1
|
Escamilla-Vega E, Seton LWG, Kyomen S, Murillo-Rincón AP, Petersen J, Tautz D, Kaucká M. Evolution of the essential gene MN1 during the macroevolutionary transition toward patterning the vertebrate hindbrain. Proc Natl Acad Sci U S A 2025; 122:e2416061122. [PMID: 40424121 DOI: 10.1073/pnas.2416061122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 03/27/2025] [Indexed: 05/29/2025] Open
Abstract
The tight link between brain and skull formation is a fundamental aspect of vertebrate evolution and embryogenesis. Their developmental synchronization is essential for structural and functional integration. The brain and skull shape coevolution is evident along the vertebrate phylogeny; however, the genetic basis underlying their close evolutionary and developmental relationship remains little explored. Here, we reveal the evolution and function of the MN1 gene that was previously found to be associated with significant shape variation in the mouse skull and the formation of cranial bones. We show that the vertebrate MN1 gene evolved from an ancestral deuterostome sequence. In vertebrates, the MN1 gene structure, synteny, and spatiotemporal expression pattern are remarkably conserved, indicating that the gene carries out a core function. Using a newly generated mouse knock-out model, we demonstrate in vivo that Mn1 integrated into an ancient molecular machinery and controls the expression of the Cyp26 genes in the developing hindbrain, thereby tuning the retinoic acid levels and patterning of the developing central nervous system. This study thus showcases the emergence of a novel gene function from an ancestral sequence and its role in generating a macroevolutionary innovation. The data expand our knowledge of brain and skull codevelopment and coevolution and highlight the role of this regulatory loop in craniofacial human syndromes.
Collapse
Affiliation(s)
| | - Louk W G Seton
- Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Stella Kyomen
- Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | | | - Julian Petersen
- Department of Orthodontics, University Leipzig Medical Center, Leipzig 04103, Germany
| | - Diethard Tautz
- Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Markéta Kaucká
- Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| |
Collapse
|
2
|
Duester G. Early retinoic acid signaling organizes the body axis and defines domains for the forelimb and eye. Curr Top Dev Biol 2024; 161:1-32. [PMID: 39870430 PMCID: PMC11969570 DOI: 10.1016/bs.ctdb.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
All-trans RA (ATRA) is a small molecule derived from retinol (vitamin A) that directly controls gene expression at the transcriptional level by serving as a ligand for nuclear ATRA receptors. ATRA is produced by ATRA-generating enzymes that convert retinol to retinaldehyde (retinol dehydrogenase; RDH10) followed by conversion of retinaldehyde to ATRA (retinaldehyde dehydrogenase; ALDH1A1, ALDH1A2, or ALDH1A3). Determining what ATRA normally does during vertebrate development has been challenging as studies employing ATRA gain-of-function (RA treatment) often do not agree with genetic loss-of-function studies that remove ATRA via knockouts of ATRA-generating enzymes. In mouse embryos, ATRA is first generated at stage E7.5 by ATRA-generating enzymes whose genes are first expressed at that stage. This article focuses upon what ATRA normally does at early stages based upon these knockout studies. It has been observed that early-generated ATRA performs three essential functions: (1) activation of genes that control hindbrain and spinal cord patterning; (2) repression of Fgf8 in the heart field and caudal progenitors to provide an FGF8-free region in the trunk essential for somitogenesis, heart morphogenesis, and initiation of forelimb fields; and (3) actions that stimulate invagination of the optic vesicle to form the optic cup.
Collapse
Affiliation(s)
- Gregg Duester
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States.
| |
Collapse
|
3
|
Piazza A, Carlone R, Spencer GE. Non-canonical retinoid signaling in neural development, regeneration and synaptic function. Front Mol Neurosci 2024; 17:1371135. [PMID: 38516042 PMCID: PMC10954794 DOI: 10.3389/fnmol.2024.1371135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/21/2024] [Indexed: 03/23/2024] Open
Abstract
Canonical retinoid signaling via nuclear receptors and gene regulation is critical for the initiation of developmental processes such as cellular differentiation, patterning and neurite outgrowth, but also mediates nerve regeneration and synaptic functions in adult nervous systems. In addition to canonical transcriptional regulation, retinoids also exert rapid effects, and there are now multiple lines of evidence supporting non-canonical retinoid actions outside of the nucleus, including in dendrites and axons. Together, canonical and non-canonical retinoid signaling provide the precise temporal and spatial control necessary to achieve the fine cellular coordination required for proper nervous system function. Here, we examine and discuss the evidence supporting non-canonical actions of retinoids in neural development and regeneration as well as synaptic function, including a review of the proposed molecular mechanisms involved.
Collapse
Affiliation(s)
| | | | - Gaynor E. Spencer
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
4
|
Vitamin A- and D-Deficient Diets Disrupt Intestinal Antimicrobial Peptide Defense Involving Wnt and STAT5 Signaling Pathways in Mice. Nutrients 2023; 15:nu15020376. [PMID: 36678247 PMCID: PMC9863741 DOI: 10.3390/nu15020376] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/14/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
Vitamin A and D deficiencies are associated with immune modulatory effects and intestinal barrier impairment. However, the underlying mechanisms remain unclear. C57BL/6J mice were fed either a diet lacking in vitamin A (VAd), vitamin D (VDd) or a control diet (CD) for 12 weeks. Gut barrier function, antimicrobial peptide (AMP) defense and regulatory pathways were assessed. VAd mice compared to CD mice showed a reduced villus length in the ileum (p < 0.01) and decreased crypt depth in the colon (p < 0.05). In both VAd- and VDd-fed mice, ileal α-defensin 5 (p < 0.05/p < 0.0001 for VAd/VDd) and lysozyme protein levels (p < 0.001/p < 0.0001) were decreased. Moreover, mRNA expression of lysozyme (p < 0.05/p < 0.05) and total cryptdins (p < 0.001/p < 0.01) were reduced compared to controls. Furthermore, matrix metalloproteinase-7 (Mmp7) mRNA (p < 0.0001/p < 0.001) as well as components of the Wnt signaling pathway were decreased. VAd- and VDd-fed mice, compared to control mice, exhibited increased expression of pro-inflammatory markers and β-defensins in the colon. Organoid cell culture confirmed that vitamins A and D regulate AMP expression, likely through the Jak/STAT5 signaling pathway. In conclusion, our data show that vitamin A and D regulate intestinal antimicrobial peptide defense through Wnt and STAT5 signaling pathways.
Collapse
|
5
|
Abstract
Vitamin A (retinol) is an important nutrient for embryonic development and adult health. Early studies identified retinoic acid (RA) as a metabolite of retinol, however, its importance was not apparent. Later, it was observed that RA treatment of vertebrate embryos had teratogenic effects on limb development. Subsequently, the discovery of nuclear RA receptors (RARs) revealed that RA controls gene expression directly at the transcriptional level through a process referred to as RA signaling. This important discovery led to further studies demonstrating that RA and RARs are required for normal embryonic development. The determination of RA function during normal development has been challenging as RA gain-of-function studies often lead to conclusions about normal development that conflict with RAR or RA loss-of-function studies. However, genetic loss-of-function studies have identified direct target genes of endogenous RA/RAR that are required for normal development of specific tissues. Thus, genetic loss-of-function studies that eliminate RARs or RA-generating enzymes have been instrumental in revealing that RA signaling is required for normal early development of many organs and tissues, including the hindbrain, posterior body axis, somites, spinal cord, forelimbs, heart, and eye.
Collapse
Affiliation(s)
- Marie Berenguer
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Gregg Duester
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
6
|
Li Y, Tajima A, Mattie FJ, Green MH, Ross AC. Pregnancy and Lactation Alter Vitamin A Metabolism and Kinetics in Rats under Vitamin A-Adequate Dietary Conditions. Nutrients 2021; 13:2853. [PMID: 34445012 PMCID: PMC8401525 DOI: 10.3390/nu13082853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Vitamin A (VA) plays critical roles in prenatal and postnatal development; however, limited information is available regarding maternal VA metabolism during pregnancy and lactation. OBJECTIVES We investigated the impact of pregnancy and lactation on VA metabolism and kinetics in rats, hypothesizing that changes in physiological status would naturally perturb whole-body VA kinetics. METHODS Eight-week old female rats (n = 10) fed an AIN-93G diet received an oral tracer dose of 3H-labeled retinol to initiate the kinetic study. On d 21 after dosing, six female rats were mated. Serial blood samples were collected from each female rat at selected times after dose administration until d 14 of lactation. Model-based compartmental analysis was applied to the plasma tracer data to develop VA kinetic models. RESULTS Our compartmental model revealed that pregnancy resulted in a gradual increase in hepatic VA mobilization, presumably to support different stages of fetal development. Additionally, the model indicates that during lactation, VA derived from dietary intake was the primary source of VA delivered to the mammary gland for milk VA secretion. CONCLUSION During pregnancy and lactation in rats with an adequate VA intake and previous VA storage, the internal redistribution of VA and increased uptake from diet supported the maintenance of VA homeostasis.
Collapse
Affiliation(s)
| | | | | | | | - A. Catharine Ross
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (Y.L.); (A.T.); (F.J.M.); (M.H.G.)
| |
Collapse
|
7
|
Berenguer M, Duester G. Role of Retinoic Acid Signaling, FGF Signaling and Meis Genes in Control of Limb Development. Biomolecules 2021; 11:80. [PMID: 33435477 PMCID: PMC7827967 DOI: 10.3390/biom11010080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 12/22/2022] Open
Abstract
The function of retinoic acid (RA) during limb development is still debated, as loss and gain of function studies led to opposite conclusions. With regard to limb initiation, genetic studies demonstrated that activation of FGF10 signaling is required for the emergence of limb buds from the trunk, with Tbx5 and RA signaling acting upstream in the forelimb field, whereas Tbx4 and Pitx1 act upstream in the hindlimb field. Early studies in chick embryos suggested that RA as well as Meis1 and Meis2 (Meis1/2) are required for subsequent proximodistal patterning of both forelimbs and hindlimbs, with RA diffusing from the trunk, functioning to activate Meis1/2 specifically in the proximal limb bud mesoderm. However, genetic loss of RA signaling does not result in loss of limb Meis1/2 expression and limb patterning is normal, although Meis1/2 expression is reduced in trunk somitic mesoderm. More recent studies demonstrated that global genetic loss of Meis1/2 results in a somite defect and failure of limb bud initiation. Other new studies reported that conditional genetic loss of Meis1/2 in the limb results in proximodistal patterning defects, and distal FGF8 signaling represses Meis1/2 to constrain its expression to the proximal limb. In this review, we hypothesize that RA and Meis1/2 both function in the trunk to initiate forelimb bud initiation, but that limb Meis1/2 expression is activated proximally by a factor other than RA and repressed distally by FGF8 to generate proximodistal patterning.
Collapse
Affiliation(s)
| | - Gregg Duester
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA;
| |
Collapse
|
8
|
Okada K, Takada S. The second pharyngeal pouch is generated by dynamic remodeling of endodermal epithelium in zebrafish. Development 2020; 147:dev194738. [PMID: 33158927 DOI: 10.1242/dev.194738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/28/2020] [Indexed: 11/20/2022]
Abstract
Pharyngeal arches (PAs) are segmented by endodermal outpocketings called pharyngeal pouches (PPs). Anterior and posterior PAs appear to be generated by different mechanisms, but it is unclear how the anterior and posterior PAs combine. Here, we addressed this issue with precise live imaging of PP development and cell tracing of pharyngeal endoderm in zebrafish embryos. We found that two endodermal bulges are initially generated in the future second PP (PP2) region, which separates anterior and posterior PAs. Subsequently, epithelial remodeling causes contact between these two bulges, resulting in the formation of mature PP2 with a bilayered morphology. The rostral and caudal bulges develop into the operculum and gill, respectively. Development of the caudal PP2 and more posterior PPs is affected by impaired retinoic acid signaling or pax1a/b dysfunction, suggesting that the rostral front of posterior PA development corresponds to the caudal PP2. Our study clarifies an aspect of PA development that is essential for generation of a seamless array of PAs in zebrafish.
Collapse
Affiliation(s)
- Kazunori Okada
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaijicho, Okazaki 444-8787, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787, Japan
| | - Shinji Takada
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaijicho, Okazaki 444-8787, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787, Japan
- Department for Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787, Japan
| |
Collapse
|
9
|
How Dietary Deficiency Studies Have Illuminated the Many Roles of Vitamin A During Development and Postnatal Life. Subcell Biochem 2020; 95:1-26. [PMID: 32297294 DOI: 10.1007/978-3-030-42282-0_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Vitamin A deficiency studies have been carried out since the early 1900s. Initially, these studies led to the identification of fat soluble A as a unique and essential component of the diet of rodents, birds, and humans. Continuing work established that vitamin A deficiency produces biochemical and physiological dysfunction in almost every vertebrate organ system from conception to death. This chapter begins with a review of representative historical and current studies that used the nutritional vitamin A deficiency research model to gain an understanding of the many roles vitamin A plays in prenatal and postnatal development and well-being. This is followed by a discussion of recent studies that show specific effects of vitamin A deficiency on prenatal development and postnatal maintenance of the olfactory epithelium, brain, and heart. Vitamin A deficiency studies have helped define the necessity of vitamin A for the health of all vertebrates, including farm animals, but the breadth of deficient states and their individual effects on health have not been fully determined. Future work is needed to develop tools to assess the complete vitamin A status of an organism and to define the levels of vitamin A that optimally support molecular and systems level processes during all ages and stages of life.
Collapse
|
10
|
Thompson B, Katsanis N, Apostolopoulos N, Thompson DC, Nebert DW, Vasiliou V. Genetics and functions of the retinoic acid pathway, with special emphasis on the eye. Hum Genomics 2019; 13:61. [PMID: 31796115 PMCID: PMC6892198 DOI: 10.1186/s40246-019-0248-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023] Open
Abstract
Retinoic acid (RA) is a potent morphogen required for embryonic development. RA is formed in a multistep process from vitamin A (retinol); RA acts in a paracrine fashion to shape the developing eye and is essential for normal optic vesicle and anterior segment formation. Perturbation in RA-signaling can result in severe ocular developmental diseases—including microphthalmia, anophthalmia, and coloboma. RA-signaling is also essential for embryonic development and life, as indicated by the significant consequences of mutations in genes involved in RA-signaling. The requirement of RA-signaling for normal development is further supported by the manifestation of severe pathologies in animal models of RA deficiency—such as ventral lens rotation, failure of optic cup formation, and embryonic and postnatal lethality. In this review, we summarize RA-signaling, recent advances in our understanding of this pathway in eye development, and the requirement of RA-signaling for embryonic development (e.g., organogenesis and limb bud development) and life.
Collapse
Affiliation(s)
- Brian Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College St, New Haven, CT, 06520, USA
| | - Nicholas Katsanis
- Stanley Manne Research Institute, Lurie Children's Hospital, Chicago, IL, 60611, USA.,Departments of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Nicholas Apostolopoulos
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College St, New Haven, CT, 06520, USA
| | - David C Thompson
- Department of Clinical Pharmacy, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Daniel W Nebert
- Department of Environmental Health and Center for Environmental Genetics, University Cincinnati Medical Center, Cincinnati, OH, 45267-0056, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College St, New Haven, CT, 06520, USA.
| |
Collapse
|
11
|
Friedl RM, Raja S, Metzler MA, Patel ND, Brittian KR, Jones SP, Sandell LL. RDH10 function is necessary for spontaneous fetal mouth movement that facilitates palate shelf elevation. Dis Model Mech 2019; 12:12/7/dmm039073. [PMID: 31300413 PMCID: PMC6679383 DOI: 10.1242/dmm.039073] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022] Open
Abstract
Cleft palate is a common birth defect, occurring in approximately 1 in 1000 live births worldwide. Known etiological mechanisms of cleft palate include defects within developing palate shelf tissues, defects in mandibular growth and defects in spontaneous fetal mouth movement. Until now, experimental studies directly documenting fetal mouth immobility as an underlying cause of cleft palate have been limited to models lacking neurotransmission. This study extends the range of anomalies directly demonstrated to have fetal mouth movement defects correlated with cleft palate. Here, we show that mouse embryos deficient in retinoic acid (RA) have mispatterned pharyngeal nerves and skeletal elements that block spontaneous fetal mouth movement in utero. Using X-ray microtomography, in utero ultrasound video, ex vivo culture and tissue staining, we demonstrate that proper retinoid signaling and pharyngeal patterning are crucial for the fetal mouth movement needed for palate formation. Embryos with deficient retinoid signaling were generated by stage-specific inactivation of retinol dehydrogenase 10 (Rdh10), a gene crucial for the production of RA during embryogenesis. The finding that cleft palate in retinoid deficiency results from a lack of fetal mouth movement might help elucidate cleft palate etiology and improve early diagnosis in human disorders involving defects of pharyngeal development. Summary: Fetal mouth immobility and defects in pharyngeal patterning underlie cleft palate in retinoid-deficient Rdh10 mutant mouse embryos.
Collapse
Affiliation(s)
- Regina M Friedl
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Swetha Raja
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Melissa A Metzler
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Niti D Patel
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Kenneth R Brittian
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, KY 40202, USA
| | - Steven P Jones
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, KY 40202, USA
| | - Lisa L Sandell
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| |
Collapse
|
12
|
Chen C, Tan H, Bi J, Li L, Rong T, Lin Y, Sun P, Liang J, Jiao Y, Li Z, Sun L, Shen J. LncRNA-SULT1C2A regulates Foxo4 in congenital scoliosis by targeting rno-miR-466c-5p through PI3K-ATK signalling. J Cell Mol Med 2019; 23:4582-4591. [PMID: 31044535 PMCID: PMC6584475 DOI: 10.1111/jcmm.14355] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/31/2019] [Accepted: 04/10/2019] [Indexed: 12/17/2022] Open
Abstract
Congenital scoliosis (CS) is the result of anomalous vertebrae development, but the pathogenesis of CS remains unclear. Long non‐coding RNAs (lncRNAs) have been implicated in embryo development, but their role in CS remains unknown. In this study, we investigated the role and mechanisms of a specific lncRNA, SULT1C2A, in somitogenesis in a rat model of vitamin A deficiency (VAD)‐induced CS. Bioinformatics analysis and quantitative real‐time PCR (qRT‐PCR) indicated that SULT1C2A expression was down‐regulated in VAD group, accompanied by increased expression of rno‐miR‐466c‐5p but decreased expression of Foxo4 and somitogenesis‐related genes such as Pax1, Nkx3‐2 and Sox9 on gestational day (GD) 9. Luciferase reporter and small interfering RNA (siRNA) assays showed that SULT1C2A functioned as a competing endogenous RNA to inhibit rno‐miR‐466c‐5p expression by direct binding, and rno‐miR‐466c‐5p inhibited Foxo4 expression by binding to its 3′ untranslated region (UTR). The spatiotemporal expression of SULT1C2A, rno‐miR‐466c‐5p and Foxo4 axis was dynamically altered on GDs 3, 8, 11, 15 and 21 as detected by qRT‐PCR and northern blot analyses, with parallel changes in Protein kinase B (AKT) phosphorylation and PI3K expression. Taken together, our findings indicate that SULT1C2A enhanced Foxo4 expression by negatively modulating rno‐miR‐466c‐5p expression via the PI3K‐ATK signalling pathway in the rat model of VAD‐CS. Thus, SULT1C2A may be a potential target for treating CS.
Collapse
Affiliation(s)
- Chong Chen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Haining Tan
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jiaqi Bi
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Lin Li
- Beijing Zhongke Jingyun Technology Company Ltd., Beijing, China
| | - Tianhua Rong
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Youxi Lin
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Peiyu Sun
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Department of Orthopedics Surgery, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Jinqian Liang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yang Jiao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zheng Li
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Liang Sun
- Beijing Zhongke Jingyun Technology Company Ltd., Beijing, China
| | - Jianxiong Shen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
13
|
Johnson A, de Hoog E, Tolentino M, Nasser T, Spencer GE. Pharmacological evidence for the role of RAR in axon guidance and embryonic development of a protostome species. Genesis 2019; 57:e23301. [PMID: 31038837 DOI: 10.1002/dvg.23301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/07/2019] [Accepted: 04/08/2019] [Indexed: 01/26/2023]
Abstract
Retinoic acid (RA), the active metabolite of vitamin A, functions through nuclear receptors, one of which is the retinoic acid receptor (RAR). Though the RAR is essential for various aspects of vertebrate development, little is known about the role of RAR in nonchordate invertebrates. Here, we examined the potential role of an invertebrate RAR in mediating chemotropic effects of retinoic acid. The RAR of the protostome Lymnaea stagnalis is present in the growth cones of regenerating cultured motorneurons, and a synthetic RAR agonist (EC23), was able to mimic the effects of retinoic acid in inducing growth cone turning. We also examined the ability of the natural retinoids, all-trans RA and 9-cis RA, as well as the synthetic RAR agonists, to disrupt embryonic development in Lymnaea. Developmental defects included delays in embryo hatching, arrested eye, and shell development, as well as more severe abnormalities such as halted development. Developmental defects induced by some (but not all) synthetic RAR agonists were found to mimic those induced by addition of high concentrations of the natural retinoid isomers. These pharmacological data support a possible physiological role for the RAR in axon guidance and embryonic development of an invertebrate protostome species.
Collapse
Affiliation(s)
- Alysha Johnson
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Eric de Hoog
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Michael Tolentino
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Tamara Nasser
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Gaynor E Spencer
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
14
|
Baker BC, Hayes DJ, Jones RL. Effects of micronutrients on placental function: evidence from clinical studies to animal models. Reproduction 2018; 156:R69-R82. [PMID: 29844225 DOI: 10.1530/rep-18-0130] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/29/2018] [Indexed: 12/23/2022]
Abstract
Micronutrient deficiencies are common in pregnant women due to low dietary intake and increased requirements for fetal development. Low maternal micronutrient status is associated with a range of pregnancy pathologies involving placental dysfunction, including fetal growth restriction (FGR), small-for-gestational age (SGA), pre-eclampsia and preterm birth. However, clinical trials commonly fail to convincingly demonstrate beneficial effects of supplementation of individual micronutrients, attributed to heterogeneity and insufficient power, potential interactions and lack of mechanistic knowledge of effects on the placenta. We aimed to provide current evidence of relationships between selected micronutrients (vitamin D, vitamin A, iron, folate, vitamin B12) and adverse pregnancy outcomes, combined with understanding of actions on the placenta. Following a systematic literature search, we reviewed data from clinical, in vitro and in vivo studies of micronutrient deficiency and supplementation. Key findings are potential effects of micronutrient deficiencies on placental development and function, leading to impaired fetal growth. Studies in human trophoblast cells and rodent models provide insights into underpinning mechanisms. Interestingly, there is emerging evidence that deficiencies in all micronutrients examined induce a pro-inflammatory state in the placenta, drawing parallels with the inflammation detected in FGR, pre-eclampsia, stillbirth and preterm birth. Beneficial effects of supplementation are apparent in vitro and in animal models and for combined micronutrients in clinical studies. However, greater understanding of the roles of these micronutrients, and insight into their involvement in placental dysfunction, combined with more robust clinical studies, is needed to fully ascertain the potential benefits of supplementation in pregnancy.
Collapse
Affiliation(s)
- Bernadette C Baker
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Dexter Jl Hayes
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Rebecca L Jones
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
15
|
Tateya I, Tateya T, Surles RL, Tanumihardjo S, Bless DM. Prenatal Vitamin a Deficiency Causes Laryngeal Malformation in Rats. Ann Otol Rhinol Laryngol 2016; 116:785-92. [DOI: 10.1177/000348940711601011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objectives: Our previous research demonstrated that vitamin A might be related to vocal fold development. The purpose of this study was to determine whether vitamin A deficiency affects prenatal laryngeal development in rats. Methods: Two considerations were necessary in designing a study using a rat model: For embryonic survival, vitamin A is necessary through day 10 of gestation, and laryngeal formation occurs primarily after day 11. Thus, we created a rat model that developed vitamin A deficiency after embryonic day 11. Ten pregnant rats (5 vitamin A-deficient rats and 5 control rats) were studied. Embryos were collected at embryonic day 18.5 and analyzed histologically. Results: Eighteen percent of the vitamin A-deficient embryos were alive and demonstrated laryngotracheal cartilage malformation, incomplete separation of the glottis, and/or laryngoesophageal clefts. Conclusions: These results document the important role played by vitamin A in laryngeal development.
Collapse
|
16
|
|
17
|
Chen F, Jiang Z, Jiang S, Li L, Lin X, Gou Z, Fan Q. Dietary vitamin A supplementation improved reproductive performance by regulating ovarian expression of hormone receptors, caspase-3 and Fas in broiler breeders. Poult Sci 2016; 95:30-40. [DOI: 10.3382/ps/pev305] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2015] [Indexed: 12/20/2022] Open
|
18
|
LaMantia AS, Moody SA, Maynard TM, Karpinski BA, Zohn IE, Mendelowitz D, Lee NH, Popratiloff A. Hard to swallow: Developmental biological insights into pediatric dysphagia. Dev Biol 2015; 409:329-42. [PMID: 26554723 DOI: 10.1016/j.ydbio.2015.09.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/10/2015] [Accepted: 09/15/2015] [Indexed: 12/16/2022]
Abstract
Pediatric dysphagia-feeding and swallowing difficulties that begin at birth, last throughout childhood, and continue into maturity--is one of the most common, least understood complications in children with developmental disorders. We argue that a major cause of pediatric dysphagia is altered hindbrain patterning during pre-natal development. Such changes can compromise craniofacial structures including oropharyngeal muscles and skeletal elements as well as motor and sensory circuits necessary for normal feeding and swallowing. Animal models of developmental disorders that include pediatric dysphagia in their phenotypic spectrum can provide mechanistic insight into pathogenesis of feeding and swallowing difficulties. A fairly common human genetic developmental disorder, DiGeorge/22q11.2 Deletion Syndrome (22q11DS) includes a substantial incidence of pediatric dysphagia in its phenotypic spectrum. Infant mice carrying a parallel deletion to 22q11DS patients have feeding and swallowing difficulties that approximate those seen in pediatric dysphagia. Altered hindbrain patterning, craniofacial malformations, and changes in cranial nerve growth prefigure these difficulties. Thus, in addition to craniofacial and pharyngeal anomalies that arise independently of altered neural development, pediatric dysphagia may result from disrupted hindbrain patterning and its impact on peripheral and central neural circuit development critical for feeding and swallowing. The mechanisms that disrupt hindbrain patterning and circuitry may provide a foundation to develop novel therapeutic approaches for improved clinical management of pediatric dysphagia.
Collapse
Affiliation(s)
- Anthony-Samuel LaMantia
- Institute for Neuroscience, The George Washington University School of Medicine and Health Sciences, Washington D.C., USA; Department of Pharmacology and Physiology, George Washington University, School of Medicine and Health Sciences, Washington D.C., USA
| | - Sally A Moody
- Institute for Neuroscience, The George Washington University School of Medicine and Health Sciences, Washington D.C., USA; Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, Washington D.C., USA
| | - Thomas M Maynard
- Institute for Neuroscience, The George Washington University School of Medicine and Health Sciences, Washington D.C., USA; Department of Pharmacology and Physiology, George Washington University, School of Medicine and Health Sciences, Washington D.C., USA
| | - Beverly A Karpinski
- Institute for Neuroscience, The George Washington University School of Medicine and Health Sciences, Washington D.C., USA; Department of Pharmacology and Physiology, George Washington University, School of Medicine and Health Sciences, Washington D.C., USA
| | - Irene E Zohn
- Institute for Neuroscience, The George Washington University School of Medicine and Health Sciences, Washington D.C., USA; Center for Neuroscience Research, Children's National Health System, Washington D.C., USA
| | - David Mendelowitz
- Institute for Neuroscience, The George Washington University School of Medicine and Health Sciences, Washington D.C., USA; Department of Pharmacology and Physiology, George Washington University, School of Medicine and Health Sciences, Washington D.C., USA
| | - Norman H Lee
- Institute for Neuroscience, The George Washington University School of Medicine and Health Sciences, Washington D.C., USA; Department of Pharmacology and Physiology, George Washington University, School of Medicine and Health Sciences, Washington D.C., USA
| | - Anastas Popratiloff
- Institute for Neuroscience, The George Washington University School of Medicine and Health Sciences, Washington D.C., USA; Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, Washington D.C., USA
| |
Collapse
|
19
|
Li Z, Yu X, Shen J. Environmental aspects of congenital scoliosis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:5751-5755. [PMID: 25628116 DOI: 10.1007/s11356-015-4144-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
Growing evidence has proved that many aspects of our lifestyle and the environment contribute to the development of congenital disease. Congenital spinal deformities are due to anomalous development of the vertebrae including failure of formation and segmentation during embryogenesis. The causes of congenital scoliosis have not been fully identified. A variety of factors are implicated in the development of vertebral abnormalities. Previous studies have demonstrated that both genetics and environmental factors are implicated in the development of vertebral abnormalities. However, no specific cause for congenital scoliosis has been identified. In our review, we focus on the environmental factors for the development of congenital scoliosis. Various maternal exposures during pregnancy including hypoxia, alcohol use, vitamin deficiency, valproic acid, boric acid, and hyperthermia have been observed to be associated with the occurrence of congenital scoliosis. This review describes the major environmental contributors of congenital scoliosis with an emphasis on treatment aspects associated with environmental disposition in congenital scoliosis.
Collapse
Affiliation(s)
- Zheng Li
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, 100730, Beijing, China
| | | | | |
Collapse
|
20
|
Cunningham TJ, Duester G. Mechanisms of retinoic acid signalling and its roles in organ and limb development. Nat Rev Mol Cell Biol 2015; 16:110-23. [PMID: 25560970 PMCID: PMC4636111 DOI: 10.1038/nrm3932] [Citation(s) in RCA: 425] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Retinoic acid (RA) signalling has a central role during vertebrate development. RA synthesized in specific locations regulates transcription by interacting with nuclear RA receptors (RARs) bound to RA response elements (RAREs) near target genes. RA was first implicated in signalling on the basis of its teratogenic effects on limb development. Genetic studies later revealed that endogenous RA promotes forelimb initiation by repressing fibroblast growth factor 8 (Fgf8). Insights into RA function in the limb serve as a paradigm for understanding how RA regulates other developmental processes. In vivo studies have identified RAREs that control repression of Fgf8 during body axis extension or activation of homeobox (Hox) genes and other key regulators during neuronal differentiation and organogenesis.
Collapse
Affiliation(s)
- Thomas J Cunningham
- Development, Aging, and Regeneration Program, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Road, La Jolla, California 92037, USA
| | - Gregg Duester
- Development, Aging, and Regeneration Program, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
21
|
Álvarez R, Vaz B, Gronemeyer H, de Lera ÁR. Functions, therapeutic applications, and synthesis of retinoids and carotenoids. Chem Rev 2013; 114:1-125. [PMID: 24266866 DOI: 10.1021/cr400126u] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rosana Álvarez
- Departamento de Química Orgánica, Centro de Investigación Biomédica (CINBIO), and Instituto de Investigación Biomédica de Vigo (IBIV), Universidade de Vigo , 36310 Vigo, Spain
| | | | | | | |
Collapse
|
22
|
Marx J, Naudé H, Pretorius E. The Effects of Hypo- and Hypervitaminosis a and Its Involvement in Foetal Nervous System Development and Post-Natal Sensorimotor Functioning – A Review. ACTA ACUST UNITED AC 2013. [DOI: 10.1179/096979506799103677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
23
|
Li Z, Shen J, Wu WKK, Wang X, Liang J, Qiu G, Liu J. Vitamin A deficiency induces congenital spinal deformities in rats. PLoS One 2012; 7:e46565. [PMID: 23071590 PMCID: PMC3465343 DOI: 10.1371/journal.pone.0046565] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 08/31/2012] [Indexed: 11/17/2022] Open
Abstract
Most cases of congenital spinal deformities were sporadic and without strong evidence of heritability. The etiology of congenital spinal deformities is still elusive and assumed to be multi-factorial. The current study seeks to elucidate the effect of maternal vitamin A deficiency and the production of congenital spinal deformities in the offsping. Thirty two female rats were randomized into two groups: control group, which was fed a normal diet; vitamin A deficient group, which were given vitamin A-deficient diet from at least 2 weeks before mating till delivery. Three random neonatal rats from each group were killed the next day of parturition. Female rats were fed an AIN-93G diet sufficient in vitamin A to feed the rest of neonates for two weeks until euthanasia. Serum levels of vitamin A were assessed in the adult and filial rats. Anteroposterior (AP) spine radiographs were obtained at week 2 after delivery to evaluate the presence of the skeletal abnormalities especially of spinal deformities. Liver and vertebral body expression of retinaldehyde dehydrogenase (RALDHs) and RARs mRNA was assessed by reverse transcription-real time PCR. VAD neonates displayed many skeletal malformations in the cervical, thoracic, the pelvic and sacral and limbs regions. The incidence of congenital scoliosis was 13.79% (8/58) in the filial rats of vitamin A deficiency group and 0% in the control group. Furthermore, vitamin A deficiency negatively regulate the liver and verterbral body mRNA levels of RALDH1, RALDH2, RALDH3, RAR-α, RAR-β and RAR-γ. Vitamin A deficiency in pregnancy may induce congenital spinal deformities in the postnatal rats. The decreases of RALDHs and RARs mRNA expression induced by vitamin A deprivation suggest that vertebral birth defects may be caused by a defect in RA signaling pathway during somitogenesis.
Collapse
Affiliation(s)
- Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Shearer KD, Fragoso YD, Clagett-Dame M, McCaffery PJ. Astrocytes as a regulated source of retinoic acid for the brain. Glia 2012; 60:1964-76. [PMID: 22930583 DOI: 10.1002/glia.22412] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 08/02/2012] [Indexed: 11/09/2022]
Abstract
Retinaldehyde dehydrogenases (RALDH) catalyze the synthesis of the regulatory factor retinoic acid (RA). Cultured astrocytes express several of the RALDH enzyme family, and it has been assumed that this can be extrapolated to astrocytes in vivo. However, this study finds that few astrocytes in the rodent brain express detectable RALDH enzymes, and only when these cells are grown in culture are these enzymes upregulated. Factors controlling the expression of the RALDHs in cultured astrocytes were explored to determine possible reasons for differences between in vitro versus in vivo expression. Retinoids were found to feedback to suppress several of the RALDHs, and physiological levels of retinoids may be one route by which astrocytic RALDHs are maintained at low levels. In the case of RALDH2, in vivo reduction of vitamin A levels in rats resulted in an increase in astrocyte RALDH2 expression in the hippocampus. Other factors though are likely to control RALDH expression. A shift in astrocytic RALDH subcellular localization is a potential mechanism for regulating RA signaling. Under conditions of vitamin A deficiency, RALDH2 protein moved from the cytoplasm to the nucleus where it may synthesize RA at the site of the nuclear RA receptors. Similarly, in conditions of oxidative stress RALDH1 and RALDH2 moved from the cytoplasm to a predominantly nuclear position. Thus, the RALDHs have been revealed to be dynamic in their expression in astrocytes where they may maintain retinoid homeostasis in the brain.
Collapse
Affiliation(s)
- Kirsty D Shearer
- Translational Neuroscience, Institute of Medical Sciences, School of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | | | | | | |
Collapse
|
25
|
Bao Y, Ibram G, Blaner WS, Quesenberry CP, Shen L, McKeague IW, Schaefer CA, Susser ES, Brown AS. Low maternal retinol as a risk factor for schizophrenia in adult offspring. Schizophr Res 2012; 137:159-65. [PMID: 22381190 PMCID: PMC3520602 DOI: 10.1016/j.schres.2012.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 02/01/2012] [Accepted: 02/03/2012] [Indexed: 01/22/2023]
Abstract
BACKGROUND Prenatal micronutrient deficiency has been linked to later development of schizophrenia among offspring; however, no study has specifically investigated the association between vitamin A and this disorder. Vitamin A is an essential nutrient which is required by the early embryo and fetus for gene expression and regulation, cell differentiation, proliferation and migration. Previous work suggests that vitamin A deficiency in the second trimester may be particularly relevant to the etiopathogenesis of neurobehavioral phenotypes some of which are observed in schizophrenia. METHODS We examined whether low maternal vitamin A levels in the second trimester are associated with the risk of schizophrenia and other schizophrenia spectrum disorders (SSD) in the Prenatal Determinants of Schizophrenia study; third trimester vitamin A levels were also examined in relation to SSD. The cases were derived from a population-based birth cohort; all cohort members belonged to a prepaid health plan. Archived maternal serum samples were assayed for vitamin A in cases (N=55) and up to 2 controls per case (N=106) matched on length of membership in the health plan, date of birth (±28 days), sex, and gestational timing and availability of archived maternal sera. RESULTS For the second trimester, low maternal vitamin A, defined as values in the lowest tertile of the distribution among controls, was associated with a greater than threefold increased risk of SSD, adjusting for maternal education and age (OR=3.04, 95% CI=1.06, 8.79, p=.039). No association between third trimester maternal vitamin A and SSD was observed. CONCLUSIONS Although further investigations are warranted, this is the first birth cohort study to our knowledge to report an association between low maternal vitamin A levels and SSD among offspring.
Collapse
Affiliation(s)
- YuanYuan Bao
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, United States
| | - Ghionul Ibram
- Department of Epidemiology, Columbia University Mailman School of Public Health, 722 West 168th Street, New York, NY 10032, United States
| | - William S. Blaner
- Institute of Human Nutrition, College of Physicians and Surgeons of Columbia University, 630 West 168th Street, New York, NY 10032, United States
| | - Charles P. Quesenberry
- Division of Research, Kaiser Permanente, 3505 Broadway, Oakland, CA 94611, United States
| | - Ling Shen
- Division of Research, Kaiser Permanente, 3505 Broadway, Oakland, CA 94611, United States
| | - Ian W. McKeague
- Department of Biostatistics, Columbia University Mailman School of Public Health, 722 West 168th Street, New York, NY 10032, United States
| | - Catherine A. Schaefer
- Division of Research, Kaiser Permanente, 3505 Broadway, Oakland, CA 94611, United States
| | - Ezra S. Susser
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, United States
- Department of Epidemiology, Columbia University Mailman School of Public Health, 722 West 168th Street, New York, NY 10032, United States
| | - Alan S. Brown
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, United States
- Department of Epidemiology, Columbia University Mailman School of Public Health, 722 West 168th Street, New York, NY 10032, United States
- Corresponding author at: New York State Psychiatric Institute, 1051 Riverside Drive, Unit 23, New York, NY 10032, United States. Tel.: +1 212 543 5629. (A.S. Brown)
| |
Collapse
|
26
|
Nayagam BA, Minter RL. A comparison of in vitro treatments for directing stem cells toward a sensory neural fate. Am J Otolaryngol 2012; 33:37-46. [PMID: 21439680 DOI: 10.1016/j.amjoto.2010.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 12/20/2010] [Indexed: 10/18/2022]
Abstract
PURPOSE Low numbers of primary auditory neurons (ANs) may compromise the clinical performance of a cochlear implant. The focus of this research is to determine whether stem cells can be used to replace the ANs lost following deafness. To successfully replace these neurons, stem cells must be capable of directed differentiation into a sensory neural lineage in vitro and, subsequently, of survival and integration into the deafened cochlea. MATERIALS AND METHODS In this study, we compared three in vitro treatments for directing the differentiation of mouse embryonic stem cells toward a sensory neural fate using neurotrophins, conditioned media from early post-natal cochlear epithelium, or media containing BMP4. RESULTS In all treatments, stem cells were first exposed to retinoic acid, which was sufficient to induce Brn3a-positive patterning in 8-day differentiated embryoid bodies. After a further 8 days of differentiation in adherent culture conditions, BMP4 media-treated cultures produced higher proportions of cells expressing sensory neural markers in comparison to both the conditioned media and neurotrophin treatments, including significantly greater numbers of cells expressing peripherin (P ≤ .001), tyrosine receptor kinase B (P ≤ .001), and β-III tubulin (P ≤ .001). CONCLUSIONS This study illustrated that combined treatment with retinoic acid and BMP4 was most effective at directing differentiation of mouse stem cells into sensory-like neurons in vitro. This finding further supports the role of bone morphogenetic proteins in the differentiation of sensory neurons from neural progenitors, and provides a basis for allotransplantation studies for auditory neuron replacement in the deaf mouse cochlea.
Collapse
|
27
|
Topletz AR, Thatcher JE, Zelter A, Lutz JD, Tay S, Nelson WL, Isoherranen N. Comparison of the function and expression of CYP26A1 and CYP26B1, the two retinoic acid hydroxylases. Biochem Pharmacol 2011; 83:149-63. [PMID: 22020119 DOI: 10.1016/j.bcp.2011.10.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 10/06/2011] [Accepted: 10/07/2011] [Indexed: 10/16/2022]
Abstract
All-trans-retinoic acid (atRA) is an important signaling molecule in all chordates. The cytochrome P450 enzymes CYP26 are believed to partially regulate cellular concentrations of atRA via oxidative metabolism and hence affect retinoid homeostasis and signaling. CYP26A1 and CYP26B1 are atRA hydroxylases that catalyze formation of similar metabolites in cell systems. However, they have only 40% sequence similarity suggesting differences between the two enzymes. The aim of this study was to determine whether CYP26A1 and CYP26B1 have similar catalytic activity, form different metabolites from atRA and are expressed in different tissues in adults. The mRNA expression of CYP26A1 and CYP26B1 correlated between human tissues except for human cerebellum in which CYP26B1 was the predominant CYP26 and liver in which CYP26A1 dominated. Quantification of CYP26A1 and CYP26B1 protein in human tissues was in agreement with the mRNA expression and showed correlation between the two isoforms. Qualitatively, recombinant CYP26A1 and CYP26B1 formed the same primary and sequential metabolites from atRA. Quantitatively, CYP26B1 had a lower K(m) (19nM) and V(max) (0.8 pmol/min/pmol) than CYP26A1 (K(m)=50 nM and V(max)=10 pmol/min/pmol) for formation of 4-OH-RA. The major atRA metabolites 4-OH-RA, 18-OH-RA and 4-oxo-RA were all substrates of CYP26A1 and CYP26B1, and CYP26A1 had a 2-10-fold higher catalytic activity towards all substrates tested. This study shows that CYP26A1 and CYP26B1 are qualitatively similar RA hydroxylases with overlapping expression profiles. CYP26A1 has higher catalytic activity than CYP26B1 and seems to be responsible for metabolism of atRA in tissues that function as a barrier for atRA exposure.
Collapse
Affiliation(s)
- Ariel R Topletz
- Department of Pharmaceutics, University of Washington, Seattle, United States
| | | | | | | | | | | | | |
Collapse
|
28
|
The effect of vitamin A deficiency during pregnancy on anorectal malformations. J Pediatr Surg 2011; 46:1400-5. [PMID: 21763842 DOI: 10.1016/j.jpedsurg.2011.02.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 01/10/2011] [Accepted: 02/02/2011] [Indexed: 11/23/2022]
Abstract
OBJECTIVE The aim of this study was to study the effect of vitamin A deficiency (VAD) on the embryological development of anorectal malformations (ARMs) and the enteric nervous system. MATERIALS AND METHODS Female Sprague-Dawley rats were divided into 3 groups: VAD group, normal group (negative control), and ethylene thiourea (ETU) group (positive control) with a normal diet. On day 20 of pregnancy, cesarean section was performed on all rats. The incidence of ARMs in the fetal rats and Protein gene product 9.5 (PGP9.5) and S-100 protein expression by immunohistochemistry were determined. RESULTS The incidence of ARMs in VAD and ETU groups was 64.8% (59/91) and 45.9% (61/133), respectively (P > .05). Anorectal malformations were not found in the normal group. Protein gene product 9.5 and S-100 protein expression in the non-ARM rectums of the VAD group was lower than the ETU (P = .0156 vs P = .0105) and normal groups (P = .0091 vs P = .0024). There was no significant difference in PGP9.5 and S-100 protein expression between ETU and normal groups. In the ARM rectums, PGP9.5 and S-100 protein expression in the VAD group was lower than the ETU group (P < .0001). Protein gene product 9.5 and S-100 protein expression was also lower in ARM than non-ARM rectums in the VAD and ETU groups (P < .0001, P = .0203, and P = .0122, respectively). CONCLUSION Vitamin A deficiency during pregnancy may result in the embryological development of ARMs. Enteric nervous system development may be related to ARMs.
Collapse
|
29
|
Clagett-Dame M, Knutson D. Vitamin A in reproduction and development. Nutrients 2011; 3:385-428. [PMID: 22254103 PMCID: PMC3257687 DOI: 10.3390/nu3040385] [Citation(s) in RCA: 278] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 02/28/2011] [Accepted: 03/22/2011] [Indexed: 12/12/2022] Open
Abstract
The requirement for vitamin A in reproduction was first recognized in the early 1900's, and its importance in the eyes of developing embryos was realized shortly after. A greater understanding of the large number of developmental processes that require vitamin A emerged first from nutritional deficiency studies in rat embryos, and later from genetic studies in mice. It is now generally believed that all-trans retinoic acid (RA) is the form of vitamin A that supports both male and female reproduction as well as embryonic development. This conclusion is based on the ability to reverse most reproductive and developmental blocks found in vitamin A deficiency induced either by nutritional or genetic means with RA, and the ability to recapitulate the majority of embryonic defects in retinoic acid receptor compound null mutants. The activity of the catabolic CYP26 enzymes in determining what tissues have access to RA has emerged as a key regulatory mechanism, and helps to explain why exogenous RA can rescue many vitamin A deficiency defects. In severely vitamin A-deficient (VAD) female rats, reproduction fails prior to implantation, whereas in VAD pregnant rats given small amounts of carotene or supported on limiting quantities of RA early in organogenesis, embryos form but show a collection of defects called the vitamin A deficiency syndrome or late vitamin A deficiency. Vitamin A is also essential for the maintenance of the male genital tract and spermatogenesis. Recent studies show that vitamin A participates in a signaling mechanism to initiate meiosis in the female gonad during embryogenesis, and in the male gonad postnatally. Both nutritional and genetic approaches are being used to elucidate the vitamin A-dependent pathways upon which these processes depend.
Collapse
Affiliation(s)
- Margaret Clagett-Dame
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA;
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Ave., Madison, WI 53705, USA
| | - Danielle Knutson
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA;
| |
Collapse
|
30
|
Radosevic M, Robert-Moreno À, Coolen M, Bally-Cuif L, Alsina B. Her9 represses neurogenic fate downstream of Tbx1 and retinoic acid signaling in the inner ear. Development 2011; 138:397-408. [DOI: 10.1242/dev.056093] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Proper spatial control of neurogenesis in the inner ear ensures the precise innervation of mechanotransducing cells and the propagation of auditory and equilibrium stimuli to the brain. Members of the Hairy and enhancer of split (Hes) gene family regulate neurogenesis by inhibiting neuronal differentiation and maintaining neural stem cell pools in non-neurogenic zones. Remarkably, their role in the spatial control of neurogenesis in the ear is unknown. In this study, we identify her9, a zebrafish ortholog of Hes1, as a key gene in regulating otic neurogenesis through the definition of the posterolateral non-neurogenic field. First, her9 emerges as a novel otic patterning gene that represses proneural function and regulates the extent of the neurogenic domain. Second, we place Her9 downstream of Tbx1, linking these two families of transcription factors for the first time in the inner ear and suggesting that the reported role of Tbx1 in repressing neurogenesis is in part mediated by the bHLH transcriptional repressor Her9. Third, we have identified retinoic acid (RA) signaling as the upstream patterning signal of otic posterolateral genes such as tbx1 and her9. Finally, we show that at the level of the cranial otic field, opposing RA and Hedgehog signaling position the boundary between the neurogenic and non-neurogenic compartments. These findings permit modeling of the complex genetic cascade that underlies neural patterning of the otic vesicle.
Collapse
Affiliation(s)
- Marija Radosevic
- Developmental Biology Laboratory, Dept. Ciències Experimentals i de la Salut, Universitat Pompeu Fabra-Parc de Recerca Biomèdica de Barcelona, Dr Aiguader 88, 08003 Barcelona, Spain
| | - Àlex Robert-Moreno
- Developmental Biology Laboratory, Dept. Ciències Experimentals i de la Salut, Universitat Pompeu Fabra-Parc de Recerca Biomèdica de Barcelona, Dr Aiguader 88, 08003 Barcelona, Spain
| | - Marion Coolen
- Laboratory of Neurobiology and Development, Institute of Neurobiology Alfred Fessard, CNRS, Avenue de Terrasse, 91198 cedex, Gif-sur-Yvette, France
| | - Laure Bally-Cuif
- Laboratory of Neurobiology and Development, Institute of Neurobiology Alfred Fessard, CNRS, Avenue de Terrasse, 91198 cedex, Gif-sur-Yvette, France
| | - Berta Alsina
- Developmental Biology Laboratory, Dept. Ciències Experimentals i de la Salut, Universitat Pompeu Fabra-Parc de Recerca Biomèdica de Barcelona, Dr Aiguader 88, 08003 Barcelona, Spain
| |
Collapse
|
31
|
Kappen C, Kruger C, MacGowan J, Salbaum JM. Maternal diet modulates the risk for neural tube defects in a mouse model of diabetic pregnancy. Reprod Toxicol 2011; 31:41-9. [PMID: 20868740 PMCID: PMC3035722 DOI: 10.1016/j.reprotox.2010.09.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 08/17/2010] [Accepted: 09/04/2010] [Indexed: 02/03/2023]
Abstract
Pregnancies complicated by maternal diabetes have long been known to carry a higher risk for congenital malformations, such as neural tube defects. Using the FVB inbred mouse strain and the Streptozotocin-induced diabetes model, we tested whether the incidence of neural tube defects in diabetic pregnancies can be modulated by maternal diet. In a comparison of two commercial mouse diets, which are considered nutritionally replete, we found that maternal consumption of the unfavorable diet was associated with a more than 3-fold higher rate of neural tube defects. Our results demonstrate that maternal diet can act as a modifier of the risk for abnormal development in high-risk pregnancies, and provide support for the possibility that neural tube defects in human diabetic pregnancies might be preventable by optimized maternal nutrition.
Collapse
Affiliation(s)
- Claudia Kappen
- Department of Developmental Biology, Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808, USA.
| | | | | | | |
Collapse
|
32
|
Marino D, Dabouras V, Brändli AW, Detmar M. A role for all-trans-retinoic acid in the early steps of lymphatic vasculature development. J Vasc Res 2010; 48:236-51. [PMID: 21099229 PMCID: PMC2997449 DOI: 10.1159/000320620] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 08/13/2010] [Indexed: 12/11/2022] Open
Abstract
The molecular mechanisms that regulate the earliest steps of lymphatic vascular system development are unknown. To identify regulators of lymphatic competence and commitment, we used an in vitro vascular assay with mouse embryonic stem cell-derived embryoid bodies (EBs). We found that incubation with retinoic acid (RA) and, more potently, with RA in combination with cAMP, induced the expression of the lymphatic competence marker LYVE-1 in the vascular structures of the EBs. This effect was dependent on RA receptor (RAR)-α and protein kinase A signaling. RA-cAMP incubation also promoted the development of CD31+/LYVE-1+/Prox1+ cell clusters. In situ studies revealed that RAR-α is expressed by endothelial cells of the cardinal vein in ED 9.5-11.5 mouse embryos. Timed exposure of mouse and Xenopus embryos to excess of RA upregulated LYVE-1 and VEGFR-3 on embryonic veins and increased formation of Prox1-positive lymphatic progenitors. These findings indicate that RA signaling mediates the earliest steps of lymphatic vasculature development.
Collapse
Affiliation(s)
- Daniela Marino
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Vasilios Dabouras
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - André W. Brändli
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
- Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| |
Collapse
|
33
|
McNeill EM, Roos KP, Moechars D, Clagett-Dame M. Nav2 is necessary for cranial nerve development and blood pressure regulation. Neural Dev 2010; 5:6. [PMID: 20184720 PMCID: PMC2843687 DOI: 10.1186/1749-8104-5-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 02/25/2010] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND All-trans retinoic acid (atRA) is required for nervous system development, including the developing hindbrain region. Neuron navigator 2 (Nav2) was first identified as an atRA-responsive gene in human neuroblastoma cells (retinoic acid-induced in neuroblastoma 1, Rainb1), and is required for atRA-mediated neurite outgrowth. In this paper, we explore the importance of Nav2 in nervous system development and function in vivo. RESULTS Nav2 hypomorphic homozygous mutants show decreased survival starting at birth. Nav2 mutant embryos show an overall reduction in nerve fiber density, as well as specific defects in cranial nerves IX (glossopharyngeal) and X (vagus). Nav2 hypomorphic mutant adult mice also display a blunted baroreceptor response compared to wild-type controls. CONCLUSIONS Nav2 functions in mammalian nervous system development, and is required for normal cranial nerve development and blood pressure regulation in the adult.
Collapse
Affiliation(s)
- Elizabeth M McNeill
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin, Madison, WI, USA
| | | | | | | |
Collapse
|
34
|
Marzinke MA, Henderson EM, Yang KS, See AWM, Knutson DC, Clagett-Dame M. Calmin expression in embryos and the adult brain, and its regulation by all-trans retinoic acid. Dev Dyn 2009; 239:610-9. [DOI: 10.1002/dvdy.22171] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
35
|
Alexa K, Choe SK, Hirsch N, Etheridge L, Laver E, Sagerström CG. Maternal and zygotic aldh1a2 activity is required for pancreas development in zebrafish. PLoS One 2009; 4:e8261. [PMID: 20011517 PMCID: PMC2788244 DOI: 10.1371/journal.pone.0008261] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 11/17/2009] [Indexed: 11/18/2022] Open
Abstract
We have isolated and characterized a novel zebrafish pancreas mutant. Mutant embryos lack expression of isl1 and sst in the endocrine pancreas, but retain isl1 expression in the CNS. Non-endocrine endodermal gene expression is less affected in the mutant, with varying degrees of residual expression observed for pdx1, carbA, hhex, prox1, sid4, transferrin and ifabp. In addition, mutant embryos display a swollen pericardium and lack fin buds. Genetic mapping revealed a mutation resulting in a glycine to arginine change in the catalytic domain of the aldh1a2 gene, which is required for the production of retinoic acid from vitamin A. Comparison of our mutant (aldh1a2um22) to neckless (aldh1a2i26), a previously identified aldh1a2 mutant, revealed similarities in residual endodermal gene expression. In contrast, treatment with DEAB (diethylaminobenzaldehyde), a competitive reversible inhibitor of Aldh enzymes, produces a more severe phenotype with complete loss of endodermal gene expression, indicating that a source of Aldh activity persists in both mutants. We find that mRNA from the aldh1a2um22 mutant allele is inactive, indicating that it represents a null allele. Instead, the residual Aldh activity is likely due to maternal aldh1a2, since we find that translation-blocking, but not splice-blocking, aldh1a2 morpholinos produce a phenotype similar to DEAB treatment. We conclude that Aldh1a2 is the primary Aldh acting during pancreas development and that maternal Aldh1a2 activity persists in aldh1a2um22 and aldh1a2i26 mutant embryos.
Collapse
Affiliation(s)
- Kristen Alexa
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Seong-Kyu Choe
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Nicolas Hirsch
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Letitiah Etheridge
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Elizabeth Laver
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Charles G. Sagerström
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
36
|
Murakami M, Ito H, Hagiwara K, Yoshida K, Sobue S, Ichihara M, Takagi A, Kojima T, Tanaka K, Tamiya-Koizumi K, Kyogashima M, Suzuki M, Banno Y, Nozawa Y, Murate T. ATRA inhibits ceramide kinase transcription in a human neuroblastoma cell line, SH-SY5Y cells: the role of COUP-TFI. J Neurochem 2009; 112:511-20. [PMID: 19903244 DOI: 10.1111/j.1471-4159.2009.06486.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Ceramide is the central lipid in the sphingolipid metabolism. Ceramide kinase (CERK) and its product, ceramide 1-phosphate, have been implicated in various cellular functions. However, the regulatory mechanism of CERK gene expression remains to be determined. Here, we examined CERK mRNA level during all-trans retinoic acid (ATRA)-induced differentiation of a human neuroblastoma cell line, SH-SY5Y. ATRA reduced CERK mRNA and protein levels. Over-expression and small interfering RNA (siRNA) of CERK revealed that CERK is inhibitory against ATRA-induced neuronal differentiation and cell growth arrest. ATRA inhibited the transcriptional activity of 5'-promoter of CERK. Truncation and mutation study suggests that ATRA-responsible region was mainly located in the tandem retinoic acid responsive elements (RARE) between -40 bp and the first exon. The electrophoresis mobility shift assay revealed that ATRA produced two retarded bands, which were erased by antibody against chicken ovalbumin upstream promoter transcription factor I (COUP-TFI), RARalpha, and RXRalpha, respectively. DNA pull-down assay confirmed increased binding of these transcription factors to RARE. Transient expression of RAR, RXR, and COUP-TFI and siRNA transfection of these genes revealed that COUP-TFI inhibited CERK mRNA. Furthermore, chromatin immunoprecipitation assay showed the recruitment of co-repressors as well as three transcription factors. These results suggest that COUP-TFI was the ATRA-responsive suppressive transcription factor of CERK gene transcription.
Collapse
Affiliation(s)
- Masashi Murakami
- Research Fellow of the Japanese Society for the Promotion of Sciences, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Li H, Clagett-Dame M. Vitamin A Deficiency Blocks the Initiation of Meiosis of Germ Cells in the Developing Rat Ovary In Vivo1. Biol Reprod 2009; 81:996-1001. [DOI: 10.1095/biolreprod.109.078808] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
38
|
Asano H, Aonuma M, Sanosaka T, Kohyama J, Namihira M, Nakashima K. Astrocyte Differentiation of Neural Precursor Cells is Enhanced by Retinoic Acid Through a Change in Epigenetic Modification. Stem Cells 2009; 27:2744-52. [DOI: 10.1002/stem.176] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Asson-Batres MA, Smith WB, Clark G. Retinoic acid is present in the postnatal rat olfactory organ and persists in vitamin A--depleted neural tissue. J Nutr 2009; 139:1067-72. [PMID: 19403718 PMCID: PMC2682984 DOI: 10.3945/jn.108.096040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Vitamin A (VA), all-trans-retinol (at-ROL), and its derivative, all-trans-retinoic acid (at-RA), are required for neuron development. The effects of these retinoids are dependent upon the nutritional status of the rat and tissue-specific dynamics of retinoid access and utilization. The purpose of this study was to determine the status of at-ROL and at-RA in the peripheral olfactory organ of postnatal rats fed a normal diet and rats fed a VA-deficient (VAD) diet. Extracted retinoids were analyzed by HPLC. Resolved sample peaks were identified by comparing their elution times and spectra with those of authentic standards. Mean at-RA and at-ROL concentrations of 23 pmol/g olfactory tissue and 0.13 nmol/g, respectively, were recovered from olfactory tissue. The ratio of at-RA:at-ROL in olfactory was approximately 2 times that in testis and 200 times that in liver. at-ROL was depleted from the liver and olfactory organ of rats fed a VAD diet from birth to 70 d of age. Surprisingly, at-RA was still present in olfactory tissue from these rats. At 90 d of age, the VAD rats were frankly deficient and at-RA was no longer detectable in olfactory tissue. The comparatively high ratio of at-RA:at-ROL in the peripheral olfactory organ and the persistence of at-RA in at-ROL-depleted tissues strongly suggests that maintenance of local stores of at-RA is functionally relevant in this tissue.
Collapse
Affiliation(s)
- Mary Ann Asson-Batres
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA.
| | - W. Bradford Smith
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209 and Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN 37132
| | - Gale Clark
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209 and Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN 37132
| |
Collapse
|
40
|
Mark M, Ghyselinck NB, Chambon P. Function of retinoic acid receptors during embryonic development. NUCLEAR RECEPTOR SIGNALING 2009; 7:e002. [PMID: 19381305 PMCID: PMC2670431 DOI: 10.1621/nrs.07002] [Citation(s) in RCA: 264] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 03/13/2009] [Indexed: 12/31/2022]
Abstract
Retinoids, the active metabolites of vitamin A, regulate complex gene networks involved in vertebrate morphogenesis, growth, cellular differentiation and homeostasis. Studies performed in vitro, using either acellular systems or transfected cells, have shown that retinoid actions are mediated through heterodimers between the RAR and RXR nuclear receptors. However, in vitro studies indicate what is possible, but not necessarily what is actually occurring in vivo, because they are performed under non-physiological conditions. Therefore, genetic approaches in the animal have been be used to determine the physiological functions of retinoid receptors. Homologous recombination in embryonic stem cells has been used to generate germline null mutations of the RAR- and RXR-coding genes in the mouse. As reviewed here, the generation of such germline mutations, combined with pharmacological approaches to block the RA signalling pathway, has provided genetic evidence that RAR/RXR heterodimers are indeed the functional units transducing the RA signal during prenatal development. However, due to (i) the complexity in “hormonal” signalling through transduction by the multiple RARs and RXRs, (ii) the functional redundancies (possibly artefactually generated by the mutations) within receptor isotypes belonging to a given family, and (iii) in utero or early postnatal lethality of certain germline null mutations, these genetic studies have failed to reveal all the physiological functions of RARs and RXRs, notably in adults. Spatio-temporally-controlled somatic mutations generated in given cell types/tissues and at chosen times during postnatal life, will be required to reveal all the functions of RAR and RXR throughout the lifetime of the mouse.
Collapse
Affiliation(s)
- Manuel Mark
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Biologie Cellulaire and Développement, Strasbourg, France
| | | | | |
Collapse
|
41
|
See AWM, Clagett-Dame M. The temporal requirement for vitamin A in the developing eye: mechanism of action in optic fissure closure and new roles for the vitamin in regulating cell proliferation and adhesion in the embryonic retina. Dev Biol 2009; 325:94-105. [PMID: 18955041 DOI: 10.1016/j.ydbio.2008.09.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 09/24/2008] [Accepted: 09/25/2008] [Indexed: 12/20/2022]
Abstract
Mammalian eye development requires vitamin A (retinol, ROL). The role of vitamin A at specific times during eye development was studied in rat fetuses made vitamin A deficient (VAD) after embryonic day (E) 10.5 (late VAD). The optic fissure does not close in late VAD embryos, and severe folding and collapse of the retina is observed at E18.5. Pitx2, a gene required for normal optic fissure closure, is dramatically downregulated in the periocular mesenchyme in late VAD embryos, and dissolution of the basal lamina does not occur at the optic fissure margin. The addition of ROL to late VAD embryos by E12.5 restores Pitx2 expression, supports dissolution of the basal lamina, and prevents coloboma, whereas supplementation at E13.5 does not. Surprisingly, ROL given as late as E13.5 completely prevents folding of the retina despite the presence of an open fetal fissure, showing that coloboma and retinal folding represent distinct VAD-dependent defects. Retinal folding due to VAD is preceded by an overall reduction in the percentage of cyclin D1 positive cells in the developing retina, (initially resulting in retinal thinning), as well as a dramatic reduction in the cell adhesion-related molecules, N-cadherin and beta-catenin. Reduction of retinal cell number combined with a loss of the normal cell-cell adhesion proteins may contribute to the collapse and folding of the retina that occurs in late VAD fetuses.
Collapse
Affiliation(s)
- Angela Wai-Man See
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706-1544, USA
| | | |
Collapse
|
42
|
Choudhary D, Jansson I, Sarfarazi M, Schenkman JB. Physiological Significance and Expression of P450s in the Developing Eye. Drug Metab Rev 2008; 38:337-52. [PMID: 16684663 DOI: 10.1080/03602530600570149] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Expression of 10 CYP orthologs (Families 1-3) in developing mouse conceptus is constitutive. These forms have specific temporal and spatial expression. Studies on CYP1B1 indicate its requirement for normal eye development, both in human and mouse. The distribution of the enzyme in the mouse eye is in three regions, which may reflect three different, perhaps equally important, functions in this organ. Its presence in the inner ciliary and lens epithelia appears to be necessary for normal development of the trabecular meshwork and its function in regulating intraocular pressure. Its expression in the retinal ganglion and inner nuclear layers may reflect a role in maintenance of the visual cycle. Its expression in the corneal epithelium may indicate a function in metabolism of environmental xenobiotics.
Collapse
Affiliation(s)
- D Choudhary
- Department of Pharmacology and Molecular Ophthalmic Genetics Laboratory, University of Connecticut Health Center, Farmington, 06030, USA
| | | | | | | |
Collapse
|
43
|
Zhuang Y, Gudas LJ. Overexpression of COUP-TF1 in murine embryonic stem cells reduces retinoic acid-associated growth arrest and increases extraembryonic endoderm gene expression. Differentiation 2008; 76:760-71. [DOI: 10.1111/j.1432-0436.2007.00258.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Faigle R, Liu L, Cundiff P, Funa K, Xia Z. Opposing effects of retinoid signaling on astrogliogenesis in embryonic day 13 and 17 cortical progenitor cells. J Neurochem 2008; 106:1681-98. [PMID: 18564368 PMCID: PMC2581522 DOI: 10.1111/j.1471-4159.2008.05525.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
All-trans retinoic acid (RA) is a differentiation factor in many tissues. However, its role in astrogliogenesis has not been extensively studied. Here, we investigated the effect of RA on the regulation of astrogliogenesis at different cortical developmental stages. We prepared rat cortical progenitor cells from embryonic day (E) 13 and E17, which correspond to the beginning of neurogenic and astrogliogenic periods, respectively. Surprisingly, RA promoted astrogliogenesis at E17 but inhibited astrogliogenesis induced by ciliary neurotrophic factor (CNTF) at E13. The inhibitory effect of RA on astrogliogenesis at E13 was not due to premature commitment of progenitors to a neuronal or oligodendroglial lineage. Rather, RA retained more progenitors in a proliferative state. Furthermore, RA inhibition of astrogliogenesis at E13 was independent of STAT3 signaling and required the function of the alpha and beta isoforms of the RA receptors (RAR). Moreover, the differential response of E13 and E17 progenitors to RA was due to differences in the intrinsic properties of these cells that are preserved in vitro. The inhibitory effect of RA on cytokine-induced astrogliogenesis at E13 may contribute to silencing of any potential precocious astrogliogenesis during the neurogenic period.
Collapse
Affiliation(s)
- Roland Faigle
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195-7234, USA
- Department of Pharmacology, University of Washington, Seattle, WA 98195-7234, USA
- Institute of Biomedicine, Department of Medical Chemistry and Cell Biology, Göteborg University, Box 420, SE-405 30 Gothenburg, Sweden
| | - Lidong Liu
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195-7234, USA
- Department of Pharmacology, University of Washington, Seattle, WA 98195-7234, USA
| | - Paige Cundiff
- Department of Pharmacology, University of Washington, Seattle, WA 98195-7234, USA
| | - Keiko Funa
- Institute of Biomedicine, Department of Medical Chemistry and Cell Biology, Göteborg University, Box 420, SE-405 30 Gothenburg, Sweden
| | - Zhengui Xia
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195-7234, USA
- Department of Pharmacology, University of Washington, Seattle, WA 98195-7234, USA
| |
Collapse
|
45
|
See AWM, Kaiser ME, White JC, Clagett-Dame M. A nutritional model of late embryonic vitamin A deficiency produces defects in organogenesis at a high penetrance and reveals new roles for the vitamin in skeletal development. Dev Biol 2008; 316:171-90. [DOI: 10.1016/j.ydbio.2007.10.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 09/18/2007] [Accepted: 10/16/2007] [Indexed: 10/22/2022]
|
46
|
Kling DE, Schnitzer JJ. Vitamin A deficiency (VAD), teratogenic, and surgical models of congenital diaphragmatic hernia (CDH). AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2007; 145C:139-57. [PMID: 17436305 DOI: 10.1002/ajmg.c.30129] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Congenital diaphragmatic hernia (CDH) is a congenital malformation that occurs with a frequency of 0.08 to 0.45 per 1,000 births. Children with CDH are born with the abdominal contents herniated through the diaphragm and exhibit an associated pulmonary hypoplasia which is frequently accompanied by severe morbidity and mortality. Although the etiology of CDH is largely unknown, considerable progress has been made in understanding its molecular mechanisms through the usage of genetic, teratogenic, and surgical models. The following review focuses on the teratogenic and surgical models of CDH and the possible molecular mechanisms of nitrofen (a diphenyl ether, formerly used as an herbicide) in both induction of CDH and pulmonary hypoplasia. In addition, the mechanisms of other compounds including several anti-inflammatory agents that have been linked to CDH will be discussed. Furthermore, this review will also explore the importance of vitamin A in lung and diaphragm development and the possible mechanisms of teratogen interference in vitamin A homeostasis. Continued exploration of these models will bring forth a clearer understanding of CDH and its molecular underpinnings, which will ultimately facilitate development of therapeutic strategies.
Collapse
Affiliation(s)
- David E Kling
- Massachusetts General Hospital, Department of Pediatric Surgery, Boston, MA 02114, USA.
| | | |
Collapse
|
47
|
Duester G. Retinoic acid regulation of the somitogenesis clock. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2007; 81:84-92. [PMID: 17600781 PMCID: PMC2235195 DOI: 10.1002/bdrc.20092] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Retinoic acid (RA) is a signaling molecule synthesized from vitamin A that controls gene expression at the transcriptional level by functioning as a ligand for nuclear RA receptors. RA plays an essential role during embryonic development in higher animals by regulating key genes involved in pattern formation. RA is required for induction of several Hox genes involved in patterning of the hindbrain and spinal cord as neuroectoderm emerges from the primitive streak. Recent findings indicate that RA is also required to ensure bilaterally symmetrical generation of left and right somites as presomitic mesoderm emerges from the primitive streak. RA may control somitogenesis through its ability to repress posterior ectodermal expression of fibroblast growth factor-8 (Fgf8) for a short period of time during the late primitive streak stage when the somitogenesis clock initiates. During this tight temporal window, RA is required to limit Fgf8 expression to the most posterior ectoderm (epiblast), thus preventing ectopic Fgf8 expression in more anterior ectoderm including the node ectoderm and neuroectoderm. Although Fgf8 is required for the node to impart left-right asymmetry on specific tissues (heart, visceral organs, etc.), excess Fgf8 signaling following a loss of RA may stimulate the node to generate asymmetry also in presomitic mesoderm, leading to left-right asymmetry in the somitogenesis clock. These findings suggest that human vertebral birth defects such as scoliosis, an abnormal left-right bending of the vertebral column, may be caused by a defect in RA signaling during somitogenesis.
Collapse
Affiliation(s)
- Gregg Duester
- Developmental Biology Program, Burnham Institute for Medical Research, La Jolla, California 92037, USA.
| |
Collapse
|
48
|
Chambers D, Wilson L, Maden M, Lumsden A. RALDH-independent generation of retinoic acid during vertebrate embryogenesis by CYP1B1. Development 2007; 134:1369-83. [PMID: 17329364 DOI: 10.1242/dev.02815] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Several independent lines of evidence have revealed an instructive role for retinoic acid (RA) signalling in the establishment of normal pattern and cellular specification of the vertebrate embryo. Molecular analyses have previously identified the major RA-synthesising (RALDH1-3) and RA-degrading (CYP26A-C1) enzymes as well as other components involved in RA processing (e.g. CRABP). Although the majority of the early effects of RA can be attributed to the activity of RALDH2, many other effects are suggestive of the presence of an as yet unidentified RA source. Here we describe the identification, expression, biochemistry and functional analysis of CYP1B1, a member of the cytochrome p450 family of mono-oxygenases, and provide evidence that it contributes to RA synthesis during embryonic patterning. We present in vitro biochemical data demonstrating that this enzyme can generate both all-trans-retinal (t-RAL) and all-trans-retinoic acid (t-RA) from the precursor all-trans-retinol (t-ROH), but unlike the CYP26s, CYP1B1 cannot degrade t-RA. In particular, we focussed on the capacity of CYP1B1 to regulate the molecular mechanisms associated with dorsoventral patterning of the neural tube and acquisition of motor neuron progenitor domain identity. Concordant with its sites of expression and biochemistry, data are presented demonstrating that CYP1B1 is capable of eliciting responses that are consistent with the production of RA. Taken together, we propose that these data provide strong support for CYP1B1 being one of the RALDH-independent components by which embryos direct RA-mediated patterning.
Collapse
Affiliation(s)
- David Chambers
- Wellcome Trust Functional Genomics Development Initiative, MRC Centre for Developmental Neurobiology, 4th Floor New Hunt's House, King's College London, Guy's Campus, London SE1 1UL, UK
| | | | | | | |
Collapse
|
49
|
Clugston RD, Klattig J, Englert C, Clagett-Dame M, Martinovic J, Benachi A, Greer JJ. Teratogen-induced, dietary and genetic models of congenital diaphragmatic hernia share a common mechanism of pathogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:1541-9. [PMID: 17071579 PMCID: PMC1780206 DOI: 10.2353/ajpath.2006.060445] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/20/2006] [Indexed: 11/20/2022]
Abstract
Congenital diaphragmatic hernia (CDH) is a frequently occurring, major congenital abnormality that has high mortality and significant morbidity in survivors. Currently, the pathogenesis of CDH is poorly understood. In this study, we have compared the anatomical characteristics of diaphragm defects in the well-described nitrofen model with the pathogenesis of CDH in vitamin A-deficient rats and wt1 null-mutant mice, representing teratogen-induced, dietary and genetic models of CDH, respectively. Our histological investigations, aided by three-dimensional reconstruction of the developing diaphragm, revealed a common pathogenic mechanism with regards to the location of the diaphragm defect in the foramen of Bochdalek (posterolateral diaphragm) and specific abnormalities within the primordial diaphragm. Furthermore, our analysis of postmortem specimens highlighted similarities in human cases of CDH and these animal models, supporting our hypothesis that CDH in humans arises from a defect in the primordial diaphragm. Immunohistochemical data were consistent with the defect in the primordial diaphragm being in the nonmuscular component. Importantly, these data show that very distinct models of CDH all share a common pathogenic mechanism and, together with supporting evidence from pathological specimens, highlight our proposed pathogenic model for CDH.
Collapse
Affiliation(s)
- Robin D Clugston
- Department of Physiology, University of Alberta, 513 HMRC, Edmonton, AB, Canada, T6G 2S2
| | | | | | | | | | | | | |
Collapse
|
50
|
Clagett-Dame M, McNeill EM, Muley PD. Role of all-trans retinoic acid in neurite outgrowth and axonal elongation. ACTA ACUST UNITED AC 2006; 66:739-56. [PMID: 16688769 DOI: 10.1002/neu.20241] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The vitamin A metabolite, all-trans retinoic acid (atRA) plays essential roles in nervous system development, including neuronal patterning, survival, and neurite outgrowth. Our understanding of how the vitamin A acid functions in neurite outgrowth comes largely from cultured embryonic neurons and model neuronal cell systems including human neuroblastoma cells. Specifically, atRA has been shown to increase neurite outgrowth from embryonic DRG, sympathetic, spinal cord, and olfactory receptor neurons, as well as dissociated cerebra and retina explants. A role for atRA in axonal elongation is also supported by a limited number of studies in vivo, in which a deficiency in retinoid signaling produced either by dietary or genetic means has been shown to alter neurite outgrowth from the spinal cord and hindbrain regions. Human neuroblastoma cells also show enhanced numbers of neurites and longer processes in response to atRA. The mechanism whereby retinoids regulate neurite outgrowth includes, but is not limited to, the regulation of the transcription of neurotrophin receptors. More recent evidence supports a role for atRA in regulating components of other signaling pathways or candidate neurite-regulating factors. Some of these effects, such as that on neuron navigator 2 (NAV2), may be direct, whereas others may be secondary to other atRA-induced changes in the cell. This review focuses on what is currently known about neurite initiation and growth, with emphasis on the manner in which atRA may influence these events.
Collapse
Affiliation(s)
- Margaret Clagett-Dame
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin 53706, USA.
| | | | | |
Collapse
|