1
|
Griesemer J, Barragán CA. Re-situations of scientific knowledge: a case study of a skirmish over clusters vs clines in human population genomics. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2022; 44:16. [PMID: 35445860 PMCID: PMC9023434 DOI: 10.1007/s40656-022-00497-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
We track and analyze the re-situation of scientific knowledge in the field of human population genomics ancestry studies. We understand re-situation as a process of accommodating the direct or indirect transfer of objects of knowledge from one site/situation to (one or many) other sites/situations. Our take on the concept borrows from Mary S. Morgan's work on facts traveling while expanding it to include other objects of knowledge such as models, data, software, findings, and visualizations. We structure a specific case study by tracking the re-situation of these objects between three research projects studying human population diversity reported in three articles in Science, Genome Research and PLoS Genetics between 2002 and 2005. We characterize these three engagements as a unit of analysis, a "skirmish," in order to compare: (a) the divergence of interests in how life-scientists answer similar research questions and (b) to track the challenging transformation of workflows in research laboratories as these scientific objects are re-situated individually or in bundles. Our analysis of the case study shows that an accurate understanding of re-situation requires tracking the whole bundle of objects in a project because they interact in particular key ways. The absence or dismissal of these interactions opens the door to unforeseen trade-offs, misunderstandings and misrepresentations about research design(s) and workflow(s) and what these say about the questions asked and the findings produced.
Collapse
Affiliation(s)
- James Griesemer
- Department of Philosophy, University of California, Davis, One Shields Avenue, Davis, CA 95616 USA
- Department of Science and Technology Studies, University of California, Davis, One Shields Avenue, Davis, CA 95616 USA
| | - Carlos Andrés Barragán
- Department of Philosophy, University of California, Davis, One Shields Avenue, Davis, CA 95616 USA
- Department of Science and Technology Studies, University of California, Davis, One Shields Avenue, Davis, CA 95616 USA
| |
Collapse
|
2
|
Shahian DM, Badhwar V, O'Brien SM, Habib RH, Han J, McDonald DE, Antman MS, Higgins RSD, Preventza O, Estrera AL, Calhoon JH, Grondin SC, Cooke DT. Social Risk Factors in Society of Thoracic Surgeons Risk Models Part 1: Concepts, Indicator Variables, and Controversies. Ann Thorac Surg 2022; 113:1703-1717. [PMID: 34998732 DOI: 10.1016/j.athoracsur.2021.11.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 11/01/2022]
Affiliation(s)
- David M Shahian
- Division of Cardiac Surgery, Department of Surgery, and Center for Quality and Safety, Massachusetts General Hospital and Harvard Medical School, Boston, MA.
| | - Vinay Badhwar
- Department of Cardiovascular and Thoracic Surgery, West Virginia University, Morgantown WV
| | | | | | - Jane Han
- Society of Thoracic Surgeons, Chicago, IL
| | | | | | - Robert S D Higgins
- Johns Hopkins University School of Medicine and Johns Hopkins Hospital, Baltimore, MD
| | - Ourania Preventza
- Baylor College of Medicine, Texas Heart Institute, Baylor St. Luke's Medical Center, Houston, TX
| | - Anthony L Estrera
- McGovern Medical School at UTHealth; Memorial Hermann Heart and Vascular Institute; Houston, TX
| | - John H Calhoon
- Department of Cardiothoracic Surgery, University of Texas Health Science Center at San Antonio
| | - Sean C Grondin
- Cumming School of Medicine, University of Calgary, and Foothills Medical Centre, Calgary, Alberta, Canada
| | - David T Cooke
- Division of General Thoracic Surgery, UC Davis Health, Sacramento, CA
| |
Collapse
|
3
|
Kharkov VN. Y-Chromosome Markers in Population Genetics: Fundamental and Applied Results of Ethnogenomic Research. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421090040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
4
|
Kinney N, Kang L, Bains H, Lawson E, Husain M, Husain K, Sandhu I, Shin Y, Carter JK, Anandakrishnan R, Michalak P, Garner H. Ethnically biased microsatellites contribute to differential gene expression and glutathione metabolism in Africans and Europeans. PLoS One 2021; 16:e0249148. [PMID: 33765058 PMCID: PMC7993785 DOI: 10.1371/journal.pone.0249148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/11/2021] [Indexed: 12/28/2022] Open
Abstract
Approximately three percent of the human genome is occupied by microsatellites: a type of short tandem repeat (STR). Microsatellites have well established effects on (a) the genetic structure of diverse human populations and (b) expression of nearby genes. These lines of inquiry have uncovered 3,984 ethnically biased microsatellite loci (EBML) and 28,375 expression STRs (eSTRs), respectively. We hypothesize that a combination of EBML, eSTRs, and gene expression data (RNA-seq) can be used to show that microsatellites contribute to differential gene expression and phenotype in human populations. In fact, our previous study demonstrated a degree of mutual overlap between EBML and eSTRs but fell short of quantifying effects on gene expression. The present work aims to narrow the gap. First, we identify 313 overlapping EBML/eSTRs and recapitulate their mutual overlap. The 313 EBML/eSTRs are then characterized across ethnicity and tissue type. We use RNA-seq data to pursue validation of 49 regions that affect whole blood gene expression; 32 out of 54 affected genes are differentially expressed in Africans and Europeans. We quantify the relative contribution of these 32 genes to differential expression; fold change tends to be less than other differentially expressed genes. Repeat length correlates with expression for 15 of the 32 genes; two are conspicuously involved in glutathione metabolism. Finally, we repurpose a mathematical model of glutathione metabolism to investigate how a single polymorphic microsatellite affects phenotype. We conclude with a testable prediction that microsatellite polymorphisms affect GPX7 expression and oxidative stress in Africans and Europeans.
Collapse
Affiliation(s)
- Nick Kinney
- Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, United States of America
- Gibbs Cancer Center & Research Institute, Spartanburg, South Carolina, United States of America
- * E-mail:
| | - Lin Kang
- Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, United States of America
- Gibbs Cancer Center & Research Institute, Spartanburg, South Carolina, United States of America
| | - Harpal Bains
- Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, United States of America
| | - Elizabeth Lawson
- Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, United States of America
| | - Mesam Husain
- Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, United States of America
| | - Kumayl Husain
- Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, United States of America
| | - Inderjit Sandhu
- Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, United States of America
| | - Yongdeok Shin
- Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, United States of America
| | - Javan K. Carter
- University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Ramu Anandakrishnan
- Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, United States of America
- Gibbs Cancer Center & Research Institute, Spartanburg, South Carolina, United States of America
| | - Pawel Michalak
- Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, United States of America
- Gibbs Cancer Center & Research Institute, Spartanburg, South Carolina, United States of America
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Harold Garner
- Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, United States of America
- Gibbs Cancer Center & Research Institute, Spartanburg, South Carolina, United States of America
| |
Collapse
|
5
|
Kinney N, Kang L, Eckstrand L, Pulenthiran A, Samuel P, Anandakrishnan R, Varghese RT, Michalak P, Garner HR. Abundance of ethnically biased microsatellites in human gene regions. PLoS One 2019; 14:e0225216. [PMID: 31830051 PMCID: PMC6907796 DOI: 10.1371/journal.pone.0225216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/29/2019] [Indexed: 12/16/2022] Open
Abstract
Microsatellites-a type of short tandem repeat (STR)-have been used for decades as putatively neutral markers to study the genetic structure of diverse human populations. However, recent studies have demonstrated that some microsatellites contribute to gene expression, cis heritability, and phenotype. As a corollary, some microsatellites may contribute to differential gene expression and RNA/protein structure stability in distinct human populations. To test this hypothesis, we investigate genotype frequencies, functional relevance, and adaptive potential of microsatellites in five super-populations (ethnicities) drawn from the 1000 Genomes Project. We discover 3,984 ethnically-biased microsatellite loci (EBML); for each EBML at least one ethnicity has genotype frequencies statistically different from the remaining four. South Asian, East Asian, European, and American EBML show significant overlap; on the contrary, the set of African EBML is mostly unique. We cross-reference the 3,984 EBML with 2,060 previously identified expression STRs (eSTRs); repeats known to affect gene expression (64 total) are over-represented. The most significant pathway enrichments are those associated with the matrisome: a broad collection of genes encoding the extracellular matrix and its associated proteins. At least 14 of the EBML have established links to human disease. Analysis of the 3,984 EBML with respect to known selective sweep regions in the genome shows that allelic variation in some of them is likely associated with adaptive evolution.
Collapse
Affiliation(s)
- Nick Kinney
- Edward Via College of Osteopathic Medicine, Blacksburg, VA, United States of America
- Gibbs Cancer Center & Research Institute, Spartanburg, SC, United States of America
| | - Lin Kang
- Edward Via College of Osteopathic Medicine, Blacksburg, VA, United States of America
- Gibbs Cancer Center & Research Institute, Spartanburg, SC, United States of America
| | - Laurel Eckstrand
- Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, United States of America
| | - Arichanah Pulenthiran
- Edward Via College of Osteopathic Medicine, Blacksburg, VA, United States of America
| | - Peter Samuel
- Edward Via College of Osteopathic Medicine, Blacksburg, VA, United States of America
| | - Ramu Anandakrishnan
- Edward Via College of Osteopathic Medicine, Blacksburg, VA, United States of America
| | - Robin T. Varghese
- Edward Via College of Osteopathic Medicine, Blacksburg, VA, United States of America
| | - P. Michalak
- Edward Via College of Osteopathic Medicine, Blacksburg, VA, United States of America
- Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, United States of America
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Harold R. Garner
- Edward Via College of Osteopathic Medicine, Blacksburg, VA, United States of America
- Gibbs Cancer Center & Research Institute, Spartanburg, SC, United States of America
| |
Collapse
|
6
|
Jakovljevic M, Jakab M, Gerdtham U, McDaid D, Ogura S, Varavikova E, Merrick J, Adany R, Okunade A, Getzen TE. Comparative financing analysis and political economy of noncommunicable diseases. J Med Econ 2019; 22:722-727. [PMID: 30913928 DOI: 10.1080/13696998.2019.1600523] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/22/2019] [Accepted: 03/15/2019] [Indexed: 10/27/2022]
Abstract
The pandemic of chronic non-communicable diseases (NCDs) poses substantial challenges to the health financing sustainability in high-income and low/middle income countries (LMICs). The aim of this review is to identify the bottle neck inefficiencies in NCDs attributable spending and propose sustainable health financing solutions. The World Health Organization (WHO) introduced the "best buy" concept to scale up the core intervention package against NCDs targeted for LMICs. Population- and individual-based NCD best buy interventions are projected at US$170 billion over 2011-2025. Appropriately designed health financing arrangements can be powerful enablers to scale up the NCD best buys. Rapidly developing emerging nations dominate the landscape of LMICs. Their capability and willingness to invest resources for eradicating NCDs could strengthen WHO outreach efforts in Asia, Africa, and Latin America, much beyond current capacities. There has been a declining trend in international donor aid intended to cope with NCDs over the past decade. There is also a serious misalignment of these resources with the actual needs of recipient countries. Globally, the momentum towards the financing of intersectoral actions is growing, and this presents a cost-effective solution. A budget discrepancy of 10:1 in WHO and multilateral agencies remains in donor aid in favour of communicable diseases compared to NCDs. LMICs are likely to remain a bottleneck of NCDs imposed financing sustainability challenge in the long-run. Catastrophic household health expenditure from out of pocket spending on NCDs could plunge almost 150 million people into poverty worldwide. This epidemiological burden coupled with population ageing presents an exceptionally serious sustainability challenge, even among the richest countries which are members of the Organization for Economic Co-operation and Development (OECD). Strategic and political leadership of WHO and multilateral agencies would likely play essential roles in the struggle that has just begun.
Collapse
Affiliation(s)
- Mihajlo Jakovljevic
- a Department of Global Health Economics and Policy , University of Kragujevac , Kragujevac , Serbia
| | - Melitta Jakab
- b World Health Organization Regional Office for Europe , WHO Barcelona Office for Health Systems Strengthening , Barcelona , Spain
| | - Ulf Gerdtham
- c Division of Health Economics , Lund University , Lund , Sweden
| | - David McDaid
- d London School of Economics and Political Science , London , UK
| | - Seiritsu Ogura
- e Faculty of Economics , Hosei University , Tokyo , Japan
| | - Elena Varavikova
- f Federal Research Institute of Public Health , Moscow , Russian Federation
| | - Joav Merrick
- g Division of Pediatrics , Hadassah Hebrew University Medical Center , Mt Scopus Campus , Israel
| | - Roza Adany
- h Department of Preventive Medicine, Faculty of Public Health , University of Debrecen MTA-DE Public Health Research Group , Debrecen , Hungary
| | - Albert Okunade
- i Fogelman College of Business & Economics , University of Memphis , Memphis , TN , USA
| | - Thomas E Getzen
- j Insurance and Health Management at the Fox School of Business , Temple University , Philadelphia , PA , USA
| |
Collapse
|
7
|
Armstrong C, Richardson DS, Hipperson H, Horsburgh GJ, Küpper C, Percival‐Alwyn L, Clark M, Burke T, Spurgin LG. Genomic associations with bill length and disease reveal drift and selection across island bird populations. Evol Lett 2018; 2:22-36. [PMID: 30283662 PMCID: PMC6121843 DOI: 10.1002/evl3.38] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 12/15/2022] Open
Abstract
Island species provide excellent models for investigating how selection and drift operate in wild populations, and for determining how these processes act to influence local adaptation and speciation. Here, we examine the role of selection and drift in shaping genomic and phenotypic variation across recently separated populations of Berthelot's pipit (Anthus berthelotii), a passerine bird endemic to three archipelagos in the Atlantic. We first characterized genetic diversity and population structuring that supported previous inferences of a history of recent colonizations and bottlenecks. We then tested for regions of the genome associated with the ecologically important traits of bill length and malaria infection, both of which vary substantially across populations in this species. We identified a SNP associated with variation in bill length among individuals, islands, and archipelagos; patterns of variation at this SNP suggest that both phenotypic and genotypic variation in bill length is largely shaped by founder effects. Malaria was associated with SNPs near/within genes involved in the immune response, but this relationship was not consistent among archipelagos, supporting the view that disease resistance is complex and rapidly evolving. Although we found little evidence for divergent selection at candidate loci for bill length and malaria resistance, genome scan analyses pointed to several genes related to immunity and metabolism as having important roles in divergence and adaptation. Our findings highlight the utility and challenges involved with combining association mapping and population genetic analysis in nonequilibrium populations, to disentangle the effects of drift and selection on shaping genotypes and phenotypes.
Collapse
Affiliation(s)
- Claire Armstrong
- School of Biological Sciences, University of East AngliaNorwich Research ParkNorwich NR4 7TJUnited Kingdom
| | - David S. Richardson
- School of Biological Sciences, University of East AngliaNorwich Research ParkNorwich NR4 7TJUnited Kingdom
| | - Helen Hipperson
- NERC Biomolecular Analysis Facility, Department of Animal and Plant SciencesUniversity of SheffieldSheffield S10 2TNUnited Kingdom
| | - Gavin J. Horsburgh
- NERC Biomolecular Analysis Facility, Department of Animal and Plant SciencesUniversity of SheffieldSheffield S10 2TNUnited Kingdom
| | - Clemens Küpper
- Max Planck Institute for Ornithology82319 SeewiesenGermany
| | | | - Matt Clark
- Earlham InstituteNorwich Research ParkNorwich NR4 7UZUnited Kingdom
| | - Terry Burke
- NERC Biomolecular Analysis Facility, Department of Animal and Plant SciencesUniversity of SheffieldSheffield S10 2TNUnited Kingdom
| | - Lewis G. Spurgin
- School of Biological Sciences, University of East AngliaNorwich Research ParkNorwich NR4 7TJUnited Kingdom
| |
Collapse
|
8
|
Nielsen R, Mountain JL, Huelsenbeck JP, Slatkin M. MAXIMUM-LIKELIHOOD ESTIMATION OF POPULATION DIVERGENCE TIMES AND POPULATION PHYLOGENY IN MODELS WITHOUT MUTATION. Evolution 2017; 52:669-677. [PMID: 28565245 DOI: 10.1111/j.1558-5646.1998.tb03692.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/1997] [Accepted: 02/18/1998] [Indexed: 11/30/2022]
Abstract
In this paper we present a method for estimating population divergence times by maximum likelihood in models without mutation. The maximum-likelihood estimator is compared to a commonly applied estimator based on Wright's FST statistic. Simulations suggest that the maximum-likelihood estimator is less biased and has a lower variance than the FST -based estimator. The maximum-likelihood estimator provides a statistical framework for the analysis of population history given genetic data. We demonstrate how maximum-likelihood estimates of the branching pattern of divergence of multiple populations may be obtained. We also describe how the method may be applied to test hypotheses such as whether populations have maintained equal population sizes. We illustrate the method by applying it to two previously published sets of human restriction fragment length polymorphism (RFLP) data.
Collapse
Affiliation(s)
- Rasmus Nielsen
- Department of Integrative Biology, University of California, Berkeley, California, 94720-3140
| | - Joanna L Mountain
- Department of Integrative Biology, University of California, Berkeley, California, 94720-3140
| | - John P Huelsenbeck
- Department of Integrative Biology, University of California, Berkeley, California, 94720-3140
| | - Montgomery Slatkin
- Department of Integrative Biology, University of California, Berkeley, California, 94720-3140
| |
Collapse
|
9
|
Petit E, Excoffier L, Mayer F. NO EVIDENCE OF BOTTLENECK IN THE POSTGLACIAL RECOLONIZATION OF EUROPE BY THE NOCTULE BAT (NYCTALUS NOCTULA). Evolution 2017; 53:1247-1258. [PMID: 28565510 DOI: 10.1111/j.1558-5646.1999.tb04537.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/1998] [Accepted: 02/15/1999] [Indexed: 11/29/2022]
Abstract
During the Pleistocene, the habitat of the noctule bat (Nyctalus noctula) was limited to small refuge areas located in Southern Europe, whereas the species is now widespread across this continent. Using mtDNA (control region and ND1 gene) polymorphisms, we asked whether this recolonization occurred through bottlenecks and whether it was accompanied by population growth. Sequences of the second hypervariable domain of the control region were obtained from 364 noctule bats representing 18 colonies sampled across Europe. This yielded 108 haplotypes that were depicted on a minimum spanning tree that showed a starlike structure with two long branches. Additional sequences obtained from the ND1 gene confirmed that the different parts of the MST correspond to three clades which diverged before the Last Glacial Maximum (18,000 yrC14 BP), leading to the conclusion that the noctule bat survived in several isolated refugia. Partitioning populations into coherent geographical groups divided our samples (φCT = 0.17; P = 0.01) into a group of highly variable nursing colonies from central and eastern Europe and less variable, isolated colonies from western and southern Europe. Demographic analyses suggest that populations of the former group underwent demographic expansions either after the Younger Dryas (11,000-10,000 yrC14 BP), assuming a fast mutation rate for HV II, or during the Pleistocene, assuming a conventional mutation rate. We discuss the fact that the high genetic variability (h = 0.69-0.96; π = 0.006-0.013) observed in nursing colonies that are located some distance from potential Pleistocene refugia is probably due to the combined effect of rapid evolution of the control region in growing populations and a range shift of noctule populations parallel to the recovery of forests in Europe after the last glaciations.
Collapse
Affiliation(s)
- Eric Petit
- Institut für Zoologie II, Universität Erlangen, Staudtstrasse 5, 91058, Erlangen, Germany
| | - Laurent Excoffier
- Genetics and Biometry Laboratory, Department of Anthropology and Ecology, University of Geneva, CP 511, 1211, Geneva 24, Switzerland
| | - Frieder Mayer
- Institut für Zoologie II, Universität Erlangen, Staudtstrasse 5, 91058, Erlangen, Germany
| |
Collapse
|
10
|
Abstract
The last decade of the 20th century experienced a resurgence of genetically based theories of racial hierarchy regarding intelligence and morality. Most notably was Herrnstein and Murray's The Bell Curve (1994), that claimed genetic causality for long-standing racial differences in IQ. In addition, it raised the time worn argument that the over-reproduction of genetically deficient individuals within our population would lead to a serious decline in average American intelligence. These authors provided no specific rationale for why these genetic differences should exist between human `races'. Instead, they relied heavily on the work of Canadian psychologist J. Philipe Rushton (in The Bell Curve, 1994, Appendix 5: 642—3). Rushton has advanced a specific evolutionary genetic rationale for how gene frequencies are differentiated between the `races' relative to intelligence. He claims that human racial differences result from natural selection for particular reproductive strategies in the various racial groups. Rushton's theory is based entirely on the concept of r- and K-selection, first explicitly outlined by MacArthur and Wilson in 1967. This article examines both the flaws in the general theory, and specifically Rushton's application of that same theory to human data. It concludes that neither Rushton's use of the theory nor the data that he has assembled could possibly test any meaningful hypotheses concerning human evolution and/or the distribution of genetic variation relating to reproductive strategies or `intelligence', however defined.
Collapse
|
11
|
Monument MJ, Johnson KM, McIlvaine E, Abegglen L, Watkins WS, Jorde LB, Womer RB, Beeler N, Monovich L, Lawlor ER, Bridge JA, Schiffman JD, Krailo MD, Randall RL, Lessnick SL. Clinical and biochemical function of polymorphic NR0B1 GGAA-microsatellites in Ewing sarcoma: a report from the Children's Oncology Group. PLoS One 2014; 9:e104378. [PMID: 25093581 PMCID: PMC4122435 DOI: 10.1371/journal.pone.0104378] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 07/08/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The genetics involved in Ewing sarcoma susceptibility and prognosis are poorly understood. EWS/FLI and related EWS/ETS chimeras upregulate numerous gene targets via promoter-based GGAA-microsatellite response elements. These microsatellites are highly polymorphic in humans, and preliminary evidence suggests EWS/FLI-mediated gene expression is highly dependent on the number of GGAA motifs within the microsatellite. OBJECTIVES Here we sought to examine the polymorphic spectrum of a GGAA-microsatellite within the NR0B1 promoter (a critical EWS/FLI target) in primary Ewing sarcoma tumors, and characterize how this polymorphism influences gene expression and clinical outcomes. RESULTS A complex, bimodal pattern of EWS/FLI-mediated gene expression was observed across a wide range of GGAA motifs, with maximal expression observed in constructs containing 20-26 GGAA motifs. Relative to white European and African controls, the NR0B1 GGAA-microsatellite in tumor cells demonstrated a strong bias for haplotypes containing 21-25 GGAA motifs suggesting a relationship between microsatellite function and disease susceptibility. This selection bias was not a product of microsatellite instability in tumor samples, nor was there a correlation between NR0B1 GGAA-microsatellite polymorphisms and survival outcomes. CONCLUSIONS These data suggest that GGAA-microsatellite polymorphisms observed in human populations modulate EWS/FLI-mediated gene expression and may influence disease susceptibility in Ewing sarcoma.
Collapse
Affiliation(s)
- Michael J. Monument
- Sarcoma Services, Department of Orthopedic Surgery, University of Utah, Salt Lake City, Utah, United States of America
- Center for Children's Cancer Research, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Kirsten M. Johnson
- Center for Children's Cancer Research, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Elizabeth McIlvaine
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Lisa Abegglen
- Center for Children's Cancer Research, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - W. Scott Watkins
- Department of Human Genetics and Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Lynn B. Jorde
- Department of Human Genetics and Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Richard B. Womer
- Division of Oncology, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Natalie Beeler
- Children's Oncology Group Biopathology Center, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Laura Monovich
- Children's Oncology Group Biopathology Center, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Elizabeth R. Lawlor
- Departments of Pediatrics and Pathology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Julia A. Bridge
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Joshua D. Schiffman
- Center for Children's Cancer Research, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
- Division of Pediatric Hematology/Oncology, University of Utah, Salt Lake City, Utah, United States of America
| | - Mark D. Krailo
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - R. Lor Randall
- Sarcoma Services, Department of Orthopedic Surgery, University of Utah, Salt Lake City, Utah, United States of America
- Center for Children's Cancer Research, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Stephen L. Lessnick
- Sarcoma Services, Department of Orthopedic Surgery, University of Utah, Salt Lake City, Utah, United States of America
- Center for Children's Cancer Research, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
- Division of Pediatric Hematology/Oncology, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
12
|
Population structure in a comprehensive genomic data set on human microsatellite variation. G3-GENES GENOMES GENETICS 2013; 3:891-907. [PMID: 23550135 PMCID: PMC3656735 DOI: 10.1534/g3.113.005728] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Over the past two decades, microsatellite genotypes have provided the data for landmark studies of human population-genetic variation. However, the various microsatellite data sets have been prepared with different procedures and sets of markers, so that it has been difficult to synthesize available data for a comprehensive analysis. Here, we combine eight human population-genetic data sets at the 645 microsatellite loci they share in common, accounting for procedural differences in the production of the different data sets, to assemble a single data set containing 5795 individuals from 267 worldwide populations. We perform a systematic analysis of genetic relatedness, detecting 240 intra-population and 92 inter-population pairs of previously unidentified close relatives and proposing standardized subsets of unrelated individuals for use in future studies. We then augment the human data with a data set of 84 chimpanzees at the 246 loci they share in common with the human samples. Multidimensional scaling and neighbor-joining analyses of these data sets offer new insights into the structure of human populations and enable a comparison of genetic variation patterns in chimpanzees with those in humans. Our combined data sets are the largest of their kind reported to date and provide a resource for use in human population-genetic studies.
Collapse
|
13
|
Mirabal S, Cadenas AM, Garcia-Bertrand R, Herrera RJ. Ascertaining the role of Taiwan as a source for the Austronesian expansion. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2013; 150:551-64. [PMID: 23440864 DOI: 10.1002/ajpa.22226] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 12/14/2012] [Indexed: 01/15/2023]
Abstract
Taiwanese aborigines have been deemed the ancestors of Austronesian speakers which are currently distributed throughout two-thirds of the globe. As such, understanding their genetic distribution and diversity as well as their relationship to mainland Asian groups is important to consolidating the numerous models that have been proposed to explain the dispersal of Austronesian speaking peoples into Oceania. To better understand the role played by the aboriginal Taiwanese in this diaspora, we have analyzed a total of 451 individuals belonging to nine of the tribes currently residing in Taiwan, namely the Ami, Atayal, Bunun, Paiwan, Puyuma, Rukai, Saisiyat, Tsou, and the Yami from Orchid Island off the coast of Taiwan across 15 autosomal short tandem repeat loci. In addition, we have compared the genetic profiles of these tribes to populations from mainland China as well as to collections at key points throughout the Austronesian domain. While our results suggest that Daic populations from Southern China are the likely forefathers of the Taiwanese aborigines, populations within Taiwan show a greater genetic impact on groups at the extremes of the current domain than populations from Indonesia, Mainland, or Southeast Asia lending support to the "Out of Taiwan" hypothesis. We have also observed that specific Taiwanese aboriginal groups (Paiwan, Puyuma, and Saisiyat), and not all tribal populations, have highly influenced genetic distributions of Austronesian populations in the pacific and Madagascar suggesting either an asymmetric migration out of Taiwan or the loss of certain genetic signatures in some of the Taiwanese tribes due to endogamy, isolation, and/or drift.
Collapse
Affiliation(s)
- Sheyla Mirabal
- Department of Molecular and Human Genetics, College of Medicine, Florida International University, Miami, FL 33199, USA
| | | | | | | |
Collapse
|
14
|
Fazeli Z, Vallian S. Molecular phylogenetic study of the Iranians based on polymorphic markers. Gene 2013; 512:123-6. [PMID: 23073556 DOI: 10.1016/j.gene.2012.09.089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 06/05/2012] [Accepted: 09/11/2012] [Indexed: 11/25/2022]
Abstract
The application of polymorphic markers in construction of phylogenetic trees has been documented. Five polymorphic markers located in the PAH gene region including PAH-BglII, PAH-PvuII(A), PAH-EcoRI, PAH-MspI and PAH-STR were selected for analysis of phylogenetic relationships of the Iranians with 15 other populations of the world. The lowest genetic distance was observed between the Iranians and populations residing in Adygei (an ethnic group of the Russian Caucasus), Russia and Druze (a Middle Eastern group). However, East Asian populations including Han, Japanese and Cambodians, Khmer or the Oceanians (Melanesian, Nasioi) showed high genetic distance with the Iranians. The data suggested that the Iranians might have relatively close evolutionary history with the populations residing in Russia rather than East Asian populations. This study provided the first new molecular insight into the evolutionary history of the Iranian population.
Collapse
Affiliation(s)
- Zahra Fazeli
- Division of Genetics, Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Islamic Republic of Iran; Department of Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | | |
Collapse
|
15
|
Betti L, Cramon-Taubadel NV, Lycett SJ. Human pelvis and long bones reveal differential preservation of ancient population history and migration out of Africa. Hum Biol 2012; 84:139-52. [PMID: 22708818 DOI: 10.3378/027.084.0203] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
One of the main events in the history of our species has been our expansion out of Africa. A clear signature of this expansion has been found on global patterns of neutral genetic variation, whereby a serial founder effect accompanied the colonization of new regions, in turn creating a wilhin-pupulation decrease in neutral genetic diversity with increasing distance from Africa. This same distinctive pattern has also been described for cranial and dental morphological variation in human populations distributed across the globe. Here, we used a data set of postcranial linear measurements for 30 globally distributed human populations, and a climatic data set of minimum annual temperature, maximum annual temperature, and precipitation in order to separate for the first time the relative effect of neutral demographic processes and climatic selection on four long (limb) bones (femur, tibia, radius, and humerus) versus the pelvic bones of the human appendicular skeleton. We implemented a stepwise regression procedure in which phenotypic variance is assumed to be affected by the iterative founder events that accompanied human expansion from Africa, as well as by climate. This model included, as independent factors, geographic distance from central Africa, the three climatic variables, and all possible interactions between the three climatic variables. We excluded all nonsignificant factors by backward stepwise elimination with the aim of identifying the minimal model significantly explaining variation in the phenotypic data. Our results indicate a sharp difference in the way the pelvis and the limb bones reflect the neutral signature of the out-of-Africa expansion. Consistent with previous analyses of the cranium and dentition, pelvic shape variation shows a significant within-population decrease with increasing distance from Africa. However, no such pattern could be found in the long bones. Rather, in the case of both the tibia and the femur, a significant relationship between population-level variance and minimum temperature was demonstrated. Hence, in the case of these limb bones, it is probable that the effects of climatic selection have obliterated the demographic signature of human dispersal from Africa. Our finding mat pelvic variation exhibits the neutral effects of demographic history suggests that consideration of this skeletal element might be used to shed light on factors of human population history, just as the cranium has done.
Collapse
Affiliation(s)
- Lia Betti
- Department of Anthropology, School of Anthropology and Conservation, University of Kent, Canterbury, UK.
| | | | | |
Collapse
|
16
|
Fazeli Z, Vallian S. Phylogenetic relationship analysis of Iranians and other world populations using allele frequencies at 12 polymorphic markers. Mol Biol Rep 2012; 39:11187-99. [PMID: 23065267 DOI: 10.1007/s11033-012-2028-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 10/02/2012] [Indexed: 11/29/2022]
Abstract
The estimation of genetic distance between populations could improve our viewpoint about human migration and its genetic origin. In this study, we used allele frequency data of 12 polymorphic markers on 250 individuals (500 alleles) from the Iranian population to estimate genetic distance between the Iranians and other world populations. The phylogenetic trees for three different sets of allele frequency data were constructed. Our results revealed the genetic similarity between the Iranians and European populations. The lowest genetic distance was observed between the Iranians and some populations reside in Russia. Furthermore, the high genetic distance was observed between the Iranians and East Asian populations. The data suggested that the Iranians might have relatively close evolutionary history with Europeans, but historically independent from East Asian populations. The evaluation of genetic distance between Indians populations and Iranians was also performed. The Indian groups showed low genetic distance with others, but high genetic distance with the Iranians. This study could provide a new insight into the evolutionary history of the Iranian population.
Collapse
Affiliation(s)
- Zahra Fazeli
- Division of Genetics, Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Islamic Republic of Iran
| | | |
Collapse
|
17
|
Beck R, Monument MJ, Watkins WS, Smith R, Boucher KM, Schiffman JD, Jorde LB, Randall RL, Lessnick SL. EWS/FLI-responsive GGAA microsatellites exhibit polymorphic differences between European and African populations. Cancer Genet 2012; 205:304-12. [PMID: 22749036 DOI: 10.1016/j.cancergen.2012.04.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 04/05/2012] [Accepted: 04/08/2012] [Indexed: 12/13/2022]
Abstract
The genetics of Ewing sarcoma development remain obscure. The incidence of Ewing sarcoma is ten-fold less in Africans as compared to Europeans, irrespective of geographic location, suggesting population-specific genetic influences. Since GGAA-containing microsatellites within key target genes are necessary for Ewing sarcoma-specific EWS/FLI DNA binding and gene activation, and gene expression is positively correlated with the number of repeat motifs in the promoter/enhancer region, we sought to determine if significant polymorphisms exist between African and European populations which might contribute to observed differences in Ewing sarcoma incidence and outcomes. GGAA microsatellites upstream of two critical EWS/FLI target genes, NR0B1 and CAV1, were sequenced from subjects of European and African descent. While the characteristics of the CAV1 promoter microsatellites were similar across both populations, the NR0B1 microsatellite in African subjects was significantly larger, harboring more repeat motifs, a greater number of repeat segments, and longer consecutive repeats, than in European subjects. These results are biologically intriguing as NR0B1 was the most highly enriched EWS/FLI bound gene in prior studies, and is absolutely necessary for oncogenic transformation in Ewing sarcoma. These data suggest that GGAA microsatellite polymorphisms in the NR0B1 gene might influence disease susceptibility and prognosis in Ewing sarcoma in unanticipated ways.
Collapse
Affiliation(s)
- Robert Beck
- Center for Children's Cancer Research, Huntsman Cancer Institute, University of Utah, Salt Lake City, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Monument MJ, Johnson KM, Grossmann AH, Schiffman JD, Randall RL, Lessnick SL. Microsatellites with macro-influence in ewing sarcoma. Genes (Basel) 2012; 3:444-60. [PMID: 24704979 PMCID: PMC3899989 DOI: 10.3390/genes3030444] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/04/2012] [Accepted: 07/05/2012] [Indexed: 01/02/2023] Open
Abstract
Numerous molecular abnormalities contribute to the genetic derangements involved in tumorigenesis. Chromosomal translocations are a frequent source of these derangements, producing unique fusion proteins with novel oncogenic properties. EWS/ETS fusions in Ewing sarcoma are a prime example of this, resulting in potent chimeric oncoproteins with novel biological properties and a unique transcriptional signature essential for oncogenesis. Recent evidence demonstrates that EWS/FLI, the most common EWS/ETS fusion in Ewing sarcoma, upregulates gene expression using a GGAA microsatellite response element dispersed throughout the human genome. These GGAA microsatellites function as enhancer elements, are sites of epigenetic regulation and are necessary for EWS/FLI DNA binding and upregulation of principal oncogenic targets. An increasing number of GGAA motifs appear to substantially enhance EWS/FLI-mediated gene expression, which has compelling biological implications as these GGAA microsatellites are highly polymorphic within and between ethnically distinct populations. Historically regarded as junk DNA, this emerging evidence clearly demonstrates that microsatellite DNA plays an instrumental role in EWS/FLI-mediated transcriptional regulation and oncogenesis in Ewing sarcoma. This unprecedented role of GGAA microsatellite DNA in Ewing sarcoma provides a unique opportunity to expand our mechanistic understanding of how EWS/ETS fusions influence cancer susceptibility, prognosis and transcriptional regulation.
Collapse
Affiliation(s)
- Michael J Monument
- Center for Children's Cancer Research, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA.
| | - Kirsten M Johnson
- Center for Children's Cancer Research, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA.
| | - Allie H Grossmann
- Department of Pathology and Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112, USA.
| | - Joshua D Schiffman
- Center for Children's Cancer Research, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA.
| | - R Lor Randall
- Center for Children's Cancer Research, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA.
| | - Stephen L Lessnick
- Center for Children's Cancer Research, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
19
|
Liu J, Li SY, Yin JY, Zhang W, Gao B, Guo L, Qi R. Allele frequencies of 6 autosomal STR loci in the Xibo nationality with phylogenetic structure among Chinese populations. Gene 2011; 487:84-7. [PMID: 21820039 DOI: 10.1016/j.gene.2011.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 07/09/2011] [Indexed: 11/24/2022]
Abstract
In the present study, we investigated the genetic polymorphisms of 6 autosomal STR loci Hum-CSF1PO, D13S317, D5S818, D16S539, TH01, and TPOX in the Xibo population of Liaoning, northeastern China as well as its genetic relationships with other populations in China. No significant deviations from Hardy-Weinberg equilibrium could be found for all loci. Allele frequencies in the Xibo population ranged from 0.001 to 0.507. Among all the 6 loci, D16S539 had the highest polymorphism (PIC=0.8632), whereas TPOX had the lowest (PIC=0.5179). A phylogenic tree was constructed using Poptree 2 software. In the phylogenic tree, Xibo population has a distant relationship with the other populations.
Collapse
Affiliation(s)
- Jian Liu
- Department of Cell Biology and Genetics, Shenyang Medical College, Shenyang, China.
| | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Association of an IL-4 gene haplotype with Graves disease in children: experimental study and meta-analysis. Hum Immunol 2011; 72:256-61. [DOI: 10.1016/j.humimm.2010.12.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 12/03/2010] [Accepted: 12/27/2010] [Indexed: 01/26/2023]
|
22
|
Simonson TS, Xing J, Barrett R, Jerah E, Loa P, Zhang Y, Watkins WS, Witherspoon DJ, Huff CD, Woodward S, Mowry B, Jorde LB. Ancestry of the Iban is predominantly Southeast Asian: genetic evidence from autosomal, mitochondrial, and Y chromosomes. PLoS One 2011; 6:e16338. [PMID: 21305013 PMCID: PMC3031551 DOI: 10.1371/journal.pone.0016338] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 12/11/2010] [Indexed: 01/01/2023] Open
Abstract
Humans reached present-day Island Southeast Asia (ISEA) in one of the first major human migrations out of Africa. Population movements in the millennia following this initial settlement are thought to have greatly influenced the genetic makeup of current inhabitants, yet the extent attributed to different events is not clear. Recent studies suggest that south-to-north gene flow largely influenced present-day patterns of genetic variation in Southeast Asian populations and that late Pleistocene and early Holocene migrations from Southeast Asia are responsible for a substantial proportion of ISEA ancestry. Archaeological and linguistic evidence suggests that the ancestors of present-day inhabitants came mainly from north-to-south migrations from Taiwan and throughout ISEA approximately 4,000 years ago. We report a large-scale genetic analysis of human variation in the Iban population from the Malaysian state of Sarawak in northwestern Borneo, located in the center of ISEA. Genome-wide single-nucleotide polymorphism (SNP) markers analyzed here suggest that the Iban exhibit greatest genetic similarity to Indonesian and mainland Southeast Asian populations. The most common non-recombining Y (NRY) and mitochondrial (mt) DNA haplogroups present in the Iban are associated with populations of Southeast Asia. We conclude that migrations from Southeast Asia made a large contribution to Iban ancestry, although evidence of potential gene flow from Taiwan is also seen in uniparentally inherited marker data.
Collapse
Affiliation(s)
- Tatum S. Simonson
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Jinchuan Xing
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Robert Barrett
- Department of Psychiatry, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | - Edward Jerah
- Department of Psychiatry, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | - Peter Loa
- Department of Psychiatry, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | - Yuhua Zhang
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - W. Scott Watkins
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - David J. Witherspoon
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Chad D. Huff
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Scott Woodward
- Sorenson Molecular Genealogy Foundation, Salt Lake City, Utah, United States of America
| | - Bryan Mowry
- Queensland Centre of Mental Health Research, Brisbane, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Lynn B. Jorde
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
23
|
Song XB, Zhou Y, Ying BW, Wang LL, Li YS, Liu JF, Bai XG, Zhang L, Lu XJ, Wang J, Ye YX. Short-tandem repeat analysis in seven Chinese regional populations. Genet Mol Biol 2010; 33:605-9. [PMID: 21637565 PMCID: PMC3036133 DOI: 10.1590/s1415-47572010000400002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 06/11/2010] [Indexed: 02/05/2023] Open
Abstract
In the present study, we investigated the application of 13 short tandem repeat (STR) loci (D13S317, D7S820, TH01, D16S539, CSFIPO, VWA, D8S1179, TPOX, FGA, D3S1358, D21S11, D18S51 and D5S818) routinely used in forensic analysis, for delineating population relationships among seven human populations representing the two major geographic groups, namely the southern and northern Chinese. The resulting single topology revealed pronounced geographic and population partitioning, consistent with the differences in geographic location, languages and eating habits. These findings suggest that forensic STR loci might be particularly powerful tools in providing the necessary fine resolution for reconstructing recent human evolutionary history.
Collapse
Affiliation(s)
- Xing-Bo Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan P.R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Stepanov VA. Genomes, populations and diseases: ethnic genomics and personalized medicine. Acta Naturae 2010; 2:15-30. [PMID: 22649660 PMCID: PMC3347589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
This review discusses the progress of ethnic genetics, the genetics of common diseases, and the concepts of personalized medicine. We show the relationship between the structure of genetic diversity in human populations and the varying frequencies of Mendelian and multifactor diseases. We also examine the population basis of pharmacogenetics and evaluate the effectiveness of pharmacotherapy, along with a review of new achievements and prospects in personalized genomics.
Collapse
Affiliation(s)
- V A Stepanov
- Research Institute for Medical Genetics, Siberian Branch, Russian Academy of Medical Sciences
| |
Collapse
|
25
|
Currat M, Poloni ES, Sanchez-Mazas A. Human genetic differentiation across the Strait of Gibraltar. BMC Evol Biol 2010; 10:237. [PMID: 20682051 PMCID: PMC3020631 DOI: 10.1186/1471-2148-10-237] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 08/03/2010] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The Strait of Gibraltar is a crucial area in the settlement history of modern humans because it represents a possible connection between Africa and Europe. So far, genetic data were inconclusive about the fact that this strait constitutes a barrier to gene flow, as previous results were highly variable depending on the genetic locus studied. The present study evaluates the impact of the Gibraltar region in reducing gene flow between populations from North-Western Africa and South-Western Europe, by comparing formally various genetic loci. First, we compute several statistics of population differentiation. Then, we use an original simulation approach in order to infer the most probable evolutionary scenario for the settlement of the area, taking into account the effects of both demography and natural selection at some loci. RESULTS We show that the genetic patterns observed today in the region of the Strait of Gibraltar may reflect an ancient population genetic structure which has not been completely erased by more recent events such as Neolithic migrations. Moreover, the differences observed among the loci (i.e. a strong genetic boundary revealed by the Y-chromosome polymorphism and, at the other extreme, no genetic differentiation revealed by HLA-DRB1 variation) across the strait suggest specific evolutionary histories like sex-mediated migration and natural selection. By considering a model of balancing selection for HLA-DRB1, we here estimate a coefficient of selection of 2.2% for this locus (although weaker in Europe than in Africa), which is in line with what was estimated from synonymous versus non-synonymous substitution rates. Selection at this marker thus appears strong enough to leave a signature not only at the DNA level, but also at the population level where drift and migration processes were certainly relevant. CONCLUSIONS Our multi-loci approach using both descriptive analyses and Bayesian inferences lead to better characterize the role of the Strait of Gibraltar in the evolution of modern humans. We show that gene flow across the Strait of Gibraltar occurred at relatively high rates since pre-Neolithic times and that natural selection and sex-bias migrations distorted the demographic signal at some specific loci of our genome.
Collapse
Affiliation(s)
- Mathias Currat
- Laboratory of Anthropology, Genetics and Peopling history (AGP), Department of Anthropology, University of Geneva, Geneva, Switzerland.
| | | | | |
Collapse
|
26
|
Payseur BA, Jing P, Haasl RJ. A genomic portrait of human microsatellite variation. Mol Biol Evol 2010; 28:303-12. [PMID: 20675409 DOI: 10.1093/molbev/msq198] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rapid advances in DNA sequencing and genotyping technologies are beginning to reveal the scope and pattern of human genomic variation. Although single nucleotide polymorphisms (SNPs) have been intensively studied, the extent and form of variation at other types of molecular variants remain poorly understood. Polymorphism at the most variable loci in the human genome, microsatellites, has rarely been examined on a genomic scale without the ascertainment biases that attend typical genotyping studies. We conducted a genomic survey of variation at microsatellites with at least three perfect repeats by comparing two complete genome sequences, the Human Genome Reference sequence and the sequence of J. Craig Venter. The genomic proportion of polymorphic loci was 2.7%, much higher than the rate of SNP variation, with marked heterogeneity among classes of loci. The proportion of variable loci increased substantially with repeat number. Repeat lengths differed in levels of variation, with longer repeat lengths generally showing higher polymorphism at the same repeat number. Microsatellite variation was weakly correlated with regional SNP number, indicating modest effects of shared genealogical history. Reductions in variation were detected at microsatellites located in introns, in untranslated regions, in coding exons, and just upstream of transcription start sites, suggesting the presence of selective constraints. Our results provide new insights into microsatellite mutational processes and yield a preview of patterns of variation that will be obtained in genomic surveys of larger numbers of individuals.
Collapse
|
27
|
Xing J, Watkins WS, Shlien A, Walker E, Huff CD, Witherspoon DJ, Zhang Y, Simonson TS, Weiss RB, Schiffman JD, Malkin D, Woodward SR, Jorde LB. Toward a more uniform sampling of human genetic diversity: a survey of worldwide populations by high-density genotyping. Genomics 2010; 96:199-210. [PMID: 20643205 DOI: 10.1016/j.ygeno.2010.07.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 07/09/2010] [Accepted: 07/13/2010] [Indexed: 12/24/2022]
Abstract
High-throughput genotyping data are useful for making inferences about human evolutionary history. However, the populations sampled to date are unevenly distributed, and some areas (e.g., South and Central Asia) have rarely been sampled in large-scale studies. To assess human genetic variation more evenly, we sampled 296 individuals from 13 worldwide populations that are not covered by previous studies. By combining these samples with a data set from our laboratory and the HapMap II samples, we assembled a final dataset of ~250,000 SNPs in 850 individuals from 40 populations. With more uniform sampling, the estimate of global genetic differentiation (F(ST)) substantially decreases from ~16% with the HapMap II samples to ~11%. A panel of copy number variations typed in the same populations shows patterns of diversity similar to the SNP data, with highest diversity in African populations. This unique sample collection also permits new inferences about human evolutionary history. The comparison of haplotype variation among populations supports a single out-of-Africa migration event and suggests that the founding population of Eurasia may have been relatively large but isolated from Africans for a period of time. We also found a substantial affinity between populations from central Asia (Kyrgyzstani and Mongolian Buryat) and America, suggesting a central Asian contribution to New World founder populations.
Collapse
Affiliation(s)
- Jinchuan Xing
- Department of Human Genetics, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Haasl RJ, Payseur BA. The number of alleles at a microsatellite defines the allele frequency spectrum and facilitates fast accurate estimation of theta. Mol Biol Evol 2010; 27:2702-15. [PMID: 20605970 DOI: 10.1093/molbev/msq164] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Theoretical work focused on microsatellite variation has produced a number of important results, including the expected distribution of repeat sizes and the expected squared difference in repeat size between two randomly selected samples. However, closed-form expressions for the sampling distribution and frequency spectrum of microsatellite variation have not been identified. Here, we use coalescent simulations of the stepwise mutation model to develop gamma and exponential approximations of the microsatellite allele frequency spectrum, a distribution central to the description of microsatellite variation across the genome. For both approximations, the parameter of biological relevance is the number of alleles at a locus, which we express as a function of θ, the population-scaled mutation rate, based on simulated data. Discovered relationships between θ, the number of alleles, and the frequency spectrum support the development of three new estimators of microsatellite θ. The three estimators exhibit roughly similar mean squared errors (MSEs) and all are biased. However, across a broad range of sample sizes and θ values, the MSEs of these estimators are frequently lower than all other estimators tested. The new estimators are also reasonably robust to mutation that includes step sizes greater than one. Finally, our approximation to the microsatellite allele frequency spectrum provides a null distribution of microsatellite variation. In this context, a preliminary analysis of the effects of demographic change on the frequency spectrum is performed. We suggest that simulations of the microsatellite frequency spectrum under evolutionary scenarios of interest may guide investigators to the use of relevant and sometimes novel summary statistics.
Collapse
Affiliation(s)
- Ryan J Haasl
- Laboratory of Genetics, University of Wisconsin, USA
| | | |
Collapse
|
29
|
Aquaporins in the wild: natural genetic diversity and selective pressure in the PIP gene family in five Neotropical tree species. BMC Evol Biol 2010; 10:202. [PMID: 20587054 PMCID: PMC2906476 DOI: 10.1186/1471-2148-10-202] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Accepted: 06/29/2010] [Indexed: 11/13/2022] Open
Abstract
Background Tropical trees undergo severe stress through seasonal drought and flooding, and the ability of these species to respond may be a major factor in their survival in tropical ecosystems, particularly in relation to global climate change. Aquaporins are involved in the regulation of water flow and have been shown to be involved in drought response; they may therefore play a major adaptive role in these species. We describe genetic diversity in the PIP sub-family of the widespread gene family of Aquaporins in five Neotropical tree species covering four botanical families. Results PIP Aquaporin subfamily genes were isolated, and their DNA sequence polymorphisms characterised in natural populations. Sequence data were analysed with statistical tests of standard neutral equilibrium and demographic scenarios simulated to compare with the observed results. Chloroplast SSRs were also used to test demographic transitions. Most gene fragments are highly polymorphic and display signatures of balancing selection or bottlenecks; chloroplast SSR markers have significant statistics that do not conform to expectations for population bottlenecks. Although not incompatible with a purely demographic scenario, the combination of all tests tends to favour a selective interpretation of extant gene diversity. Conclusions Tropical tree PIP genes may generally undergo balancing selection, which may maintain high levels of genetic diversity at these loci. Genetic variation at PIP genes may represent a response to variable environmental conditions.
Collapse
|
30
|
García-Obregón S, Alfonso-Sánchez MA, Pérez-Miranda AM, Gómez-Pérez L, De Pancorbo MM, Peña JA. Genetic variability in autochthonous Basques from Guipuzcoa: a view from MHC microsatellites. Int J Immunogenet 2010; 37:279-87. [DOI: 10.1111/j.1744-313x.2010.00921.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Kang L, Li S, Gupta S, Zhang Y, Liu K, Zhao J, Jin L, Li H. Genetic structures of the Tibetans and the Deng people in the Himalayas viewed from autosomal STRs. J Hum Genet 2010; 55:270-7. [DOI: 10.1038/jhg.2010.21] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Pemberton TJ, Sandefur CI, Jakobsson M, Rosenberg NA. Sequence determinants of human microsatellite variability. BMC Genomics 2009; 10:612. [PMID: 20015383 PMCID: PMC2806349 DOI: 10.1186/1471-2164-10-612] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 12/16/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Microsatellite loci are frequently used in genomic studies of DNA sequence repeats and in population studies of genetic variability. To investigate the effect of sequence properties of microsatellites on their level of variability we have analyzed genotypes at 627 microsatellite loci in 1,048 worldwide individuals from the HGDP-CEPH cell line panel together with the DNA sequences of these microsatellites in the human RefSeq database. RESULTS Calibrating PCR fragment lengths in individual genotypes by using the RefSeq sequence enabled us to infer repeat number in the HGDP-CEPH dataset and to calculate the mean number of repeats (as opposed to the mean PCR fragment length), under the assumption that differences in PCR fragment length reflect differences in the numbers of repeats in the embedded repeat sequences. We find the mean and maximum numbers of repeats across individuals to be positively correlated with heterozygosity. The size and composition of the repeat unit of a microsatellite are also important factors in predicting heterozygosity, with tetra-nucleotide repeat units high in G/C content leading to higher heterozygosity. Finally, we find that microsatellites containing more separate sets of repeated motifs generally have higher heterozygosity. CONCLUSIONS These results suggest that sequence properties of microsatellites have a significant impact in determining the features of human microsatellite variability.
Collapse
Affiliation(s)
- Trevor J Pemberton
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | | | |
Collapse
|
33
|
Is Homo sapiens polytypic? Human taxonomic diversity and its implications. Med Hypotheses 2009; 74:195-201. [PMID: 19695787 DOI: 10.1016/j.mehy.2009.07.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 07/22/2009] [Indexed: 11/23/2022]
Abstract
The term race is a traditional synonym for subspecies, however it is frequently asserted that Homo sapiens is monotypic and that what are termed races are nothing more than biological illusions. In this manuscript a case is made for the hypothesis that H. sapiens is polytypic, and in this way is no different from other species exhibiting similar levels of genetic and morphological diversity. First it is demonstrated that the four major definitions of race/subspecies can be shown to be synonymous within the context of the framework of race as a correlation structure of traits. Next the issue of taxonomic classification is considered where it is demonstrated that H. sapiens possesses high levels morphological diversity, genetic heterozygosity and differentiation (F(ST)) compared to many species that are acknowledged to be polytypic with respect to subspecies. Racial variation is then evaluated in light of the phylogenetic species concept, where it is suggested that the least inclusive monophyletic units exist below the level of species within H. sapiens indicating the existence of a number of potential human phylogenetic species; and the biological species concept, where it is determined that racial variation is too small to represent differentiation at the level of biological species. Finally the implications of this are discussed in the context of anthropology where an accurate picture of the sequence and timing of events during the evolution of human taxa are required for a complete picture of human evolution, and medicine, where a greater appreciation of the role played by human taxonomic differences in disease susceptibility and treatment responsiveness will save lives in the future.
Collapse
|
34
|
Xing J, Watkins WS, Witherspoon DJ, Zhang Y, Guthery SL, Thara R, Mowry BJ, Bulayeva K, Weiss RB, Jorde LB. Fine-scaled human genetic structure revealed by SNP microarrays. Genes Dev 2009; 19:815-25. [PMID: 19411602 PMCID: PMC2675970 DOI: 10.1101/gr.085589.108] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 01/05/2009] [Indexed: 01/13/2023]
Abstract
We report an analysis of more than 240,000 loci genotyped using the Affymetrix SNP microarray in 554 individuals from 27 worldwide populations in Africa, Asia, and Europe. To provide a more extensive and complete sampling of human genetic variation, we have included caste and tribal samples from two states in South India, Daghestanis from eastern Europe, and the Iban from Malaysia. Consistent with observations made by Charles Darwin, our results highlight shared variation among human populations and demonstrate that much genetic variation is geographically continuous. At the same time, principal components analyses reveal discernible genetic differentiation among almost all identified populations in our sample, and in most cases, individuals can be clearly assigned to defined populations on the basis of SNP genotypes. All individuals are accurately classified into continental groups using a model-based clustering algorithm, but between closely related populations, genetic and self-classifications conflict for some individuals. The 250K data permitted high-level resolution of genetic variation among Indian caste and tribal populations and between highland and lowland Daghestani populations. In particular, upper-caste individuals from Tamil Nadu and Andhra Pradesh form one defined group, lower-caste individuals from these two states form another, and the tribal Irula samples form a third. Our results emphasize the correlation of genetic and geographic distances and highlight other elements, including social factors that have contributed to population structure.
Collapse
Affiliation(s)
- Jinchuan Xing
- Department of Human Genetics, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA
| | - W. Scott Watkins
- Department of Human Genetics, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA
| | - David J. Witherspoon
- Department of Human Genetics, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA
| | - Yuhua Zhang
- Department of Human Genetics, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA
| | - Stephen L. Guthery
- Department of Pediatrics, University of Utah, Salt Lake City, Utah 84108, USA
| | | | - Bryan J. Mowry
- Queensland Centre for Mental Health Research, The Park-Centre for Mental Health, Brisbane 4076, Australia
- Department of Psychiatry, University of Queensland, Brisbane 4029, Australia
| | - Kazima Bulayeva
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 117991, Russia
| | - Robert B. Weiss
- Department of Human Genetics, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA
| | - Lynn B. Jorde
- Department of Human Genetics, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
35
|
Hunley KL, Healy ME, Long JC. The global pattern of gene identity variation reveals a history of long-range migrations, bottlenecks, and local mate exchange: Implications for biological race. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2009; 139:35-46. [DOI: 10.1002/ajpa.20932] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
36
|
Omelchenko AV, Korchagin VI, Sevast’yanova GA, Ryskov AP, Tokarskaya ON. Molecular genetic characteristic of dinucleotide microsatellite loci in parthenogenetic lizards Darevskia unisexualis. RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409020112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Genetic variation in South Indian castes: evidence from Y-chromosome, mitochondrial, and autosomal polymorphisms. BMC Genet 2008; 9:86. [PMID: 19077280 PMCID: PMC2621241 DOI: 10.1186/1471-2156-9-86] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 12/12/2008] [Indexed: 02/04/2023] Open
Abstract
Background Major population movements, social structure, and caste endogamy have influenced the genetic structure of Indian populations. An understanding of these influences is increasingly important as gene mapping and case-control studies are initiated in South Indian populations. Results We report new data on 155 individuals from four Tamil caste populations of South India and perform comparative analyses with caste populations from the neighboring state of Andhra Pradesh. Genetic differentiation among Tamil castes is low (RST = 0.96% for 45 autosomal short tandem repeat (STR) markers), reflecting a largely common origin. Nonetheless, caste- and continent-specific patterns are evident. For 32 lineage-defining Y-chromosome SNPs, Tamil castes show higher affinity to Europeans than to eastern Asians, and genetic distance estimates to the Europeans are ordered by caste rank. For 32 lineage-defining mitochondrial SNPs and hypervariable sequence (HVS) 1, Tamil castes have higher affinity to eastern Asians than to Europeans. For 45 autosomal STRs, upper and middle rank castes show higher affinity to Europeans than do lower rank castes from either Tamil Nadu or Andhra Pradesh. Local between-caste variation (Tamil Nadu RST = 0.96%, Andhra Pradesh RST = 0.77%) exceeds the estimate of variation between these geographically separated groups (RST = 0.12%). Low, but statistically significant, correlations between caste rank distance and genetic distance are demonstrated for Tamil castes using Y-chromosome, mtDNA, and autosomal data. Conclusion Genetic data from Y-chromosome, mtDNA, and autosomal STRs are in accord with historical accounts of northwest to southeast population movements in India. The influence of ancient and historical population movements and caste social structure can be detected and replicated in South Indian caste populations from two different geographic regions.
Collapse
|
38
|
González-Martín A, Gorostiza A, Rangel-Villalobos H, Acunha V, Barrot C, Sánchez C, Ortega M, Gené M, Calderón R. Analyzing the genetic structure of the Tepehua in relation to other neighbouring Mesoamerican populations. A study based on allele frequencies of STR markers. Am J Hum Biol 2008; 20:605-13. [PMID: 18464267 DOI: 10.1002/ajhb.20787] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We report data on the genetic variation of the Tepehua population based on 15 autosomal microsatellites. The Tepehua, whose language belongs to the Totonac family, are settled throughout the Sierra Madre Oriental in Mexico and constitute a group in demographic decline. The results suggest that the Tepehua population remained isolated throughout a large part of its history. Phylogenetic analyses performed with other indigenous and admixed populations of Mesoamerica allow us to address their biological history. The results suggest a genetic affinity between the Tepehua and the Huastecos due to their previous shared history, and a certain degree of differentiation from the Otomões groups and the Choles (who are of Mayan origin). A clear genetic differentiation is also apparent between native and admixed populations within the greater region of Mesoamerica. It is currently accepted that the genetic composition of the American populations fits a trihybrid model of admixture. The genetic structure based on comparison of 34 populations throughout the continent (9 indigenous and 23 admixed) using hierarchical cluster analysis with an explained variance of 61.17% suggests the existence of four large groups distinguished according to the degree of admixture between Amerindians, Europeans, and Africans.
Collapse
Affiliation(s)
- Antonio González-Martín
- Departamento de Zoología y Antropología Física, Facultad de Biología, Universidad Complutense, Madrid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Holliday EG, Mowry BJ, Nyholt DR. A reanalysis of 409 European-Ancestry and African American schizophrenia pedigrees reveals significant linkage to 8p23.3 with evidence of locus heterogeneity. Am J Med Genet B Neuropsychiatr Genet 2008; 147B:1080-8. [PMID: 18361422 DOI: 10.1002/ajmg.b.30722] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The detection and replication of schizophrenia risk loci can require substantial sample sizes, which has prompted various collaborative efforts for combining multiple samples. However, pooled samples may comprise sub-samples with substantial population genetic differences, including allele frequency differences. We investigated the impact of population differences via linkage reanalysis of Molecular Genetics of Schizophrenia 1 (MGS1) affected sibling-pair data, comprising two samples of distinct ancestral origin: European (EA: 263 pedigrees) and African-American (AA: 146 pedigrees). To exploit the linkage information contained within these distinct continental samples, we performed separate analyses of the individual samples, allowing for within-sample locus heterogeneity, and the pooled sample, allowing for both within-sample and between-sample heterogeneity. Significance levels, corrected for the multiple tests, were determined empirically. For all suggestive peaks, stronger linkage evidence was obtained in either the EA or AA sample than the combined sample, regardless of how heterogeneity was modeled for the latter. Notably, we report genomewide significant linkage of schizophrenia to 8p23.3 and evidence for a second, independent susceptibility locus, reaching suggestive linkage, 29 cM away on 8p21.3. We also detected suggestive linkage on chromosomes 5p13.3 and 7q36.2. Many regions showed pronounced differences in the extent of linkage between the EA and AA samples. This reanalysis highlights the potential impact of population differences upon linkage evidence in pooled data and demonstrates a useful approach for the analysis of samples drawn from distinct continental groups.
Collapse
Affiliation(s)
- E G Holliday
- Queensland Centre for Mental Health Research, The Park, Centre for Mental Health, Wacol, Queensland, Australia.
| | | | | |
Collapse
|
40
|
Multilocus phylogeography and phylogenetics using sequence-based markers. Genetica 2008; 135:439-55. [DOI: 10.1007/s10709-008-9293-3] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 06/28/2008] [Indexed: 10/21/2022]
|
41
|
|
42
|
Guha S, Chakraborty R. Correlation analyses reveal a substantial influence of allelic gaps on the investigation of genetic diversity of modern human populations with microsatellites. Ann Hum Genet 2008; 72:644-53. [PMID: 18460049 DOI: 10.1111/j.1469-1809.2008.00445.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
High intra-population genetic diversity and multiple measures of genetic variability at STR loci are useful in inferring past evolutionary history. However, STRs, categorized by their repeat motif size, differ in a number of aspects, requiring separate analyses. We analyzed 783 STRs in 36 worldwide populations to examine marker suitability as well as correlations between various measurements, to evaluate the extent of genomic diversity present in modern human populations. The loci were grouped by type and analyzed separately for each population group. Genetic variation defined by gene diversity and allele size variance, shows different trends of variation across four types of STRs. Additionally, there is little variation of genetic diversity, but there is decreased allelic size variance with increasing repeat motifs. A poor correlation between genetic diversity and allelic size variance across loci in all groups for Di-STRs is probably caused by the presence of allelic size gaps. In contrast, allelic size variance, genetic diversity, and number of alleles are strongly correlated with both tri- and tetra-STRs. The positive correlation of allelic size variance and presence of gaps within the range of allelic sizes in Di-STRs alone explains these observations. An unexpected high imbalance index (beta) at Di-STRs due to high allelic size variance also supports this assertion.
Collapse
Affiliation(s)
- S Guha
- Center for Genome Information, Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, USA.
| | | |
Collapse
|
43
|
Xing J, Witherspoon DJ, Ray DA, Batzer MA, Jorde LB. Mobile DNA elements in primate and human evolution. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2008; Suppl 45:2-19. [PMID: 18046749 DOI: 10.1002/ajpa.20722] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Roughly 50% of the primate genome consists of mobile, repetitive DNA sequences such as Alu and LINE1 elements. The causes and evolutionary consequences of mobile element insertion, which have received considerable attention during the past decade, are reviewed in this article. Because of their unique mutational mechanisms, these elements are highly useful for answering phylogenetic questions. We demonstrate how they have been used to help resolve a number of questions in primate phylogeny, including the human-chimpanzee-gorilla trichotomy and New World primate phylogeny. Alu and LINE1 element insertion polymorphisms have also been analyzed in human populations to test hypotheses about human evolution and population affinities and to address forensic issues. Finally, these elements have had impacts on the genome itself. We review how they have influenced fundamental ongoing processes like nonhomologous recombination, genomic deletion, and X chromosome inactivation.
Collapse
Affiliation(s)
- Jinchuan Xing
- Department of Human Genetics, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | | | | | | | | |
Collapse
|
44
|
|
45
|
Hanihara T. Morphological variation of major human populations based on nonmetric dental traits. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2008; 136:169-82. [DOI: 10.1002/ajpa.20792] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Alfonso-Sánchez MA, Pérez-Miranda AM, Herrera RJ. Autosomal microsatellite variability of the Arrernte people of Australia. Am J Hum Biol 2008; 20:91-9. [PMID: 17957762 DOI: 10.1002/ajhb.20685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The genomic diversity of the Arrernte people of Australia or caterpillar people was investigated utilizing 13 autosomal short tandem repeat (STR) markers. Significant departures from Hardy-Weinberg equilibrium were detected at the D18S51, TPOX and CSF1PO loci, which persisted after applying the Bonferroni correction. Gene diversity values oscillate between 0.6302 (CSF1PO) and 0.8731 (D21S11). Observed heterozygosity (Ho) ranges from 0.2632 (D18S51) to 0.8333 (vWA) and is lower than the expected heterozygosity (He) for 12 of the 13 loci analyzed. The genetic relationships of the Arrernte with Middle Eastern, East Asian, South Asian and Indian populations were analyzed by distance-based methods, including Neighbor-Joining trees and nonmetric multidimensional scaling. In addition, the genetic contribution of the populations included in the analysis to the Arrernte gene pool was estimated utilizing weighted least square coefficients. Although the Arrernte population exhibits a remarkable level of genetic differentiation, results of the phylogeographic analyses based on autosomal microsatellite data suggest a certain degree of genetic relatedness between the Arrernte tribe of Australia and populations from the Indian subcontinent. In contrast, the STR diversity analyses failed to detect substantial East Asian contribution to the genetic background of the Arrernte group.
Collapse
Affiliation(s)
- M A Alfonso-Sánchez
- Molecular Biology and Human Diversity Laboratory, Department of Biological Sciences, Florida International University, Miami, Florida 33199, USA
| | | | | |
Collapse
|
47
|
Austronesian genetic signature in East African Madagascar and Polynesia. J Hum Genet 2007; 53:106-120. [DOI: 10.1007/s10038-007-0224-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Accepted: 11/06/2007] [Indexed: 11/24/2022]
|
48
|
García-Obregón S, Alfonso-Sánchez MA, Pérez-Miranda AM, de Pancorbo MM, Peña JA. Polymorphic Alu insertions and the genetic structure of Iberian Basques. J Hum Genet 2007; 52:317-327. [PMID: 17277899 DOI: 10.1007/s10038-007-0114-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Accepted: 01/04/2007] [Indexed: 12/31/2022]
Abstract
Eight Alu sequences (ACE, TPA25, PV92, APO, FXIIIB, D1, A25 and B65) were analyzed in two samples from Navarre and Guipúzcoa provinces (Basque Country, Spain). Alu data for other European, Caucasus and North African populations were compiled from the literature for comparison purposes to assess the genetic relationships of the Basques in a broader geographic context. Results of both MDS plot and AMOVA revealed spatial heterogeneity among these three population clusters clearly defined by geography. On the contrary, no substantial genetic heterogeneity was found between the Basque samples, or between Basques and other Europeans (excluding Caucasus populations). Moreover, the genetic information obtained from Alu data conflicts with hypotheses linking the origin of Basques with populations from North Africa (Berbers) or from the Caucasus region (Georgia). In order to explain the reduced genetic heterogeneity detected by Alu insertions among Basque subpopulations, values of the Wright's F(ST )statistic were estimated for both Alu markers and a set of short tandem repeats (STRs) in terms of two geographical scales: (1) the Basque Country, (2) Europe (including Basques). In the Basque area, estimates of Wahlund's effect for both genetic markers showed no statistical difference between Basque subpopulations. However, when this analysis was performed on a European scale, F(ST) values were significantly higher for Alu insertions than for STR alleles. From these results, we suggest that the spatial heterogeneity of the Basque gene pool identified in previous polymorphism studies is relatively recent and probably caused by a differential process of genetic admixture with non-Basque neighboring populations modulated by the effect of a linguistic barrier to random mating.
Collapse
Affiliation(s)
- S García-Obregón
- Departamento de Genética, Antropología Física y Fisiología Animal, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apartado 644, 48080, Bilbao, Spain
| | - M A Alfonso-Sánchez
- Departamento de Genética, Antropología Física y Fisiología Animal, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apartado 644, 48080, Bilbao, Spain
| | - A M Pérez-Miranda
- Departamento de Genética, Antropología Física y Fisiología Animal, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apartado 644, 48080, Bilbao, Spain
| | - M M de Pancorbo
- Departamento de Zoología y Dinámica Celular Animal, Facultad de Farmacia, Universidad del Pais Vasco, 48080, Bilbao, Spain
| | - J A Peña
- Departamento de Genética, Antropología Física y Fisiología Animal, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apartado 644, 48080, Bilbao, Spain.
| |
Collapse
|
49
|
Bulayeva KB, Jorde L, Watkins S, Ostler C, Pavlova TA, Bulayev OA, Tofanelli S, Paoli G, Harpending H. Ethnogenomic diversity of Caucasus, Daghestan. Am J Hum Biol 2006; 18:610-20. [PMID: 16917895 DOI: 10.1002/ajhb.20531] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Autosomal short-tandem repeats (STRs) were typed in ethnic populations of Kubachians, Dargins, Avars, Lezgins, Kumiks, and Nogais of the Caucasus (Daghestan, Russia) at the University of Utah. Daghestan ethnic populations demonstrated differences in STR allele frequency distributions, but these differences were much lower among these ethnic groups compared to worldwide ethnic groups. The observed genetic diversity was low while F(ST) values were high, both of which provided supporting evidence for small population sizes and high levels of isolation among the ethnic groups. An analysis of genetic distance from the three major continents, encompassing Daghestan populations and groups, reveals three distinct clusters: all populations of African affiliation, European and Daghestan populations except the Nogais, and Asian populations with ethnic Nogais.
Collapse
Affiliation(s)
- K B Bulayeva
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 117991, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Witherspoon DJ, Marchani EE, Watkins WS, Ostler CT, Wooding SP, Anders BA, Fowlkes JD, Boissinot S, Furano AV, Ray DA, Rogers AR, Batzer MA, Jorde LB. Human population genetic structure and diversity inferred from polymorphic L1(LINE-1) and Alu insertions. Hum Hered 2006; 62:30-46. [PMID: 17003565 DOI: 10.1159/000095851] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Accepted: 07/25/2006] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS The L1 retrotransposable element family is the most successful self-replicating genomic parasite of the human genome. L1 elements drive replication of Alu elements, and both have had far-reaching impacts on the human genome. We use L1 and Alu insertion polymorphisms to analyze human population structure. METHODS We genotyped 75 recent, polymorphic L1 insertions in 317 individuals from 21 populations in sub-Saharan Africa, East Asia, Europe and the Indian subcontinent. This is the first sample of L1 loci large enough to support detailed population genetic inference. We analyzed these data in parallel with a set of 100 polymorphic Alu insertion loci previously genotyped in the same individuals. RESULTS AND CONCLUSION The data sets yield congruent results that support the recent African origin model of human ancestry. A genetic clustering algorithm detects clusters of individuals corresponding to continental regions. The number of loci sampled is critical: with fewer than 50 typical loci, structure cannot be reliably discerned in these populations. The inclusion of geographically intermediate populations (from India) reduces the distinctness of clustering. Our results indicate that human genetic variation is neither perfectly correlated with geographic distance (purely clinal) nor independent of distance (purely clustered), but a combination of both: stepped clinal.
Collapse
Affiliation(s)
- D J Witherspoon
- Department of Human Genetics, University of Utah Health Sciences Center, Salt Lake City, UT 84112-5330, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|