1
|
Dong Y, Zhang X, Wang Y. Interleukins in Epilepsy: Friend or Foe. Neurosci Bull 2024; 40:635-657. [PMID: 38265567 PMCID: PMC11127910 DOI: 10.1007/s12264-023-01170-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/28/2023] [Indexed: 01/25/2024] Open
Abstract
Epilepsy is a chronic neurological disorder with recurrent unprovoked seizures, affecting ~ 65 million worldwide. Evidence in patients with epilepsy and animal models suggests a contribution of neuroinflammation to epileptogenesis and the development of epilepsy. Interleukins (ILs), as one of the major contributors to neuroinflammation, are intensively studied for their association and modulatory effects on ictogenesis and epileptogenesis. ILs are commonly divided into pro- and anti-inflammatory cytokines and therefore are expected to be pathogenic or neuroprotective in epilepsy. However, both protective and destructive effects have been reported for many ILs. This may be due to the complex nature of ILs, and also possibly due to the different disease courses that those ILs are involved in. In this review, we summarize the contributions of different ILs in those processes and provide a current overview of recent research advances, as well as preclinical and clinical studies targeting ILs in the treatment of epilepsy.
Collapse
Affiliation(s)
- Yuan Dong
- Neuropsychiatry Research Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China.
| | - Xia Zhang
- Neuropsychiatry Research Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China
| | - Ying Wang
- Neuropsychiatry Research Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
2
|
Zhou Y, Stevis PE, Cao J, Saotome K, Wu J, Glatman Zaretsky A, Haxhinasto S, Yancopoulos GD, Murphy AJ, Sleeman MW, Olson WC, Franklin MC. Structural insights into the assembly of gp130 family cytokine signaling complexes. SCIENCE ADVANCES 2023; 9:eade4395. [PMID: 36930708 PMCID: PMC10022904 DOI: 10.1126/sciadv.ade4395] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
The interleukin-6 (IL-6) family cytokines signal through gp130 receptor homodimerization or heterodimerization with a second signaling receptor and play crucial roles in various cellular processes. We determined cryo-electron microscopy structures of five signaling complexes of this family, containing full receptor ectodomains bound to their respective ligands ciliary neurotrophic factor, cardiotrophin-like cytokine factor 1 (CLCF1), leukemia inhibitory factor, IL-27, and IL-6. Our structures collectively reveal similarities and differences in the assembly of these complexes. The acute bends at both signaling receptors in all complexes bring the membrane-proximal domains to a ~30 angstrom range but with distinct distances and orientations. We also reveal how CLCF1 engages its secretion chaperone cytokine receptor-like factor 1. Our data provide valuable insights for therapeutically targeting gp130-mediated signaling.
Collapse
Affiliation(s)
- Yi Zhou
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | | | - Jing Cao
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | - Kei Saotome
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | - Jiaxi Wu
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Battista MR, Grigoletto A, Tedeschini T, Cellucci A, Colaceci F, Laufer R, Pasut G, Di Marco A. Efficacy of PEGylated ciliary neurotrophic factor superagonist variant in diet-induced obesity mice. PLoS One 2022; 17:e0265749. [PMID: 35316287 PMCID: PMC8939829 DOI: 10.1371/journal.pone.0265749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 03/07/2022] [Indexed: 11/18/2022] Open
Abstract
Ciliary neurotrophic factor (CNTF) is a neurotrophic cytokine able to induce appetite reduction, weight loss and antidiabetic effects. However, its susceptibility to neutralizing anti-CNTF antibodies in patients hampered its use for treatment of human obesity and diabetes. In addition, CNTF has a very short plasma half-life, which limits its use as a therapeutic agent. Solutions, directed to prolong its in vivo effects, vary from the implantation of encapsulated secreting cells to identification of more active variants or chemical modification of the protein itself. PEGylation is a widely used modification for shielding proteins from circulating antibodies and for increasing their plasma half-life. Here, we have selected DH-CNTF, a CNTF variant which has a 40-fold higher affinity for the CNTF receptor α accompanied by an increased activity in cellular assays. The PEGylated DH-CNTF retained the biological activity of native protein in vitro and showed a significant improvement of pharmacokinetic parameters. In an acute model of glucose tolerance, the PEG-DH-CNTF was able to reduce the glycemia in diet-induced obese animals, with a performance equaled by a 10-fold higher dose of DH-CNTF. In addition, the PEGylated DH-CNTF analog demonstrated a more potent weight loss effect than the unmodified protein, opening to the use of CNTF as weight reducing agent with treatment regimens that can better meet patient compliance thanks to reduced dosing schedules.
Collapse
Affiliation(s)
| | - Antonella Grigoletto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Tommaso Tedeschini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | | | | | | - Gianfranco Pasut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
- * E-mail: (ADM); (GP)
| | | |
Collapse
|
4
|
Qadi AA, Taberlay PC, Phillips JL, Young A, West AC, Brettingham-Moore KH, Dickinson JL, Holloway AF. The Leukemia Inhibitory Factor Receptor Gene Is a Direct Target of RUNX1. J Cell Biochem 2015; 117:49-58. [DOI: 10.1002/jcb.25246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/29/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Abeer A. Qadi
- Menzies Institute for Medical Research; University of Tasmania; Hobart Tasmania 7000 Australia
| | - Phillippa C. Taberlay
- Genomics and Epigenetics Division; The Garvan Institute of Medical Research; Darlinghurst New South Wales 2010 Australia
| | - Jessica L. Phillips
- Menzies Institute for Medical Research; University of Tasmania; Hobart Tasmania 7000 Australia
| | - Arabella Young
- Menzies Institute for Medical Research; University of Tasmania; Hobart Tasmania 7000 Australia
| | - Alison C. West
- Menzies Institute for Medical Research; University of Tasmania; Hobart Tasmania 7000 Australia
| | | | - Joanne L. Dickinson
- Menzies Institute for Medical Research; University of Tasmania; Hobart Tasmania 7000 Australia
| | - Adele F. Holloway
- School of Medicine; University of Tasmania; Hobart Tasmania 7000 Australia
| |
Collapse
|
5
|
Abstract
Interleukin (IL-)23 is a central cytokine controlling TH17 development. Overshooting IL-23 signaling contribute to autoimmune diseases. Moreover, GWAS studies have identified several SNPs within the IL-23 receptor, which are associated with autoimmune diseases. IL-23 is a member of the IL-12-type cytokine family and consists of IL-23p19 and p40. Within the IL-12 family, IL-12 and IL-23 share the p40 cytokine subunit and the IL-12Rβ1 as one chain of the receptor complex. For signaling, IL-23 triggers heterodimerization of IL-12Rβ1 and the IL-23R. Subsequently, signal transduction pathways including JAK/STAT, MAPK and PI3K are activated. Most studies have investigated the biological relevance of IL-23 in the development of TH17 cells and autoimmunity, whereas less is known about the molecular context of IL-23 biology. Therefore, we focused on IL-23 receptor complex assembly, signal transduction and functional relevance of IL-23R SNPs in the context of IL-23-inhibitory principles.
Collapse
|
6
|
Chollangi S, Mather T, Rodgers KK, Ash JD. A unique loop structure in oncostatin M determines binding affinity toward oncostatin M receptor and leukemia inhibitory factor receptor. J Biol Chem 2012; 287:32848-59. [PMID: 22829597 DOI: 10.1074/jbc.m112.387324] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Oncostatin M (OSM) and leukemia inhibitory factor are pleiotropic cytokines that belong to the interleukin-6 (IL-6) family. These cytokines play a crucial role in diverse biological events like inflammation, neuroprotection, hematopoiesis, metabolism, and development. The family is grouped together based on structural similarities and their ability to activate the transmembrane receptor glycoprotein 130 (gp130). The common structure among these cytokines defines the spacing and the orientation of binding sites for cell surface receptors. OSM is unique in this family as it can signal using heterodimers of gp130 with either leukemia inhibitory factor receptor (LIFR) (type I) or oncostatin M receptor (OSMR) (type II). We have identified a unique helical loop on OSM between its B and C helices that is not found on other IL-6 family cytokines. This loop is located near the "FXXK" motif in active site III, which is essential for OSM's binding to both LIFR and OSMR. In this study, we show that the BC loop does not play a role in OSM's unique ability to bind OSMR. Shortening of the loop enhanced OSM's interaction with OSMR and LIFR as shown by kinetic and equilibrium binding analysis, suggesting the loop may hinder receptor interactions. As a consequence of improved binding, these structurally modified OSMs exhibited enhanced biological activity, including suppressed proliferation of A375 melanoma cells.
Collapse
Affiliation(s)
- Srinivas Chollangi
- Department of Bioengineering, University of Oklahoma, Norman, Oklahoma 73019, USA
| | | | | | | |
Collapse
|
7
|
Jones LL, Vignali DAA. Molecular interactions within the IL-6/IL-12 cytokine/receptor superfamily. Immunol Res 2012; 51:5-14. [PMID: 21553332 DOI: 10.1007/s12026-011-8209-y] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Production of cytokines by immune cells in response to stimuli and the binding of cytokines to specific receptors on target cells is a central feature of the immune response. The IL-12 cytokine family is particularly influential in determining the fate of T cells and is characterized by the sharing of cytokine and receptor subunits. A thorough understanding of the molecular interactions within this family will be a key to the development of therapeutic inhibitors or enhancers of IL-12 family function. While the current structural and molecular data for IL-12 family members is limited, there is ample information on the structurally related IL-6 cytokine family. This review will summarize the current structural and mutagenesis data within the IL-12 family and will attempt to utilize similarities between the IL-6 and IL-12 families to understand molecular interactions between IL-12 family subunits and with receptor components.
Collapse
Affiliation(s)
- Lindsay L Jones
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | | |
Collapse
|
8
|
Rathje M, Pankratova S, Nielsen J, Gotfryd K, Bock E, Berezin V. A peptide derived from the CD loop-D helix region of ciliary neurotrophic factor (CNTF) induces neuronal differentiation and survival by binding to the leukemia inhibitory factor (LIF) receptor and common cytokine receptor chain gp130. Eur J Cell Biol 2011; 90:990-9. [PMID: 22000729 DOI: 10.1016/j.ejcb.2011.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 08/10/2011] [Accepted: 08/26/2011] [Indexed: 01/28/2023] Open
Abstract
Ciliary neurotrophic factor (CNTF) induces neuronal differentiation and promotes the survival of various neuronal cell types by binding to a receptor complex formed by CNTF receptor α (CNTFRα), gp130, and the leukemia inhibitory factor (LIF) receptor (LIFR). The CD loop-D helix region of CNTF has been suggested to be important for the cytokine interaction with LIFR. We designed a peptide, termed cintrofin, that encompasses this region. Surface plasmon resonance analysis demonstrated that cintrofin bound to LIFR and gp130, but not to CNTFRα, with apparent KD values of 35 nM and 1.1 nM, respectively. Cintrofin promoted the survival of cerebellar granule neurons (CGNs), in which cell death was induced either by potassium withdrawal or H2O2 treatment. Cintrofin induced neurite outgrowth from CGNs, and this effect was inhibited by specific antibodies against both gp130 and LIFR, indicating that these receptors are involved in the effects of cintrofin. The C-terminal part of the peptide, corresponding to the D helix region of CNTF, was shown to be essential for the neuritogenic action of the peptide. CNTF and LIF induced neurite outgrowth in CGNs plated on laminin-coated slides. On uncoated slides, CNTF and LIF had no neuritogenic effect but were able to inhibit cintrofin-induced neuronal differentiation, indicating that cintrofin and cytokines compete for the same receptors. In addition, cintrofin induced the phosphorylation of STAT3, Akt, and ERK, indicating that it exerts cell signaling properties similar to those induced by CNTF and may be a valuable survival agent with possible therapeutic potential.
Collapse
Affiliation(s)
- Mette Rathje
- Protein Laboratory, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
9
|
Allen TL, Matthews VB, Febbraio MA. Overcoming insulin resistance with ciliary neurotrophic factor. Handb Exp Pharmacol 2011:179-99. [PMID: 21484573 DOI: 10.1007/978-3-642-17214-4_9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
The incidence of obesity and related co-morbidities such as insulin resistance, dyslipidemia and hypertension are increasing at an alarming rate worldwide. Current interventions seem ineffective to halt this progression. With the failure of leptin as an anti-obesity therapeutic, ciliary neurotrophic factor (CNTF) has proven efficacious in models of obesity and leptin resistance, where leptin proved ineffective. CNTF is a gp130 ligand that has been found to act centrally and peripherally to promote weight loss and insulin sensitivity in both human and rodent models. Future research into novel gp130 ligands may offer new candidates for obesity-related drug therapy.
Collapse
Affiliation(s)
- Tamara L Allen
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, 6492, St Kilda Road Central, Melbourne, 8008, VIC, Australia
| | | | | |
Collapse
|
10
|
IL-27 structural analysis demonstrates similarities with ciliary neurotrophic factor (CNTF) and leads to the identification of antagonistic variants. Proc Natl Acad Sci U S A 2010; 107:19420-5. [PMID: 20974977 DOI: 10.1073/pnas.1005793107] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
IL-27, consisting of the subunits IL-27p28 and Epstein-Barr virus-induced gene 3 (EBI3), is a heterodimeric cytokine belonging to the IL-6/IL-12 family of cytokines. IL-27p28 is a four-helical cytokine requiring association with the soluble receptor EBI3 to be efficiently secreted and functionally active. Computational and biological analyses of the IL-27 binding site 1 to its receptor revealed important structural proximities with the ciliary neurotrophic factor group of cytokines and highlighted the contribution of p28 Trp(97), as well as of EBI3 Phe(97), Asp(210), and Glu(159), as key residues in the interactions between both cytokine subunits. WSX-1 (IL-27R) and gp130 compose the IL-27 receptor-signaling complex, recruiting the STAT-1 and STAT-3 pathways. A study of IL-27 binding site 3 showed that Trp(197) was crucial for the cytokine's interaction with gp130, but that the mutated cytokine still recognized IL-27R on the cell surface. IL-27 exerts both pro- and anti-inflammatory functions, promoting proliferation and differentiation of Th1 and inhibiting Th17 differentiation. Our results led us to develop mutated forms of human and mouse IL-27 with antagonistic activities. Using an in vivo mouse model of concanavalin A-induced Th1-cell-mediated hepatitis, we showed that the murine IL-27 antagonist W195A decreased liver inflammation by downregulating the synthesis of CXCR3 ligands and several acute phase proteins. Together, these data suggest that IL-27 antagonism could be of interest in down-modulating acute IL-27-driven Th1-cell-mediated immune response.
Collapse
|
11
|
Le Saux S, Rousseau F, Barbier F, Ravon E, Grimaud L, Danger Y, Froger J, Chevalier S, Gascan H. Molecular dissection of human interleukin-31-mediated signal transduction through site-directed mutagenesis. J Biol Chem 2009; 285:3470-7. [PMID: 19920145 DOI: 10.1074/jbc.m109.049189] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interleukin (IL)-31 is a recently described cytokine, preferentially produced by T helper 2 lymphocytes and associated with skin diseases, such as atopic dermatitis. IL-31 is a member of the four alpha-helix bundle cytokine family and is related to the IL-6 subgroup. Its heterodimeric membrane receptor is composed of the gp130-like receptor (GPL) subunit associated to the oncostatin M receptor subunit. We identified critical amino acids implicated in the ligand receptor interaction by computational analysis combined with site-directed mutagenesis. Six IL-31 residues selected for their putative involvement in cytokine receptor contact sites were alanine-substituted, and the corresponding proteins were expressed in mammalian and bacterial systems. Biochemical, membrane binding, cell signaling, and cell proliferation analyses showed that mutation E44A, E106A, or H110A abolished IL-31 binding to GPL and the subsequent signaling events. A second ligand receptor-binding site involved Lys(134), with alanine substitution leading to a protein that still binds GPL, but is unable to recruit the second receptor subunit and the subsequent signaling pathways. The results indicate that IL-31 recognizes its receptor complex through two different binding sites, and we propose a three-dimensional model for IL-31.
Collapse
Affiliation(s)
- Sabine Le Saux
- Unité Mixte INSERM 564, Bâtiment Monteclair, 4 rue Larrey, 49933 Angers Cedex 09, France
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Jazayeri JA, Carroll GJ, Vernallis AB. Interleukin-6 subfamily cytokines and rheumatoid arthritis: role of antagonists. Int Immunopharmacol 2009; 10:1-8. [PMID: 19804846 DOI: 10.1016/j.intimp.2009.09.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 09/25/2009] [Indexed: 11/18/2022]
Abstract
Many cytokines have been implicated in the inflammatory pathways that characterize rheumatoid arthritis (RA) and related inflammatory diseases of the joints. These include members of the interleukin-6 (IL-6) family of cytokines, several of which have been detected in excess in the synovial fluid from RA patients. What makes the IL-6 group of cytokines a family is their common use of the glycoprotein 130 (gp130) receptor subunit, to which they bind with different affinities. Several strategies have been developed to block the pro-inflammatory activities of IL-6 subfamily cytokines. These include the application of monoclonal antibodies, the creation of mutant form(s) of the cytokine with enhanced binding affinity to gp130 receptor and the generation of antagonists by selective mutagenesis of the specific cytokine/gp130 receptor-binding site(s). The rationale for the use of anti-cytokine therapy in inflammatory joint diseases is based on evidence from studies in vitro and in vivo, which implicate major cytokines such as interleukin-1 (IL-1), tumour necrosis factor (TNF)-alpha and IL-6 in RA pathogenesis. In particular, IL-6 subfamily antagonists have a wide range of potential therapeutic and research applications. This review focuses on the role of some of the IL-6 subfamily cytokines in the pathogenesis of the inflammatory diseases of the joints (IJDs), such as RA. In addition, an overview of the recently developed antagonists will be discussed.
Collapse
Affiliation(s)
- Jalal A Jazayeri
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Melbourne, Australia.
| | | | | |
Collapse
|
13
|
Chohan MO, Li B, Blanchard J, Tung YC, Heaney AT, Rabe A, Iqbal K, Grundke-Iqbal I. Enhancement of dentate gyrus neurogenesis, dendritic and synaptic plasticity and memory by a neurotrophic peptide. Neurobiol Aging 2009; 32:1420-34. [PMID: 19767127 DOI: 10.1016/j.neurobiolaging.2009.08.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 08/07/2009] [Accepted: 08/17/2009] [Indexed: 10/20/2022]
Abstract
Pharmacological enhancement of hippocampal neurogenesis is a therapeutic approach for improvement of cognition in learning and memory disorders such as Alzheimer's disease. Here we report the development of an 11-mer peptide that we designed based on a biologically active region of the ciliary neurotrophic factor. This peptide, Peptide 6, induced proliferation and increased survival and maturation of neural progenitor cells into neurons in the dentate gyrus of normal adult C57BL6 mice. Furthermore, Peptide 6 increased the MAP2 and synaptophysin immunoreactivity in the dentate gyrus. Thirty-day treatment of the mice with a slow release bolus of the peptide implanted subcutaneously improved reference memory of the mice in Morris water maze. Peptide 6 has a plasma half life of over 6 h, is blood-brain barrier permeable, and acts by competitively inhibiting the leukemia inhibitory factor signaling. The fact that Peptide 6 is both neurogenic and neurotrophic and that this peptide is effective when given peripherally, demonstrates its potential for prevention and treatment of learning and memory disorders.
Collapse
Affiliation(s)
- Muhammad Omar Chohan
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314-6399, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
He W, Gong K, Smith DK, Ip NY. The N-terminal cytokine binding domain of LIFR is required for CNTF binding and signaling. FEBS Lett 2005; 579:4317-23. [PMID: 16051226 DOI: 10.1016/j.febslet.2005.06.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Accepted: 06/22/2005] [Indexed: 11/26/2022]
Abstract
Ciliary neurotrophic factor (CNTF) forms a functional receptor complex containing the CNTF receptor, gp130, and the leukemia inhibitory factor receptor (LIFR). However, the nature and stoichiometry of the receptor-mediated interactions in this complex have not yet been fully resolved. We show here that signaling by CNTF, but not by LIF or oncostatin M (OSM), was abolished in cells overexpressing a LIFR mutant with the N-terminal cytokine binding domain deleted. Our results illustrate molecular differences between the CNTF active receptor complex and those of LIF and OSM and provide further support for the hexameric model of the CNTF receptor complex.
Collapse
Affiliation(s)
- Wei He
- Department of Biochemistry and Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | | | | |
Collapse
|
15
|
Lee N, Neitzel KL, Di Marco A, Laufer R, MacLennan AJ. Penetrating brain injury leads to activation of ciliary neurotrophic factor receptors. Neurosci Lett 2005; 374:161-5. [PMID: 15663954 DOI: 10.1016/j.neulet.2004.10.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Revised: 10/15/2004] [Accepted: 10/20/2004] [Indexed: 11/23/2022]
Abstract
Endogenous injury response mechanisms likely reduce secondary neuronal loss following CNS trauma by activating growth factor receptors. Therefore, it is important to determine which growth factor receptors are activated in vivo by CNS trauma and which signal transduction pathways are affected in which cell types. We present a model of penetrating brain injury utilizing stereotaxic insertion of a fine needle. This procedure can be used to anatomically characterize injury response mechanisms through immediate, local application of pharmacological agents. We find, through immunohistochemistry, that injury of the rat facial motor nucleus leads to activation of STAT3, a neuronal survival factor, in the dendrites, nuclei and cytoplasm of the motor neurons. A similar response was observed with the trigeminal motor nucleus. Use of the ciliary neurotrophic factor (CNTF) receptor antagonist, AADH-CNTF, indicated that the STAT3 activation resulted largely, and perhaps entirely, from injury-induced activation of CNTF receptors.
Collapse
Affiliation(s)
- Nancy Lee
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | | | | | | | | |
Collapse
|
16
|
Peelman F, Van Beneden K, Zabeau L, Iserentant H, Ulrichts P, Defeau D, Verhee A, Catteeuw D, Elewaut D, Tavernier J. Mapping of the Leptin Binding Sites and Design of a Leptin Antagonist. J Biol Chem 2004; 279:41038-46. [PMID: 15213225 DOI: 10.1074/jbc.m404962200] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The leptin/leptin receptor system shows strong similarities to the long-chain cytokine interleukin-6 (IL-6) and granulocyte colony-stimulating factor cytokine/receptor systems. The IL-6 family cytokines interact with their receptors through three different binding sites I-III. The leptin structure was superposed on the crystal structures of several long-chain cytokines, and a series of leptin mutants was generated focusing on binding sites I-III. The effect of the mutations on leptin receptor (LR) signaling and on binding to the membrane proximal cytokine receptor homology domain (CRH2) of the LR was determined. Mutations in binding site I at the C terminus of helix D show a modest effect on signaling and do not affect binding to CRH2. Binding site II is composed of residues at the surface of helices A and C. Mutations in this site impair binding to CRH2 but have only limited effect on signaling. Site III mutations around the N terminus of helix D impair receptor activation without affecting binding to CRH2. We identified an S120A/T121A mutant in binding site III, which lacks any signaling capacity, but which still binds to CRH2 with wild type affinity. This leptin mutant behaves as a potent leptin antagonist both in vitro and in vivo.
Collapse
Affiliation(s)
- Frank Peelman
- Department of Medical Protein Research, Faculty of Medicine and Health Sciences, Flanders Interuniversity Institute for Biotechnology, VIB09, Ghent University, Albert Baertsoenkaai 3, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Gould TW, Oppenheim RW. The function of neurotrophic factor receptors expressed by the developing adductor motor pool in vivo. J Neurosci 2004; 24:4668-82. [PMID: 15140938 PMCID: PMC6729401 DOI: 10.1523/jneurosci.0580-04.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We examined the spatio-temporal relationship between neurotrophic factor receptor (NTF-R) expression and motoneuron (MN) survival in the developing avian spinal cord and observed heterogeneity in the expression of NTF-Rs between, but not within, pools of MNs projecting to individual muscles. We then focused on the role of NTFs in regulating the survival of one motor pool of MNs, all of which innervate a pair of adductor muscles in the thigh and hence compete for survival during the period of programmed cell death (PCD). The complete NTF-R complement of these MNs was analyzed and found to include many, but not all, NTF-Rs. Treatment with exogenous individual NTFs rescued some, but not all, adductor MNs expressing appropriate NTF-Rs. In contrast, administration of multiple NTFs completely rescued adductor MNs from PCD. Additionally, adductor MNs were partially rescued from PCD by NTFs for which they failed to express receptors. NTF-Rs expressed by the nerve but not in the muscle target were capable of mediating survival signals to MNs in trans. Finally, the expression of some NTF-Rs by adductor MNs was not required for MN survival. These studies demonstrate the complexity in NTF regulation of a defined subset of competing MNs and suggest that properties other than NTF-R expression itself can play a role in mediating trophic responses to NTFs.
Collapse
Affiliation(s)
- Thomas W Gould
- Department of Neurobiology and Anatomy and Neuroscience Program, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | |
Collapse
|
18
|
Fairlie WD, Uboldi AD, McCoubrie JE, Wang CC, Lee EF, Yao S, De Souza DP, Mifsud S, Metcalf D, Nicola NA, Norton RS, Baca M. Affinity maturation of leukemia inhibitory factor and conversion to potent antagonists of signaling. J Biol Chem 2003; 279:2125-34. [PMID: 14585833 DOI: 10.1074/jbc.m310103200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Leukemia inhibitory factor (LIF)-induced cell signaling occurs following sequential binding to the LIF receptor alpha-chain (LIFR), then to the gp130 co-receptor used by all members of the interleukin-6 family of cytokines. By monovalently displaying human LIF on the surface of M13 phage and randomizing clusters of residues in regions predicted to be important for human LIFR binding, we have identified mutations, which lead to significant increases in affinity for binding to LIFR. Six libraries were constructed in which regions of 4-6 amino acids were randomized then panned against LIFR. Mutations identified in three distinct clusters, residues 53-57, 102-103, and 150-155, gave rise to proteins with significantly increased affinity for binding to both human and mouse LIFR. Combining the mutations for each of these regions further increased the affinity, such that the best mutants bound to human LIFR with >1000-fold higher affinity than wild-type human LIF. NMR analysis indicated that the mutations did not alter the overall structure of the molecule relative to the native protein, although some local changes occurred in the vicinity of the substituted residues. Despite increases in LIFR binding affinity, these mutants did not show any increase in activity as agonists of LIF-induced proliferation of Ba/F3 cells expressing human LIFR and gp130 compared with wild-type LIF. Incorporation of two additional mutations (Q29A and G124R), which were found to abrogate cell signaling, led to the generation of highly potent antagonists of both human and murine LIF-induced bioactivity.
Collapse
Affiliation(s)
- W Douglas Fairlie
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Leukemia inhibitory factor (LIF) is a polyfunctional glycoprotein cytokine whose inducible production can occur in many, perhaps all, tissues. LIF acts on responding cells by binding to a heterodimeric membrane receptor composed of a low-affinity LIF-specific receptor and the gp130 receptor chain also used as the receptor for interleukin-6, oncostatin M, cardiotrophin-1, and ciliary neurotrophic factor. LIF is essential for blastocyst implantation and the normal development of hippocampal and olfactory receptor neurons. LIF is used extensively in experimental biology because of its key ability to induce embryonic stem cells to retain their totipotentiality. LIF has a wide array of actions, including acting as a stimulus for platelet formation, proliferation of some hematopoietic cells, bone formation, adipocyte lipid transport, adrenocorticotropic hormone production, neuronal survival and formation, muscle satellite cell proliferation, and acute phase production by hepatocytes. Unwanted actions of LIF can be minimized by circulating soluble LIF receptors and by intracellular suppression by suppressors of cytokine-signaling family members. However, the outstanding problems remain of how the induction of LIF is mediated in response to demands from such a heterogeneity of target tissues and why it makes design sense to use LIF in the regulation of such a diverse and unrelated series of biological processes.
Collapse
Affiliation(s)
- Donald Metcalf
- Division of Cancer and Haematology, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
| |
Collapse
|
20
|
Underhill-Day N, McGovern LA, Karpovich N, Mardon HJ, Barton VA, Heath JK. Functional characterization of W147A: a high-affinity interleukin-11 antagonist. Endocrinology 2003; 144:3406-14. [PMID: 12865319 PMCID: PMC1626581 DOI: 10.1210/en.2002-0144] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-11 is a member of the gp130 family of cytokines, which signal via assembly of multisubunit receptor complexes containing at least one molecule of the transmembrane signaling receptor gp130. IL-11 forms a high-affinity complex, thereby inducing gp130-dependent signaling. Previous studies have identified three distinct receptor binding sites, I, II, and III, crucial for the binding of murine IL-11 (mIL-11) to both the IL-11R and gp130. In this study, we have further characterized the role of the mIL-11 site III mutant W147A. We show that W147A is a high-affinity specific antagonist of mIL-11-mediated signaling in gp130/IL-11R-transfected Ba/F3 cells. The antagonistic action of W147A is due to its ability to competitively disrupt multimeric gp130/IL-11R signaling complex formation. We also show that W147A inhibits IL-11-mediated signaling in primary human endometrial cells, thus demonstrating the potential utility of W147A in suppressing IL-11 responses in vivo.
Collapse
Key Words
- gst, glutathione-s-transferase
- hil, hil, recombinant human il
- hlif, human lif
- il-11r, il-11-specific receptor
- lif, leukemia inhibitory factor
- mil, murine il
- mlifr, murine lif receptor
- mtt, 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide
- sds, sodium dodecyl sulfate
- stat, signal transducer and activator of transcription
- vil, viral il
Collapse
Affiliation(s)
- Nicholas Underhill-Day
- Cancer Research UK Growth Factor Group, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| | | | | | | | | | | |
Collapse
|
21
|
Plun-Favreau H, Perret D, Diveu C, Froger J, Chevalier S, Lelièvre E, Gascan H, Chabbert M. Leukemia inhibitory factor (LIF), cardiotrophin-1, and oncostatin M share structural binding determinants in the immunoglobulin-like domain of LIF receptor. J Biol Chem 2003; 278:27169-79. [PMID: 12707269 DOI: 10.1074/jbc.m303168200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Leukemia inhibitory factor (LIF), cardiotrophin-1 (CT-1), and oncostatin M (OSM) are four helix bundle cytokines acting through a common heterodimeric receptor composed of gp130 and LIF receptor (LIFR). Binding to LIFR occurs through a binding site characterized by an FXXK motif located at the N terminus of helix D (site III). The immunoglobulin (Ig)-like domain of LIFR was modeled, and the physico-chemical properties of its Connolly surface were analyzed. This analysis revealed an area displaying properties complementary to those of the LIF site III. Two residues of the Ig-like domain of LIFR, Asp214 and Phe284, formed a mirror image of the FXXK motif. Engineered LIFR mutants in which either or both of these two residues were mutated to alanine were transfected in Ba/F3 cells already containing gp130. The F284A mutation impaired the biological response induced by LIF and CT-1, whereas the response to OSM remained unchanged. The Asp214 mutation did not alter the functional responses. The D214A/F284A double mutation, however, totally impaired cellular proliferation to LIF and CT-1 and partially impaired OSM-induced proliferation with a 20-fold increase in EC50. These results were corroborated by the analysis of STAT3 phosphorylation and Scatchard analysis of cytokine binding to Ba/F3 cells. Molecular modeling of the complex of LIF with the Ig-like domain of LIFR provides a clue for the superadditivity of the D214A/F284A double mutation. Our results indicate that LIF, CT-1, and OSM share an overlapping binding site located in the Ig-like domain of LIFR. The different behaviors of LIF and CT-1, on one side, and of OSM, on the other side, can be related to the different affinity of their site III for LIFR.
Collapse
Affiliation(s)
- Hélène Plun-Favreau
- INSERM U564, Centre Hospitalier Universitaire d'Angers, 4 rue Larrey, 49033 Angers, France
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Aasland D, Oppmann B, Grötzinger J, Rose-John S, Kallen KJ. The upper cytokine-binding module and the Ig-like domain of the leukaemia inhibitory factor (LIF) receptor are sufficient for a functional LIF receptor complex. J Mol Biol 2002; 315:637-46. [PMID: 11812136 DOI: 10.1006/jmbi.2001.5282] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To elucidate the function of the two cytokine-binding modules (CBM) of the leukemia inhibitory factor receptor (LIFR), receptor chimeras of LIFR and the interleukin-6 receptor (IL-6R) were constructed. Either the NH(2)-terminal (chimera RILLIFdeltaI) or the COOH-terminal LIFR CBM (chimera RILLIFdeltaII) were replaced by the structurally related CBM of the IL-6R which does not bind LIF. Chimera RILLIFdeltaI is functionally inactive, whereas RILLIFdeltaII binds LIF and mediates signalling as efficiently as the wild-type LIFR. Deletion mutants of the LIFR revealed that both the NH(2)-terminal CBM and the Ig-like domain of the LIFR are involved in LIF binding, presumably via the LIF site III epitope. The main function of the COOH-terminal CBM of the LIFR is to position the NH(2)-terminal CBM and the Ig-like domain, so that these can bind to LIF. In analogy to a recently published model of the IL-6R complex, a model of the active LIFR complex is suggested which positions the COOH-terminal CBM at LIF site I and the NH(2)-terminal CBM and the Ig-like domain at site III. An additional contact is postulated between the Ig-like domain of gp130 and the NH(2)-terminal CBM of the LIFR.
Collapse
Affiliation(s)
- Dorthe Aasland
- Biochemisches Institut, Christian Albrechts Universität Kiel, Ohlshausenstr. 40, Kiel, D-24098, Germany
| | | | | | | | | |
Collapse
|
23
|
Watanobe H, Habu S. Ciliary neurotrophic factor, a gp130 cytokine, regulates preovulatory surges of luteinizing hormone and prolactin in the rat. Neuroendocrinology 2001; 74:281-7. [PMID: 11694760 DOI: 10.1159/000054695] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ciliary neurotropic factor (CNTF) is a neuroregulatory cytokine belonging to the interleukin-6 type cytokine superfamily. Although a few studies have reported a facilitatory action of CNTF on the reproductive axis in rodents, information along this line is still very limited. In this study, we examined a possible role of CNTF in the generation of ovarian steroid-induced luteinizing hormone (LH) and prolactin (PRL) surges in the rat, a crucial physiological event in mammalian reproduction. Experiments were performed on both normally-fed and 3-day-fasted rats, ovariectomized and primed with estradiol and progesterone. Blood was collected every 30 min between 11:00 and 18:00 h, to measure LH and PRL. Drugs were given intracerebroventricularly at 11:00 h. Compared to control serum, undiluted as well as threefold dilutions of anti-CNTF serum caused partial but significant suppression of LH surges. Both concentrations of the antibody also delayed the onset of PRL surge to a comparable degree. Fasted rats did not exhibit significant surges of the hormones, while 0.3 and 1.0 nmol, but not 0.1 nmol, recombinant human CNTF led to a dose-dependent recovery of both LH and PRL surges. These results demonstrate for the first time a significant role of CNTF in the generation of preovulatory LH and PRL surges in the rat. CNTF may thus be another humoral signal linking nutrition and reproductive function.
Collapse
Affiliation(s)
- H Watanobe
- Division of Internal Medicine, Center for Clinical Research, International University of Health and Welfare, 2600-1 Kitakanemaru, Otawara, Tochigi 324-8501 Japan.
| | | |
Collapse
|
24
|
Abstract
Target-derived neurotrophic factors are assumed to regulate motoneuron cell death during development but remain unspecified. Motoneuron cell death in the spinal nucleus of the bulbocavernosus (SNB) of rats extends postnatally and is controlled by androgens. We exploited these features of the SNB system to identify endogenously produced trophic factors regulating motoneuron survival. Newborn female rat pups were treated with the androgen, testosterone propionate, or the oil vehicle alone. In addition, females received trophic factor antagonists delivered either into the perineum (the site of SNB target muscles) or systemically. Fusion molecules that bind and sequester the neurotrophins (trkA-IgG, trkB-IgG, and trkC-IgG) were used to block activation of neurotrophin receptors, and AADH-CNTF was used to antagonize signaling through the ciliary neurotrophic factor receptor-alpha (CNTFRalpha). An acute blockade of trkB, trkC, or CNTFRalpha prevented the androgenic sparing of SNB motoneurons when antagonists were delivered to the perineum. Trophic factor antagonists did not significantly reduce SNB motoneuron number when higher doses were injected systemically. These findings demonstrate a requirement for specific, endogenously produced trophic factors in the androgenic rescue of SNB motoneurons and further suggest that trophic factor interactions at the perineum play a crucial role in masculinization of this neural system.
Collapse
|
25
|
Xu J, Gingras KM, Bengston L, Di Marco A, Forger NG. Blockade of endogenous neurotrophic factors prevents the androgenic rescue of rat spinal motoneurons. J Neurosci 2001; 21:4366-72. [PMID: 11404422 PMCID: PMC6762766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023] Open
Abstract
Target-derived neurotrophic factors are assumed to regulate motoneuron cell death during development but remain unspecified. Motoneuron cell death in the spinal nucleus of the bulbocavernosus (SNB) of rats extends postnatally and is controlled by androgens. We exploited these features of the SNB system to identify endogenously produced trophic factors regulating motoneuron survival. Newborn female rat pups were treated with the androgen, testosterone propionate, or the oil vehicle alone. In addition, females received trophic factor antagonists delivered either into the perineum (the site of SNB target muscles) or systemically. Fusion molecules that bind and sequester the neurotrophins (trkA-IgG, trkB-IgG, and trkC-IgG) were used to block activation of neurotrophin receptors, and AADH-CNTF was used to antagonize signaling through the ciliary neurotrophic factor receptor-alpha (CNTFRalpha). An acute blockade of trkB, trkC, or CNTFRalpha prevented the androgenic sparing of SNB motoneurons when antagonists were delivered to the perineum. Trophic factor antagonists did not significantly reduce SNB motoneuron number when higher doses were injected systemically. These findings demonstrate a requirement for specific, endogenously produced trophic factors in the androgenic rescue of SNB motoneurons and further suggest that trophic factor interactions at the perineum play a crucial role in masculinization of this neural system.
Collapse
Affiliation(s)
- J Xu
- Center for Neuroendocrine Studies and Department of Psychology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | | | |
Collapse
|
26
|
Reiness CG, Seppa MJ, Dion DM, Sweeney S, Foster DN, Nishi R. Chick ciliary neurotrophic factor is secreted via a nonclassical pathway. Mol Cell Neurosci 2001; 17:931-44. [PMID: 11414784 DOI: 10.1006/mcne.2001.0985] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In contrast to mammalian ciliary neurotrophic factors (CNTFs), chick CNTF is secreted, although it lacks an N-terminal signal. We determined that a 52 aa region of chick CNTF containing an internal hydrophobic domain could direct secretion of rat CNTF. Using a stable cell line that overexpressed chick CNTF, we found that chick CNTF immunoreactivity was punctate throughout the cytosol. Cellular fractionation confirmed chick CNTF to be protected by vesicles. Chick CNTF did not colocalize with fibronectin, calreticulin, wheat germ agglutinin binding sites, or with transferrin receptor. The distribution of chick CNTF was altered neither by brefeldin A nor by chloroquine treatment. Although the punctate pattern of chick CNTF immunoreactivity was not due to reuptake, chick CNTF could be found in a cellular compartment labeled after a brief incubation with dextran microbeads. When synthesized in vitro, chick CNTF did not translocate into microsomes. We conclude that chick CNTF is secreted via a nonclassical pathway.
Collapse
Affiliation(s)
- C G Reiness
- Department of Biology, Lewis and Clark College, Portland, Oregon 97219, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Plun-Favreau H, Elson G, Chabbert M, Froger J, deLapeyrière O, Lelièvre E, Guillet C, Hermann J, Gauchat JF, Gascan H, Chevalier S. The ciliary neurotrophic factor receptor alpha component induces the secretion of and is required for functional responses to cardiotrophin-like cytokine. EMBO J 2001; 20:1692-703. [PMID: 11285233 PMCID: PMC145510 DOI: 10.1093/emboj/20.7.1692] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ciliary neurotrophic factor (CNTF) is involved in the survival of a number of different neural cell types, including motor neurons. CNTF functional responses are mediated through a tripartite membrane receptor composed of two signalling receptor chains, gp130 and the leukaemia inhibitory factor receptor (LIFR), associated with a non-signalling CNTF binding receptor alpha component (CNTFR). CNTFR-deficient mice show profound neuronal deficits at birth, leading to a lethal phenotype. In contrast, inactivation of the CNTF gene leads only to a slight muscle weakness, mainly during adulthood, suggesting that CNTFR binds to a second ligand that is important for development. Modelling studies of the interleukin-6 family member cardiotrophin-like cytokine (CLC) revealed structural similarities with CNTF, including the conservation of a site I domain involved in binding to CNTFR. Co-expression of CLC and CNTFR in mammalian cells generates a secreted composite cytokine, displaying activities on cells expressing the gp130-LIFR complex on their surface. Correspondingly, CLC-CNTFR activates gp130, LIFR and STAT3 signalling components, and enhances motor neuron survival. Together, these observations demonstrate that CNTFR induces the secretion of CLC, as well as mediating the functional responses of CLC.
Collapse
Affiliation(s)
| | - Greg Elson
- INSERM EMI 9928, CHU d’Angers, 4 Rue Larrey, 49033 Angers Cedex,
Centre d’Immunologie Pierre Fabre, 5 Avenue Napoleon III, 74164 Saint Julien-en-Genevois and INSERM U382, IBDM (CNRS-INSERM-Univ.Mediterranée), Campus de Luminy, case postale 907, 13288 Marseille, France Corresponding author e-mail: and G.Elson contributed equally to this work
| | | | | | - Odile deLapeyrière
- INSERM EMI 9928, CHU d’Angers, 4 Rue Larrey, 49033 Angers Cedex,
Centre d’Immunologie Pierre Fabre, 5 Avenue Napoleon III, 74164 Saint Julien-en-Genevois and INSERM U382, IBDM (CNRS-INSERM-Univ.Mediterranée), Campus de Luminy, case postale 907, 13288 Marseille, France Corresponding author e-mail: and G.Elson contributed equally to this work
| | | | | | | | - Jean-François Gauchat
- INSERM EMI 9928, CHU d’Angers, 4 Rue Larrey, 49033 Angers Cedex,
Centre d’Immunologie Pierre Fabre, 5 Avenue Napoleon III, 74164 Saint Julien-en-Genevois and INSERM U382, IBDM (CNRS-INSERM-Univ.Mediterranée), Campus de Luminy, case postale 907, 13288 Marseille, France Corresponding author e-mail: and G.Elson contributed equally to this work
| | - Hugues Gascan
- INSERM EMI 9928, CHU d’Angers, 4 Rue Larrey, 49033 Angers Cedex,
Centre d’Immunologie Pierre Fabre, 5 Avenue Napoleon III, 74164 Saint Julien-en-Genevois and INSERM U382, IBDM (CNRS-INSERM-Univ.Mediterranée), Campus de Luminy, case postale 907, 13288 Marseille, France Corresponding author e-mail: and G.Elson contributed equally to this work
| | | |
Collapse
|
28
|
MacLennan AJ, Neitzel KL, Devlin BK, Garcia J, Hauptman GA, Gloaguen I, Di Marco A, Laufer R, Lee N. In vivo localization and characterization of functional ciliary neurotrophic factor receptors which utilize JAK-STAT signaling. Neuroscience 2001; 99:761-72. [PMID: 10974439 DOI: 10.1016/s0306-4522(00)90236-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The ciliary neurotrophic factor receptor is critically involved in embryonic motor neuron development. Postnatally, it may contribute to neuronal maintenance and regeneration. In addition, pharmacological stimulation of the receptor may slow the progression of several neurodegenerative disorders. The widespread nervous system expression of ciliary neurotrophic factor receptor components and the effects of low ciliary neurotrophic factor concentrations on a wide variety of cells in culture combine to suggest that functional ciliary neurotrophic factor receptors are expressed by many classes of neurons in vivo. However, the in vivo signaling properties and distribution of functional ciliary neurotrophic factor receptors have not been directly determined. We developed a novel in vivo assay of functional ciliary neurotrophic factor receptors which revealed that, in the adult nervous system, cranial and spinal motor neurons are very sensitive to ciliary neurotrophic factor and display a rapid, robust increase in phospho-STAT3 in their dendrites, cell bodies and nuclei, which is specifically blocked by the ciliary neurotrophic factor receptor antagonist, AADH-CNTF. In distinct contrast, several other classes of ciliary neurotrophic factor receptor expressing neurons fail to increase phospho-STAT3 levels following ciliary neurotrophic factor treatment, even when ciliary neurotrophic factor is applied at high concentrations. Leukemia inhibitory factor and epidermal growth factor elicit the same cell-type-dependent pattern of phospho-STAT3 increases. Responsive and non-responsive neurons express comparable levels of STAT3.Therefore, in vivo ciliary neurotrophic factor receptor-initiated STAT3 signal transduction is regulated in a very cell-type-dependent manner. The present data suggest that at least some of this regulation occurs at the STAT3 tyrosine phosphorylation step. These unexpected results also suggest that other forms of receptor-initiated STAT3 signal transduction may be similarly regulated.
Collapse
Affiliation(s)
- A J MacLennan
- Department of Neuroscience, University of Florida College of Medicine, University of Florida Brain Institute, Gainesville, FL 32610-0244, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zucchelli S, Capone S, Fattori E, Folgori A, Di Marco A, Casimiro D, Simon AJ, Laufer R, La Monica N, Cortese R, Nicosia A. Enhancing B- and T-cell immune response to a hepatitis C virus E2 DNA vaccine by intramuscular electrical gene transfer. J Virol 2000; 74:11598-607. [PMID: 11090158 PMCID: PMC112441 DOI: 10.1128/jvi.74.24.11598-11607.2000] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We describe an improved genetic immunization strategy for eliciting a full spectrum of anti-hepatitis C virus (HCV) envelope 2 (E2) glycoprotein responses in mammals through electrical gene transfer (EGT) of plasmid DNA into muscle fibers. Intramuscular injection of a plasmid encoding a cross-reactive hypervariable region 1 (HVR1) peptide mimic fused at the N terminus of the E2 ectodomain, followed by electrical stimulation treatment in the form of high-frequency, low-voltage electric pulses, induced more than 10-fold-higher expression levels in the transfected mouse tissue. As a result of this substantial increment of in vivo antigen production, the humoral response induced in mice, rats, and rabbits ranged from 10- to 30-fold higher than that induced by conventional naked DNA immunization. Consequently, immune sera from EGT-treated mice displayed a broader cross-reactivity against HVR1 variants from natural isolates than sera from injected animals that were not subjected to electrical stimulation. Cellular response against E2 epitopes specific for helper and cytotoxic T cells was significantly improved by EGT. The EGT-mediated enhancement of humoral and cellular immunity is antigen independent, since comparable increases in antibody response against ciliary neurotrophic factor or in specific anti-human immunodeficiency virus type 1 gag CD8(+) T cells were obtained in rats and mice. Thus, the method described potentially provides a safe, low-cost treatment that may be scaled up to humans and may hold the key for future development of prophylactic or therapeutic vaccines against HCV and other infectious diseases.
Collapse
Affiliation(s)
- S Zucchelli
- Istituto di Ricerche di Biologia Molecolare P. Angeletti, 00040 Pomezia (Rome), Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Barton VA, Hall MA, Hudson KR, Heath JK. Interleukin-11 signals through the formation of a hexameric receptor complex. J Biol Chem 2000; 275:36197-203. [PMID: 10948192 DOI: 10.1074/jbc.m004648200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Interleukin-11 (IL-11) is a member of the gp130 family of cytokines. These cytokines drive the assembly of multisubunit receptor complexes, all of which contain at least one molecule of the transmembrane signaling receptor gp130. IL-11 has been shown to induce gp130-dependent signaling through the formation of a high affinity complex with the IL-11 receptor (IL-11R) and gp130. Site-directed mutagenesis studies have identified three distinct receptor binding sites of IL-11, which enable it to form this high affinity receptor complex. Here we present data from immunoprecipitation experiments, using differentially tagged forms of ligand and soluble receptor components, which show that multiple copies of IL-11, IL-11R, and gp130 are present in the receptor complex. Furthermore, it is demonstrated that sites II and III of IL-11 are independent gp130 binding epitopes and that both are essential for gp130 dimerization. We also show that a stable high affinity complex of IL-11, IL-11R, and gp130 can be resolved by nondenaturing polyacrylamide gel electrophoresis, and its composition verified by second dimension denaturing polyacrylamide gel electrophoresis. Results indicate that the three receptor binding sites of IL-11 and the Ig-like domain of gp130 are all essential for this stable receptor complex to be formed. We therefore propose that IL-11 forms a hexameric receptor complex composed of two molecules each of IL-11, IL-11R, and gp130.
Collapse
Affiliation(s)
- V A Barton
- Cancer Research Campaign Growth Factor Group, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | | | |
Collapse
|
31
|
Deller MC, Hudson KR, Ikemizu S, Bravo J, Jones EY, Heath JK. Crystal structure and functional dissection of the cytostatic cytokine oncostatin M. Structure 2000; 8:863-74. [PMID: 10997905 DOI: 10.1016/s0969-2126(00)00176-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The cytokine oncostatin M (OSM) inhibits growth of certain tumour-derived cells, induces proliferation in other cell types (e.g. haemangioblasts) and is a mediator of inflammatory responses. Its mechanism of action is via specific binding to gp130 and either the leukaemia inhibitory factor receptor (LIFR) or oncostatin M receptor (OSMR) systems at the cell surface to form an active signalling complex. RESULTS We report here the crystal structure of human oncostatin M (hOSM) along with mutagenesis data which map the receptor-binding epitopes of the molecule. The structure was determined to a resolution of 2.2 A and conforms to the haematopoietin cytokine up-up-down-down four-helix bundle topology. The site 2 epitope, responsible for gp130 binding, is centred around Gly120 which forms a 'dimple' on the surface of the molecule located on helices A and C. The site 3 motif, responsible for LIFR and OSMR binding, consists of a protruding Phe160/Lys163 pair located at the start of helix D. CONCLUSIONS The data presented allow functional dissection of the receptor-binding interfaces to atomic resolution. Modelling suggests that the gp130 residue Phe169 packs into the site 2 dimple in an analogous fashion to structurally equivalent residues at the growth hormone-growth hormone receptor interface, implying that certain key features may underlie recognition across the whole cytokine/receptor superfamily. Conversely, detailed comparison of the available structures suggests that variations on a common theme dictate the specificity of receptor-ligand interactions within the gp130 family of cytokines.
Collapse
Affiliation(s)
- M C Deller
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, UK
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Leukemia-inhibitory factor (LIF) is a pleiotropic cytokine expressed by multiple tissue types. The LIF receptor shares a common gp130 receptor subunit with the IL-6 cytokine superfamily. LIF signaling is mediated mainly by JAK-STAT (janus-kinase-signal transducer and activator of transcription) pathways and is abrogated by the SOCS (suppressor-of cytokine signaling) and PIAS (protein inhibitors of activated STAT) proteins. In addition to classic hematopoietic and neuronal actions, LIF plays a critical role in several endocrine functions including the utero-placental unit, the hypothalamo-pituitary-adrenal axis, bone cell metabolism, energy homeostasis, and hormonally responsive tumors. This paper reviews recent advances in our understanding of molecular mechanisms regulating LIF expression and action and also provides a systemic overview of LIF-mediated endocrine regulation. Local and systemic LIF serve to integrate multiple developmental and functional cell signals, culminating in maintaining appropriate hormonal and metabolic homeostasis. LIF thus functions as a critical molecular interface between the neuroimmune and endocrine systems.
Collapse
Affiliation(s)
- C J Auernhammer
- Academic Affairs, Cedars-Sinai Research Institute, University of California Los Angeles School of Medicine, 90048, USA
| | | |
Collapse
|
33
|
Abstract
Cytokines of the gp130 family exert their diverse biological effects by formation of stable high affinity transmembrane receptor complexes that are characterized by the presence of the shared transmembrane signalling receptor gp130. Different gp130 ligands form signalling complexes that vary in both composition and stoichiometry. Analysis of the three-dimensional structure of selected ligands and receptor elements indicates that ligands display three topologically conserved receptor recognition epitopes that interact with complementary ligand recognition elements. The composition of the signalling complex and downstream biological responses is defined by the relative affinity of different receptor components for these epitopes. The detailed structure of receptor recognition epitopes indicates that the generation of small molecule cytokine mimetics may be a feasible objective.
Collapse
Affiliation(s)
- J Bravo
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | |
Collapse
|
34
|
Di Marco A, Demartis A, Gloaguen I, Lazzaro D, Delmastro P, Ciliberto G, Laufer R. Leptin receptor-mediated regulation of cholinergic neurotransmitter phenotype in cells of central nervous system origin. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:2939-44. [PMID: 10806392 DOI: 10.1046/j.1432-1033.2000.01308.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Leptin is an adipocyte-secreted hormone that regulates body weight and exerts effects on hematopoiesis, reproduction, and immunity. The leptin receptor (OBR) shares sequence similarity and signaling capabilities with receptors for cytokines of the ciliary neurotrophic factor (CNTF) family. Our previous finding that CNTF and leptin exert similar anti-obesity effects and activate common neuronal signaling pathways, prompted us to investigate whether leptin may share with CNTF the ability to regulate the expression of specific neuronal genes. To this end, we established a cell line, derived from the murine septal cholinergic neuronal cell line SN-56, which stably expresses OBR. In this cell line, termed SN-56/OBR, leptin induces STAT transcription factor activation and STAT-dependent reporter gene expression in a manner similar to that of CNTF. Furthermore, in SN-56/OBR cells both CNTF and leptin produce changes in neurotransmitter and neuropeptide phenotype characteristic of cholinergic neurons, such as an increase in choline acetyltransferase and vasoactive intestinal polypeptide, and a decrease in neuropeptide Y expression. SN-56/OBR cells thus constitute an interesting new model system to investigate leptin action in cells of central nervous system origin. Possible physiological implications of OBR's intrinsic ability to regulate cholinergic phenotypic markers are discussed.
Collapse
Affiliation(s)
- A Di Marco
- Istituto di Ricerche di Biologia Molecolare P. Angeletti (IRBM), Pomezia, Italy
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
The ability of trophic factors to regulate developmental neuronal survival and adult nervous system plasticity suggests the use of these molecules to treat neurodegeneration associated with human diseases, such as Alzheimer's, Huntington's and Parkinson's disease, of amyotrophic lateral sclerosis and peripheral sensory neuropathies. Recent biological data on the neutrotrophins NGF and BDNF, on GDNF, CNTF and IGF-I are discussed together with first results from clinical trials. Literature is presented on the three-dimensional structures of these trophic factors and on models proposed for ligand-receptor interactions. Substantial progress has been made in the understanding of the mechanisms of apoptosis. The cascade consisting of interaction of apoptosis-inducing ligands with death receptors, the coupling of this complex to adaptor proteins via death domains, the further recruitment of procaspases via death effector or caspase recruitment domains and the execution of cell death via the effector caspases is briefly outlined.
Collapse
Affiliation(s)
- W Froestl
- NOVARTIS Pharma, Therapeutic Area Nervous System, Basel, Switzerland.
| |
Collapse
|
36
|
Sleeman MW, Anderson KD, Lambert PD, Yancopoulos GD, Wiegand SJ. The ciliary neurotrophic factor and its receptor, CNTFR alpha. PHARMACEUTICA ACTA HELVETIAE 2000; 74:265-72. [PMID: 10812968 DOI: 10.1016/s0031-6865(99)00050-3] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Ciliary neurotrophic factor (CNTF) is expressed in glial cells within the central and peripheral nervous systems. CNTF stimulates gene expression, cell survival or differentiation in a variety of neuronal cell types such as sensory, sympathetic, ciliary and motor neurons. In addition, effects of CNTF on oligodendrocytes as well as denervated and intact skeletal muscle have been documented. CNTF itself lacks a classical signal peptide sequence of a secreted protein, but is thought to convey its cytoprotective effects after release from adult glial cells by some mechanism induced by injury. Interestingly, mice that are homozygous for an inactivated CNTF gene develop normally and initially thrive. Only later in adulthood do they exhibit a mild loss of motor neurons with resulting muscle weakness, leading to the suggestion that CNTF is not essential for neural development, but instead acts in response to injury or other stresses. The CNTF receptor complex is most closely related to, and shares subunits with the receptor complexes for interleukin-6 and leukemia inhibitory factor. The specificity conferring alpha subunit of the CNTF complex (CNTFR alpha), is extremely well conserved across species, and has a distribution localized predominantly to the nervous system and skeletal muscle. CNTFR alpha lacks a conventional transmembrane domain and is thought to be anchored to the cell membrane by a glycosyl-phosphatidylinositol linkage. Mice lacking CNTFR alpha die perinatally, perhaps indicating the existence of a second developmentally important CNTF-like ligand. Signal transduction by CNTF requires that it bind first to CNTFR alpha, permitting the recruitment of gp130 and LIFR beta, forming a tripartite receptor complex. CNTF-induced heterodimerization of the beta receptor subunits leads to tyrosine phosphorylation (through constitutively associated JAKs), and the activated receptor provides docking sites for SH2-containing signaling molecules, such as STAT proteins. Activated STATs dimerize and translocate to the nucleus to bind specific DNA sequences, resulting in enhanced transcription of responsive genes. The neuroprotective effects of CNTF have been demonstrated in a number of in vitro cell models as well as in vivo in mutant mouse strains which exhibit motor neuron degeneration. Intracerebral administration of CNTF and CNTF analogs has also been shown to protect striatal output neurons in rodent and primate models of Huntington's disease. Treatment of humans and animals with CNTF is also known to induce weight loss characterized by a preferential loss of body fat. When administered systemically, CNTF activates downstream signaling molecules such as STAT-3 in areas of the hypothalamus which regulate food intake. In addition to its neuronal actions, CNTF and analogs have been shown to act on non-neuronal cells such as glia, hepatocytes, skeletal muscle, embryonic stem cells and bone marrow stromal cells.
Collapse
Affiliation(s)
- M W Sleeman
- Regeneron Pharmaceuticals, Tarrytown, NY 10591-6707, USA.
| | | | | | | | | |
Collapse
|
37
|
Kallen KJ, Grötzinger J, Lelièvre E, Vollmer P, Aasland D, Renné C, Müllberg J, Myer zum Büschenfelde KH, Gascan H, Rose-John S. Receptor recognition sites of cytokines are organized as exchangeable modules. Transfer of the leukemia inhibitory factor receptor-binding site from ciliary neurotrophic factor to interleukin-6. J Biol Chem 1999; 274:11859-67. [PMID: 10207005 DOI: 10.1074/jbc.274.17.11859] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interleukin-6 (IL-6) and ciliary neurotrophic factor (CNTF) are "4-helical bundle" cytokines of the IL-6 type family of neuropoietic and hematopoietic cytokines. IL-6 signals by induction of a gp130 homodimer (e.g. IL-6), whereas CNTF and leukemia inhibitory factor (LIF) signal via a heterodimer of gp130 and LIF receptor (LIFR). Despite binding to the same receptor component (gp130) and a similar protein structure, IL-6 and CNTF share only 6% sequence identity. Using molecular modeling we defined a putative LIFR binding epitope on CNTF that consists of three distinct regions (C-terminal A-helix/N-terminal AB loop, BC loop, C-terminal CD-loop/N-terminal D-helix). A corresponding gp130-binding site on IL-6 was exchanged with this epitope. The resulting IL-6/CNTF chimera lost the capacity to signal via gp130 on cells without LIFR, but acquired the ability to signal via the gp130/LIFR heterodimer and STAT3 on responsive cells. Besides identifying a specific LIFR binding epitope on CNTF, our results suggest that receptor recognition sites of cytokines are organized as modules that are exchangeable even between cytokines with limited sequence homology.
Collapse
Affiliation(s)
- K J Kallen
- I. Medizinische Klinik, Abteilung Pathophysiologie, Johannes Gutenberg Universität Mainz, Obere Zahlbacher Str. 63, 55101 Mainz, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Marsh DJ, Hollopeter G, Huszar D, Laufer R, Yagaloff KA, Fisher SL, Burn P, Palmiter RD. Response of melanocortin-4 receptor-deficient mice to anorectic and orexigenic peptides. Nat Genet 1999; 21:119-22. [PMID: 9916804 DOI: 10.1038/5070] [Citation(s) in RCA: 401] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mutations reducing the functional activity of leptin, the leptin receptor, alpha-melanocyte stimulating hormones (alpha-MSH) and the melanocortin-4 receptor (Mc4r) all lead to obesity in mammals. Moreover, mutant mice that ectopically express either agouti (Ay/a mice) or agouti-related protein (Agrp), antagonists of melanocortin signalling, become obese. These data suggest that alpha-MSH signalling transduced by Mc4r tonically inhibits feeding; however, it is not known to what extent this pathway mediates leptin signalling. We show here that Mc4r-deficient (Mc4r-/-) mice do not respond to the anorectic actions of MTII, an MSH-like agonist, suggesting that alpha-MSH inhibits feeding primarily by activating Mc4r. Obese Mc4r-/-mice do not respond significantly to the inhibitory effects of leptin on feeding, whereas non-obese Mc4r-/- mice do. These data demonstrate that melanocortin signalling transduced by Mc4r is not an exclusive target of leptin action and that factors resulting from obesity contribute to leptin resistance. Leptin resistance of obese Mc4r-/- mice does not prevent their response to the anorectic actions of ciliary neurotrophic factor (CNTF), corticotropin releasing factor (CRF), or urocortin; or the orexigenic actions of neuropeptide Y (NPY) or peptide YY (PYY), indicating that these neuromodulators act independently or downstream of Mc4r signalling.
Collapse
Affiliation(s)
- D J Marsh
- Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, Seattle 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Neurotrophic factors control the survival, differentiation and maintenance of neurons in the peripheral and central nervous systems. Their discovery and characterization have been instrumental to our understanding of a wide range of phenomena in the development, plasticity and repair of the nervous system. Their potential importance in the development of therapeutic agents against neurodegenerative disorders and nerve injury has led to a flurry of activity towards understanding their structure, function and signaling mechanisms. This knowledge has increased dramatically in recent years, in particular due to the elucidation of three-dimensional structures, the discovery of families of structurally related neurotrophic factors and the characterization of receptors and downstream signaling components. Common themes are emerging from these recent studies that allow us to make new insights and predictions as to the function and possible clinical utility of these molecules.
Collapse
Affiliation(s)
- C F Ibáñez
- Dept of Neuroscience, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
40
|
Smith DK, Treutlein HR. LIF receptor-gp130 interaction investigated by homology modeling: implications for LIF binding. Protein Sci 1998; 7:886-96. [PMID: 9568895 PMCID: PMC2143991 DOI: 10.1002/pro.5560070406] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Leukemia inhibitory factor (LIF), a member of the gp130 family of helical cytokines, is involved in the hemopoietic and neural systems. The LIF signal transducing complex contains two receptor molecules, the LIF receptor (LIFR) and gp130. The extracellular region of the LIFR is unique in that it includes three membrane-proximal fibronectin type III domains and two cytokine binding domains (CBDs) separated by an immunoglobulin-like domain. Although some mutagenesis data on LIF are available, it is not yet known which regions of LIFR or gp130 bind LIF. Nor is it known whether LIFR contacts gp130 in a manner similar to the growth hormone receptor dimer and, if so, through which of its CBDs. To attempt to elucidate these matters and to investigate the receptor complex, models of the CBDs of LIFR and the CBD of gp130 were constructed. Analyses of the electrostatic isopotential surfaces of the CBD models suggest that gp130 and the membrane-proximal CBD of LIFR hetero-dimerize and bind LIF through contacts similar to those seen in the growth hormone receptor dimer. This work further demonstrates the utility of electrostatic analyses of homology models and suggests a strategy for biochemical investigations of the LIF-receptor complex.
Collapse
Affiliation(s)
- D K Smith
- Ludwig Institute for Cancer Research, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
41
|
|
42
|
Vernallis AB, Hudson KR, Heath JK. An antagonist for the leukemia inhibitory factor receptor inhibits leukemia inhibitory factor, cardiotrophin-1, ciliary neurotrophic factor, and oncostatin M. J Biol Chem 1997; 272:26947-52. [PMID: 9341130 DOI: 10.1074/jbc.272.43.26947] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The leukemia inhibitory factor receptor (LIF-R) is activated not only by LIF, but also by cardiotrophin-1, ciliary neurotrophic factor with its receptor, and oncostatin M (OSM). Each of these cytokines induces the hetero-oligomerization of LIF-R with gp130, a signal-transducing subunit shared with interleukin-6 and interleukin-11. The introduction of mutations into human LIF that reduced the affinity for gp130 while retaining affinity for LIF-R has generated antagonists for LIF. In the current study, a LIF antagonist that was free of detectable agonistic activity was tested for antagonism against the family of LIF-R ligands. On cells that express LIF-R and gp130, all LIF-R ligands were antagonized. On cells that also express OSM receptor, OSM was not antagonized, demonstrating that the antagonist is specific for LIF-R. Ligand-triggered tyrosine phosphorylation of both LIF-R and gp130 was blocked by the antagonist. The antagonist is therefore likely to work by preventing receptor oligomerization.
Collapse
Affiliation(s)
- A B Vernallis
- CRC Growth Factor Group, School of Biochemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | |
Collapse
|
43
|
Di Marco A, Gloaguen I, Demartis A, Saggio I, Graziani R, Paonessa G, Laufer R. Agonistic and antagonistic variants of ciliary neurotrophic factor (CNTF) reveal functional differences between membrane-bound and soluble CNTF alpha-receptor. J Biol Chem 1997; 272:23069-75. [PMID: 9287306 DOI: 10.1074/jbc.272.37.23069] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Ciliary neurotrophic factor (CNTF) drives the sequential assembly of a receptor complex containing the ligand-specific alpha-receptor subunit (CNTFR) and the signal-transducing beta-subunits gp130 and leukemia inhibitory factor receptor-beta (LIFR). CNTFR can function in either membrane-bound or soluble forms. The membrane-bound form mediates the neuronal actions of CNTF, whereas the soluble form serves to confer cytokine responsiveness to non-neuronal cells expressing gp130 and LIFR. The objective of this work was to analyze whether the two receptor isoforms differ in their ability to interact functionally with CNTF and related proteins. Two new types of CNTF variants, characterized by weakened interactions with either CNTFR or both LIFR and gp130, were developed, and the biological activities of these and other mutants were determined in non-neuronal versus neuronal cells, as well as in non-neuronal cells transfected with an expression vector for CNTFR. Membrane anchoring of CNTFR was found to render the CNTF receptor complex relatively insensitive to changes in agonist affinity for either alpha- or beta-receptor subunits and to promote a more efficient interaction with a gp130-depleting antagonistic variant of CNTF. As a result of this phenomenon, which can be rationalized in terms of the multivalent nature of CNTF receptor interaction, CNTF variants display striking changes in receptor selectivity.
Collapse
MESH Headings
- Antigens, CD/chemistry
- Antigens, CD/metabolism
- Biological Assay
- Ciliary Neurotrophic Factor
- Cytokine Receptor gp130
- Dose-Response Relationship, Drug
- Growth Inhibitors
- Humans
- Interleukin-6
- Leukemia Inhibitory Factor
- Leukemia Inhibitory Factor Receptor alpha Subunit
- Lymphokines
- Membrane Glycoproteins/agonists
- Membrane Glycoproteins/antagonists & inhibitors
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/metabolism
- Membrane Proteins
- Models, Chemical
- Mutation
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/pharmacology
- Protein Binding
- Receptor Protein-Tyrosine Kinases/agonists
- Receptor Protein-Tyrosine Kinases/antagonists & inhibitors
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, Ciliary Neurotrophic Factor
- Receptors, Cytokine/agonists
- Receptors, Cytokine/antagonists & inhibitors
- Receptors, Cytokine/metabolism
- Receptors, Nerve Growth Factor/agonists
- Receptors, Nerve Growth Factor/antagonists & inhibitors
- Receptors, Nerve Growth Factor/metabolism
- Receptors, OSM-LIF
- Recombinant Proteins/agonists
- Recombinant Proteins/antagonists & inhibitors
- Recombinant Proteins/metabolism
- Signal Transduction
- Solubility
Collapse
Affiliation(s)
- A Di Marco
- Istituto di Ricerche di Biologia Molecolare P. Angeletti (IRBM), Pomezia, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
44
|
Gloaguen I, Costa P, Demartis A, Lazzaro D, Di Marco A, Graziani R, Paonessa G, Chen F, Rosenblum CI, Van der Ploeg LH, Cortese R, Ciliberto G, Laufer R. Ciliary neurotrophic factor corrects obesity and diabetes associated with leptin deficiency and resistance. Proc Natl Acad Sci U S A 1997; 94:6456-61. [PMID: 9177239 PMCID: PMC21071 DOI: 10.1073/pnas.94.12.6456] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Receptor subunits for the neurocytokine ciliary neurotrophic factor (CNTF) share sequence similarity with the receptor for leptin, an adipocyte-derived cytokine involved in body weight homeostasis. We report here that CNTF and leptin activate a similar pattern of STAT factors in neuronal cells, and that mRNAs for CNTF receptor subunits, similarly to the mRNA of leptin receptor, are localized in mouse hypothalamic nuclei involved in the regulation of energy balance. Systemic administration of CNTF or leptin led to rapid induction of the tis-11 primary response gene in the arcuate nucleus, suggesting that both cytokines can signal to hypothalamic satiety centers. Consistent with this idea, CNTF treatment of ob/ob mice, which lack functional leptin, was found to reduce the adiposity, hyperphagia, and hyperinsulinemia associated with leptin deficiency. Unlike leptin, CNTF also reduced obesity-related phenotypes in db/db mice, which lack functional leptin receptor, and in mice with diet-induced obesity, which are partially resistant to the actions of leptin. The identification of a cytokine-mediated anti-obesity mechanism that acts independently of the leptin system may help to develop strategies for the treatment of obesity associated with leptin resistance.
Collapse
MESH Headings
- Animals
- Arcuate Nucleus of Hypothalamus/metabolism
- Arcuate Nucleus of Hypothalamus/physiology
- Arcuate Nucleus of Hypothalamus/physiopathology
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Body Weight/drug effects
- Brain/physiology
- Brain/physiopathology
- Carrier Proteins/biosynthesis
- Carrier Proteins/physiology
- Cell Line
- Ciliary Neurotrophic Factor
- DNA-Binding Proteins/metabolism
- Diabetes Mellitus, Type 2/physiopathology
- Diabetes Mellitus, Type 2/therapy
- Dietary Fats
- Grooming/drug effects
- Humans
- Hybrid Cells
- Insulin/blood
- Leptin
- Male
- Mice
- Mice, Inbred AKR
- Mice, Inbred C57BL
- Mice, Obese
- Motor Activity/drug effects
- Nerve Growth Factors/pharmacology
- Nerve Tissue Proteins/pharmacology
- Neuroblastoma
- Neurons/physiology
- Obesity/drug therapy
- Obesity/genetics
- Obesity/physiopathology
- Point Mutation
- Proteins/genetics
- Proteins/pharmacology
- Proteins/physiology
- Receptor, Ciliary Neurotrophic Factor
- Receptors, Cell Surface
- Receptors, Leptin
- Receptors, Nerve Growth Factor/biosynthesis
- Receptors, Nerve Growth Factor/physiology
- Recombinant Proteins/pharmacology
Collapse
Affiliation(s)
- I Gloaguen
- Istituto di Ricerche di Biologia Molecolare P. Angeletti (IRBM), Via Pontina km 30.600, 00040 Pomezia, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Simpson RJ, Hammacher A, Smith DK, Matthews JM, Ward LD. Interleukin-6: structure-function relationships. Protein Sci 1997; 6:929-55. [PMID: 9144766 PMCID: PMC2143693 DOI: 10.1002/pro.5560060501] [Citation(s) in RCA: 281] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Interleukin-6 (IL-6) is a multifunctional cytokine that plays a central role in host defense due to its wide range of immune and hematopoietic activities and its potent ability to induce the acute phase response. Overexpression of IL-6 has been implicated in the pathology of a number of diseases including multiple myeloma, rheumatoid arthritis, Castleman's disease, psoriasis, and post-menopausal osteoporosis. Hence, selective antagonists of IL-6 action may offer therapeutic benefits. IL-6 is a member of the family of cytokines that includes interleukin-11, leukemia inhibitory factor, oncostatin M, cardiotrophin-1, and ciliary neurotrophic factor. Like the other members of this family, IL-6 induces growth or differentiation via a receptor-system that involves a specific receptor and the use of a shared signaling subunit, gp130. Identification of the regions of IL-6 that are involved in the interactions with the IL-6 receptor, and gp130 is an important first step in the rational manipulation of the effects of this cytokine for therapeutic benefit. In this review, we focus on the sites on IL-6 which interact with its low-affinity specific receptor, the IL-6 receptor, and the high-affinity converter gp130. A tentative model for the IL-6 hexameric receptor ligand complex is presented and discussed with respect to the mechanism of action of the other members of the IL-6 family of cytokines.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, CD/chemistry
- Antigens, CD/physiology
- Arthritis, Rheumatoid/immunology
- Castleman Disease/immunology
- Chromosome Mapping
- Chromosomes, Human, Pair 7
- Cytokines/physiology
- Female
- Growth Hormone/chemistry
- Humans
- Interleukin-6/biosynthesis
- Interleukin-6/chemistry
- Interleukin-6/physiology
- Models, Biological
- Models, Structural
- Molecular Sequence Data
- Multiple Myeloma/immunology
- Osteoporosis, Postmenopausal/immunology
- Protein Structure, Secondary
- Psoriasis/immunology
- Receptors, Interleukin/chemistry
- Receptors, Interleukin/physiology
- Receptors, Interleukin-6
- Receptors, Somatotropin/chemistry
- Sequence Alignment
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- R J Simpson
- Joint Protein Structure Laboratory, Ludwig Institute for Cancer Research, (Melbourne Tumour Biology Branch), Parkville, Victoria, Australia.
| | | | | | | | | |
Collapse
|
46
|
Abstract
The field of neurotrophic factor pharmacology emerged during the past decade with the discovery that these proteins can counteract neuronal atrophy and death in the adult nervous system. These concepts are being tested in clinical trials. Therapeutic use of neurotrophic proteins seems practical for diseases of the peripheral nervous system (PNS), where they can be given by systemic administration. For diseases of the CNS, special administration strategies will have to be developed to deliver the neurotrophic factors into the brain. The development of small molecule mimetics represents an alternative approach that is actively pursued to provide brain-penetrant neurotrophics.
Collapse
Affiliation(s)
- F Hefti
- Neuroscience Research Centre, Merck Sharp & Dohme, Harlow, Essex, United Kingdom
| |
Collapse
|