1
|
Medina-Suárez D, Han L, O’Reilly S, Liu J, Wei C, Brenière M, Goff N, Chen C, Modesti M, Meek K, Harrington B, Yu K. Lig3-dependent rescue of mouse viability and DNA double-strand break repair by catalytically inactive Lig4. Nucleic Acids Res 2025; 53:gkae1216. [PMID: 39673806 PMCID: PMC11754673 DOI: 10.1093/nar/gkae1216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 11/16/2024] [Accepted: 11/22/2024] [Indexed: 12/16/2024] Open
Abstract
Recent studies have revealed a structural role for DNA ligase 4 (Lig4) in the maintenance of a repair complex during non-homologous end joining (NHEJ) of DNA double-strand breaks. In cultured cell lines, catalytically inactive Lig4 can partially alleviate the severe DNA repair phenotypes observed in cells lacking Lig4. To study the structural role of Lig4 in vivo, a mouse strain harboring a point mutation to Lig4's catalytic site was generated. In contrast to the ablation of Lig4, catalytically inactive Lig4 mice are born alive. These mice display marked growth retardation and have clear deficits in lymphocyte development. We considered that the milder phenotype results from inactive Lig4 help to recruit another ligase to the repair complex. We next generated a mouse strain deficient for nuclear Lig3. Nuclear Lig3-deficient mice are moderately smaller and have elevated incidences of cerebral ventricle dilation but otherwise appear normal. Strikingly, in experiments crossing these two strains, mice lacking nuclear Lig3 and expressing inactive Lig4 were not obtained. Timed mating revealed that fetuses harboring both mutations underwent resorption, establishing an embryonic lethal genetic interaction. These data suggest that Lig3 is recruited to NHEJ complexes to facilitate end joining in the presence (but not activity) of Lig4.
Collapse
Affiliation(s)
- David Medina-Suárez
- Department of Microbiology, Genetics and Immunology, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA
| | - Li Han
- Department of Microbiology, Genetics and Immunology, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA
| | - Sandra O’Reilly
- Research Technology Support Facility, and Department of Physiology, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA
| | - Jiali Liu
- Department of Animal Science, Michigan State University, 3018 Interdisciplinary Science and Technology Building, 766 Service Rd, East Lansing, MI 48824, USA
| | - Chao Wei
- Department of Animal Science, Michigan State University, 3018 Interdisciplinary Science and Technology Building, 766 Service Rd, East Lansing, MI 48824, USA
| | - Manon Brenière
- Cancer Research Center of Marseille, Department of Genome Integrity, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix Marseille Univ, 27 Boulevard Leï Roure CS30059, 13273 Marseille Cedex 09, Marseille, France
| | - Noah J Goff
- Department of Microbiology, Genetics and Immunology, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA
| | - Chen Chen
- Department of Animal Science, Michigan State University, 3018 Interdisciplinary Science and Technology Building, 766 Service Rd, East Lansing, MI 48824, USA
| | - Mauro Modesti
- Cancer Research Center of Marseille, Department of Genome Integrity, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix Marseille Univ, 27 Boulevard Leï Roure CS30059, 13273 Marseille Cedex 09, Marseille, France
| | - Katheryn Meek
- Department of Microbiology, Genetics and Immunology, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA
| | - Bonnie Harrington
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA
| | - Kefei Yu
- Department of Microbiology, Genetics and Immunology, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA
| |
Collapse
|
2
|
Mladenov E, Mladenova V, Stuschke M, Iliakis G. New Facets of DNA Double Strand Break Repair: Radiation Dose as Key Determinant of HR versus c-NHEJ Engagement. Int J Mol Sci 2023; 24:14956. [PMID: 37834403 PMCID: PMC10573367 DOI: 10.3390/ijms241914956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Radiation therapy is an essential component of present-day cancer management, utilizing ionizing radiation (IR) of different modalities to mitigate cancer progression. IR functions by generating ionizations in cells that induce a plethora of DNA lesions. The most detrimental among them are the DNA double strand breaks (DSBs). In the course of evolution, cells of higher eukaryotes have evolved four major DSB repair pathways: classical non-homologous end joining (c-NHEJ), homologous recombination (HR), alternative end-joining (alt-EJ), and single strand annealing (SSA). These mechanistically distinct repair pathways have different cell cycle- and homology-dependencies but, surprisingly, they operate with widely different fidelity and kinetics and therefore contribute unequally to cell survival and genome maintenance. It is therefore reasonable to anticipate tight regulation and coordination in the engagement of these DSB repair pathway to achieve the maximum possible genomic stability. Here, we provide a state-of-the-art review of the accumulated knowledge on the molecular mechanisms underpinning these repair pathways, with emphasis on c-NHEJ and HR. We discuss factors and processes that have recently come to the fore. We outline mechanisms steering DSB repair pathway choice throughout the cell cycle, and highlight the critical role of DNA end resection in this process. Most importantly, however, we point out the strong preference for HR at low DSB loads, and thus low IR doses, for cells irradiated in the G2-phase of the cell cycle. We further explore the molecular underpinnings of transitions from high fidelity to low fidelity error-prone repair pathways and analyze the coordination and consequences of this transition on cell viability and genomic stability. Finally, we elaborate on how these advances may help in the development of improved cancer treatment protocols in radiation therapy.
Collapse
Affiliation(s)
- Emil Mladenov
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (V.M.); (M.S.)
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Veronika Mladenova
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (V.M.); (M.S.)
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Martin Stuschke
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (V.M.); (M.S.)
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - George Iliakis
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (V.M.); (M.S.)
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| |
Collapse
|
3
|
Malashetty V, Au A, Chavez J, Hanna M, Chu J, Penna J, Cortes P. The DNA binding domain and the C-terminal region of DNA Ligase IV specify its role in V(D)J recombination. PLoS One 2023; 18:e0282236. [PMID: 36827388 PMCID: PMC9956705 DOI: 10.1371/journal.pone.0282236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/09/2023] [Indexed: 02/26/2023] Open
Abstract
DNA Ligase IV is responsible for the repair of DNA double-strand breaks (DSB), including DSBs that are generated during V(D)J recombination. Like other DNA ligases, Ligase IV contains a catalytic core with three subdomains-the DNA binding (DBD), the nucleotidyltransferase (NTD), and the oligonucleotide/oligosaccharide-fold subdomain (OBD). Ligase IV also has a unique C-terminal region that includes two BRCT domains, a nuclear localization signal sequence and a stretch of amino acid that participate in its interaction with XRCC4. Out of the three mammalian ligases, Ligase IV is the only ligase that participates in and is required for V(D)J recombination. Identification of the minimal domains within DNA Ligase IV that contribute to V(D)J recombination has remained unresolved. The interaction of the Ligase IV DNA binding domain with Artemis, and the interaction of its C-terminal region with XRCC4, suggest that both of these regions that also interact with the Ku70/80 heterodimer are important and might be sufficient for mediating participation of DNA Ligase IV in V(D)J recombination. This hypothesis was investigated by generating chimeric ligase proteins by swapping domains, and testing their ability to rescue V(D)J recombination in Ligase IV-deficient cells. We demonstrate that a fusion protein containing Ligase I NTD and OBDs flanked by DNA Ligase IV DBD and C-terminal region is sufficient to support V(D)J recombination. This chimeric protein, which we named Ligase 37, complemented formation of coding and signal joints. Coding joints generated with Ligase 37 were shorter than those observed with wild type DNA Ligase IV. The shorter length was due to increased nucleotide deletions and decreased nucleotide insertions. Additionally, overexpression of Ligase 37 in a mouse pro-B cell line supported a shift towards shorter coding joints. Our findings demonstrate that the ability of DNA Ligase IV to participate in V(D)J recombination is in large part mediated by its DBD and C-terminal region.
Collapse
Affiliation(s)
- Vidyasagar Malashetty
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Audrey Au
- Department of Molecular, Cellular and Biomedical Sciences, City University of New York School of Medicine, City College of New York, New York, NY, United States of America
| | - Jose Chavez
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Mary Hanna
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Jennifer Chu
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Jesse Penna
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Patricia Cortes
- Department of Molecular, Cellular and Biomedical Sciences, City University of New York School of Medicine, City College of New York, New York, NY, United States of America
| |
Collapse
|
4
|
Matsumoto Y, Asa ADDC, Modak C, Shimada M. DNA-Dependent Protein Kinase Catalytic Subunit: The Sensor for DNA Double-Strand Breaks Structurally and Functionally Related to Ataxia Telangiectasia Mutated. Genes (Basel) 2021; 12:genes12081143. [PMID: 34440313 PMCID: PMC8394720 DOI: 10.3390/genes12081143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022] Open
Abstract
The DNA-dependent protein kinase (DNA-PK) is composed of a DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and Ku70/Ku80 heterodimer. DNA-PK is thought to act as the “sensor” for DNA double-stranded breaks (DSB), which are considered the most deleterious type of DNA damage. In particular, DNA-PKcs and Ku are shown to be essential for DSB repair through nonhomologous end joining (NHEJ). The phenotypes of animals and human individuals with defective DNA-PKcs or Ku functions indicate their essential roles in these developments, especially in neuronal and immune systems. DNA-PKcs are structurally related to Ataxia–telangiectasia mutated (ATM), which is also implicated in the cellular responses to DSBs. DNA-PKcs and ATM constitute the phosphatidylinositol 3-kinase-like kinases (PIKKs) family with several other molecules. Here, we review the accumulated knowledge on the functions of DNA-PKcs, mainly based on the phenotypes of DNA-PKcs-deficient cells in animals and human individuals, and also discuss its relationship with ATM in the maintenance of genomic stability.
Collapse
|
5
|
Forrer Charlier C, Martins RAP. Protective Mechanisms Against DNA Replication Stress in the Nervous System. Genes (Basel) 2020; 11:E730. [PMID: 32630049 PMCID: PMC7397197 DOI: 10.3390/genes11070730] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
The precise replication of DNA and the successful segregation of chromosomes are essential for the faithful transmission of genetic information during the cell cycle. Alterations in the dynamics of genome replication, also referred to as DNA replication stress, may lead to DNA damage and, consequently, mutations and chromosomal rearrangements. Extensive research has revealed that DNA replication stress drives genome instability during tumorigenesis. Over decades, genetic studies of inherited syndromes have established a connection between the mutations in genes required for proper DNA repair/DNA damage responses and neurological diseases. It is becoming clear that both the prevention and the responses to replication stress are particularly important for nervous system development and function. The accurate regulation of cell proliferation is key for the expansion of progenitor pools during central nervous system (CNS) development, adult neurogenesis, and regeneration. Moreover, DNA replication stress in glial cells regulates CNS tumorigenesis and plays a role in neurodegenerative diseases such as ataxia telangiectasia (A-T). Here, we review how replication stress generation and replication stress response (RSR) contribute to the CNS development, homeostasis, and disease. Both cell-autonomous mechanisms, as well as the evidence of RSR-mediated alterations of the cellular microenvironment in the nervous system, were discussed.
Collapse
Affiliation(s)
| | - Rodrigo A. P. Martins
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil;
| |
Collapse
|
6
|
Masumura K, Yatagai F, Ochiai M, Nakagama H, Nohmi T. Effects of the scid mutation on X-ray-induced deletions in the brain and spleen of gpt delta mice. Genes Environ 2020; 42:19. [PMID: 32489484 PMCID: PMC7247204 DOI: 10.1186/s41021-020-00158-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/16/2020] [Indexed: 11/24/2022] Open
Abstract
Background DNA-dependent protein kinase (DNA-PK), consisting of a Ku heterodimer (Ku70/80) and a large catalytic subunit (DNA-PKcs), plays an important role in the repair of DNA double-strand breaks via non-homologous end-joining (NHEJ) in mammalian cells. Severe combined immunodeficient (scid) mice carry a mutation in the gene encoding DNA-PKcs and are sensitive to ionizing radiation. To examine the roles of DNA-PKcs in the generation of deletion mutations in vivo, we crossed scid mice with gpt delta transgenic mice for detecting mutations. Results The scid and wild-type (WT) gpt delta transgenic mice were irradiated with a single X-ray dose of 10 Gy, and Spi− mutant frequencies (MFs) were determined in the brain and spleen 2 days after irradiation. Irradiation with X-rays significantly enhanced Spi− MF in both organs in the scid and WT mice. The MFs in the brain of irradiated scid mice were significantly lower than those in WT mice, i.e., 2.9 ± 1.0 × 10− 6 versus 5.0 ± 1.1 × 10− 6 (P < 0.001), respectively. In the spleen, however, both mouse strains exhibited similar MFs, i.e., 4.1 ± 1.8 × 10− 6 versus 4.8 ± 1.4 × 10− 6. Unirradiated scid and WT mice did not exhibit significant differences in MFs in either organ. Conclusions DNA-PKcs is unessential for the induction of deletion mutations in the spleen, while it plays a role in this in the brain. Therefore, the contribution of DNA-PKcs to NHEJ may be organ-specific.
Collapse
Affiliation(s)
- Kenichi Masumura
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501 Japan
| | - Fumio Yatagai
- Center for Sustainable Resource Science, The Institute of Physical and Chemical Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198 Japan
| | - Masako Ochiai
- Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan.,Present Address: Department of Animal Experimentation, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Hitoshi Nakagama
- Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan.,Present Address: National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Takehiko Nohmi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501 Japan
| |
Collapse
|
7
|
Neal JA, Meek K. Deciphering phenotypic variance in different models of DNA-PKcs deficiency. DNA Repair (Amst) 2018; 73:7-16. [PMID: 30409670 DOI: 10.1016/j.dnarep.2018.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/09/2018] [Accepted: 10/14/2018] [Indexed: 02/02/2023]
Abstract
DNA-PKcs deficiency has been studied in numerous animal models and cell culture systems. In previous studies of kinase inactivating mutations in cell culture systems, ablation of DNA-PK's catalytic activity results in a cell phenotype that is virtually indistinguishable from that ascribed to complete loss of the enzyme. However, a recent compelling study demonstrates a remarkably more severe phenotype in mice harboring a targeted disruption of DNA-PK's ATP binding site as compared to DNA-PKcs deficient mice. Here we investigate the mechanism for these divergent results. We find that kinase inactivating DNA-PKcs mutants markedly radiosensitize immortalized DNA-PKcs deficient cells, but have no substantial effects on transformed DNA-PKcs deficient cells. Since the non-homologous end joining mechanism likely functions similarly in all of these cell strains, it seems unlikely that kinase inactive DNA-PK could impair the end joining mechanism in some cell types, but not in others. In fact, we observed no significant differences in either episomal or chromosomal end joining assays in cells expressing kinase inactivated DNA-PKcs versus no DNA-PKcs. Several potential explanations could explain these data including a non-catalytic role for DNA-PKcs in promoting cell death, or alteration of gene expression by loss of DNA-PKcs as opposed to inhibition of its catalytic activity. Finally, controversy exists as to whether DNA-PKcs autophosphorylates or is the target of other PIKKs; we present data demonstrating that DNA-PK primarily autophosphorylates.
Collapse
Affiliation(s)
- Jessica A Neal
- College of Veterinary Medicine, Department of Microbiology & Molecular Genetics, and Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA
| | - Katheryn Meek
- College of Veterinary Medicine, Department of Microbiology & Molecular Genetics, and Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
8
|
The Role of the Core Non-Homologous End Joining Factors in Carcinogenesis and Cancer. Cancers (Basel) 2017; 9:cancers9070081. [PMID: 28684677 PMCID: PMC5532617 DOI: 10.3390/cancers9070081] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 12/20/2022] Open
Abstract
DNA double-strand breaks (DSBs) are deleterious DNA lesions that if left unrepaired or are misrepaired, potentially result in chromosomal aberrations, known drivers of carcinogenesis. Pathways that direct the repair of DSBs are traditionally believed to be guardians of the genome as they protect cells from genomic instability. The prominent DSB repair pathway in human cells is the non-homologous end joining (NHEJ) pathway, which mediates template-independent re-ligation of the broken DNA molecule and is active in all phases of the cell cycle. Its role as a guardian of the genome is supported by the fact that defects in NHEJ lead to increased sensitivity to agents that induce DSBs and an increased frequency of chromosomal aberrations. Conversely, evidence from tumors and tumor cell lines has emerged that NHEJ also promotes chromosomal aberrations and genomic instability, particularly in cells that have a defect in one of the other DSB repair pathways. Collectively, the data present a conundrum: how can a single pathway both suppress and promote carcinogenesis? In this review, we will examine NHEJ's role as both a guardian and a disruptor of the genome and explain how underlying genetic context not only dictates whether NHEJ promotes or suppresses carcinogenesis, but also how it alters the response of tumors to conventional therapeutics.
Collapse
|
9
|
Lescale C, Lenden Hasse H, Blackford AN, Balmus G, Bianchi JJ, Yu W, Bacoccina L, Jarade A, Clouin C, Sivapalan R, Reina-San-Martin B, Jackson SP, Deriano L. Specific Roles of XRCC4 Paralogs PAXX and XLF during V(D)J Recombination. Cell Rep 2016; 16:2967-2979. [PMID: 27601299 PMCID: PMC5033762 DOI: 10.1016/j.celrep.2016.08.069] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/02/2016] [Accepted: 08/23/2016] [Indexed: 11/04/2022] Open
Abstract
Paralog of XRCC4 and XLF (PAXX) is a member of the XRCC4 superfamily and plays a role in nonhomologous end-joining (NHEJ), a DNA repair pathway critical for lymphocyte antigen receptor gene assembly. Here, we find that the functions of PAXX and XLF in V(D)J recombination are masked by redundant joining activities. Thus, combined PAXX and XLF deficiency leads to an inability to join RAG-cleaved DNA ends. Additionally, we demonstrate that PAXX function in V(D)J recombination depends on its interaction with Ku. Importantly, we show that, unlike XLF, the role of PAXX during the repair of DNA breaks does not overlap with ATM and the RAG complex. Our findings illuminate the role of PAXX in V(D)J recombination and support a model in which PAXX and XLF function during NHEJ repair of DNA breaks, whereas XLF, the RAG complex, and the ATM-dependent DNA damage response promote end joining by stabilizing DNA ends.
Collapse
Affiliation(s)
- Chloé Lescale
- Departments of Immunology and Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Hélène Lenden Hasse
- Departments of Immunology and Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Andrew N Blackford
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK; CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; The Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Gabriel Balmus
- The Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Maintenance of Genome Stability, Genome Campus, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
| | - Joy J Bianchi
- Departments of Immunology and Genomes and Genetics, Institut Pasteur, 75015 Paris, France; Cellule Pasteur, University of Paris René Descartes, Sorbonne Paris Cité, Paris 75015, France
| | - Wei Yu
- Departments of Immunology and Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Léa Bacoccina
- Departments of Immunology and Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Angélique Jarade
- Departments of Immunology and Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Christophe Clouin
- Departments of Immunology and Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Rohan Sivapalan
- The Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Bernardo Reina-San-Martin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM-U964, CNRS-UMR7104, University of Strasbourg, 67400 Illkirch, France
| | - Stephen P Jackson
- The Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Maintenance of Genome Stability, Genome Campus, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
| | - Ludovic Deriano
- Departments of Immunology and Genomes and Genetics, Institut Pasteur, 75015 Paris, France.
| |
Collapse
|
10
|
Neal JA, Xu Y, Abe M, Hendrickson E, Meek K. Restoration of ATM Expression in DNA-PKcs-Deficient Cells Inhibits Signal End Joining. THE JOURNAL OF IMMUNOLOGY 2016; 196:3032-42. [PMID: 26921311 DOI: 10.4049/jimmunol.1501654] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 01/26/2016] [Indexed: 11/19/2022]
Abstract
Unlike most DNA-dependent protein kinase, catalytic subunit (DNA-PKcs)-deficient mouse cell strains, we show in the present study that targeted deletion of DNA-PKcs in two different human cell lines abrogates VDJ signal end joining in episomal assays. Although the mechanism is not well defined, DNA-PKcs deficiency results in spontaneous reduction of ATM expression in many cultured cell lines (including those examined in this study) and in DNA-PKcs-deficient mice. We considered that varying loss of ATM expression might explain differences in signal end joining in different cell strains and animal models, and we investigated the impact of ATM and/or DNA-PKcs loss on VDJ recombination in cultured human and rodent cell strains. To our surprise, in DNA-PKcs-deficient mouse cell strains that are proficient in signal end joining, restoration of ATM expression markedly inhibits signal end joining. In contrast, in DNA-PKcs-deficient cells that are deficient in signal end joining, complete loss of ATM enhances signal (but not coding) joint formation. We propose that ATM facilitates restriction of signal ends to the classical nonhomologous end-joining pathway.
Collapse
Affiliation(s)
- Jessica A Neal
- Department of Microbiology and Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824; Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - Yao Xu
- Department of Microbiology and Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824; Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - Masumi Abe
- National Institute of Radiological Sciences, Chiba 263-8555, Japan; and
| | - Eric Hendrickson
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Katheryn Meek
- Department of Microbiology and Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824; Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824;
| |
Collapse
|
11
|
Coussens M, Wendland RL, Deriano L, Lindsay CR, Arnal SM, Roth DB. RAG2's acidic hinge restricts repair-pathway choice and promotes genomic stability. Cell Rep 2013; 4:870-8. [PMID: 23994475 PMCID: PMC4008148 DOI: 10.1016/j.celrep.2013.07.041] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 06/25/2013] [Accepted: 07/25/2013] [Indexed: 11/21/2022] Open
Abstract
V(D)J recombination-associated DNA double-strand breaks (DSBs) are normally repaired by the high-fidelity classical nonhomologous end-joining (cNHEJ) machinery. Previous studies implicated the recombination-activating gene (RAG)/DNA postcleavage complex (PCC) in regulating pathway choice by preventing access to inappropriate repair mechanisms such as homologous recombination (HR) and alternative NHEJ (aNHEJ). Here, we report that RAG2's "acidic hinge," previously of unknown function, is critical for several key steps. Mutations that reduce the hinge's negative charge destabilize the PCC, disrupt pathway choice, permit repair of RAG-mediated DSBs by the translocation-prone aNHEJ machinery, and reduce genomic stability in developing lymphocytes. Structural predictions and experimental results support our hypothesis that reduced flexibility of the hinge underlies these outcomes. Furthermore, sequence variants present in the human population reduce the hinge's negative charge, permit aNHEJ, and diminish genomic integrity.
Collapse
Affiliation(s)
- Marc Coussens
- Department of Pathology, New York University School of Medicine, New York, New York, 10016, USA
| | - Rebecca L. Wendland
- Department of Pathology, New York University School of Medicine, New York, New York, 10016, USA
| | - Ludovic Deriano
- Department of Pathology, New York University School of Medicine, New York, New York, 10016, USA
- Lymphocyte Development and Oncogenesis Unit, Department of Immunology, Pasteur Institute, Paris, 75015, France
| | - Cory R. Lindsay
- Department of Pathology, New York University School of Medicine, New York, New York, 10016, USA
- Department of Pathology and Laboratory Medicine and Abramson Family Cancer Research Institute, Raymond and Ruth Perelman School of Medicine of The University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Suzzette M. Arnal
- Department of Pathology, New York University School of Medicine, New York, New York, 10016, USA
| | - David B. Roth
- Department of Pathology, New York University School of Medicine, New York, New York, 10016, USA
- Department of Pathology and Laboratory Medicine and Abramson Family Cancer Research Institute, Raymond and Ruth Perelman School of Medicine of The University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| |
Collapse
|
12
|
Deriano L, Roth DB. Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage. Annu Rev Genet 2013; 47:433-55. [PMID: 24050180 DOI: 10.1146/annurev-genet-110711-155540] [Citation(s) in RCA: 320] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA double-strand breaks (DSBs) are common lesions that continually threaten genomic integrity. Failure to repair a DSB has deleterious consequences, including cell death. Misrepair is also fraught with danger, especially inappropriate end-joining events, which commonly underlie oncogenic transformation and can scramble the genome. Canonically, cells employ two basic mechanisms to repair DSBs: homologous recombination (HR) and the classical nonhomologous end-joining pathway (cNHEJ). More recent experiments identified a highly error-prone NHEJ pathway, termed alternative NHEJ (aNHEJ), which operates in both cNHEJ-proficient and cNHEJ-deficient cells. aNHEJ is now recognized to catalyze many genome rearrangements, some leading to oncogenic transformation. Here, we review the mechanisms of cNHEJ and aNHEJ, their interconnections with the DNA damage response (DDR), and the mechanisms used to determine which of the three DSB repair pathways is used to heal a particular DSB. We briefly review recent clinical applications involving NHEJ and NHEJ inhibitors.
Collapse
Affiliation(s)
- Ludovic Deriano
- Departments of Immunology and Genomes & Genetics, Institut Pasteur, CNRS-URA 1961, 75015 Paris, France;
| | | |
Collapse
|
13
|
Novotná E, Tichý A, Pejchal J, Lukášová E, Salovská B, Vávrová J. DNA-dependent protein kinase and its inhibition in support of radiotherapy. Int J Radiat Biol 2013; 89:416-23. [PMID: 23362996 DOI: 10.3109/09553002.2013.767993] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE Radiotherapy has been used as a treatment of almost 50% of all malignant tumors. The aim of this review is to provide a comprehensive overview of the recent knowledge in the field of molecular mechanisms of radiation-induced double-stranded breaks (DSB) repair. This paper gives particular emphasis to a key DNA repair enzyme, DNA-dependent protein kinase (DNA-PK), which plays a pivotal role in non-homologous end-joining. Furthermore, we discuss possibilities of DNA-PK inhibition and other molecular approaches employed in order to facilitate radiotherapy. CONCLUSIONS We have reviewed the recent studies using novel potent and selective small-molecular DNA-PK inhibitors and we conclude that targeted inhibition of DNA repair proteins like DNA-PK in cancer cells, in combination with ionizing radiation, improves the efficacy of cancer therapy while minimizing side-effects of ionizing radiation. Moreover, the recent discovery of short interfering RNA (siRNA) and signal interfering DNA (siDNA)-based therapeutics, or small peptides and RNA, shows a new opportunity of selective and safe application of biological treatment. All of these approaches are believed to contribute to more personalized anti-cancer therapy.
Collapse
Affiliation(s)
- Eva Novotná
- Department of Radiation Biology, Faculty of Military Health Sciences, University of Defence, Hradec Králové, Czech Republic
| | | | | | | | | | | |
Collapse
|
14
|
Roy S, Andres SN, Vergnes A, Neal JA, Xu Y, Yu Y, Lees-Miller SP, Junop M, Modesti M, Meek K. XRCC4's interaction with XLF is required for coding (but not signal) end joining. Nucleic Acids Res 2012; 40:1684-94. [PMID: 22228831 PMCID: PMC3287172 DOI: 10.1093/nar/gkr1315] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
XRCC4 and XLF are structurally related proteins important for DNA Ligase IV function. XRCC4 forms a tight complex with DNA Ligase IV while XLF interacts directly with XRCC4. Both XRCC4 and XLF form homodimers that can polymerize as heterotypic filaments independently of DNA Ligase IV. Emerging structural and in vitro biochemical data suggest that XRCC4 and XLF together generate a filamentous structure that promotes bridging between DNA molecules. Here, we show that ablating XRCC4's affinity for XLF results in DNA repair deficits including a surprising deficit in VDJ coding, but not signal end joining. These data are consistent with a model whereby XRCC4/XLF complexes hold DNA ends together—stringently required for coding end joining, but dispensable for signal end joining. Finally, DNA-PK phosphorylation of XRCC4/XLF complexes disrupt DNA bridging in vitro, suggesting a regulatory role for DNA-PK's phosphorylation of XRCC4/XLF complexes.
Collapse
Affiliation(s)
- Sunetra Roy
- College of Veterinary Medicine and Departments of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gapud EJ, Sleckman BP. Unique and redundant functions of ATM and DNA-PKcs during V(D)J recombination. Cell Cycle 2011; 10:1928-35. [PMID: 21673501 DOI: 10.4161/cc.10.12.16011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Lymphocyte antigen receptor genes are assembled through the process of V(D)J recombination, during which pairwise DNA cleavage of gene segments results in the formation of four DNA ends that are resolved into a coding joint and a signal joint. The joining of these DNA ends occurs in G1-phase lymphocytes and is mediated by the non-homologous end-joining (NHEJ) pathway of DNA double-strand break (DSB) repair. The ataxia telangiectasia mutated (ATM) and the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), two related kinases, both function in the repair of DNA breaks generated during antigen receptor gene assembly. Although these proteins have unique functions during coding joint formation, their activities in signal joint formation, if any, have been less clear. However, two recent studies demonstrated that ATM and DNA-PKcs have overlapping activities important for signal joint formation. Here, we discuss the unique and shared activities of the ATM and DNA-PKcs kinases during V(D)J recombination, a process that is essential for lymphocyte development and the diversification of antigen receptors.
Collapse
Affiliation(s)
- Eric J Gapud
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | |
Collapse
|
16
|
Ataxia telangiectasia mutated (Atm) and DNA-PKcs kinases have overlapping activities during chromosomal signal joint formation. Proc Natl Acad Sci U S A 2011; 108:2022-7. [PMID: 21245316 DOI: 10.1073/pnas.1013295108] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lymphocyte antigen receptor gene assembly occurs through the process of V(D)J recombination, which is initiated when the RAG endonuclease introduces DNA DSBs at two recombining gene segments to form broken DNA coding end pairs and signal end pairs. These paired DNA ends are joined by proteins of the nonhomologous end-joining (NHEJ) pathway of DSB repair to form a coding joint and signal joint, respectively. RAG DSBs are generated in G1-phase developing lymphocytes, where they activate the ataxia telangiectasia mutated (Atm) and DNA-PKcs kinases to orchestrate diverse cellular DNA damage responses including DSB repair. Paradoxically, although Atm and DNA-PKcs both function during coding joint formation, Atm appears to be dispensible for signal joint formation; and although some studies have revealed an activity for DNA-PKcs during signal joint formation, others have not. Here we show that Atm and DNA-PKcs have overlapping catalytic activities that are required for chromosomal signal joint formation and for preventing the aberrant resolution of signal ends as potentially oncogenic chromosomal translocations.
Collapse
|
17
|
Jacobs C, Huang Y, Masud T, Lu W, Westfield G, Giblin W, Sekiguchi JM. A hypomorphic Artemis human disease allele causes aberrant chromosomal rearrangements and tumorigenesis. Hum Mol Genet 2010; 20:806-19. [PMID: 21147755 DOI: 10.1093/hmg/ddq524] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Artemis gene encodes a DNA nuclease that plays important roles in non-homologous end-joining (NHEJ), a major double-strand break (DSB) repair pathway in mammalian cells. NHEJ factors repair general DSBs as well as programmed breaks generated during the lymphoid-specific DNA rearrangement, V(D)J recombination, which is required for lymphocyte development. Mutations that inactivate Artemis cause a human severe combined immunodeficiency syndrome associated with cellular radiosensitivity. In contrast, hypomorphic Artemis mutations result in combined immunodeficiency syndromes of varying severity, but, in addition, are hypothesized to predispose to lymphoid malignancy. To elucidate the distinct molecular defects caused by hypomorphic compared with inactivating Artemis mutations, we examined tumor predisposition in a mouse model harboring a targeted partial loss-of-function disease allele. We find that, in contrast to Artemis nullizygosity, the hypomorphic mutation leads to increased aberrant intra- and interchromosomal V(D)J joining events. We also observe that dysfunctional Artemis activity combined with p53 inactivation predominantly predisposes to thymic lymphomas harboring clonal translocations distinct from those observed in Artemis nullizygosity. Thus, the Artemis hypomorphic allele results in unique molecular defects, tumor spectrum and oncogenic chromosomal rearrangements. Our findings have significant implications for disease outcomes and treatment of patients with different Artemis mutations.
Collapse
Affiliation(s)
- Cheryl Jacobs
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Deriano L, Stracker TH, Baker A, Petrini JHJ, Roth DB. Roles for NBS1 in alternative nonhomologous end-joining of V(D)J recombination intermediates. Mol Cell 2009; 34:13-25. [PMID: 19362533 DOI: 10.1016/j.molcel.2009.03.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 01/28/2009] [Accepted: 03/20/2009] [Indexed: 11/29/2022]
Abstract
Recent work has highlighted the importance of alternative, error-prone mechanisms for joining DNA double-strand breaks (DSBs) in mammalian cells. These noncanonical, nonhomologous end-joining (NHEJ) pathways threaten genomic stability but remain poorly characterized. The RAG postcleavage complex normally prevents V(D)J recombination-associated DSBs from accessing alternative NHEJ. Because the MRE11/RAD50/NBS1 complex localizes to RAG-mediated DSBs and possesses DNA end tethering, processing, and joining activities, we asked whether it plays a role in the mechanism of alternative NHEJ or participates in regulating access of DSBs to alternative repair pathways. We find that NBS1 is required for alternative NHEJ of hairpin coding ends, suppresses alternative NHEJ of signal ends, and promotes proper resolution of inversional recombination intermediates. These data demonstrate that the MRE11 complex functions at two distinct levels, regulating repair pathway choice (likely through enhancing the stability of DNA end complexes) and participating in alternative NHEJ of coding ends.
Collapse
Affiliation(s)
- Ludovic Deriano
- Department of Pathology, The Helen L and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute for Biomolecular Medicine and , New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
19
|
DNA damage and repair during lymphoid development: antigen receptor diversity, genomic integrity and lymphomagenesis. Immunol Res 2008; 41:103-22. [PMID: 18214391 DOI: 10.1007/s12026-008-8015-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lymphocyte maturation requires generation of a large diversity of antigen receptors, which involves somatic rearrangements at the antigen receptor genes in a process termed V(D)J recombination. Upon encountering specific antigens, B-lymphocytes undergo rearrangements in the constant region of the immunoglobulin genes to optimize immune responses in a process called class switch recombination. Activated B-cells also undergo somatic hypermutation in the variable regions of the immunoglobulin genes to enhance their antigenic affinity. These somatic events are initiated by the infliction of DNA lesions within the antigen receptor genes that are strictly confined to a specific developmental window and cell-cycle stage. DNA lesions are then repaired by one of the general DNA repair mechanisms, such as non-homologous end-joining. Mutations in key factors of these pathways lead to the interruption of these processes and immunodeficiency, making it possible to study the mechanisms of cellular response to DNA lesions and their repair. This review briefly summarizes some of the recently developed animal models with focus on current advances in the understanding of the mechanism of DNA end-joining activities, and its role in the maintenance of genomic stability and the prevention of tumorigenesis.
Collapse
|
20
|
Bredemeyer AL, Huang CY, Walker LM, Bassing CH, Sleckman BP. Aberrant V(D)J recombination in ataxia telangiectasia mutated-deficient lymphocytes is dependent on nonhomologous DNA end joining. THE JOURNAL OF IMMUNOLOGY 2008; 181:2620-5. [PMID: 18684952 DOI: 10.4049/jimmunol.181.4.2620] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During lymphocyte Ag receptor gene assembly, DNA cleavage by the Rag proteins generates pairs of coding and signal ends that are normally joined into coding joints and signal joints, respectively, by the classical nonhomologous end-joining (NHEJ) pathway of DNA double strand break repair. Coding and signal ends can also be aberrantly joined to each other, generating hybrid joints, through NHEJ or through NHEJ-independent pathways, such as Rag-mediated transposition. Hybrid joints do not participate in the formation of functional Ag receptor genes and can alter the configuration of Ag receptor loci in ways that limit subsequent productive rearrangements. The formation of these nonfunctional hybrid joints occurs rarely in wild type lymphocytes, demonstrating that mechanisms exist to limit both the NHEJ-dependent and the NHEJ-independent joining of a signal end to a coding end. In contrast to wild-type cells, hybrid joint formation occurs at high levels in ataxia telangiectasia mutated (Atm)-deficient lymphocytes, suggesting that Atm functions to limit the formation of these aberrant joints. In this study, we show that hybrid joint formation in Atm-deficient cells requires the NHEJ proteins Artemis, DNA-PKcs, and Ku70, demonstrating that Atm functions primarily by modulating the NHEJ-dependent, and not the NHEJ-independent, joining of coding ends to signal ends.
Collapse
Affiliation(s)
- Andrea L Bredemeyer
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
21
|
The catalytic subunit of DNA-dependent protein kinase regulates proliferation, telomere length, and genomic stability in human somatic cells. Mol Cell Biol 2008; 28:6182-95. [PMID: 18710952 DOI: 10.1128/mcb.00355-08] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The DNA-dependent protein kinase (DNA-PK) complex is a serine/threonine protein kinase comprised of a 469-kDa catalytic subunit (DNA-PK(cs)) and the DNA binding regulatory heterodimeric (Ku70/Ku86) complex Ku. DNA-PK functions in the nonhomologous end-joining pathway for the repair of DNA double-stranded breaks (DSBs) introduced by either exogenous DNA damage or endogenous processes, such as lymphoid V(D)J recombination. Not surprisingly, mutations in Ku70, Ku86, or DNA-PK(cs) result in animals that are sensitive to agents that cause DSBs and that are also immune deficient. While these phenotypes have been validated in several model systems, an extension of them to humans has been missing due to the lack of patients with mutations in any one of the three DNA-PK subunits. The worldwide lack of patients suggests that during mammalian evolution this complex has become uniquely essential in primates. This hypothesis was substantiated by the demonstration that functional inactivation of either Ku70 or Ku86 in human somatic cell lines is lethal. Here we report on the functional inactivation of DNA-PK(cs) in human somatic cells. Surprisingly, DNA-PK(cs) does not appear to be essential, although the cell line lacking this gene has profound proliferation and genomic stability deficits not observed for other mammalian systems.
Collapse
|
22
|
Touvrey C, Couedel C, Soulas P, Couderc R, Jasin M, de Villartay JP, Marche PN, Jouvin-Marche E, Candéias SM. Distinct effects of DNA-PKcs and Artemis inactivation on signal joint formation in vivo. Mol Immunol 2008; 45:3383-91. [PMID: 18501428 DOI: 10.1016/j.molimm.2008.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 04/09/2008] [Indexed: 12/17/2022]
Abstract
The assembly of functional immune receptor genes via V(D)J recombination in developing lymphocytes generates DNA double-stranded breaks intermediates that are repaired by non-homologous end joining (NHEJ). This repair pathway requires the sequential recruitment and activation onto coding and signal DNA ends of several proteins, including the DNA-dependent protein kinase and the nuclease Artemis. Artemis activity, triggered by the DNA-dependent protein kinase, is necessary to process the genes hairpin-sealed coding ends but appears dispensable for the ligation of the reciprocal phosphorylated, blunt-ended signal ends into a signal joint. The DNA-dependent protein kinase is however present on signal ends and could potentially recruit and activate Artemis during signal joint formation. To determine whether Artemis plays a role during the resolution of signal ends during V(D)J recombination, we analyzed the structure of signal joints generated in developing thymocytes during the rearrangement of T cell receptor genes in wild type mice and mice mutated for NHEJ factors. These joints exhibit junctional diversity resulting from N nucleotide polymerization by the terminal nucleotidyl transferase and nucleotide loss from one or both of the signal ends before they are ligated. Our results show that Artemis participates in the repair of signal ends in vivo. Furthermore, our results also show that while the DNA-dependent protein kinase complex protects signal ends from processing, including deletions, Artemis seems on the opposite to promote their accessibility to modifying enzymes. In addition, these data suggest that Artemis might be the nuclease responsible for nucleotide loss from signal ends during the repair process.
Collapse
Affiliation(s)
- Cédric Touvrey
- CEA, DSV, DRDC, Laboratoire d'Immunochimie, INSERM U548, Université Joseph Fourier, Grenoble F-38054, France
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kiefer K, Oshinsky J, Kim J, Nakajima PB, Bosma GC, Bosma MJ. The catalytic subunit of DNA-protein kinase (DNA-PKcs) is not required for Ig class-switch recombination. Proc Natl Acad Sci U S A 2007; 104:2843-8. [PMID: 17296939 PMCID: PMC1815269 DOI: 10.1073/pnas.0611359104] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The joining of DNA ends during Ig class-switch recombination (CSR) is thought to involve the same nonhomologous end-joining pathway as used in V(D)J recombination. However, we reported earlier that CSR can readily occur in Ig transgenic SCID mice lacking DNA-dependent protein kinase (DNA-PK) activity, a critical enzymatic activity for V(D)J recombination. We were thus led to question whether the catalytic subunit of DNA-PK (DNA-PKcs) is essential for CSR. To address this issue, we asked whether class switching to different Ig isotypes could occur in a line of Ig transgenic mice lacking detectable DNA-PKcs protein. The answer was affirmative. We conclude that joining of DNA ends during CSR does not require DNA-PKcs and can occur by an alternative repair pathway to that used for V(D)J recombination.
Collapse
Affiliation(s)
- Kerstin Kiefer
- *Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111; and
- Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107
| | - Jennifer Oshinsky
- *Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111; and
| | - Jiyoon Kim
- *Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111; and
| | - Pamela B. Nakajima
- *Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111; and
| | - Gayle C. Bosma
- *Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111; and
| | - Melvin J. Bosma
- *Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
24
|
Chaudhuri J, Basu U, Zarrin A, Yan C, Franco S, Perlot T, Vuong B, Wang J, Phan RT, Datta A, Manis J, Alt FW. Evolution of the Immunoglobulin Heavy Chain Class Switch Recombination Mechanism. Adv Immunol 2007; 94:157-214. [PMID: 17560275 DOI: 10.1016/s0065-2776(06)94006-1] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
To mount an optimum immune response, mature B lymphocytes can change the class of expressed antibody from IgM to IgG, IgA, or IgE through a recombination/deletion process termed immunoglobulin heavy chain (IgH) class switch recombination (CSR). CSR requires the activation-induced cytidine deaminase (AID), which has been shown to employ single-stranded DNA as a substrate in vitro. IgH CSR occurs within and requires large, repetitive sequences, termed S regions, which are parts of germ line transcription units (termed "C(H) genes") that are composed of promoters, S regions, and individual IgH constant region exons. CSR requires and is directed by germ line transcription of participating C(H) genes prior to CSR. AID deamination of cytidines in S regions appears to lead to S region double-stranded breaks (DSBs) required to initiate CSR. Joining of two broken S regions to complete CSR exploits the activities of general DNA DSB repair mechanisms. In this chapter, we discuss our current knowledge of the function of S regions, germ line transcription, AID, and DNA repair in CSR. We present a model for CSR in which transcription through S regions provides DNA substrates on which AID can generate DSB-inducing lesions. We also discuss how phosphorylation of AID may mediate interactions with cofactors that facilitate access to transcribed S regions during CSR and transcribed variable regions during the related process of somatic hypermutation (SHM). Finally, in the context of this CSR model, we further discuss current findings that suggest synapsis and joining of S region DSBs during CSR have evolved to exploit general mechanisms that function to join widely separated chromosomal DSBs.
Collapse
Affiliation(s)
- Jayanta Chaudhuri
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Oestreich KJ, Cobb RM, Pierce S, Chen J, Ferrier P, Oltz EM. Regulation of TCRbeta gene assembly by a promoter/enhancer holocomplex. Immunity 2006; 24:381-91. [PMID: 16618597 DOI: 10.1016/j.immuni.2006.02.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 01/12/2006] [Accepted: 02/01/2006] [Indexed: 01/09/2023]
Abstract
Antigen receptor gene assembly is governed by transcriptional promoters and enhancers that communicate over large distances and modulate chromatin accessibility to V(D)J recombinase. The precise role of these cis-acting elements in opening chromatin at recombinase targets and the mechanisms underlying their crosstalk remain unclear. We show that the TCRbeta enhancer (Ebeta) directs long-range chromatin opening over both DbetaJbeta clusters. Strikingly, chromatin associated with the Dbeta1 gene segment is refractory to Ebeta-mediated opening. Accessibility at Dbeta1 is accompanied by the formation of a stable holocomplex between a Dbeta-proximal promoter and Ebeta. These findings indicate a stepwise process for Dbeta --> Jbeta recombination that relies on distinct aspects of Ebeta activity: an intrinsic function that directs general chromatin opening and a cooperative function that facilitates the assembly of a promoter/enhancer holocomplex, unmasks the Dbeta1 gene segment, and triggers TCRbeta gene assembly.
Collapse
Affiliation(s)
- Kenneth J Oestreich
- Department of Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
26
|
Dudley DD, Chaudhuri J, Bassing CH, Alt FW. Mechanism and control of V(D)J recombination versus class switch recombination: similarities and differences. Adv Immunol 2006; 86:43-112. [PMID: 15705419 DOI: 10.1016/s0065-2776(04)86002-4] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
V(D)J recombination is the process by which the variable region exons encoding the antigen recognition sites of receptors expressed on B and T lymphocytes are generated during early development via somatic assembly of component gene segments. In response to antigen, somatic hypermutation (SHM) and class switch recombination (CSR) induce further modifications of immunoglobulin genes in B cells. CSR changes the IgH constant region for an alternate set that confers distinct antibody effector functions. SHM introduces mutations, at a high rate, into variable region exons, ultimately allowing affinity maturation. All of these genomic alteration processes require tight regulatory control mechanisms, both to ensure development of a normal immune system and to prevent potentially oncogenic processes, such as translocations, caused by errors in the recombination/mutation processes. In this regard, transcription of substrate sequences plays a significant role in target specificity, and transcription is mechanistically coupled to CSR and SHM. However, there are many mechanistic differences in these reactions. V(D)J recombination proceeds via precise DNA cleavage initiated by the RAG proteins at short conserved signal sequences, whereas CSR and SHM are initiated over large target regions via activation-induced cytidine deaminase (AID)-mediated DNA deamination of transcribed target DNA. Yet, new evidence suggests that AID cofactors may help provide an additional layer of specificity for both SHM and CSR. Whereas repair of RAG-induced double-strand breaks (DSBs) involves the general nonhomologous end-joining DNA repair pathway, and CSR also depends on at least some of these factors, CSR requires induction of certain general DSB response factors, whereas V(D)J recombination does not. In this review, we compare and contrast V(D)J recombination and CSR, with particular emphasis on the role of the initiating enzymes and DNA repair proteins in these processes.
Collapse
Affiliation(s)
- Darryll D Dudley
- Howard Hughes Medical Institute, The Children's Hospital Boston, CBR Institute for Biomedical Research, and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
27
|
Abstract
It has been unclear why certain defined DNA regions are consistently sites of chromosomal translocations. Some of these are simply sequences of recognition by endogenous recombination enzymes, but most are not. Recent progress indicates that some of the most common fragile sites in human neoplasm assume non-B DNA structures, namely deviations from the Watson-Crick helix. Because of the single strandedness within these non-B structures, they are vulnerable to structure-specific nucleases. Here we summarize these findings and integrate them with other recent data for non-B structures at sites of consistent constitutional chromosomal translocations.
Collapse
Affiliation(s)
- Sathees C Raghavan
- Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | | |
Collapse
|
28
|
Raghavan SC, Tong J, Lieber MR. Hybrid joint formation in human V(D)J recombination requires nonhomologous DNA end joining. DNA Repair (Amst) 2005; 5:278-85. [PMID: 16275127 DOI: 10.1016/j.dnarep.2005.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 09/07/2005] [Accepted: 09/13/2005] [Indexed: 10/25/2022]
Abstract
In V(D)J recombination, the RAG proteins bind at a pair of signal sequences adjacent to the V, D, or J coding regions and cleave the DNA, resulting in two signal ends and two hairpinned coding ends. The two coding ends are joined to form a coding joint, and the two signal ends are joined to form a signal joint; this joining is done by the nonhomologous DNA end joining (NHEJ) pathway. A recombinational alternative in which a signal end is recombined with a coding end can also occur in a small percentage of the V(D)J recombination events in murine and human cells, and these are called hybrids (or hybrid joints). Two mechanisms have been proposed for the formation of these hybrids. One mechanism is via NHEJ, after initial cutting by RAGs. The second mechanism does not rely on NHEJ, but rather invokes that the RAGs can catalyze joining of the signal to the hairpinned coding end, by using the 3'OH of the signal end as a nucleophile to attack the phosphodiester bonds of the hairpinned coding end. In the present study, we addressed the question of which type of hybrid joining occurs in a physiological environment, where standard V(D)J recombination presumably occurs and normal RAG proteins are endogenously expressed. We find that all hybrids in vivo require DNA ligase IV in human cells, which is the final component of the NHEJ pathway. Hence, hybrid joints rely on NHEJ rather than on the RAG complex for joining.
Collapse
Affiliation(s)
- Sathees C Raghavan
- USC Norris Comprehensive Cancer Center Room 5428, Department of Pathology, Biochemistry & Molecular Biology, University of Southern California, Keck School of Medicine, 1441 Eastlake Avenue, MC9176, Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
29
|
Abstract
Double-strand breaks (DSBs) arise endogenously during normal cellular processes and exogenously by genotoxic agents such as ionizing radiation (IR). DSBs are one of the most severe types of DNA damage, which if left unrepaired are lethal to the cell. Several different DNA repair pathways combat DSBs, with nonhomologous end-joining (NHEJ) being one of the most important in mammalian cells. Competent NHEJ catalyses repair of DSBs by joining together and ligating two free DNA ends of little homology (microhomology) or DNA ends of no homology. The core components of mammalian NHEJ are the catalytic subunit of DNA protein kinase (DNA-PK(cs)), Ku subunits Ku70 and Ku80, Artemis, XRCC4 and DNA ligase IV. DNA-PK is a nuclear serine/threonine protein kinase that comprises a catalytic subunit (DNA-PK(cs)), with the Ku subunits acting as the regulatory element. It has been proposed that DNA-PK is a molecular sensor for DNA damage that enhances the signal via phosphorylation of many downstream targets. The crucial role of DNA-PK in the repair of DSBs is highlighted by the hypersensitivity of DNA-PK(-/-) mice to IR and the high levels of unrepaired DSBs after genotoxic insult. Recently, DNA-PK has emerged as a suitable genetic target for molecular therapeutics such as siRNA, antisense and novel inhibitory small molecules. This review encompasses the recent literature regarding the role of DNA-PK in the protection of genomic stability and focuses on how this knowledge has aided the development of specific DNA-PK inhibitors, via both small molecule and directed molecular targeting techniques. This review promotes the inhibition of DNA-PK as a valid approach to enhance the tumor-cell-killing effects of treatments such as IR.
Collapse
Affiliation(s)
- Spencer J Collis
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD 21231, USA.
| | | | | | | |
Collapse
|
30
|
Abstract
DNA double strand breaks (DSBs) are among the most dangerous lesions that can occur in the genome of eukaryotic cells. Proper repair of chromosomal DSBs is critical for maintaining cellular viability and genomic integrity and, in multi-cellular organisms, for suppression of tumorigenesis. Thus, eukaryotic cells have evolved specialized and redundant molecular mechanisms to sense, respond to, and repair DSBs. In this chapter, we provide an overview of the progress that has been made over the last decade in elucidating the identity and function of components that participate in the cellular response to chromosomal DSBs. Then, we discuss, in more depth, the response to DSBs that occur in the context of the V(D)J recombination and IgH class switch recombination reactions that occur in cells of the lymphocyte lineage.
Collapse
Affiliation(s)
- Craig H Bassing
- Department of Genetics, The CBR Institute for Biomedical Research, The Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
31
|
Reddy YVR, Ding Q, Lees-Miller SP, Meek K, Ramsden DA. Non-homologous End Joining Requires That the DNA-PK Complex Undergo an Autophosphorylation-dependent Rearrangement at DNA Ends. J Biol Chem 2004; 279:39408-13. [PMID: 15258142 DOI: 10.1074/jbc.m406432200] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Repair of chromosome breaks by non-homologous end joining requires the XRCC4-ligase IV complex, Ku, and the DNA-dependent protein kinase catalytic subunit (DNA-PKcs). DNA-PKcs must also retain kinase activity and undergo autophosphorylation at six closely linked sites (ABCDE sites). We describe here an end-joining assay using only purified components that reflects cellular requirements for both Ku and kinase-active DNA-PKcs and investigate the mechanistic basis for these requirements. A need for DNA-PKcs autophosphorylation is sufficient to explain the requirement for kinase activity, in part because autophosphorylation is generally required for end-joining factors to access DNA ends. However, DNA-PKcs with all six ABCDE autophosphorylation sites mutated to alanine allows access to ends through autophosphorylation of other sites, yet our in vitro end-joining assay still reflects the defectiveness of this mutant in cellular end joining. In contrast, mutation of ABCDE sites to aspartate, a phosphorylation mimic, supports high levels of end joining that is now independent of kinase activity. This is likely because DNA-PKcs with aspartate substitutions at ABCDE sites allow access to DNA ends while retaining affinity for Ku-bound ends and stabilizing recruitment of the XRCC4-ligase IV complex. Autophosphorylation at ABCDE sites thus apparently directs a rearrangement of the DNA-PK complex that ensures access to broken ends and joining steps are coupled together within a synaptic complex, making repair more accurate.
Collapse
Affiliation(s)
- Yeturu V R Reddy
- Lineberger Comprehensive Cancer Center and Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
32
|
Abstract
Since the discovery that the recombination-activating gene (RAG) proteins were capable of transposition in vitro, investigators have been trying to uncover instances of transposition in vivo and understand how this transposase has been harnessed to do useful work while being inhibited from causing deleterious chromosome rearrangements. How to preserve the capacity of the recombinase to promote a certain class of rearrangements while curtailing its ability to catalyze others is an interesting problem. In this review, we examine the progress that has been made toward understanding the regulatory mechanisms that prohibit transposition in order to formulate a model that takes into account the diverse observations that have been made over the last 15 years. First, we touch on the striking mechanistic similarities between transposition and V(D)J recombination and review evidence suggesting that the RAG proteins may be members of the retroviral integrase superfamily. We then dispense with an old theory that certain standard products of V(D)J recombination called signal joints protect against deleterious transposition events. Finally, we discuss the evidence that target capture could serve a regulatory role and close with an analysis of hairpins as preferred targets for RAG-mediated transposition. These novel strategies for harnessing the RAG transposase not only shed light on V(D)J recombination but also may provide insight into the regulation of other transposases.
Collapse
Affiliation(s)
- Vicky L Brandt
- Program in Molecular Pathogenesis, The Skirball Institute, New York University School of Medicine, New York, NY, USA
| | | |
Collapse
|
33
|
Myung K, Ghosh G, Fattah FJ, Li G, Kim H, Dutia A, Pak E, Smith S, Hendrickson EA. Regulation of telomere length and suppression of genomic instability in human somatic cells by Ku86. Mol Cell Biol 2004; 24:5050-9. [PMID: 15143195 PMCID: PMC416406 DOI: 10.1128/mcb.24.11.5050-5059.2004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ku86 plays a key role in nonhomologous end joining in organisms as evolutionarily disparate as bacteria and humans. In eukaryotic cells, Ku86 has also been implicated in the regulation of telomere length although the effect of Ku86 mutations varies considerably between species. Indeed, telomeres either shorten significantly, shorten slightly, remain unchanged, or lengthen significantly in budding yeast, fission yeast, chicken cells, or plants, respectively, that are null for Ku86 expression. Thus, it has been unclear which model system is most relevant for humans. We demonstrate here that the functional inactivation of even a single allele of Ku86 in human somatic cells results in profound telomere loss, which is accompanied by an increase in chromosomal fusions, translocations, and genomic instability. Together, these experiments demonstrate that Ku86, separate from its role in nonhomologous end joining, performs the additional function in human somatic cells of suppressing genomic instability through the regulation of telomere length.
Collapse
Affiliation(s)
- Kyungjae Myung
- 6-155 Jackson Hall, Department of Biochemistry, Molecular Biology, and Biophysics, 321 Church St. SE, University of Minnesota Medical School, Minneapolis, MN 55355, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Izsvák Z, Stüwe EE, Fiedler D, Katzer A, Jeggo PA, Ivics Z. Healing the wounds inflicted by sleeping beauty transposition by double-strand break repair in mammalian somatic cells. Mol Cell 2004; 13:279-90. [PMID: 14759372 DOI: 10.1016/s1097-2765(03)00524-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2003] [Revised: 11/19/2003] [Accepted: 11/25/2003] [Indexed: 11/17/2022]
Abstract
The Sleeping Beauty (SB) element is a useful tool to probe transposon-host interactions in vertebrates. We investigated requirements of DNA repair factors for SB transposition in mammalian cells. Factors of nonhomologous end joining (NHEJ), including Ku, DNA-PKcs, and Xrcc4 as well as Xrcc3/Rad51C, a complex that functions during homologous recombination, are required for efficient transposition. NHEJ plays a dominant role in repair of transposon excision sites in somatic cells. Artemis is dispensable for transposition, consistent with the lack of a hairpin structure at excision sites. Ku physically interacts with the SB transposase. DNA-PKcs is a limiting factor for transposition and, in addition to repair, has a function in transposition that is independent from its kinase activity. ATM is involved in excision site repair and affects transposition rates. The overlapping but distinct roles of repair factors in transposition and in V(D)J recombination might influence the outcomes of these mechanistically similar processes.
Collapse
Affiliation(s)
- Zsuzsanna Izsvák
- Max Delbrück Center for Molecular Medicine, Robert Rössle Str. 10, D-13092 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Rockwood LD, Nussenzweig A, Janz S. Paradoxical decrease in mutant frequencies and chromosomal rearrangements in a transgenic lacZ reporter gene in Ku80 null mice deficient in DNA double strand break repair. Mutat Res 2003; 529:51-8. [PMID: 12943919 DOI: 10.1016/s0027-5107(03)00108-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Repair of DNA double strand breaks (DSB), either by homologous recombination (HR) or nonhomologous end-joining (NHEJ), is essential to maintain genomic stability. To examine the impact of NHEJ deficiency on genomic integrity in Ku80 null (Ku-) mice, the chromosomally integrated shuttle vector pUR288, which includes a lacZ reporter gene, was used to measure mutations in vivo. Unexpectedly, a significant decrease was found in mutant frequencies of Ku- liver (5.04x10(-5)) and brain (4.55x10(-5)) compared to tissues obtained from normal (Ku+) littermates (7.92x10(-5)and 7.30x10(-5), respectively). No significant difference was found in mutant frequencies in spleen from Ku- (7.21x10(-5)) and Ku+ mice (8.16x10(-5)). The determination of the mutant spectrum in lacZ revealed the almost complete absence of chromosomal rearrangements (R) in Ku- tissues (0.5%, 3/616), a notable distinction from Ku+ controls (16.7%, 104/621). These findings suggest that accurate repair of DSB by HR and elimination of cells with unrepaired DNA damage by apoptosis are capable of maintaining genomic stability of the lacZ reporter in Ku- mice.
Collapse
Affiliation(s)
- Lynne D Rockwood
- Laboratory of Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, NCI, Room 2B10, Building 37, Bethesda, MD 20892-4256, USA
| | | | | |
Collapse
|
37
|
Ding Q, Reddy YVR, Wang W, Woods T, Douglas P, Ramsden DA, Lees-Miller SP, Meek K. Autophosphorylation of the catalytic subunit of the DNA-dependent protein kinase is required for efficient end processing during DNA double-strand break repair. Mol Cell Biol 2003; 23:5836-48. [PMID: 12897153 PMCID: PMC166339 DOI: 10.1128/mcb.23.16.5836-5848.2003] [Citation(s) in RCA: 255] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The DNA-dependent protein kinase (DNA-PK) plays an essential role in nonhomologous DNA end joining (NHEJ) by initially recognizing and binding to DNA breaks. We have shown that in vitro, purified DNA-PK undergoes autophosphorylation, resulting in loss of activity and disassembly of the kinase complex. Thus, we have suggested that autophosphorylation of the DNA-PK catalytic subunit (DNA-PKcs) may be critical for subsequent steps in DNA repair. Recently, we defined seven autophosphorylation sites within DNA-PKcs. Six of these are tightly clustered within 38 residues of the 4,127-residue protein. Here, we show that while phosphorylation at any single site within the major cluster is not critical for DNA-PK's function in vivo, mutation of several sites abolishes the ability of DNA-PK to function in NHEJ. This is not due to general defects in DNA-PK activity, as studies of the mutant protein indicate that its kinase activity and ability to form a complex with DNA-bound Ku remain largely unchanged. However, analysis of rare coding joints and ends demonstrates that nucleolytic end processing is dramatically reduced in joints mediated by the mutant DNA-PKcs. We therefore suggest that autophosphorylation within the major cluster mediates a conformational change in the DNA-PK complex that is critical for DNA end processing. However, autophosphorylation at these sites may not be sufficient for kinase disassembly.
Collapse
Affiliation(s)
- Qi Ding
- College of Veterinary Medicine and Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Martina C, Wayne J, Bell A, Chang Y. In vivo ligation of CD3 on neonatal scid thymocytes blocks gamma-irradiation-induced TCRbeta rearrangements and thymic lymphomagenesis. Immunol Lett 2003; 85:279-86. [PMID: 12663144 DOI: 10.1016/s0165-2478(02)00256-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Several studies have shown that the developmental arrest of severe combined immune deficiency (scid) thymocytes during the CD4(-)CD8(-) double negative (DN) to CD4(+)CD8(+) double positive (DP) transition can be overcome by a sub-lethal dose of ionizing radiation (IR). Concurrent with this developmental progression, IR also induces variable (diversity) joining (V(D)J) recombination at T cell receptor (TCR), delta, beta, and gamma, but not alpha loci. In addition, all irradiated scid mice succumb to thymic lymphoma. In this study, we demonstrate that scid neonates treated with anti-CD3 epsilon antibody become more resistant to the development of thymoma upon exposure to IR. It is known that the anti-CD3 epsilon antibody treatment induces T cell progression to the DP stage bypassing TCRbeta rearrangement. We show here that the resistance to tumor development is correlated with a reduction of TCRbeta rearrangements that are induced by IR. However, TCRgamma rearrangements were not altered by the antibody treatment. The particular effect of anti-CD3 epsilon antibody on TCRbeta rearrangements is likely attributed to a decline of the double negative thymocyte subset (DN3), in which TCRbeta rearrangements predominantly occur. These results suggest that the developmental stage of scid thymocytes can influence the effect of IR on TCR rearrangements as well as lymphomagenesis.
Collapse
Affiliation(s)
- Cherie Martina
- Department of Microbiology, Molecular and Cellular Biology Program, Arizona State University, Tempe, AZ, 85287-2701, USA
| | | | | | | |
Collapse
|
39
|
Gladdy RA, Taylor MD, Williams CJ, Grandal I, Karaskova J, Squire JA, Rutka JT, Guidos CJ, Danska JS. The RAG-1/2 endonuclease causes genomic instability and controls CNS complications of lymphoblastic leukemia in p53/Prkdc-deficient mice. Cancer Cell 2003; 3:37-50. [PMID: 12559174 DOI: 10.1016/s1535-6108(02)00236-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Double-strand DNA breaks (DSB) induce chromosomal translocations and gene amplification in cell culture, but mechanisms by which DSB cause genomic instability in vivo are poorly understood. We show that RAG-1/2-induced DSB cause IgH/c-Myc translocations in leukemic pro-B cells from p53/Prkdc-deficient mice. Strikingly, these translocations were complex, clonally heterogeneous and amplified. We observed reiterated IgH/c-Myc fusions on dicentric chromosomes, suggesting that amplification occurred by repeated cycles of bridge, breakage and fusion. Leukemogenesis was not mitigated in RAG-2/p53/Prkdc-deficient mice, but leukemic pro-B cells lacked IgH/c-Myc translocations. Thus, global genomic instability conferred by p53/Prkdc disruption efficiently transforms pro-B cells lacking RAG-1/2-induced DSB. Unexpectedly, RAG-2/p53/Prkdc-deficient mice also developed leptomeningeal leukemia, providing a novel spontaneous model for this frequent complication of human lymphoblastic malignancies.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Blotting, Southern
- Cell Transformation, Neoplastic/genetics
- Central Nervous System Diseases/etiology
- Central Nervous System Diseases/pathology
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- Flow Cytometry
- Gene Amplification/genetics
- Genes, myc/genetics
- Hematopoietic Stem Cell Transplantation
- Hematopoietic Stem Cells/physiology
- Homeodomain Proteins/genetics
- Immunoglobulin Heavy Chains/genetics
- Immunohistochemistry
- In Situ Hybridization, Fluorescence
- Leukemia, Lymphoid/complications
- Leukemia, Lymphoid/genetics
- Leukemia, Lymphoid/physiopathology
- Meningeal Neoplasms/etiology
- Meningeal Neoplasms/genetics
- Mice
- Models, Animal
- Translocation, Genetic
- Tumor Suppressor Protein p53/deficiency
Collapse
Affiliation(s)
- Rebecca A Gladdy
- Program in Developmental Biology, The Hospital for Sick Children and Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Bosma GC, Kim J, Urich T, Fath DM, Cotticelli MG, Ruetsch NR, Radic MZ, Bosma MJ. DNA-dependent protein kinase activity is not required for immunoglobulin class switching. J Exp Med 2002; 196:1483-95. [PMID: 12461083 PMCID: PMC2194268 DOI: 10.1084/jem.20001871] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2000] [Revised: 10/10/2002] [Accepted: 10/14/2002] [Indexed: 11/15/2022] Open
Abstract
Class switch recombination (CSR), similar to V(D)J recombination, is thought to involve DNA double strand breaks and repair by the nonhomologous end-joining pathway. A key component of this pathway is DNA-dependent protein kinase (DNA-PK), consisting of a catalytic subunit (DNA-PKcs) and a DNA-binding heterodimer (Ku70/80). To test whether DNA-PKcs activity is essential for CSR, we examined whether IgM(+) B cells from scid mice with site-directed H and L chain transgenes were able to undergo CSR. Although B cells from these mice were shown to lack DNA-PKcs activity, they were able to switch from IgM to IgG or IgA with close to the same efficiency as B cells from control transgenic and nontransgenic scid/+ mice, heterozygous for the scid mutation. We conclude that CSR, unlike V(D)J recombination, can readily occur in the absence of DNA-PKcs activity. We suggest nonhomologous end joining may not be the (primary or only) mechanism used to repair DNA breaks during CSR.
Collapse
Affiliation(s)
- Gayle C Bosma
- Institute for Cancer Research, Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia, PA 19111, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
de Villartay JP. V(D)J recombination and DNA repair: lessons from human immune deficiencies and other animal models. Curr Opin Allergy Clin Immunol 2002; 2:473-9. [PMID: 14752329 DOI: 10.1097/00130832-200212000-00001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW V(D)J recombination not only represents the main mechanism for the diversification of the immune system, it also constitutes a critical checkpoint in the development of both B and T lymphocytes. While a defect in V(D)J recombination leads to severe combined immune deficiency, a deregulation of this process can participate in the onset of lymphoid malignancies. RECENT FINDINGS The careful analysis of human severe combined immune deficiency patients as well as engineered murine models provided several new interesting insights into the physiopathology of the V(D)J recombination process. A new factor of the V(D)J recombination/DNA repair machinery, Artemis, was identified based on its deficiency in human severe combined immune deficiency patients. It also became evident from knockout mouse studies that DNA repair factors that participate in V(D)J recombination can be considered as genomic caretakers. SUMMARY While V(D)J recombination was first recognized as a critical checkpoint in the development of the immune system, the discovery of several DNA repair factors that participate in this reaction shed light on more general aspects of genomic stability and cancer predisposition.
Collapse
Affiliation(s)
- Jean-Pierre de Villartay
- Developpement Normal et Pathologie du système Immunataire, INSERM U429, Hôpital Necker Enfants-Malades, Paris, France.
| |
Collapse
|
42
|
Abstract
V(D)J recombination is the specialized DNA rearrangement used by cells of the immune system to assemble immunoglobulin and T-cell receptor genes from the preexisting gene segments. Because there is a large choice of segments to join, this process accounts for much of the diversity of the immune response. Recombination is initiated by the lymphoid-specific RAG1 and RAG2 proteins, which cooperate to make double-strand breaks at specific recognition sequences (recombination signal sequences, RSSs). The neighboring coding DNA is converted to a hairpin during breakage. Broken ends are then processed and joined with the help of several factors also involved in repair of radiation-damaged DNA, including the DNA-dependent protein kinase (DNA-PK) and the Ku, Artemis, DNA ligase IV, and Xrcc4 proteins, and possibly histone H2AX and the Mre11/Rad50/Nbs1 complex. There may be other factors not yet known. V(D)J recombination is strongly regulated by limiting access to RSS sites within chromatin, so that particular sites are available only in certain cell types and developmental stages. The roles of enhancers, histone acetylation, and chromatin remodeling factors in controlling accessibility are discussed. The RAG proteins are also capable of transposing RSS-ended fragments into new DNA sites. This transposition helps to explain the mechanism of RAG action and supports earlier proposals that V(D)J recombination evolved from an ancient mobile DNA element.
Collapse
Affiliation(s)
- Martin Gellert
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892-0540, USA.
| |
Collapse
|
43
|
Nakajima PB, Bosma MJ. Variable diversity joining recombination: nonhairpin coding ends in thymocytes of SCID and wild-type mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:3094-104. [PMID: 12218126 DOI: 10.4049/jimmunol.169.6.3094] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Initiation of V(D)J recombination results in broken DNA molecules with blunt recombination signal ends and covalently sealed (hairpin) coding ends. In SCID mice, coding joint formation is severely impaired and hairpin coding ends accumulate as a result of a deficiency in the catalytic subunit of DNA-dependent protein kinase, an enzyme involved in the repair of DNA double-strand breaks. In this study, we report that not all SCID coding ends are hairpinned. We have detected open Jdelta1 and Ddelta2 coding ends at the TCRdelta locus in SCID thymocytes. Approximately 25% of 5'Ddelta2 coding ends were found to be open. Large deletions and abnormally long P nucleotide additions typical of SCID Ddelta2-Jdelta1 coding joints were not observed. Most Jdelta1 and Ddelta2 coding ends exhibited 3' overhangs, but at least 20% had unique 5' overhangs not previously detected in vivo. We suggest that the SCID DNA-dependent protein kinase deficiency not only reduces the efficiency of hairpin opening, but also may affect the specificity of hairpin nicking, as well as the efficiency of joining open coding ends.
Collapse
Affiliation(s)
- Pamela B Nakajima
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | | |
Collapse
|
44
|
Braastad CD, Leguia M, Hendrickson EA. Ku86 autoantigen related protein-1 transcription initiates from a CpG island and is induced by p53 through a nearby p53 response element. Nucleic Acids Res 2002; 30:1713-24. [PMID: 11937624 PMCID: PMC113227 DOI: 10.1093/nar/30.8.1713] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2002] [Accepted: 02/27/2002] [Indexed: 12/31/2022] Open
Abstract
The human Ku86 gene and an isoform, KARP-1 (Ku86 autoantigen related protein-1), encode overlapping, but differentially regulated, transcripts. Ku86 is constitutively transcribed at high levels and, although it plays a seminal role in DNA double-strand break repair, its expression is not induced by DNA damage. KARP-1, in contrast, is expressed constitutively only at low levels and its expression is induced by DNA damage in a p53-dependent fashion. The regulatory elements promoting KARP-1 gene expression and p53 responsiveness, however, were unknown. Here, we report that a strong DNase I hypersensitive site (DHS) resides approximately 25 kb upstream from the Ku86 promoter. This DHS is encompassed by a hypomethylated CpG island. Reporter assays demonstrated that this region corresponded to a promoter(s), which promoted transcription of peroxisomal trans-2-enoyl CoA reductase in the centromeric direction and KARP-1 in the telomeric direction. KARP-1 primer extension products were mapped to this CpG island in the correct transcriptional orientation confirming that KARP-1 transcription initiates from this site. Moreover, a p53 response element within the first intron of the KARP-1 transcriptional unit was identified using chromatin immunoprecipitation and antibodies specific to activated forms of p53. These data expand our understanding of this important DNA repair locus.
Collapse
Affiliation(s)
- Corey D Braastad
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|
45
|
Brown ML, Franco D, Burkle A, Chang Y. Role of poly(ADP-ribosyl)ation in DNA-PKcs- independent V(D)J recombination. Proc Natl Acad Sci U S A 2002; 99:4532-7. [PMID: 11930007 PMCID: PMC123682 DOI: 10.1073/pnas.072495299] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2001] [Indexed: 11/18/2022] Open
Abstract
V(D)J recombination is critical to the generation of a functional immune system. Intrinsic to the assembly of antigen receptor genes is the formation of endogenous DNA double-strand breaks, which normally are excluded from the cellular surveillance machinery because of their sequestration in a synaptic complex and/or rapid resolution. In cells deficient in double-strand break repair, such recombination-induced breaks fail to be joined promptly and therefore are at risk of being recognized as DNA damage. Poly(ADP-ribose) polymerase-1 is an important factor in the maintenance of genomic integrity and is believed to play a central role in DNA repair. Here we provide visual evidence that in a recombination inducible severe combined immunodeficient cell line poly(ADP-ribose) formation occurs during the resolution stage of V(D)J recombination where nascent opened coding ends are generated. Poly(ADP-ribose) formation appears to facilitate coding end resolution. Furthermore, formation of Mre11 foci coincide with these areas of poly(ADP-ribosyl)ation. In contrast, such a response is not observed in wild-type cells possessing a functional catalytic subunit of DNA-dependent protein kinase (DNA-PK(cs)). Thus, V(D)J recombination invokes a DNA damage response in cells lacking DNA-PK(cs) activity, which in turn promotes DNA-PK(cs)-independent resolution of recombination intermediates.
Collapse
Affiliation(s)
- Matthew L Brown
- Department of Microbiology, Molecular and Cellular Biology Program, Arizona State University, Tempe, AZ 85287-2701, USA
| | | | | | | |
Collapse
|
46
|
Abstract
To assess the role of the DNA-PKcs nonhomologous DNA end-joining (NHEJ) protein in Ig heavy chain class switch recombination (CSR), we assayed CSR ability of DNA-PKcs-deficient (DP-T) B cells generated via complementation of DP-T mice with Ig heavy chain and light chain knock-in transgenes (DP-T/HC/LC mice). DP-T/HC/LC mice were severely deficient for all serum IgH isotypes except IgM and, unexpectedly, IgG1. Upon appropriate stimulation, DP-T/HC/LC B cells showed normal proliferation, germline C(H) gene transcription, and AID induction, indicating that DNA-PKcs deficiency did not affect cellular events upstream to CSR. Yet, in vitro activated DP-T/HC/LC B cells again underwent switching only to IgG1 and, like wild-type cells, frequently underwent CSR to gamma1 on both chromosomes. We conclude that DNA-PKcs is required for CSR to most C(H) genes but that CSR to gamma1 occurs via a DNA-PKcs-independent mechanism.
Collapse
Affiliation(s)
- John P Manis
- Howard Hughes Medical Institute and Children's Hospital, Center for Blood Research and Department of Genetics, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
47
|
Abstract
Ku86 plays a key role in nonhomologous end joining in mammals. Functional inactivation in rodents of either Ku86 or Ku70, which form the heterodimeric DNA end-binding subunit of the DNA-dependent protein kinase complex, is nevertheless compatible with viability. In contrast, no human patient has been described with mutations in either Ku86 or Ku70. This has led to the hypotheses that either these genes are performing an additional essential role(s) and/or redundant pathways exist that mask the phenotypic expression of these genes when they are mutated in humans. To address this issue, we describe here the construction of human somatic cell lines containing a targeted disruption of the Ku86 locus. Human HCT116 colon cancer cells heterozygous for Ku86 were haploinsufficient with an increase in polyploid cells, a reduction in cell proliferation, elevated p53 levels, and a slight hypersensitivity to ionizing radiation. Functional inactivation of the second Ku86 allele resulted in cells with a drastically reduced doubling time. These cells were capable of undergoing only a limited number of cell divisions, after which they underwent apoptosis. These experiments demonstrate that the Ku86 locus is essential in human somatic tissue culture cells.
Collapse
Affiliation(s)
- Gang Li
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, RI 02912, USA>
| | | | | |
Collapse
|
48
|
Perkins EJ, Nair A, Cowley DO, Van Dyke T, Chang Y, Ramsden DA. Sensing of intermediates in V(D)J recombination by ATM. Genes Dev 2002; 16:159-64. [PMID: 11799059 PMCID: PMC155324 DOI: 10.1101/gad.956902] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Ataxia-telangiectasia mutated (ATM) is required for resistance to radiation-induced DNA breaks. Here we use chromatin immunoprecipitation to show that ATM also localizes to breaks associated with V(D)J recombination. ATM recruitment to the recombining locus correlates approximately with recruitment of the break-initiating factor RAG1 and precedes efficient break repair, consistent with localization of ATM to normal recombination intermediates. A product of ATM kinase activity, Ser 18-phosphorylated p53, was detected similarly at these breaks, arguing that ATM phosphorylates target proteins in situ. We suggest routine surveillance of intermediates in V(D)J recombination by ATM helps suppress potentially oncogenic translocations when repair fails.
Collapse
Affiliation(s)
- Eric J Perkins
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
49
|
Sekiguchi JA, Whitlow S, Alt FW. Increased accumulation of hybrid V(D)J joins in cells expressing truncated versus full-length RAGs. Mol Cell 2001; 8:1383-90. [PMID: 11779512 DOI: 10.1016/s1097-2765(01)00423-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
RAG1 and RAG2 (RAGs) initiate V(D)J recombination by introducing breaks between two coding segments and flanking recombination signals (RSs). Nonhomologous end-joining (NHEJ) proteins then join the coding segments and join the RSs. In wild-type cells, both full-length and truncated ("core") RAGs lead to accumulation of "hybrid" V(D)J joins, in which an RS is appended to a different coding sequence. We now show that while hybrid joins do not accumulate in NHEJ-deficient cells that express full-length RAGs, they do accumulate in NHEJ-deficient cells that express the core RAGS; like those catalyzed by core RAGs in vitro, however, they are sealed on just one DNA strand. These results suggest a potential role for the non-core regions in repressing potentially harmful transposition events.
Collapse
Affiliation(s)
- J A Sekiguchi
- Howard Hughes Medical Institute, Harvard University Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
50
|
Meek K, Kienker L, Dallas C, Wang W, Dark MJ, Venta PJ, Huie ML, Hirschhorn R, Bell T. SCID in Jack Russell terriers: a new animal model of DNA-PKcs deficiency. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:2142-50. [PMID: 11489998 DOI: 10.4049/jimmunol.167.4.2142] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We recently described the incidence of a SCID disease in a litter of Jack Russell terriers. In this study, we show that the molecular defect in these animals is faulty V(D)J recombination. Furthermore, we document a complete deficit in DNA-dependent protein kinase activity that can be explained by a marked diminution in the expression of the catalytic subunit DNA-dependent protein kinase catalytic subunit (DNA-PKcs). We conclude that as is the case in C.B-17 SCID mice and in Arabian SCID foals, the defective factor in these SCID puppies is DNA-PKcs. In mice, it has been clearly established that DNA-PKcs deficiency produces an incomplete block in V(D)J recombination, resulting in "leaky" coding joint formation and only a modest defect in signal end ligation. In contrast, DNA-PKcs deficiency in horses profoundly blocks both coding and signal end joining. Here, we show that although DNA-PKcs deficiency in canine lymphocytes results in a block in both coding and signal end joining, the deficit in both is intermediate between that seen in SCID mice and SCID foals. These data demonstrate significant species variation in the absolute necessity for DNA-PKcs during V(D)J recombination. Furthermore, the severity of the V(D)J recombination deficits in these three examples of genetic DNA-PKcs deficiency inversely correlates with the relative DNA-PK enzymatic activity expressed in normal fibroblasts derived from these three species.
Collapse
MESH Headings
- Alleles
- Animals
- Base Sequence
- Catalytic Domain/genetics
- Cell Line
- DNA-Activated Protein Kinase
- DNA-Binding Proteins
- Disease Models, Animal
- Dog Diseases/enzymology
- Dog Diseases/genetics
- Dog Diseases/immunology
- Dogs
- Fibroblasts/immunology
- Fibroblasts/radiation effects
- Gene Expression Regulation/immunology
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, SCID
- Molecular Sequence Data
- Nuclear Proteins
- Phenotype
- Polymorphism, Single Nucleotide
- Protein Serine-Threonine Kinases/biosynthesis
- Protein Serine-Threonine Kinases/deficiency
- Protein Serine-Threonine Kinases/genetics
- Purine Nucleotides/genetics
- Purine Nucleotides/metabolism
- Radiation Tolerance
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Recombination, Genetic/immunology
- Recombination, Genetic/radiation effects
- Severe Combined Immunodeficiency/enzymology
- Severe Combined Immunodeficiency/genetics
- Severe Combined Immunodeficiency/veterinary
- T-Lymphocyte Subsets/chemistry
- T-Lymphocyte Subsets/enzymology
Collapse
Affiliation(s)
- K Meek
- College of Veterinary Medicine and Department of Veterinary Pathology, Michigan State University, East Lansing, MI 48824, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|