tolerance are presented. The roles played by exogenous proline under varying environments have been critically examined and reviewed.
Collapse
Affiliation(s)
- Shamsul Hayat
- Department of Botany & Microbiology, Faculty of Science, King Saudi University, Riyadh, Saudi Arabia.
| | | | | | | | | | | |
Collapse
|
31
|
Zaghdoud C, Alcaraz-López C, Mota-Cadenas C, Martínez-Ballesta MDC, Moreno DA, Ferchichi A, Carvajal M. Differential responses of two broccoli (Brassica oleracea L. var Italica) cultivars to salinity and nutritional quality improvement. ScientificWorldJournal 2012; 2012:291435. [PMID: 22956893 PMCID: PMC3417188 DOI: 10.1100/2012/291435] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 05/30/2012] [Indexed: 01/14/2023] Open
Abstract
The comparative responses of two broccoli cultivars (Brassica oleracea var. Italica, cv. Parthenon and cv. Naxos) to a 15 d exposure to different NaCl levels were investigated. Salinity led to increased concentrations of Na(+) and Cl(-) ions in both cultivars, a disruption of the endogenous minerals levels in the shoots and roots-that varied with the cultivar and salt concentration-and decreases in the osmotic potential (Ψ(π)), root hydraulic conductance (L(0)), and stomatal conductance (G(s)). The reduced biomass of Naxos at moderate NaCl indicates greater sensitivity to salinity, compared with Parthenon. Parthenon accumulated more soluble sugars, for osmotic adjustment, whereas Naxos accumulated proline, which gave the two cultivars differing nutritional characteristics. The total glucosinolates (GSLs) content was not affected by salinity in Parthenon while it decreased significantly in Naxos as a consequence of the decrease in the indole GSL. However, Naxos accumulated more aliphatic GSLs under salt stress than Parthenon, which confers on this cultivar a greater nutritional value when cultivated under salinity.These results suggest that, at distinct salinity levels, each broccoli cultivar adopts a specific strategy, indicating the crucial role of the genetic background on the organoleptic and nutritional properties that each cultivar acquires.
Collapse
Affiliation(s)
- Chokri Zaghdoud
- Laboratoire d'Aridoculture et Cultures Oasiennes, Institut des Régions Arides, Route de Djerba Km 22.5, Médenine 4119, Tunisia
| | - Carlos Alcaraz-López
- Department of Plant Nutrition, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Ap. de Correos 164, 30100 Murcia, Spain
| | - César Mota-Cadenas
- Department of Plant Nutrition, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Ap. de Correos 164, 30100 Murcia, Spain
| | - María del Carmen Martínez-Ballesta
- Department of Plant Nutrition, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Ap. de Correos 164, 30100 Murcia, Spain
| | - Diego A. Moreno
- Department of Food Science and Technology, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Ap. de Correos 164, 30100 Murcia, Spain
| | - Ali Ferchichi
- Laboratoire d'Aridoculture et Cultures Oasiennes, Institut des Régions Arides, Route de Djerba Km 22.5, Médenine 4119, Tunisia
| | - Micaela Carvajal
- Department of Plant Nutrition, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Ap. de Correos 164, 30100 Murcia, Spain
| |
Collapse
|
32
|
Ghars MA, Richard L, Lefebvre-De Vos D, Leprince AS, Parre E, Bordenave M, Abdelly C, Savouré A. Phospholipases C and D modulate proline accumulation in Thellungiella halophila/salsuginea differently according to the severity of salt or hyperosmotic stress. PLANT & CELL PHYSIOLOGY 2012; 53:183-92. [PMID: 22121247 DOI: 10.1093/pcp/pcr164] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Proline accumulation is one of the most common responses of plants to environmental constraints. Thellungiella halophila/salsuginea, a model halophyte, accumulates high levels of proline in response to abiotic stress and in the absence of stress. Recently, lipid signaling pathways have been shown to be involved in the regulation of proline metabolism in Arabidopsis thaliana. Here we investigated the relationship between lipid signaling enzymes and the level of proline in T. salsuginea. Inhibition of phospholipase C (PLC) enzymes by the specific inhibitor U73122 demonstrated that proline accumulation is negatively controlled by PLCs in the absence of stress and under moderate salt stress (200 mM NaCl). The use of 1-butanol to divert some of the phospholipase D (PLD)-derived phosphatidic acid by transphosphatidylation revealed that PLDs exert a positive control on proline accumulation under severe stress (400 mM NaCl or 400 mM mannitol) but have no effect on its accumulation in non-stress conditions. This experimental evidence shows that positive and negative lipid regulatory components are involved in the fine regulation of proline metabolism. These signaling pathways in T. salsuginea are regulated in the opposite sense to those previously described in A. thaliana, revealing that common signaling components affect the physiology of closely related glycophyte and salt-tolerant plants differently.
Collapse
Affiliation(s)
- Mohamed Ali Ghars
- UPMC Université Paris 06, UR5 EAC7180 CNRS, Physiologie Cellulaire et Moléculaire des Plantes, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Lv WT, Lin B, Zhang M, Hua XJ. Proline accumulation is inhibitory to Arabidopsis seedlings during heat stress. PLANT PHYSIOLOGY 2011; 156:1921-33. [PMID: 21670222 PMCID: PMC3149957 DOI: 10.1104/pp.111.175810] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 06/02/2011] [Indexed: 05/18/2023]
Abstract
The effect of proline (Pro) accumulation on heat sensitivity was investigated using transgenic Arabidopsis (Arabidopsis thaliana) plants ectopically expressing the Δ(1)-pyrroline-5-carboxylate synthetase 1 gene (AtP5CS1) under the control of a heat shock protein 17.6II gene promoter. During heat stress, the heat-inducible expression of the AtP5CS1 transgene was capable of enhancing Pro biosynthesis. Twelve-day-old seedlings were first treated with heat at 37 °C for 24 h to induce Pro and then were stressed at 50 °C for 4 h. After recovery at 22 °C for 96 h, the growth of Pro-overproducing plants was significantly more inhibited than that of control plants that do not accumulate Pro, manifested by lower survival rate, higher ion leakage, higher reactive oxygen species (ROS) and malondialdehyde levels, and increased activity of the Pro/P5C cycle. The activities of antioxidant enzymes superoxide dismutase, guaiacol peroxidase, and catalase, but not those of glutathione reductase and ascorbate peroxidase, increased in all lines after heat treatment, but the increase was more significant in Pro-overproducing seedlings. Staining with MitoSox-Red, reported for being able to specifically detect superoxide formed in mitochondria, showed that Pro accumulation during heat stress resulted in elevated levels of ROS in mitochondria. Interestingly, exogenous abscisic acid (ABA) and ethylene were found to partially rescue the heat-sensitive phenotype of Pro-overproducing seedlings. Measurement of ethylene and ABA levels further confirmed that these two hormones are negatively affected in Pro-overproducing seedlings during heat stress. Our results indicated that Pro accumulation under heat stress decreases the thermotolerance, probably by increased ROS production via the Pro/P5C cycle and inhibition of ABA and ethylene biosynthesis.
Collapse
|
34
|
Cecchini NM, Monteoliva MI, Alvarez ME. Proline dehydrogenase contributes to pathogen defense in Arabidopsis. PLANT PHYSIOLOGY 2011; 155:1947-59. [PMID: 21311034 PMCID: PMC3091113 DOI: 10.1104/pp.110.167163] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 02/03/2011] [Indexed: 05/19/2023]
Abstract
L-proline (Pro) catabolism is activated in plants recovering from abiotic stresses associated with water deprivation. In this catabolic pathway, Pro is converted to glutamate by two reactions catalyzed by proline dehydrogenase (ProDH) and Δ(1)-pyrroline-5-carboxylate dehydrogenase (P5CDH), with Δ(1)-pyrroline-5-carboxylate (P5C) as the intermediate. Alternatively, under certain conditions, the P5C derived from Pro is converted back to Pro by P5C reductase, thus stimulating the Pro-P5C cycle, which may generate reactive oxygen species (ROS) as a consequence of the ProDH activity. We previously observed that Pro biosynthesis is altered in Arabidopsis (Arabidopsis thaliana) tissues that induce the hypersensitive response (HR) in response to Pseudomonas syringae. In this work, we characterized the Pro catabolic pathway and ProDH activity in this model. Induction of ProDH expression was found to be dependent on salicylic acid, and an increase in ProDH activity was detected in cells destined to die. To evaluate the role of ProDH in the HR, ProDH-silenced plants were generated. These plants displayed reduced ROS and cell death levels as well as enhanced susceptibility in response to avirulent pathogens. Interestingly, the early activation of ProDH was accompanied by an increase in P5C reductase but not in P5CDH transcripts, with few changes occurring in the Pro and P5C levels. Therefore, our results suggest that in wild-type plants, ProDH is a defense component contributing to HR and disease resistance, which apparently potentiates the accumulation of ROS. The participation of the Pro-P5C cycle in the latter response is discussed.
Collapse
|
35
|
Sharma S, Verslues PE. Mechanisms independent of abscisic acid (ABA) or proline feedback have a predominant role in transcriptional regulation of proline metabolism during low water potential and stress recovery. PLANT, CELL & ENVIRONMENT 2010; 33:1838-51. [PMID: 20545884 DOI: 10.1111/j.1365-3040.2010.02188.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Proline accumulation in response to abiotic stress is controlled partially by transcriptional regulation of key enzymes including Δ¹-pyrroline-carboxylate synthetase1 (P5CS1), proline dehydrogenase (ProDH), ornithine amino transferase (OAT) and Δ¹-pyrroline-carboxylate dehydrogenase (P5CDH). For these genes, the role of abscisic acid (ABA), role of feedback regulation by high proline and the mechanisms of gene regulation upon stress release remain unclear. An ABA-deficient (aba2-1) mutant, mutants deficient in proline accumulation (p5cs1), as well as double mutants deficient in both, were used to determine the importance of these factors in transcriptional regulation of proline metabolism. Upregulation of P5CS1 by low water potential was less dependent on ABA than that of stress-marker genes used for comparison. ProDH downregulation by low water potential and upregulation by stress release was not impaired in aba2-1, p5cs1 or p5cs1/aba2-1 compared with wild type despite differing ABA and proline levels in these mutants. Thus, ProDH is a model for characterization of novel regulatory mechanisms associated with low water potential and stress recovery. Both OAT and P5CDH were upregulated during low water potential. This contrasts with previous salt stress experiments and raises questions about the flux of metabolites through proline metabolism under low water potential when high levels of proline accumulate.
Collapse
Affiliation(s)
- Sandeep Sharma
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | | |
Collapse
|
36
|
Lehmann S, Funck D, Szabados L, Rentsch D. Proline metabolism and transport in plant development. Amino Acids 2010; 39:949-62. [DOI: 10.1007/s00726-010-0525-3] [Citation(s) in RCA: 225] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 02/10/2010] [Indexed: 01/21/2023]
|
37
|
Szabados L, Savouré A. Proline: a multifunctional amino acid. TRENDS IN PLANT SCIENCE 2010; 15:89-97. [PMID: 20036181 DOI: 10.1016/j.tplants.2009.11.009] [Citation(s) in RCA: 1793] [Impact Index Per Article: 119.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 11/17/2009] [Accepted: 11/24/2009] [Indexed: 05/18/2023]
Abstract
Proline accumulates in many plant species in response to environmental stress. Although much is now known about proline metabolism, some aspects of its biological functions are still unclear. Here, we discuss the compartmentalization of proline biosynthesis, accumulation and degradation in the cytosol, chloroplast and mitochondria. We also describe the role of proline in cellular homeostasis, including redox balance and energy status. Proline can act as a signaling molecule to modulate mitochondrial functions, influence cell proliferation or cell death and trigger specific gene expression, which can be essential for plant recovery from stress. Although the regulation and function of proline accumulation are not yet completely understood, the engineering of proline metabolism could lead to new opportunities to improve plant tolerance of environmental stresses.
Collapse
Affiliation(s)
- László Szabados
- Institute of Plant Biology, Biological Research Center, Temesvári krt. 62., H-6726 Szeged, Hungary.
| | | |
Collapse
|
38
|
Verslues PE, Sharma S. Proline metabolism and its implications for plant-environment interaction. THE ARABIDOPSIS BOOK 2010; 8:e0140. [PMID: 22303265 PMCID: PMC3244962 DOI: 10.1199/tab.0140] [Citation(s) in RCA: 287] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Proline has long been known to accumulate in plants experiencing water limitation and this has driven studies of proline as a beneficial solute allowing plants to increase cellular osmolarity during water limitation. Proline metabolism also has roles in redox buffering and energy transfer and is involved in plant pathogen interaction and programmed cell death. Some of these unique roles of proline depend on the properties of proline itself, whereas others depend on the "proline cycle" of coordinated proline synthesis in the chloroplast and cytoplasm with proline catabolism in the mitochondria. The regulatory mechanisms controlling proline metabolism, intercellular and intracellular transport and connections of proline to other metabolic pathways are all important to the in vivo functions of proline metabolism. Connections of proline metabolism to the oxidative pentose phosphate pathway and glutamate-glutamine metabolism are of particular interest. The N-acetyl glutamate pathway can also produce ornithine and, potentially, proline but its role and activity are unclear. Use of model systems such as Arabidopsis thaliana to better understand both these long studied and newly emerging functions of proline can help in the design of next-generation experiments testing whether proline metabolism is a promising metabolic engineering target for improving stress resistance of economically important plants.
Collapse
Affiliation(s)
- Paul E. Verslues
- Institute of Plant and Microbial Biology, Academia Sinica, No. 128 Sec. 2 Academia Rd, Nankang Dist., Taipei, 11529, Taiwan
- Address correspondence to
| | - Sandeep Sharma
- Institute of Plant and Microbial Biology, Academia Sinica, No. 128 Sec. 2 Academia Rd, Nankang Dist., Taipei, 11529, Taiwan
| |
Collapse
|
39
|
Abstract
Accumulation of proline in higher plants is an indication of disturbed physiological condition, triggered by biotic or abiotic stress condition. Free proline content can increase upon exposure of plants to drought, salinity, cold, heavy metals, or certain pathogens. Determination of free proline levels is a useful assay to monitor physiological status and to assess stress tolerance of higher plants. Here we describe three methods suitable for determination of free proline content. The isatin paper assay is simple and is suitable to assay proline content in large number of samples. The colorimetric measurement is quantitative and provides reliable data about proline content. The HPLC-based amino acid analysis can be employed when concentration of all amino acids has to be compared.
Collapse
|
40
|
Xue X, Liu A, Hua X. Proline accumulation and transcriptional regulation of proline biosynthesis and degradation in Brassica napus. BMB Rep 2009; 42:28-34. [PMID: 19192390 DOI: 10.5483/bmbrep.2009.42.1.028] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To understand the molecular mechanism underlying proline accumulation in Brassica napus, cDNAs encoding Delta(1)-pyrroline-5-carboxylate synthetase (BnP5CS), ornithine delta-aminotransferase (BnOAT) and proline dehydrogenase (BnPDH) were isolated and characterized. Southern blot analysis of BnP5CSs in B. napus and its diploid ancestors suggested a gene loss may have occurred during evolution. The expression of BnP5CS1 and BnP5CS2 was induced, while the expression of BnPDH was inhibited under salt stress, ABA treatment and dehydration, prior to proline accumulation. The upregulation of BnOAT expression was only detected during prolonged severe osmotic stress. Our results indicate that stress-induced proline accumulation in B. napus results from the reciprocal action of activated biosynthesis and inhibited proline degradation. Whether the ornithine pathway is activated depends on the severity of stress. During development, proline content was high in reproductive organs and was accompanied by markedly high expression of BnP5CS and BnPDH, suggesting possible roles of proline during flower development. [BMB reports 2009; 42(1): 28-34].
Collapse
Affiliation(s)
- Xingning Xue
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, China
| | | | | |
Collapse
|
41
|
Fulton L, Batoux M, Vaddepalli P, Yadav RK, Busch W, Andersen SU, Jeong S, Lohmann JU, Schneitz K. DETORQUEO, QUIRKY, and ZERZAUST represent novel components involved in organ development mediated by the receptor-like kinase STRUBBELIG in Arabidopsis thaliana. PLoS Genet 2009; 5:e1000355. [PMID: 19180193 PMCID: PMC2628281 DOI: 10.1371/journal.pgen.1000355] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Accepted: 12/23/2008] [Indexed: 12/26/2022] Open
Abstract
Intercellular signaling plays an important role in controlling cellular behavior in apical meristems and developing organs in plants. One prominent example in Arabidopsis is the regulation of floral organ shape, ovule integument morphogenesis, the cell division plane, and root hair patterning by the leucine-rich repeat receptor-like kinase STRUBBELIG (SUB). Interestingly, kinase activity of SUB is not essential for its in vivo function, indicating that SUB may be an atypical or inactive receptor-like kinase. Since little is known about signaling by atypical receptor-like kinases, we used forward genetics to identify genes that potentially function in SUB-dependent processes and found recessive mutations in three genes that result in a sub-like phenotype. Plants with a defect in DETORQEO (DOQ), QUIRKY (QKY), and ZERZAUST (ZET) show corresponding defects in outer integument development, floral organ shape, and stem twisting. The mutants also show sub-like cellular defects in the floral meristem and in root hair patterning. Thus, SUB, DOQ, QKY, and ZET define the STRUBBELIG-LIKE MUTANT (SLM) class of genes. Molecular cloning of QKY identified a putative transmembrane protein carrying four C(2) domains, suggesting that QKY may function in membrane trafficking in a Ca(2+)-dependent fashion. Morphological analysis of single and all pair-wise double-mutant combinations indicated that SLM genes have overlapping, but also distinct, functions in plant organogenesis. This notion was supported by a systematic comparison of whole-genome transcript profiles during floral development, which molecularly defined common and distinct sets of affected processes in slm mutants. Further analysis indicated that many SLM-responsive genes have functions in cell wall biology, hormone signaling, and various stress responses. Taken together, our data suggest that DOQ, QKY, and ZET contribute to SUB-dependent organogenesis and shed light on the mechanisms, which are dependent on signaling through the atypical receptor-like kinase SUB.
Collapse
Affiliation(s)
- Lynette Fulton
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Martine Batoux
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Prasad Vaddepalli
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Ram Kishor Yadav
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Wolfgang Busch
- Max Planck Institute for Developmental Biology, Department of Molecular Biology, AG Lohmann, Tübingen, Germany
| | - Stig U. Andersen
- Max Planck Institute for Developmental Biology, Department of Molecular Biology, AG Lohmann, Tübingen, Germany
| | - Sangho Jeong
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
| | - Jan U. Lohmann
- Max Planck Institute for Developmental Biology, Department of Molecular Biology, AG Lohmann, Tübingen, Germany
- Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Kay Schneitz
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
- * E-mail:
| |
Collapse
|
42
|
Trovato M, Mattioli R, Costantino P. Multiple roles of proline in plant stress tolerance and development. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/s12210-008-0022-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications. Appl Microbiol Biotechnol 2008; 81:211-23. [DOI: 10.1007/s00253-008-1698-5] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 08/29/2008] [Accepted: 09/01/2008] [Indexed: 10/21/2022]
|
44
|
Verbruggen N, Hermans C. Proline accumulation in plants: a review. Amino Acids 2008; 35:753-9. [PMID: 18379856 DOI: 10.1007/s00726-008-0061-6] [Citation(s) in RCA: 774] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Accepted: 03/08/2008] [Indexed: 10/22/2022]
Abstract
Proline (Pro) accumulation is a common physiological response in many plants in response to a wide range of biotic and abiotic stresses. Controversy has surrounded the possible role(s) of proline accumulation. In this review, knowledge on the regulation of Pro metabolism during development and stress, results of genetic manipulation of Pro metabolism and current debate on Pro toxicity in plants are presented.
Collapse
Affiliation(s)
- Nathalie Verbruggen
- Laboratoire de Physiologie et de Génétique moléculaire des Plantes, Université Libre de Bruxelles, Campus Plaine-CP242, Bd du Triomphe, 1050, Brussels, Belgium.
| | | |
Collapse
|
45
|
Verbruggen N, Hermans C. Proline accumulation in plants: a review. Amino Acids 2008; 35:753-759. [PMID: 18379856 DOI: 10.1007/978-81-322-2616-1_9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Accepted: 03/08/2008] [Indexed: 05/27/2023]
Abstract
Proline (Pro) accumulation is a common physiological response in many plants in response to a wide range of biotic and abiotic stresses. Controversy has surrounded the possible role(s) of proline accumulation. In this review, knowledge on the regulation of Pro metabolism during development and stress, results of genetic manipulation of Pro metabolism and current debate on Pro toxicity in plants are presented.
Collapse
Affiliation(s)
- Nathalie Verbruggen
- Laboratoire de Physiologie et de Génétique moléculaire des Plantes, Université Libre de Bruxelles, Campus Plaine-CP242, Bd du Triomphe, 1050, Brussels, Belgium.
| | | |
Collapse
|
46
|
Bourgis F, Guyot R, Gherbi H, Tailliez E, Amabile I, Salse J, Lorieux M, Delseny M, Ghesquière A. Characterization of the major fragance gene from an aromatic japonica rice and analysis of its diversity in Asian cultivated rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 117:353-68. [PMID: 18491070 PMCID: PMC2470208 DOI: 10.1007/s00122-008-0780-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 04/12/2008] [Indexed: 05/19/2023]
Abstract
In Asian cultivated rice (Oryza sativa L.), aroma is one of the most valuable traits in grain quality and 2-ACP is the main volatile compound contributing to the characteristic popcorn-like odour of aromatic rices. Although the major locus for grain fragrance (frg gene) has been described recently in Basmati rice, this gene has not been characterised in true japonica varieties and molecular information available on the genetic diversity and evolutionary origin of this gene among the different varieties is still limited. Here we report on characterisation of the frg gene in the Azucena variety, one of the few aromatic japonica cultivars. We used a RIL population from a cross between Azucena and IR64, a non-aromatic indica, the reference genomic sequence of Nipponbare (japonica) and 93-11 (indica) as well as an Azucena BAC library, to identify the major fragance gene in Azucena. We thus identified a betaine aldehyde dehydrogenase gene, badh2, as the candidate locus responsible for aroma, which presented exactly the same mutation as that identified in Basmati and Jasmine-like rices. Comparative genomic analyses showed very high sequence conservation between Azucena and Nipponbare BADH2, and a MITE was identified in the promotor region of the BADH2 allele in 93-11. The badh2 mutation and MITE were surveyed in a representative rice collection, including traditional aromatic and non-aromatic rice varieties, and strongly suggested a monophylogenetic origin of this badh2 mutation in Asian cultivated rices. Altogether these new data are discussed here in the light of current hypotheses on the origin of rice genetic diversity.
Collapse
Affiliation(s)
- F. Bourgis
- UMR 5096 IRD-CNRS-Université de Perpignan, Laboratoire Génome et Développement des Plantes, Perpignan, France
- Centre IRD de Montpellier, Avenue Agropolis, BP64501, 34394 Montpellier, France
| | - R. Guyot
- UMR 5096 IRD-CNRS-Université de Perpignan, Laboratoire Génome et Développement des Plantes, Perpignan, France
- Centre IRD de Montpellier, Avenue Agropolis, BP64501, 34394 Montpellier, France
| | - H. Gherbi
- UMR 5096 IRD-CNRS-Université de Perpignan, Laboratoire Génome et Développement des Plantes, Perpignan, France
- Centre IRD de Montpellier, Avenue Agropolis, BP64501, 34394 Montpellier, France
| | - E. Tailliez
- UMR 5096 IRD-CNRS-Université de Perpignan, Laboratoire Génome et Développement des Plantes, Perpignan, France
- Centre IRD de Montpellier, Avenue Agropolis, BP64501, 34394 Montpellier, France
| | - I. Amabile
- UMR 5096 IRD-CNRS-Université de Perpignan, Laboratoire Génome et Développement des Plantes, Perpignan, France
- Centre IRD de Montpellier, Avenue Agropolis, BP64501, 34394 Montpellier, France
| | - J. Salse
- UMR 5096 IRD-CNRS-Université de Perpignan, Laboratoire Génome et Développement des Plantes, Perpignan, France
- Université de Perpignan Via Domitia, 52 avenue Paul Alduy, 66860 Perpignan, France
- Present Address: UMR 1095 INRA-UBP ASP Amélioration et Santé des Plantes, Domaine de Crouelle, 63039 Clermont Ferrand, France
| | - M. Lorieux
- UMR 5096 IRD-CNRS-Université de Perpignan, Laboratoire Génome et Développement des Plantes, Perpignan, France
- Centre IRD de Montpellier, Avenue Agropolis, BP64501, 34394 Montpellier, France
| | - M. Delseny
- UMR 5096 IRD-CNRS-Université de Perpignan, Laboratoire Génome et Développement des Plantes, Perpignan, France
- Université de Perpignan Via Domitia, 52 avenue Paul Alduy, 66860 Perpignan, France
| | - A. Ghesquière
- UMR 5096 IRD-CNRS-Université de Perpignan, Laboratoire Génome et Développement des Plantes, Perpignan, France
- Centre IRD de Montpellier, Avenue Agropolis, BP64501, 34394 Montpellier, France
| |
Collapse
|
47
|
Millar AH, Small ID, Day DA, Whelan J. Mitochondrial biogenesis and function in Arabidopsis. THE ARABIDOPSIS BOOK 2008; 6:e0111. [PMID: 22303236 DOI: 10.1199/tab.0105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Mitochondria represent the powerhouse of cells through their synthesis of ATP. However, understanding the role of mitochondria in the growth and development of plants will rely on a much deeper appreciation of the complexity of this organelle. Arabidopsis research has provided clear identification of mitochondrial components, allowed wide-scale analysis of gene expression, and has aided reverse genetic manipulation to test the impact of mitochondrial component loss on plant function. Forward genetics in Arabidopsis has identified mitochondrial involvement in mutations with notable impacts on plant metabolism, growth and development. Here we consider the evidence for components involved in mitochondria biogenesis, metabolism and signalling to the nucleus.
Collapse
|
48
|
Millar AH, Small ID, Day DA, Whelan J. Mitochondrial biogenesis and function in Arabidopsis. THE ARABIDOPSIS BOOK 2008; 6:e0111. [PMID: 22303236 PMCID: PMC3243404 DOI: 10.1199/tab.0111] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Mitochondria represent the powerhouse of cells through their synthesis of ATP. However, understanding the role of mitochondria in the growth and development of plants will rely on a much deeper appreciation of the complexity of this organelle. Arabidopsis research has provided clear identification of mitochondrial components, allowed wide-scale analysis of gene expression, and has aided reverse genetic manipulation to test the impact of mitochondrial component loss on plant function. Forward genetics in Arabidopsis has identified mitochondrial involvement in mutations with notable impacts on plant metabolism, growth and development. Here we consider the evidence for components involved in mitochondria biogenesis, metabolism and signalling to the nucleus.
Collapse
Affiliation(s)
- A. Harvey Millar
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009
| | - Ian D. Small
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009
| | - David A. Day
- School of Biological Sciences, The University of Sydney 2006, NSW, Australia
| | - James Whelan
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009
| |
Collapse
|
49
|
Kaino T, Takagi H. Gene expression profiles and intracellular contents of stress protectants in Saccharomyces cerevisiae under ethanol and sorbitol stresses. Appl Microbiol Biotechnol 2008; 79:273-83. [DOI: 10.1007/s00253-008-1431-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 02/23/2008] [Accepted: 02/24/2008] [Indexed: 11/28/2022]
|
50
|
Mattioli R, Marchese D, D'Angeli S, Altamura MM, Costantino P, Trovato M. Modulation of intracellular proline levels affects flowering time and inflorescence architecture in Arabidopsis. PLANT MOLECULAR BIOLOGY 2008; 66:277-88. [PMID: 18060533 DOI: 10.1007/s11103-007-9269-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Accepted: 11/20/2007] [Indexed: 05/20/2023]
Abstract
We reported previously that the plant oncogene rolD anticipates and stimulates flowering in Nicotiana tabacum, and encodes ornithine cyclodeaminase, an enzyme catalysing the conversion of ornithine to proline. To investigate on the possible role of proline in flowering, we altered the expression of AtP5CS1, encoding the rate-limiting enzyme of proline biosynthesis in plants. Accordingly we characterized a mutant line containing a T-DNA insertion into AtP5CS1 and introduced in Arabidopsis thaliana AtP5CS1 under the control of the CaMV35S promoter. As expected homozygous p5cs1 mutants behaved as late flowering. In addition p5cs1 mutants exhibited a shorter size and contained lower levels of proline, compared to wild type. 35S-P5CS1 plants, manifested, early in development, overexpression of P5CS1 and accumulation of proline, leading to early flowering, both under long- and short-day conditions. Later in development, down-regulation of P5CS1 occurred in 35S-P5CS1 leaves, leading to proline reduction, and, in turn, impaired bolting and stunted growth. Salt-stress restored expression of P5CS1 and proline accumulation in P5CS1-transformed plants, as well as rescuing growth. Our data suggest that proline plays a key role in flower transition, bolting and coflorescence formation.
Collapse
Affiliation(s)
- Roberto Mattioli
- Istituto Pasteur Fondazione Cenci Bolognetti, Dipartimento di Genetica e Biologia Molecolare, Università di Roma La Sapienza, P.le Aldo Moro 5, Rome 00185, Italy
| | | | | | | | | | | |
Collapse
|