1
|
Comlekoglu T, Dzamba BJ, Pacheco GG, Shook DR, Sego TJ, Glazier JA, Peirce SM, DeSimone DW. Modeling the roles of cohesotaxis, cell-intercalation, and tissue geometry in collective cell migration of Xenopus mesendoderm. Biol Open 2024; 13:bio060615. [PMID: 39162010 PMCID: PMC11360141 DOI: 10.1242/bio.060615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024] Open
Abstract
Collectively migrating Xenopus mesendoderm cells are arranged into leader and follower rows with distinct adhesive properties and protrusive behaviors. In vivo, leading row mesendoderm cells extend polarized protrusions and migrate along a fibronectin matrix assembled by blastocoel roof cells. Traction stresses generated at the leading row result in the pulling forward of attached follower row cells. Mesendoderm explants removed from embryos provide an experimentally tractable system for characterizing collective cell movements and behaviors, yet the cellular mechanisms responsible for this mode of migration remain elusive. We introduce a novel agent-based computational model of migrating mesendoderm in the Cellular-Potts computational framework to investigate the respective contributions of multiple parameters specific to the behaviors of leader and follower row cells. Sensitivity analyses identify cohesotaxis, tissue geometry, and cell intercalation as key parameters affecting the migration velocity of collectively migrating cells. The model predicts that cohesotaxis and tissue geometry in combination promote cooperative migration of leader cells resulting in increased migration velocity of the collective. Radial intercalation of cells towards the substrate is an additional mechanism contributing to an increase in migratory speed of the tissue. Model outcomes are validated experimentally using mesendoderm tissue explants.
Collapse
Affiliation(s)
- Tien Comlekoglu
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903, USA
| | - Bette J. Dzamba
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Gustavo G. Pacheco
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - David R. Shook
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - T. J. Sego
- Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - James A. Glazier
- Department of Intelligent Systems Engineering and The Biocomplexity Institute, Indiana University, Bloomington, IN 47408, USA
| | - Shayn M. Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903, USA
| | - Douglas W. DeSimone
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
2
|
Shrestha R, McCann T, Saravanan H, Lieberth J, Koirala P, Bloomekatz J. The myocardium utilizes a platelet-derived growth factor receptor alpha (Pdgfra)-phosphoinositide 3-kinase (PI3K) signaling cascade to steer toward the midline during zebrafish heart tube formation. eLife 2023; 12:e85930. [PMID: 37921445 PMCID: PMC10651176 DOI: 10.7554/elife.85930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 11/02/2023] [Indexed: 11/04/2023] Open
Abstract
Coordinated cell movement is a fundamental process in organ formation. During heart development, bilateral myocardial precursors collectively move toward the midline (cardiac fusion) to form the primitive heart tube. Extrinsic influences such as the adjacent anterior endoderm are known to be required for cardiac fusion. We previously showed however, that the platelet-derived growth factor receptor alpha (Pdgfra) is also required for cardiac fusion (Bloomekatz et al., 2017). Nevertheless, an intrinsic mechanism that regulates myocardial movement has not been elucidated. Here, we show that the phosphoinositide 3-kinase (PI3K) intracellular signaling pathway has an essential intrinsic role in the myocardium directing movement toward the midline. In vivo imaging further reveals midline-oriented dynamic myocardial membrane protrusions that become unpolarized in PI3K-inhibited zebrafish embryos where myocardial movements are misdirected and slower. Moreover, we find that PI3K activity is dependent on and interacts with Pdgfra to regulate myocardial movement. Together our findings reveal an intrinsic myocardial steering mechanism that responds to extrinsic cues during the initiation of cardiac development.
Collapse
Affiliation(s)
- Rabina Shrestha
- Department of Biology, University of MississippiUniversityUnited States
| | - Tess McCann
- Department of Biology, University of MississippiUniversityUnited States
| | - Harini Saravanan
- Department of Biology, University of MississippiUniversityUnited States
| | - Jaret Lieberth
- Department of Biology, University of MississippiUniversityUnited States
| | - Prashanna Koirala
- Department of Biology, University of MississippiUniversityUnited States
| | - Joshua Bloomekatz
- Department of Biology, University of MississippiUniversityUnited States
| |
Collapse
|
3
|
Comlekoglu T, Dzamba BJ, Pacheco GG, Shook DR, Sego TJ, Glazier JA, Peirce SM, DeSimone DW. Modeling the roles of cohesotaxis, cell-intercalation, and tissue geometry in collective cell migration of Xenopus mesendoderm. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562601. [PMID: 37904937 PMCID: PMC10614848 DOI: 10.1101/2023.10.16.562601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Collectively migrating Xenopus mesendoderm cells are arranged into leader and follower rows with distinct adhesive properties and protrusive behaviors. In vivo, leading row mesendoderm cells extend polarized protrusions and migrate along a fibronectin matrix assembled by blastocoel roof cells. Traction stresses generated at the leading row result in the pulling forward of attached follower row cells. Mesendoderm explants removed from embryos provide an experimentally tractable system for characterizing collective cell movements and behaviors, yet the cellular mechanisms responsible for this mode of migration remain elusive. We introduce an agent-based computational model of migrating mesendoderm in the Cellular-Potts computational framework to investigate the relative contributions of multiple parameters specific to the behaviors of leader and follower row cells. Sensitivity analyses identify cohesotaxis, tissue geometry, and cell intercalation as key parameters affecting the migration velocity of collectively migrating cells. The model predicts that cohesotaxis and tissue geometry in combination promote cooperative migration of leader cells resulting in increased migration velocity of the collective. Radial intercalation of cells towards the substrate is an additional mechanism to increase migratory speed of the tissue. Summary Statement We present a novel Cellular-Potts model of collective cell migration to investigate the relative roles of cohesotaxis, tissue geometry, and cell intercalation on migration velocity of Xenopus mesendoderm.
Collapse
|
4
|
Shrestha R, McCann T, Saravanan H, Lieberth J, Koirala P, Bloomekatz J. The myocardium utilizes Pdgfra-PI3K signaling to steer towards the midline during heart tube formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.03.522612. [PMID: 36712046 PMCID: PMC9881939 DOI: 10.1101/2023.01.03.522612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Coordinated cell movement is a fundamental process in organ formation. During heart development, bilateral myocardial precursors collectively move towards the midline (cardiac fusion) to form the primitive heart tube. Along with extrinsic influences such as the adjacent anterior endoderm which are known to be required for cardiac fusion, we previously showed that the platelet-derived growth factor receptor alpha (Pdgfra) is also required. However, an intrinsic mechanism that regulates myocardial movement remains to be elucidated. Here, we uncover an essential intrinsic role in the myocardium for the phosphoinositide 3-kinase (PI3K) intracellular signaling pathway in directing myocardial movement towards the midline. In vivo imaging reveals that in PI3K-inhibited zebrafish embryos myocardial movements are misdirected and slower, while midline-oriented dynamic myocardial membrane protrusions become unpolarized. Moreover, PI3K activity is dependent on and genetically interacts with Pdgfra to regulate myocardial movement. Together our findings reveal an intrinsic myocardial steering mechanism that responds to extrinsic cues during the initiation of cardiac development.
Collapse
Affiliation(s)
- Rabina Shrestha
- Department of Biology, University of Mississippi, University, MS 38677
| | - Tess McCann
- Department of Biology, University of Mississippi, University, MS 38677
| | - Harini Saravanan
- Department of Biology, University of Mississippi, University, MS 38677
| | - Jaret Lieberth
- Department of Biology, University of Mississippi, University, MS 38677
| | - Prashanna Koirala
- Department of Biology, University of Mississippi, University, MS 38677
| | - Joshua Bloomekatz
- Department of Biology, University of Mississippi, University, MS 38677
| |
Collapse
|
5
|
A Molecular Analysis of Cytokine Content across Extracellular Vesicles, Secretions, and Intracellular Space from Different Site-Specific Adipose-Derived Stem Cells. Int J Mol Sci 2021; 23:ijms23010397. [PMID: 35008824 PMCID: PMC8745205 DOI: 10.3390/ijms23010397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022] Open
Abstract
Cytokines are multifunctional small proteins that have a vital influence on inflammatory states of tissues and play a role in signalling and cellular control mechanisms. Cytokine expression has primarily been viewed as a form of direct secretion of molecules through an active transportation; however, other forms of active transport such as extracellular vesicles are at play. This is particularly important in stem cells where signalling molecules are key to communication managing the levels of proliferation, migration, and differentiation into mature cells. This study investigated cytokines from intracellular content, direct cellular secretions, and extracellular vesicles from adult adipose-derived stem cells isolated from three distinct anatomical locations: abdomen, thigh, and chin. The cells were cultured investigated using live cell microscopy, cytokine assays, and bioinformatics analysis. The cytokines quantified and examined from each sample type showed a distinct difference between niche areas and sample types. The varying levels of TNF-alpha, IL-6 and IL-8 cytokines were shown to play a crucial role in signalling pathways such as MAPK, ERK1/2 and JAK-STAT in cells. On the other hand, the chemotactic cytokines IL-1rn, Eotaxin, IP-10 and MCP-1 showed the most prominent changes across extracellular vesicles with roles in noncanonical signalling. By examining the local and tangential roles of cytokines in stem cells, their roles in signalling and in regenerative mechanisms may be further understood.
Collapse
|
6
|
Komatsu V, Doddihal V, Chang C. Imaging of dynamic actin remodeling reveals distinct behaviors of head and trunk mesoderm in gastrulating Xenopus laevis. MICROPUBLICATION BIOLOGY 2021; 2021. [PMID: 34723152 PMCID: PMC8553573 DOI: 10.17912/micropub.biology.000483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 11/06/2022]
Abstract
Gastrulation involves coordinated movements of cells, facilitating mesoderm and endoderm internalization and proper patterning of tissues across the germ layers. In Xenopus laevis, head mesoderm migrates collectively along the blastocoel roof fibronectin network towards the animal pole. Meanwhile, the trunk mesodermal cells migrate over each other in convergent thickening and convergent extension movements elongating the body axis. The behaviors of cells in these regions are investigated mainly in tissue explants taken from the respective head or trunk mesodermal regions. How cells behave at the transitional zone between these territories is not described in detail. To learn about cell behaviors around this junction, we imaged cell movements in an explant that encompassed the head and trunk mesoderm. We observed that head mesoderm migration on fibronectin employed lamellipodial protrusions at the leading edge and dynamic actin remodeling in the trailing cells. Trunk mesodermal cells underwent mediolateral cell elongation and intercalation to form the notochord. Lateral edges of the notochord were defined before the anterior edge. Our movie reveals distinct mesodermal cell behaviors occurring simultaneously in different regions of gastrulating embryos. This study highlights the power of applying modern microscopy tools to revisit classical experiments, permitting a greater understanding of the cellular dynamics that shape the embryo.
Collapse
Affiliation(s)
- Valerie Komatsu
- University of Southern California, Los Angeles, CA 90089.,Embryology: Concepts & Techniques in Modern Developmental Biology, Marine Biological Laboratory, Woods Hole, MA, 02543
| | - Viraj Doddihal
- Stowers Institute for Medical Research, Kansas City, MO 64110.,Embryology: Concepts & Techniques in Modern Developmental Biology, Marine Biological Laboratory, Woods Hole, MA, 02543
| | - Chenbei Chang
- University of Alabama at Birmingham, Birmingham, AL 35294.,Embryology: Concepts & Techniques in Modern Developmental Biology, Marine Biological Laboratory, Woods Hole, MA, 02543
| |
Collapse
|
7
|
Hirata M, Yao T, Fujimura S, Kanai Y, Yoshimoto M, Sato T, Ohmomo Y, Temma T. Development of a p38α-selective radioactive probe for qualitative diagnosis of cancer using SPECT. Ann Nucl Med 2019; 33:333-343. [PMID: 30953245 DOI: 10.1007/s12149-019-01341-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/23/2019] [Indexed: 11/29/2022]
Abstract
OBJECTIVE p38 mitogen-activated protein (MAP) kinase (p38α) has drawn attention as a new target molecule for the treatment and diagnosis of cancer, and its overexpression and activation have been reported in various types of cancer. In this study, a single photon emission computed tomography (SPECT) imaging probe of p38α was developed to noninvasively image p38α activity for effective qualitative diagnosis of cancer. METHODS Pyrrolepyridine derivatives, m-YTM and p-YTM, were designed and synthesized based on the structure of the p38α-selective inhibitor. Radioactive iodine-labeled m-YTM, [125I]m-YTM, was synthesized because m-YTM greatly inhibited the phosphorylation of p38α upon examining the inhibitory effects of the compounds. After investigating the binding affinity of [125I]m-YTM to the recombinant p38α, a saturation binding experiment using activated p38α and inactive p38α was performed to determine the binding site. Uptake of [125I]m-YTM into various cancer cell lines was investigated, and the pharmacokinetics was evaluated using tumor-bearing mice. RESULTS The inhibitory activity of m-YTM was approximately 13 times higher than that of SB203580, a p38α-selective inhibitor. The binding site of [125I]m-YTM was estimated to be the p38α activating site, similar to that of SB203580, because the [125I]m-YTM bound strongly to both activated p38α and inactive p38α. Various different cancer cells incorporated [125I]m-YTM; however, its accumulation was significantly reduced by treatment with SB203580. Pharmacokinetics study of [125I]m-YTM in B-16 tumor-bearing mice was examined which revealed high accumulation of radioactivity in tumor tissues. The ratios of radioactivity in the B-16 tumor to that in blood were 3.1 and 50 after 1 and 24 h, respectively. The ratio of radioactivity in the tumor to that in blood in the tumor-bearing mice generated using other cancer cell lines was also ≥ 1 at 1 h after the administration of the probe. CONCLUSIONS This study suggests that [123I]m-YTM has potential as a p38α imaging probe effective for various cancer types.
Collapse
Affiliation(s)
- Masahiko Hirata
- Department of Biofunctional Analysis, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Tatsuma Yao
- Department of Biofunctional Analysis, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Shigeaki Fujimura
- Department of Biofunctional Analysis, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Yasukazu Kanai
- Department of Biofunctional Analysis, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Mitsuyoshi Yoshimoto
- Department of Biofunctional Analysis, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan.,Division of Functional Imaging, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Takaji Sato
- Department of Biofunctional Analysis, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Yoshiro Ohmomo
- Department of Biofunctional Analysis, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Takashi Temma
- Department of Biofunctional Analysis, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan.
| |
Collapse
|
8
|
Jayashankar V, Nguyen MJ, Carr BW, Zheng DC, Rosales JB, Rosales JB, Weiser DC. Protein phosphatase 1 β paralogs encode the zebrafish myosin phosphatase catalytic subunit. PLoS One 2013; 8:e75766. [PMID: 24040418 PMCID: PMC3770619 DOI: 10.1371/journal.pone.0075766] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 08/19/2013] [Indexed: 12/21/2022] Open
Abstract
Background The myosin phosphatase is a highly conserved regulator of actomyosin contractility. Zebrafish has emerged as an ideal model system to study the invivo role of myosin phosphatase in controlling cell contractility, cell movement and epithelial biology. Most work in zebrafish has focused on the regulatory subunit of the myosin phosphatase called Mypt1. In this work, we examined the critical role of Protein Phosphatase 1, PP1, the catalytic subunit of the myosin phosphatase. Methodology/Principal Findings We observed that in zebrafish two paralogous genes encoding PP1β, called ppp1cba and ppp1cbb, are both broadly expressed during early development. Furthermore, we found that both gene products interact with Mypt1 and assemble an active myosin phosphatase complex. In addition, expression of this complex results in dephosphorylation of the myosin regulatory light chain and large scale rearrangements of the actin cytoskeleton. Morpholino knock-down of ppp1cba and ppp1cbb results in severe defects in morphogenetic cell movements during gastrulation through loss of myosin phosphatase function. Conclusions/Significance Our work demonstrates that zebrafish have two genes encoding PP1β, both of which can interact with Mypt1 and assemble an active myosin phosphatase. In addition, both genes are required for convergence and extension during gastrulation and correct dosage of the protein products is required.
Collapse
Affiliation(s)
- Vaishali Jayashankar
- Department of Biological Sciences, University of the Pacific, Stockton, California, United States of America
| | - Michael J. Nguyen
- Department of Biological Sciences, University of the Pacific, Stockton, California, United States of America
| | - Brandon W. Carr
- Department of Biological Sciences, University of the Pacific, Stockton, California, United States of America
| | - Dale C. Zheng
- Department of Biological Sciences, University of the Pacific, Stockton, California, United States of America
| | - Joseph B. Rosales
- Department of Biological Sciences, University of the Pacific, Stockton, California, United States of America
| | - Joshua B. Rosales
- Department of Biological Sciences, University of the Pacific, Stockton, California, United States of America
| | - Douglas C. Weiser
- Department of Biological Sciences, University of the Pacific, Stockton, California, United States of America
- * E-mail:
| |
Collapse
|
9
|
Analysis of mice lacking the heparin-binding splice isoform of platelet-derived growth factor A. Mol Cell Biol 2013; 33:4030-40. [PMID: 23938297 DOI: 10.1128/mcb.00749-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Platelet-derived growth factor A-chain (PDGF-A) exists in two evolutionarily conserved isoforms, PDGF-Along and PDGF-Ashort, generated by alternative RNA splicing. They differ by the presence (in PDGF-Along) or absence (in PDGF-Ashort) of a carboxy-terminal heparin/heparan sulfate proteoglycan-binding motif. In mice, similar motifs present in other members of the PDGF and vascular endothelial growth factor (VEGF) families have been functionally analyzed in vivo, but the specific physiological importance of PDGF-Along has not been explored previously. Here, we analyzed the absolute and relative expression of the two PDGF-A splice isoforms during early postnatal organ development in the mouse and report on the generation of a Pdgfa allele (Pdgfa(Δex6)) incapable of producing PDGF-Along due to a deletion of the exon 6 splice acceptor site. In situations of limiting PDGF-A signaling through PDGF receptor alpha (PDGFRα), or in mice lacking PDGF-C, homozygous carriers of Pdgfa(Δex6) showed abnormal development of the lung, intestine, and vertebral column, pinpointing developmental processes where PDGF-Along may play a physiological role.
Collapse
|
10
|
van Eekelen M, Runtuwene V, Masselink W, den Hertog J. Pair-wise regulation of convergence and extension cell movements by four phosphatases via RhoA. PLoS One 2012; 7:e35913. [PMID: 22545146 PMCID: PMC3335823 DOI: 10.1371/journal.pone.0035913] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 03/26/2012] [Indexed: 11/18/2022] Open
Abstract
Various signaling pathways regulate shaping of the main body axis during early vertebrate development. Here, we focused on the role of protein-tyrosine phosphatase signaling in convergence and extension cell movements. We identified Ptpn20 as a structural paralogue of PTP-BL and both phosphatases were required for normal gastrulation cell movements. Interestingly, knockdowns of PTP-BL and Ptpn20 evoked similar developmental defects as knockdown of RPTPα and PTPε. Co-knockdown of RPTPα and PTP-BL, but not Ptpn20, had synergistic effects and conversely, PTPε and Ptpn20, but not PTP-BL, cooperated, demonstrating the specificity of our approach. RPTPα and PTPε knockdowns were rescued by constitutively active RhoA, whereas PTP-BL and Ptpn20 knockdowns were rescued by dominant negative RhoA. Consistently, RPTPα and PTP-BL had opposite effects on RhoA activation, both in a PTP-dependent manner. Downstream of the PTPs, we identified NGEF and Arhgap29, regulating RhoA activation and inactivation, respectively, in convergence and extension cell movements. We propose a model in which two phosphatases activate RhoA and two phosphatases inhibit RhoA, resulting in proper cell polarization and normal convergence and extension cell movements.
Collapse
Affiliation(s)
- Mark van Eekelen
- Hubrecht Institute and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Vincent Runtuwene
- Hubrecht Institute and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Wouter Masselink
- Hubrecht Institute and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jeroen den Hertog
- Hubrecht Institute and University Medical Center Utrecht, Utrecht, the Netherlands
- Institute of Biology, Leiden, the Netherlands
- * E-mail:
| |
Collapse
|
11
|
Bonacci G, Fletcher J, Devani M, Dwivedi H, Keller R, Chang C. The cytoplasmic tyrosine kinase Arg regulates gastrulation via control of actin organization. Dev Biol 2012; 364:42-55. [PMID: 22305799 DOI: 10.1016/j.ydbio.2012.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 01/11/2012] [Indexed: 10/14/2022]
Abstract
Coordinated cell movements are crucial for vertebrate gastrulation and are controlled by multiple signals. Although many factors are shown to mediate non-canonical Wnt pathways to regulate cell polarity and intercalation during gastrulation, signaling molecules acting in other pathways are less investigated and the connections between various signals and cytoskeleton are not well understood. In this study, we show that the cytoplasmic tyrosine kinase Arg modulates gastrulation movements through control of actin remodeling. Arg is expressed in the dorsal mesoderm at the onset of gastrulation, and both gain- and loss-of-function of Arg disrupted axial development in Xenopus embryos. Arg controlled migration of anterior mesendoderm, influenced cell decision on individual versus collective migration, and modulated spreading and protrusive activities of anterior mesendodermal cells. Arg also regulated convergent extension of the trunk mesoderm by influencing cell intercalation behaviors. Arg modulated actin organization to control dynamic F-actin distribution at the cell-cell contact or in membrane protrusions. The functions of Arg required an intact tyrosine kinase domain but not the actin-binding motifs in its carboxyl terminus. Arg acted downstream of receptor tyrosine kinases to regulate phosphorylation of endogenous CrkII and paxillin, adaptor proteins involved in activation of Rho family GTPases and actin reorganization. Our data demonstrate that Arg is a crucial cytoplasmic signaling molecule that controls dynamic actin remodeling and mesodermal cell behaviors during Xenopus gastrulation.
Collapse
Affiliation(s)
- Gustavo Bonacci
- Department of Cell Biology, University of Alabama at Birmingham, AL 35294, USA
| | | | | | | | | | | |
Collapse
|
12
|
Pereira LA, Wong MS, Mossman AK, Sourris K, Janes ME, Knezevic K, Hirst CE, Lim SM, Pimanda JE, Stanley EG, Elefanty AG. Pdgfrα and Flk1 are direct target genes of Mixl1 in differentiating embryonic stem cells. Stem Cell Res 2011; 8:165-79. [PMID: 22265737 DOI: 10.1016/j.scr.2011.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 09/28/2011] [Indexed: 11/25/2022] Open
Abstract
The Mixl1 homeodomain protein plays a key role in mesendoderm patterning during embryogenesis, but its target genes remain to be identified. We compared gene expression in differentiating heterozygous Mixl1(GFP/w) and homozygous null Mixl1(GFP/Hygro) mouse embryonic stem cells to identify potential downstream transcriptional targets of Mixl1. Candidate Mixl1 regulated genes whose expression was reduced in GFP+ cells isolated from differentiating Mixl1(GFP/Hygro) embryoid bodies included Pdgfrα and Flk1. Mixl1 bound to ATTA sequences located in the Pdgfrα and Flk1 promoters and chromatin immunoprecipitation assays confirmed Mixl1 occupancy of these promoters in vivo. Furthermore, Mixl1 transactivated the Pdgfrα and Flk1 promoters through ATTA sequences in a DNA binding dependent manner. These data support the hypothesis that Mixl1 directly regulates Pdgfrα and Flk1 gene expression and strengthens the position of Mixl1 as a key regulator of mesendoderm development during mammalian gastrulation.
Collapse
Affiliation(s)
- Lloyd A Pereira
- Differentiation and Transcription Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, 3002, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Disruption of platelet-derived growth factor-dependent phosphatidylinositol 3-kinase and phospholipase Cγ 1 activity abolishes vascular smooth muscle cell proliferation and migration and attenuates neointima formation in vivo. J Am Coll Cardiol 2011; 57:2527-38. [PMID: 21679854 DOI: 10.1016/j.jacc.2011.02.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 02/07/2011] [Accepted: 02/15/2011] [Indexed: 11/21/2022]
Abstract
OBJECTIVES We tested the hypothesis whether selective blunting of platelet-derived growth factor (PDGF)-dependent vascular smooth muscle cell (VSMC) proliferation and migration is sufficient to prevent neointima formation after vascular injury. BACKGROUND To prevent neointima formation and stent thrombosis after coronary interventions, it is essential to inhibit VSMC proliferation and migration without harming endothelial cell function. The role of PDGF-a potent mitogen and chemoattractant for VSMC that does not affect endothelial cells-for neointima formation remains controversial. METHODS To decipher the signaling pathways that control PDGF beta receptor (βPDGFR)-driven VSMC proliferation and migration, we characterized 2 panels of chimeric CSF1R/βPDGFR mutants in which the binding sites for βPDGFR-associated signaling molecules (Src, phosphatidylinositol 3-kinase [PI3K], GTPase activating protein of ras, SHP-2, phospholipase Cγ 1 [PLCγ]) were individually mutated. Based on in vitro results, the importance of PDGF-initiated signals for neointima formation was investigated in genetically modified mice. RESULTS Our results indicate that the chemotactic response to PDGF requires the activation of Src, PI3K, and PLCγ, whereas PDGF-dependent cell cycle progression is exclusively mediated by PI3K and PLCγ. These 2 signaling molecules contribute to signal relay of the βPDGFR by differentially regulating cyclin D1 and p27(kip1). Blunting of βPDGFR-induced PI3K and PLCγ signaling by a combination mutant (F3) completely abolished the mitogenic and chemotactic response to PDGF. Disruption of PDGF-dependent PI3K and PLCγ signaling in mice expressing the F3 receptor led to a profound reduction of neointima formation after balloon injury. CONCLUSIONS Signaling by the activated βPDGFR, particularly through PI3K and PLCγ, is crucial for neointima formation after vascular injury. Disruption of these specific signaling pathways is sufficient to attenuate pathogenic processes such as vascular remodeling in vivo.
Collapse
|
14
|
Messmer-Blust AF, Balasubramanian S, Gorbacheva VY, Jeyaratnam JA, Vestal DJ. The interferon-gamma-induced murine guanylate-binding protein-2 inhibits rac activation during cell spreading on fibronectin and after platelet-derived growth factor treatment: role for phosphatidylinositol 3-kinase. Mol Biol Cell 2010; 21:2514-28. [PMID: 20505078 PMCID: PMC2903678 DOI: 10.1091/mbc.e09-04-0344] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Exposure of cells to certain cytokines can alter how these same cells respond to later cues from other agents, such as extracellular matrix or growth factors. Interferon (IFN)-gamma pre-exposure inhibits the spreading of fibroblasts on fibronectin. Expression of the IFN-gamma-induced GTPase murine guanylate-binding protein-2 (mGBP-2) can phenocopy this inhibition and small interfering RNA knockdown of mGBP-2 prevents IFN-gamma-mediated inhibition of cell spreading. Either IFN-gamma treatment or mGBP-2 expression inhibits Rac activation during cell spreading. Rac is required for cell spreading. mGBP-2 also inhibits the activation of Akt during cell spreading on fibronectin. mGBP-2 is incorporated into a protein complex containing the catalytic subunit of phosphatidylinositol 3-kinase (PI3-K), p110. The association of mGBP-2 with p110 seems important for the inhibition of cell spreading because S52N mGBP-2, which does not incorporate into the protein complex with p110, is unable to inhibit cell spreading. PI3-K activation during cell spreading on fibronectin was inhibited in the presence of mGBP-2. Both IFN-gamma and mGBP-2 also inhibit cell spreading initiated by platelet-derived growth factor treatment, which is also accompanied by inhibition of Rac activation by mGBP-2. This is the first report of a novel mechanism by which IFN-gamma can alter how cells respond to subsequent extracellular signals, by the induction of mGBP-2.
Collapse
|
15
|
Luxardi G, Marchal L, Thomé V, Kodjabachian L. Distinct Xenopus Nodal ligands sequentially induce mesendoderm and control gastrulation movements in parallel to the Wnt/PCP pathway. Development 2010; 137:417-26. [PMID: 20056679 DOI: 10.1242/dev.039735] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The vertebrate body plan is established in two major steps. First, mesendoderm induction singles out prospective endoderm, mesoderm and ectoderm progenitors. Second, these progenitors are spatially rearranged during gastrulation through numerous and complex movements to give rise to an embryo comprising three concentric germ layers, polarised along dorsoventral, anteroposterior and left-right axes. Although much is known about the molecular mechanisms of mesendoderm induction, signals controlling gastrulation movements are only starting to be revealed. In vertebrates, Nodal signalling is required to induce the mesendoderm, which has precluded an analysis of its potential role during the later process of gastrulation. Using time-dependent inhibition, we show that in Xenopus, Nodal signalling plays sequential roles in mesendoderm induction and gastrulation movements. Nodal activity is necessary for convergent extension in axial mesoderm and for head mesoderm migration. Using morpholino-mediated knockdown, we found that the Nodal ligands Xnr5 and Xnr6 are together required for mesendoderm induction, whereas Xnr1 and Xnr2 act later to control gastrulation movements. This control is operated via the direct regulation of key movement-effector genes, such as papc, has2 and pdgfralpha. Interestingly, however, Nodal does not appear to mobilise the Wnt/PCP pathway, which is known to control cell and tissue polarity. This study opens the way to the analysis of the genetic programme and cell behaviours that are controlled by Nodal signalling during vertebrate gastrulation. It also provides a good example of the sub-functionalisation that results from the expansion of gene families in evolution.
Collapse
Affiliation(s)
- Guillaume Luxardi
- Institut de Biologie du Développement de Marseille Luminy, UMR 6216, CNRS-Université de la Méditerranée, Case 907, 13288 Marseille Cedex 09, France
| | | | | | | |
Collapse
|
16
|
Nagel M, Luu O, Bisson N, Macanovic B, Moss T, Winklbauer R. Role of p21-activated kinase in cell polarity and directional mesendoderm migration in the Xenopus gastrula. Dev Dyn 2009; 238:1709-26. [PMID: 19504461 DOI: 10.1002/dvdy.21985] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The p21 activated kinases (Paks) are prominently involved in the regulation of cell motility. Using a kinase-dead mutant of xPak1, we show that during Xenopus gastrulation, the kinase activity of Pak1 is required upstream of Cdc42 for the establishment of cell polarity in the migrating mesendoderm. Overactivation of Pak1 function by the expression of constitutively active xPak1 compromises the maintenance of cell polarity, by indirectly inhibiting RhoA function. Inhibition of cell polarization does not affect the migration of single mesendoderm cells. However, Pak1 inhibition interferes with the guidance of mesendoderm migration by directional cues residing in the extracellular matrix of the blastocoel roof, and with mesendoderm translocation in the embryo.
Collapse
Affiliation(s)
- Martina Nagel
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
17
|
Mateus AM, Gorfinkiel N, Arias AM. Origin and function of fluctuations in cell behaviour and the emergence of patterns. Semin Cell Dev Biol 2009; 20:877-84. [PMID: 19665568 DOI: 10.1016/j.semcdb.2009.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2009] [Revised: 07/20/2009] [Accepted: 07/31/2009] [Indexed: 11/18/2022]
Abstract
Morphogenesis is the process whereby cells assemble into tissues and organs. Recent studies of this process have revealed heterogeneity of individual cell behaviours that contrasts with the deterministic activity of tissues as a whole. Here we review these observations and suggest that fluctuations and heterogeneities are a central substrate for morphogenesis and that there might exist mechanisms dedicated to the averaging of these fluctuations to ensure robust and reproducible behaviours at the tissue level.
Collapse
Affiliation(s)
- Ana M Mateus
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | | | | |
Collapse
|
18
|
Cai X, Wu JH, Exum ST, Oppermann M, Premont RT, Shenoy SK, Freedman NJ. Reciprocal regulation of the platelet-derived growth factor receptor-beta and G protein-coupled receptor kinase 5 by cross-phosphorylation: effects on catalysis. Mol Pharmacol 2009; 75:626-36. [PMID: 19092051 PMCID: PMC2684914 DOI: 10.1124/mol.108.050278] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Accepted: 12/17/2008] [Indexed: 11/22/2022] Open
Abstract
Signaling by the platelet-derived growth factor receptor-beta (PDGFRbeta) is diminished when the PDGFRbeta is phosphorylated on seryl residues by G protein-coupled receptor kinase-5 (GRK5), but mechanisms for GRK5 activation by the PDGFRbeta remain obscure. We therefore tested whether the PDGFRbeta is able to tyrosine-phosphorylate and thereby activate GRK5. Purified GRK5 was tyrosine-phosphorylated by the wild-type PDGFRbeta to a stoichiometry of 0.8 mol phosphate/mol GRK5, an extent approximately 5 times greater than observed with a Y857F PDGFRbeta mutant that fails to phosphorylate exogenous substrates but autophosphorylates and activates Src normally. The degree of PDGFRbeta-mediated phosphorylation of GRK5 correlated with GRK5 activity, as assessed by seryl phosphorylation of the PDGFRbeta in purified protein preparations, in intact cells expressing a tyrosine-to-phenylalanine GRK5 mutant, and in GRK5 peptide phosphorylation assays. However, tyrosyl phosphorylation of GRK5 was not necessary for GRK5-mediated phosphorylation of the beta(2)-adrenergic receptor, even though beta(2)-adrenergic receptor activation promoted tyrosyl phosphorylation of GRK5 in smooth muscle cells. Phosphorylation of the PDGFRbeta by GRK5 in smooth muscle cells or in purified protein preparations reduced PDGFRbeta-mediated peptide phosphorylation. In contrast, phosphorylation of GRK5 by the PDGFRbeta enhanced the V(max) of GRK5-mediated peptide phosphorylation, by 3.4-fold, without altering the GRK5 K(M) for peptide. We conclude that GRK5 tyrosyl phosphorylation is required for the activation of GRK5 by the PDGFRbeta, but not by the beta(2)-adrenergic receptor, and that by activating GRK5, the PDGFRbeta triggers its own desensitization.
Collapse
Affiliation(s)
- Xinjiang Cai
- Departments of Medicine/Cardiology, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Yang X, Chrisman H, Weijer CJ. PDGF signalling controls the migration of mesoderm cells during chick gastrulation by regulating N-cadherin expression. Development 2008; 135:3521-30. [DOI: 10.1242/dev.023416] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In the early chick embryo, Pdgfa is expressed in the epiblast,outlining the migration route that mesoderm cells expressing the receptor, Pdgfrα, follow to form somites. Both expression of a dominant-negative PDGFRα and depletion of endogenous PDGFRαligands through injection of PDGFRα-Fc fragments, inhibit the migration of mesoderm cells after their ingression through the primitive streak. siRNA-mediated downregulation of Pdgfa expression in the epiblast on one side of the streak strongly blocks the migration of mesoderm cells into that side. Beads soaked in PDGFA elicit a directional attractive movement response in mesoderm cells, showing that PDGFA can provide directional information. Surprisingly, however, PDGF signalling is also required for directional movement towards other attractants, such as FGF4. PDGF signalling controls N-cadherin expression on mesoderm cells, which is required for efficient migration. PDGF signalling activates the PI3 kinase signalling pathway in vivo and activation of this pathway is required for proper N-cadherin expression.
Collapse
Affiliation(s)
- Xuesong Yang
- Division of Cell and Developmental Biology, Wellcome Trust Biocentre,College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Holly Chrisman
- Division of Cell and Developmental Biology, Wellcome Trust Biocentre,College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Cornelis J. Weijer
- Division of Cell and Developmental Biology, Wellcome Trust Biocentre,College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
20
|
Kai M, Heisenberg CP, Tada M. Sphingosine-1-phosphate receptors regulate individual cell behaviours underlying the directed migration of prechordal plate progenitor cells during zebrafish gastrulation. Development 2008; 135:3043-51. [PMID: 18701549 DOI: 10.1242/dev.020396] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During vertebrate gastrulation, cells forming the prechordal plate undergo directed migration as a cohesive cluster. Recent studies revealed that E-cadherin-mediated coherence between these cells plays an important role in effective anterior migration, and that platelet-derived growth factor (Pdgf) appears to act as a guidance cue in this process. However, the mechanisms underlying this process at the individual cell level remain poorly understood. We have identified miles apart (mil) as a suppressor of defective anterior migration of the prospective prechordal plate in silberblick (slb)/wnt11 mutant embryos, in which E-cadherin-mediated coherence of cell movement is reduced. mil encodes Edg5, a sphingosine-1-phosphate (S1P) receptor belonging to a family of five G-protein-coupled receptors (S1PRs). S1P is a lipid signalling molecule that has been implicated in regulating cytoskeletal rearrangements, cell motility and cell adhesion in a variety of cell types. We examined the roles of Mil in anterior migration of prechordal plate progenitor cells and found that, in slb embryos injected with mil-MO, cells migrate with increased motility but decreased directionality, without restoring the coherence of cell migration. This indicates that prechordal plate progenitor cells can migrate effectively as individuals, as well as in a coherent cluster of cells. Moreover, we demonstrate that Mil regulates cell motility and polarisation through Pdgf and its intracellular effecter PI3K, but modulates cell coherence independently of the Pdgf/PI3K pathway, thus co-ordinating cell motility and coherence. These results suggest that the net migration of prechordal plate progenitors is determined by different parameters, including motility, persistence and coherence.
Collapse
Affiliation(s)
- Masatake Kai
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | | | | |
Collapse
|
21
|
Abstract
Platelet-derived growth factors (PDGFs) and their receptors (PDGFRs) have served as prototypes for growth factor and receptor tyrosine kinase function for more than 25 years. Studies of PDGFs and PDGFRs in animal development have revealed roles for PDGFR-alpha signaling in gastrulation and in the development of the cranial and cardiac neural crest, gonads, lung, intestine, skin, CNS, and skeleton. Similarly, roles for PDGFR-beta signaling have been established in blood vessel formation and early hematopoiesis. PDGF signaling is implicated in a range of diseases. Autocrine activation of PDGF signaling pathways is involved in certain gliomas, sarcomas, and leukemias. Paracrine PDGF signaling is commonly observed in epithelial cancers, where it triggers stromal recruitment and may be involved in epithelial-mesenchymal transition, thereby affecting tumor growth, angiogenesis, invasion, and metastasis. PDGFs drive pathological mesenchymal responses in vascular disorders such as atherosclerosis, restenosis, pulmonary hypertension, and retinal diseases, as well as in fibrotic diseases, including pulmonary fibrosis, liver cirrhosis, scleroderma, glomerulosclerosis, and cardiac fibrosis. We review basic aspects of the PDGF ligands and receptors, their developmental and pathological functions, principles of their pharmacological inhibition, and results using PDGF pathway-inhibitory or stimulatory drugs in preclinical and clinical contexts.
Collapse
|
22
|
Nie S, Chang C. PI3K and Erk MAPK mediate ErbB signaling in Xenopus gastrulation. Mech Dev 2007; 124:657-67. [PMID: 17716876 PMCID: PMC2098746 DOI: 10.1016/j.mod.2007.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 06/18/2007] [Accepted: 07/12/2007] [Indexed: 12/22/2022]
Abstract
ErbB signaling regulates cell adhesion and movements during Xenopus gastrulation, but the downstream pathways involved have not been elucidated. In this study, we show that phosphatidylinositol-3 kinase (PI3K) and Erk mitogen-activated protein kinase (MAPK) mediate ErbB signaling to regulate gastrulation. Both PI3K and MAPK function sequentially in mesoderm specification and movements, and ErbB signaling is important only for the late phase activation of these pathways to control cell behaviors. Activation of either PI3K or Erk MAPK rescues gastrulation defects in ErbB4 morphant embryos, and restores convergent extension in the trunk mesoderm as well as coherent cell migration in the head mesoderm. The two signals preferentially regulate different aspects of cell behaviors, with PI3K more efficient in rescuing cell adhesion and spreading and MAPK more effective in stimulating the formation of filopodia. PI3K and MAPK also weakly activate each other, and together they modulate gastrulation movements. Our results reveal that PI3K and Erk MAPK, which have previously been considered as mesodermal inducing signals, also act downstream of ErbB signaling to participate in regulation of gastrulation morphogenesis.
Collapse
Affiliation(s)
| | - Chenbei Chang
- correspondent, ; 205-975-7229 (phone); 205-975-5648 (fax)
| |
Collapse
|
23
|
Rohde LA, Heisenberg CP. Zebrafish Gastrulation: Cell Movements, Signals, and Mechanisms. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 261:159-92. [PMID: 17560282 DOI: 10.1016/s0074-7696(07)61004-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gastrulation is a morphogenetic process that results in the formation of the embryonic germ layers. Here we detail the major cell movements that occur during zebrafish gastrulation: epiboly, internalization, and convergent extension. Although gastrulation is known to be regulated by signaling pathways such as the Wnt/planar cell polarity pathway, many questions remain about the underlying molecular and cellular mechanisms. Key factors that may play a role in gastrulation cell movements are cell adhesion and cytoskeletal rearrangement. In addition, some of the driving force for gastrulation may derive from tissue interactions such as those described between the enveloping layer and the yolk syncytial layer. Future exploration of gastrulation mechanisms relies on the development of sensitive and quantitative techniques to characterize embryonic germ-layer properties.
Collapse
Affiliation(s)
- Laurel A Rohde
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | |
Collapse
|
24
|
Nie S, Chang C. Regulation of Xenopus gastrulation by ErbB signaling. Dev Biol 2006; 303:93-107. [PMID: 17134691 PMCID: PMC4939279 DOI: 10.1016/j.ydbio.2006.10.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Revised: 10/18/2006] [Accepted: 10/25/2006] [Indexed: 12/15/2022]
Abstract
During Xenopus gastrulation, mesendodermal cells are internalized and display different movements. Head mesoderm migrates along the blastocoel roof, while trunk mesoderm undergoes convergent extension (C&E). Different signals are implicated in these processes. Our previous studies reveal that signals through ErbB receptor tyrosine kinases modulate Xenopus gastrulation, but the mechanisms employed are not understood. Here we report that ErbB signals control both C&E and head mesoderm migration. Inhibition of ErbB pathway blocks elongation of dorsal marginal zone explants and activin-treated animal caps without removing mesodermal gene expression. Bipolar cell shape and cell mixing in the dorsal region are impaired. Inhibition of ErbB signaling also interferes with migration of prechordal mesoderm on fibronectin. Cell-cell and cell-matrix interaction and cell spreading are reduced when ErbB signaling is blocked. Using antisense morpholino oligonucleotides, we show that ErbB4 is involved in Xenopus gastrulation morphogenesis, and it partially regulates cell movements through modulation of cell adhesion and membrane protrusions. Our results reveal for the first time that vertebrate ErbB signaling modulates gastrulation movements, thus providing a novel pathway, in addition to non-canonical Wnt and FGF signals, that controls gastrulation. We further demonstrate that regulation of cell adhesive properties and cell morphology may underlie the functions of ErbBs in gastrulation.
Collapse
Affiliation(s)
| | - Chenbei Chang
- Corresponding author. Fax: +1 205 975 5648. (C. Chang)
| |
Collapse
|
25
|
Lanzardo S, Curcio C, Forni G, Antón IM. A role for WASP Interacting Protein, WIP, in fibroblast adhesion, spreading and migration. Int J Biochem Cell Biol 2006; 39:262-74. [PMID: 17008118 DOI: 10.1016/j.biocel.2006.08.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 08/10/2006] [Accepted: 08/12/2006] [Indexed: 01/21/2023]
Abstract
The WASP (Wiskott Aldrich Syndrome Protein) Interacting Protein, WIP, regulates actin polymerization and the formation of actin-rich structures such as filopodia and lamellipodia, each of which is involved in cellular adhesion, spreading and migration. To define the role for WIP in these activities, we analysed cell adhesion and spreading as well as the redistribution of polymerised actin and paxillin that occurred when fibroblasts were plated onto different substrata. We compared the effect of WIP overexpression (gain of function) with that of WIP deficiency (loss of function) on these parameters. WIP-overexpression delayed cellular adhesion and spreading, an effect that could be compensated for by exposure to Y-27632, a well characterized ROCK (Rho kinase) inhibitor. WIP overexpression augmented the phosphorylation of Erk and JNK induced by binding to fibronectin, suggesting that WIP participates in signal transduction pathways initiated by integrin engagement. Conversely, WIP deficiency accelerated fibroblast adhesion to plastic and led to the formation of enlarged focal adhesions. The influence of WIP on fibroblast migration was measured by scratch assay. WIP-overexpression reduced migration while WIP-deficiency increased it, suggesting that WIP acts as a negative regulator of fibroblast migration. Together, these findings suggest a novel role for WIP in fibroblast adhesion, spreading and migration.
Collapse
|
26
|
Ren R, Nagel M, Tahinci E, Winklbauer R, Symes K. Migrating anterior mesoderm cells and intercalating trunk mesoderm cells have distinct responses to Rho and Rac during Xenopus gastrulation. Dev Dyn 2006; 235:1090-9. [PMID: 16493692 PMCID: PMC2564620 DOI: 10.1002/dvdy.20711] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Rho GTPases have been shown recently to be important for cell polarity and motility of the trunk mesoderm during gastrulation in Xenopus embryos. This work demonstrated that Rho and Rac have both distinct and overlapping roles in regulating cell shape, and the dynamic properties, polarity, and type of protrusive activity of these cells. Overexpression of activated or inhibitory versions of these GTPases also disrupts development of the head in Xenopus embryos. In this study, we have undertaken a detailed analysis of Rho and Rac function in migrating anterior mesendoderm cells. Scanning electron micrographs of these cells in situ revealed that their normal shingle arrangement is disrupted and both the cells and their lamellipodia are disoriented. Anterior mesendoderm explants plated on their natural blastocoel roof matrix, however, still migrated towards the animal pole, although the tendency to move in this direction is reduced compared to controls. Analysis of a number of parameters in time-lapse recordings of dissociated cells indicated that Rho and Rac also have both distinct and overlapping roles in the motility of the prospective head mesoderm; however, their effects differ to those previously seen in the trunk mesoderm. Both GTPases appear to modulate cell polarization, migration, and protrusive activity. Rho alone, however, regulates the retraction of the lagging edge of the cell. We propose that within the gastrulating Xenopus embryo, two types of mesoderm cells that undergo different motilities have distinct responses to Rho GTPases.
Collapse
Affiliation(s)
- Ruiyi Ren
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| | - Martina Nagel
- Department of Zoology, University of Toronto, Toronto, Canada
| | - Emilios Tahinci
- Department of Cell and Developmental Biology, Vanderbilt University Medical School, Nashville, TN
| | - Rudi Winklbauer
- Department of Zoology, University of Toronto, Toronto, Canada
| | - Karen Symes
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| |
Collapse
|
27
|
Subramanian R, Gondi CS, Lakka SS, Jutla A, Rao JS. siRNA-mediated simultaneous downregulation of uPA and its receptor inhibits angiogenesis and invasiveness triggering apoptosis in breast cancer cells. Int J Oncol 2006; 28:831-9. [PMID: 16525631 PMCID: PMC1398074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023] Open
Abstract
A wide variety of tumor cells exhibit overexpression of urokinase plasminogen activator (uPA) and its receptor (uPAR). In breast cancer, expression of uPA and uPAR is essential for tumor cell invasion and metastasis. It is also known that uPA binds to uPAR and activates the RAS extracellular signal regulated kinase (ERK) signaling pathway. In our study, small interfering RNA (siRNA) was introduced to downregulate the expression of uPA and uPAR in two breast cancer cell lines (MDA MB 231 and ZR 75 1). uPA and uPAR were downregulated individually using single constructs, and in combination using a bicistronic construct driven by a CMV promoter in a pcDNA-3 mammalian expression vector. Reverse transcription PCR (RT-PCR) and Western blot analyses indicated downregulation at both the mRNA and protein levels. In vitro angiogenesis studies using conditioned medium in HMEC-1 cells indicated a decrease in the angiogenic potential of conditioned media from treated cells when compared to the controls. This decrease in angiogenic potential was remarkably higher with the bicistronic construct. Similarly, the invasive potential of these cells decreased dramatically when treated with the bicistronic construct, thereby suggesting a synergistic effect from the downregulation of both uPA and uPAR. Furthermore, when uPA and uPAR were downregulated simultaneously, the apoptotic cascade was triggered as indicated by the upregulation of both initiator and effector caspases as well as other pro-apoptotic molecules. A mitochondrial permeability assay and FACS analysis revealed an increase in apoptotic cells in the uPA/uPAR treatment as compared to the other treatments. This overexpression of pro-apoptotic caspases in relation to the RNAi-induced downregulation of uPA and uPAR clearly suggests the involvement of the uPA-uPAR system in cell survival and proliferation in addition to their role in tumor progression.
Collapse
MESH Headings
- Apoptosis/genetics
- Apoptosis/physiology
- Blotting, Western
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Cell Movement/genetics
- Cell Movement/physiology
- Cells, Cultured
- Culture Media, Conditioned/pharmacology
- Down-Regulation
- Endothelial Cells/drug effects
- Endothelial Cells/physiology
- Genetic Vectors/genetics
- Humans
- Neoplasm Invasiveness
- Neovascularization, Physiologic/genetics
- Neovascularization, Physiologic/physiology
- RNA Interference/physiology
- RNA, Small Interfering/genetics
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Urokinase Plasminogen Activator
- Reverse Transcriptase Polymerase Chain Reaction
- Transfection
- Urokinase-Type Plasminogen Activator/genetics
- Urokinase-Type Plasminogen Activator/metabolism
Collapse
Affiliation(s)
- Ramesh Subramanian
- Division of Cancer Biology, Department of Biomedical and Therapeutic Sciences, University of Illinois College of Medicine at Peoria, USA
| | | | | | | | | |
Collapse
|
28
|
Abstract
ErbB signaling has long been implicated in cancer formation and progression and is shown to regulate cell division, migration, and death during tumorigenesis. The functions of the ErbB pathway during early vertebrate embryogenesis, however, are not well understood. Here we report characterization of ErbB activities during early frog development. Gain-of-function analyses show that EGFR, ErbB2, and ErbB4 induce ectopic tumor-like cell mass that contains increased numbers of mitotic cells. Both the muscle and the neural markers are expressed in these ectopic protrusions. ErbBs also induce mesodermal markers in ectodermal explants. Loss-of-function studies using carboxyl terminal-truncated dominant-negative ErbB receptors demonstrate that blocking ErbB signals leads to defective gastrulation movements and malformation of the embryonic axis with a reduction in the head structures in early frog embryos. These data, together with the observation that ErbBs are expressed early during frog embryogenesis, suggest that ErbBs regulate cell proliferation, movements, and embryonic patterning during early Xenopus development.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Biomarkers
- Cell Proliferation
- Embryo, Nonmammalian/abnormalities
- Embryo, Nonmammalian/cytology
- Embryo, Nonmammalian/embryology
- Embryo, Nonmammalian/metabolism
- ErbB Receptors/chemistry
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Gene Expression Regulation, Developmental/genetics
- Head/abnormalities
- Head/embryology
- Humans
- Molecular Sequence Data
- Phylogeny
- Receptor, ErbB-2/chemistry
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-3/chemistry
- Receptor, ErbB-3/genetics
- Receptor, ErbB-3/metabolism
- Receptor, ErbB-4
- Sequence Alignment
- Sequence Homology, Amino Acid
- Signal Transduction
- Time Factors
- Xenopus laevis/abnormalities
- Xenopus laevis/embryology
- Xenopus laevis/metabolism
Collapse
Affiliation(s)
| | - Chenbei Chang
- Corresponding author. ; Phone: 205-975-7229; Fax: 205-975-5648
| |
Collapse
|
29
|
Abstract
We review insights in signaling pathways controlling cell polarization and cytoskeletal organization during chemotactic movement in Dictyostelium amoebae and neutrophils. We compare and contrast these insights with our current understanding of pathways controlling chemotactic movements in more-complex multicellular developmental contexts.
Collapse
Affiliation(s)
- Markus Affolter
- Department of Cell Biology, Biozentrum University of Basel, Klingelbergstr. 70, CH-4056 Basel, Switzerland
| | | |
Collapse
|
30
|
Vantler M, Caglayan E, Zimmermann WH, Bäumer AT, Rosenkranz S. Systematic Evaluation of Anti-apoptotic Growth Factor Signaling in Vascular Smooth Muscle Cells. J Biol Chem 2005; 280:14168-76. [PMID: 15640155 DOI: 10.1074/jbc.m413310200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Peptide growth factors contribute to the pathogenesis of cardiovascular diseases by inducing a variety of cellular responses including anti-apoptotic effects. Several of the signaling molecules that are activated by growth factor receptors such as Src family kinases (Src), phosphatidylinositol 3'-kinase (PI3K), phospholipase Cgamma (PLCgamma), Ras, and SHP-2 were shown to mediate survival signals. We systematically investigated the relative contribution of each signaling molecule for growth factor-dependent cell survival in vascular smooth muscle cells (VSMC). Our approach was the use of mutated plateletderived growth factor (PDGF) beta-receptors (betaPDGFR) in which the tyrosine residues required for binding of each signaling molecule were individually mutated to phenylalanine. To bypass endogenous PDGFR in VSMC we used chimeric receptors (ChiRs), containing the extracellular domain of the macrophage colony-stimulating factor (M-CSF) receptor and the cytoplasmic domain of the wild type (WT) or mutated betaPDGFR. Selective activation of the ChiR-WT with M-CSF significantly reduced apoptosis to the same extent as PDGF-BB in non-transfected cells. Deletion of the binding site for PI3K, but not for Src, RasGAP, SHP-2, or PLCgamma, completely abolished the anti-apoptotic effect. Consistently, a ChiR mutant that only binds PI3K was fully able to mediate cell survival as efficiently as the ChiR-WT. Furthermore, the PDGF-dependent anti-apoptotic effect in non-transfected cells was completely abolished by the PI3K inhibitor wortmannin, whereas inhibitors of Src, PLCgamma, ERK, or p38 MAP kinase had no effect. The exploration of downstream signaling events revealed that PDGF-BB activates the anti-apoptotic Akt signaling pathway in a PI3K-dependent manner. Moreover, Akt phosphorylates and thus inactivates the pro-apoptotic proteins BAD and Forkhead transcription factors (FKHR, FKHRL1). We conclude that growth factor-dependent cell survival in VSMC is mediated only by activation of the PI3K/Akt pathway, whereas all other receptor-associated signaling molecules do not play a significant role.
Collapse
MESH Headings
- Animals
- Apoptosis/physiology
- Becaplermin
- Carrier Proteins/metabolism
- Cell Survival
- Cells, Cultured
- Enzyme Activation
- Forkhead Transcription Factors
- Growth Substances/metabolism
- Humans
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Nuclear Proteins/metabolism
- Phosphatidylinositol 3-Kinases/metabolism
- Platelet-Derived Growth Factor/metabolism
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-akt
- Proto-Oncogene Proteins c-sis
- Rats
- Rats, Wistar
- Receptor, Macrophage Colony-Stimulating Factor/genetics
- Receptor, Macrophage Colony-Stimulating Factor/metabolism
- Receptor, Platelet-Derived Growth Factor beta/genetics
- Receptor, Platelet-Derived Growth Factor beta/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Signal Transduction/physiology
- Transcription Factors/metabolism
- bcl-Associated Death Protein
Collapse
Affiliation(s)
- Marius Vantler
- Klinik III für Innere Medizin, Universität zu Köln, D-50924 Köln, Germany
| | | | | | | | | |
Collapse
|
31
|
Abstract
Vertebrate embryogenesis entails an exquisitely coordinated combination of cell proliferation, fate specification and movement. After induction of the germ layers, the blastula is transformed by gastrulation movements into a multilayered embryo with head, trunk and tail rudiments. Gastrulation is heralded by formation of a blastopore, an opening in the blastula. The axial side of the blastopore is marked by the organizer, a signaling center that patterns the germ layers and regulates gastrulation movements. During internalization, endoderm and mesoderm cells move via the blastopore beneath the ectoderm. Epiboly movements expand and thin the nascent germ layers. Convergence movements narrow the germ layers from lateral to medial while extension movements elongate them from head to tail. Despite different morphology, parallels emerge with respect to the cellular and genetic mechanisms of gastrulation in different vertebrate groups. Patterns of gastrulation cell movements relative to the blastopore and the organizer are similar from fish to mammals, and conserved molecular pathways mediate gastrulation movements.
Collapse
|
32
|
Faure S, Cau J, de Santa Barbara P, Bigou S, Ge Q, Delsert C, Morin N. Xenopus p21-activated kinase 5 regulates blastomeres' adhesive properties during convergent extension movements. Dev Biol 2005; 277:472-92. [PMID: 15617688 DOI: 10.1016/j.ydbio.2004.10.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Revised: 09/23/2004] [Accepted: 10/01/2004] [Indexed: 11/26/2022]
Abstract
The p21-activated kinase (PAK) proteins regulate many cellular events including cell cycle progression, cell death and survival, and cytoskeleton rearrangements. We previously identified X-PAK5 that binds the actin and microtubule networks, and could potentially regulate their coordinated dynamics during cell motility. In this study, we investigated the functional importance of this kinase during gastrulation in Xenopus. X-PAK5 is mainly expressed in regions of the embryo that undergo extensive cell movements during gastrula such as the animal hemisphere and the marginal zone. Expression of a kinase-dead mutant inhibits convergent extension movements in whole embryos and in activin-treated animal cap by modifying behavior of cells. This phenotype is rescued in embryo by adding back X-PAK5 catalytic activity. The active kinase decreases cell adhesiveness when expressed in animal hemisphere and inhibits the calcium-dependent reassociation of cells, while dead X-PAK5 kinase localizes to cell-cell junctions and increases cell adhesion. In addition, endogenous X-PAK5 colocalizes with adherens junction proteins and its activity is regulated by extracellular calcium. Taken together, our results suggest that X-PAK5 regulates convergent extension movements in vivo by modulating the calcium-mediated cell-cell adhesion.
Collapse
Affiliation(s)
- Sandrine Faure
- Centre de Recherches en Biochimie Macromoléculaire, FRE 2593 CNRS, 34293 Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
33
|
Van Stry M, McLaughlin KA, Ataliotis P, Symes K. The mitochondrial-apoptotic pathway is triggered in Xenopus mesoderm cells deprived of PDGF receptor signaling during gastrulation. Dev Biol 2004; 268:232-42. [PMID: 15031119 DOI: 10.1016/j.ydbio.2003.12.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2003] [Revised: 10/28/2003] [Accepted: 12/23/2003] [Indexed: 11/20/2022]
Abstract
Platelet-derived growth factor receptor (PDGFR) signaling is required for normal gastrulation in Xenopus laevis. Embryos deprived of PDGFR signaling develop with a range of gastrulation-specific defects including spina bifida, shortened anteroposterior axis, and reduced anterior structures. These defects arise because the involuting mesoderm fails to move appropriately. In this study, we determine that inhibition of PDGFR signaling causes prospective head mesoderm cells to appear in the blastocoel cavity at the onset of gastrulation, stage 10. These aberrant cells undergo apoptosis via the caspase 3 pathway at an embryonic checkpoint called the early gastrula transition (EGT). They are TUNEL-positive and have increased levels of caspase 3 activity compared to control embryos. Apoptotic death of these mesoderm cells can be prevented by co-injection of mRNA encoding Bcl-2 or by injection of either a general caspase inhibitor or a caspase 3-specific inhibitor. Prevention of cell death, however, is not sufficient to rescue gastrulation defects in these embryos. Based on these data, we propose that PDGFR signaling is necessary for survival of prospective head mesoderm cells, and also plays an essential role in the control of their cell movement during gastrulation.
Collapse
|
34
|
Nagel M, Tahinci E, Symes K, Winklbauer R. Guidance of mesoderm cell migration in the Xenopus gastrula requires PDGF signaling. Development 2004; 131:2727-36. [PMID: 15128658 DOI: 10.1242/dev.01141] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In vertebrates, PDGFA and its receptor, PDGFRalpha, are expressed in the early embryo. Impairing their function causes an array of developmental defects, but the underlying target processes that are directly controlled by these factors are not well known. We show that in the Xenopus gastrula, PDGFA/PDGFRalpha signaling is required for the directional migration of mesodermal cells on the extracellular matrix of the blastocoel roof. Blocking PDGFRalpha function in the mesoderm does not inhibit migration per se, but results in movement that is randomized and no longer directed towards the animal pole. Likewise, compromising PDGFA function in the blastocoel roof substratum abolishes directionality of movement. Overexpression of wild-type PDGFA, or inhibition of PDGFA both lead to randomized migration, disorientation of polarized mesodermal cells, decreased movement towards the animal pole, and reduced head formation and axis elongation. This is consistent with an instructive role for PDGFA in the guidance of mesoderm migration.
Collapse
Affiliation(s)
- Martina Nagel
- Department of Zoology, University of Toronto, 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada
| | | | | | | |
Collapse
|
35
|
Abstract
Recent advances in genetic manipulation have greatly expanded our understanding of cellular responses to platelet-derived growth factors (PDGFs) during animal development. In addition to driving mesenchymal proliferation, PDGFs have been shown to direct the migration, differentiation and function of a variety of specialized mesenchymal and migratory cell types, both during development and in the adult animal. Furthermore, the availability of genomic sequence data has facilitated the identification of novel PDGF and PDGF receptor (PDGFR) family members in C. elegans, Drosophila, Xenopus, zebrafish and mouse. Early data from these different systems suggest that some functions of PDGFs have been evolutionarily conserved.
Collapse
Affiliation(s)
- Renée V Hoch
- Program in Developmental Biology and Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | | |
Collapse
|
36
|
Montero JA, Kilian B, Chan J, Bayliss PE, Heisenberg CP. Phosphoinositide 3-kinase is required for process outgrowth and cell polarization of gastrulating mesendodermal cells. Curr Biol 2003; 13:1279-89. [PMID: 12906787 DOI: 10.1016/s0960-9822(03)00505-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND During vertebrate gastrulation, cell polarization and migration are core components in the cellular rearrangements that lead to the formation of the three germ layers, ectoderm, mesoderm, and endoderm. Previous studies have implicated the Wnt/planar cell polarity (PCP) signaling pathway in controlling cell morphology and movement during gastrulation. However, cell polarization and directed cell migration are reduced but not completely abolished in the absence of Wnt/PCP signals; this observation indicates that other signaling pathways must be involved. RESULTS We show that Phosphoinositide 3-Kinases (PI3Ks) are required at the onset of zebrafish gastrulation in mesendodermal cells for process formation and cell polarization. Platelet Derived Growth Factor (PDGF) functions upstream of PI3K, while Protein Kinase B (PKB), a downstream effector of PI3K activity, localizes to the leading edge of migrating mesendodermal cells. In the absence of PI3K activity, PKB localization and cell polarization are strongly reduced in mesendodermal cells and are followed by slower but still highly coordinated and directed movements of these cells. CONCLUSIONS We have identified a novel role of a signaling pathway comprised of PDGF, PI3K, and PKB in the control of morphogenetic cell movements during gastrulation. Furthermore, our findings provide insight into the relationship between cell polarization and directed cell migration at the onset of zebrafish gastrulation.
Collapse
Affiliation(s)
- Juan-Antonio Montero
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany
| | | | | | | | | |
Collapse
|
37
|
Li J, Molkentin JD, Colbert MC. Retinoic acid inhibits cardiac neural crest migration by blocking c-Jun N-terminal kinase activation. Dev Biol 2001; 232:351-61. [PMID: 11401397 DOI: 10.1006/dbio.2001.0203] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Retinoic acid (RA), a potent teratogen, produces a characteristic set of embryonic cardiovascular malformations similar to those observed in neural crest ablated avians. While the effects of RA on neural crest are well described, the molecular mechanism(s) of RA action on these cells is less clear. The present study examines the relationship between RA and mitogen-activated protein kinase signaling in neural crest cells and demonstrates that c-Jun N-terminal kinase (JNK) activation is severely repressed by RA. RA suppressed migration and proliferation of primary cultures of mouse neural crest cells treated in vitro as well as from animals treated in vivo. On Western blots, JNK activation/phosphorylation in neural crest cultures was reduced, while neither extracellular signal-regulated kinase (ERK) nor p38 pathways were affected. Both the dose-dependent stimulation of neural crest outgrowth and JNK phosphorylation by platelet-derived growth factor AA, which promotes outgrowth but not proliferation of neural crest cultures, were completely abrogated by RA. To establish the relevance of the JNK signaling pathway to cardiac neural crest migration, dominant negative adenoviral constructs were used to inhibit upstream activation of JNK or c-Jun downstream responses. Both adenoviral constructs markedly reduced neural crest cell outgrowth, while a dominant negative inhibitor of the p38 pathway had no effect. These data demonstrate that the JNK signaling pathway and c-Jun activation are critical for cardiac neural crest outgrowth and are potential targets for the action of RA.
Collapse
Affiliation(s)
- J Li
- Division of Molecular Cardiovascular Biology, Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA
| | | | | |
Collapse
|
38
|
Carballada R, Yasuo H, Lemaire P. Phosphatidylinositol-3 kinase acts in parallel to the ERK MAP kinase in the FGF pathway during Xenopus mesoderm induction. Development 2001; 128:35-44. [PMID: 11092809 DOI: 10.1242/dev.128.1.35] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Phosphoinositide 3-kinases (PI3Ks) are lipid kinases that can phosphorylate phosphaditylinositides leading to the cell type-specific regulation of intracellular protein kinases. PI3Ks are involved in a wide variety of cellular events including mitogenic signalling, regulation of growth and survival, vesicular trafficking, and control of the cytoskeleton. Some of these enzymes also act downstream of receptor tyrosine kinases or G-protein-coupled receptors. Using two strategies to inhibit PI3K signalling in embryos, we have analysed the role of PI3Ks during early Xenopus development. We find that a class 1A PI3K catalytic activity is required for the definition of trunk mesoderm during the blastula stages, but is less important for endoderm and prechordal plate mesoderm induction or for organiser formation. It is required in the FGF signalling pathway downstream of Ras and in parallel to the extracellular signal-regulated kinase (ERK) MAP kinases. In addition, our results show that ERKs and PI3Ks can synergise to convert ectoderm into mesoderm. These data provide the first evidence that class 1 PI3Ks are required for a specific set of patterning events in vertebrate embryos. Furthermore, they bring new insight into the FGF signalling cascade in Xenopus.
Collapse
Affiliation(s)
- R Carballada
- Laboratoire de Génétique et Physiologie du Développement, Institut de Biologie du Développement de Marseille, CNRS-INSERM-Université de la Méditerrannée-AP de Marseille, Campus de Luminy Case 907, F-13288 Marseille Cedex 9, France
| | | | | |
Collapse
|
39
|
Adler CE, Miyoshi-Akiyama T, Aleman LM, Tanaka M, Smith JM, Mayer BJ. Abl family kinases and Cbl cooperate with the Nck adaptor to modulate Xenopus development. J Biol Chem 2000; 275:36472-8. [PMID: 10967110 DOI: 10.1074/jbc.m005424200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously showed that overexpression of the Nck Src homology (SH) 2/SH3 adaptor in Xenopus embryos induced developmental defects including anterior truncation and mesoderm ventralization. Mutagenic analysis indicated that this was due to relocalization of endogenous proteins that bind the first two SH3 domains of Nck. We therefore screened a Xenopus expression library with Nck SH3 domains to identify Nck-interacting proteins, and evaluated candidate binding proteins for a potential role in Nck-induced anterior truncation/ventralization. Of 39 binding proteins analyzed, only the Abl-related kinase Arg and the Cbl proto-oncogene product bound preferentially to the first two SH3 domains in tandem compared with the individual domains, consistent with a role in the developmental phenotype. High level overexpression of c-Abl or Arg alone induced anterior truncation, as did lower levels of an activated form of Abl; Cbl alone had no effect. In a sensitized system where subthreshold amounts of a ventralizing Nck mutant were expressed, co-expression of the combination of Abl or Arg and Cbl at modest levels strongly potentiated anterior truncation, while Arg, Abl, or Cbl alone were without effect. These results suggest a role for both Cbl and Abl family kinases in patterning the Xenopus embryo.
Collapse
Affiliation(s)
- C E Adler
- Laboratory of Molecular Medicine, Children's Hospital and Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
40
|
Huang S, New L, Pan Z, Han J, Nemerow GR. Urokinase plasminogen activator/urokinase-specific surface receptor expression and matrix invasion by breast cancer cells requires constitutive p38alpha mitogen-activated protein kinase activity. J Biol Chem 2000; 275:12266-72. [PMID: 10766865 DOI: 10.1074/jbc.275.16.12266] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Overexpression of urokinase plasminogen activator (uPA) and its receptor (uPAR) has been well documented in a wide variety of tumor cells. In breast cancer, expression of uPA/uPAR is essential for tumor cell invasion and metastasis. However, the mechanism responsible for uPA/uPAR expression in cancer cells remains unclear. In the studies reported here, we show that endogenous p38 MAPK activity correlates well with breast carcinoma cell invasiveness. Treatment of highly invasive BT549 cells with a specific p38 MAPK inhibitor SB203580 diminished both uPA/uPAR mRNA and protein expression and abrogated the ability of these cells to invade matrigel, suggesting that p38 MAPK signaling pathway is involved in the regulation of uPA/uPAR expression and breast cancer cell invasion. We also demonstrated that SB203580-induced reduction in uPA/uPAR mRNA expression resulted from the de- stabilization of uPA and uPAR mRNA. Finally, by selectively inhibiting p38alpha or p38beta MAPK isoforms, we demonstrate that p38alpha, rather than p38beta, MAPK activity is essential for uPA/uPAR expression. These studies suggest that p38alpha MAPK signaling pathway is important for the maintenance of breast cancer invasive phenotype by promoting the stabilities of uPA and uPAR mRNA.
Collapse
Affiliation(s)
- S Huang
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | | | | | |
Collapse
|
41
|
Yoshii S, Tanaka M, Otsuki Y, Wang DY, Guo RJ, Zhu Y, Takeda R, Hanai H, Kaneko E, Sugimura H. alphaPIX nucleotide exchange factor is activated by interaction with phosphatidylinositol 3-kinase. Oncogene 1999; 18:5680-5690. [PMID: 10523848 DOI: 10.1038/sj.onc.1202936] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/1998] [Revised: 04/26/1999] [Accepted: 04/26/1999] [Indexed: 11/09/2022]
Abstract
p21-activated kinase (PAK) is a common effector protein of the small GTPases Cdc42 and Rac, leading to the activation of downstream mitogen activated protein kinases. PAK also mediates polarized cytoskeletal changes induced by these GTPases. The recently identified PAK-interacting exchange factor (PIX) acts as a guanine nucleotide exchange factor on Rac, and colocalizes with PAK in a focal complex, but little is known about the associated signaling cascades, including upstream activators of PIX. In this study, we show that one of the isoforms of PIX, alphaPIX, is activated by signaling cascades from the platelet-derived growth factor (PDGF) receptor and EphB2 receptor, and from integrin-induced signaling through phosphatidylinositol 3-kinase (PI3-kinase). alphaPIX is activated by forming a complex with these receptors either via association with PAK and Nck, or direct association with the p85 regulatory subunit of PI3-kinase. Synthetic phosphoinositide and membrane targeted PI3-kinase augmented the alphaPIX activity in vivo. In Xenopus, aggregates of mesodermal cells derived from embryos microinjected with alphaPIX significantly increased the peripheral spreading on fibronectin substrate in response to PDGF through PI3-kinase. These results indicate that alphaPIX is activated by PI3-kinase, and is involved in the receptor mediated signaling leading to the activation of the kinase activity of PAK, and the migration of mesodermal cells on extracellular matrix.
Collapse
Affiliation(s)
- S Yoshii
- The First Department of Pathology, Hamamatsu University School of Medicine, 3600 Handa-cho, Hamamatsu, 431-3192 Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Zeigler ME, Chi Y, Schmidt T, Varani J. Role of ERK and JNK pathways in regulating cell motility and matrix metalloproteinase 9 production in growth factor-stimulated human epidermal keratinocytes. J Cell Physiol 1999; 180:271-84. [PMID: 10395297 DOI: 10.1002/(sici)1097-4652(199908)180:2<271::aid-jcp15>3.0.co;2-d] [Citation(s) in RCA: 177] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Invasion is an essential cellular response that plays an important role in a number of physiological and pathological processes. Matrix metalloproteinase (MMP) production and cell movement are diverse cellular responses integral to the process of invasion. The complexity of the invasive process suggests the necessity of coordinate activation of more than one signaling pathway in order to activate specific factors responsible for regulating these cellular responses. In this report, we demonstrate that cell movement and MMP-9 production are both directly dependent on the activation of endogenous ERK signaling in hepatocyte growth factor (HGF)-or epidermal growth factor (EGF)-stimulated human epidermal keratinocytes. The kinetic profiles of endogenous MEK and ERK activity suggest that prolonged activation of these signal transducers is an underlying mechanism involved in stimulating cell motility and MMP-9 production. In support of this finding, a transient MEK/ERK signal elicited by keratinocyte growth factor (KGF) or insulin-like growth factor-1 (IGF-1) fails to stimulate these invasion-related responses. Specific inhibition of MEK leads to suppression of ERK activation, marked reduction in steady-state levels of c-Fos, and inhibition of cell movement and MMP-9 production. This occurs despite continued activation of JNK and c-Jun signaling in the presence of MEK-specific inhibition. In contrast, when JNK activity is specifically inhibited in HGF-stimulated cells, AP-1 activity is suppressed but cell motility is not affected. This evidence suggests that while ERK and JNK activity are necessary for AP-1 activation, ERK but not JNK is sufficient in stimulating cell motility.
Collapse
Affiliation(s)
- M E Zeigler
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, USA.
| | | | | | | |
Collapse
|
43
|
Fambrough D, McClure K, Kazlauskas A, Lander ES. Diverse signaling pathways activated by growth factor receptors induce broadly overlapping, rather than independent, sets of genes. Cell 1999; 97:727-41. [PMID: 10380925 DOI: 10.1016/s0092-8674(00)80785-0] [Citation(s) in RCA: 373] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We sought to explore the relationship between receptor tyrosine kinase (RTK) activated signaling pathways and the transcriptional induction of immediate early genes (IEGs). Using global expression monitoring, we identified 66 fibroblast IEGs induced by platelet-derived growth factor beta receptor (PDGFRbeta) signaling. Mutant receptors lacking binding sites for activation of the PLCgamma, PI3K, SHP2, and RasGAP pathways still retain partial ability to induce 64 of these IEGs. Removal of the Grb2-binding site further broadly reduces induction. These results suggest that the diverse pathways exert broadly overlapping effects on IEG induction. Interestingly, a mutant receptor that restores the RasGAP-binding site promotes induction of an independent group of genes, normally induced by interferons. Finally, we compare the PDGFRbeta and fibroblast growth factor receptor 1; each induces essentially identical IEGs in fibroblasts.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Cell Line, Transformed
- Fibroblasts/cytology
- Gene Expression Regulation
- Genes, Immediate-Early
- Genes, Overlapping
- Humans
- Interferon-gamma/metabolism
- Interferon-gamma/pharmacology
- Mice
- Mutagenesis
- Phenylalanine/genetics
- Phenylalanine/metabolism
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, Fibroblast Growth Factor, Type 1
- Receptor, Macrophage Colony-Stimulating Factor/genetics
- Receptor, Macrophage Colony-Stimulating Factor/metabolism
- Receptor, Platelet-Derived Growth Factor beta
- Receptors, Fibroblast Growth Factor/metabolism
- Receptors, Platelet-Derived Growth Factor/genetics
- Receptors, Platelet-Derived Growth Factor/metabolism
- Signal Transduction
- Tyrosine/genetics
- Tyrosine/metabolism
Collapse
Affiliation(s)
- D Fambrough
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | | | | | |
Collapse
|
44
|
Heraud JM, Racaud-Sultan C, Gironcel D, Albigès-Rizo C, Giacomini T, Roques S, Martel V, Breton-Douillon M, Perret B, Chap H. Lipid products of phosphoinositide 3-kinase and phosphatidylinositol 4',5'-bisphosphate are both required for ADP-dependent platelet spreading. J Biol Chem 1998; 273:17817-23. [PMID: 9651384 DOI: 10.1074/jbc.273.28.17817] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We have shown previously that ADP released upon platelet adhesion mediated by alphaIIb beta3 integrin triggers accumulation of phosphatidylinositol 3',4'-bisphosphate (PtdIns-3,4-P2) (Gironcel, D. , Racaud-Sultan, C., Payrastre, B., Haricot, M., Borchert, G., Kieffer, N., Breton, M., and Chap, H. (1996) FEBS Lett. 389, 253-256). ADP has also been involved in platelet spreading. Therefore, in order to study a possible role of phosphoinositide 3-kinase in platelet morphological changes following adhesion, human platelets were pretreated with specific phosphoinositide 3-kinase inhibitors LY294002 and wortmannin. Under conditions where PtdIns-3, 4-P2 synthesis was totally inhibited (25 microM LY294002 or 100 nM wortmannin), platelets adhered to the fibrinogen matrix, extended pseudopodia, but did not spread. Moreover, addition of ADP to the medium did not reverse the inhibitory effects of phosphoinositide 3-kinase inhibitors on platelet spreading. Although synthetic dipalmitoyl PtdIns-3,4-P2 and dipalmitoyl phosphatidylinositol 3',4', 5'-trisphosphate restored only partially platelet spreading, phosphatidylinositol 4',5'-bisphosphate (PtdIns-4,5-P2) was able to trigger full spreading of wortmannin-treated adherent platelets. Following 32P labeling of intact platelets, the recovery of [32P]PtdIns-4,5-P2 in anti-talin immunoprecipitates from adherent platelets was found to be decreased upon treatment by wortmannin. These results suggest that the lipid products of phosphoinositide 3-kinase are required but not sufficient for ADP-induced spreading of adherent platelets and that PtdIns-4,5-P2 could be a downstream messenger of this signaling pathway.
Collapse
Affiliation(s)
- J M Heraud
- Institut Fédératif de Recherche en Immunologie Cellulaire et Moléculaire, INSERM, Unité 326, Hôpital Purpan, F 31059 Toulouse Cedex, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Zhang XQ, Afink GB, Svensson K, Jacobs JJ, Günther T, Forsberg-Nilsson K, van Zoelen EJ, Westermark B, Nistér M. Specific expression in mouse mesoderm- and neural crest-derived tissues of a human PDGFRA promoter/lacZ transgene. Mech Dev 1998; 70:167-80. [PMID: 9510033 DOI: 10.1016/s0925-4773(97)00190-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The platelet-derived growth factor alpha-receptor (PDGFR-alpha) displays a lineage-specific expression pattern in the mouse embryo and is required for normal development of mesoderm and cephalic neural crest derivatives. The purpose of the present study was to demonstrate the in vivo promoter function of genomic DNA fragments representing the 5'-flanking part of the human PDGFRA gene. 2.2, 0.9 and 0.4 kb PDGFRA promoter fragments, ligated to a lacZ reporter gene, were microinjected into fertilized mouse eggs and transgenic mouse lines were established. The expression patterns were basically similar in the 2.2 and 0.9 kb lines and overlapped grossly the endogenous Pdgfra gene expression pattern. The transgenic line with the highest expression level was chosen for detailed analysis. Expression was, as expected, mainly confined to tissues of mesodermal and neural crest origin. No expression was found in epithelial tissues of endo- or ectodermal origin. The promoter fragments were also active in neuroepithelium and in certain neuronal cell types that did not faithfully express PDGFR-alpha mRNA, while they failed to specify reporter expression in PDGFR-alpha expressing O-2A progenitor cells and other glial elements of the central nervous system. Thus, the isolated human PDGFRA promoter contains most but not all of the regulatory elements that are necessary to establish tissue specific gene expression during development.
Collapse
Affiliation(s)
- X Q Zhang
- Department of Pathology, University of Uppsala, University Hospital, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Soriano P. The PDGF alpha receptor is required for neural crest cell development and for normal patterning of the somites. Development 1997; 124:2691-700. [PMID: 9226440 DOI: 10.1242/dev.124.14.2691] [Citation(s) in RCA: 478] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Platelet-derived growth factors (PDGFs) have been implicated in the control of cell proliferation, survival and migration. Patch mutant mice harbor a deletion including the PDGF alpha receptor gene and exhibit defects of neural crest origin which affect pigmentation in heterozygotes and cranial bones in homozygotes. To verify the role of the PDGF alphaR gene during development, mice carrying a targeted null mutation were generated. No pigmentation phenotype was observed in heterozygotes. Homozygotes die during embryonic development and exhibit incomplete cephalic closure similar to that observed in a subset of Patch mutants. In addition, increased apoptosis was observed on pathways followed by migrating neural crest cells. However, alterations in mutant vertebrae, ribs and sternum were also observed, which appear to stem from a deficiency in myotome formation. These results indicate that PDGFs may exert their functions during early embryogenesis by affecting cell survival and patterning.
Collapse
Affiliation(s)
- P Soriano
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
47
|
Ataliotis P, Mercola M. Distribution and functions of platelet-derived growth factors and their receptors during embryogenesis. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 172:95-127. [PMID: 9102395 DOI: 10.1016/s0074-7696(08)62359-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Platelet-derived growth factors (PDGFs) are soluble proteins that mediate intercellular signaling via receptor tyrosine kinases. The patterns of PDGF and PDGF receptor expression during embryogenesis are complex and dynamic and suggest that signaling can be autocrine or paracrine, depending on the particular tissue and the stage of development. Mesenchymal cells throughout the embryo and within some developing organs produce PDGF receptors, whereas their ligands are often produced by adjacent epithelial or endothelial cells. Disruption of PDGF signaling in the embryo leads to morphogenetic defects and embryonic or perinatal lethality. Tissues that are particularly susceptible to the absence of PDGF signaling are migrating mesoderm cells during gastrulation, nonneuronal neural crest cell derivatives, and kidney mesangial cells. These tissues share the common feature of undergoing epithelial-mesenchymal transitions. We review current knowledge of the distribution of PDGF ligands and receptors and discuss how this distribution may relate to several roles for PDGF during embryogenesis, particularly the regulation of mesenchymal cell behavior.
Collapse
Affiliation(s)
- P Ataliotis
- Department of Cell Biology, Harvard Medical School, Boston Massachusetts 02115, USA
| | | |
Collapse
|