1
|
Hoad M, Nematollahzadeh S, Petersen GF, Roby JA, Alvisi G, Forwood JK. Structural basis for nuclear import of adeno-associated virus serotype 6 capsid protein. J Virol 2025; 99:e0134524. [PMID: 39692478 PMCID: PMC11784021 DOI: 10.1128/jvi.01345-24] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/17/2024] [Indexed: 12/19/2024] Open
Abstract
Adeno-associated viruses (AAVs) are the most extensively researched viral vectors for gene therapy globally. The AAV viral protein 1 (VP1) N-terminus controls the capsid's ability to translocate into the cell nucleus; however, the exact mechanism of this process is largely unknown. In this study, we sought to elucidate the precise interactions between AAV serotype 6 (AAV6), a promising vector for immune disorders, and host transport receptors responsible for vector nuclear localization. Focusing on the positively charged basic areas within the N-terminus of AAV6 VP1, we identified a 53-amino acid region that interacts with nuclear import receptors. We measured the binding affinities between this region and various nuclear import receptors, discovering a notably strong interaction with IMPα5 and IMPα7 in the low nanomolar range. We also elucidated the X-ray crystal structure of this region in complex with an importin alpha (IMPα) isoform, uncovering its binding as a bipartite nuclear localization signal (NLS). Furthermore, we show that using this bipartite NLS, AAV6 VP1 capsid protein can localize to the nucleus of mammalian cells in a manner dependent on the IMPα/IMPβ nuclear import pathway. This study provides detailed insights into the interaction between the AAV6 VP1 capsid protein and nuclear import receptors, deepening our knowledge of AAV nuclear import mechanisms and establishing a basis for the improvement of AAV6-based gene therapy vectors.IMPORTANCEAAVs, recognized as the most extensively researched viral vectors for gene therapy globally, offer significant advantages over alternatives due to their small size, non-pathogenic nature, and innate ability for tissue-specific targeting. AAVs are required to localize to the nucleus to perform their role as a gene therapy vector; however, the precise mechanisms that facilitate this process remain unknown. Despite sharing overt genomic similarities with AAV1 and AAV2, AAV6 is a unique serotype. It is currently recognized for its ability to effectively transduce hematopoietic cell lineages and, consequently, is considered promising for the treatment of immune disorders. Identifying the exact mechanisms that permit AAV6 to access the nucleus can open up new avenues for gene therapy vector engineering, which can ultimately lead to increased therapeutic benefits.
Collapse
Affiliation(s)
- Mikayla Hoad
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- Gulbali Institute, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | | | - Gayle F. Petersen
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- Gulbali Institute, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Justin A. Roby
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- Gulbali Institute, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Gualtiero Alvisi
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Jade K. Forwood
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- Gulbali Institute, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| |
Collapse
|
2
|
Karasev MM, Baloban M, Verkhusha VV, Shcherbakova DM. Nuclear Localization Signals for Optimization of Genetically Encoded Tools in Neurons. Front Cell Dev Biol 2022; 10:931237. [PMID: 35927988 PMCID: PMC9344056 DOI: 10.3389/fcell.2022.931237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/24/2022] [Indexed: 12/15/2022] Open
Abstract
Nuclear transport in neurons differs from that in non-neuronal cells. Here we developed a non-opsin optogenetic tool (OT) for the nuclear export of a protein of interest induced by near-infrared (NIR) light. In darkness, nuclear import reverses the OT action. We used this tool for comparative analysis of nuclear transport dynamics mediated by nuclear localization signals (NLSs) with different importin specificities. We found that widely used KPNA2-binding NLSs, such as Myc and SV40, are suboptimal in neurons. We identified uncommon NLSs mediating fast nuclear import and demonstrated that the performance of the OT for nuclear export can be adjusted by varying NLSs. Using these NLSs, we optimized the NIR OT for light-controlled gene expression for lower background and higher contrast in neurons. The selected NLSs binding importins abundant in neurons could improve performance of genetically encoded tools in these cells, including OTs and gene-editing tools.
Collapse
Affiliation(s)
- Maksim M. Karasev
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikhail Baloban
- Department of Genetics and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Vladislav V. Verkhusha
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Genetics and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Daria M. Shcherbakova
- Department of Genetics and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
3
|
Semmelink MFW, Steen A, Veenhoff LM. Measuring and Interpreting Nuclear Transport in Neurodegenerative Disease-The Example of C9orf72 ALS. Int J Mol Sci 2021; 22:9217. [PMID: 34502125 PMCID: PMC8431710 DOI: 10.3390/ijms22179217] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 11/25/2022] Open
Abstract
Transport from and into the nucleus is essential to all eukaryotic life and occurs through the nuclear pore complex (NPC). There are a multitude of data supporting a role for nuclear transport in neurodegenerative diseases, but actual transport assays in disease models have provided diverse outcomes. In this review, we summarize how nuclear transport works, which transport assays are available, and what matters complicate the interpretation of their results. Taking a specific type of ALS caused by mutations in C9orf72 as an example, we illustrate these complications, and discuss how the current data do not firmly answer whether the kinetics of nucleocytoplasmic transport are altered. Answering this open question has far-reaching implications, because a positive answer would imply that widespread mislocalization of proteins occurs, far beyond the reported mislocalization of transport reporters, and specific proteins such as FUS, or TDP43, and thus presents a challenge for future research.
Collapse
Affiliation(s)
| | | | - Liesbeth M. Veenhoff
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands; (M.F.W.S.); (A.S.)
| |
Collapse
|
4
|
Li C, Di D, Wang X, Xia Q, Wahaab A, Anwar MN, Li Z, Liu K, Shao D, Qiu Y, Wei J, Li B, Ma Z. Duck karyopherin α4 (duKPNA4) is involved in type I interferon expression and the antiviral response against Japanese encephalitis virus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103535. [PMID: 31697956 PMCID: PMC7102526 DOI: 10.1016/j.dci.2019.103535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/01/2019] [Accepted: 11/01/2019] [Indexed: 05/03/2023]
Abstract
Karyopherin α4 (KPNA4) is an adaptor molecule that mediates type I interferon (IFN) production by facilitating the nuclear translocation of IFN transcription factors. Here, we cloned the duck KPNA4 (duKPNA4) gene and analyzed its involvement in type I IFN expression as well as antiviral response against Japanese encephalitis virus (JEV). The full-length duKPNA4 gene encoded a 520-amino acid protein that shared 97.3-98.7% sequence similarity with its orthologues in chickens, humans and mice. The duKPNA4 was extensively expressed in various duck tissues at the mRNA level. Analysis of the subcellular localization of duKPNA4 by immunofluorescence assays indicated that the duKPNA4 was primarily distributed in both the cytoplasm and nucleus in primary duck embryonic fibroblasts (DEFs). However, it translocated from the cytoplasm to the nucleus in response to poly(I:C) stimulation or JEV infection. The duKPNA4 interacted with duck IFN regulatory factor 7 and facilitated its nuclear translocation, thereby up-regulating the expression of IFN-α and IFN-β in DEFs in the presence of poly(I:C) stimulation. Exogenous expression of duKPNA4 significantly elevated the expression of IFN-α and IFN-β induced by JEV infection and inhibited JEV replication in DEFs. These data demonstrate the importance of duKPNA4 in type I IFN signaling as well as the antiviral response against JEV replication.
Collapse
Affiliation(s)
- Chenxi Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No.518, Ziyue Road, Shanghai, 200241, PR China
| | - Di Di
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No.518, Ziyue Road, Shanghai, 200241, PR China
| | - Xin Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No.518, Ziyue Road, Shanghai, 200241, PR China
| | - Qiqi Xia
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No.518, Ziyue Road, Shanghai, 200241, PR China
| | - Abdul Wahaab
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No.518, Ziyue Road, Shanghai, 200241, PR China
| | - Muhammad Naveed Anwar
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No.518, Ziyue Road, Shanghai, 200241, PR China
| | - Zongjie Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No.518, Ziyue Road, Shanghai, 200241, PR China
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No.518, Ziyue Road, Shanghai, 200241, PR China
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No.518, Ziyue Road, Shanghai, 200241, PR China
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No.518, Ziyue Road, Shanghai, 200241, PR China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No.518, Ziyue Road, Shanghai, 200241, PR China
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No.518, Ziyue Road, Shanghai, 200241, PR China.
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No.518, Ziyue Road, Shanghai, 200241, PR China.
| |
Collapse
|
5
|
OKA M, YONEDA Y. Importin α: functions as a nuclear transport factor and beyond. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2018; 94:259-274. [PMID: 30078827 PMCID: PMC6117492 DOI: 10.2183/pjab.94.018] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nucleocytoplasmic transport is an essential process in eukaryotes. The molecular mechanisms underlying nuclear transport that involve the nuclear transport receptor, small GTPase Ran, and the nuclear pore complex are highly conserved from yeast to humans. On the other hand, it has become clear that the nuclear transport system diverged during evolution to achieve various physiological functions in multicellular eukaryotes. In this review, we first summarize the molecular mechanisms of nuclear transport and how these were elucidated. Then, we focus on the diverse functions of importin α, which acts not merely an import factor but also as a multi-functional protein contributing to a variety of cellular functions in higher eukaryotes.
Collapse
Affiliation(s)
- Masahiro OKA
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Yoshihiro YONEDA
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Correspondence should be addressed: Y. Yoneda, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan (e-mail: )
| |
Collapse
|
6
|
Seo HG, Kim HB, Kang MJ, Ryum JH, Yi EC, Cho JW. Identification of the nuclear localisation signal of O-GlcNAc transferase and its nuclear import regulation. Sci Rep 2016; 6:34614. [PMID: 27713473 PMCID: PMC5054401 DOI: 10.1038/srep34614] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/22/2016] [Indexed: 01/22/2023] Open
Abstract
Nucleocytoplasmic O-GlcNAc transferase (OGT) attaches a single GlcNAc to hydroxyl groups of serine and threonine residues. Although the cellular localisation of OGT is important to regulate a variety of cellular processes, the molecular mechanisms regulating the nuclear localisation of OGT is unclear. Here, we characterised three amino acids (DFP; residues 451-453) as the nuclear localisation signal of OGT and demonstrated that this motif mediated the nuclear import of non-diffusible β-galactosidase. OGT bound the importin α5 protein, and this association was abolished when the DFP motif of OGT was mutated or deleted. We also revealed that O-GlcNAcylation of Ser389, which resides in the tetratricopeptide repeats, plays an important role in the nuclear localisation of OGT. Our findings may explain how OGT, which possesses a NLS, exists in the nucleus and cytosol simultaneously.
Collapse
Affiliation(s)
- Hyeon Gyu Seo
- Department of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Han Byeol Kim
- Department of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Min Jueng Kang
- Department of Molecular Medicine and Biopharmaceutical Sciences, School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, 28 Yeongeon-dong, Jongno-gu, Seoul 03080, Republic of Korea
| | - Joo Hwan Ryum
- Department of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Eugene C Yi
- Department of Molecular Medicine and Biopharmaceutical Sciences, School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, 28 Yeongeon-dong, Jongno-gu, Seoul 03080, Republic of Korea
| | - Jin Won Cho
- Department of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
7
|
Abstract
The human genome encodes seven isoforms of importin α which are grouped into three subfamilies known as α1, α2 and α3. All isoforms share a fundamentally conserved architecture that consists of an N-terminal, autoinhibitory, importin-β-binding (IBB) domain and a C-terminal Arm (Armadillo)-core that associates with nuclear localization signal (NLS) cargoes. Despite striking similarity in amino acid sequence and 3D structure, importin-α isoforms display remarkable substrate specificity in vivo. In the present review, we look at key differences among importin-α isoforms and provide a comprehensive inventory of known viral and cellular cargoes that have been shown to associate preferentially with specific isoforms. We illustrate how the diversification of the adaptor importin α into seven isoforms expands the dynamic range and regulatory control of nucleocytoplasmic transport, offering unexpected opportunities for pharmacological intervention. The emerging view of importin α is that of a key signalling molecule, with isoforms that confer preferential nuclear entry and spatiotemporal specificity on viral and cellular cargoes directly linked to human diseases.
Collapse
|
8
|
Importins and exportins regulating allergic immune responses. Mediators Inflamm 2014; 2014:476357. [PMID: 24733961 PMCID: PMC3964845 DOI: 10.1155/2014/476357] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/18/2014] [Accepted: 01/21/2014] [Indexed: 12/21/2022] Open
Abstract
Nucleocytoplasmic shuttling of macromolecules is a well-controlled process involving importins and exportins. These karyopherins recognize and bind to receptor-mediated intracellular signals through specific signal sequences that are present on cargo proteins and transport into and out of the nucleus through nuclear pore complexes. Nuclear localization signals (NLS) present on cargo molecules to be imported while nuclear export signals (NES) on the molecules to be exported are recognized by importins and exportins, respectively. The classical NLS are found on many transcription factors and molecules that are involved in the pathogenesis of allergic diseases. In addition, several immune modulators, including corticosteroids and vitamin D, elicit their cellular responses by regulating the expression and activity of importin molecules. In this review article, we provide a comprehensive list of importin and exportin molecules and their specific cargo that shuttled between cytoplasm and the nucleus. We also critically review the role and regulation of specific importin and exportin involved in the transport of activated transcription factors in allergic diseases, the underlying molecular mechanisms, and the potential target sites for developing better therapeutic approaches.
Collapse
|
9
|
Kimura M, Okumura N, Kose S, Takao T, Imamoto N. Identification of cargo proteins specific for importin-β with importin-α applying a stable isotope labeling by amino acids in cell culture (SILAC)-based in vitro transport system. J Biol Chem 2013; 288:24540-9. [PMID: 23846694 DOI: 10.1074/jbc.m113.489286] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The human importin (Imp)-β family consists of 21 nucleocytoplasmic transport carrier proteins, which transport thousands of proteins (cargoes) across the nuclear envelope through nuclear pores in specific directions. To understand the nucleocytoplasmic transport in a physiological context, the specificity of cargoes for their cognate carriers should be determined; however, only a limited number of nuclear proteins have been linked to specific carriers. To address this biological question, we recently developed a novel method to identify carrier-specific cargoes. This method includes the following three steps: (i) the cells are labeled by stable isotope labeling by amino acids in cell culture (SILAC); (ii) the labeled cells are permeabilized, and proteins in the unlabeled cell extracts are transported into the nuclei of the permeabilized cells by a particular carrier; and (iii) the proteins in the nuclei are quantitatively identified by LC-MS/MS. The effectiveness of this method was demonstrated by the identification of transportin (Trn)-specific cargoes. Here, we applied this method to identify cargo proteins specific for Imp-β, which is a predominant carrier that exclusively utilizes Imp-α as an adapter for cargo binding. We identified candidate cargoes, which included previously reported and potentially novel Imp-β cargoes. In in vitro binding assays, most of the candidate cargoes bound to Imp-β in one of three binding modes: directly, via Imp-α, or via other cargoes. Thus, our method is effective for identifying a variety of Imp-β cargoes. The identified Imp-β and Trn cargoes were compared, ensuring the carrier specificity of the method and illustrating the complexity of these transport pathways.
Collapse
Affiliation(s)
- Makoto Kimura
- Cellular Dynamics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | | | | | | | |
Collapse
|
10
|
UV-induced nuclear import of XPA is mediated by importin-α4 in an ATR-dependent manner. PLoS One 2013; 8:e68297. [PMID: 23861882 PMCID: PMC3704644 DOI: 10.1371/journal.pone.0068297] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 05/28/2013] [Indexed: 12/29/2022] Open
Abstract
Xeroderma pigmentosum Group A (XPA) is a crucial factor in mammalian nucleotide excision repair (NER) and nuclear import of XPA from the cytoplasm for NER is regulated in cellular DNA damage responses in S-phase. In this study, experiments were carried out to determine the transport mechanisms that are responsible for the UV (ultraviolet)-induced nuclear import of XPA. We found that, in addition to the nuclear localization signal (NLS) of XPA, importin-α4 or/and importin-α7 are required for the XPA nuclear import. Further investigation indicated that, importin-α4 and importin-α7 directly interacted with XPA in cells. Interestingly, the binding of importin-α4 to XPA was dependent on UV-irradiation, while the binding of importin-α7 was not, suggesting a role for importin-α7 in nuclear translocation of XPA in the absence of DNA damage, perhaps with specificity to certain non-S-phases of the cell-cycle. Consistent with the previous report of a dependence of UV-induced XPA nuclear import on ataxia telangiectasia and Rad3-related protein (ATR) in S-phase, knockdown of ATR reduced the amount of XPA interacting with importin-α4. In contrast, the GTPase XPA binding protein 1 (XAB1), previously proposed to be required for XPA nuclear import, showed no effect on the nuclear import of XPA in our siRNA knockdown analysis. In conclusion, our results suggest that upon DNA damage transport adaptor importin-α4 imports XPA into the nucleus in an ATR-dependent manner, while XAB1 has no role in this process. In addition, these findings reveal a potential new therapeutic target for the sensitization of cancer cells to chemotherapy.
Collapse
|
11
|
Mahboubi H, Seganathy E, Kong D, Stochaj U. Identification of Novel Stress Granule Components That Are Involved in Nuclear Transport. PLoS One 2013; 8:e68356. [PMID: 23826389 PMCID: PMC3694919 DOI: 10.1371/journal.pone.0068356] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 05/31/2013] [Indexed: 11/30/2022] Open
Abstract
Background Importin-α1 belongs to a subfamily of nuclear transport adaptors and participates in diverse cellular functions. Best understood for its role in protein transport, importin-α1 also contributes to other biological processes. For instance, arsenite treatment causes importin-α1 to associate with cytoplasmic stress granules (SGs) in mammalian cells. These stress-induced compartments contain translationally arrested mRNAs, small ribosomal subunits and numerous proteins involved in mRNA transport and metabolism. At present, it is not known whether members of all three importin-α subfamilies locate to SGs in response to stress. Results Here, we demonstrate that the oxidant diethyl maleate (DEM), arsenite and heat shock, promote the formation of cytoplasmic SGs that contain nuclear transport factors. Specifically, importin-α1, α4 and α5, which belong to distinct subfamilies, and importin-β1 were targeted by all of these stressors to cytoplasmic SGs, but not to P-bodies. Importin-α family members have been implicated in transcriptional regulation, which prompted us to analyze their ability to interact with poly(A)-RNA in growing cells. Our studies show that importin-α1, but not α4, α5, importin-β1 or CAS, associated with poly(A)-RNA under nonstress conditions. Notably, this interaction was significantly reduced when cells were treated with DEM. Additional studies suggest that importin-α1 is likely connected to poly(A)-RNA through an indirect interaction, as the adaptor did not bind homopolymer RNA specifically in vitro. Significance Our studies establish that members of three importin-α subfamilies are bona fide SG components under different stress conditions. Furthermore, importin-α1 is unique in its ability to interact with poly(A)-RNA in a stress-dependent fashion, and in vitro experiments indicate that this association is indirect. Collectively, our data emphasize that nuclear transport factors participate in a growing number of cellular activities that are modulated by stress.
Collapse
Affiliation(s)
- Hicham Mahboubi
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | | | - Dekun Kong
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Ursula Stochaj
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
12
|
Gabriel G, Czudai-Matwich V, Klenk HD. Adaptive mutations in the H5N1 polymerase complex. Virus Res 2013; 178:53-62. [PMID: 23732876 DOI: 10.1016/j.virusres.2013.05.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 04/04/2013] [Accepted: 05/20/2013] [Indexed: 12/28/2022]
Abstract
Adaptation of the viral polymerase to host factors plays an important role in interspecies transmission of H5N1 viruses. Several adaptive mutations have been identified that, in general, determine not only host range, but also pathogenicity and transmissibility of the virus. The available evidence indicates that most of these mutations are found in the PB2 subunit of the polymerase. Particularly prominent mutations are located in the C-terminal domain of PB2 involving the amino acid exchanges E627K and D701N. Both mutations, that are also responsible for the adaptation of other avian viruses to mammalian hosts, have been described in human H5N1 isolates. In animal models, it could be demonstrated that they enhance pathogenicity in mice and induce contact transmission in guinea pigs. Mutation E627K has also been identified as a determinant of air-borne H5N1 transmission in ferrets. We are only beginning to understand the underlying mechanisms at the molecular level. Thus, mutation D701N promotes importin-α mediated nuclear transport in mammalian cells. Mutation E627K also enhances the replication rate in an importin-α dependent fashion in mammalian cells, yet without affecting nuclear entry of PB2. Numerous other adaptive mutations, some of which compensate for the lack of PB2 E627K, have been observed in PB2 as well as in the polymerase subunit PB1, the nucleoprotein NP, and the nuclear export protein NEP (NS2).
Collapse
Affiliation(s)
- Gülsah Gabriel
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | | | | |
Collapse
|
13
|
Miyamoto Y, Boag PR, Hime GR, Loveland KL. Regulated nucleocytoplasmic transport during gametogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:616-30. [PMID: 22326858 DOI: 10.1016/j.bbagrm.2012.01.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/23/2012] [Accepted: 01/24/2012] [Indexed: 12/13/2022]
Abstract
Gametogenesis is the process by which sperm or ova are produced in the gonads. It is governed by a tightly controlled series of gene expression events, with some common and others distinct for males and females. Nucleocytoplasmic transport is of central importance to the fidelity of gene regulation that is required to achieve the precisely regulated germ cell differentiation essential for fertility. In this review we discuss the physiological importance for gamete formation of the molecules involved in classical nucleocytoplasmic protein transport, including importins/karyopherins, Ran and nucleoporins. To address what functions/factors are conserved or specialized for these developmental processes between species, we compare knowledge from mice, flies and worms. The present analysis provides evidence of the necessity for and specificity of each nuclear transport factor and for nucleoporins during germ cell differentiation. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing.
Collapse
Affiliation(s)
- Yoichi Miyamoto
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia.
| | | | | | | |
Collapse
|
14
|
Holt JE, Ly-Huynh JD, Efthymiadis A, Hime GR, Loveland KL, Jans DA. Regulation of Nuclear Import During Differentiation; The IMP alpha Gene Family and Spermatogenesis. Curr Genomics 2011; 8:323-34. [PMID: 19384428 PMCID: PMC2652405 DOI: 10.2174/138920207782446151] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2007] [Revised: 06/09/2007] [Accepted: 06/10/2007] [Indexed: 11/30/2022] Open
Abstract
Access to nuclear genes in eukaryotes is provided by members of the importin (IMP) superfamily of proteins, which are of α- or β-types, the best understood nuclear import pathway being mediated by a heterodimer of an IMP α and IMP β1. IMP α recognises specific targeting signals on cargo proteins, while IMP β1 mediates passage into, and release within, the nucleus by interacting with other components of the transport machinery, including the monomeric guanine nucleotide binding protein Ran. In this manner, hundreds of different proteins can be targeted specifically into the nucleus in a tightly regulated fashion. The IMP α gene family has expanded during evolution, with only a single IMP α (Srp1p) gene in budding yeast, and three (IMP α1, 2/pendulin and 3) and five (IMP α1, -2, -3, -4 and -6) IMP α genes in Drosophila melanogaster and mouse respectively, which fall into three phylogenetically distinct groups. The fact that IMP α3 and IMP α2 are only present in metazoans implies that they emerged during the evolution of multicellular animals to perform specialised roles in particular cells and tissues. This review describes what is known of the IMP α gene family in mouse and in D. melanogaster, including a comparitive examination of their mRNA expression profiles in a highly differentiated tissue, the testis. The clear implication of their highly regulated synthesis during the course of spermatogenesis is that the different IMP αs have distinct expression patterns during cellular differentiation, implying tissue/cell type-specific roles.
Collapse
Affiliation(s)
- J E Holt
- Monash University, Department of Biochemistry and Molecular Biology, Nuclear Signalling Laboratory, Clayton, Australia
| | | | | | | | | | | |
Collapse
|
15
|
Moriyama T, Nagai M, Oka M, Ikawa M, Okabe M, Yoneda Y. Targeted disruption of one of the importin α family members leads to female functional incompetence in delivery. FEBS J 2011; 278:1561-72. [PMID: 21371262 DOI: 10.1111/j.1742-4658.2011.08079.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Importin α mediates the nuclear import of proteins through nuclear pore complexes in eukaryotic cells, and is common to all eukaryotes. Previous reports identified at least six importin α family genes in mice. Although these isoforms show differential binding to various import cargoes in vitro, the in vivo physiological roles of these mammalian importin α isoforms remain unknown. Here, we generated and examined importin α5 knockout (impα5(-/-)) mice. These mice developed normally, and showed no gross histological abnormalities in most major organs. However, the ovary and uterus of impα5(-/-) female mice exhibited hypoplasia. Furthermore, we found that impα5(-/-) female mice had a 50% decrease in serum progesterone levels and a 57% decrease in progesterone receptor mRNA levels in the ovary. Additionally, impα5(-/-) uteruses that were treated with exogenous gonadotropins displayed hypertrophy, similarly to progesterone receptor-deficient mice. Although these mutant female mice could become pregnant, the total number of pups was significantly decreased, and some of the pups were dead at birth. These results suggest that importin α5 has essential roles in the mammalian female reproductive organs.
Collapse
Affiliation(s)
- Tetsuji Moriyama
- Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Gabriel G, Klingel K, Otte A, Thiele S, Hudjetz B, Arman-Kalcek G, Sauter M, Shmidt T, Rother F, Baumgarte S, Keiner B, Hartmann E, Bader M, Brownlee GG, Fodor E, Klenk HD. Differential use of importin-α isoforms governs cell tropism and host adaptation of influenza virus. Nat Commun 2011; 2:156. [PMID: 21245837 PMCID: PMC3105303 DOI: 10.1038/ncomms1158] [Citation(s) in RCA: 198] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 12/08/2010] [Indexed: 01/23/2023] Open
Abstract
Influenza A viruses are a threat to humans due to their ability to cross species barriers, as illustrated by the 2009 H1N1v pandemic and sporadic H5N1 transmissions. Interspecies transmission requires adaptation of the viral polymerase to importin-α, a cellular protein that mediates transport into the nucleus where transcription and replication of the viral genome takes place. In this study, we analysed replication, host specificity and pathogenicity of avian and mammalian influenza viruses, in importin-α-silenced cells and importin-α-knockout mice, to understand the role of individual importin-α isoforms in adaptation. For efficient virus replication, the polymerase subunit PB2 and the nucleoprotein (NP) of avian viruses required importin-α3, whereas PB2 and NP of mammalian viruses showed importin-α7 specificity. H1N1v replication depended on both, importin-α3 and -α7, suggesting ongoing adaptation of this virus. Thus, differences in importin-α specificity are determinants of host range underlining the importance of the nuclear envelope in interspecies transmission.
Collapse
Affiliation(s)
- Gülsah Gabriel
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Karin Klingel
- Institute of Pathology, University Hospital Tübingen, Tübingen, Germany
| | - Anna Otte
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Swantje Thiele
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Ben Hudjetz
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Gökhan Arman-Kalcek
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Martina Sauter
- Institute of Pathology, University Hospital Tübingen, Tübingen, Germany
| | - Tatiana Shmidt
- Max-Delbrück-Centre for Molecular Medicine, Berlin, Germany
| | | | | | - Björn Keiner
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Enno Hartmann
- Institute for Biology, University of Lübeck, Lübeck, Germany
| | - Michael Bader
- Max-Delbrück-Centre for Molecular Medicine, Berlin, Germany
| | | | - Ervin Fodor
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Hans-Dieter Klenk
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
17
|
Nachury M. Maxence Nachury: a transporting view of the primary cilium. Interview by Ben Short. ACTA ACUST UNITED AC 2010; 191:436-7. [PMID: 21041439 PMCID: PMC3003325 DOI: 10.1083/jcb.1913pi] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Nachury studies how defective signaling from the cell's antenna causes human disease.
Collapse
|
18
|
Levy DL, Heald R. Nuclear size is regulated by importin α and Ntf2 in Xenopus. Cell 2010; 143:288-98. [PMID: 20946986 PMCID: PMC2966892 DOI: 10.1016/j.cell.2010.09.012] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 07/06/2010] [Accepted: 09/07/2010] [Indexed: 01/14/2023]
Abstract
The size of the nucleus varies among different cell types, species, and disease states, but mechanisms of nuclear size regulation are poorly understood. We investigated nuclear scaling in the pseudotetraploid frog Xenopus laevis and its smaller diploid relative Xenopus tropicalis, which contains smaller cells and nuclei. Nuclear scaling was recapitulated in vitro using egg extracts, demonstrating that titratable cytoplasmic factors determine nuclear size to a greater extent than DNA content. Nuclear import rates correlated with nuclear size, and varying the concentrations of two transport factors, importin α and Ntf2, was sufficient to account for nuclear scaling between the two species. Both factors modulated lamin B3 import, with importin α increasing overall import rates and Ntf2 reducing import based on cargo size. Importin α also contributes to nuclear size changes during early X. laevis development. Thus, nuclear transport mechanisms are physiological regulators of both interspecies and developmental nuclear scaling.
Collapse
Affiliation(s)
- Daniel L Levy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | | |
Collapse
|
19
|
Chumakov SP, Prassolov VS. Organization and regulation of nucleocytoplasmic transport. Mol Biol 2010; 44:186-201. [PMID: 32214470 PMCID: PMC7088953 DOI: 10.1134/s0026893310020020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 11/03/2009] [Indexed: 01/05/2023]
Abstract
Separation of DNA replication and transcription, which occur in the nucleus, from protein synthesis, which occurs in the cytoplasm, allows a more precise regulation of these processes. Selective exchange of macromolecules between the two compartments is mediated by proteins of the nuclear pore complex (NPC). Receptor proteins of the karyopherin family interact with NPC components and transfer their cargos between the nucleus and cytoplasm. Nucleocytoplasmic transport pathways are regulated at multiple levels by modulating the expression or function of individual cargoes, transport receptors, or the transport channel. The regulatory levels have increasingly broad effects on the transport pathways and affect a wide range of processes from gene expression to development and differentiation.
Collapse
Affiliation(s)
- S P Chumakov
- 1Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991 Russia.,2Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195 USA
| | - V S Prassolov
- 1Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991 Russia
| |
Collapse
|
20
|
Basler CF, Amarasinghe GK. Evasion of interferon responses by Ebola and Marburg viruses. J Interferon Cytokine Res 2009; 29:511-20. [PMID: 19694547 PMCID: PMC2988466 DOI: 10.1089/jir.2009.0076] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 06/29/2009] [Indexed: 12/25/2022] Open
Abstract
The filoviruses, Ebola virus (EBOV) and Marburg virus (MARV), cause frequently lethal viral hemorrhagic fever. These infections induce potent cytokine production, yet these host responses fail to prevent systemic virus replication. Consistent with this, filoviruses have been found to encode proteins VP35 and VP24 that block host interferon (IFN)-alpha/beta production and inhibit signaling downstream of the IFN-alpha/beta and the IFN-gamma receptors, respectively. VP35, which is a component of the viral nucleocapsid complex and plays an essential role in viral RNA synthesis, acts as a pseudosubstrate for the cellular kinases IKK-epsilon and TBK-1, which phosphorylate and activate interferon regulatory factor 3 (IRF-3) and interferon regulatory factor 7 (IRF-7). VP35 also promotes SUMOylation of IRF-7, repressing IFN gene transcription. In addition, VP35 is a dsRNA-binding protein, and mutations that disrupt dsRNA binding impair VP35 IFN-antagonist activity while leaving its RNA replication functions intact. The phenotypes of recombinant EBOV bearing mutant VP35s unable to inhibit IFN-alpha/beta demonstrate that VP35 IFN-antagonist activity is critical for full virulence of these lethal pathogens. The structure of the VP35 dsRNA-binding domain, which has recently become available, is expected to provide insight into how VP35 IFN-antagonist and dsRNA-binding functions are related. The EBOV VP24 protein inhibits IFN signaling through an interaction with select host cell karyopherin-alpha proteins, preventing the nuclear import of otherwise activated STAT1. It remains to be determined to what extent VP24 may also modulate the nuclear import of other host cell factors and to what extent this may influence the outcome of infection. Notably, the Marburg virus VP24 protein does not detectably block STAT1 nuclear import, and, unlike EBOV, MARV infection inhibits STAT1 and STAT2 phosphorylation. Thus, despite their similarities, there are fundamental differences by which these deadly viruses counteract the IFN system. It will be of interest to determine how these differences influence pathogenesis.
Collapse
Affiliation(s)
- Christopher F Basler
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | |
Collapse
|
21
|
Tejomurtula J, Lee KB, Tripurani SK, Smith GW, Yao J. Role of Importin Alpha8, a New Member of the Importin Alpha Family of Nuclear Transport Proteins, in Early Embryonic Development in Cattle1. Biol Reprod 2009; 81:333-42. [DOI: 10.1095/biolreprod.109.077396] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
22
|
Maas S, Gommans WM. Identification of a selective nuclear import signal in adenosine deaminases acting on RNA. Nucleic Acids Res 2009; 37:5822-9. [PMID: 19617375 PMCID: PMC2761270 DOI: 10.1093/nar/gkp599] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The adenosine deaminases acting on RNA (ADARs) comprise a family of RNA editing enzymes that selectively modify single codons within RNA primary transcripts with often profound impact on protein function. Little is known about the mechanisms that regulate nuclear RNA editing activity. Editing levels show cell-type specific and developmental modulation that does not strictly coincide with observed expression levels of ADARs. Here, we provide evidence for a molecular mechanism that might control nuclear import of specific ADARs and, in turn, nuclear RNA editing. We identify an in vivo ADAR3 interaction partner, importin alpha 1 (KPNA2) that specifically recognizes an arginine-rich ADAR3 sequence motif and show that it acts as a functional nuclear localization sequence. Furthermore, whereas KPNA2, but not KPNA1 or KNPA3, recognizes the ADAR3 NLS, we observe the converse binding specificity with ADAR2. Interestingly, alternative splicing of ADAR2 pre-mRNA introduces an ADAR3-like NLS that alters the interaction profile with the importins. Thus, in vivo RNA editing might be regulated, in part, through controlled subcellular localization of ADARs, which in turn is governed by the coordinated local expression of importin α proteins and ADAR protein variants.
Collapse
Affiliation(s)
- Stefan Maas
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA.
| | | |
Collapse
|
23
|
Mason DA, Stage DE, Goldfarb DS. Evolution of the metazoan-specific importin alpha gene family. J Mol Evol 2009; 68:351-65. [PMID: 19308634 DOI: 10.1007/s00239-009-9215-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 02/11/2009] [Accepted: 02/16/2009] [Indexed: 01/09/2023]
Abstract
Importin alphas are import receptors for nuclear localization signal-containing proteins. Most animal importin alphas assort into alpha1, alpha2, and alpha3 groups. Studies in Drosophila melanogaster, Caenorhabditis elegans, and mouse suggest that the animal importin alpha gene family evolved from ancestral plant-like genes to serve paralog-specific roles in gametogenesis. To explore this hypothesis we extended the phylogenetic analysis of the importin alpha gene family to nonbilateral animals and investigated whether animal-like genes occur in premetazoan taxa. Maximum likelihood analysis suggests that animal-like importin alpha genes occur in the Choanoflaggelate Monosiga brevicollis and the amoebozoan Dictyostelium; however, both of these results are caused by long-branch attraction effects. The absence of animal-like alpha genes in premetazoan taxa is consistent with the hypothesis that they duplicated and then specialized to function in animal gametogenesis. The gene structures of the importin alphas provide insight into how the animal importin alpha gene family may have evolved from the most likely ancestral gene. Interestingly, animal alpha1s are more similar to plant and fungal alpha1-like sequences than they are to animal alpha2s or alpha3s. We show that animal alpha1 genes share most of their introns with plant alpha1-like genes, and alpha2s and alpha3s share many more intron positions with each other than with the alpha1s. Together, phylogenetics and gene structure analysis suggests a parsimonious path for the evolution of the mammalian importin alpha gene family from an ancestral alpha1-like progenitor. Finally, these results establish a rational basis for a unified nomenclature of the importin alpha gene family.
Collapse
Affiliation(s)
- D Adam Mason
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | | | |
Collapse
|
24
|
Novel expression of importin alpha homologue in marine teleost, Pagrus major. Comp Biochem Physiol B Biochem Mol Biol 2008; 151:420-7. [PMID: 18789395 DOI: 10.1016/j.cbpb.2008.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 08/19/2008] [Accepted: 08/20/2008] [Indexed: 12/25/2022]
Abstract
Importin alpha proteins are critical modulators of the classical nuclear protein import pathway. Although the physiological roles of importin alpha have been extensively studied in invertebrates and mammals, very little is known about their counterparts in lower vertebrates. In this study, to elucidate the roles of importin alpha in a teleost species, we isolated and characterized red seabream (Pagrus major) importin alpha cDNA derived from ovary and found changes in the mRNA levels of importin alpha in male and female red seabream during sexual maturation. The 1846-bp cDNA encodes a 520 amino acid protein that includes the importin beta-binding domain, a short acidic domain, and an armadillo (arm) repeat domain. Northern blot analysis and reverse transcription-polymerase chain reaction (RT-PCR) showed transcription of red seabream importin alpha in testis and ovary but not in the other tissues. The importin alpha mRNA levels in males increase in association with testicular development, whereas those in females remain high throughout sexual maturation. These findings suggest that red seabream ovary-derived importin alpha may be controlled in a tissue-specific manner and may perform unique functions in the gonad in addition to its involvement in nuclear transport.
Collapse
|
25
|
Sangiambut S, Keelapang P, Aaskov J, Puttikhunt C, Kasinrerk W, Malasit P, Sittisombut N. Multiple regions in dengue virus capsid protein contribute to nuclear localization during virus infection. J Gen Virol 2008; 89:1254-1264. [PMID: 18420804 DOI: 10.1099/vir.0.83264-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
During infection, the capsid (C) protein of many flaviviruses localizes to the nuclei and nucleoli of several infected cell lines; the underlying basis and significance of C protein nuclear localization remain poorly understood. In this study, double alanine-substitution mutations were introduced into three previously proposed nuclear-localization signals (at positions 6-9, 73-76 and 85-100) of dengue virus C protein, and four viable mutants, c(K6A,K7A), c(K73A,K74A), c(R85A,K86A) and c(R97A,R98A), were generated in a mosquito cell line in which C protein nuclear localization was rarely observed. Indirect immunofluorescence analysis revealed that, whilst C protein was present in the nuclei of PS and Vero cells throughout infection with a dengue serotype 2 parent virus, the substitution mutations in c(K73A,K74A) and c(R85A,K86A) resulted in an elimination of nuclear localization in PS cells and marked reduction in Vero cells. Mutants c(K6A,K7A) and c(R97A,R98A) exhibited reduced nuclear localization at the late period of infection in PS cells only. All four mutants displayed reduced replication in PS, Vero and C6/36 cells, but there was a lack of correlation between nuclear localization and viral growth properties. Distinct dibasic residues within dengue virus C protein, many of which were located on the solvent-exposed side of the C protein homodimer, contribute to its ability to localize to nuclei during virus infection.
Collapse
Affiliation(s)
- Sutha Sangiambut
- Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10700, Thailand
| | - Poonsook Keelapang
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - John Aaskov
- School of Life Sciences, Queensland University of Technology, 2 George Street, Brisbane 4001, Australia
| | - Chunya Puttikhunt
- Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10700, Thailand
| | - Watchara Kasinrerk
- Department of Clinical Immunology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand.,Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10700, Thailand
| | - Prida Malasit
- Medical Molecular Biology Unit, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.,Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10700, Thailand
| | - Nopporn Sittisombut
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.,Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10700, Thailand
| |
Collapse
|
26
|
Sorokin AV, Kim ER, Ovchinnikov LP. Nucleocytoplasmic transport of proteins. BIOCHEMISTRY (MOSCOW) 2008; 72:1439-57. [PMID: 18282135 DOI: 10.1134/s0006297907130032] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In eukaryotic cells, the movement of macromolecules between the nucleus and cytoplasm occurs through the nuclear pore complex (NPC)--a large protein complex spanning the nuclear envelope. The nuclear transport of proteins is usually mediated by a family of transport receptors known as karyopherins. Karyopherins bind to their cargoes via recognition of nuclear localization signal (NLS) for nuclear import or nuclear export signal (NES) for export to form a transport complex. Its transport through NPC is facilitated by transient interactions between the karyopherins and NPC components. The interactions of karyopherins with their cargoes are regulated by GTPase Ran. In the current review, we describe the NPC structure, NLS, and NES, as well as the model of classic Ran-dependent transport, with special emphasis on existing alternative mechanisms; we also propose a classification of the basic mechanisms of protein transport regulation.
Collapse
Affiliation(s)
- A V Sorokin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | | | | |
Collapse
|
27
|
Yeung PL, Chen LY, Tsai SC, Zhang A, Chen JD. Daxx contains two nuclear localization signals and interacts with importin alpha3. J Cell Biochem 2008; 103:456-70. [PMID: 17661348 DOI: 10.1002/jcb.21408] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Daxx plays a major role in several important signaling pathways including transcription and cell death. It has been postulated that Daxx regulates both events from the nucleus; however, the mechanism by which Daxx is localized in the nucleus remains obscure. Here we show that nuclear localization of Daxx is controlled by two independent signals and importin 3. Domain analysis reveals that Daxx contains two separate nuclear localizing domains. Site-directed mutagenesis reveals that the basic aa sequence RLKRK at residues 227-231 (NLS1) is responsible for nuclear localization of N-terminal domain, while aa sequence KKSRKEKK at residues 630-637 (NLS2) is responsible for nuclear localization of the C-terminal domain. Mutations of a NLS consensus sequence RKKRR at residues 391-395 and several other basic aa clusters have no effect on Daxx nuclear localization. In full-length Daxx, NLS1 contributes partially to nuclear localization, while NLS2 plays a major role. Markedly, it is essential to disrupt both NLS1 and NLS2 in order to completely block nuclear localization of the full-length protein and to prevent its association with PML nuclear bodies. Furthermore, Daxx interacts selectively with importin alpha3 through its NLS1 and NLS2 sequences. Conversely, importin alpha3 utilizes two NLS-binding sites for Daxx interaction, suggesting that the importin/mediates nuclear import of Daxx. Finally, we show that nuclear localization of Daxx is essential for its transcriptional effects on GR and p53. Together, these data unveil a molecular mechanism that controls nuclear localization of Daxx and support a nuclear role of Daxx in transcriptional regulation.
Collapse
Affiliation(s)
- Percy Luk Yeung
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | | | | | | | | |
Collapse
|
28
|
Terry LJ, Shows EB, Wente SR. Crossing the nuclear envelope: hierarchical regulation of nucleocytoplasmic transport. Science 2007; 318:1412-6. [PMID: 18048681 DOI: 10.1126/science.1142204] [Citation(s) in RCA: 409] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transport of macromolecules between the nucleus and cytoplasm is a critical cellular process for eukaryotes, and the machinery that mediates nucleocytoplasmic exchange is subject to multiple levels of control. Regulation is achieved by modulating the expression or function of single cargoes, transport receptors, or the transport channel. Each of these mechanisms has increasingly broad impacts on transport patterns and capacity, and this hierarchy of control directly affects gene expression, signal transduction, development, and disease.
Collapse
Affiliation(s)
- Laura J Terry
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | |
Collapse
|
29
|
Ebola virus VP24 proteins inhibit the interaction of NPI-1 subfamily karyopherin alpha proteins with activated STAT1. J Virol 2007; 81:13469-77. [PMID: 17928350 DOI: 10.1128/jvi.01097-07] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Zaire ebolavirus protein VP24 was previously demonstrated to inhibit alpha/beta interferon (IFN-alpha/beta)- and IFN-gamma-induced nuclear accumulation of tyrosine-phosphorylated STAT1 (PY-STAT1) and to inhibit IFN-alpha/beta- and IFN-gamma-induced gene expression. These properties correlated with the ability of VP24 to interact with the nuclear localization signal receptor for PY-STAT1, karyopherin alpha1. Here, VP24 is demonstrated to interact not only with overexpressed but also with endogenous karyopherin alpha1. Mutational analysis demonstrated that VP24 binds within the PY-STAT1 binding region located in the C terminus of karyopherin alpha1. In addition, VP24 was found to inhibit PY-STAT1 binding to both overexpressed and endogenous karyopherin alpha1. We assessed the binding of both PY-STAT1 and the VP24 proteins from Zaire, mouse-adapted Zaire, and Reston Ebola viruses for interaction with all six members of the human karyopherin alpha family. We found, in contrast to previous studies, that PY-STAT1 can interact not only with karyopherin alpha1 but also with karyopherins alpha5 and alpha6, which together comprise the NPI-1 subfamily of karyopherin alphaS. Similarly, all three VP24s bound and inhibited PY-STAT1 interaction with karyopherins alpha1, alpha5, and alpha6. Consistent with their ability to inhibit the karyopherin-PY-STAT1 interaction, Zaire, mouse-adapted Zaire, and Reston Ebola virus VP24s displayed similar capacities to inhibit IFN-beta-induced gene expression in human and mouse cells. These findings suggest that VP24 inhibits interaction of PY-STAT1 with karyopherins alpha1, alpha5, or alpha6 by binding within the PY-STAT1 binding region of the karyopherins and that this function is conserved among the VP24 proteins of different Ebola virus species.
Collapse
|
30
|
Regulated nucleocytoplasmic trafficking of viral gene products: a therapeutic target? BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1784:213-27. [PMID: 17933596 DOI: 10.1016/j.bbapap.2007.08.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 08/16/2007] [Accepted: 08/24/2007] [Indexed: 12/25/2022]
Abstract
The study of viral proteins and host cell factors that interact with them has represented an invaluable contribution to understanding of the physiology as well as associated pathology of key eukaryotic cell processes such as cell cycle regulation, signal transduction and transformation. Similarly, knowledge of nucleocytoplasmic transport is based largely on pioneering studies performed on viral proteins that enabled the first sequences responsible for the facilitated transport through the nuclear pore to be identified. The study of viral proteins has also enabled the discovery of several nucleocytoplasmic regulatory mechanisms, the best characterized being through phosphorylation. Recent delineation of the mechanisms whereby phosphorylation regulates nuclear import and export of key viral gene products encoded by important human pathogens such as human cytomegalovirus dengue virus and respiratory syncytial virus has implications for the development of antiviral therapeutics. In particular, the development of specific and effective kinase inhibitors makes the idea of blocking viral infection by inhibiting the phosphorylation-dependent regulation of viral gene product nuclear transport a real possibility. Additionally, examination of a chicken anemia virus (CAV) protein able to target selectively into the nucleus of tumor but not normal cells, as specifically regulated by phosphorylation, opens the exciting possibility of cancer cell-specific nuclear targeting. The study of nucleoplasmic transport may thus enable the development not only of new antiviral approaches, but also contribute to anti-cancer strategies.
Collapse
|
31
|
Philips AS, Kwok JC, Chong BH. Analysis of the signals and mechanisms mediating nuclear trafficking of GATA-4. Loss of DNA binding is associated with localization in intranuclear speckles. J Biol Chem 2007; 282:24915-27. [PMID: 17548362 DOI: 10.1074/jbc.m701789200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleocytoplasmic transport of GATA-4 is important in maintaining and regulating normal cardiogenesis and heart function. This report investigates the detailed mechanisms of GATA-4 nuclear transport. We characterized a nonclassical nuclear localization signal between amino acids 270 and 324 that actively transports GATA-4 into the nucleus of both HeLa cells and cardiac myocytes. Fine mapping studies revealed four crucial arginine residues within this region that mediate active transport predominantly through the nonclassical pathway via interaction with importin beta. These four residues were also essential for the DNA binding activity of GATA-4 and transcriptional activation of cardiac-specific genes. Interestingly, mutation of these residues not only inhibited DNA binding and gene transcription but also resulted in a preferential accumulation of the GATA-4 protein in distinct subnuclear speckles. A cardiac myocyte-specific, chromosome maintenance region 1-dependent nuclear export signal consisting of three essential leucine residues was also identified. The current study provides detailed information on the nuclear shuttling pathways of GATA-4 that represents an additional mechanism of gene regulation.
Collapse
Affiliation(s)
- Alana S Philips
- Centre for Vascular Research, Department of Medicine, St. George Clinical School, University of New South Wales, Sydney, New South Wales 2052, Australia
| | | | | |
Collapse
|
32
|
Umegaki N, Tamai K, Nakano H, Moritsugu R, Yamazaki T, Hanada K, Katayama I, Kaneda Y. Differential Regulation of Karyopherin α 2 Expression by TGF-β1 and IFN-γ in Normal Human Epidermal Keratinocytes: Evident Contribution of KPNA2 for Nuclear Translocation of IRF-1. J Invest Dermatol 2007; 127:1456-64. [PMID: 17255955 DOI: 10.1038/sj.jid.5700716] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Despite a number of studies on signal transduction in epidermal keratinocytes, very little is known about how signals move from the cytosol to the nucleus during the course of keratinocyte proliferation and differentiation. In this study, we first compared the expression patterns of the karyopherin alpha (KPNA) subtypes, and found that KPNA2, KPNA3, and KPNA4 were the major subtypes in both normal human epidermal keratinocytes (NHEKs) and normal human dermal fibroblasts (NHDFs). Stimulation with either transforming growth factor (TGF)-beta1 or IFN-gamma for 24 hours resulted in the downregulation of KPNA2 expression specifically in NHEK at both the mRNA and protein levels. Interestingly, IFN-gamma, but not TGF-beta1, specifically downregulated KPNA2 expression at the promoter level, suggesting differential regulation of KPNA2 expression by IFN-gamma and TGF-beta1. We then demonstrated that KPNA2 physically bound to IFN regulatory factor-1 (IRF-1), a transcription factor induced by IFN-gamma, and induced nuclear translocation of IRF-1 in NHEKs. We finally performed microarray and quantitative real-time PCR analysis for the mRNA expression pattern of NHEK with either overexpression or knockdown of KPNA2, and indicated KPNA2 involvement for various epidermal gene regulations such as involucrin. Our data suggest that KPNA2 may play an important role in the signal-transduction pathways that regulate epidermal proliferation and differentiation.
Collapse
Affiliation(s)
- Noriko Umegaki
- Department of Dermatology, Hirosaki University School of Medicine, Hirosaki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Melén K, Kinnunen L, Fagerlund R, Ikonen N, Twu KY, Krug RM, Julkunen I. Nuclear and nucleolar targeting of influenza A virus NS1 protein: striking differences between different virus subtypes. J Virol 2007; 81:5995-6006. [PMID: 17376915 PMCID: PMC1900311 DOI: 10.1128/jvi.01714-06] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Influenza A virus nonstructural protein 1 (NS1A protein) is a virulence factor which is targeted into the nucleus. It is a multifunctional protein that inhibits host cell pre-mRNA processing and counteracts host cell antiviral responses. We show that the NS1A protein can interact with all six human importin alpha isoforms, indicating that the nuclear translocation of NS1A protein is mediated by the classical importin alpha/beta pathway. The NS1A protein of the H1N1 (WSN/33) virus has only one N-terminal arginine- or lysine-rich nuclear localization signal (NLS1), whereas the NS1A protein of the H3N2 subtype (Udorn/72) virus also has a second C-terminal NLS (NLS2). NLS1 is mapped to residues 35 to 41, which also function in the double-stranded RNA-binding activity of the NS1A protein. NLS2 was created by a 7-amino-acid C-terminal extension (residues 231 to 237) that became prevalent among human influenza A virus types isolated between the years 1950 to 1987. NLS2 includes basic amino acids at positions 219, 220, 224, 229, 231, and 232. Surprisingly, NLS2 also forms a functional nucleolar localization signal NoLS, a function that was retained in H3N2 type virus NS1A proteins even without the C-terminal extension. It is likely that the evolutionarily well-conserved nucleolar targeting function of NS1A protein plays a role in the pathogenesis of influenza A virus.
Collapse
Affiliation(s)
- Krister Melén
- Department of Viral Diseases and Immunology, National Public Health Institute, Mannerheimintie 166, FIN-00300, Helsinki, Finland.
| | | | | | | | | | | | | |
Collapse
|
34
|
Huang SM, Huang SP, Wang SL, Liu PY. Importin alpha1 is involved in the nuclear localization of Zac1 and the induction of p21WAF1/CIP1 by Zac1. Biochem J 2007; 402:359-66. [PMID: 17109628 PMCID: PMC1798434 DOI: 10.1042/bj20061295] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Zac1, a novel seven-zinc-finger transcription factor, preferentially binds GC-rich DNA elements and has intrinsic transactivation activity. To date, the NLS (nuclear localization signal) of Zac1 has not been empirically determined. We generated a series of EGFP (enhanced green fluorescence protein)-tagged deletion mutants of Zac1 and examined their subcellular localization, from which we defined two NLSs within the DNA-binding (or zinc-finger) domain. Fusion proteins consisting of the two EGFP-tagged zinc-finger clusters (zinc finger motifs 1-3 and 4-7) were located exclusively in the nucleus, demonstrating that each of the zinc-finger clusters is sufficient for nuclear localization. Physical interactions between these two zinc-finger clusters and importin alpha1 were demonstrated using an in vitro glutathione S-transferase pull-down assay. Finally, our results indicate that the association of Zac1 with importin alpha1 is also involved in regulating the transactivation activity of Zac1 on the p21WAF1/CIP1 gene and protein expression.
Collapse
Affiliation(s)
- Shih-Ming Huang
- Department of Biochemistry and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan 114, Republic of China
- To whom correspondence should be addressed (email )
| | - Sheng-Ping Huang
- Department of Biochemistry and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan 114, Republic of China
| | - Sung-Ling Wang
- Department of Biochemistry and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan 114, Republic of China
| | - Pei-Yao Liu
- Department of Biochemistry and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan 114, Republic of China
| |
Collapse
|
35
|
Bian XL, Rosas-Acosta G, Wu YC, Wilson VG. Nuclear import of bovine papillomavirus type 1 E1 protein is mediated by multiple alpha importins and is negatively regulated by phosphorylation near a nuclear localization signal. J Virol 2006; 81:2899-908. [PMID: 17192311 PMCID: PMC1865984 DOI: 10.1128/jvi.01850-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Papillomavirus DNA replication occurs in the nucleus of infected cells and requires the viral E1 protein, which enters the nuclei of host epithelial cells and carries out enzymatic functions required for the initiation of viral DNA replication. In this study, we investigated the pathway and regulation of the nuclear import of the E1 protein from bovine papillomavirus type 1 (BPV1). Using an in vitro binding assay, we determined that the E1 protein interacted with importins alpha3, alpha4, and alpha5 via its nuclear localization signal (NLS) sequence. In agreement with this result, purified E1 protein was effectively imported into the nucleus of digitonin-permeabilized HeLa cells after incubation with importin alpha3, alpha4, or alpha5 and other necessary import factors. We also observed that in vitro binding of E1 protein to all three alpha importins was significantly decreased by the introduction of pseudophosphorylation mutations in the NLS region. Consistent with the binding defect, pseudophosphorylated E1 protein failed to enter the nucleus of digitonin-permeabilized HeLa cells in vitro. Likewise, the pseudophosphorylation mutant showed aberrant intracellular localization in vivo and accumulated primarily on the nuclear envelope in transfected HeLa cells, while the corresponding alanine replacement mutant displayed the same cellular location pattern as wild-type E1 protein. Collectively, our data demonstrate that BPV1 E1 protein can be transported into the nucleus by more than one importin alpha and suggest that E1 phosphorylation by host cell kinases plays a regulatory role in modulating E1 nucleocytoplasmic localization. This phosphoregulation of nuclear E1 protein uptake may contribute to the coordination of viral replication with keratinocyte proliferation and differentiation.
Collapse
Affiliation(s)
- Xue-Lin Bian
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, USA
| | | | | | | |
Collapse
|
36
|
Sekiguchi T, Hayano T, Yanagida M, Takahashi N, Nishimoto T. NOP132 is required for proper nucleolus localization of DEAD-box RNA helicase DDX47. Nucleic Acids Res 2006; 34:4593-608. [PMID: 16963496 PMCID: PMC1636366 DOI: 10.1093/nar/gkl603] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Previously, we described a novel nucleolar protein, NOP132, which interacts with the small GTP binding protein RRAG A. To elucidate the function of NOP132 in the nucleolus, we identified proteins that interact with NOP132 using mass spectrometric methods. NOP132 associated mainly with proteins involved in ribosome biogenesis and RNA metabolism, including the DEAD-box RNA helicase protein, DDX47, whose yeast homolog is Rrp3, which has roles in pre-rRNA processing. Immunoprecipitation of FLAG-tagged DDX47 co-precipitated rRNA precursors, as well as a number of proteins that are probably involved in ribosome biogenesis, implying that DDX47 plays a role in pre-rRNA processing. Introduction of NOP132 small interfering RNAs induced a ring-like localization of DDX47 in the nucleolus, suggesting that NOP132 is required for the appropriate localization of DDX47 within the nucleolus. We propose that NOP132 functions in the recruitment of pre-rRNA processing proteins, including DDX47, to the region where rRNA is transcribed within the nucleolus.
Collapse
Affiliation(s)
- Takeshi Sekiguchi
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | | | | | |
Collapse
|
37
|
Ma J, Cao X. Regulation of Stat3 nuclear import by importin α5 and importin α7 via two different functional sequence elements. Cell Signal 2006; 18:1117-26. [PMID: 16298512 DOI: 10.1016/j.cellsig.2005.06.016] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Revised: 05/30/2005] [Accepted: 06/07/2005] [Indexed: 10/25/2022]
Abstract
Regulated import of STAT proteins into the nucleus through the nuclear pores is a vital event. We previously identified Arg214/215 in the coiled-coil domain and Arg414/417 in the DNA binding domain involved in the ligand-induced nuclear translocation of Stat3. In this study, we investigated the mechanism for Stat3 nuclear transport. We report here that among five ubiquitously expressed human importin alphas, importin alpha5 and alpha7, but not importin alpha1, alpha3, and alpha4, bind to Stat3 upon cytokine stimulation. Similar results were observed for Stat1, but not for Stat5a and 5b, which were unable to interact with any of the importin alphas. The C-terminus of importin alpha5 is necessary but not sufficient for Stat3 binding. Truncation mutant of Stat3 (aa1-320) that contains Arg214/215 exhibits specific binding to importin alpha5, and an exclusive nuclear localization. Point mutations of Arg214/215 in this mutant destroy importin alpha5 binding and its nuclear localization. In contrast, the truncation mutant (aa320-770) including Arg414/417 fails to interact with importin alpha5 and is localized in the cytoplasm. However, both sequence elements are necessary for the full-length Stat3's interaction with importin alpha5. These results suggest that Arg214/215 is likely the binding site for importin alpha5, whereas Arg414/417 may not be involved in the direct binding, but necessary for maintaining the proper conformation of Stat3 dimer for importin binding. A model for Stat3 nuclear translocation is proposed based on these data.
Collapse
Affiliation(s)
- Jing Ma
- Signal Transduction Laboratory, Institute of Molecular and Cell Biology, Proteos Building, 61 Biopolis Drive, Singapore, 138673, Republic of Singapore
| | | |
Collapse
|
38
|
Ilmarinen T, Melén K, Kangas H, Julkunen I, Ulmanen I, Eskelin P. The monopartite nuclear localization signal of autoimmune regulator mediates its nuclear import and interaction with multiple importin alpha molecules. FEBS J 2006; 273:315-24. [PMID: 16403019 DOI: 10.1111/j.1742-4658.2005.05065.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Autoimmune regulator (AIRE) is a transcriptional regulator involved in establishing immunological self-tolerance. Mutations in the AIRE gene lead to the development of the autosomal, recessively inherited, organ-specific autoimmune disease, autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED). The AIRE protein is mainly localized in the cell nucleus where it is associated with nuclear bodies. The N-terminal part of AIRE has been previously shown to mediate nuclear localization of the protein. However, the functional nuclear localization signal (NLS) and nuclear import mechanisms of AIRE have not been identified. We show that, although the amino-acid sequence of AIRE contains a potential bipartite NLS consisting of amino acids 110-114 and 131-133, only the latter part constitutes a functional NLS. Furthermore, we show by in vitro binding assays that AIRE interacts with multiple members of the nuclear transport receptor importin alpha family, mainly alpha1, alpha3, and alpha5, and that these interactions depend on the intactness of the Arg-Lys-rich NLS of AIRE. In addition, we found that AIRE binds to the 'minor' NLS-binding site of importin alpha3 and alpha5 proteins consisting of the C-terminal armadillo repeats 7-9. Our findings strongly suggest that the nuclear import of AIRE is mediated by the classical importin alpha/beta pathway through binding to several importin alpha family members.
Collapse
Affiliation(s)
- Tanja Ilmarinen
- Department of Molecular Medicine, National Public Health Institute, Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
39
|
Kortvely E, Burkovics P, Varszegi S, Gulya K. Cloning and characterization of rat importin 9: implication for its neuronal function. ACTA ACUST UNITED AC 2005; 139:103-14. [PMID: 15992958 DOI: 10.1016/j.molbrainres.2005.05.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Revised: 05/04/2005] [Accepted: 05/12/2005] [Indexed: 11/22/2022]
Abstract
We describe the structure of the rat importin 9 gene, together with its transcripts and the encoded protein with its putative functional domains. The importin 9 gene contains 24 exons in a genomic region spanning >52,000 bp. It is transcribed into two mRNAs, generated by means of alternative polyadenylation site usage arranged in tandem. Both transcripts possess the same noncanonical polyadenylation signal (AGUAAA) in rat, this hexamer being conserved in all vertebrates examined. Additionally, intron 8 is bordered by AT-AC dinucleotides. Importin 9 is expressed throughout adult rat tissues, but the 114-kDa Importin 9 protein was detected only in the brain. The localization of the Importin 9 protein was examined by immunohistochemistry in both adult rat tissues and primary hippocampal cell cultures. The strongest labeling was detected in vivo in areas populated by neurons in high density and also in the dendritic processes emanating from these cells. This protein was clearly concentrated in the nuclei of these cells, although their cytoplasms too were heavily labeled. Strong cytoplasmic and very strong nuclear staining was found in a vast majority of the cells with neuronal morphology in vitro. Cultured cells with glial morphology generally exhibited a weaker cytoplasmic labeling. In these cells, the signal decorated the nuclear envelope without nuclear staining and gradually dwindled toward the cell periphery. These results hint at the cell- or tissue-type specific functions of this type of importin protein.
Collapse
Affiliation(s)
- Elod Kortvely
- Department of Zoology and Cell Biology, University of Szeged, 2 Egyetem St., POB 659, Szeged H-6722, Hungary
| | | | | | | |
Collapse
|
40
|
Stallings CL, Silverstein S. Dissection of a novel nuclear localization signal in open reading frame 29 of varicella-zoster virus. J Virol 2005; 79:13070-81. [PMID: 16189009 PMCID: PMC1235848 DOI: 10.1128/jvi.79.20.13070-13081.2005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Open reading frame 29 (ORF29) of varicella-zoster virus (VZV) encodes a 120-kDa single-stranded DNA binding protein (ORF29p) that is not packaged in the virion and is expressed during latency. During lytic infection, ORF29p is localized primarily to infected cell nuclei. In contrast, ORF29p is found exclusively in the cytoplasm in neurons of the dorsal root ganglia obtained at autopsy from seropositive latently infected patients. ORF29p accumulates in the nuclei of neurons in dorsal root ganglia obtained at autopsy from patients with active zoster. The localization of this protein is, therefore, tightly correlated with the proposed VZV lytic/latent switch. In this report, we have investigated the nuclear import mechanism of ORF29p. We identified a novel nuclear targeting domain bounded by amino acids 9 to 154 of ORF29p that functions independent of other VZV-encoded factors. In vitro import assays in digitonin-permeabilized HeLa cells reveal that ORF29p is transported into the nucleus by a Ran-, karyopherin alpha- and beta-dependent mechanism. These data are further supported by the demonstration that a glutathione S-transferase-karyopherin alpha fusion interacts with ORF29p, but not with a protein containing a point mutation in its nuclear localization signal (NLS). Therefore, the region of ORF29p responsible for its nuclear targeting is also involved in the association with karyopherin alpha. As a result of this interaction, this noncanonical NLS appears to hijack the classical cellular nuclear import machinery. Elucidation of the mechanisms governing ORF29p nuclear targeting could shed light on the VZV reactivation process.
Collapse
Affiliation(s)
- Christina L Stallings
- Integrated Program in Cellular, Molecular and Biophysical Studies and the Department of Microbiology, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA
| | | |
Collapse
|
41
|
Hu W, Kemp BE, Jans DA. Kinetic properties of nuclear transport conferred by the retinoblastoma (Rb) NLS. J Cell Biochem 2005; 95:782-93. [PMID: 15838894 DOI: 10.1002/jcb.20439] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The retinoblastoma (RB) tumor suppressor is a nuclear phosphoprotein central to control of cellular proliferation. We have previously shown that human RB possesses an evolutionarily conserved bipartite nuclear localization sequence (NLS) (KRSAEGSNPPKPLKKLR877) resembling that of nucleoplasmin. Here we analyze the kinetic properties of the RB NLS in detail with respect to recognition by cellular nuclear import factors, the importins (IMPs), and nuclear transport properties, comparing results to those for the NLSs from SV40 large tumor antigen (T-ag) and the Xenopus laevis phosphoprotein N1N2. Binding affinities of different IMPalpha subunits for the Rb NLS, in the absence or presence of IMPbeta subunits were determined, and NLS-dependent nuclear import reconstituted in vitro for the first time using purified IMPalpha/beta subunits together with recombinant human RanGDP and nuclear transport factor 2 (NTF2). RB NLS-mediated transport had a strict requirement for all components, with high NTF2 concentrations inhibiting transport. As in the case of transport mediated by the T-ag- and N1N2-NLSs, nuclear import of an RB-NLS containing beta-Gal fusion protein was reduced or abolished when anti-IMPalpha or beta antibody was added to cytosolic extract, respectively, confirming that RB NLS-mediated nuclear import occurs through action of IMPalpha/beta. We conclude that although mediated by IMPalpha/beta, and similar in most respects to transport mediated by the similarly bipartite N1N2 NLS, nuclear import conferred by the RB NLS has distinct properties, in part due to the affinity of its interaction with IMPalpha.
Collapse
Affiliation(s)
- Wei Hu
- Nuclear Signalling Laboratory, Division for Biochemistry and Molecular Biology, John Curtin School of Medical Research, Australian Capital Territory, Canberra, Australia
| | | | | |
Collapse
|
42
|
Santama N, Ogg SC, Malekkou A, Zographos SE, Weis K, Lamond AI. Characterization of hCINAP, a novel coilin-interacting protein encoded by a transcript from the transcription factor TAFIID32 locus. J Biol Chem 2005; 280:36429-41. [PMID: 16079131 DOI: 10.1074/jbc.m501982200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Coilin is a marker protein for the Cajal body, a subnuclear domain acting as a site for assembly and maturation of nuclear RNA-protein complexes. Using a yeast two-hybrid screen to identify coilin-interacting proteins, we have identified hCINAP (human coilin interacting nuclear ATPase protein), a nuclear factor of 172 amino acids with a P-loop nucleotide binding motif and ATPase activity. The hCINAP protein sequence is highly conserved across its full-length from human to plants and yeast and is ubiquitously expressed in all human tissues and cell lines tested. The yeast orthologue of CINAP is a single copy, essential gene. Tagged hCINAP is present in complexes containing coilin in mammalian cells and recombinant, Escherichia coli expressed hCINAP binds directly to coilin in vitro. The 214 carboxyl-terminal residues of coilin appear essential for the interaction with hCINAP. Both immunofluorescence and fluorescent protein tagging show that hCINAP is specifically nuclear and distributed in a widespread, diffuse nucleoplasmic pattern, excluding nucleoli, with some concentration also in Cajal bodies. Overexpression of hCINAP in HeLa cells results in a decrease in the average number of Cajal bodies per nucleus, consistent with it affecting either the stability of Cajal bodies and/or their rate of assembly. The hCINAP mRNA is an alternatively spliced transcript from the TAF9 locus, which encodes the basal transcription factor subunit TAFIID32. However, hCINAP and TAFIID32 mRNAs are translated from different ATG codons and use distinct reading frames, resulting in them having no identity in their respective protein sequences.
Collapse
Affiliation(s)
- Niovi Santama
- Department of Biological Sciences, University of Cyprus and Cyprus Institute of Neurology and Genetics, P.O. Box 20537, 1678 Nicosia, Cyprus.
| | | | | | | | | | | |
Collapse
|
43
|
Ushijima R, Sakaguchi N, Kano A, Maruyama A, Miyamoto Y, Sekimoto T, Yoneda Y, Ogino K, Tachibana T. Extracellular signal-dependent nuclear import of STAT3 is mediated by various importin alphas. Biochem Biophys Res Commun 2005; 330:880-6. [PMID: 15809078 DOI: 10.1016/j.bbrc.2005.03.063] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Indexed: 01/08/2023]
Abstract
The signal transducer and activator of transcription 3 (STAT3) is a transcription factor that is involved in a variety of biological functions. STAT3 is activated by cytokines and growth factors via the phosphorylation of a tyrosine residue, dimerization, and subsequent nuclear translocation. However, the mechanism of its nuclear translocation is unclear. A study of the cytokine-stimulated import of STAT3 into the nucleus is reported herein. An oncostatin M (OSM)-dependent nuclear import assay system was first established in living cells. Using this system, we demonstrated that the microinjection of the importin alpha5/NPI-1 mutant, an anti-importin beta antibody, and the RanQ69L mutant inhibited the nuclear import of STAT3. Second, we showed that tyrosine-phosphorylated STAT3 associates, not only with importin alpha5/NPI-1 but also with other importin alphas, as a result of OSM stimulation, as evidenced by a solution binding assay. These findings suggest that the extracellular signal-dependent nuclear transport of STAT3 is mediated by various importin alphas, importin beta, and Ran.
Collapse
Affiliation(s)
- Ryosuke Ushijima
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, Osaka 558-8585, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kamata M, Nitahara-Kasahara Y, Miyamoto Y, Yoneda Y, Aida Y. Importin-alpha promotes passage through the nuclear pore complex of human immunodeficiency virus type 1 Vpr. J Virol 2005; 79:3557-64. [PMID: 15731250 PMCID: PMC1075686 DOI: 10.1128/jvi.79.6.3557-3564.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viral protein R (Vpr) of human immunodeficiency virus type 1 has potent karyophilic properties, but details of the mechanism by which it enters the nucleus remain to be clarified. We reported previously that two regions, located between residues 17 and 34 (alphaH1) and between residues 46 and 74 (alphaH2), are indispensable for the nuclear localization of Vpr. Here, we reveal that a chimeric protein composed of the nuclear localization signal of Vpr, glutathione S-transferase, and green fluorescent protein was localized at the nuclear envelope and then entered the nucleus upon addition of importin-alpha. An in vitro transport assay using a series of derivatives of importin-alpha demonstrated that the carboxyl terminus was required for this nuclear import process. We also showed that Vpr interacts with importin-alpha through alphaH1 and alphaH2; only the interaction via alphaH1 is indispensable for the nuclear entry of Vpr. These observations indicate that importin-alpha functions as a mediator for the nuclear entry of Vpr.
Collapse
Affiliation(s)
- Masakazu Kamata
- Retrovirus Research Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | | | | | | | |
Collapse
|
45
|
Goldfarb DS, Corbett AH, Mason DA, Harreman MT, Adam SA. Importin alpha: a multipurpose nuclear-transport receptor. Trends Cell Biol 2005; 14:505-14. [PMID: 15350979 DOI: 10.1016/j.tcb.2004.07.016] [Citation(s) in RCA: 545] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The importin alpha/beta heterodimer targets hundreds of proteins to the nuclear-pore complex (NPC) and facilitates their translocation across the nuclear envelope. Importin alpha binds to classical nuclear localization signal (cNLS)-containing proteins and links them to importin beta, the karyopherin that ferries the ternary complex through the NPC. A second karyopherin, the exportin CAS, recycles importin alpha back to the cytoplasm. In this article, we discuss control mechanisms that importin alpha exerts over the assembly and disassembly of the ternary complex and we describe how new groups of importin alpha genes arose during the evolution of metazoan animals to function in development and differentiation. We also describe activities of importin alpha that seem to be distinct from its housekeeping functions in nuclear transport.
Collapse
Affiliation(s)
- David S Goldfarb
- Department of Biology, University of Rochester, Rochester, NY 14627, USA.
| | | | | | | | | |
Collapse
|
46
|
Sakakida Y, Miyamoto Y, Nagoshi E, Akashi M, Nakamura TJ, Mamine T, Kasahara M, Minami Y, Yoneda Y, Takumi T. Importin alpha/beta mediates nuclear transport of a mammalian circadian clock component, mCRY2, together with mPER2, through a bipartite nuclear localization signal. J Biol Chem 2005; 280:13272-8. [PMID: 15689618 DOI: 10.1074/jbc.m413236200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Circadian rhythms, which period is approximately one day, are generated by endogenous biological clocks. These clocks are found throughout the animal kingdom, as well as in plants and even in prokaryotes. Molecular mechanisms for circadian rhythms are based on transcriptional oscillation of clock component genes, consisting of interwoven autoregulatory feedback loops. Among the loops, the nuclear transport of clock proteins is a crucial step for transcriptional regulation. In the present study, we showed that the nuclear entry of mCRY2, a mammalian clock component, is mediated by the importin alpha/beta system through a bipartite nuclear localization signal in its carboxyl end. In vitro transport assay using digitonin-permeabilized cells demonstrated that all three importin alphas, alpha1 (Rch1), alpha3 (Qip-1), and alpha7 (NPI-2), can mediate mCRY2 import. mCRY2 with the mutant nuclear localization signal failed to transport mPER2 into the nucleus of mammalian cultured cells, indicating that the nuclear localization signal identified in mCRY2 is physiologically significant. These results suggest that the importin alpha/beta system is involved in nuclear entry of mammalian clock components, which is indispensable to transcriptional oscillation of clock genes.
Collapse
Affiliation(s)
- Yoko Sakakida
- Osaka Bioscience Institute, Suita, Osaka 565-0874, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Fagerlund R, Kinnunen L, Köhler M, Julkunen I, Melén K. NF-{kappa}B is transported into the nucleus by importin {alpha}3 and importin {alpha}4. J Biol Chem 2005; 280:15942-51. [PMID: 15677444 DOI: 10.1074/jbc.m500814200] [Citation(s) in RCA: 241] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NF-kappaB transcription factors are retained in the cytoplasm in an inactive form until they are activated and rapidly imported into the nucleus. We identified importin alpha3 and importin alpha4 as the main importin alpha isoforms mediating TNF-alpha-stimulated NF-kappaB p50/p65 heterodimer translocation into the nucleus. Importin alpha3 and alpha4 are close relatives in the human importin alpha family. We show that importin alpha3 isoform also mediates nuclear import of NF-kappaB p50 homodimer in nonstimulated cells. Importin alpha3 is shown to directly bind to previously characterized nuclear localization signals (NLSs) of NF-kappaB p50 and p65 proteins. Importin alpha molecules are known to have armadillo repeats that constitute the N-terminal and C-terminal NLS binding sites. We demonstrate by site-directed mutagenesis that NF-kappaB p50 binds to the N-terminal and p65 to the C-terminal NLS binding site of importin alpha3. In vitro competition experiments and analysis of cellular NF-kappaB suggest that NF-kappaB binds to importin alpha only when it is free of IkappaBalpha. The present study demonstrates that the nuclear import of NF-kappaB is a highly regulated process mediated by a subset of importin alpha molecules.
Collapse
Affiliation(s)
- Riku Fagerlund
- Departments of Viral Diseases and Immunology and Epidemiology and Health Promotion, National Public Health Institute, FIN-00300, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
48
|
Abstract
Transport of macromolecules into and out of the nucleus is generally effected by targeting signals that are recognized by specific members of the importin/exportin transport receptor family. The latter mediate passage through the nuclear envelope-embedded nuclear pore complexes (NPCs) by conferring interaction with NPC constituents, as well as with other components of the nuclear transport machinery, including the guanine nucleotide-binding protein Ran. Importantly, nuclear transport is regulated at multiple levels via a diverse range of mechanisms, such as the modulation of the accessibility and affinity of target signal recognition by importins/exportins, with phosphorylation/dephosphorylation as a major mechanism. Alteration of the level of the expression of components of the nuclear transport machinery also appears to be a key determinant of transport efficiency, having central importance in development, differentiation and transformation.
Collapse
Affiliation(s)
- Ivan K H Poon
- Department for Biochemistry and Molecular Biology, Nuclear Signalling Laboratory, Box 13D, Monash University, Clayton, Victoria 3168, Australia
| | | |
Collapse
|
49
|
Quensel C, Friedrich B, Sommer T, Hartmann E, Kohler M. In vivo analysis of importin alpha proteins reveals cellular proliferation inhibition and substrate specificity. Mol Cell Biol 2005; 24:10246-55. [PMID: 15542834 PMCID: PMC529023 DOI: 10.1128/mcb.24.23.10246-10255.2004] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The "classical" nuclear import pathway depends on importins alpha and beta. Humans have only one importin beta, while six alpha importins have been described. Whether or not distinct alpha importins are essential for specific import pathways in living human cells is unclear. We used RNA interference technology to specifically down-regulate the expression of ubiquitously expressed human alpha importins in HeLa cells. Down-regulation of importins alpha3, alpha5, alpha7, and beta strongly inhibited HeLa cell proliferation, while down-regulation of importins alpha1 and alpha4 had only a minor effect or no effect. Nucleoplasmin import was not prevented by down-regulation of any alpha importin, indicating that the importin alpha/beta pathway was generally not affected. In contrast, importin alpha3 or alpha5 down-regulation specifically inhibited the nuclear import of the Ran guanine nucleotide exchange factor, RCC1. Coinjection of recombinant alpha importins and RCC1 into down-regulated cells demonstrated that these transport defects were specifically caused by the limited availability of importin alpha3 in both cases. Thus, importin alpha3 is the only alpha importin responsible for the classical nuclear import of RCC1 in living cells.
Collapse
Affiliation(s)
- Christina Quensel
- Osteeklinik Damp GmbH, Sente-Deern-Ring 30, 24351 Osteebad Damp, Germany
| | | | | | | | | |
Collapse
|
50
|
Hogarth C, Itman C, Jans DA, Loveland KL. Regulated nucleocytoplasmic transport in spermatogenesis: a driver of cellular differentiation? Bioessays 2005; 27:1011-25. [PMID: 16163727 DOI: 10.1002/bies.20289] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This review explores the hypothesis that regulation of nucleocytoplasmic shuttling is a means of driving differentiation, using spermatogenesis as a model. The transition from undifferentiated spermatogonial stem cell to terminally differentiated spermatozoon is, at its most basic, a change in the repertoire of expressed genes. To effect this, the complement of nuclear proteins, such as transcription factors and chromatin remodelling components must change. Current knowledge of the nuclear proteins and nucleocytoplasmic transport machinery relevant to spermatogenesis is consolidated in this review, and their functional linkages are highlighted not only as a means of regulating nuclear protein composition, but also as a key mechanism regulating gene transcription and hence cell fate. Through this, we hypothesize that male germ cell differentiation is mediated through regulation of nuclear transport machinery components, and thereby of the access of critical factors to the nucleus. The importance of nucleocytoplasmic trafficking to male germ cell differentiation is discussed, using the sex-determining factors Sry and SOX9, cell cycle regulators, CREM and cofactors and the Smads as specific examples, together with the roles in gametogenesis for particular nuclear transport factors in Caenorhabditis elegans and Drosophila.
Collapse
Affiliation(s)
- Cathryn Hogarth
- Monash Institute of Medical Research, Monash University, Melbourne, Australia
| | | | | | | |
Collapse
|