1
|
Chakraborty S, Liu L, Fitzsimmons L, Porwollik S, Kim JS, Desai P, McClelland M, Vazquez-Torres A. Glycolytic reprograming in Salmonella counters NOX2-mediated dissipation of ΔpH. Nat Commun 2020; 11:1783. [PMID: 32286292 PMCID: PMC7156505 DOI: 10.1038/s41467-020-15604-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 03/09/2020] [Indexed: 01/16/2023] Open
Abstract
The microbial adaptations to the respiratory burst remain poorly understood, and establishing how the NADPH oxidase (NOX2) kills microbes has proven elusive. Here we demonstrate that NOX2 collapses the ΔpH of intracellular Salmonella Typhimurium. The depolarization experienced by Salmonella undergoing oxidative stress impairs folding of periplasmic proteins. Depolarization in respiring Salmonella mediates intense bactericidal activity of reactive oxygen species (ROS). Salmonella adapts to the challenges oxidative stress imposes on membrane bioenergetics by shifting redox balance to glycolysis and fermentation, thereby diminishing electron flow through the membrane, meeting energetic requirements and anaplerotically generating tricarboxylic acid intermediates. By diverting electrons away from the respiratory chain, glycolysis also enables thiol/disulfide exchange-mediated folding of bacterial cell envelope proteins during periods of oxidative stress. Thus, primordial metabolic pathways, already present in bacteria before aerobic respiration evolved, offer a solution to the stress ROS exert on molecular targets at the bacterial cell envelope. Chakraborty et al. show that phagocyte NADPH oxidase (NOX2) collapses the ΔpH of intracellular Salmonella Typhimurium, leading to oxidative damage of cell envelope proteins. Salmonella responds by shifting redox balance from respiration to glycolysis and fermentation, thereby facilitating folding of periplasmic functions.
Collapse
Affiliation(s)
- Sangeeta Chakraborty
- Department of Immunology & Microbiology, University of Colorado School of Medicine, 12800 E. 19th Ave, Mail Box 8333, Aurora, CO, 80045, USA
| | - Lin Liu
- Department of Immunology & Microbiology, University of Colorado School of Medicine, 12800 E. 19th Ave, Mail Box 8333, Aurora, CO, 80045, USA
| | - Liam Fitzsimmons
- Department of Immunology & Microbiology, University of Colorado School of Medicine, 12800 E. 19th Ave, Mail Box 8333, Aurora, CO, 80045, USA
| | - Steffen Porwollik
- Department of Microbiology and Molecular Genetics, University of California Irvine School of Medicine, 240 Med Sci Bldg., Irvine, CA, 92697, USA
| | - Ju-Sim Kim
- Department of Immunology & Microbiology, University of Colorado School of Medicine, 12800 E. 19th Ave, Mail Box 8333, Aurora, CO, 80045, USA
| | - Prerak Desai
- Department of Microbiology and Molecular Genetics, University of California Irvine School of Medicine, 240 Med Sci Bldg., Irvine, CA, 92697, USA
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California Irvine School of Medicine, 240 Med Sci Bldg., Irvine, CA, 92697, USA
| | - Andres Vazquez-Torres
- Department of Immunology & Microbiology, University of Colorado School of Medicine, 12800 E. 19th Ave, Mail Box 8333, Aurora, CO, 80045, USA. .,Veterans Affairs Eastern Colorado Health Care System, Denver, CO, USA.
| |
Collapse
|
2
|
Young D, Pedre B, Ezeriņa D, De Smet B, Lewandowska A, Tossounian MA, Bodra N, Huang J, Astolfi Rosado L, Van Breusegem F, Messens J. Protein Promiscuity in H 2O 2 Signaling. Antioxid Redox Signal 2019; 30:1285-1324. [PMID: 29635930 DOI: 10.1089/ars.2017.7013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SIGNIFICANCE Decrypting the cellular response to oxidative stress relies on a comprehensive understanding of the redox signaling pathways stimulated under oxidizing conditions. Redox signaling events can be divided into upstream sensing of oxidants, midstream redox signaling of protein function, and downstream transcriptional redox regulation. Recent Advances: A more and more accepted theory of hydrogen peroxide (H2O2) signaling is that of a thiol peroxidase redox relay, whereby protein thiols with low reactivity toward H2O2 are instead oxidized through an oxidative relay with thiol peroxidases. CRITICAL ISSUES These ultrareactive thiol peroxidases are the upstream redox sensors, which form the first cellular port of call for H2O2. Not all redox-regulated interactions between thiol peroxidases and cellular proteins involve a transfer of oxidative equivalents, and the nature of redox signaling is further complicated through promiscuous functions of redox-regulated "moonlighting" proteins, of which the precise cellular role under oxidative stress can frequently be obscured by "polygamous" interactions. An ultimate goal of redox signaling is to initiate a rapid response, and in contrast to prokaryotic oxidant-responsive transcription factors, mammalian systems have developed redox signaling pathways, which intersect both with kinase-dependent activation of transcription factors, as well as direct oxidative regulation of transcription factors through peroxiredoxin (Prx) redox relays. FUTURE DIRECTIONS We highlight that both transcriptional regulation and cell fate can be modulated either through oxidative regulation of kinase pathways, or through distinct redox-dependent associations involving either Prxs or redox-responsive moonlighting proteins with functional promiscuity. These protein associations form systems of crossregulatory networks with multiple nodes of potential oxidative regulation for H2O2-mediated signaling.
Collapse
Affiliation(s)
- David Young
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Brandan Pedre
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Daria Ezeriņa
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Barbara De Smet
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,4 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,5 Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Aleksandra Lewandowska
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,4 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,5 Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Maria-Armineh Tossounian
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Nandita Bodra
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,4 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,5 Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Jingjing Huang
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,4 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,5 Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Leonardo Astolfi Rosado
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Frank Van Breusegem
- 2 Brussels Center for Redox Biology, Brussels, Belgium.,4 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,5 Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Joris Messens
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
3
|
Abstract
The formation of disulfide bonds is critical to the folding of many extracytoplasmic proteins in all domains of life. With the discovery in the early 1990s that disulfide bond formation is catalyzed by enzymes, the field of oxidative folding of proteins was born. Escherichia coli played a central role as a model organism for the elucidation of the disulfide bond-forming machinery. Since then, many of the enzymatic players and their mechanisms of forming, breaking, and shuffling disulfide bonds have become understood in greater detail. This article summarizes the discoveries of the past 3 decades, focusing on disulfide bond formation in the periplasm of the model prokaryotic host E. coli.
Collapse
Affiliation(s)
| | - Dana Boyd
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115
| | | |
Collapse
|
4
|
Guerrero Montero I, Dolata KM, Schlüter R, Malherbe G, Sievers S, Zühlke D, Sura T, Dave E, Riedel K, Robinson C. Comparative proteome analysis in an Escherichia coli CyDisCo strain identifies stress responses related to protein production, oxidative stress and accumulation of misfolded protein. Microb Cell Fact 2019; 18:19. [PMID: 30696436 PMCID: PMC6350376 DOI: 10.1186/s12934-019-1071-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/23/2019] [Indexed: 01/15/2023] Open
Abstract
Background The Twin-arginine translocation (Tat) pathway of Escherichia coli has great potential for the export of biopharmaceuticals to the periplasm due to its ability to transport folded proteins, and its proofreading mechanism that allows correctly folded proteins to translocate. Coupling the Tat-dependent protein secretion with the formation of disulfide bonds in the cytoplasm of E. coli CyDisCo provides a powerful platform for the production of industrially challenging proteins. In this study, we investigated the effects on the E. coli cells of exporting a folded substrate (scFv) to the periplasm using a Tat signal peptide, and the effects of expressing an export-incompetent misfolded variant. Results Cell growth is decreased when either the correctly folded or misfolded scFv is expressed with a Tat signal peptide. However, only the production of misfolded scFv leads to cell aggregation and formation of inclusion bodies. The comprehensive proteomic analysis revealed that both conditions, recombinant protein overexpression and misfolded protein accumulation, lead to downregulation of membrane transporters responsible for protein folding and insertion into the membrane while upregulating the production of chaperones and proteases involved in removing aggregates. These conditions also differentially affect the production of transcription factors and proteins involved in DNA replication. The most distinct stress response observed was the cell aggregation caused by elevated levels of antigen 43. Finally, Tat-dependent secretion causes an increase in tatA expression only after induction of protein expression, while the subsequent post-induction analysis revealed lower tatA and tatB expression levels, which correlate with lowered TatA and TatB protein abundance. Conclusions The study identified characteristic changes occurring as a result of the production of both a folded and a misfolded protein, but also highlights an exclusive unfolded stress response. Countering and compensating for these changes may result in higher yields of pharmaceutically relevant proteins exported to the periplasm. Electronic supplementary material The online version of this article (10.1186/s12934-019-1071-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Katarzyna Magdalena Dolata
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 15, 17487, Greifswald, Germany
| | - Gilles Malherbe
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK.,UCB Celltech, 216 Bath Road, Slough, SL1 3WE, UK
| | - Susanne Sievers
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany
| | - Daniela Zühlke
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany
| | - Thomas Sura
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany
| | - Emma Dave
- UCB Celltech, 216 Bath Road, Slough, SL1 3WE, UK
| | - Katharina Riedel
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany
| | - Colin Robinson
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK.
| |
Collapse
|
5
|
Bocian-Ostrzycka KM, Grzeszczuk MJ, Banaś AM, Jastrząb K, Pisarczyk K, Kolarzyk A, Łasica AM, Collet JF, Jagusztyn-Krynicka EK. Engineering of Helicobacter pylori Dimeric Oxidoreductase DsbK (HP0231). Front Microbiol 2016; 7:1158. [PMID: 27507968 PMCID: PMC4960241 DOI: 10.3389/fmicb.2016.01158] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/12/2016] [Indexed: 12/16/2022] Open
Abstract
The formation of disulfide bonds that are catalyzed by proteins of the Dsb (disulfide bond) family is crucial for the correct folding of many extracytoplasmic proteins. Thus, this formation plays an essential, pivotal role in the assembly of many virulence factors. The Helicobacter pylori disulfide bond-forming system is uncomplicated compared to the best-characterized Escherichia coli Dsb pathways. It possesses only two extracytoplasmic Dsb proteins named HP0377 and HP0231. As previously shown, HP0377 is a reductase involved in the process of cytochrome c maturation. Additionally, it also possesses disulfide isomerase activity. HP0231 was the first periplasmic dimeric oxidoreductase involved in disulfide generation to be described. Although HP0231 function is critical for oxidative protein folding, its structure resembles that of dimeric EcDsbG, which does not confer this activity. However, the HP0231 catalytic motifs (CXXC and the so-called cis-Pro loop) are identical to that of monomeric EcDsbA. To understand the functioning of HP0231, we decided to study the relations between its sequence, structure and activity through an extensive analysis of various HP0231 point mutants, using in vivo and in vitro strategies. Our work shows the crucial role of the cis-Pro loop, as changing valine to threonine in this motif completely abolishes the protein function in vivo. Functioning of HP0231 is conditioned by the combination of CXXC and the cis-Pro loop, as replacing the HP0231 CXXC motif by the motif from EcDsbG or EcDsbC results in bifunctional protein, at least in E. coli. We also showed that the dimerization domain of HP0231 ensures contact with its substrates. Moreover, the activity of this oxidase is independent on the structure of the catalytic domain. Finally, we showed that HP0231 chaperone activity is independent of its redox function.
Collapse
Affiliation(s)
- Katarzyna M Bocian-Ostrzycka
- Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of Warsaw Warsaw, Poland
| | - Magdalena J Grzeszczuk
- Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of Warsaw Warsaw, Poland
| | - Anna M Banaś
- Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of Warsaw Warsaw, Poland
| | - Katarzyna Jastrząb
- Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of Warsaw Warsaw, Poland
| | - Karolina Pisarczyk
- Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of Warsaw Warsaw, Poland
| | - Anna Kolarzyk
- Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of Warsaw Warsaw, Poland
| | - Anna M Łasica
- Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of Warsaw Warsaw, Poland
| | - Jean-François Collet
- Walloon Excellence in Life Sciences and BiotechnologyBrussels, Belgium; de Duve Institute, Université Catholique de LouvainBrussels, Belgium
| | - Elżbieta K Jagusztyn-Krynicka
- Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of Warsaw Warsaw, Poland
| |
Collapse
|
6
|
Abstract
Disulfide bonds are important for the stability and function of many secreted proteins. In Gram-negative bacteria, these linkages are catalyzed by thiol-disulfide oxidoreductases (Dsb) in the periplasm. Protein oxidation has been well studied in these organisms, but it has not fully been explored in Gram-positive bacteria, which lack traditional periplasmic compartments. Recent bioinformatics analyses have suggested that the high-GC-content bacteria (i.e., actinobacteria) rely on disulfide-bond-forming pathways. In support of this, Dsb-like proteins have been identified in Mycobacterium tuberculosis, but their functions are not known. Actinomyces oris and Corynebacterium diphtheriae have recently emerged as models to study disulfide bond formation in actinobacteria. In both organisms, disulfide bonds are catalyzed by the membrane-bound oxidoreductase MdbA. Remarkably, unlike known Dsb proteins, MdbA is important for pathogenesis and growth, which makes it a potential target for new antibacterial drugs. This review will discuss disulfide-bond-forming pathways in bacteria, with a special focus on Gram-positive bacteria.
Collapse
Affiliation(s)
- Melissa E Reardon-Robinson
- Department of Microbiology & Molecular Genetics, University of Texas Health Science Center, Houston, Texas, USA
| | - Hung Ton-That
- Department of Microbiology & Molecular Genetics, University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
7
|
Grabowska AD, Wywiał E, Dunin-Horkawicz S, Łasica AM, Wösten MMSM, Nagy-Staroń A, Godlewska R, Bocian-Ostrzycka K, Pieńkowska K, Łaniewski P, Bujnicki JM, van Putten JPM, Jagusztyn-Krynicka EK. Functional and bioinformatics analysis of two Campylobacter jejuni homologs of the thiol-disulfide oxidoreductase, DsbA. PLoS One 2014; 9:e106247. [PMID: 25181355 PMCID: PMC4152235 DOI: 10.1371/journal.pone.0106247] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 07/29/2014] [Indexed: 01/14/2023] Open
Abstract
Background Bacterial Dsb enzymes are involved in the oxidative folding of many proteins, through the formation of disulfide bonds between their cysteine residues. The Dsb protein network has been well characterized in cells of the model microorganism Escherichia coli. To gain insight into the functioning of the Dsb system in epsilon-Proteobacteria, where it plays an important role in the colonization process, we studied two homologs of the main Escherichia coli Dsb oxidase (EcDsbA) that are present in the cells of the enteric pathogen Campylobacter jejuni, the most frequently reported bacterial cause of human enteritis in the world. Methods and Results Phylogenetic analysis suggests the horizontal transfer of the epsilon-Proteobacterial DsbAs from a common ancestor to gamma-Proteobacteria, which then gave rise to the DsbL lineage. Phenotype and enzymatic assays suggest that the two C. jejuni DsbAs play different roles in bacterial cells and have divergent substrate spectra. CjDsbA1 is essential for the motility and autoagglutination phenotypes, while CjDsbA2 has no impact on those processes. CjDsbA1 plays a critical role in the oxidative folding that ensures the activity of alkaline phosphatase CjPhoX, whereas CjDsbA2 is crucial for the activity of arylsulfotransferase CjAstA, encoded within the dsbA2-dsbB-astA operon. Conclusions Our results show that CjDsbA1 is the primary thiol-oxidoreductase affecting life processes associated with bacterial spread and host colonization, as well as ensuring the oxidative folding of particular protein substrates. In contrast, CjDsbA2 activity does not affect the same processes and so far its oxidative folding activity has been demonstrated for one substrate, arylsulfotransferase CjAstA. The results suggest the cooperation between CjDsbA2 and CjDsbB. In the case of the CjDsbA1, this cooperation is not exclusive and there is probably another protein to be identified in C. jejuni cells that acts to re-oxidize CjDsbA1. Altogether the data presented here constitute the considerable insight to the Epsilonproteobacterial Dsb systems, which have been poorly understood so far.
Collapse
Affiliation(s)
- Anna D Grabowska
- Department of Bacterial Genetics, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Ewa Wywiał
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Stanislaw Dunin-Horkawicz
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Anna M Łasica
- Department of Bacterial Genetics, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Marc M S M Wösten
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, the Netherlands; World Health Organization Collaborating Centre for Reference and Research on Campylobacter/ World Organisation for Animal Health Reference Laboratory for Campylobacteriosis, Utrecht, The Netherlands
| | | | - Renata Godlewska
- Department of Bacterial Genetics, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | | | - Katarzyna Pieńkowska
- Department of Bacterial Genetics, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Paweł Łaniewski
- Department of Bacterial Genetics, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, Poland; Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Jos P M van Putten
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, the Netherlands; World Health Organization Collaborating Centre for Reference and Research on Campylobacter/ World Organisation for Animal Health Reference Laboratory for Campylobacteriosis, Utrecht, The Netherlands
| | | |
Collapse
|
8
|
Linkage of inflammation and oxidative stress via release of glutathionylated peroxiredoxin-2, which acts as a danger signal. Proc Natl Acad Sci U S A 2014; 111:12157-62. [PMID: 25097261 DOI: 10.1073/pnas.1401712111] [Citation(s) in RCA: 265] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The mechanism by which oxidative stress induces inflammation and vice versa is unclear but is of great importance, being apparently linked to many chronic inflammatory diseases. We show here that inflammatory stimuli induce release of oxidized peroxiredoxin-2 (PRDX2), a ubiquitous redox-active intracellular enzyme. Once released, the extracellular PRDX2 acts as a redox-dependent inflammatory mediator, triggering macrophages to produce and release TNF-α. The oxidative coupling of glutathione (GSH) to PRDX2 cysteine residues (i.e., protein glutathionylation) occurs before or during PRDX2 release, a process central to the regulation of immunity. We identified PRDX2 among the glutathionylated proteins released in vitro by LPS-stimulated macrophages using mass spectrometry proteomic methods. Consistent with being part of an inflammatory cascade, we find that PRDX2 then induces TNF-α release. Unlike classical inflammatory cytokines, PRDX2 release does not reflect LPS-mediated induction of mRNA or protein synthesis; instead, PRDX2 is constitutively present in macrophages, mainly in the reduced form, and is released in the oxidized form on LPS stimulation. Release of PRDX2 is also observed in human embryonic kidney cells treated with TNF-α. Importantly, the PRDX2 substrate thioredoxin (TRX) is also released along with PRDX2, enabling an oxidative cascade that can alter the -SH status of surface proteins and thereby facilitate activation via cytokine and Toll-like receptors. Thus, our findings suggest a model in which the release of PRDX2 and TRX from macrophages can modify the redox status of cell surface receptors and enable induction of inflammatory responses. This pathway warrants further exploration as a potential novel therapeutic target for chronic inflammatory diseases.
Collapse
|
9
|
Abstract
SIGNIFICANCE The thioredoxin (Trx) superfamily proteins, including protein disulfide isomerases (PDI) and Dsb protein family, are major players in oxidative protein folding, which involves native disulfide bond formation. These proteins contain Trx folds with CXXC active sites and fulfill their physiological functions in oxidative cellular compartments such as the endoplasmic reticulum (ER) or the bacterial periplasm. RECENT ADVANCES The structure of the Trx superfamily protein PDI has been solved by X-ray crystallography and shown to be a flexible molecule, having a horseshoe shape with a closed reduced and an open oxidized conformation, which is important for exerting its catalytic activity. Atomic force microscopy revealed that PDI works as a placeholder to prevent early non-native disulfide bond formation and further misfolding. S-nitrosylation of the active site of PDI inhibits the PDI activity and links protein misfolding to neurodegenerative diseases like Alzheimer's and Parkinson's diseases. CRITICAL ISSUES Electron transfer pathways of the oxidative protein folding show conserved Trx-like thiol-disulfide chemistry. Overall, mammalian cells have a large number of disulfide-containing proteins, the folding of which involves non-native disulfide bond isomerization. The process is sensitive to oxidative stress and ER stress. FUTURE DIRECTIONS The correct oxidative protein folding is critical for the substrate protein stability and function, and protein misfolding is linked to, for example, neurodegenerative diseases. Further understanding on the mechanisms and specific roles of Trx superfamily proteins in oxidative protein folding may lead to drug development for the treatment of bacterial infection and various human diseases in aging and neurodegeneration.
Collapse
Affiliation(s)
- Jun Lu
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | | |
Collapse
|
10
|
Delic M, Göngrich R, Mattanovich D, Gasser B. Engineering of protein folding and secretion-strategies to overcome bottlenecks for efficient production of recombinant proteins. Antioxid Redox Signal 2014; 21:414-37. [PMID: 24483278 DOI: 10.1089/ars.2014.5844] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Recombinant protein production has developed into a huge market with enormous positive implications for human health and for the future direction of a biobased economy. Limitations in the economic and technical feasibility of production processes are often related to bottlenecks of in vivo protein folding. RECENT ADVANCES Based on cell biological knowledge, some major bottlenecks have been overcome by the overexpression of molecular chaperones and other folding related proteins, or by the deletion of deleterious pathways that may lead to misfolding, mistargeting, or degradation. CRITICAL ISSUES While important success could be achieved by this strategy, the list of reported unsuccessful cases is disappointingly long and obviously dependent on the recombinant protein to be produced. Singular engineering of protein folding steps may not lead to desired results if the pathway suffers from several limitations. In particular, the connection between folding quality control and proteolytic degradation needs further attention. FUTURE DIRECTIONS Based on recent understanding that multiple steps in the folding and secretion pathways limit productivity, synergistic combinations of the cell engineering approaches mentioned earlier need to be explored. In addition, systems biology-based whole cell analysis that also takes energy and redox metabolism into consideration will broaden the knowledge base for future rational engineering strategies.
Collapse
Affiliation(s)
- Marizela Delic
- 1 Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU) , Vienna, Austria
| | | | | | | |
Collapse
|
11
|
Disulfide bond formation in prokaryotes: history, diversity and design. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1402-14. [PMID: 24576574 DOI: 10.1016/j.bbapap.2014.02.014] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/12/2014] [Accepted: 02/16/2014] [Indexed: 01/16/2023]
Abstract
The formation of structural disulfide bonds is essential for the function and stability of a great number of proteins, particularly those that are secreted. There exists a variety of dedicated cellular catalysts and pathways from archaea to humans that ensure the formation of native disulfide bonds. In this review we describe the initial discoveries of these pathways and report progress in recent years in our understanding of the diversity of these pathways in prokaryotes, including those newly discovered in some archaea. We will also discuss the various successful efforts to achieve laboratory-based evolution and design of synthetic disulfide bond formation machineries in the bacterium Escherichia coli. These latter studies have also led to new more general insights into the redox environment of the cytoplasm and bacterial cell envelope. This article is part of a Special Issue entitled: Thiol-Based Redox Processes.
Collapse
|
12
|
Asghari S, Shekari Khaniani M, Darabi M, Mansoori Derakhshan S. Cloning of Soluble Human Stem Cell Factor in pET-26b(+) Vector. Adv Pharm Bull 2014; 4:91-5. [PMID: 24409415 DOI: 10.5681/apb.2014.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 06/20/2013] [Accepted: 06/25/2013] [Indexed: 11/17/2022] Open
Abstract
PURPOSE Stem cell factor (SCF) plays an important role in the survival, proliferation and differentiation of hematopoietic stem cells and progenitor cells. Potential therapeutic applications of SCF include hematopoietic stem cell mobilization, exvivo stem/progenitor cell expansion, gene therapy, and immunotherapy. Considering the cost and problem in accessibility of this product in Iran, clears the importance of indigenizing production of rhSCF. In the present work, we describe the construction of the soluble rhSCF expression vector in pET-26b (+) with periplasmic localization potential. METHODS Following PCR amplification of human SCF ORF, it is cloned in pET-26b (+) vector in NcoI and XhoI sites. The recombinant construct was transformed into BL21 (DE3) Ecoli strains. RESULTS The construction of recombinant vector was verified by colony PCR and sequence analysis of pET26b-hSCF vector. Sequence analyses proved that human SCF ORF has been inserted into NcoI and XhoI site with correct orientation downstream of strong T7 promotor and showed no nucleotide errors. CONCLUSION The SCF ORF was successfully cloned in pET-26b (+) expression vector and is ready for future production of SCF protein.
Collapse
Affiliation(s)
- Salman Asghari
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Shekari Khaniani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences,Tabriz, Iran
| | - Masood Darabi
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Mansoori Derakhshan
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences,Tabriz, Iran
| |
Collapse
|
13
|
Singh P, Sharma L, Kulothungan SR, Adkar BV, Prajapati RS, Ali PSS, Krishnan B, Varadarajan R. Effect of signal peptide on stability and folding of Escherichia coli thioredoxin. PLoS One 2013; 8:e63442. [PMID: 23667620 PMCID: PMC3646739 DOI: 10.1371/journal.pone.0063442] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 04/03/2013] [Indexed: 11/19/2022] Open
Abstract
The signal peptide plays a key role in targeting and membrane insertion of secretory and membrane proteins in both prokaryotes and eukaryotes. In E. coli, recombinant proteins can be targeted to the periplasmic space by fusing naturally occurring signal sequences to their N-terminus. The model protein thioredoxin was fused at its N-terminus with malE and pelB signal sequences. While WT and the pelB fusion are soluble when expressed, the malE fusion was targeted to inclusion bodies and was refolded in vitro to yield a monomeric product with identical secondary structure to WT thioredoxin. The purified recombinant proteins were studied with respect to their thermodynamic stability, aggregation propensity and activity, and compared with wild type thioredoxin, without a signal sequence. The presence of signal sequences leads to thermodynamic destabilization, reduces the activity and increases the aggregation propensity, with malE having much larger effects than pelB. These studies show that besides acting as address labels, signal sequences can modulate protein stability and aggregation in a sequence dependent manner.
Collapse
Affiliation(s)
- Pranveer Singh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Likhesh Sharma
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | | - Bharat V. Adkar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | | - P. Shaik Syed Ali
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Beena Krishnan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
- Chemical Biology Unit, Jawaharlal NehruCentre for Advanced Scientific Research, Jakkur, Bangalore, India
- * E-mail:
| |
Collapse
|
14
|
Ghezzi P. Protein glutathionylation in health and disease. Biochim Biophys Acta Gen Subj 2013; 1830:3165-72. [DOI: 10.1016/j.bbagen.2013.02.009] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 01/10/2013] [Accepted: 02/07/2013] [Indexed: 12/31/2022]
|
15
|
Abstract
Grxs (glutaredoxins) are small ubiquitous redox enzymes. They are generally involved in the reduction of oxidative modifications using glutathione. Grxs are not only able to reduce protein disulfides and the low-molecular-mass antioxidant dehydroascorbate, but also represent the major enzyme class responsible for deglutathionylation reactions. Functional proteomics, including interaction studies, comparative activity measurements using heterologous proteins and structural analysis are combined to provide important insights into the crucial function of Grxs in cellular redox networks. Summarizing the current understanding of Grxs, with a special focus on organelle-localized members across species, genus and kingdom boundaries (including cyanobacteria, plants, bacteria, yeast and humans) lead to two different classifications, one according to sequence structure that gives insights into the diversification of Grxs, and another according to function within the cell that provides a basis for assessing the different roles of Grxs.
Collapse
|
16
|
Chng SS, Dutton RJ, Denoncin K, Vertommen D, Collet JF, Kadokura H, Beckwith J. Overexpression of the rhodanese PspE, a single cysteine-containing protein, restores disulphide bond formation to an Escherichia coli strain lacking DsbA. Mol Microbiol 2012; 85:996-1006. [PMID: 22809289 DOI: 10.1111/j.1365-2958.2012.08157.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Escherichia coli uses the DsbA/DsbB system for introducing disulphide bonds into proteins in the cell envelope. Deleting either dsbA or dsbB or both reduces disulphide bond formation but does not entirely eliminate it. Whether such background disulphide bond forming activity is enzyme-catalysed is not known. To identify possible cellular factors that might contribute to the background activity, we studied the effects of overexpressing endogenous proteins on disulphide bond formation in the periplasm. We find that overexpressing PspE, a periplasmic rhodanese, partially restores substantial disulphide bond formation to a dsbA strain. This activity depends on DsbC, the bacterial disulphide bond isomerase, but not on DsbB. We show that overexpressed PspE is oxidized to the sulphenic acid form and reacts with substrate proteins to form mixed disulphide adducts. DsbC either prevents the formation of these mixed disulphides or resolves these adducts subsequently. In the process, DsbC itself gets oxidized and proceeds to catalyse disulphide bond formation. Although this PspE/DsbC system is not responsible for the background disulphide bond forming activity, we suggest that it might be utilized in other organisms lacking the DsbA/DsbB system.
Collapse
Affiliation(s)
- Shu-Sin Chng
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Probing the mutational interplay between primary and promiscuous protein functions: a computational-experimental approach. PLoS Comput Biol 2012; 8:e1002558. [PMID: 22719242 PMCID: PMC3375227 DOI: 10.1371/journal.pcbi.1002558] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 04/29/2012] [Indexed: 12/16/2022] Open
Abstract
Protein promiscuity is of considerable interest due its role in adaptive metabolic plasticity, its fundamental connection with molecular evolution and also because of its biotechnological applications. Current views on the relation between primary and promiscuous protein activities stem largely from laboratory evolution experiments aimed at increasing promiscuous activity levels. Here, on the other hand, we attempt to assess the main features of the simultaneous modulation of the primary and promiscuous functions during the course of natural evolution. The computational/experimental approach we propose for this task involves the following steps: a function-targeted, statistical coupling analysis of evolutionary data is used to determine a set of positions likely linked to the recruitment of a promiscuous activity for a new function; a combinatorial library of mutations on this set of positions is prepared and screened for both, the primary and the promiscuous activities; a partial-least-squares reconstruction of the full combinatorial space is carried out; finally, an approximation to the Pareto set of variants with optimal primary/promiscuous activities is derived. Application of the approach to the emergence of folding catalysis in thioredoxin scaffolds reveals an unanticipated scenario: diverse patterns of primary/promiscuous activity modulation are possible, including a moderate (but likely significant in a biological context) simultaneous enhancement of both activities. We show that this scenario can be most simply explained on the basis of the conformational diversity hypothesis, although alternative interpretations cannot be ruled out. Overall, the results reported may help clarify the mechanisms of the evolution of new functions. From a different viewpoint, the partial-least-squares-reconstruction/Pareto-set-prediction approach we have introduced provides the computational basis for an efficient directed-evolution protocol aimed at the simultaneous enhancement of several protein features and should therefore open new possibilities in the engineering of multi-functional enzymes. Interpretations of evolutionary processes at the molecular level have been determined to a significant extent by the concept of “trade-off”, the idea that improving a given feature of a protein molecule by mutation will likely bring about deterioration in other features. For instance, if a protein is able to carry out two different molecular tasks based on the same functional site (competing tasks), optimization for one task could be naively expected to impair its performance for the other task. In this work, we report a computational/experimental approach to assess the potential patterns of modulation of two competing molecular tasks in the course of natural evolution. Contrary to the naïve expectation, we find that diverse modulation patterns are possible, including the simultaneous optimization of the two tasks. We show, however, that this simultaneous optimization is not in conflict with the trade-offs expected for two competing tasks: using the language of the theory of economic efficiency, trade-offs are realized in the Pareto set of optimal variants for the two tasks, while most protein variants do not belong to such Pareto set. That is, most protein variants are not Pareto-efficient and can potentially be improved in terms of several features.
Collapse
|
18
|
Speck J, Hecky J, Tam HK, Arndt KM, Einsle O, Müller KM. Exploring the molecular linkage of protein stability traits for enzyme optimization by iterative truncation and evolution. Biochemistry 2012; 51:4850-67. [PMID: 22545913 DOI: 10.1021/bi2018738] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The stability of proteins is paramount for their therapeutic and industrial use and, thus, is a major task for protein engineering. Several types of chemical and physical stabilities are desired, and discussion revolves around whether each stability trait needs to be addressed separately and how specific and compatible stabilizing mutations act. We demonstrate a stepwise perturbation-compensation strategy, which identifies mutations rescuing the activity of a truncated TEM β-lactamase. Analyses relating structural stress with the external stresses of heat, denaturants, and proteases reveal our second-site suppressors as general stability centers that also improve the full-length enzyme. A library of lactamase variants truncated by 15 N-terminal and three C-terminal residues (Bla-NΔ15CΔ3) was subjected to activity selection and DNA shuffling. The resulting clone with the best in vivo performance harbored eight mutations, surpassed the full-length wild-type protein by 5.3 °C in T(m), displayed significantly higher catalytic activity at elevated temperatures, and showed delayed guanidine-induced denaturation. The crystal structure of this mutant was determined and provided insights into its stability determinants. Stepwise reconstitution of the N- and C-termini increased its thermal, denaturant, and proteolytic resistance successively, leading to a full-length enzyme with a T(m) increased by 15.3 °C and a half-denaturation concentration shifted from 0.53 to 1.75 M guanidinium relative to that of the wild type. These improvements demonstrate that iterative truncation-optimization cycles can exploit stability-trait linkages in proteins and are exceptionally suited for the creation of progressively stabilized variants and/or downsized proteins without the need for detailed structural or mechanistic information.
Collapse
Affiliation(s)
- Janina Speck
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Berkmen M. Production of disulfide-bonded proteins in Escherichia coli. Protein Expr Purif 2012; 82:240-51. [DOI: 10.1016/j.pep.2011.10.009] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 10/24/2011] [Accepted: 10/27/2011] [Indexed: 10/15/2022]
|
20
|
Cheng Z, Zhang J, Ballou DP, Williams CH. Reactivity of thioredoxin as a protein thiol-disulfide oxidoreductase. Chem Rev 2011; 111:5768-83. [PMID: 21793530 DOI: 10.1021/cr100006x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Zhiyong Cheng
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-5606, USA
| | | | | | | |
Collapse
|
21
|
Single-gene deletion mutants of Escherichia coli with altered sensitivity to bicyclomycin, an inhibitor of transcription termination factor Rho. J Bacteriol 2011; 193:2229-35. [PMID: 21357484 DOI: 10.1128/jb.01463-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have screened the entire KEIO collection of 3,985 single-gene knockouts in Escherichia coli for increased susceptibility or resistance to the antibiotic bicyclomycin (BCM), a potent inhibitor of the transcription termination factor Rho. We also compared the results to those of a recent study we conducted with a large set of antibiotics (A. Liu et al., Antimicrob. Agents Chemother. 54:1393-1403, 2010). We find that deletions of many different types of genes increase sensitivity to BCM. Some of these are involved in multidrug sensitivity/resistance, whereas others are specific for BCM. Mutations in a number of DNA recombination and repair genes increase BCM sensitivity, indicating that DNA damage leading to single- and double-strand breaks is a downstream effect of Rho inhibition. MDS42, which is deleted for all cryptic prophages and insertion elements (G. Posfai et al., Science 312:1044-1046, 2006), or W3102 deleted for the rac prophage-encoded kil gene, are partially resistant to BCM (C. J. Cardinale et al., Science 230:935-938, 2008). Deletion of cryptic prophages also overcomes the increased BCM sensitivity in some but not all mutants examined here. Deletion of the hns gene renders the cell more sensitive to BCM even in the Δkil or MDS42 background. This suggests that BCM activates additional modes of cell death independent of Kil and that these could provide a target to potentiate BCM killing.
Collapse
|
22
|
Huber D, Chaffotte A, Eser M, Planson AG, Beckwith J. Amino acid residues important for folding of thioredoxin are revealed only by study of the physiologically relevant reduced form of the protein. Biochemistry 2010; 49:8922-8. [PMID: 20873718 DOI: 10.1021/bi100784h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thioredoxin-1 from Escherichia coli has frequently been used as a model substrate in protein folding studies. However, for reasons of convenience, these studies have focused largely on oxidized thioredoxin and not on reduced thioredoxin, the more physiologically relevant species. Here we describe the first extensive characterization of the refolding kinetics and conformational thermodynamics of reduced thioredoxin. We have previously described a genetic screen that yielded mutant thioredoxin proteins that fold more slowly in both the oxidized and reduced forms. In this study, we apply our more detailed analysis of reduced thioredoxin folding to a larger number of folding mutants that includes those obtained from continuation of the genetic screen. We have identified mutant proteins that display folding defects specifically in the reduced state but not the oxidized state. Some of these substitutions represent unusual folding mutants in that they result in semiconservative substitutions at solvent-exposed positions in the folded conformation and do not appear to affect the conformational stability of the protein. Further, the genetic selection yields mutants at only a limited number of sites, pointing to perhaps the most critical amino acids in the folding pathway and underscoring, in particular, the role of the carboxy-terminal amino acids in the folding of thioredoxin. Our results demonstrate the importance of studying the physiologically relevant folding species.
Collapse
Affiliation(s)
- Damon Huber
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
23
|
Abstract
Thioredoxins are ubiquitous antioxidant enzymes that play important roles in many health-related cellular processes. As such, the fundamental knowledge of how these enzymes work is of prime importance for understanding cellular redox mechanisms and for laying the ground for the development of future therapeutic approaches. Over the past 40 years, a really impressive amount of data has been published on thioredoxins. Here, we review the most significant results that have contributed to our knowledge regarding the structure, the function, and the mechanism of these crucial enzymes.
Collapse
|
24
|
Kadokura H, Beckwith J. Mechanisms of oxidative protein folding in the bacterial cell envelope. Antioxid Redox Signal 2010; 13:1231-46. [PMID: 20367276 PMCID: PMC2959184 DOI: 10.1089/ars.2010.3187] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Disulfide-bond formation is important for the correct folding of a great number of proteins that are exported to the cell envelope of bacteria. Bacterial cells have evolved elaborate systems to promote the joining of two cysteines to form a disulfide bond and to repair misoxidized proteins. In the past two decades, significant advances have occurred in our understanding of the enzyme systems (DsbA, DsbB, DsbC, DsbG, and DsbD) used by the gram-negative bacterium Escherichia coli to ensure that correct pairs of cysteines are joined during the process of protein folding. However, a number of fundamental questions about these processes remain, especially about how they occur inside the cell. In addition, recent recognition of the increasing diversity among bacteria in the disulfide bond-forming capacity and in the systems for introducing disulfide bonds into proteins is raising new questions. We review here the marked progress in this field and discuss important questions that remain for future studies.
Collapse
Affiliation(s)
- Hiroshi Kadokura
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama, Ikoma, Nara, Japan.
| | | |
Collapse
|
25
|
Shoji M, Shibata Y, Shiroza T, Yukitake H, Peng B, Chen YY, Sato K, Naito M, Abiko Y, Reynolds EC, Nakayama K. Characterization of hemin-binding protein 35 (HBP35) in Porphyromonas gingivalis: its cellular distribution, thioredoxin activity and role in heme utilization. BMC Microbiol 2010; 10:152. [PMID: 20500879 PMCID: PMC2907840 DOI: 10.1186/1471-2180-10-152] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 05/25/2010] [Indexed: 11/24/2022] Open
Abstract
Background The periodontal pathogen Porphyromonas gingivalis is an obligate anaerobe that requires heme for growth. To understand its heme acquisition mechanism, we focused on a hemin-binding protein (HBP35 protein), possessing one thioredoxin-like motif and a conserved C-terminal domain, which are proposed to be involved in redox regulation and cell surface attachment, respectively. Results We observed that the hbp35 gene was transcribed as a 1.1-kb mRNA with subsequent translation resulting in three proteins with molecular masses of 40, 29 and 27 kDa in the cytoplasm, and one modified form of the 40-kDa protein on the cell surface. A recombinant 40-kDa HBP35 exhibited thioredoxin activity in vitro and mutation of the two putative active site cysteine residues abolished this activity. Both recombinant 40- and 27-kDa proteins had the ability to bind hemin, and growth of an hbp35 deletion mutant was substantially retarded under hemin-depleted conditions compared with growth of the wild type under the same conditions. Conclusion P. gingivalis HBP35 exhibits thioredoxin and hemin-binding activities and is essential for growth in hemin-depleted conditions suggesting that the protein plays a significant role in hemin acquisition.
Collapse
Affiliation(s)
- Mikio Shoji
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Qin Q, McCallum EJ, Kaas Q, Suda J, Saska I, Craik DJ, Mylne JS. Identification of candidates for cyclotide biosynthesis and cyclisation by expressed sequence tag analysis of Oldenlandia affinis. BMC Genomics 2010; 11:111. [PMID: 20158917 PMCID: PMC2838841 DOI: 10.1186/1471-2164-11-111] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 02/16/2010] [Indexed: 11/15/2022] Open
Abstract
Background Cyclotides are a family of circular peptides that exhibit a range of biological activities, including anti-bacterial, cytotoxic, anti-HIV activities, and are proposed to function in plant defence. Their high stability has motivated their development as scaffolds for the stabilisation of peptide drugs. Oldenlandia affinis is a member of the Rubiaceae (coffee) family from which 18 cyclotides have been sequenced to date, but the details of their processing from precursor proteins have only begun to be elucidated. To increase the speed at which genes involved in cyclotide biosynthesis and processing are being discovered, an expressed sequence tag (EST) project was initiated to survey the transcript profile of O. affinis and to propose some future directions of research on in vivo protein cyclisation. Results Using flow cytometry the holoploid genome size (1C-value) of O. affinis was estimated to be 4,210 - 4,284 Mbp, one of the largest genomes of the Rubiaceae family. High-quality ESTs were identified, 1,117 in total, from leaf cDNAs and assembled into 502 contigs, comprising 202 consensus sequences and 300 singletons. ESTs encoding the cyclotide precursors for kalata B1 (Oak1) and kalata B2 (Oak4) were among the 20 most abundant ESTs. In total, 31 ESTs encoded cyclotide precursors, representing a distinct commitment of 2.8% of the O. affinis transcriptome to cyclotide biosynthesis. The high expression levels of cyclotide precursor transcripts are consistent with the abundance of mature cyclic peptides in O. affinis. A new cyclotide precursor named Oak5 was isolated and represents the first cDNA for the bracelet class of cyclotides in O. affinis. Clones encoding enzymes potentially involved in processing cyclotides were also identified and include enzymes involved in oxidative folding and proteolytic processing. Conclusion The EST library generated in this study provides a valuable resource for the study of the cyclisation of plant peptides. Further analysis of the candidates for cyclotide processing discovered in this work will increase our understanding and aid in reconstructing cyclotide production using transgenic systems and will benefit their development in pharmaceutical applications and insect-resistant crop plants.
Collapse
Affiliation(s)
- Qiaoping Qin
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland, 4072, Australia
| | | | | | | | | | | | | |
Collapse
|
27
|
Antibiotic sensitivity profiles determined with an Escherichia coli gene knockout collection: generating an antibiotic bar code. Antimicrob Agents Chemother 2010; 54:1393-403. [PMID: 20065048 DOI: 10.1128/aac.00906-09] [Citation(s) in RCA: 229] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We have defined a sensitivity profile for 22 antibiotics by extending previous work testing the entire KEIO collection of close to 4,000 single-gene knockouts in Escherichia coli for increased susceptibility to 1 of 14 different antibiotics (ciprofloxacin, rifampin [rifampicin], vancomycin, ampicillin, sulfamethoxazole, gentamicin, metronidazole, streptomycin, fusidic acid, tetracycline, chloramphenicol, nitrofurantoin, erythromycin, and triclosan). We screened one or more subinhibitory concentrations of each antibiotic, generating more than 80,000 data points and allowing a reduction of the entire collection to a set of 283 strains that display significantly increased sensitivity to at least one of the antibiotics. We used this reduced set of strains to determine a profile for eight additional antibiotics (spectinomycin, cephradine, aztreonem, colistin, neomycin, enoxacin, tobramycin, and cefoxitin). The profiles for the 22 antibiotics represent a growing catalog of sensitivity fingerprints that can be separated into two components, multidrug-resistant mutants and those mutants that confer relatively specific sensitivity to the antibiotic or type of antibiotic tested. The latter group can be represented by a set of 20 to 60 strains that can be used for the rapid typing of antibiotics by generating a virtual bar code readout of the specific sensitivities. Taken together, these data reveal the complexity of intrinsic resistance and provide additional targets for the design of codrugs (or combinations of drugs) that potentiate existing antibiotics.
Collapse
|
28
|
Lin TY. Protein–protein interaction as a powering source of oxidoreductive reactivity. MOLECULAR BIOSYSTEMS 2010; 6:1454-62. [DOI: 10.1039/b927132e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Shouldice SR, Cho SH, Boyd D, Heras B, Eser M, Beckwith J, Riggs P, Martin JL, Berkmen M. In vivooxidative protein folding can be facilitated by oxidationâreduction cycling. Mol Microbiol 2010; 75:13-28. [DOI: 10.1111/j.1365-2958.2009.06952.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
de Marco A. Strategies for successful recombinant expression of disulfide bond-dependent proteins in Escherichia coli. Microb Cell Fact 2009; 8:26. [PMID: 19442264 PMCID: PMC2689190 DOI: 10.1186/1475-2859-8-26] [Citation(s) in RCA: 264] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 05/14/2009] [Indexed: 12/22/2022] Open
Abstract
Bacteria are simple and cost effective hosts for producing recombinant proteins. However, their physiological features may limit their use for obtaining in native form proteins of some specific structural classes, such as for instance polypeptides that undergo extensive post-translational modifications. To some extent, also the production of proteins that depending on disulfide bridges for their stability has been considered difficult in E. coli. Both eukaryotic and prokaryotic organisms keep their cytoplasm reduced and, consequently, disulfide bond formation is impaired in this subcellular compartment. Disulfide bridges can stabilize protein structure and are often present in high abundance in secreted proteins. In eukaryotic cells such bonds are formed in the oxidizing environment of endoplasmic reticulum during the export process. Bacteria do not possess a similar specialized subcellular compartment, but they have both export systems and enzymatic activities aimed at the formation and at the quality control of disulfide bonds in the oxidizing periplasm. This article reviews the available strategies for exploiting the physiological mechanisms of bactera to produce properly folded disulfide-bonded proteins.
Collapse
Affiliation(s)
- Ario de Marco
- Cogentech, IFOM-IEO Campus for Oncogenomic, via Adamello, 16 - 20139, Milano, Italy.
| |
Collapse
|
31
|
Wang Y, Zhang X, Liu Q, Ai C, Mo H, Zeng J. Expression, Purification and Molecular Structure Modeling of Thioredoxin (Trx) and Thioredoxin Reductase (TrxR) from Acidithiobacillus ferrooxidans. Curr Microbiol 2009; 59:35-41. [DOI: 10.1007/s00284-009-9390-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2008] [Revised: 02/17/2009] [Accepted: 02/19/2009] [Indexed: 10/21/2022]
|
32
|
Disulfide bond formation by exported glutaredoxin indicates glutathione's presence in the E. coli periplasm. Proc Natl Acad Sci U S A 2009; 106:1572-7. [PMID: 19164554 DOI: 10.1073/pnas.0812596106] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Organisms have evolved elaborate systems that ensure the homeostasis of the thiol redox environment in their intracellular compartments. In Escherichia coli, the cytoplasm is kept under reducing conditions by the thioredoxins with the help of thioredoxin reductase and the glutaredoxins with the small molecule glutathione and glutathione reductase. As a result, disulfide bonds are constantly resolved in this compartment. In contrast to the cytoplasm, the periplasm of E. coli is maintained in an oxidized state by DsbA, which is recycled by DsbB. Thioredoxin 1, when exported to the periplasm turns from a disulfide bond reductase to an oxidase that, like DsbA, is dependent on DsbB. In this study we set out to investigate whether a subclass of the thioredoxin superfamily, the glutaredoxins, can become disulfide bond-formation catalysts when they are exported to the periplasm. We find that glutaredoxins can promote disulfide bond formation in the periplasm. However, contrary to the behavior of thioredoxin 1 in this environment, the glutaredoxins do so independently of DsbB. Furthermore, we show that glutaredoxin 3 requires the glutathione biosynthesis pathway for its function and can oxidize substrates with only a single active-site cysteine. Our data provides in vivo evidence suggesting that oxidized glutathione is present in the E. coli periplasm in biologically significant concentrations.
Collapse
|
33
|
Interchangeable modules in bacterial thiol-disulfide exchange pathways. Trends Microbiol 2009; 17:6-12. [DOI: 10.1016/j.tim.2008.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 10/05/2008] [Accepted: 10/08/2008] [Indexed: 11/22/2022]
|
34
|
Vitu E, Gross E, Greenblatt HM, Sevier CS, Kaiser CA, Fass D. Yeast Mpd1p Reveals the Structural Diversity of the Protein Disulfide Isomerase Family. J Mol Biol 2008; 384:631-40. [DOI: 10.1016/j.jmb.2008.09.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 09/02/2008] [Accepted: 09/16/2008] [Indexed: 02/06/2023]
|
35
|
Arredondo S, Segatori L, Gilbert HF, Georgiou G. De novo design and evolution of artificial disulfide isomerase enzymes analogous to the bacterial DsbC. J Biol Chem 2008; 283:31469-76. [PMID: 18782764 DOI: 10.1074/jbc.m803346200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli disulfide isomerase, DsbC is a V-shaped homodimer with each monomer comprising a dimerization region that forms part of a putative peptide-binding pocket and a thioredoxin catalytic domain. Disulfide isomerases from prokaryotes and eukaryotes exhibit little sequence homology but display very similar structural organization with two thioredoxin domains facing each other on top of the dimerization/peptide-binding region. To aid the understanding of the mechanistic significance of thioredoxin domain dimerization and of the peptide-binding cleft of DsbC, we constructed a series of protein chimeras comprising unrelated protein dimerization domains fused to thioredoxin superfamily enzymes. Chimeras consisting of the dimerization domain and the alpha-helical linker of the bacterial proline cis/trans isomerase FkpA and the periplasmic oxidase DsbA gave rise to enzymes that catalyzed the folding of multidisulfide substrate proteins in vivo with comparable efficiency to E. coli DsbC. In addition, expression of FkpA-DsbAs conferred modest resistance to CuCl2, a phenotype that depends on disulfide bond isomerization. Selection for resistance to elevated CuCl2 concentrations led to the isolation of FkpA-DsbA mutants containing a single amino acid substitution that changed the active site of the DsbA domain from CPHC into CPYC, increasing the similarity to the DsbC active site (CGYC). Unlike DsbC, which is resistant to oxidation by DsbB-DsbA and does not normally catalyze disulfide bond formation under physiological conditions, the FkpA-DsbA chimeras functioned both as oxidases and isomerases. The engineering of these efficient artificial isomerases delineates the key features of catalysis of disulfide bond isomerization and enhances our understanding of its evolution.
Collapse
Affiliation(s)
- Silvia Arredondo
- Department of Chemical Engineering, University of Texas, Austin, Texas 78712, USA
| | | | | | | |
Collapse
|
36
|
Functional plasticity of a peroxidase allows evolution of diverse disulfide-reducing pathways. Proc Natl Acad Sci U S A 2008; 105:6735-40. [PMID: 18456836 DOI: 10.1073/pnas.0801986105] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Escherichia coli, the glutathione/glutaredoxin and thioredoxin pathways are essential for the reduction of cytoplasmic protein disulfide bonds, including those formed in the essential enzyme ribonucleotide reductase during its action on substrates. Double mutants lacking thioredoxin reductase (trxB) and glutathione reductase (gor) or glutathione biosynthesis (gshA) cannot grow. Growth of Deltagor DeltatrxB strains is restored by a mutant (ahpC*) of the peroxiredoxin AhpC, converting it to a disulfide reductase that generates reduced glutathione. Here, we show that ahpC* also restores growth to a DeltagshB DeltatrxB strain, which lacks glutathione and accumulates only its precursor gamma-glutamylcysteine (gamma-GC). It suppresses this strain by allowing accumulation of reduced gamma-GC, which can substitute for glutathione. Surprisingly, new ahpC suppressor mutations arose in a DeltagshA DeltatrxB strain lacking both glutathione and gamma-GC, a strain that ahpC* does not suppress. Some of these mutant AhpC proteins channel electrons into the disulfide-reducing pathways via either the thioredoxins or the glutaredoxins without, evidently, the intermediary of glutathione. Our results provide insights into the physiological functioning of the glutathione pathway and reveal surprising plasticity of a peroxidase because different mutant versions of AhpC can channel electrons into the disulfide-reducing pathways by at least four distinct routes. Despite the reductase activity of mutant AhpCs, these various suppressor strains exhibit an oxidizing cytoplasm and accumulate correctly folded disulfide-bonded proteins in their cytoplasm. Proteins most effectively oxidized vary between strains, potentially providing useful tools for expressing different disulfide-bonded proteins.
Collapse
|
37
|
Kemp M, Go YM, Jones DP. Nonequilibrium thermodynamics of thiol/disulfide redox systems: a perspective on redox systems biology. Free Radic Biol Med 2008; 44:921-37. [PMID: 18155672 PMCID: PMC2587159 DOI: 10.1016/j.freeradbiomed.2007.11.008] [Citation(s) in RCA: 415] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 09/28/2007] [Accepted: 11/14/2007] [Indexed: 01/18/2023]
Abstract
Understanding the dynamics of redox elements in biologic systems remains a major challenge for redox signaling and oxidative stress research. Central redox elements include evolutionarily conserved subsets of cysteines and methionines of proteins which function as sulfur switches and labile reactive oxygen species (ROS) and reactive nitrogen species (RNS) which function in redox signaling. The sulfur switches depend on redox environments in which rates of oxidation are balanced with rates of reduction through the thioredoxins, glutathione/glutathione disulfide, and cysteine/cystine redox couples. These central couples, which we term redox control nodes, are maintained at stable but nonequilibrium steady states, are largely independently regulated in different subcellular compartments, and are quasi-independent from each other within compartments. Disruption of the redox control nodes can differentially affect sulfur switches, thereby creating a diversity of oxidative stress responses. Systems biology provides approaches to address the complexity of these responses. In the present review, we summarize thiol/disulfide pathway, redox potential, and rate information as a basis for kinetic modeling of sulfur switches. The summary identifies gaps in knowledge especially related to redox communication between compartments, definition of redox pathways, and discrimination between types of sulfur switches. A formulation for kinetic modeling of GSH/GSSG redox control indicates that systems biology could encourage novel therapeutic approaches to protect against oxidative stress by identifying specific redox-sensitive sites which could be targeted for intervention.
Collapse
Affiliation(s)
- Melissa Kemp
- The Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta GA 30332
| | - Young-Mi Go
- Emory Clinical Biomarkers Laboratory and Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta GA 30322
| | - Dean P. Jones
- Emory Clinical Biomarkers Laboratory and Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta GA 30322
- Corresponding Author: Dr. Dean P. Jones, 205 Whitehead Research Center, Emory University, Atlanta, GA 30322, Phone: 404-727-5970; Fax; 404-712-2974; E-mail:
| |
Collapse
|
38
|
Mutants in DsbB that appear to redirect oxidation through the disulfide isomerization pathway. J Mol Biol 2008; 377:1433-42. [PMID: 18325532 DOI: 10.1016/j.jmb.2008.01.058] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 01/07/2008] [Accepted: 01/21/2008] [Indexed: 11/23/2022]
Abstract
Disulfide bond formation occurs in secreted proteins in Escherichia coli when the disulfide oxidoreductase DsbA, a soluble periplasmic protein, nonspecifically transfers a disulfide to a substrate protein. The catalytic disulfide of DsbA is regenerated by the inner-membrane protein DsbB. To help identify the specificity determinants in DsbB and to understand the nature of the kinetic barrier preventing direct oxidation of newly secreted proteins by DsbB, we imposed selective pressure to find novel mutations in DsbB that would function to bypass the need for the disulfide carrier DsbA. We found a series of mutations localized to a short horizontal alpha-helix anchored near the outer surface of the inner membrane of DsbB that eliminated the need for DsbA. These mutations changed hydrophobic residues into nonhydrophobic residues. We hypothesize that these mutations may act by decreasing the affinity of this alpha-helix to the membrane. The DsbB mutants were dependent on the disulfide oxidoreductase DsbC, a soluble periplasmic thiol-disulfide isomerase, for complementation. DsbB is not normally able to oxidize DsbC, possibly due to a steric clash that occurs between DsbC and the membrane adjacent to DsbB. DsbC must be in the reduced form to function as an isomerase. In contrast, DsbA must remain oxidized to function as an oxidizing thiol-disulfide oxidoreductase. The lack of interaction that normally exists between DsbB and DsbC appears to provide a means to separate the DsbA-DsbB oxidation pathway and the DsbC-DsbD isomerization pathway. Our mutants in DsbB may act by redirecting oxidant flow to take place through the isomerization pathway.
Collapse
|
39
|
Sahdev S, Khattar SK, Saini KS. Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies. Mol Cell Biochem 2007. [PMID: 17874175 DOI: 10.1007/s11010‐007‐9603‐6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Among the various expression systems employed for the over-production of proteins, bacteria still remains the favorite choice of a Protein Biochemist. However, even today, due to the lack of post-translational modification machinery in bacteria, recombinant eukaryotic protein production poses an immense challenge, which invariably leads to the production of biologically in-active protein in this host. A number of techniques are cited in the literature, which describe the conversion of inactive protein, expressed as an insoluble fraction, into a soluble and active form. Overall, we have divided these methods into three major groups: Group-I, where the factors influencing the formation of insoluble fraction are modified through a stringent control of the cellular milieu, thereby leading to the expression of recombinant protein as soluble moiety; Group-II, where protein is refolded from the inclusion bodies and thereby target protein modification is avoided; Group-III, where the target protein is engineered to achieve soluble expression through fusion protein technology. Even within the same family of proteins (e.g., tyrosine kinases), optimization of standard operating protocol (SOP) may still be required for each protein's over-production at a pilot-scale in Escherichia coli. However, once standardized, this procedure can be made amenable to the industrial production for that particular protein with minimum alterations.
Collapse
Affiliation(s)
- Sudhir Sahdev
- Department of Biotechnology & Bioinformatics, New Drug Discovery Research, Ranbaxy Research Laboratories-R&D-3, 20-Sector 18 Udyog Vihar, Gurgaon, India.
| | | | | |
Collapse
|
40
|
Sahdev S, Khattar SK, Saini KS. Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies. Mol Cell Biochem 2007; 307:249-64. [PMID: 17874175 DOI: 10.1007/s11010-007-9603-6] [Citation(s) in RCA: 262] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Accepted: 08/27/2007] [Indexed: 12/13/2022]
Abstract
Among the various expression systems employed for the over-production of proteins, bacteria still remains the favorite choice of a Protein Biochemist. However, even today, due to the lack of post-translational modification machinery in bacteria, recombinant eukaryotic protein production poses an immense challenge, which invariably leads to the production of biologically in-active protein in this host. A number of techniques are cited in the literature, which describe the conversion of inactive protein, expressed as an insoluble fraction, into a soluble and active form. Overall, we have divided these methods into three major groups: Group-I, where the factors influencing the formation of insoluble fraction are modified through a stringent control of the cellular milieu, thereby leading to the expression of recombinant protein as soluble moiety; Group-II, where protein is refolded from the inclusion bodies and thereby target protein modification is avoided; Group-III, where the target protein is engineered to achieve soluble expression through fusion protein technology. Even within the same family of proteins (e.g., tyrosine kinases), optimization of standard operating protocol (SOP) may still be required for each protein's over-production at a pilot-scale in Escherichia coli. However, once standardized, this procedure can be made amenable to the industrial production for that particular protein with minimum alterations.
Collapse
Affiliation(s)
- Sudhir Sahdev
- Department of Biotechnology & Bioinformatics, New Drug Discovery Research, Ranbaxy Research Laboratories-R&D-3, 20-Sector 18 Udyog Vihar, Gurgaon, India.
| | | | | |
Collapse
|
41
|
Toledano MB, Kumar C, Le Moan N, Spector D, Tacnet F. The system biology of thiol redox system inEscherichia coliand yeast: Differential functions in oxidative stress, iron metabolism and DNA synthesis. FEBS Lett 2007; 581:3598-607. [PMID: 17659286 DOI: 10.1016/j.febslet.2007.07.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 07/02/2007] [Indexed: 11/21/2022]
Abstract
By its ability to engage in a variety of redox reactions and coordinating metals, cysteine serves as a key residue in mediating enzymatic catalysis, protein oxidative folding and trafficking, and redox signaling. The thiol redox system, which consists of the glutathione and thioredoxin pathways, uses the cysteine residue to catalyze thiol-disulfide exchange reactions, thereby controlling the redox state of cytoplasmic cysteine residues and regulating the biological functions it subserves. Here, we consider the thiol redox systems of Escherichia coli and Saccharomyces cerevisiae, emphasizing the role of genetic approaches in the understanding of the cellular functions of these systems. We show that although prokaryotic and eukaryotic systems have a similar architecture, they profoundly differ in their overall cellular functions.
Collapse
Affiliation(s)
- Michel B Toledano
- CEA, iBiTecS, Laboratoire Stress Oxydants et Cancer, Gif sur Yvette F-91191, France.
| | | | | | | | | |
Collapse
|
42
|
Rouhier N, Unno H, Bandyopadhyay S, Masip L, Kim SK, Hirasawa M, Gualberto JM, Lattard V, Kusunoki M, Knaff DB, Georgiou G, Hase T, Johnson MK, Jacquot JP. Functional, structural, and spectroscopic characterization of a glutathione-ligated [2Fe-2S] cluster in poplar glutaredoxin C1. Proc Natl Acad Sci U S A 2007; 104:7379-84. [PMID: 17460036 PMCID: PMC1863468 DOI: 10.1073/pnas.0702268104] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Indexed: 11/18/2022] Open
Abstract
When expressed in Escherichia coli, cytosolic poplar glutaredoxin C1 (CGYC active site) exists as a dimeric iron-sulfur-containing holoprotein or as a monomeric apoprotein in solution. Analytical and spectroscopic studies of wild-type protein and site-directed variants and structural characterization of the holoprotein by using x-ray crystallography indicate that the holoprotein contains a subunit-bridging [2Fe-2S] cluster that is ligated by the catalytic cysteines of two glutaredoxins and the cysteines of two glutathiones. Mutagenesis data on a variety of poplar glutaredoxins suggest that the incorporation of an iron-sulfur cluster could be a general feature of plant glutaredoxins possessing a glycine adjacent to the catalytic cysteine. In light of these results, the possible involvement of plant glutaredoxins in oxidative stress sensing or iron-sulfur biosynthesis is discussed with respect to their intracellular localization.
Collapse
Affiliation(s)
- Nicolas Rouhier
- Unité Mixte de Recherche 1136, Institut National de la Recherche Agronomique, Institut Fédératif de Recherche 110, Genomics, Ecology, Nancy University, BP 239, 54506 Vandoeuvre-lès-Nancy Cedex, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kuster GM, Siwik DA, Pimentel DR, Colucci WS. Role of reversible, thioredoxin-sensitive oxidative protein modifications in cardiac myocytes. Antioxid Redox Signal 2006; 8:2153-9. [PMID: 17034357 DOI: 10.1089/ars.2006.8.2153] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Reactive oxygen species (ROS) are important mediators of myocardial remodeling. However, the precise molecular mechanisms by which ROS exert their effects are incompletely understood. ROS induce oxidative posttranslational protein modifications that can regulate the function of structural, functional, and signaling proteins. For example, oxidative modification of free reactive thiols (S-thiolation) on the small G protein Ras increases Ras activity and thereby promotes ROS-dependent hypertrophic signaling in cardiac myocytes. By reducing thiols and restoring reversible thiol modifications, thioredoxin and glutaredoxin can act as regulators of ROS-mediated protein function. Understanding the regulation and functional relevance of oxidative protein modifications in myocardial remodeling may lead to new therapeutic strategies.
Collapse
Affiliation(s)
- Gabriela M Kuster
- Cardiovascular Medicine Section and the Myocardial Biology Unit, Boston University Medical Center, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
44
|
Abstract
Disulfide bonds are required for the stability and function of a large number of proteins. Recently, the results from genome analysis have suggested an important role for disulfide bonds concerning the structural stabilization of intracellular proteins from hyperthermophilic Archaea and Bacteria, contrary to the conventional view that structural disulfide bonds are rare in proteins from Archaea. A specific protein, known as protein disulfide oxidoreductase (PDO) is recognized as a potential key player in intracellular disulfide-shuffling in hyperthermophiles. The structure of this protein shows a combination of two thioredoxin-related units with low sequence identity which together, in tandem-like manner, form a closed protein domain. Each of these units contains a distinct CXXC active site motif. Due to their estimated conformational energies, both sites are likely to have different redox properties. The observed structural and functional characteristics suggest a relation to eukaryotic protein disulfide isomerase. Functional studies have revealed that both the archaeal and bacterial forms of this protein show oxidative and reductive activity and are able to isomerize protein disulfides. The physiological substrates and reduction systems, however, are to date unknown. The variety of active site disulfides found in PDOs from hyperthermophiles is puzzling. Nevertheless, the catalytic function of any PDO is expected to be correlated with the redox properties of its active site disulfides CXXC and with the distinct nature of its redox environment. The residues around the two active sites form two grooves on the protein surface. In analogy to a similar groove in thioredoxin, both grooves are suggested to constitute the substrate binding sites of PDO. The direct neighbourhood of the grooves and the different redox properties of both sites may favour sequential reactions in protein disulfide shuffling, like reduction followed by oxidation. A model for peptide binding by PDO is proposed to be derived from the analysis of crystal packing contacts mimicking substrate binding interactions. It is assumed, that PDO enzymes in hyperthermophilic Archaea and Bacteria may be part of a complex system involved in the maintenance of protein disulfide bonds. The regulation of disulfide bond formation may be dependent on a distinct interplay of thermodynamic and kinetic effects, including functional asymmetry and substrate-mediated protection of the active sites, in analogy to the situation in protein disulfide isomerase. Numerous questions related to the function of PDO enzymes in hyperthermophiles remain unanswered to date, but can probably successfully be studied by a number of approaches, such as first-line genetic and in vivo studies.
Collapse
Affiliation(s)
- Rudolf Ladenstein
- Karolinska Institutet NOVUM, Center of Structural Biochemistry, Huddinge, Sweden.
| | | |
Collapse
|
45
|
Steiner D, Forrer P, Stumpp MT, Plückthun A. Signal sequences directing cotranslational translocation expand the range of proteins amenable to phage display. Nat Biotechnol 2006; 24:823-31. [PMID: 16823375 DOI: 10.1038/nbt1218] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 05/12/2006] [Indexed: 11/09/2022]
Abstract
Even proteins that fold well in bacteria are frequently displayed poorly on filamentous phages. Low protein presentation on phage might be caused by premature cytoplasmic folding, leading to inefficient translocation into the periplasm. As translocation is an intermediate step in phage assembly, we tested the display levels of a range of proteins using different translocation pathways by employing different signal sequences. Directing proteins to the cotranslational signal recognition particle (SRP) translocation pathway resulted in much higher display levels than directing them to the conventional post-translational Sec translocation pathway. For example, the display levels of designed ankyrin-repeat proteins (DARPins) were improved up to 700-fold by simply exchanging Sec- for SRP-dependent signal sequences. In model experiments this exchange of signal sequences improved phage display from tenfold enrichment to >1,000-fold enrichment per phage display selection round. We named this method 'SRP phage display' and envision broad applicability, especially when displaying cDNA libraries or very stable and fast-folding proteins from libraries of alternative scaffolds.
Collapse
Affiliation(s)
- Daniel Steiner
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
46
|
Huber D, Cha MI, Debarbieux L, Planson AG, Cruz N, López G, Tasayco ML, Chaffotte A, Beckwith J. A selection for mutants that interfere with folding of Escherichia coli thioredoxin-1 in vivo. Proc Natl Acad Sci U S A 2005; 102:18872-7. [PMID: 16357193 PMCID: PMC1323206 DOI: 10.1073/pnas.0509583102] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli thioredoxin is normally a cytoplasmic protein involved in the reduction of disulfide bonds. However, thioredoxin can be translocated to the periplasm when it is attached to a cotranslational signal sequence. When exported to the periplasm, it can partially replace the activity of DsbA in promoting the formation of disulfide bonds. In contrast, when thioredoxin is fused to a posttranslational signal sequence, very little of it appears in the periplasm. We propose that this absence of posttranslational export is due to the rapid folding of thioredoxin in the cytoplasm. We sought mutants of thioredoxin that retarded its folding in the cytoplasm, which we accomplished by fusing thioredoxin to a posttranslational signal sequence and selecting for mutants in which thioredoxin was exported to the periplasm, where it could replace DsbA. The collection of mutants obtained represents a limited number of amino acid changes in the protein. In vitro studies on purified mutant proteins show that all but one are defective in the kinetics and thermodynamics of protein folding. We propose that the slower folding of the thioredoxin mutant proteins in the cytoplasm allows their export by a posttranslational pathway. We discuss some implications of this class of mutants for aspects of the folding pathway of thioredoxin and for its mechanism of export. In particular, the finding that a folding mutant that allows protein translocation alters an amino acid at the C terminus of the protein suggests that the degree to which thioredoxin folds during its translation must be severely restricted.
Collapse
Affiliation(s)
- Damon Huber
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The main function of reduced glutathione (GSH) is to protect from oxidative stress as a reactive oxygen scavenger. However, in the context of redox regulation, the ratio between GSH and its oxidized form (GSSG) determines the redox state of redox-sensitive cysteines in some proteins and, thus, acts as a signaling system. While GSH/GSSG can catalyze oxido-reduction of intra- and inter-chain disulfides by thiol-disulfide exchange, this review focuses on the formation of mixed disulfides between glutathione and proteins, also known as glutathionylation. The review discusses the regulatory role of this post-translational modification and the role of protein disulfide oxidoreductases (thioredoxin/thioredoxin reductase, glutaredoxin, protein disulfide isomerase) in the reversibility of this process.
Collapse
|
48
|
Huber D, Boyd D, Xia Y, Olma MH, Gerstein M, Beckwith J. Use of thioredoxin as a reporter to identify a subset of Escherichia coli signal sequences that promote signal recognition particle-dependent translocation. J Bacteriol 2005; 187:2983-91. [PMID: 15838024 PMCID: PMC1082830 DOI: 10.1128/jb.187.9.2983-2991.2005] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously reported that the DsbA signal sequence promotes efficient, cotranslational translocation of the cytoplasmic protein thioredoxin-1 via the bacterial signal recognition particle (SRP) pathway. However, two commonly used signal sequences, those of PhoA and MalE, which promote export by a posttranslational mechanism, do not export thioredoxin. We proposed that this difference in efficiency of export was due to the rapid folding of thioredoxin in the cytoplasm; cotranslational export by the DsbA signal sequence avoids the problem of cytoplasmic folding (C. F. Schierle, M. Berkmen, D. Huber, C. Kumamoto, D. Boyd, and J. Beckwith, J. Bacteriol. 185:5706-5713, 2003). Here, we use thioredoxin as a reporter to distinguish SRP-dependent from non-SRP-dependent cleavable signal sequences. We screened signal sequences exhibiting a range of hydrophobicity values based on a method that estimates hydrophobicity. Successive iterations of screening and refining the method defined a threshold hydrophobicity required for SRP recognition. While all of the SRP-dependent signal sequences identified were above this threshold, there were also a few signal sequences above the threshold that did not utilize the SRP pathway. These results suggest that a simple measure of the hydrophobicity of a signal sequence is an important but not a sufficient indicator for SRP recognition. In addition, by fusing a number of both classes of signal sequences to DsbA, we found that DsbA utilizes an SRP-dependent signal sequence to achieve efficient export to the periplasm. Our results suggest that those proteins found to be exported by SRP-dependent signal sequences may require this mode of export because of their tendency to fold rapidly in the cytoplasm.
Collapse
Affiliation(s)
- Damon Huber
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
49
|
Humphreys DP, Heywood SP, King LM, Bowering LC, Turner JP, Lane SE. Engineering of Escherichia coli to improve the purification of periplasmic Fab′ fragments: changing the pI of the chromosomally encoded PhoS/PstS protein. Protein Expr Purif 2004; 37:109-18. [PMID: 15294288 DOI: 10.1016/j.pep.2004.04.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Revised: 04/08/2004] [Indexed: 11/22/2022]
Abstract
Escherichia coli is a widely used host for the heterologous expression of proteins of therapeutic and commercial interest. The scale and speed at which it can be cultured can result in the rapid generation of large quantities of product. However, to achieve low costs of production a simple and robust purification process is also required. The general factors that impact on the cost of a purification process are the scale at which a process can be performed, the cost of the purification matrix, and the number and complexity of the chromatographic steps employed. Purification of Fab' fragments of antibodies from the periplasm of E. coli using ion exchange chromatography can result in the co-purification of E. coli host proteins having similar functional pI: such as the periplasmic phosphate binding protein, PhoS/PstS. In such circumstances, an additional chromatographic step is required to separate Fab' from PhoS. Here, we change the functional pI of the chromosomally encoded PhoS/PstS to effect its non-purification with Fab' fragments, enabling the removal of an entire chromatographic step. This exemplifies the strategy of the modification of host proteins with the aim of simplifying the production of heterologous proteins.
Collapse
|
50
|
Masip L, Pan JL, Haldar S, Penner-Hahn JE, DeLisa MP, Georgiou G, Bardwell JCA, Collet JF. An engineered pathway for the formation of protein disulfide bonds. Science 2004; 303:1185-9. [PMID: 14976313 DOI: 10.1126/science.1092612] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have engineered a pathway for the formation of disulfide bonds. By imposing evolutionary pressure, we isolated mutations that changed thioredoxin, which is a monomeric disulfide reductase, into a [2Fe-2S] bridged dimer capable of catalyzing O2-dependent sulfhydryl oxidation in vitro. Expression of the mutant protein in Escherichia coli with oxidizing cytoplasm and secretion via the Tat pathway restored disulfide bond formation in strains that lacked the complete periplasmic oxidative machinery (DsbA and DsbB). The evolution of [2Fe-2S] thioredoxin illustrates how mutations within an existing scaffold can add a cofactor and markedly change protein function.
Collapse
Affiliation(s)
- Lluis Masip
- Department of Chemical Engineering and Institute for Cell and Molecular Biology, University of Texas, Austin, TX 78712, USA
| | | | | | | | | | | | | | | |
Collapse
|